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Preface to the Fourth Edition

The first edition of Theoretical Atomic Physics was written more than a quarter
of a century ago, with the aim of providing graduate students and researchers in
atomic physics with the “kind of advanced quantum mechanics needed for practical
applications in modern atomic physics”. Since then, the unbroken advancement
of improved experimental techniques and computational power has broadened the
range of fascinating effects that can be studied in the laboratory and modelled in
theoretical analyses. It includes the study of individual atoms in electromagnetic
traps, where fundamental postulates of quantum mechanics can be tested, of
degenerate quantum gases of ultracold atoms (or molecules) and of complex systems
with chaotic classical dynamics, where semiclassical theories have experienced a
revival and found many applications of practical relevance in the atomic domain.
The aim formulated for the first edition remains valid in this context. The emphasis
on theory should enable the reader to appreciate the fundamental assumptions
underlying standard theoretical constructs and to embark on independent research
projects.

The production of and experimentation with Bose–Einstein condensates of
atomic gases is now routine in many laboratories, and this has helped to make
cold and ultracold atoms (and molecules) a field of rapidly growing interest.
The interaction of atoms close to the threshold between weakly bound diatomic
molecular states and low-energy scattering states is important in this context, and
so, many concepts of near-threshold scattering theory are used by researchers in the
field. The observation that many colleagues were not aware of the origin and could
not appreciate the precise meaning of such concepts as, e.g. “scattering length”,
motivated me to write a monograph on scattering theory, with a special focus on the
relevance for cold-atom physics [H. Friedrich, Scattering Theory, Lecture Notes in
Physics 872, Springer, Berlin, Heidelberg, 2013, 2nd. Edition 2016]. In the fourth
edition of Theoretical Atomic Physics, I have updated and expanded the sections
and subsections involving scattering theory and/or near-threshold phenomena by
incorporating the corresponding contributions from the monograph. Hence, the
treatment of scattering and near-threshold phenomena has become more sophis-
ticated. Special attention is given to the quantization of weakly bound states just
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vi Preface to the Fourth Edition

below the continuum threshold and to low-energy scattering and quantum reflection
just above. Particular emphasis is laid on the fundamental differences between
long-ranged Coulombic potentials, where the continuum threshold represents the
(semi-)classical limit of the Schrödinger equation, and shorter-ranged potentials
falling off faster than 1=r2 at large distances r, where the threshold corresponds
to the anticlassical, extreme quantum limit. Modified effective range expansions are
given, even for potentials with attractive inverse-cube tails, a result derived only
recently by Müller [Phys. Rev. Lett. 110 (2013) 260401], see (4.113) in Sect. 4.1.8.

A new section on scattering in two spatial dimensions is included; it is relevant
not only for genuinely two-dimensional systems but also for 3D systems with
translational invariance in one degree of freedom, such as an atom interacting with a
cylindrical nanotube. There is also a new section on tunable near-threshold Feshbach
resonances, a subject that was treated poorly in the third edition. The appendix
on special mathematical functions has been expanded in order to accommodate
formulas occurring in the extended treatment of scattering and near-threshold
phenomena.

It is a pleasure to thank many colleagues who inspired me with numerous discus-
sions involving atomic physics, quantum mechanics and semiclassical connections,
in particular Robin Côté at the University of Connecticut, Wolfgang Domcke
and Manfred Kleber at the Technical University of Munich, Gerhard Rempe and
Stephan Dürr at the Max Planck Institute for Quantum Optics in Garching and Jan-
Michael Rost at the Max Planck Institute for Complex Systems in Dresden. Some
postdocs and several former students produced results that I have used in the book,
in particular Florian Arnecke, Johannes Eiglsperger, Christopher Eltschka, Martin
Fink, Georg Jacoby, Alexander Jurisch, Alexander Kaiser, Petra Meerwald, Carlo
Meister, Eskender Mesfin, Javier Madroñero, Michael J. Moritz, Tim-Oliver Müller,
Thomas Purr, Patrick Raab, Sebastian Schröter, Frauke Schwarz and Johannes
Trost. I am grateful for the technical assistance provided by Stefan Recksiegel,
our IT expert at the Physik-Department in Garching. I also thank Ute Heuser and
Birgit Münch and Dr. Thorsten Schneider at Springer for their efficient help and
cooperation.

Schließlich möchte ich mich bei meiner Familie bedanken, die mir immer den
Zugang zur alltäglichen Welt jenseits der Physik offen gehalten hat. Vor allem bei
meiner Frau Elfi, die über mehr als vier Jahrzehnte meine Arbeit mit Ermutigung,
Geduld und Flexibilität unterstützt hat. Dazu hat uns in den letzten zweieinhalb
Jahren das Glück drei Enkelkinder beschert, Lorenz, Alexander und Johann, die mit
ihrer authentischen Lebensfreude alle Herzen höher schlagen lassen.

Garching, Germany Harald Friedrich
September 2016



Preface to the Third Edition

The one and a half decades since the publication of the first edition of Theoretical
Atomic Physics have seen a continuation of remarkable and dramatic experimental
breakthroughs. With the help of ultrashort laser pulses, special states of atoms
and molecules can now be prepared and their time evolution studied on time
scales shorter than femtoseconds. Trapped atoms and molecules can be cooled to
temperatures on the order of a few nano-Kelvin and light fields can be used to
guide and manipulate atoms, for example, in optical lattices formed as standing
waves by counterpropagating laser beams. After the first production of Bose–
Einstein condensates of ultracold atomic gases in 1995, degenerate quantum gases
of ultracold atoms and molecules are now prepared and studied routinely in many
laboratories around the world. Such progress in atomic physics has been well
received and appreciated in the general academic community and was rewarded
with two recent Nobel Prizes for physics. The 1997 prize was given to Steven Chu,
Claude Cohen-Tannoudji and William Phillips for their work on cooling atoms, and
only 4 years later Eric Cornell, Wolfgang Ketterle and Carl Wieman received the
2001 prize for the realization of the Bose–Einstein condensates mentioned above.

The prominence of modern experimental atomic physics establishes further need
for a deeper understanding of the underlying theory. The continuing growth in
quality and quantity of available computer power has substantially increased the
effectivity of large-scale numerical studies in all fields, including atomic physics.
This makes it possible to obtain some standard results such as the properties
of low-lying states in many-electron atoms with good accuracy using generally
applicable program packages. However, largely due to the dominant influence of
long-ranged Coulomb forces, atomic systems are rather special. They can reveal
a wide range of interesting phenomena in very different regimes—from near-
classical states of highly excited atoms, where effects of nonlinearity and chaos are
important, to the extreme quantum regime of ultracold atoms, where counterintuitive
nonclassical effects can be observed. The theoretical solution of typical problems in
modern atomic physics requires proficiency in the practical application of quantum
mechanics at an advanced level, and a good understanding of the links to classical
mechanics is almost always helpful. The aim of Theoretical Atomic Physics remains
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viii Preface to the Third Edition

to provide the reader with a solid foundation of this sort of advanced quantum
mechanics.

In preparing the third edition, I have again tried to do justice to the rapid
development of the field. I have included references to important new work
whenever this seemed appropriate and easy to do. Chapter 1 now includes a section
on processes involving (wave packets of) continuum states and also an expanded
treatment of the semiclassical approximation. Chapter 3 begins with a section
illuminating the characteristic differences in the near-threshold properties of long-
ranged and shorter-ranged potentials, and the first section of Chap. 4 contains a more
elaborate discussion of scattering lengths. As a further “Special Topic” in Chap. 5
there is a section describing some aspects of atom optics, including discussions of
the interactions of atoms with material surfaces and with light fields. The appendix
on special mathematical functions has been slightly expanded to accommodate a
few results that I repeatedly found to be useful.

I am grateful to many colleagues who continue to inspire me with numer-
ous discussions involving atomic physics, quantum mechanics and semiclassical
connections, in particular Robin Côté at the University of Connecticut, Manfred
Kleber at the Technical University Munich and Jan-Michael Rost at the Max Planck
Institute for Complex Systems in Dresden. Several current and former graduate
students produced new results that I have used in the book, in particular Christopher
Eltschka, Georg Jacoby, Alexander Jurisch, Michael J. Moritz, Thomas Purr and
Johannes Trost. I thank them all for the effort and enthusiasm with which they
contributed to the various projects. I also thank Thomas Mehnert for helpful
comments on the previous editions. A sabbatical term at the Australian National
University in Canberra during the southern summer 2002/2003 established a fruitful
connection to Ken Baldwin and Stephen Gibson in the Atomic and Molecular
Physics Laboratories, and I am grateful to Brian Robson and Erich Weigold who
made this visit possible. Finally, I wish to thank my wife Elfi who (again) endured
a hard-working and preoccupied husband during the final stages of preparation of
this third edition.

Garching, Germany Harald Friedrich
June 2005



Preface to the First Edition

In the first few decades of this century, atomic physics and quantum mechanics
developed dramatically from early beginnings to maturity and a degree of com-
pleteness. After about 1950 fundamental research in theoretical physics focussed
increasingly on nuclear physics and high energy physics, where new conceptual
insights were expected to be more probable. A further field of growing importance
was theoretical solid state physics, which led to or accompanied many revolutionary
technological developments. In this environment the role of atomic physics as
an independent discipline of theoretical physics became somewhat subdued. In
the last two decades, however, high precision experimental techniques such as
high resolution laser spectroscopy have opened up new and interesting fields
in atomic physics. Experiments can now be performed on individual atoms and
ions in electromagnetic traps, and the dependence of their properties on their
environment can be studied. Effects and phenomena which used to be regarded as
small perturbations or experimentally irrelevant exceptional cases have moved into
the centre of attention. At the same time it has become clear that interesting and
intricate effects can occur even in seemingly simple systems with only few degrees
of freedom.

The successful description and interpretation of such effects usually requires
the solution of a non-trivial Schrödinger equation, and perturbative methods are
often inadequate. Most lectures and textbooks which go beyond an introductory
“Quantum Mechanics I” are devoted to many-body theories and field theories at
a high level of abstraction. Not enough attention is given to a more practical
kind of advanced quantum mechanics as required by modern atomic physics. In
order to meet this demand I have taught several courses on Theoretical Atomic
Physics at the Munich Universities since 1984. The present book grew out of
these lectures. It is an updated version of the textbook Theoretische Atomphysik,
which appeared in German in September 1990, and contains the kind of advanced
quantum mechanics needed for practical applications in modern atomic physics.
The level of abstraction is deliberately kept low—almost all considerations start
with the Schrödinger equation in coordinate representation. The book is intended
as a textbook for students who have had a first introductory contact with quantum
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x Preface to the First Edition

mechanics. I have, however, aimed at a self-contained presentation which should—
at least in principle—be understandable without previous knowledge.

The book contains five chapters, the first two of which present mostly conven-
tional material as can be found in more detail in available textbooks on quantum
mechanics and atomic physics. The first chapter contains a concise review of quan-
tum mechanics and the second chapter a deliberately brief summary of traditional
atomic theory. I have taken pains to treat bound states and continuum states on
the same footing. This enables the inclusion of a comparatively straightforward
introduction to quantum defect theory (Chap. 3), which has become a powerful
and widely used tool for analyzing atomic spectra and which, up to now, has
not been treated at such a basic level in a student textbook. The scope of the
reaction theory presented in Chap. 4 is that of “Simple Reactions” induced by the
collision of a single electron with an atom or ion. This avoids many complications
otherwise occurring in the definitions of coordinates, channels and potentials. On the
other hand, important concepts such as cross sections, scattering matrix, transition
operator, reactance matrix, polarization effects, Born approximation and break-up
channels can already be discussed in this simple framework.

The last chapter contains a selection of special topics which are currently subject
to intense and sometimes controversial discussion. The interest in multiphoton
processes has grown strongly with the availability of high-power lasers and
underlines the importance of non-perturbative methods in quantum mechanics.
The possibility of using very short laser pulses to study spatially and temporally
localized excitations of individual atoms has revived interest in the relation between
classical mechanics and quantum mechanics. The final section discusses “Chaos”,
which is currently one of the most popular and rapidly growing subfields in almost
all fields of physics. While most specific investigations of chaos are numerical
experiments on model systems, there are a few prominent examples in atomic
physics of simple but real systems, which can be and have been observed in
the laboratory and which have all the properties currently causing excitement in
connection with chaos.

It is a pleasure to thank the many colleagues and friends who unselfishly helped
me in the course of writing this book. Special thanks are due to Karl Blum,
Wolfgang Domcke, Berthold-Georg Englert, Christian Jungen, Manfred Kleber,
Achim Weiguny and Dieter Wintgen, who read through individual chapters and/or
sections and suggested several improvements of the original manuscript. Valuable
suggestions and hints were also provided by John S. Briggs, Hubert Klar and
Peter Zoller. Gerd Handke and Markus Draeger conscientiously checked more than
a thousand formulae and helped to avoid disaster. The original drawings were
produced with the competent help of Mrs. I. Kuchenbecker and a plot program
specially tailored for the purpose by Markus Draeger. Special thanks are also due to
Dr. H.-U. Daniel from Springer-Verlag. His experience and competence contributed
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significantly to the success of the project. Finally I would like to thank my wife Elfi,
who not only read through the German and the English manuscript word by word
but also supported my work with patience and encouragement during the last three
years.

Garching, Germany Harald Friedrich
June 1991
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Chapter 1
Review of Quantum Mechanics

Atomic phenomena are described mainly on the basis of non-relativistic quantum
mechanics. Relativistic effects can generally be accounted for in a satisfactory way
with perturbative methods. In the 1990s it became increasingly apparent, that a
better understanding of the classical dynamics of an atomic system can lead to
a deeper appreciation of various features in its observable quantum mechanical
properties, see e.g. [RW94, CK97, FE97, BB97, SS98, BR09], Sect. 5.3. This
does not, however, invalidate the generally accepted point of view, that quantum
mechanics is the relevant theory for atomic physics.

This chapter gives a brief review of quantum mechanics as it is needed for use
in later chapters. Although the reader is expected to have some experience in the
subject already, the presentation starts at the beginning and is self-contained so
that it should, at least in principle, be understandable without previous knowledge
of quantum mechanics. A more thorough introduction can be found in numerous
textbooks, e.g. [Sch68, Bay69, Gas74, Mes70, Sch02].

1.1 Wave Functions and Equations of Motion

1.1.1 States and Wave Functions

Non-relativistic quantum mechanics describes the state of a physical system at a
given time t with a complex-valued wave function  .XI t/. The wave function  
depends on the parameter t and a complete set of variables summarized as X. As
an example let us think of a system of N electrons, which plays a central role in
atomic physics. Then X can stand for the N spatial coordinates r1; : : : rN and the N
spin coordinates ms1 ; : : :msN of the electrons. The spatial coordinates ri are ordinary
(real) vectors in three-dimensional space; the spin-coordinates msi can each assume
only two values, msi D ˙1=2.

© Springer International Publishing AG 2017
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2 1 Review of Quantum Mechanics

The set of wave functions describing a given system is closed with respect
to linear superposition. This means that all multiples and sums of possible wave
functions are again possible wave functions. Mathematically, the possible wave
functions of a system form a vector space. The scalar product of two wave functions
 .XI t/; �.XI t0/ in this vector space is defined as

h .t/j�.t0/i D
Z
 �.XI t/�.XI t0/ dX : (1.1)

The integral in (1.1) stands for integration over the continuous variables and
summation over the discrete variables. In the above-mentioned example of an N-
electron system we have

Z
dX D

Z
d3r1 � � �

Z
d3rN

1=2X
ms1D�1=2

� � �
1=2X

msN D�1=2
:

The scalar product (1.1) is linear,

h j�1 C c�2i D h j�1i C ch j�2i; (1.2)

and it is replaced by its complex conjugate if we interchange the wave functions,

h�j i D h j�i�: (1.3)

Two wave functions  and � are orthogonal if the scalar product h j�i vanishes.
The scalar product h j i is a non-negative real number, and its square root is the
norm of the wave function . Square integrable wave functions, i.e. wave functions
 .XI t/ with the property

h j i D
Z

j .XI t/j2 dX < 1 ; (1.4)

are normalizable. This means that they become wave functions of norm unity,

h j i D
Z

j .XI t/j2 dX D 1 ; (1.5)

when multiplied by an appropriate constant. The non-negative function j .XI t/j2 is
a probability density. If, at time t, a physical state is described by the wave function
 .XI t/ (which is normalized to unity, h j i D 1), then the integral

Z
ıV

j .XI t/j2 dX
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over a part ıV of the full space of values of the variable X gives the probability
that a measurement of the variable X (at time t) will yield values within ıV . The
concept of probability densities can also be applied to wave functions which are not
normalizable, as long as we only study relative probabilities.

The square integrable functions (1.4) form a subspace of the space of all wave
functions. This subspace has the properties of a Hilbert space. In particular it is
complete, meaning that the limit of each convergent sequence of wave functions
in the Hilbert space is again a wave function in the Hilbert space. It also has
a denumerable basis, i.e. there exists a sequence �1.X/; �2.X/; : : :, of linearly
independent square integrable functions such that any square integrable function
 .X/ can be written as a linear combination

 .X/ D
1X

nD1
cn�n.X/ (1.6)

with uniquely determined coefficients cn. The basis is orthonormal if its wave
functions obey the orthonormality relation

h�ij�ji D ıi;j : (1.7)

In this case the coefficients cn in (1.6) can be obtained by forming the scalar product
with �i:

ci D h�ij i : (1.8)

The notation can be simplified if we leave out the variables X, which often aren’t
specified anyhow, and write the wave functions as abstract state vectors j i. The
complex conjugate wave functions ��, with which the  ’s are multiplied to form
scalar products, are written as h�j. From the word “bracket” we call the state vector
j i forming the right-hand part of a scalar product h�j i a ket, and we call the
left-hand part h�j a bra. Equation (1.6) now has the simplified form

j i D
1X

nD1
cnj�ni ; (1.9)

or, with (1.8),

j i D
1X

nD1
j�nih�nj i : (1.10)

The bra-ket notation is very useful, because many statements and formulae such
as (1.9), (1.10) are independent of the particular choice of variables.
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1.1.2 Linear Operators and Observables

An operator OO turns a possible wave function j i into another possible wave
function OOj i. A linear operator has the property

OO.j 1i C cj 2i/ D OOj 1i C c OOj 2i : (1.11)

For each linear operator OO there is a Hermitian conjugate operator OO�
. It is defined

by the condition that the scalar product of any bra h�j with the ket OO�j i be the
complex conjugate of the scalar product of the bra h j with the ket OOj�i:

h�j OO�j i D h j OOj�i� : (1.12)

Equation (1.12) is the bra-ket notation for the equation

Z
��.X/f OO�

 .X/g dX D
�Z

 �.X/f OO�.X/g dX

��
: (1.13)

In quantum mechanics an especially important class of operators consists of the
Hermitian operators. Hermitian operators are linear operators OO with the property

OO� D OO : (1.14)

Eigenstates of a linear operator OO are non-vanishing wave functions j !i for
which the action of the operator OO merely amounts to multiplication with a
number !:

OOj !i D !j !i : (1.15)

The number ! is called eigenvalue of OO. The spectrum of the operator OO consists of
all its eigenvalues. For a Hermitian operator

h ! j OOj !i D h !j OO�j !i� D h ! j OOj !i� (1.16)

and

! D h ! j OOj !i
h ! j !i ; (1.17)

so its eigenvalues are always real. Eigenstates of a Hermitian operator with different
eigenvalues

OOj 1i D !1j 1i ; OOj 2i D !2j 2i (1.18)
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are always orthogonal, because the product .!1 � !2/h 2j 1i has to vanish due to

h 2j OOj 1i D !1h 2j 1i D !2h 2j 1i : (1.19)

If the eigenvalue ! is degenerate, this means if there is more than one linearly
independent eigenstate with this eigenvalue, then we can construct orthogonal
linear combinations of these eigenstates which of course stay eigenstates with
eigenvalue !.

As an example of a Hermitian operator we look at the projection operator OP� . Its
action on an arbitrary state vector j i is to project out the component proportional
to the state j�i (which we assume to be normalized to unity),

OP� j i D h�j ij�i D j�i h�j i (1.20)

(compare (1.6), (1.9)). In compact bra-ket notation we have

OP� D j�i h�j : (1.21)

The state j�i itself is an eigenstate of OP� with eigenvalue unity. All states orthogonal
to j�i are eigenstates of OP� with eigenvalue zero, which is thus highly degenerate.
If we sum up the projections onto all orthogonal components of a state j i, then
we must recover the state j i—see (1.10). If the states j�ni form an (orthonormal)
basis of the whole Hilbert space, then (1.10) must hold for all states j i. This can
be expressed in a compact way in the completeness relation,

X
n

j�ni h�nj D 1 : (1.22)

The bold 1 is the unit operator whose action on any wave function is to leave it
unchanged.

The observables of a physical system are described by Hermitian operators. The
(real) eigenvalues are the possible results of measurement of the observable. If the
state of a system is described by an eigenstate of a Hermitian operator, this means
that measuring the observable will definitely yield the corresponding eigenvalue.

Any wave function must be decomposable into eigenstates of a given observable.
This means that the eigenstates of an observable form a complete set. If all
eigenstates of an observable are square integrable, then they form a basis of the
Hilbert space of square integrable wave functions. Since eigenstates with different
eigenvalues are orthogonal and degenerate eigenstates can be orthogonalized, it is
then always possible to find an orthonormal basis of eigenstates:

OOj ii D !ij ii ; h ij ji D ıi;j : (1.23)
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An arbitrary wave function j i in Hilbert space can be expanded in eigenstates of OO:

j i D
X

n

cnj ni : (1.24)

If the wave function j i is normalized to unity,

h j i D
X

n

jcnj2 D 1 ; (1.25)

then the absolute squares

jcnj2 D jh nj ij2 (1.26)

of the expansion coefficients represent the probabilities for finding the system
described by j i in the respective eigenstates j ni and for a measurement of the
observable OO yielding the respective eigenvalues !n. The expectation value h OOi of
the observable OO in the state j i (assumed normalized to unity) is the mean of all
possible eigenvalues !n weighted with the probabilities (1.26):

h OOi D
X

n

jcnj2!n D h j OOj i : (1.27)

The numbers h ij OOj ji defined with reference to a given basis j ii form the
matrix of the operator OO in the basis fj iig. The matrix of a Hermitian operator is
Hermitian. The matrix of an operator in a basis of its own eigenstates is diagonal
(provided degenerate eigenstates are orthogonalized).

Observables can also have eigenstates which are not normalizable, and whose
eigenvalues are in general continuous. In this case we must replace or complement
the discrete subscripts i; n in (1.23)–(1.27) by continuous subscripts, and the sums
by integrals.

If a wave function j i is simultaneously an eigenstate of two observables OA and
OB with eigenvalues ˛ and ˇ respectively, then obviously

OA OBj i D ˛ˇj i D ˇ˛j i D OB OAj i : (1.28)

A necessary and sufficient condition for OA and OB to have a common complete set of
eigenstates is that OA and OB commute:

OA OB D OB OA or Œ OA; OB� D 0 : (1.29)

Œ OA; OB� D OA OB � OB OA is the commutator of OA and OB. If OA and OB do not commute, then
they are not simultaneously measurable, which means there is no complete set of
wave functions which can simultaneously be classified by eigenvalues of OA and OB.
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In order to describe a physical system completely, we need a complete set of
commuting observables. In this context “complete set” means that there is no further
independent observable that commutes with all members of the set. The eigenvalues
of the observables of a complete set form a complete set of variables for the wave
functions. The choice of observables and variables is not unique; it defines the
representation in which we study the evolution and the properties of the physical
system.

For a spinless point particle in three-dimensional space, the three components
Ox; Oy; Oz of the displacement operator Or form a complete set of observables. Appli-
cation of the displacement operators merely amounts to multiplying with the
respective position coordinates, e.g.

Oy .x; y; zI t/ D y .x; y; zI t/ : (1.30)

The corresponding momenta are described by the vector operator

Op D „
i
r ; (1.31)

i.e.

Opx D „
i

@

@x
; etc: (1.32)

Here we have introduced Planck’s constant „, which has the dimensions of an action
and has the value 1:054571800.13/� 10�34 Js D 6:582119514.40/� 10�16 eV s
[MN16].

Position and momentum operators for the same degree of freedom do not
commute:

Œ Opx; Ox� D „
i
: (1.33)

This means that position and momentum in the same direction are not simul-
taneously measurable, as is expressed quantitatively in Heisenberg’s uncertainty
relation:

�px�x � 1

2
„ : (1.34)

The uncertainties�px and �x in a given state j i are defined as the fluctuations of
the observables around their respective expectation values hOxi D h jOxj i, hOpxi D
h jOpxj i:

�x D
p

hOx2i � hOxi2 ; �px D
q

hOp2xi � hOpxi2 : (1.35)
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Position and momentum operators for different degrees of freedom commute, so
we can write (1.33) more generally as

Œ Opi; Oxj� D „
i
ıi;j : (1.36)

Here the subscripts i and j can stand for different coordinates of one point particle
or for different particles in a many-body system.

Throughout this book relations and equations are almost always formulated
in coordinate representation where the spatial coordinates are variables of the
wave functions. Because of (1.30) we omit the hat O, which generally characterizes
operators, from the position variables. The position variables are only written with
a hat on a few isolated occasions, where the operator nature of the variable is
intentionally emphasized.

1.1.3 The Hamiltonian and Equations of Motion

The Hermitian operator describing the energy of a system is the Hamiltonian. For a
system of N spinless point particles of mass mi, the Hamiltonian usually consists of
the kinetic energy

OT D
NX

iD1

Op2i
2mi

and a potential energy OV:

OH D OT C OV : (1.37)

The potential energy is in general a function of the N displacement vectors,
OV D OV.Or1; : : : OrN/. In coordinate representation OV is usually given by a real
function V.r1; : : : rN/ of the position variables. Applying the operator OV to a wave
function then simply amounts to multiplying the wave function with the function
V.r1; : : : rN/.

The Hamiltonian of a physical system determines its evolution in time. In the
Schrödinger picture the evolution of a state j .t/i is described by the Schrödinger
equation:

OHj .t/i D i„dj i
dt

; (1.38)
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which in coordinate representation corresponds to a partial differential equation:

OH .XI t/ D i„@ 
@t
: (1.39)

The evolution of a state j .t/i can formally be described with the help of the
time evolution operator:

j .t/i D OU.t; t0/j .t0/i : (1.40)

If the Hamiltonian is not explicitly time dependent, then the time evolution operator
is

OU.t; t0/ D exp

�
� i

„
OH.t � t0/

�
: (1.41)

For a time-dependent Hamiltonian, (1.41) must be replaced by

OU.t; t0/ D
�

exp

�
� i

„
Z t

t0

OH.t0/ dt0
��

C
; (1.42)

where the symbol Œ� � � �C indicates time ordering of products of operators:h OO.t1/ � � � OO.tn/
i

C D OO.tl1 / � � � OO.tln/ when tl1 � tl2 � � � � tln . The time evolution

operator is unitary. That means

OU� OU D OU OU� D 1 : (1.43)

In the Heisenberg picture we regard the state vector

j Hi D OU�.t; t0/j .t/i D j .t0/i (1.44)

as a time-independent quantity, and the Schrödinger equation (1.38) leads to an
equation of motion for the Heisenberg representation,

OOH.t/ D OU�.t; t0/ OO OU.t; t0/ ; (1.45)

of the respective operators OO, namely:

i„d OOH

dt
D
h OOH; OHH

i
C i„@ OOH

@t
: (1.46)

The expectation value of an operator does not depend on whether we work in the
Schrödinger picture or in the Heisenberg picture:

h OOi D h .t/j OOj .t/i D h Hj OOH.t/j Hi : (1.47)
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The evolution of h OOi follows from (1.38) or (1.46):

i„dh OOi
dt

D hŒ OO; OH�i C i„
*
@ OO
@t

+
: (1.48)

For a time-independent Hamiltonian OH the wave function

j .t/i D exp

�
� i

„Et

�
j Ei (1.49)

is a solution of the Schrödinger equation (1.38) if and only if j Ei is an eigenstate
of OH with eigenvalue E,

OHj Ei D Ej Ei : (1.50)

Equation (1.50) is the time-independent or stationary Schrödinger equation. Since
any linear combination of solutions of the time-dependent Schrödinger equa-
tion (1.38) is again a solution we can use the eigenstates j Eni of OH to construct
a general solution of (1.38):

j .t/i D
X

n

cn exp

�
� i

„Ent

�
j Eni : (1.51)

As long as the potential energy is sufficiently attractive, the Hamiltonian OH
has only discrete eigenvalues and normalizable eigenstates at low energies. They
describe bound states of the system. In this energy region the time-independent
Schrödinger equation (1.50) is an equation for the eigenvalues En and the corre-
sponding eigenfunctions j Eni. The lowest eigenvalue is the ground state energy
and the corresponding eigenstate the ground state of the system. If the potential
energy V.r1; : : : ; rN/ converges to a constant in the asymptotic region (where at
least one jrij ! 1/, then the time-independent Schrödinger equation can be solved
for all energies above this constant and the corresponding eigenstates are in general
not normalizable. Such continuum wave functions describe unbound states of the
system (scattering states, reactions) and their concrete meaning depends on their
asymptotic properties, i.e. on the asymptotic boundary conditions.
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1.2 Symmetries

1.2.1 Constants of Motion and Symmetries

If the Hamiltonian OH does not depend explicitly on time, then the expectation value
of OH is a constant in time, as is the expectation value of any (time-independent)
operator which commutes with OH. This follows immediately from (1.48). The
energy and the observables commuting with OH are the constants of motion. Solutions
of the time-independent Schrödinger equation can be labelled by the energy and the
eigenvalues of the other constants of motion. The eigenvalues of the constants of
motion are often called good quantum numbers.

An important example is the orbital angular momentum of a point particle of
mass �:

OL D Or � Op ; (1.52)

i.e. OLx D OyOpz � OzOpy, etc. If the potential energy V.r/ depends only on the length
r D jrj and not on the direction of the vector r,

OH D Op2
2�

C V.r/ ; (1.53)

then all components of OL commute with OH,

h OH; OLx

i
D
h OH; OLy

i
D
h OH; OLz

i
D 0 ; (1.54)

as does the square OL2 D OL2x C OL2y C OL2z ,

h OH; OL2
i

D 0 : (1.55)

However, the components of OL themselves do not commute, rather

h OLx; OLy

i
D i„OLz ;

h OLy; OLz

i
D i„OLx ;

h OLz; OLx

i
D i„OLy : (1.56)

OL2 and all components of OL are constants of motion, but OL2 and one component
alone already form a complete set of observables for the orbital angular motion of
the particle. In spherical coordinates,

x D r sin � cos� ; y D r sin � sin � ; z D r cos � ; (1.57)



12 1 Review of Quantum Mechanics

the eigenstates of the angular momentum operators OL2 and OLz are the spherical
harmonics Yl;m.�; �/, which are labelled by the angular momentum quantum
number l and the azimuthal quantum number m:

OL2Yl;m D l.l C 1/„2Yl;m ; l D 0; 1; 2; : : : I
OLzYl;m D m„Yl;m ; m D �l; �l C 1; : : : ; l � 1; l : (1.58)

A precise definition and some important properties of the functions Yl;m.�; �/ are
given in Appendix A.1. Here we just mention the orthonormality relation

Z
Y�

l;m.˝/Yl0;m0.˝/ d˝

D
Z �

0

sin� d�
Z 2�

0

d� Y�
l;m.�; �/Yl0;m0.�; �/

D ıl;l0ım;m0 : (1.59)

The spherical harmonics up to l D 3 are given explicitly in Table 1.1.
Let OK be a constant of motion. The unitary operator generated by OK,

OUK.k/ D exp.�ik OK/ ; (1.60)

defines a transformation of the wave functions,

j ki D OUK.k/ j i ; (1.61)

and of the operators,

OOk D OUK.k/ OO OU�
K.k/ : (1.62)

Table 1.1 Spherical harmonics Yl;m.�; �/ for l � 3

l 0 1 1 2

m 0 0 ˙1 0

Yl;m
1

p

4�

q
3
4�

cos � �
q

3
8�

sin � e˙i�
q

5
16�
.3 cos2� � 1/

l 2 2 3

m ˙1 ˙2 0

Yl;m �
q

15
8�

sin � cos �e˙i�
q

15
32�

sin2� e˙2i�
q

7
16�
.5 cos3� � 3 cos �/

l 3 3 3

m ˙1 ˙2 ˙3
Yl;m �

q
21
64�

sin �.5 cos2� � 1/ e˙i�
q

105
32�

sin2� cos � e˙2i� �
q

35
64�

sin3� e˙3i�
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This transformation conserves expectation values and matrix elements:

h kj OOkj�ki D h j OOj�i : (1.63)

Since OK commutes with OH, and hence any function of OK commutes with OH, we have:

OHk D OUK.k/ OH OU�
K.k/ D OH ; (1.64)

that means, the Hamiltonian is invariant under the symmetry transformation defined
by OUK.k/. Conversely, if we assume the invariance (1.64) for all (real) values of the
parameter k, then for infinitesimal k we have

.1 � ik OK C � � � / OH.1C ik OK C � � � / D OH C ikŒ OH; OK�C O.k2/ D OH ; (1.65)

which only works if OK commutes with OH. Thus the Hamiltonian is invariant
under the symmetry transformations (1.60) if and only if it commutes with their
generator OK.

As an example let’s look again at the orbital angular momentum OL of a point
particle, in particular at its z-component which has the following form in spherical
coordinates:

OLz D „
i

@

@�
: (1.66)

The symmetry transformations generated by OLz are rotations around the z- axis
through all possible angles ˛:

ORz.˛/ D exp

�
� i

„˛
OLz

�
: (1.67)

The invariance of the Hamiltonian under rotations manifests itself in the commuta-
tion of the Hamiltonian with the components of orbital angular momentum.

Mathematically, symmetry transformations which are generated by one or more
generators form a group. This means that two symmetry transformations operating
in succession form a symmetry transformation of the same kind, and to every
symmetry transformationR there belongs an inverse symmetry transformationR�1
which undoes the original transformation: R�1R D 1. The transformations of a
symmetry group can be labelled by one or more continuous parameters, as in the
example of rotations, or by discrete parameters, as is the case for reflections. An
important example of a reflection is the reflection at the origin in coordinate space:

Ŏ  .x; y; z/ D  .�x;�y;�z/ : (1.68)

Since Ŏ 2 D 1, there are only two possible eigenvalues for Ŏ W C1 and �1. The
corresponding eigenstates are called states of positive parity and states of negative
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parity respectively. If the potential energy V.x; y; z/ of a point particle does not
depend on the sign of the coordinates, then parity is a good quantum number.

Identifying constants of motion and good quantum numbers is an important
step towards solving the Schrödinger equation. If OO is a constant of motion we
can look for eigenstates of OH in subspaces consisting of eigenstates of OO with
given eigenvalue !. In most cases this is much simpler than trying to solve the
Schrödinger equation directly in the space of all possible wave functions, as the
following example shows.

1.2.2 The Radial Schrödinger Equation

The time-independent Schrödinger equation for a point particle in a radially
symmetric potential V.r/ is, in coordinate representation,

�
� „2
2�
�C V.r/

�
 .r/ D E .r/ : (1.69)

The Laplacian operator� D @2=@x2C@2=@y2C@2=@z2 D �Op2=„2 can be expressed
in spherical coordinates with the help of the orbital angular momentum OL:

� D @2

@r2
C 2

r

@

@r
�

OL2
r2„2 : (1.70)

Since OL2 and OLz are constants of motion, we can label the solutions of the
Schrödinger equation (1.69) by the good quantum numbers l and m:

 .r/ D fl.r/Yl;m.�; �/ : (1.71)

Parity is also a good quantum number for the wave function (1.71), because the
radial coordinate r is unaffected by the reflection r ! �r and (see (A.6) in
Appendix A.1)

Ŏ Yl;m.�; �/ D .�1/lYl;m.�; �/ : (1.72)

Inserting (1.71) into (1.69) leads to an equation for the radial wave function fl.r/:

�
� „2
2�

�
d2

dr2
C 2

r

d

dr

�
C l.l C 1/„2

2�r2
C V.r/

�
fl.r/ D Efl.r/ I (1.73)

it does not depend on the azimuthal quantum number m.
The radial Schrödinger equation (1.73) is an ordinary differential equation of

second order for the radial wave function fl and is thus a substantial simplification
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compared to the partial differential equation (1.69). A further not so substantial but
very useful simplification is achieved, if we formulate an equation not for fl.r/, but
for �l D rfl, i.e. for the radial wave function �l.r/ defined by

 .r/ D �l.r/

r
Yl;m.�; �/ : (1.74)

The radial Schrödinger equation now reads

�
� „2
2�

d2

dr2
C l.l C 1/„2

2�r2
C V.r/

�
�l.r/ D E�l.r/ ; (1.75)

and this looks just like the Schrödinger equation for a point particle moving in one
spatial dimension in an effective potential consisting of V.r/ plus the centrifugal
potential l.l C 1/„2=.2�r2/:

Veff.r/ D V.r/C l.l C 1/„2
2�r2

: (1.76)

Note however, that the radial Schrödinger equations (1.73) and (1.75) are only
defined for non-negative values of the radial coordinate r. The boundary condition
which the radial wave function �l.r/must fulfill at r D 0 can be derived by inserting
an ansatz �i.r/ / r˛ into (1.75). As long as the potential V.r/ is less singular than
r�2, the leading term on the left-hand side is proportional to r˛�2 and vanishes
only if ˛ D l C 1 or ˛ D �l. The latter possibility is to be discarded, because an
infinite value of �l.r ! 0/ would lead to an infinite contribution to the norm of
the wave function near the origin; a finite value, as would occur for l D 0, leads
to a delta function singularity originating from �.1=r/ on the left-hand side of the
Schrödinger equation (1.69), and this cannot be compensated by any of the other
terms in the equation. The boundary condition for the radial wave function at the
origin r D 0 is thus

�l.0/ D 0 for all l ; (1.77)

and its behaviour near the origin is given by

�l.r/ / rlC1 for r ! 0 (1.78)

(as long as the potential V.r/ is less singular than r�2).
The radial Schrödinger equation (1.75) is a one-dimensional Schrödinger equa-

tion for a particle which moves in the effective potential (1.76) for r � 0 and hits
an infinite repulsive wall at r D 0. In a one-dimensional symmetric potential V.jxj/
the odd solutions, i.e. those of negative parity, automatically fulfill the condition
�.0/ D 0. Since the effective potential (1.76) for l D 0 has the same form as
the potential in the one-dimensional Schrödinger equation, there is a one-to-one
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correspondence between the solutions of the radial equation for l D 0 and the
negative parity solutions of the one-dimensional equation with the same potential.

Using the orthonormality (1.59) of the spherical harmonics we see that the scalar
product of two wave functions  l;m and  0

l0 ;m0 of type (1.74) is given by

h l;mj 0
l0 ;m0i D

Z
 �

l;m.r/ 
0
l0 ;m0.r/d3r

D ıl;l0ım;m0

Z 1

0

��
l .r/�

0
l.r/dr : (1.79)

If the potential V.r/ is real, the phase of the wave function (1.74) can always be
chosen such that the radial wave function �l is real.

1.2.3 Example: The Radially Symmetric Harmonic Oscillator

The potential for this case is

V.r/ D �

2
!2r2 : (1.80)

For angular momentum quantum numbers l > 0 the effective potential Veff also
contains the centrifugal potential. The potential tends to infinity for r ! 1
and there are only bound solutions to the Schrödinger equation. For each angular
momentum quantum number l there is a sequence of energy eigenvalues,

En;l D
�
2n C l C 3

2

�
„! ; n D 0; 1; 2; : : : ; (1.81)

and the corresponding radial wave functions �n;l.r/ (which are normalized to unity)
are

�n;l D 2.
p
�ˇ/

� 1
2

�
2nClnŠ

.2n C 2l C 1/ŠŠ

� 1
2
�

r

ˇ

�lC1
L

lC 1
2

n

�
r2

ˇ2

�

� exp

�
� r2

2ˇ2

�
: (1.82)

The polynomials L˛n .x/ are the generalized Laguerre polynomials and are polyno-
mials of order n in x. (The ordinary Laguerre polynomials correspond to ˛ D 0.)
For the definition and some important properties of the Laguerre polynomials see
Appendix A.2. The quantity ˇ in (1.82) is the oscillator width given by

ˇ D
s

„
�!

or
„2
�ˇ2

D „! : (1.83)
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Table 1.2 Radial eigenfunctions (1.82) for the harmonic oscillator, .x D r=ˇ/

l n D 0 n D 1 n D 2

0 2x e�x2=2
q

8
3
x
�
3
2

� x2
	

e�x2=2
q

8
15

x
�
15
4

� 5x2 C x4
	

e�x2=2

1
q

8
3
x2e�x2=2 4

p

15
x2
�
5
2

� x2
	

e�x2=2 4
p

105
x2
�
35
4

� 7x2 C x4
	

e�x2=2

2 4
p

15
x3e�x2=2

q
32
105

x3
�
7
2

� x2
	

e�x2=2
q

32
945

x3
�
63
4

� 9x2 C x4
	

e�x2=2

3
q

32
105

x4e�x2=2 8
p

945
x4
�
9
2

� x2
	

e�x2=2 8
p

10395
x4
�
99
4

� 11x2 C x4
	

e�x2=2

Fig. 1.1 Radial eigenfunctions �n;l.r/ of the spherical harmonic oscillator (1.82) for angular
momentum quantum numbers l = 0, 1, 2 and principal quantum numbers (1.84) up to N = 19

For l D 0 (1.81) gives us the spectrum .2n C 3=2/„!, n D 0; 1; : : : of the one-
dimensional oscillator states of negative parity. The radial wave functions (1.82) are
summarized in Table 1.2 and illustrated in Fig. 1.1 for low values of the quantum
numbers n and l.

The radial wave functions �n;l are complemented via (1.74) to give eigenfunc-
tions of the three-dimensional Schrödinger equation for a (spinless) point particle
in the potential (1.80). For every radial quantum number n and angular momentum
quantum number l there are 2l C 1 eigenfunctions corresponding to the various
values of the azimuthal quantum number m D �l;�l C 1; : : : ; l � 1; l. These eigen-
functions all have the same energy eigenvalue En;l, because the radial Schrödinger
equation does not depend on m. This is true in any radially symmetric potential.
A peculiarity of the harmonic oscillator spectrum is its additional degeneracy: the
energy depends not on the quantum numbers n and l independently, but only on the
combination

N D 2n C l ; (1.84)
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which is hence called the principal quantum number (of the radially symmetric
harmonic oscillator). The energy eigenvalues are grouped into equidistant oscillator
shells of energy EN D .N C 3=2/„!, N D 0; 1; 2; : : :. The degree of degeneracy of
the Nth oscillator shell is given by summation over all l values compatible with this
principal quantum number; for even values of N this means all even l less or equal
to N, for odd N all odd l less or equal to N. Regardless of whether N is even or odd,
the number of independent eigenstates with energy eigenvalue EN D .N C 3=2/„!
is given by

X
l

.2l C 1/ D .N C 1/.N C 2/=2 : (1.85)

Due to (1.72) each oscillator shell is characterized by a definite parity, namely
.�1/N .

1.3 Bound States and Unbound States

Let’s look at the radial Schrödinger equation (1.75) for a particle of mass � in an
effective potential Veff.r/ which vanishes for r ! 1:

�
� „2
2�

d2

dr2
C Veff.r/

�
�.r/ D E�.r/ : (1.86)

The behaviour of the solutions of (1.86) depends in an essential way on whether the
energy E is smaller or larger than zero.

1.3.1 Bound States

For a start let’s assume that Veff is short ranged, meaning that Veff vanishes beyond
a definite radius r0:

Veff.r/ D 0 for r � r0 : (1.87)

This is of course only reasonable if l D 0, because the centrifugal potential falls off
as 1=r2 at large r (see (1.76)).

If E < 0, the equation (1.86) in the outer region is simply

d2�

dr2
D 	2�; r � r0 ; (1.88)
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where 	 is a (positive) constant depending on the energy E D �jEj :

	 D
p
2�jEj=„2 : (1.89)

Two linearly independent solutions of the ordinary second-order differential equa-
tion (1.88) are

�C.r/ D eC	r ; ��.r/ D e�	r : (1.90)

In the inner region r � r0 the solution of (1.86) depends on the potential Veff.r/.
The general solution contains two integration constants, one of which is determined
by the boundary condition (1.77) at the origin, �.0/ D 0; the other constant is
undetermined, because any multiple of a solution �.r/ of (1.86) is again a solution.
The boundary condition (1.77) determines the solution of (1.86) in the inner region
uniquely, except for multiplication by an arbitrary constant.

In order to get a solution of (1.86) for all r � 0, we must connect the solution
�r�r0 in the inner region to a linear combination of the solutions (1.90) in the outer
region r � 0. We must however discard any contribution from �C.r/, because the
probability for finding the particle would otherwise grow exponentially for r ! 1.
The conditions that the wave function be continuous and have continuous derivative
lead to the following matching conditions at the matching radius r0:

�r�r0 .r0/ D C e�	r0 ; �0
r�r0.r0/ D �	 C e�	r0 : (1.91)

Dividing the second of these equations by the first leads to a matching condition
free of the proportionality constant C:

�0
r�r0 .r0/

�r�r0 .r0/
D �	 D �

p
2�jEj=„2 : (1.92)

For arbitrary energies E < 0 the matching condition (1.92) is in general not
fulfilled, as is illustrated in Fig. 1.2 for a sharp-step potential. If the potential Veff

is sufficiently attractive, there is a discrete sequence E1; E2; E3; : : : of energies for
which (1.92) is fulfilled. The corresponding wave functions are square integrable
and are the bound states in the potential Veff.r/.

The discussion above remains valid if the effective potential in the outer region
does not vanish, but corresponds instead to a centrifugal potential with finite angular
momentum quantum number l > 0:

Veff.r/ D l.l C 1/„2
2�r2

; r � r0 : (1.93)
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Fig. 1.2 Matching of inner and outer solutions � for negative energies E D �	2 in an attractive
sharp-step potential .V.r/ D �K2

0 for r < r0; V � 0 for r > r0; „2=.2�/ D 1/. With the
paremeters used in this figure, K2

0 D 2:5; r0 D 1:6, there is an energy between E D �0:6 and
E D �1:0 at which (1.92) is fulfilled (See also Sect. 1.3.3)

Instead of the simple exponential functions (1.90), the solutions in the outer region
are now modified Bessel functions (see Appendix A.4):

�C.r/ D p
	r IlC 1

2
.	r/ ; ��.r/ D p

	r KlC 1
2
.	r/ : (1.94)

Asymptotically �C.r/ is again an exponentially growing solution,

�C.r/ / eC	r

�
1C O

�
1

	r

��
; (1.95)

which must be discarded on physical grounds, while ��.r/ decreases exponentially
in the asymptotic region. An exact expression for ��.r/, which is valid not only
asymptotically, is

��.r/ D
r
�

2
e�	r

lX

D0

.l C 
/Š


Š.l � 
/Š .2	r/�
 : (1.96)

The matching condition at r D r0 is now

�0
r�r0.r0/

�r�r0.r0/
D �0�.r0/
��.r0/

D � l

r0
� 	

Kl� 1
2
.	r0/

KlC 1
2
.	r0/

; (1.97)
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where we have rewritten the derivative of KlC 1
2

according to (A.64) in
Appendix A.4.

We can venture one step further and allow the effective potential in the outer
region to contain a long-ranged Coulomb contribution proportional to 1=r:

Veff.r/ D l.l C 1/„2
2�r2

� C

r
; r � r0 : (1.98)

The solutions of (1.86) in the outer region are now Whittaker functions (see
Appendix A.5). At r D r0 we now match to the wave function

��.r/ D W�;lC 1
2
.2	r/ ; (1.99)

which decreases exponentially for r ! 1. The parameter

� D �C

„2	 (1.100)

describes the relative strength of the 1=r term in the potential. The dependence of �
on energy E or on 	 is determined by a length parameter a,

� D 1

	a
: (1.101)

The length a, which gives a scale for the spatial extension of the bound states in the
Coulomb-type potential, is called the Bohr radius:

a D „2
�C

: (1.102)

For large values of r the leading term of (1.99) is

��.r/ D e�	r.2	r/�
�
1C O

�
1

	r

��
: (1.103)

1.3.2 Unbound States

Circumstances are quite different at positive energies E > 0. For a short-ranged
potential (1.87) the radial Schrödinger equation in the outer region r � r0 reads

d2�

dr2
C k2� D 0 ; (1.104)
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with the wave number

k D
p
2�E=„2 : (1.105)

Two linearly independent solutions of (1.104) are

�s.r/ D sin kr ; �c.r/ D cos kr : (1.106)

In the absence of the short-ranged potential, �s solves the radial Schrödinger
equation for all r and fulfills the boundary condition �.0/ D 0; it is called
the regular solution, because the corresponding wave function  .r/ (c.f. (1.74))
is regular at the origin. In the presence of the short-ranged potential there is a
different inner solution �r�r0.r/ which fulfills the boundary condition �.0/ D 0.
This solution is unique, except for multiplication by an arbitrary constant. Matching
it continuously and with continuous derivative to a linear combination of outer
solutions (1.106) leads to the matching equations

�r�r0.r0/ D A�s.r0/C B�c.r0/ ; (1.107)

�0
r�r0.r0/ D A� 0

s.r0/C B�0
c.r0/ : (1.108)

In contrast to the negative energy case, we now have no physical reasons for
discarding one of the two basis functions (1.106). Thus we have two constants A
and B which we can always choose such that (1.107) and (1.108) are simultaneously
fulfilled. For any energy E > 0 there is a solution to the Schrödinger equation.
Asymptotically the eigenfunctions are bounded, but they don’t vanish; they describe
unbound states in the potential Veff.r/.

The physical solution of the radial Schrödinger equation in the outer region thus
has the form

�.r/ D A�s.r/C B�c.r/ ; r � r0 ; (1.109)

with the constants A and B to be determined from the matching equa-
tions (1.107), (1.108). Solutions of the Schrödinger equation are in general complex.
However, if the potential Veff in (1.86) is real, we can always find real solutions �
and hence assume that the constants A and B are real. It is helpful to rewrite (1.109)
as

�.r/ D
p

A2 C B2 Œcos ı �s.r/C sin ı �c.r/� ; r � r0 ; (1.110)

where ı is the angle defined by

sin ı D Bp
A2 C B2

; cos ı D Ap
A2 C B2

: (1.111)
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Fig. 1.3 Asymptotic phase shifts in the radial wave function, obtained by matching the inner wave
function to the outer wave function at the matching radius r0. The dashed lines are the regular
solutions �s of the free wave equation (1.104) at two different (positive) energies; the solid lines
are the regular physical solutions in the presence of the attractive sharp-step potential of Fig. 1.2
.V.r/ D �K2

0 D �2:5 for r < r0 D 1:6; V � 0 for r > r0; „2=.2�/ D 1/ (See also Sect. 1.3.3)

Inserting (1.106) gives

�.r/ D
p

A2 C B2 sin.kr C ı/ ; r � r0 : (1.112)

At each energy E > 0 the two constants A and B derived via the matching
equations (1.107), (1.108) thus determine the amplitude and the phase of the
physical wave function in the outer region. The amplitude is in principle an arbitrary
constant, which can be fixed by a normalization condition (see Sect. 1.3.5). The
phase ı, on the other hand, is a very important quantity. At each energy E it tells us
how much the outer waves of the physical solution are shifted from the waves of the
regular solution �s.r/ of the “free wave equation”—see Fig. 1.3. From (1.111) we
get an equation for the phase shift which no longer contains the amplitude:

tan ı D B

A
: (1.113)

Note that matching conditions determine the phase shift ı only up to an additive
constant which is any integer multiple of � .

The asymptotic phase shift is a very important quantity, because it carries the
information about the physical effect of the potential in the inner region into
the asymptotic region. Such phase shifts determine observable cross sections in
scattering and reaction experiments (see Chap. 4). The contribution �Œl� of a given
angular momentum component of a scattering wave function to the elastic scattering



24 1 Review of Quantum Mechanics

cross section is generally proportional to the square of the sine of the asymptotic
phase shift ıl in the regular solution of the radial Schrödinger equation for the
respective angular momentum quantum number l,

�Œl�.E/ / sin2 ıl ; (1.114)

see equation (4.39) in Sect. 4.1.3.
The above discussion of unbound states in a short-ranged potential can easily be

generalized to the case that the effective potential Veff.r/ in the outer region r � r0
is the centrifugal potential (1.93). The two linearly independent solutions of (1.86)
in the outer region are now

�s.r/ D kr jl.kr/ ; �c.r/ D kr nl.kr/ ; r � r0 ; (1.115)

where �s is again the regular solution of the free equation, in which Veff.r/ consists
of the centrifugal potential alone for all r: jl and nl are the spherical Bessel
and Neumann functions which are defined in Appendix A.4.1 Their asymptotic
behaviour is such that the wave functions and �s and �c asymptotically correspond
to a sine and a cosine:

�s.r/ D sin

�
kr � l�

2

��
1C O

�
1

r

��
;

�c.r/ D cos

�
kr � l�

2

��
1C O

�
1

r

��
: (1.116)

All considerations following (1.104), including equations (1.107) to (1.111)
and (1.113), remain valid at least asymptotically. The physical solution of the
radial Schrödinger equation has the asymptotic form

�.r/ / sin

�
kr � l�

2
C ıl

�
; (1.117)

and ıl is its asymptotic phase shift against the “free wave” kr jl.kr/.
If we let the effective potential in the outer region include a Coulomb potential as

in (1.98), then the appropriate linearly independent solutions of (1.86) in the outer
region are

�s.r/ D Fl.; kr/ ; �c.r/ D Gl.; kr/ ; r � r0 : (1.118)

Here Fl is the regular Coulomb function which solves the free equation, in which Veff

has the form (1.98) for all r. Gl is the irregular Coulomb function, which also solves

1It is also common usage to express �c in terms of the spherical Bessel functions of the second
kind, yl.z/ D �nl.z/: �c.kr/ D �kr yl.kr/, cf. (A.51) in Appendix A.4.
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the free equation, but which does not vanish at r D 0, and which asymptotically
is shifted in phase by �=2 relative to Fl, see (1.120) below and (A.74), (A.75)
in Appendix A.5. The Coulomb functions depend not only on kr, but also on the
Sommerfeld parameter  (also called Coulomb parameter), which determines the
relative strength of the Coulomb term in the Hamiltonian (see also (1.100)):

 D ��C

„2k D � 1

ka
; (1.119)

where a is again the Bohr radius (1.102).
Asymptotically, the regular and irregular Coulomb functions can be written as

a sine and a cosine respectively, but the argument is a bit more complicated than
in (1.106) and (1.116):

Fl.; kr/ ! sin

�
kr �  ln 2kr � l�

2
C �l

�
; for r ! 1 ;

Gl.; kr/ ! cos

�
kr �  ln 2kr � l�

2
C �l

�
; for r ! 1 : (1.120)

The l-dependent real constants �l are the Coulomb phases, which can be expressed
with the help of the complex gamma function (see Appendix A.3):

�l D argŒ� .l C 1C i/� : (1.121)

In addition, the argument of the sine and the cosine in (1.120) contains an r-
dependent term  ln 2kr, due to which the wave length of a Coulomb wave
approaches its asymptotic limit 2�=k only very slowly. This is of course a
manifestation of the long-ranged nature of the Coulomb potential.

Nevertheless, the discussion following (1.104) above remains valid, even in the
presence of a Coulomb potential. The physical solution of the Schrödinger equation
has the asymptotic form

�.r/ / sin

�
kr �  ln 2kr � l�

2
C �l C ıl

�
; (1.122)

and ıl describes its asymptotic phase shift against the “free Coulomb wave”
Fl.; kr/.

At each energy E > 0 the asymptotic phase shift ıl tells us how a short-ranged
deviation of the potential Veff from a reference potential affects the wave function
at large r. Asymptotically the physical wave function is a superposition of two
solutions of the “free radial Schrödinger equation” containing the reference potential
alone, namely of the regular solution �s and the irregular solution �c, asymptotically
phase-shifted by �=2 relative to �s. The tangent of ıl is the relative weight of the
irregular component. This statement does not depend on the reference potential,
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Table 1.3 Regular solutions �s and irregular solutions �c of the radial Schrödinger equation (1.86)
for positive energies E D „2k2=.2�/. The Coulomb parameter (Sommerfeld parameter) is  D
�.�=„2/.C=k/

Veff.r/ �s.r/ �c.r/

0 sin kr cos kr
l.lC1/„2

2�r2 kr jl.kr/ kr nl.kr/

Asymptotically sin
�
kr � l�

2

	
cos

�
kr � l�

2

	
l.lC1/„2

2�r2 � C
r Fl.; kr/ Gl.; kr/

Asymptotically sin
�
kr �  ln 2kr � l�

2
C �l

	
cos

�
kr �  ln 2kr � l�

2
C �l

	

provided it vanishes asymptotically. The three cases discussed in this section are
summarized in Table 1.3.

1.3.3 Examples

1.3.3.1 Sharp-Step Potential

In this case we have

V.r/ D
� �V0 for r < r0 ;

0 for r � r0 :
(1.123)

If the effective potential Veff consists only of V.r/ with no centrifugal potential and
no Coulomb contribution, then for negative energies �V0 < E < 0 the solution
�r�r0 of the Schrödinger equation in the inner region is

�r�r0.r/ D sin Kr : (1.124)

The wave number K in the inner region depends on the energy E D �„2	2=.2�/
and the potential parameter K0 D p

2�V0=„2 (see Fig. 1.2):

K D
q

K2
0 � 	2 : (1.125)

The matching condition (1.92) now reads

K cot Kr0 D �	 D �
q

K2
0 � K2 ; (1.126)

and can be fulfilled at most for a finite number of wave numbers Ki or energies Ei

(see Problem 1.1).
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For finite angular momentum quantum number l > 0 the effective potential Veff

contains the centrifugal potential, and the regular solution in the inner region is

�r�r0.r/ D Kr jl.Kr/ : (1.127)

The matching condition (1.97) at r D r0 now reads

K
jl�1.Kr0/

jl.Kr0/
D �	

Kl� 1
2
.	r0/

KlC 1
2
.	r0/

; (1.128)

where we have rewritten the derivative of the spherical Bessel function according to
(A.52) in Appendix A.4.

For positive energies E D „2k2=.2�/, the regular solution in the inner region
again has the form (1.124) in the absence of a centrifugal term, but the wave number
in the inner region is now

K D
q

K2
0 C k2 (1.129)

(see Fig. 1.3). At r D r0 the matching conditions (1.107), (1.108) can be rewritten
to

1

K
tan Kr0 D 1

k
tan.kr0 C ı0/ ; (1.130)

from which we derive

ı0 D �kr0 C arctan

�
k

K
tan Kr0

�
: (1.131)

In the presence of a centrifugal potential, l > 0, we get a simple result for the case
of an infinite repulsive sharp step of radius r0, because the physical wave function
must then vanish at r D r0,

�l.r0/ D A kr0 jl.kr0/C B kr0 nl.kr0/ D 0 ; (1.132)

in other words,

tan ıl D B

A
D � jl.kr0/

nl.kr0/
: (1.133)
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1.3.4 Attractive Coulomb Potential

In this case we have

V.r/ D �C

r
; (1.134)

and the constant C is e.g. for a hydrogen atom the square of the elementary electric
charge, C D e2.

The bound states are characterized by a Coulomb principal quantum number,
n D 1; 2; 3 : : :, and the corresponding energy eigenvalues are

En D �R
n2
: (1.135)

R is the Rydberg energy:

R D �C2

2„2 D 1

2

„2
�a2

; (1.136)

where a again stands for the Bohr radius (1.102). Similar to the radially symmetric
harmonic oscillator (see Sect. 1.2.3) the energy eigenvalues (1.135) in a Coulomb
potential have an additional degeneracy: for a pure Coulomb potential they do not
depend on the angular momentum quantum number l; values of l are however
restricted to be smaller than n. Thus the angular momentum quantum numbers
contributing to the n-th Coulomb shell of eigenvalues are

l D 0; 1; : : : n � 1 : (1.137)

Except for n D 1, the Coulomb shells have no definite parity, because they contain
both even and odd angular momenta. The degeneracy of the n-th Coulomb shell is
given by

n�1X
lD0
.2l C 1/ D n2 : (1.138)

The radial eigenfunctions �n;l.r/ are

�n;l.r/ D 1

n

�
.n � l � 1/Š

a .n C l/Š

� 1
2
�
2r

na

�lC1
L2lC1

n�l�1
�
2r

na

�
e�r=.na/ : (1.139)

L˛� again stands for a generalized Laguerre polynomial (see Appendix A.2).
In (1.139) the degree of the Laguerre polynomial, which corresponds to a radial
quantum number, is n � l � 1. This means that the radial eigenfunction �n;l has
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Table 1.4 Radial eigenfunctions (1.139) in a Coulomb potential, xn D 2r=.na/

l n D l C 1 n D l C 2 n D l C 3

0 x1
p

a
e�

1
2 x1 x2

2
p

2a
.2� x2/ e�

1
2 x2 x3

6
p

3a
.6� 6x3 C x23/ e�

1
2 x3

1 x22
2
p

6a
e�

1
2 x2 x23

6
p

6a
.4� x3/ e�

1
2 x3 x24

16
p

15a
.20� 10x4 C x24/ e�

1
2 x4

2
x33

6
p

30a
e�

1
2 x3 x34

48
p

5a
.6� x4/ e�

1
2 x4 x35

60
p

70a
.42� 14x5 C x25/ e�

1
2 x5

3
x44

48
p

35a
e�

1
2 x4 x45

120
p

70a
.8� x5/ e�

1
2 x5 x46

864
p

35a
.72� 18x6 C x26/ e�

1
2 x6

exactly n� l�1 nodes (zeros) in the region r > 0. The radial eigenfunctions (1.139)
are tabulated in Table 1.4 and illustrated in Fig. 1.4 for angular momentum quantum
numbers l D 0; 1; 2 and for the lowest values of n.

It is important to note that the argument 2r=.na/ appearing in the Coulomb
eigenfunctions (1.139) depends on the principal quantum number n. The reference
length na increases with n. One consequence hereof is, that the wave lengths of the
inner oscillations do not decrease steadily with increasing n as in the case of the
harmonic oscillator (see Fig. 1.1). The wave lengths of the inner oscillations of the
Coulomb functions depend strongly on the radius r, but they hardly depend on the
principal quantum number n. This is easily understood:
As the principal quantum number n increases, the energy eigenvalue (1.135)
approaches zero. For energies close to zero, the right-hand side E�.r/ of the
radial Schrödinger equation (1.75) is only important at large values of r, where
the potential energy V.r/ also contributes little. In the inner region, the small
energy differences corresponding to the different principal quantum numbers play
only a minor role. As a consequence, the radial wave functions �n;l for a given
angular momentum quantum number l and large principal quantum numbers n are
almost identical except for a normalization constant. This can be clearly seen in
Fig. 1.5, in which the radial wave functions have been renormalized such that their
norm becomes inversely proportional to their separation in energy at large quantum
numbers:

�E
n;l.r/ D

r
n3

2R �n;l.r/ ; (1.140)

where R is the Rydberg energy (1.136). In this normalization the heights of the
inner maxima are independent of n for large n, and the wave functions for a given l
converge to a well defined limiting wave function �.ED0/

l with infinitely many
nodes in the limit n ! 1. This limiting wave function is a solution of the radial
Schrödinger equation (1.75) at energy E D 0 and has the explicit form

�
.ED0/
l .r/ D

p
r

a
pR J2lC1

 r
8r

a

!
: (1.141)
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Fig. 1.4 Radial eigenfunctions �n;l.r/ in a Coulomb potential (1.139) for angular momentum
quantum numbers up to l D 2 and the lowest five values of n

J�.x/ is the ordinary Bessel function (see Appendix A.4). For small arguments x we
have

J�.x/ D 1

�Š


 x

2

��
; x ! 0 ; (1.142)
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Fig. 1.5 Renormalized radial Coulomb eigenfunctions (1.140) for l D 0. The solid line labelled
n D 1 is the limiting wave function (1.141)

whilst asymptotically

J�.x/ D

�
2

x
�� 1

2
cos

�
x � �

2
� � 1

4
�

�
; x ! 1 : (1.143)

The convergence of the Coulomb eigenfunctions as n ! 1 is related to the
convergence of the energy eigenvalues. The energy eigenvalues (1.135) of the bound
states only make up part of the spectrum of the Hamiltonian and the corresponding
bound state eigenfunctions only span a part of the Hilbert space. The bound states
in a Coulomb potential do not form a complete set. This becomes obvious if we try
to expand a simple square integrable wave function (normalized to unity) according
to (1.24). The sum

P
n jcnj2 converges rapidly, but in general to a value noticeably

less than unity (see Problem 1.2).
The eigenfunctions in a Coulomb potential only become a complete set if we

include the unbound states of the continuum E > 0. The unbound eigenfunctions are
just the regular Coulomb functions Fl.; kr/ introduced in Sect. 1.3.2. From (A.78)
in Appendix A.5 we obtain the following formula for the behaviour of the regular
Coulomb functions in an attractive Coulomb potential . < 0/ at small separations
.r ! 0/ close to the continuum threshold .k ! 0/:

Fl.; kr/ D
p

�
2

ka

.2l C 1/Š

�
2r

a

�lC1
; r ! 0; k ! 0 : (1.144)

As the energy E D „2k2=.2�/ converges to zero from above, the radial
Schrödinger equation (1.75) becomes identical to the equation we obtain for
negative energies En D �R=n2 when the principal quantum number n converges
to infinity. Hence the continuum wave functions Fl.; kr/ must also converge to the
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solution �.ED0/
l in (1.141) at the continuum threshold,

lim
E!0

Fl.; kr/ D
s
�„2k
2�

�
.ED0/
l .r/ : (1.145)

The proportionality constant follows from the behaviour (1.142), (1.144) for r ! 0.

1.3.5 Normalization of Unbound States

The orthogonality of solutions of the time-independent Schrödinger equation at
different energies holds for bound states and for unbound states. Since the unbound
wave functions are not square integrable, they cannot be assigned a finite norm.
A natural prescription for normalizing unbound states is to require that their scalar
product be proportional to a delta function. This can be done in different ways.

For radial wave functions �k.r/ which asymptotically correspond to a sine with
factor unity,

�k.r/ ! sin.kr C ıas/ ; for r ! 1 ; (1.146)

we have
Z 1

0

�k.r/�k0.r/dr D �

2
ı.k � k0/ ; (1.147)

assuming that k and k0 are both positive. The phase ıas in (1.146) may be a constant,
it may however also contain the r-dependent Coulomb modification  ln 2kr. If we
want the scalar product between two radial wave functions to be a delta function in
the wave numbers without the factor �=2 in (1.147), we must normalize them to be

asymptotically proportional to
q

2
�

sin.kr C ıas/.
In many applications we want the wave functions to be energy normalized, which

means

h�Ej�E0i D ı.E � E0/ : (1.148)

For E D „2k2=.2�/ we have

ı.k � k0/ D dE

dk
ı.E � E0/ D „2k

�
ı.E � E0/ : (1.149)



1.4 Processes Involving Unbound States 33

Hence energy normalized wave functions �E can be obtained from the wave
functions �k in (1.146), (1.147) by the following multiplication:

�E.r/ D
�
�„2k
2�

�� 1
2

�k.r/ : (1.150)

The solutions of the radial Schrödinger equation are energy normalized if they have
the following asymptotic form:

�E.r/ D
r

2�

�„2k sin.kr C ıas/ for r ! 1 : (1.151)

With (1.145) we see that the energy normalized regular Coulomb functions

FE
l .; kr/ D

r
2�

�„2k Fl.; kr/ (1.152)

converge at threshold, E ! 0, to the wave function (1.141), which is the limiting
wave function for the renormalized bound states (1.140):

lim
n!1�E

n;l.r/ D �
.ED0/
l .r/ D lim

E!0
FE

l .; kr/ : (1.153)

Figure 1.6 shows the renormalized bound radial eigenfunctions (1.140) and the
energy normalized regular Coulomb functions (1.152) together with the limiting
wave function (1.141), all for angular momentum quantum number l D 0.

1.4 Processes Involving Unbound States

1.4.1 Wave Packets

Stationary wave functions for unbound states are generally non-vanishing all the
way to infinity in coordinate space. This is an idealization of realistic physical
conditions, where the probability density should be restricted to a perhaps quite
large, but nevertheless finite region, so that the total probability of a particle being
anywhere can be normalized to unity,

Z
j .r; t/j2 d3r D 1 : (1.154)

Due to the uncertainty relation (1.34), a finite localization in coordinate space
implies a non-vanishing uncertainty im momentum. For an unbound state describ-
ing, e.g., the motion of a free particle, this in turn generally implies a non-vanishing
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Fig. 1.6 Renormalized bound radial eigenfunctions (1.140) .E < 0/, energy normalized regular
Coulomb functions (1.152) .E > 0/ and the limiting wave function (1.141) (dotted line) for l D 0

uncertainty in energy. The wave function  .r; t/ is thus a superposition of many
energy eigenstates—a wave packet—and is genuinely time dependent. The wave
function for a wave packet describing a particle of mass � moving under the
influence of a (time-independent, real) potential V(r) obeys the time-dependent
Schrödinger equation (1.38),

� „2
2�
� .r; t/C V.r/ .r; t/ D i„@ .r; t/

@t
; (1.155)

and for the complex congugate wave function  � we have

� „2
2�
� �.r; t/C V.r/ �.r; t/ D �i„@ 

�.r; t/
@t

: (1.156)
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Multiplying (1.155) by  �=.i„/ and (1.156) by  =.�i„/ and adding the results
yields,

@�.r; t/
@t

D � „
2i�

. �� �  � �/ ; �.r; t/ D  �.r; t/ .r; t/ : (1.157)

By introducing the current density,

j.r; t/
defD „
2i�

. �r �  r �/ D <
�
 �

� Op
�
 

��
; (1.158)

Equation (1.157) becomes a continuity equation connecting the time dependence of
the probability density �.r; t/ with the spatial divergence r �j of j.r; t/,

r � j.r; t/C @

@t
�.r; t/ D 0 : (1.159)

Writing j as on the far-right-hand side of (1.158) shows up the analogy to the
classical current density �� for a substance of density � moving with a local
velocity �. When integrating (1.159) over the whole of coordinate space, the
contribution of the first term r � j vanishes, because it can be transformed to a
surface integral via Gauss’ Theorem, and the wave function of the localized wave
packet vanishes at infinity. This implies that

R
�.r; t/d3r is time independent and

thus expresses the conservation of total probability for the time-dependent wave
function.

As an example consider a particle in just one spatial dimension, so the current
density (1.158) and continuity equation (1.159) simplify to

j.x; t/ D „
2i�

�
 � @ 

@x
�  

@ �

@x

�
;

@j

@x
C @�

@t
D 0 : (1.160)

For a free particle with well-defined momentum p D „k and energy E D „2k2=.2�/,
the wave function solving the time-independent Schrödinger equation is a non-
normalizable monochromatic wave,

 k.x; t/ D �k.x/ e�.iE=„/t D 1p
2�

ei.kx�!t/ ; �k.x/ D 1p
2�

eikx : (1.161)

The wave function  k.x; t/ propagates with the phase velocity � D !=k in the
direction of the positive x-axis. The parameter ! D E=„ defines the frequency of
oscillation of the wave in time, and the wave number k defines its spatial wavelength

 D 2�=k, the de Broglie wavelength. The relation between these parameters, ! as
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function of k, is called the dispersion relation. For the present case of a free particle
the dispersion relation is,

! D E

„ D „k2

2�
: (1.162)

With the factor 1=
p
2� in (1.161), the wave functions are normalized in the wave

number k,

Z 1

�1
 �

k .x; t/ k0 .x; t/ dx D
Z 1

�1
��

k .x/�k0.x/ dx D ı.k � k0/ : (1.163)

The probability density for the wave function (1.161) is �.x/ D 1=.2�/ and is
independent of x, as is the current density j.x/ D „k=.2��/ D �� , corresponding
to a stationary flow of density � and velocity � D p=�.

A localized wave packet is described by a (normalized) wave function  .x; t/,
which can be expanded in the basis of momentum eigenstates (1.161). For example,
for t D 0,

 .x; 0/ D
Z 1

�1
Q .k/ k.x; 0/ dk D 1p

2�

Z 1

�1
eikx Q .k/ dk : (1.164)

The coefficients Q .k/ of this expansion,

Q .k/ D h k.x; 0/j .x; 0/i D 1p
2�

Z 1

�1
e�ikx .x; 0/ dx ; (1.165)

constitute the momentum representation of the wave function  .x; 0/2; actually
Q .k/ is just the inverse Fourier transform of  .x; 0/. The time evolution of the wave

packet  .x; t/ is given by the time evolution of the momentum eigenstates (1.161),

 .x; t/ D
Z 1

�1
Q .k/ k.x; t/ dk D 1p

2�

Z 1

�1
ei.kx�!t/ Q .k/ dk : (1.166)

For example, an initial (normalized) Gaussian wave packet

 .x; 0/ D .ˇ
p
�/�1=2 exp

�
� .x � x0/2

2ˇ2

�
eik0x (1.167)

2We use the term “momentum representation” when we write the wave functions as functions of
momentum p or as functions of wave number k D p=„.
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is localized over a width ˇ around the point x0 in coordinate space and moves with
a mean velocity �0 D „k0=�. In the course of time it evolves such that

j .x; t/j2 D 1

b.t/
p
�

exp

�
� .x � x0 � v0t/2

b.t/2

�
; b.t/ D ˇ

s
1C „2t2

�2ˇ4
;

(1.168)

i.e., the maximum of the wave packet follows the classical path x D x0 C �0t,
but the width b.t/ spreads with time. This spreading of the wave packet is a direct
consequence of the fact that the different contributions to the integral in (1.166)
propagate with a k-dependent phase velocity !=k as follows from the dispersion
relation (1.162). Replacing „=� by �0=k0 in the formula (1.168) for b.t/ gives:

b.t/ D ˇ

q
1C .�0t/

2=.k0ˇ2/
2. Spreading starts slowly, quadratically in time, and

becomes appreciable when

�0t � ˇ.k0ˇ/ : (1.169)

For large times, the width of the wave packet grows linearly in time,
b.t/

t!1
� �0t=.k0ˇ/, so that b.t/=x.t/

t!1
� 1=.k0ˇ/. The onset of spreading (1.169)

and the large-time spreading rate depend on the dimensionless product k0ˇ.
Spreading is small when k0ˇ is large, meaning that the wave-number uncertainty
�k D 1=.ˇ

p
2/ of the initial wave packet is small compared to the mean wave

number k0—see Problem 1.4.
When a wave packet (1.166) only contains components close to a given mean

wave number k0 corresponding to a mean momentum p0 D „k0, then we can expand
the dispersion relation around k0,

!.k/ � !.k0/C .k � k0/
d!

dk

ˇ̌
ˇ̌
k0

: (1.170)

Inserting (1.170) into the expression (1.166) for the time-dependent wave packet
gives

 .x; t/ � e�i!0t

p
2�

Z 1

�1
Q .k/ eik.x�vg t/ dk ;

with !0 D !.k0/� k0
d!

dk

ˇ̌
ˇ̌
k0

; vg D d!

dk

ˇ̌
ˇ̌
k0

: (1.171)

The integral in (1.171) is a function of x � �gt, so except for the oscillating phase
factor e�i!0t, the time evolution of the wave packet consists in propagation with
the group velocity �g as defined in the lower line. For the free-particle dispersion
relation (1.162) we have �g D „k0=� D p0=�, as expected.
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1.4.2 Transmission and Reflection

Consider a particle of mass � moving in one spatial dimension under the influence
of a (time-independent, real) potential V.x/. Assume that the potential has a non-
trivial dependence on x in a certain “interaction region” and approaches (not
necessarily equal) constant values V˙ in the asymptotic limits x ! ˙1, and
that it approaches these limits faster than 1= jxj. Then the motion of the particle
approaches that of a free particle asymptotically, provided the energy is large
enough, E > VC; E > V�. A particle incident from the left and travelling in the
direction of the positive x-axis with a well-defined energy E > V� can be described

by a monochromatic wave function,  
x!�1/ eikx, with „k D p

2�.E � V�/. The
solution of the time-independent Schrödinger equation may also contain a leftward
travelling contribution describing a part of the wave function reflected through the

influence of the potential,  
x!�1/ e�ikx. If E > VC, then the particle can also

move to infinitely large distances, and the wave function may contain contributions
proportional to eCiqx, „q D p

2�.E � VC/ for x ! 1. If the potential approaches
its asymptotic limit(s) as 1=jxj (e.g. for Coulombic potentials) or more slowly, then
the asymptotic wave functions retain an x-dependent phase correction which does
not vanish, even in the limit jxj ! 1, compare (1.120) and Table 1.3 in Sect. 1.3.2.

For a potential approaching its asymptotic limits sufficiently rapidly, a particle
incident from the left is described by a solution of the time-independent Schrödinger
equation with the following asymptotic behaviour,

 l.x/
x!�1D 1p

v�
eikx C Rlp

v�
e�ikx ;  l.x/

x!1D Tlp
vC

e�iqx ;

v� D „k

�
; k D p

2�.E � V�/ ; vC D „q

�
; q D p

2�.E � VC/ ;

(1.172)

with the reflection amplitude Rl and the transmission amplitude Tl. The subscript
“l” is to remind us that the incoming particle approaches from the left. The current
density (1.160) for the contribution eikx=

p
�� describing the incoming wave is

jinc D 1, and for the transmitted wave at x ! 1 we have jtrans D jTlj2. For the
reflected wave jrefl D �jRlj2, where the minus sign shows that this part of the wave
function describes a leftward travelling wave.

The probability PT that the incoming particle is transmitted through the interac-
tion region is

PT D jtrans

jinc
D jTlj2 ; (1.173)

and the probability PR that it is reflected is

PR D j jreflj
jinc

D jRlj2 : (1.174)
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When the potential V.x/ has a maximum which is larger than the energy E it forms
a barrier, because transmission of the particle from one side of the maximum to
the other side is forbidden in the framework of classical mechanics. The quantum
mechanical transmission probability (1.173) need not vanish, however, because the
Schrödinger equation allows non-vanishing wave functions in classically forbidden
regions V.x/ > E. Such transmission through a potential barrier—more generally,
through a classically forbidden region—is called tunnelling. If, on the other hand,
the energy E is larger than the maximum of the potential V.x/, then there is no
turning point where the classical particle would change its direction of motion. The
particle keeps its direction of motion and reflection is forbidden in the framework
of classical mechanics. The quantum mechanical reflection probability (1.174) need
not vanish, however, and this process of classically forbidden reflection is called
quantum reflection, see Sect. 5.7.3 in Chap. 5.

In order to describe an incoming particle approaching from the right, we replace
the asymptotic boundary conditions (1.172) by

 r.x/
x!�1D Trp

v�
e�ikx ;  r.x/

x!1D 1p
vC

e�iqx C Rrp
vC

eiqx I (1.175)

the subscript “r” reminds us that the incoming particle approaches from the right.
Since the potential is real, the complex conjugate wave functions �

l and �
r are also

solutions of the time-independent Schrödinger equation, and so is the wave function
. �

l � R�
l  l/

ı
T�

l —which happens to have the same asymptotic behaviour (1.175)
as  r. Comparing the amplitudes of the transmitted and reflected waves gives the
reciprocity relations,

Tr D Tl
defD T ; Rr D �R�

l
T

T� : (1.176)

From (1.176) it immediately follows that the probabilities (1.173) for transmission
and (1.174) for reflection do not depend on the side from which the incident particle
approaches the interaction region.

1.4.3 Time Delays and Space Shifts

For a realistic description of transmission and reflection in the system discussed in
Sect. 1.4.2, consider a wave packet which is initially .t D 0/ localized around a large
negative coordinate x0 and approaches the interaction region with mean momentum
„k0 > 0, e.g., the Gaussian wave packet (1.167) with x0 < 0; jx0j 	 ˇ. The
expansion coefficients Q .k/ entering the eigenstate expansions (1.164), (1.166) are
again defined according to (1.165),

Q .k/ D h k.x; 0/j .x; 0/i D
Z 1

�1
 �

k .x; 0/ .x; 0/ dx ; (1.177)
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but now the basis states  k.x; 0/ are not just the free-particle momentum eigen-
states (1.161), but stationary solutions of the Schroödinger equaton including the
potential V.x/. For a given energy E D „2k2=.2�/ C V� D „2q2=.2�/ C VC we
choose

 k.x; 0/ D
r
v�
2�

 l.x/ (1.178)

with  l.x/ as defined in (1.172) with the appropriate wave number k. The prefactorp
v�=.2�/ is chosen so that the incoming-wave part of  k is identical to the free-

particle wave (1.161). In the following we assume that the mean momentum „k0
of the initial wave packet is sufficiently large and that the uncertainty �k in the
wave number is sufficiently small, so that the expansion coefficients (1.177) are
only appreciable for k > 0, i.e. that we really only need basis functions (1.178)
corresponding to a rightward travelling incoming particle. For the Gaussian wave
packet (1.167) this implies k0 	 �k D 1=.ˇ

p
2/—see Problem 1.4.

For sufficiently large values of jx0j, the initial wave packet  .x; 0/ is localized
so far in the asymptotic region x ! �1, that only the asymptotic x ! �1 part of
the basis functions (1.178) contributes to the matrix element (1.177). Furthermore,
the reflected-wave part proportional to e�ikx yields negligible contributions. This is
because the corresponding factor eikx in  �

k .x; 0/, together with a factor eik0x for the
mean momentum of the initial wave packet [as in the Gaussian example (1.167)]
produces a factor ei.k0Ck/x in the integrand on the far right-hand side of (1.177); for
very large values of jxj this oscillates extremely rapidly, because k0 C k is always
a positive number larger than k0, and these oscillations suppress the contributions
to the integral. The incoming-wave part, on the other hand, is proportional to e�ikx

in  �
k .x; 0/ and together with the factor eik0x for the mean momentum of the initial

wave packet produces an exponential ei.k0�k/x in the integrand in (1.177), and this
allows for appreciable contributions to the integral when k � k0. Consequently,
the expansion coefficients (1.177) in the basis of stationary solutions with the
asymptotic behaviour given by (1.172) and (1.178) are the same as those (1.165) for
the free-particle basis—under the condition that the initial wave packet be localized
far in the asymptotic region x ! �1 in coordinate space and in a sufficiently
narrow interval around its mean momentum in momentum space. For the Gaussian
example (1.167) these conditions can be formulated explicitly,

jx0j 	 ˇ ;
1

�k
I 1

k0

 ˇ ;

1

�k
: (1.179)

For more general wave packets the conditions (1.179) still hold when we interpret
ˇ as a length of the order of the uncertainty of the initial wave packet in coordinate
space.
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In analogy with (1.164) the initial wave packet far to the left of the iteraction
region can be written as

 .x; 0/ D
Z 1

0

Q .k/ k.x; 0/ dk D 1p
2�

Z 1

0

Q .k/ eikx dk ; (1.180)

where  k.x; 0/ now stands for the stationary solutions defined by (1.178), (1.172).
Only the incoming-wave parts of the k.x; 0/ are relevant for the initial wave packet,
and we can restrict the integration to positive k values for the reasons given above.
The time evolution of this wave packet is given as in (1.166) by a factor e�i!.k/t for
each contribution to the integral over k,

 .x; t/ D
Z 1

0

Q .k/  k.x; 0/e�i!.k/t dk ; (1.181)

and the frequency parameter !.k/ D E=„ obeys

! D „k2

2�
C V�

„ D „q2

2�
C VC

„ : (1.182)

Far to the right of the interaction region, x ! 1, we expect contributions only from
the transmitted-wave parts of the stationary basis functions (1.178), (1.172),

 >.x; t/ D 1p
2�

Z 1

0

s
k

q
Q .k/T.k/eiqxe�i!.k/t dk : (1.183)

It is helpful to decompose the transmission amplitude T.k/ into its modulus, which
determines the transmission probability (1.173), and a phase factor,

T D jTj ei�T : (1.184)

If the expansion coefficients Q .k/ are sufficiently narrowly peaked around k0, we
can replace jT.k/j by jT.k0/j, but because of the sensitive dependence of the integral
on the phase of the integrand we include the first term of a Taylor expansion for the
phase of T.k/,

�T.k/ � �T.k0/C .k � k0/
d�T

dk

ˇ̌
ˇ̌
k0

: (1.185)
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If we also expand the frequency !.k/ as in (1.170), then (1.183) becomes,

 >.x; t/ � T.k0/ exp

(
�i

"
!.k0/t C k0

 
d�T

dk

ˇ̌
ˇ̌
k0

� d!

dk

ˇ̌
ˇ̌
k0

t

!#)
�

1p
2�

Z 1

0

s
k

q
Q .k/ eiqx exp

"
ik

 
d�T

dk

ˇ̌
ˇ̌
k0

� d!

dk

ˇ̌
ˇ̌
k0

t

!#
dk : (1.186)

Let us first consider the case that the asymptotic limits V� and VC of the potential
are the same on both sides of the interaction region. Then q D k and the lower line
of (1.186) is the same as the far right-hand side of (1.180), except that eikx is replaced
by eikQx.t/ with

Qx.t/ D x C d�T

dk

ˇ̌
ˇ̌
k0

� d!

dk

ˇ̌
ˇ̌
k0

t : (1.187)

In the upper line of (1.186), T.k0/ represents the (mean) transmission amplitude
for the transmitted part of the wave packet, and the exponential is an overall phase
factor. The lower line represents a (normalized) wave packet with the same shape as
the initial wave packet (1.180); however, it is peaked not at x D x0, but at Qx D x0,
i.e. at

x D x0 � d�T

dk

ˇ̌
ˇ̌
k0

C d!

dk

ˇ̌
ˇ̌
k0

t : (1.188)

The interpretation of (1.188) is quite straightforward: the transmitted wave packet
moves with the group velocity vg D d!=dkjk0 D „k0=� as follows from (1.182),
but its position is shifted relative to the free particle moving with constant
velocity vg—it lags behind by a space shift xshift,

xshift D d�T

dk

ˇ̌
ˇ̌
k0

: (1.189)

This corresponds to a time delay tdelay relative to free-particle motion,

tdelay D xshift

vg
D „ d�T

dE

ˇ̌
ˇ̌
EDE0

; (1.190)

where E0 is the mean energy of the wave packet, E0 D V� C „2.k0/2=.2�/. If xshift

and tdelay are negative, then the transmitted wave is advanced relative to the free
particle. There is nothing special about negative time delays, i.e. time gains, when
they are measured relative to the motion of a free particle. An ordinary classical
particle experiences a time gain when it passes through a region of negative potential
energy, where it moves faster than the free particle used as reference.
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The situation is a little more complicated when the asymptotic limits V� and VC
of the potential are different on different sides of the interaction region. The mean
energy E0 is now associated with different mean asymptotic momenta, „k0 to the
left and „q0 to the right of the interaction region,

E0 D „2.k0/2
2�

C V� D „2.q0/2
2�

C VC : (1.191)

We assume that VC is either smaller or not too much larger than V�, so that E0 is
well above the transmission threshold E D VC. Since the expansion coefficients
Q .k/ are appreciable only in a narrow interval of k values around k0, corresponding

to a narrow range of q values around q.k0/ D q0, we can approximate
p

k=q in the
integral in the lower line of (1.186) as

p
k0=q0, and we approximate the oscillating

exponential in the integral using q.k/ � q0 C .k � k0/k0=q0,

eiqx � exp

 
iq0

"
1 �

�
k0
q0

�2#
x

!
exp

�
ik

k0
q0

x

�
: (1.192)

The first exponential on the right-hand side of (1.192) is independent of k and just
adds to the overall phase of  >.x; t/. The second exponential has the form eiky for
the scaled variable,

y D k0
q0

x : (1.193)

The lower line of (1.186) now represents a wave packet with the same shape as the
initial wave packet (1.180), but only when it is considered as a function of y. It is
peaked at

y D x0 � d�T

dk

ˇ̌
ˇ̌
k0

C d!

dk

ˇ̌
ˇ̌
k0

t or x D q0
k0

 
x0 � d�T

dk

ˇ̌
ˇ̌
k0

C d!

dk

ˇ̌
ˇ̌
k0

t

!
:

(1.194)
The peak of the transmitted wave thus moves with the velocity

v(trans)
g D q0

k0

d!

dk

ˇ̌
ˇ̌
k0

D d!

dq

ˇ̌
ˇ̌
q0

D „q0
�
: (1.195)

If, for example, VC < V�, then q0 > k0 and the transmitted particle moves faster
than the incoming particle. The transmitted wave packet is stretched by a factor
q0=k0 (along the x-axis, but it remains normalized due to the factor

p
k=q � p

k0=q0
in the lower line of (1.186). The norm of the whole transmitted wave packet (1.186)
is jT.k0/j2. A particle moving from x0 < 0 with constant velocity �g arrives at
the origin x D 0 at time t0 D �x0=�g. If it continues beyond x D 0 with the
constant velocity �g

.trans/ D �g q0=k0, then its position at time t > t0 is given by
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x D �g
.trans/.t � t0/ D .x0 C �gt/q0=k0. This is just what (1.194) predicts if we

ignore the term involving the phase �T of the transmission amplitude. The term
involving the phase describes the space shift

xshift D q0
k0

 
d�T

dk

ˇ̌
ˇ̌
k0

!
D d�T

dq

ˇ̌
ˇ̌
q0

(1.196)

and the related time delay,

tdelay D xshift

v
.trans/
g

D „d�T

dE

ˇ̌
ˇ̌
ˇ
E0

; (1.197)

relative to a particle moving with constant velocity �g D „k0 from x D x0 < 0 to
x D 0 and continuing on with constant velocity �g

(trans) D „q0.
Far to the left of the interaction region, x ! �1, we expect contributions

from the incoming- and the reflected-wave parts of the stationary basis func-
tions (1.178), (1.172),

 <.x; t/ D 1p
2�

Z 1

0

Q .k/eikxe�i!.k/t dk

C 1p
2�

Z 1

0

Q .k/Rl e�ikxe�i!.k/t dk : (1.198)

With the arguments used above for deriving (1.188) we conclude that the upper line
of (1.198) would contribute a wave packet centred around x D x0 C �gt and can be
neglected in the regime of negative x values at large times t. For large times, only the
lower line of (1.198) gives contributions to the left of the interaction region and they
describe the reflected wave packet moving in the direction of the negative x axis.
This reflected wave packet has the same shape as the incoming wave packet when
considered as a function of �x i.e. its shape is reflected in coordinate space, and it
is peaked around

x D �x0 C d�R

dk

ˇ̌
ˇ̌
k0

�d!

dk

ˇ̌
ˇ̌
k0

t : (1.199)

Here �R stands for the phase of the reflection amplitude,

Rl.k/ D jRl.k/j ei�R : (1.200)

The reflected wave packet travels with the group velocity ��g D �„k0=�. The
coordinate of a free particle starting with velocity �g > 0 at x0 < 0 and returning
to negative x values after being elastically reflected at x D 0 would be given by
x D �x0 � �gt. The second term on the right-hand side of (1.199) thus represents a
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space shift relative to the reflection of a free particle at x D 0. The reflected wave
packet lags behind by a distance

xshift D d�R

dk

ˇ̌
ˇ̌
k0

; (1.201)

corresponding to a time delay,

tdelay D xshift

vg
D „ d�R

dE

ˇ̌
ˇ̌
EDE0

: (1.202)

For wave packet incident from the left, the time evolution of the reflected wave
packet corresponds that of a free particle reflected not at x D 0 but at x D xshift=2.

The results derived in this section are based on approximations justified by
the assumption that the initial wave packet is sufficiently narrowly localized in
momentum, as expressed in (1.179). These approximations are already too crude to
account for the spreading of the wave packet as discussed in the Gaussian example
above, (1.167)–(1.169). For general wave packets which may be strongly localized
in coordinate space and widely spread in momentum, the issue of time becomes
quite complicated. The basic problem is, that wave packets generally don’t keep
their shape in the course of time. They can reshape and/or break up into many
components, and naive time definitions based, e.g., on the motion of the absolute
or a relative maximum of the probability density or on its centre of mass don’t
lead to generally consistent results. This is an old topic which has been receiving
renewed attention for several years. One school of thought is to define an operator
for time as a physical observable and derive the times for quantum tunnelling and/or
reflection via eigenvalues or expectation values of such operators [BK95, OR04].
An alternative and perhaps more natural approach is to accept time as a mere
parameter in the time-dependent Schrödinger equation and to directly study the
behaviour of its wave-packet solutions [EK87, Kle94, CN02]. A detailed discussion
of time in the context of tunnelling is given in Chaps. 17 to 19 of [Raz03], and a
rather comprehensive summary of the many questions associated with the general
problem of time in quantum mechanics is contained in [MS02]. Notwithstanding
these reservations it is worth mentioning, that in the limit of almost monochromatic
wave packets discussed above, the concept of time delays (or gains) defined via the
derivative of the phase of the transmission or reflection amplitude is well defined and
unambiguous. A similar treatment of time delays was first discussed by Eisenbud
and Wigner [Wig55] in the context of particle scattering.

1.5 Resonances and Channels

Resonances appear above the continuum threshold at energies where a bound state
might have occurred, meaning that a slight modification of the Hamiltonian would
have led to a bound state. In a one-dimensional potential, resonances can typically
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occur if almost bound states in the inner region are shielded from the outer region
by a potential barrier (see Sect. 1.5.3). In systems with several degrees of freedom
resonances often occur when a bound motion in one degree of freedom couples
weakly to and can decay into unbound motion in another degree of freedom. These
so-called Feshbach resonances are best described in the picture of coupled channels.
The concept of channels is of a very fundamental importance and is introduced in a
general way in the following subsection.

1.5.1 Channels

Consider a physical system whose wave functions  .X;Y/ depend on two sets X
and Y of variables. Let OO be an observable which only acts on functions of the
variable Y, i.e. for a product wave function  .X/�.Y/ we have

OO .X/�.Y/ D  .X/ OO�.Y/ : (1.203)

The eigenvalue problem for OO is

OO�n D !n�n (1.204)

and defines a complete set of eigenfunctions �n.Y/. OO can stand for a whole set of
observables; !n then stands for the corresponding set of eigenvalues.

If OO commutes with the Hamiltonian OH, then the problem of solving the full
Schrödinger equation can be reduced to the solution of a reduced Schrödinger
equation for each eigenvalue !n of OO. Each eigenfunction �n.Y/ of OO—more
precisely: each eigenvalue!n, which is not the same in the degenerate case—defines
a channel, and the dynamics of the reduced problem in the variable X in a given
channel is not coupled to the motion in the other channels.

Coupling of channels occurs if OO does not commute with OH. Since the functions
�n.Y/ form a complete basis in the space of all functions of Y, we can expand any
wave function  .X;Y/ of the whole system in this basis:

 .X;Y/ D
X

n

 n.X/�n.Y/ : (1.205)

The functions  n.X/ are the channel wave functions which are to be determined
by solving the Schrödinger equation. Inserting the ansatz (1.205) into the time-
independent Schrödinger equation leads to

X
n

OH  n.X/�n.Y/ D E
X

n

 n.X/�n.Y/ : (1.206)
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Multiplying from the left by ��
m.Y/ and integrating over Y yields the coupled-

channel equations in their most general form:

OHm;m m.X/C
X
n¤m

OHm;n n.X/ D E m.X/ : (1.207)

The diagonal Hamiltonians OHm;m and the coupling operators OHm;n, m ¤ n, are
reduced operators which act only in the space of wave functions  .X/. They are
defined through the eigenfunctions �n.Y/,

OHm;n D h�mj OHj�niY ; (1.208)

where the subscript Y on the bracket indicates integration (and/or summation) over
the variable Y alone.

The coupled-channel equations (1.207) are particularly useful if the diagonal
operators OHm;m play a dominant role, while the coupling operators OHm;n, m ¤ n,
are “small”. This happens if the operator OO commutes with a dominant part of
the Hamiltonian which then doesn’t contribute to the coupling operators. It is also
helpful if symmetry considerations restrict the number of channels coupling to each
other to a finite and preferably small number, or if the expansion (1.205) can be
terminated after a small number of terms on physical grounds.

For further insights let us define the situation more precisely. Assume for
example, that H consists of the operators OHX and OHY , which act only on functions of
X and Y respectively, together with a simple coupling potential given by the function
V.X;Y/:

OH D OHX C OHY C V.X;Y/ : (1.209)

The eigenfunctions �n.Y/ of OHY may be used to define channels. The diagonal
Hamiltonians of the coupled-channel equations are

OHm;m D OHX C h�mj OHY j�miY C h�mjV.X;Y/j�miY ; (1.210)

and the coupling operators form a matrix of potentials:

OHm;n D Vm;n.X/ D
Z

dY��
m.Y/V.X;Y/ �n.Y/ ; m ¤ n : (1.211)

The diagonal Hamiltonians (1.210) contain the operator OHX , which is the same in
all channels, and an additional channel-dependent potential

Vm;m.X/ D
Z

j�m.Y/j2V.X;Y/ dY (1.212)
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as well as a constant energy

Em D h�mj OHY j�miY ; (1.213)

corresponding to the internal energy of the Y variables in the respective channels.
To be even more precise let us assume that  .X;Y/ describes a point particle of

mass � moving in an effective radial potential Veff.r/ and interacting with a number
of other bound particles. Our ansatz for  .X;Y/ is

 D
X
n;l;m

�n;l;m.r/

r
Yl;m.�; �/ �n ; (1.214)

where �n are the bound states of the other particles. Now X is the radial coordinate r
and Y stands for the angular variables .�; �/ of the point particle as well as all other
degrees of freedom. The coupled-channel equations now have the form

�
� „2
2�

d2

dr2
C Veff.r/C Vk;k.r/C Ek

�
�k.r/C

X
k0¤k

Vk;k0.r/�k0.r/ D E�k.r/ ;

(1.215)

and the channel index k covers the angular momentum quantum numbers of the
point particle and all other quantum numbers of the other degrees of freedom.

If the coupling potentials vanish asymptotically .r ! 1/ we can distinguish
between closed and open channels of the system. In closed channels the motion is
bound and the channel wave functions�k.r/ vanish asymptotically. In open channels
the motion is unbound and the channel wave functions oscillate asymptotically.
Assuming that the effective potential Veff.r/ and the additional potentials Vk;k.r/
vanish asymptotically, the open channels at a given energy E of the whole system
are those whose internal energy Ek is smaller than E, whilst channels with Ek > E
are closed. The internal energies Ek define the channel thresholds, above which
the channel wave functions �k.r/ in the respective channels have the properties of
continuum wave functions. Bound states of the whole system and discrete energy
eigenvalues occur only if all channels are closed. Thus the continuum threshold
of the whole system is identical to the lowest channel threshold. For energies at
which at least one channel is open, there is always a solution of the coupled channel
equations. Figure 1.7 schematically illustrates a typical set of diagonal channel
potentials

Vk.r/ D Veff.r/C Vk;k.r/C Ek; (1.216)

as they occur in (1.215). Physical examples for systems of coupled channels are
discussed in Sect. 3.3.
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Fig. 1.7 Schematic illustration of diagonal potentials (1.216) in a system of coupled channels

1.5.2 Feshbach Resonances

For the simplest example of a Feshbach resonance consider a system of two coupled
channels described by the following coupled-channel equations:

�
� „2
2�

d2

dr2
C V1.r/

�
�1.r/C V1;2.r/�2.r/ D E�1.r/ ;

�
� „2
2�

d2

dr2
C V2.r/

�
�2.r/C V2;1.r/�1.r/ D E�2.r/ : (1.217)

For real potentials we must require that V1;2.r/ D V2;1.r/ if the two-channel
Hamiltonian is to be Hermitian. Let’s assume that channel 1 is open and channel 2
is closed, and that the energy scale is such that the channel threshold E1 of the open
channel lies at E D 0.

An almost bound state, i.e. a resonance, tends to occur near an energy at which
there would be a bound state in the closed channel 2 if channel coupling were
switched off. Let �0.r/ be the wave function of such a bound state in uncoupled
channel 2:

�
� „2
2�

d2

dr2
C V2.r/

�
�0.r/ D E0�0.r/ : (1.218)

The existence of such a bound state �0 has a dramatic influence on the solutions
of the coupled equations (1.217) in the vicinity of the energy E0. To see this we
restrict our space of two-channel wave functions by assuming that the wave function
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�2.r/ in the closed channel 2 is simply a multiple A�0.r/ of the bound-state wave
function �0.r/. Then the coupled equations (1.217) can be rewritten as

�
E C „2

2�

d2

dr2
� V1.r/

�
�1.r/ D A V1;2.r/�0.r/ ;

A.E � E0/ D h�0jV2;1j�1i : (1.219)

Actually, exploiting (1.218) and inserting A�0 for �2 in the lower equation (1.217)
leads to A.E � E0/�0.r/ D V2;1.r/�1.r/, which cannot, of course, hold in the
space of arbitrary closed-channel wave functions; but in the restricted space
mentioned above, all that counts is the projection onto �0, as given in the lower
equation (1.219).

The upper equation (1.219) can be solved using the Green’s function G.r; r0/,
which is defined by the relation

�
E C „2

2�

d2

dr2
� V1.r/

�
G.r; r0/ D ı.r � r0/ : (1.220)

It is immediately obvious that the wave function

�1.r/ D �reg C A OGV1;2�0

D �reg.r/C A
Z 1

0

G.r; r0/V1;2.r0/�0.r0/dr0 (1.221)

is a solution of the upper equation (1.219), if �reg.r/ is a solution of the correspond-
ing homogeneous equation:

�
E C „2

2�

d2

dr2
� V1.r/

�
�reg.r/ D 0 : (1.222)

We take �reg to be the regular solution which vanishes at r D 0; then �1
in (1.221) also fulfills this boundary condition (see (1.228) below). If �reg is energy
normalized, then its asymptotic form is (cf. (1.151))

�reg.r/ D
r

2�

�„2k sin.kr C ıbg/ ; r ! 1 : (1.223)

ıbg is a background phase shift, which originates mainly from the diagonal potential
V1.r/ and usually depends only weakly on the energy E D „2k2=.2�/. If V1.r/
contains a very-long-ranged Coulomb contribution, then ıbg will contain the usual
r-dependent Coulomb term (see Table 1.3 in Sect. 1.3.2).

By inserting the solution (1.221) for �1.r/, the lower equation (1.219) becomes

A.E � E0/ D h�0jV2;1j�regi C Ah�0jV2;1 OGV1;2j�0i : (1.224)
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Resolving for the coefficient A gives the explicit expression

A D h�0 jV2;1j�regi
E � E0 � h�0jV2;1 OGV1;2j�0i

: (1.225)

The matrix element in the denominator is the double integral

h�0jV2;1 OGV1;2j�0i

D
Z 1

0

dr
Z 1

0

dr0 ��
0 .r/V2;1.r/G.r; r

0/V1;2.r0/�0.r0/ : (1.226)

For a given diagonal potential V1.r/ in the open channel 1 we can express the
Green’s function G.r; r0/ through the regular solution �reg of the homogeneous
equation (1.222) and the corresponding irregular solution which behaves like a
cosine asymptotically,

�irr.r/ D
r

2�

�„2k cos.kr C ıbg/ ; r ! 1 : (1.227)

The Green’s function is (see Problem 1.5)

G.r; r0/ D ��
�
�reg.r/�irr.r0/ for r � r0 ;
�reg.r0/�irr.r/ for r0 � r :

(1.228)

For sufficiently large values of r we can assume that the variable r0 in the integral
in (1.221) is always smaller than r, because �0.r0/ is a bound wave function so that
the integrand vanishes for large r0. Hence we can insert the lower line of (1.228) for
G.r; r0/ and perform the integration over r0. With (1.225) this leads to the following
asymptotic form of �1.r/:

�1.r/ D �reg.r/C tan ı �irr.r/

D 1

cos ı

r
2�

�„2k sin.kr C ıbg C ı/ ; r ! 1 ; (1.229)

and the angle ı ist given by

tan ı D ��
ˇ̌h�0 jV2;1j�regiˇ̌2

E � E0 � h�0
ˇ̌
ˇV2;1 OGV1;2

ˇ̌
ˇ�0i

: (1.230)

Being solutions of a homogeneous system of differential equations, the two-
channel wave functions are determined only to within multiplication by a common
arbitrary constant. To obtain a continuum wave function in channel 1 which is
energy normalized, we should multiply the wave function �1 of (1.229)—and
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simultaneously the corresponding wave function A�0 in channel 2—by cos ı.
Then the whole two-channel wave function is also energy normalized, because the
normalization integrals are dominantly given by the divergent contribution of the
open-channel wave function.

Coupling the bound state �0.r/ in the closed channel 2 to the open channel 1 leads
to an additional asymptotic phase shift ı in the open-channel wave function (1.229).
This additional phase shift characterizes the resonance. Its energy dependence is
determined by the position E0 of the bound state in the uncoupled closed channel
and the matrix elements

h�0
ˇ̌
ˇV2;1 OGV1;2

ˇ̌
ˇ�0i defD � (1.231)

and

2�
ˇ̌h�0 jV2;1j�regiˇ̌2 defD � : (1.232)

The matrix elements (1.231), (1.232) are actually energy-dependent, because �reg

and the Green’s function G depend on E, but this energy dependence is insignificant
compared with the energy dependence resulting from the pole structure of the
formula (1.230) for tan ı. The position of the pole, i.e. the zero of the denominator,
defines the position of the resonance, ER:

ER D E0 C� D E0 C h�0
ˇ̌
ˇV2;1 OGV1;2

ˇ̌
ˇ�0i : (1.233)

It differs from the energy E0 of the uncoupled bound state in the closed channel 2 by
the shift �. Around the resonance energy ER the phase ı rises more or less suddenly
by � . The width of the resonance is � as defined in (1.232); at E D ER � � =2 and
E D ER C � =2 the phase has risen by 1/4 and 3/4 of � respectively. The function

ı D � arctan

�
� =2

E � ER

�
(1.234)

is illustrated for constant values of the parameters ER and � in Fig. 1.8. An isolated
resonance which is described by an additional asymptotic phase shift as in (1.234)
is called a Breit-Wigner resonance.

The derivative of the phase shift (1.234) with respect to energy is

dı

dE
D � =2

.E � ER/2 C .� =2/2
(1.235)
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Fig. 1.8 The solid line shows the additional asymptotic phase shift ı.E/ (without background
phase shift) near an isolated Breit-Wigner resonance at E D ER D 2:0 with a width � D 0:4

(see (1.234)). The dotted line is the derivative (1.235)

and has a maximum at the resonance energy ER. According to (1.235), the width �
is related to the maximum derivative by

� D 2

 
dı

dE

ˇ̌
ˇ̌
EDER

!�1
: (1.236)

In general a resonance appears as a jump in the phase shift which need not, however,
have precisely the form of the Breit-Wigner resonance (1.234). In the general case,
the point of maximum gradient dı=dE serves as definition for the position ER of the
resonance, and the width can be defined via (1.236). Determining the position and
width of a resonance is usually no problem as long as the resonance is so narrow
that the matrix elements (1.231), (1.232) and also the background phase shift ıbg

can be regarded as constants over the whole width of the resonance. For a broader
resonance, however, the unique definition of its position and width can become a
difficult problem (see also Sect. 1.5.3).

The derivative of the phase shift with respect to energy is also a measure
for the strength of the closed-channel component in the solution of the coupled-
channel equations. Assuming energy normalized solutions of the coupled-channel
equations (1.217) or rather (1.219), the channel wave function �2 in the closed
channel 2 is

�2.r/ D A cos ı �0.r/ ; (1.237)

where the factor cos ı stems from the energy normalization of the open-channel
wave function, as explained above in the paragraph following (1.230). The strength
of the closed-channel admixture is quantitatively given by the square of the
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amplitude A cos ı in front of the (bound) wave function �0, which is normalized
to unity. With (1.225), (1.230) we have

jA cos ıj2 D jh�0jV2;1j�regij2
.E � ER/2

1

1C tan2ı

D 1

�

� =2

.E � ER/
2 C .� =2/

D 1

�

dı

dE
: (1.238)

If we decompose the sine function in the open-channel wave function (1.229) as

sin.kr C ıbg C ı/ / �e2i.ıbgCı/eikr C e�ikr ; (1.239)

then the second term on the right-hand side represents an incoming monochromatic
wave and the first term an outgoing, reflected wave with the reflection amplitude
–exp Œ2i.ıbg C ı/�. For wave packets narrowly localized in momentum, the energy
dependence of the phase, � D �C2.ıbgCı/, of this reflection amplitude defines the
time delay of the reflected wave packet relative to a free particle reflected at r D 0,
as formulated in (1.202). Assuming an essentially energy-independent background
phase shift ıbg and the Breit-Wigner form (1.234), (1.235) for the energy-dependent
part ı gives

tdelay.E/ D „d�

dE
D 2„ dı

dE
D „�
.E � ER/2 C .� =2/2

: (1.240)

For the formula (1.240) to be valid, the energy spread of the wave packet localized
around E should be small compared to the width � of the resonance. The formula
describes the time delay of an almost monochromatic wave packet incident with
mean energy near the resonance energy ER. The time delay has its maximum value
when the mean energy E of the wave packet coincides with the resonance energy,
tdelay.ER/ D 4„=� , and it decreases with increasing detuning from ER.

1.5.3 Potential Resonances

Another important situation which can lead to resonances occurs when a potential
barrier separates the inner region of small separations r from the outer region of
large r. Such potential barriers can result from the superposition of an attractive
short-ranged potential and the repulsive centrifugal potential. As an example we
study the potential

V.r/ D �V0 e�r2=ˇ2 C l.l C 1/„2
2�r2

; (1.241)
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Fig. 1.9 The left half shows the potential (1.241) for angular momentum quantum number l D 2,
V0 D 12:5 und ˇ D 1:0 .„2=� D 1/. The right half shows the phase shift ılD2 of the wave
function (1.117) as a function of the energy E. The maximum of the gradient dı=dE is at ER D 0:21

and the width of the resonance according to (1.236) is � � 0:03

0

0.5

1.0

δ/π

0 1 2 30 1 2 3 4 5
r E

V

1

0

–1

–2

Fig. 1.10 The same as Fig. 1.9 for V0 D 10:0. The maximum gradient of the phase shift is at
ER D 0:6 and the width of the resonance according to (1.236) is � � 0:5

which is illustrated in Figs. 1.9 and 1.10 for angular momentum quantum number
l D 2 and two different potential strengths V0. In Fig. 1.9 there is a resonance
just above the continuum threshold and well below the maximum of the barrier.
It appears as a jump of the phase shift ılD2 by a little less than � . In Fig. 1.10
the potential is less attractive and the resonance lies close to the maximum of the
barrier. The phase shift now jumps by appreciably less than � , but there is a point
of maximum gradient and the width of the resonance can be defined via (1.236).

For a Feshbach resonance (see Sect. 1.5.2), the background phase shift due to
the potential in the open channel and the additional phase shift resulting from the
coupling to the bound state in the closed channel add up to give the total phase shift
ıbg C ı (see (1.229)). If the energy dependence of the background phase shift and
the coupling matrices is negligible and if the resonance is isolated (i.e. the width
of the resonance should be smaller than the distance in energy to neighbouring
resonances), then the jump of the phase shift is well described by the arctan form
of the Breit-Wigner resonance. For potential resonances such as those shown in
Figs. 1.9 and 1.10 it is not so straightforward to decompose the total phase shift
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into a weakly energy-dependent background phase shift and a resonant part. As
Fig. 1.10 illustrates, the jump of a phase shift around a broad potential resonance
can be appreciably smaller than what the Breit-Wigner formula (1.234) would lead
to expect.

More extensive examples of potential resonances, also called shape resonances,
are given in Sect. 4.1.9, see Figs. 4.6 and 4.7.

1.6 Methods of Approximation

1.6.1 Time-Independent Perturbation Theory

We are often looking for eigenvalues and eigenstates of a Hamiltonian

OH D OH0 C 
 OW ; 
 small ; (1.242)

which only differs by a “small perturbation” 
 OW from a simpler Hamiltonian OH0

of which we know the spectrum and the eigenstates (which we shall assume to be
normalized to unity):

OH0j .0/n i D E.0/n j .0/n i : (1.243)

In order to define an ordered sequence of increasingly accurate approximations
of the eigenstates j ni of OH, we expand these in powers of the small parameter 
:

j ni D j .0/n i C j
 .1/n i C j
2  .2/n i C : : : : (1.244)

Similarly for the eigenvalues En of OH:

En D E.0/n C 
E.1/n C 
2 E.2/n C : : : : (1.245)

Inserting (1.244), (1.245) into the time-independent Schrödinger equation,

. OH0 C 
 OW/.j .0/n i C j
 .1/n i C : : :/

D .E.0/n C 
E.1/n C 
2 E.2/n C : : :/.j .0/n i C j
 .1/n i C : : :/ ; (1.246)

and collecting powers of 
 yields a hierarchy of approximations. In zeroth order we
retrieve the unperturbed eigenvalue (1.243). In first order we have

OH0j
 .1/n i C 
 OWj .0/n i D E.0/n j
 .1/n i C 
E.1/n j .0/n i : (1.247)
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If we form the scalar product with the bra h .0/n j; then the terms containing j
 .1/n i
cancel, because of

h .0/n j OH0j
 .1/n i D E.0/n h .0/n j
 .1/n i ; (1.248)

and we obtain an expression for the energy shifts in first order:


E.1/n D h .0/n j
 OWj .0/n i : (1.249)

In order to deduce the change j
 .1/n i of the wave functions in first order
from (1.247) we form the scalar product with any (unperturbed) eigenstate h .0/m j
of OH0 as bra. Because of

h .0/m j OH0j
 .1/n i D E.0/m h .0/m j
 .1/n i (1.250)

this yields the following expression for the overlap (i.e. the scalar product) of
j
 .1/n i with the unperturbed states:

h .0/m j
 .1/n i �E.0/n � E.0/m

	 D h .0/m j
 OWj .0/n i � 
E.1/n h .0/m j .0/n i : (1.251)

For m D n the left-hand side of (1.251) vanishes and we retrieve (1.249). For m ¤ n
and provided that E.0/n is non-degenerate, i.e. E.0/m ¤ E.0/n for all m ¤ n, we obtain

h .0/m j
 .1/n i D h .0/m j
 OWj .0/n i
E.0/n � E.0/m

: (1.252)

Since the eigenstates of OH0 form a complete set, (1.252) defines the expansion of
j
 .1/n i in the unperturbed basis (see (1.6), (1.8)). Only the coefficient of j .0/n i is
left undetermined by (1.251). It is a natural choice to set this coefficient zero, which
ensures that the norm of the perturbed state j .0/n C 
 

.1/
n i deviates from unity in

second order at the earliest. The perturbation of the wave function in first order is
thus

j
 .1/n i D
X
m¤n

h .0/m j
 OWj .0/n i
E.0/n � E.0/m

j .0/m i : (1.253)

Collecting terms of second order in 
 in (1.246),

OH0j
2  .2/n i C 
 OWj
 .1/n i
D E.0/n j
2  .2/n i C 
E.1/n j
 .1/n i C 
2 E.2/n j .0/n i ; (1.254)
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and forming the scalar product with the bra h .0/n j leads to an expression for the
second-order contribution to the energy shift:


2 E.2/n D h .0/n j
 OWj
 .1/n i D
X
m¤n

jh .0/n j
 OWj .0/m ij2
E.0/n � E.0/m

: (1.255)

The above considerations are valid for small perturbations of non-degenerate
eigenstates of the unperturbed Hamiltonian OH0. In the degenerate case an eigenvalue
E.0/n has N eigenstates, j .0/n;1 i; : : : j .0/n;Ni, and each (unitary) transformation of these
N states amongst each other,

j d
n;ii D

NX
jD1

ci;jj .0/n;j i ; (1.256)

again yields N eigenstates of OH0 with the same eigenvalue E.0/n . A sensible choice of
the coefficients ci;j in (1.256) is that which diagonalizes the perturbing operator 
 OW
in the N-dimensional subspace spanned by the degenerate eigenstates:

h d
n;ij
 OWj d

n;ji D "iıi;j : (1.257)

Equation (1.257) is fulfilled if the states (1.256) in the N-dimensional subspace
are eigenstates of 
 OW in this subspace, i.e. if the respective “residual states”
.
 OW � "i/j d

n;ii are each orthogonal to all N states j d
n;ji or, equivalently, to all

j .0/n;k i, k D 1; : : :N. Using (1.256) this orthogonality condition can be written as a
homogeneous set of simultaneous linear equations for the coefficients ci;j:

h .0/n;k j
 OW � "ij d
n;ii D

NX
jD1



h .0/n;k j
 OWj .0/n;j i � "iık;j

�
ci;j D 0 : (1.258)

For each i (1.258) is a set of N equations, k D 1; : : :N, for the N unknowns
ci;1; : : : ci;N . Non-trivial solutions exist only if the determinant of the matrix of
coefficients vanishes:

det


h .0/n;k j
 OWj .0/n;j i � "iık;j

�
D 0 : (1.259)

The pre-diagonalized states j d
n;ii obtained by solving (1.258) are still only

eigenstates of OH to zeroth order in 
. The N roots of the secular equation (1.259)
define the N eigenvalues "1; : : : "N of 
 OW in the N-dimensional subspace spanned
by the degenerate eigenstates of OH0. The corresponding new energies E.0/n C "i are
the perturbed energies to first order in 
,


E.1/n;i D "i : (1.260)
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The first-order correction to the pre-diagonalized state j d
n;ii is j
 .1/n;i i, and

its projections onto the unperturbed basis states j .0/m i with E.0/m ¤ E.0/n can be
calculated via the same steps that led to (1.252), giving

h .0/m j
 .1/n;i i D h .0/m j
 OWj d
n;ii

E.0/n � E.0/m

: (1.261)

In order to obtain the projections of j
 .1/n;i i onto the other pre-diagonalized states
j d

n;ji in the subset of degenerate unperturbed states, we insert j d
n;ii and its first- and

second-order corrections into the second-order equation (1.254) in place of j .0/n i
and its first- and second-order corrections. Forming the scalar product with the bra
h d

n;jj yields . j ¤ i/

h d
n;jj
 OWj
 .1/n;i i D 
E.1/n;i h d

n;jj
 .1/n;i i : (1.262)

Inserting a complete set (1.22), involving the unperturbed states j .0/m i with
E.0/m ¤ E.0/m and the pre-diagonalized states from the degenerate subset, in between

 OW and j
 .1/n;i i on the left-hand side of (1.262), and remembering (1.257), (1.260)
gives




E.1/n;i � 
E.1/n;j

�
h d

n;j
j .1/n;i i D
X

E
.0/
m ¤ E

.0/
n

h d
n;jj
 OWj .0/m ih .0/m j
 .1/n;i i : (1.263)

With the explicit expression (1.261) for h .0/m j
 .1/n;i i, (1.263) results in

h d
n;jj
 .1/n;i i D

X
E
.0/
m ¤E

.0/
n

h d
n;jj
 OWj .0/m i


E.1/n;i � 
E.1/n;j

h .0/m j
 OWj d
n;ii

E.0/n � E.0/m

: (1.264)

The first-order correction j
 .1/n;i i to the pre-diagonalized state j d
n;ii contains

contributions from the unperturbed degenerate subset according to (1.264) and from
the orthogonal subset according to (1.261) and is

j
 .1/n;i i D
X

E
.0/
m ¤E

.0/
n

h .0/m j
 OWj d
n;ii

E.0/n � E.0/m

j .0/m i

C
X
j¤i

X
E
.0/
m ¤E

.0/
n

h d
n;jj
 OWj .0/m i


E.1/n;i � 
E.1/n;j

h .0/m j
 OWj d
n;ii

E.0/n � E.0/m

j d
n;ji : (1.265)
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The overlap of j
 .1/n;i i with j d
n;ii should vanish, so that the norm of the perturbed

state deviates from unity in second order at the earliest.
The second-order correction to the energy eigenvalue is obtained by inserting

j d
n;ii and its first-order correction (1.265) into the second-order equation (1.254)

and forming the scalar product with the bra h d
n;ij. Because of the pre-

diagonalization (1.257), the contribution of the lower line of (1.265) to the matrix
element vanishes and we obtain


2 E.2/n;i D h d
n;ij
 OWj
 .1/n;i i D

X
E
.0/
m ¤E

.0/
n

jh d
n;ij
 OWj .0/m ij2
E.0/n � E.0/m

; (1.266)

which is essentially the same as in the non-degenerate case (1.255) with the sum
taken over all unperturbed states outside the degenerate subset. The states within
the degenerate subset contribute to the first-order correction (1.265) of the (pre-
diagonalized) states, but not to the second-order correction (1.266) of the energies.
In the sum over j in the lower line of (1.265), we assume that the unperturbed
first-order energy correction 
E.1/n;j is not equal to 
E.1/n;i . If some states of the
unpeturbed degenerate subset remain degenerate after pre-diagonalization, then the
first- and second-order energy shifts do not depend on the choice of basis in this still
degenerate subset of first-order-corrected states.

Pre-diagonalizing a limited number of unperturbed eigenstates is a useful and
valid procedure, not only in the case of exact degeneracy of the unperturbed
eigenstates. In equations (1.253) and (1.255) the contributions of states with
unperturbed energies E.0/m close to E.0/n can become very large due to the small
energy denominator. Hence it can be appropriate to pre-diagonalize the states with
unperturbed eigenvalues close to E.0/n . An unperturbed energy can be regarded as
“close to E.0/n ” if the absolute value of the energy difference E.0/m � E.0/n is of
the same order or smaller than the absolute value of the coupling matrix element
h .0/m j
 OWj .0/n i, see Problem 1.6.

In order to calculate energy shifts in second order or perturbations of the wave
functions in first order, we strictly speaking need to have solved the unperturbed
problem (1.243) completely, because the summations in (1.253) and (1.255)
or (1.265) and (1.266) require a complete set of (unperturbed) eigenstates and
eigenvalues. For unperturbed Hamiltonians with unbound eigenstates, the summa-
tions have to be replaced or complemented by integrations over the corresponding
contributions of the continuum.
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1.6.2 Ritz’s Variational Method

The expectation value of a given Hamiltonian OH in a Hilbert space of normalizable
states can be regarded as a functional which maps each state j i onto a real number
EŒ �:

h OHi D h j OHj i
h j i � EŒ � : (1.267)

The state j i is an eigenstate of OH if and only if EŒ � is stationary at the point j i,
meaning that an infinitesimally small variation j i ! j C ı i of the state leaves
the energy unchanged:

ıE D 0 : (1.268)

To see this we evaluate ıE D EŒ C ı � � EŒ � to first order in jı i,

ıE D h j OHj i C hı j OHj i C h j OHjı i
h j i C hı j i C h jı i � E

D hı j OH � Ej i C h j OH � Ejı i
h j i C hı j i C h jı i ; (1.269)

and this expression vanishes if and only if

hı j OH � Ej i C h j OH � Ejı i D 0 : (1.270)

If j i is an eigenstate of OH, then its eigenvalue is identical to the expectation
value (1.267), and (1.270) is automatically fulfilled for all jı i. Conversely,
if (1.270) is fulfilled for all (infinitesimal) jı i, then it must be fulfilled for the
pair of variations jı i and ijı i; with (1.11), (1.12) we have

� ihı j OH � Ej i C ih j OH � Ejı i D 0 : (1.271)

It follows from (1.270) and (1.271) that h j OH � Ejı i and hı j OH � Ej i must
both vanish independently. On the other hand, if hı j OH � Ej i vanishes for
all (infinitesimal) jı i in the Hilbert space, then the state . OH � E/j i must be
orthogonal to all states in the Hilbert space und must consequently be zero. That
means j i is an eigenstate of OH with eigenvalue E.

It is often much easier to calculate the energy expectation value EŒ � for a
limited number of model states j i than to solve the eigenvalue problem for the
Hamiltonian OH. In such cases we may look for model states at which EŒ � is
stationary under small variations within the space of model states and regard them
as approximate eigenstates of OH. It is particularly sensible to search for a minimum
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of EŒ � in order to approximate the ground state of the system. The expectation
value (1.267) can be written as a weighted mean of all exact eigenvalues of OH
(see (1.27)) and as such cannot be smaller than the smallest eigenvalue E1:

E1 � h j OHj i
h j i: ; all j i : (1.272)

As a special case let’s look at a set of model states forming a subspace of a
Hilbert space spanned by a basis j 1i; : : : j Ni (which need not be orthonormal).
The general model state is then a linear combination

j i D
NX

iD1
ci j ii (1.273)

of these basis states, and the coefficients ci are the parameters defining the model
state.

The projection of the Hamiltonian OH onto the subspace spanned by the
j 1i : : : j Ni is a reduced operator Oh which is defined by the matrix elements

hi;j D h ijOhj ji D h ij OHj ji ; i; j D 1; : : :N : (1.274)

The expectation values of Oh and OH are the same within the model subspace:

h j OHj i
h j i D h jOhj i

h j i D EŒ � : (1.275)

Since the model subspace is itself a vector space of state vectors, we may apply the
same reasoning as used above in full Hilbert space and conclude that the energy
functional (1.275) is stationary if and only if the corresponding model state j i is
an eigenstate of the projection Oh of the Hamiltonian onto the model subspace. j i is
an eigenstate of Oh means that .Oh � E/j i vanishes, or equivalently that . OH � E/j i
is orthogonal to all basis states j 1i : : : j Ni of the model subspace:

h ij OH � Ej i D 0 ; i D 1; : : :N : (1.276)

Inserting the explicit ansatz (1.273) for j i in (1.276) we have

NX
jD1

.hi;j � Eni;j/ cj D 0 ; i D 1; : : :N ; (1.277)

where hi;j are the matrix elements of the Hamiltonian (1.274) and ni;j are the
elements of the overlap matrix:

ni;j D h ij ji ; i; j D 1; : : : N : (1.278)
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Equation (1.277) is a homogeneous system of N simultaneous linear equations
for the N unknown coefficients cj. It contains the overlap matrix ni;j, because we
didn’t assume orthonormality of the basis. The secular equation now reads

det.hi;j � Eni;j/ D 0 (1.279)

and yields N eigenvalues "k of Oh belonging to N eigenstates of the form (1.273).
Each eigenstate j .k/i is characterized by an N-component vector of coefficients
c.k/i , and as eigenstates of the Hermitian operator Oh they are mutually orthogonal:

h .k/j .l/i D
NX

iD1

NX
jD1

.c.k/i /
�ni;j c.l/j / ık;l : (1.280)

If they are normalized to unity we have

h .k/j .l/i D ık;l ;

h .k/j OHj .l/i D "kık;l; k; l D 1 ; : : : N : (1.281)

The method of diagonalizing in a subspace is particularly useful if we are
looking for approximations to describe not only the ground state of a system.
Equation (1.272) sets an upper bound for the ground state energy and hence we
know, the lower the value of EŒ �, the closer it is to the exact ground state energy E1.
For an excited state there is in general no condition like (1.272), and it is not always
a good thing to approximate it by a model state with as low an energy as possible.
Bounding conditions of the form (1.272) do however hold for a set of model states,
if the states don’t mix among each other, i.e. if they fulfill (1.281). More precisely:
Let E1 � E2 � E3 � � � be the exact eigenvalues of OH arranged in ascending order
and let "1 � "2 � � � � "N be the energy expectation values of N states fulfilling the
conditions (1.281). Then

Ei � "i for all i D 1; : : :N : (1.282)

This is the Hylleraas-Undheim theorem. With the Hylleraas-Undheim theorem it is
clear that all approximate eigenvalues obtained by diagonalizing OH in a subspace
can only become smaller (or stay the same) when the subspace is enlarged. To see
this just regard the enlarged subspace as the Hilbert space and apply the Hylleraas-
Undheim theorem (1.282) to the eigenstates in the smaller subspace. An elegant
three-line proof of the Hylleraas-Undheim theorem is contained in [New82], p. 326.

The Hylleraas-Undheim theorem can also be useful in situations more general
than diagonalizing in a subspace. Assume for example, that varying EŒ � in a set of
parametrized model states which don’t form a closed subspace yields two (or more)
stationary points, an absolute minimum at j 1i, say, and a local minimum at j 2i.
In general we don’t know whether EŒ 2� is larger or smaller than the exact energy
of the first excited state, and furthermore, j 1i and j 2i need not be orthogonal. On
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the other hand, it is usually comparatively simple to calculate the 2 � 2 matrices
hi;j D h ij OHj ji and ni;j D h ij ji and to solve the equations (1.277), (1.279).
This corresponds to post-diagonalization of the Hamiltonian in the two-dimensional
subspace spanned by j 1i and j 2i. It yields an improved (lower) approximation "1
for the ground state energy and a second energy "2, which may lie a little above
EŒ 2�, but which we definitely know to be an upper bound for the exact energy of
the first excited state.

Further improvements can be achieved by diagonalizing two (or more) states
according to (1.277), (1.279) for different sets of values of the model parameters.
Each diagonalization leads to a set "1 � "2 � : : : of energies and the best
approximation for the ground state is the (diagonalized) wave function with the
lowest value of "1. The best approximation for the second (the first excited)
state is the wave function with the lowest value of "2, which may occur for a
different set of values of the model parameters, etc. In this method of variation
after diagonalization the resulting approximate eigenstates need not be orthogonal,
because they emerge from different diagonalizations. The corresponding energies "i

are however definitely upper bounds for the respective exact energies of the i-th
state, because each "i is the i-th energy in a diagonal set of states (1.281).

1.6.3 Semiclassical Approximation

The relation between classical mechanics and quantum mechanics has interested
rersearchers ever since Schrödinger formulated his wave equation in 1926. The rich
structure observed in the classical dynamics of seemingly simple systems with few
degrees of freedom has made the question of how such classical behaviour affects
the corresponding quantum dynamics a central theme of theoretical physics in the
last several years (see Sect. 5.3); the study of “simple” atoms plays an important role
in this context [FE97, BB97, CK97, SS98, BR09].

The connection between classical mechanics and quantum mechanics is compar-
atively well understood for one-dimensional systems. One approach which relates
the concept of a wave function to motion on a classical trajectory is the semiclassical
approximation of Wentzel, Kramers and Brillouin, the WKB method.

The WKB approximation can be derived by writing the wave function  .x/
describing the one-dimensional motion of a point particle of mass � in a (real)
potential V.x/ as

 .x/ D exp .ig.x// ; (1.283)

with a complex function g.x/. If we write the time-independent Schrödinger
equation as

 00 C p.x/2

„2  D 0 (1.284)
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and insert (1.283), we obtain

.g0/2 D p2

„2 C i g00 : (1.285)

The function p.x/ appearing in (1.284) and (1.285) is the local classical momentum
corresponding to a classical decomposition of the energy E into a kinetic and a
potential energy:

E D p.x/2

2�
C V.x/ ; p.x/ D p

2�.E � V.x// : (1.286)

In the classically allowed region, E > V.x/, the kinetic energy is positive and we
assume the convention that p.x/ is the positive square root of p2. The local classical
momentum is also a useful concept in the classically forbidden region, E < V.x/;
here the kinetic energy is negative and p.x/ is purely imaginary.

From (1.285) we have

g0.x/ D ˙ p

„

s
1C i

„2
p2

g00 D ˙ p

„ ˙ i
„
2p

g00 C O

"�„
p

�3
.g00/2

#
: (1.287)

Regarding „ as a small quantity gives, to leading order, g0 D ˙p=„. Including the
next term on the right-hand side of (1.287) via g00 D ˙p0=„ yields

g0.x/ D ˙ p

„ C i
p0

2p
) g.x/ D ˙1

„
Z x

p.x0/ dx0 C i

2
ln p.x/ C const: (1.288)

Inserting this expression for g.x/ into (1.283) defines the WKB approximation,

 WKB.x/ / 1p
p.x/

exp

�
˙ i

„
Z x

p.x0/dx0
�
: (1.289)

In the classically allowed region p.x/ is real and so is the action integral

S D
Z x

p.x0/ dx0 ; (1.290)

and  WKB.x/ is an oscillating function characterized by the local de Broglie wave
length


.x/ D 2�„
p.x/

: (1.291)



66 1 Review of Quantum Mechanics

The WKB wave function (1.289) depends on the lower limit for the action
integral in the exponent only in the form of an overall constant. The factor exp�

i
„
R x p.x0/dx0 represents a rightward travelling wave with current density (1.160)

equal to the classical velocity p=�, and exp
�� i

„
R x p.x0/dx0 represents a leftward

travelling wave with current density �p=�. The amplitude proportional to p�1=2
in (1.289) ensures that the probability density j WKBj2 is inversely proportional to
the particle’s velocity, so that the current density of the WKB wave is independent
of x, as required by the continuity equation for a stationary state. In the classically
forbidden region where p.x/ is purely imaginary, the exponential in the WKB
expression (1.289) is a monotonically increasing or decreasing function of x.

Semiclassical approximations are based on the assumption that Planck’s constant
is small, meaning that relevant observables with the same physical dimension—e.g.
the action integral (1.290)—should have values which are large compared to „. The
fulfillment or violation of this condition is quite transparent in a system with any
number of degrees of freedom when the potential is homogeneous. A homogeneous
potential of degree d has the property

Vd.�x/ D �dVd.x/ ; (1.292)

where x may stand for any number of coordinates. For the harmonic oscillator (1.80)
we have d D 2, whereas d D �1 for the Coulomb potential (1.134). Classical
motion in homogeneous potentials has the property of mechanical similarity [LL58],
i.e. if x.t/ is a valid solution of the equations of motion at energy E, then �x.�1�d=2t/
is a solution at energy E0 D �dE, see Sect. 5.3.4. This rescaling of energy with a
factor � � �d and of the coordinates according to s D �x has the following effect
on the classical action (1.290):

S.�E/ D p
2�

Z
ds
p
�E � Vd.s/ D �

1
2

p
2�

Z
ds
p

E � ��1Vd.s/

D �
1
2

p
2�

Z
ds
p

E � Vd.x/

D �
1
2C 1

d
p
2�

Z
dx
p

E � Vd.x/ D �
1
2C 1

d S.E/ : (1.293)

This means that an increase in the absolute value jEj of the energy, � > 1, results in
an increase of the action S if and only if

1

2
C 1

d
> 0 ; i:e: d > 0 or d < �2 : (1.294)

The semiclassical limit „=S ! 0 is reached in the limit of large energies for
all homogeneous potentials of positive degree, such as all sorts of oscillators,
V / jxjd, d > 0, and also for homogeneous potentials of negative degree, as long as
d < �2. The anticlassical or extreme quantum limit, on the other hand, is defined by
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„=jSj !1 and corresponds to E ! 0 for these systems. In contrast, for nega-
tive degrees of homogeneity in the range �2< d<0, the opposite and perhaps
counterintuitive situation occurs: the limit of vanishing energy E ! 0 defines the
semiclassical limit, whereas jEj ! 1 is the anticlassical, the extreme quantum
limit. All attractive or repulsive Coulomb-type potentials, for which d D �1, fall
into this category. A discussion of the semiclassical and anticlassical limits for more
general potentials containing several homogeneous terms is given in Sect. 5.3.4.

The WKB wave function (1.289) may be a good approximation to an exact
solution of the Schrödinger equation, at least locally, even when the conditions of
the semiclassical limit are not fulfilled for the Schrödinger equation as a whole.
To see this, construct the second derivative of (1.289) and observe that  WKB is a
solution to the following equation:

 00
WKB C p2

„2  WKB C
�

p00

2p
� 3

4

.p0/2

p2

�
 WKB D 0 : (1.295)

The last term on the left-hand side of (1.295) corresponds to the contribution of an
additional potential Vadd. given by

2�

„2 Vadd:.x/ D 3

4

.p0/2

p2
� p00

2p
: (1.296)

Without this term, (1.295) is identical to the Schrödinger equation (1.284). The
condition for validity of the WKB approximation is thus, that the additional
term (1.296) be small compared to the function p2=„2 of the potential term in the
Schrödinger equation,

jQ.x/j 
 1 ; (1.297)

where

Q.x/ D „2
�
3

4

.p0/2

p4
� p00

2p3

�
D 1

16�2

"
2


d2


dx2
�
�

d


dx

�2#
I (1.298)

here 
.x/ is the local de Broglie wave length (1.291),
The condition (1.297) for the validity of the semiclassical WKB approximation

is inherently local, as expressed in the function (1.298). Where jQ.x/j is small,
semiclassical approximations are expected to be accurate. On the other hand, regions
in coordinate space where Q.x/ is significantly non-vanishing are expected to show
manifestly nonclassical, quantum mechanical effects. This justifies calling Q.x/ the
quantality function.
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An obvious problem for the WKB wave function (1.289) occurs at a classical
turning point xt, where E D V.xt/ and p.xt/ vanishes; Q.x/ diverges and  WKB.x/
becomes singular at xt. If the turning point is isolated, the classically forbidden
region extends indefinitely, there is no tunnelling and the wave function decays
to zero on the classically forbidden side of the turning point, whereas a wave
approaching the turning point on the classically allowed side is totally reflected.
Under favourable conditions, the WKB approximation may be accurate away
from xt on one or both sides of the turning point. On the classically allowed side

 
.�/
WKB.x/ /
1p
p.x/

�
exp

�
� i

„
ˇ̌
ˇ̌Z x

xt

p.x0/dx0
ˇ̌
ˇ̌
�

C e�i� exp

�
i

„
ˇ̌
ˇ̌Z x

xt

p.x0/dx0
ˇ̌
ˇ̌
��

/ 1p
p.x/

cos

�
1

„
ˇ̌
ˇ̌Z x

xt

p.x0/dx0
ˇ̌
ˇ̌� �

2

�
; (1.299)

and on the forbidden side  WKB.x/ / exp
h
� 1

„
ˇ̌
ˇR x

xt
p.x0/dx0

ˇ̌
ˇ
i
=
pjp.x/j. Here we

have chosen the classical turning point xt, which is a natural point of reference,
as the lower limit for the action integrals. The second-last line in (1.299) shows
that � is the phase loss in the WKB wave due to reflection at the classical turning
point xt—the reflection phase [FT96, FT04].

The WKB wave function (and the exact wave function) can be chosen to be real
when the potential is real. The decaying WKB wave function on the classically
forbidden side is uniquely defined to within an overall constant, but the ratio of
the amplitudes on both sides and the phase � in the oscillating wave (1.299) on
the allowed side are not fixed a priori, they are determined by matching the WKB
waves on both sides of the turning point according to the connection formula,

Npjp.x/j e� 1
„
jR x

xt p.x0/dx0j ! 2pjp.x/j cos

�
1

„
ˇ̌
ˇ̌Z x

xt

p.x0/dx0
ˇ̌
ˇ̌� �

2

�
: (1.300)

This form of the connection formula, i.e. with the absolute values of the action
integrals in the arguments of the exponential and cosine functions, does not depend
on whether the classically allowed side is to the left or to the right of the turning
point xt.

The derivation and interpretation of the connection formula (1.300) is discussed
at great length in many texts on semiclassical theory [FF65, BM72, FF96, FT04].
If the WKB approximation becomes sufficiently accurate away from the turning
points, then an unambiguous determination of � and N can be achieved by matching
the WKB wave functions to the exact solution of the Schrödinger equation. If the
potential is approximately linear in a region which surrounds the classical turning
point and is large enough to accommodate many de Broglie wave lengths on the
allowed side and many times the penetration depth on the forbidden side, then the
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exact wave function is an Airy function (Appendix A.4) and the amplitude N and
reflection phase � in (1.300) are given by,

N D 1 ; � D �

2
; (1.301)

see e.g. [BM72]. This is the general result of the semiclassical or short-wave limit
and is the basis of conventional WKB applications involving a classical turning
point. The standard choice (1.301) is, in general, far too restrictive and not related
to whether or not the WKB approximation is accurate away from the turning point.
Allowing more accurate values for N and � in (1.300) greatly widens the range
of applicability of WKB wave functions. For example for a particle reflected by
an infinite steep wall the reflection coefficient is �1 and the reflection phase is
� rather than �=2. This result is typical of the long wave limit, where the wave
length on the classically allowed side of the turning point is large compared with
the penetration depth of the wave function on the classically forbidden side. In more
general situations it is often appropriate to use other values of the reflection phase.
Regardless of whether or not the WKB approximation ever becomes accurate on
the classically forbidden side, inserting the correct reflection phase � on the right-
hand side of the connection formula (1.300) is the key to obtaining a WKB wave
function which is an accurate approximation to the exact solution of the Schrödinger
equation on the classically allowed side of the classical turning point [FT96, FT04].
(See Problem 1.7.)

A particularly important case is that of a potential proportional to the inverse
square of the coordinate,

V.x/ D „2
2�

�

x2
; � � 0 ; x > 0 ; (1.302)

which is just the centrifugal potential for angular momentum quantum number l
when x is the radial coordinate and � D l.l C 1/ [cf. (1.76)]. For homogeneous
potentials of degree d D �2, classical action integrals are invariant under the scal-
ing (1.293), so changing the energy does not bring us closer to or further from the
semiclassical limit. As for all homogeneous potentials of negative degree, however,
large absolute values of the potential strength correspond to the semiclassical and
small values to the anticlassical limit of the Schrödinger equation, see (5.155)–
(5.157) in Sect. 5.3.4.

The Schrödinger equation with the potential (1.302) alone can be solved exactly,
and the solution is  .x/ / p

kxJ�.kx/, k D p
2�E=„2, where J� is the ordinary

Bessel function of index � D p
� C 1=4. The asymptotic behaviour of  follows

from (A.37) in Appendix A.4,

 .x/ � cos



kx � �
�

2
� �

4

�
: (1.303)
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The classical turning point xt is given by kxt D p
� , and the action integral

in the WKB wave function can be calculated analytically. The asymptotic form
of the WKB wave function on the classically allowed side of the turning point,
cf. (1.300), is

 WKB.x/ � cos

�
kx � p

�
�

2
� �

2

�
; (1.304)

where � is the reflection phase.
When the conventional choice (1.301) is used for the reflection phase, � D

�=2, the asymptotic phase of the WKB wave function (1.304) disagrees with the
asymptotic phase of the exact wave function (1.303). This discrepancy can be
repaired by the so-called Langer modification, in which the potential for the WKB
calculation is manipulated by the replacement

� ! � C 1

4
corresponding to l.l C 1/ !

�
l C 1

2

�2
: (1.305)

An alternative procedure for reconciling the phases in (1.303) and (1.304) is to leave
the potential intact and to insert as reflection phase

� D �

2
C �

 r
� C 1

4
� p

�

!
: (1.306)

The reflection phase (1.306) for the centrifugal potential approaches the value �=2
in the semiclassical limit � ! 1 and the value � in the anticlassical limit � ! 0.
This is in fact the right value for s-waves .l D � D 0/, where the node required in
the wave function at x D 0 has the same effect as reflection by an infinite steep wall.

Although the Langer modification helps to improve the results of the WKB
approximation when the reflection phase is kept fixed at �=2, leaving the potential
intact and inserting the correct reflection phase (1.306) leads to wave functions
which approach the exact solution of the Schrödinger equation much more rapidly
in the classically allowed region [FT96].

Now consider a particle bound with total energy E in a potential V.x/ as
illustrated in Fig. 1.11. The exact wave function is a solution of the Schrödinger
equation (1.284); in the classically allowed region between the two classical turning
points a and b the “kinetic energy” proportional to p2 is positive, and the sign of
the second derivative  00 of the wave function is opposite to the sign of  , i.e. the
wave function oscillates and is always curved towards the x-axis. In the classically
forbidden regions p2 is negative, 00 and have the same sign, so the wave function
is curved away from the x-axis; if the entire regions to the right of b and to the left
of a are classically forbidden, the wave function decays to zero in the classically
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Fig. 1.11 Exact and WKB wave functions for the bound motion of a particle in a real potential
V.x/. The thin solid line shows the exact solution of the Schrödinger equation (1.284); the dashed
line shows the WKB wave function (1.289), which is singular due to the factor p.x/�1=2 at the
classical turning points a and b where p D 0

forbidden regions. During one whole period of oscillation the WKB wave function
gains the phase

1

„
I

p.x0/dx0 defD 1

„S.E/ ; (1.307)

and it loses the phases �a and �b due to reflection at the classical turning points a
and b. The integrated action S.E/ in (1.307) is just the area enclosed by the classical
trajectory in the two-dimensional phase space spanned by the coordinate x and the
momentum p. A quantization rule for stationary bound states can be obtained by
requiring the net phase gain during one period of oscillation, viz. 1„ S.E/ � �a � �b,
to be an integer multiple of 2� in order that the wave function be a unique function
of the coordinate. This leads to,

1

2
S.E/ D

Z b

a
p.x/dx D �„



n C ��

4

�
; n D 0; 1; 2; : : : : (1.308)

In (1.308) �� is the Maslov index, which is equal to the total phase loss measured
in units of �=2,

�� D �a C �b

�=2
: (1.309)

In conventional semiclassical theory, the reflection phases �a and �b are taken to be
�=2 according to (1.301), so �� D 2 and we obtain the most widely used form
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of the Bohr-Sommerfeld quantization rule corresponding to conventional WKB
quantization,

1

2
S.E/ D

Z b

a
p.x/dx D �„

�
n C 1

2

�
; n D 0; 1; 2; : : : : (1.310)

As discussed above, this is only justified when the potential is sufficiently well
approximated by a linear function near the classical turning points, which is
generally the case near the semiclassical limit. Away from the semiclassical limit
the reflection phases can be noninteger multiples of �=2; with the corresponding
noninteger Maslov index (1.309), (1.308) represents a modified quantization rule
which can yield accurate results beyond the restrictive assumptions of the semiclas-
sical limit [FT96, FT04].

In order to demonstrate the power of the more general modified quantiza-
tion rule, we consider a free particle of mass � trapped within a sphere of
radius R, the “spherical billiard”. For given angular momentum quantum number
l D 0; 1; 2; : : : the radial wave function �l.r/ obeys the free .V D 0/ radial
Schrödinger equation (1.75), so the effective potential is just the centrifugal
potential, i.e. (1.302) with � D l.l C 1/. The radial wave functions at energy
E D „2k2=.2�/ are proportional to kr jl.kr/ as in (1.115), and the eigenvalues are
given by those wave numbers kn;l for which the radial wave function vanishes at the
confining distance r D R, i.e. where the spherical Bessel function jl.kn;lR/ vanishes,

En;l D „2k2n;l
2�

D „2
2�R2

.xn;l/
2 ; jl.xn;l/ D 0 ; n D 0; 1; 2; : : : : (1.311)

Here xn;l stands for the positive zeros of the spherical Bessel funtion jl.x/. For
l D 0 we have jl.x/ D sin x=x and xn;l D .n C 1/� . For l > 0 the zeros
are increasingly affected by the centrifugal potential (1.302). When applying the
quantization rule (1.308), the reflection phase at the outer turning point r D R has
to be taken as � for the hard-wall reflection. In conventional WKB quantization, the
centrifugal potential (1.302) is replaced by the Langer-modified potential (1.305)
and the reflection phase at the inner turning point is taken to be �=2 according
to (1.301), so the Maslov index (1.309) is �� D 3. In the modified quantization
rule, the potential is left intact, but the condition (1.301) is relaxed and the reflection
phase at the inner turning point is as given by (1.306), so the Maslov index is,

�� D 3C 2

�
l C 1

2
�p

l.l C 1/

�
: (1.312)

This gives �� D 4 for l D 0, �� D 3:17157 for l D 1 and �� D 3:10102 for l D 2.
The energy eigenvalues for the spherical billiard are given in units of E0 D

„2=.2�R2/ in Table 1.5 for l D 0 to 2 and n D 0 to 4. Next to the exact results,
En;l=E0 D .xn;l/

2, the table shows the results obtained with conventional WKB
quantization (superscript “WKB”) and, for l D 1 and l D 2, with the modified
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Table 1.5 Energies �n;l D En;l=E0 in units of E0 D „2=.2�R2/ for the spherical billiard. The
superscript “exact” labels the exact quantum mechanical eigenvalues (1.311), �n;l D .xn;l/

2. The
superscript “WKB” labels the eigenvalues obtained with conventional WKB quantization involving
the Langer modification (1.305) of the potential and a Maslov index�� D 3. The superscript “mqr”
labels the eigenvalues obtained with the modified quantization rule based on the true centrifugal
potential and the Maslov index �� D 3:17157 for l D 1 and �� D 3:10102 for l D 2 according
to (1.312).

n �exact
n;0 �WKB

n;0 �exact
n;1 �WKB

n;1 �
mqr
n;1 �exact

n;2 �WKB
n;2 �

mqr
n;2

0 �2 9:6174 20:1907 19:8697 20:1390 33:2175 32:8153 33:1018

1 .2�/2 39:2279 59:6795 59:4064 59:6625 82:7192 82:4160 82:6791

2 .3�/2 88:5762 118:8999 118:6384 118:8914 151:8549 151:5770 151:8340

3 .4�/2 157:6635 197:8578 197:6009 197:8527 240:7029 240:4357 240:6900

4 .5�/2 246:4900 296:5544 296:2998 296:5510 349:2801 349:0183 349:2713

Fig. 1.12 Errors jEexact
n;l � En;lj (in units of E0 D „2=.2�R2/) of the energy eigenvalues for

the spherical billiard for angular momentum quantum number l D 1. The triangles show the
errors of the eigenvalues obtained with conventional WKB quantization involving the Langer
modification (1.305) and a Maslov index �� D 3. The squares show the errors obtained with
the modified quantization rule based on the true centrifugal potential and the Maslov index
�� D 3:17157 according to (1.312)

quantization rule using the Maslov index (1.312) (superscript “mqr”). The energies
predicted by conventional WKB quantization including the Langer modification of
the potential are consistently too low by an almost n- and l-independent term near
0.25 times E0. The results obtained with the modified quantization rule, meaning
there is no Langer modification and the Maslov index is given by (1.312), are
obviously exact for l D 0. For l D 1 and l D 2 they are much closer to the
exact results than the predictions of conventional WKB quantization, and the error
decreases rapidly with n as illustrated in Figs. 1.12 and 1.13.
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Fig. 1.13 Errors jEexact
n;l � En;lj (in units of E0 D „2=.2�R2// of the energy eigenvalues for

the spherical billiard for angular momentum quantum number l D 2. The triangles show the
errors of the eigenvalues obtained with conventional WKB quantization involving the Langer
modification (1.305) and a Maslov index �� D 3. The squares show the errors obtained with
the modified quantization rule based on the true centrifugal potential and the Maslov index
�� D 3:10102 according to (1.312)

The results in Table 1.5 and Figs. 1.12 and 1.13 demonstrate how the accuracy of
the conventional WKB approximation can be dramatically improved by relaxing the
restrictions of the standard interpretation (1.301) of the connection formula (1.300)
and allowing a more appropriate choice for the reflection phase. An extensive review
on how such modifications of conventional WKB theory can yield accurate and even
asymptotically exact results far from the semiclassical limit is given in [FT04].

1.6.4 Inverse Power-Law Potentials

Many physically interesting problems are described by a one-dimensional
Schrödinger equation with a potential V.r/ which over a large range of distances r
follows a simple inverse power law,

V.˙/
˛ .r/ D ˙C˛

r˛
I r > 0 ; ˛ > 0 ; C˛ > 0 : (1.313)

For (attractive or repulsive) Coulomb potentials ˛ D 1, for the centrifugal
potential (1.302) ˛ D 2. A further example for inverse-square potentials, attractive
or repulsive, is the interaction of an electric charge with an electric dipole. Examples
for ˛ D 3 and 4 are the van der Waals interactions of polarizable atoms and
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a conducting or dielectric surface, neglecting or including relativistic retardation
effects, see Sect. 5.7.1, and the corresponding interactions of atoms (or molecules)
with each other are examples for ˛ D 6 and 7. For ˛ � 2, attractive potentials cannot
have the form (1.313) all the way down to r D 0, because the energy spectrum
would then be unbounded from below, so the actual potential must change to a less
strongly attractive or even repulsive form at short distances. However, the regime
of short distances where these deviations are appreciable may be quite small, so it
is worthwhile to study not only the repulsive potentials V.C/

˛ but also the attractive
potentials V.�/

˛ in some detail, even for ˛ � 2.
With the potential energy given by (1.313), the local classical momentum

at threshold, E D 0, is given by p.r/ D r�˛=2p˙2�C˛ and the quantality
function (1.298) is easy to calculate,

Q.r/
ED0D ˙ „2

32�C˛
˛.˛ � 4/r˛�2 : (1.314)

For large distances r the quantality function diverges when ˛ > 2, and it vanishes
when ˛ < 2. For inverse power-law potentials, the classical scaling discussed in
Sect. 1.6.3, (1.293), leads to large distances near threshold, i.e. � ! 0 corresponds
to � ! 1 when d < 0, so this behaviour is consistent with the observation that
E D 0 corresponds to the anticlassical limit for ˛ > 2 and to the semiclassical
limit for ˛ < 2. Inverse-square potentials, ˛ D 2, represent the boundary between
the long-ranged potentials 0 < ˛ < 2 and the shorter-ranged potentials ˛ > 2,
and Q.r/ is constant at threshold in this case. The case ˛ D 4 is special, because
Q.r/ vanishes identically at threshold. For a potential proportional to 1=r4, WKB
wave functions are exact solutions of the Schrödinger equation at energy zero. This
example of a 1=r4 potential at threshold shows, that the criterion (1.297) for the
validity of the WKB approximation is more reliable than the commonly quoted
criterion jd
=drj 
 1.

For r ! 0, Q.r/ diverges for ˛ < 2 and vanishes for ˛ > 2. Even
though the threshold represents the anticlassical, extreme quantum limit of the
Schrödinger equation for ˛ > 2, there nevertheless is a semiclassical regime of
small r values where WKB wave functions are accurate solutions of the Schrödinger
equation, because the condition (1.297) is well fulfilled. The small-r behaviour of
Q.r/ as given by (1.314) also holds for all finite energies E ¤ 0, because the
potential (1.313) diverges for r ! 0 and dominates over the finite energy E for
sufficiently small values of r.

For the repulsive potential V.C/
˛ .r/ and positive energy E D „2k2=.2�/ there is a

classical turning point rt at which the quantality function diverges,

rt D
�

C˛
E

�1=˛
˛¤2D ˇ˛.kˇ˛/

�2=˛ : (1.315)
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Here we have introduced, for ˛ ¤ 2, the potential strength parameter ˇ˛ which has
the physical dimension of a length,

C˛ D „2
2�
.ˇ˛/

˛�2 ; ˇ˛ D
�
2�C˛

„2
�1=.˛�2/

: (1.316)

The length ˇ˛ is a quantum length defining a characteristic scale for the quantum
mechanical properties of the potential(s) (1.313); it has no correspondence in
classical mechanics.

For ˛ > 2, the WKB approximation gives the correct, i.e. the asymptotically
exact, behaviour of the regular solution of the Schrödinger equation in the classically
forbidden region near the origin,

 .r/
r!0/ 1p

p.r/
exp

�
�1„

Z r0

r
jp.r0/jdr0

�

r!0/ r˛=4 exp

"
� 2

˛ � 2

�
ˇ˛

r

�.˛�2/=2#
; (1.317)

where r0 is some fixed point of reference smaller than rt. The lower line in (1.317)
follows from the r dependence of the local classical momentum in the limit r ! 0,

where the energy E is neglible compared to the potential, jp.r/j r!0D p
2�C˛ r�˛=2 D

„.ˇ˛/.˛�2/=2 r�˛=2. For a repulsive inverse-square potential with strength C2 D
�„2=.2�/ (cf. (1.302)), we have jp.r/j r!0D „p

�=r for sufficiently small r and the
WKB approximation as defined in the upper line of (1.317) yields

 WKB.r/
r!0/ r1=2C

p
�
: (1.318)

Note that for the centrifugal potential (1.76), � D l.l C 1/, the result (1.318) does
not agree with the correct quantum mechanical behaviour (1.78), unless we invoke
the Langer modification (1.305),

p
� ! lC1=2. The same holds for the centrifugal

potential plus a further potential less singular than 1=r2 for r ! 0, e.g. the Coulomb
potential, for which the regular quantum mechanical wave function is proportional
to rlC1 for small r, see (A.76) in Appendix A.5. For l D 0, the Langer modification
amounts to adding a fictitious centrifugal potential corresponding to l D 1=2.

The attractive potential V.�/
˛ .r/ may constitute the tail of a realistic potential

well as illustrated in Fig 1.14. For negative energies E D �„2	2=.2�/ < 0 the
outer classical turning point rt in the inverse power-law tail of the potential is given,
similar to (1.315), by

rt D
��C˛

E

�1=˛
˛¤2D ˇ˛.	ˇ˛/

�2=˛ I (1.319)
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Fig. 1.14 Schematic illustration of the potential V.r/ with an attractive inverse power-law
tail, (1.313)

rt diverges to infinity for E ! 0. The inner classical turning point ri, on the other
hand, is either zero or determined by a short-ranged repulsive contribution to the
potential; ri depends only weakly on the energy E and converges to a well defined
value for E ! 0.

The integrated action in the quantization rule (1.308) is given by

1

2
S.E/ D

Z rt.E/

ri

p.r/ dr

D
Z r0

ri

p.r/ dr C
Z rt.E/

r0

s
2�

�
C˛
r˛

� jEj
�

dr I (1.320)

here we have introduced an energy-independent distance r0 between ri and rt and
assume that short-ranged deviations from the inverse-power form of the potential
are neglible beyond r0. The integral

R r0
ri

p.r/dr converges to a constant for E ! 0.
The second integral on the right-hand side of the lower line of (1.320) remains
finite in the limit E ! 0, if the exponent ˛ is larger than two. In this case the
action (1.320) remains bounded from above as we approach the threshold E D 0,
and the quantization rule (1.308) predicts at most a finite number of bound states. If
˛ < 2 however, the second integral on the right-hand side of (1.320) diverges in the
limit E ! 0 and the integrated action S grows beyond all bounds; in this case the
quantization rule (1.308) predicts infinitely many bound states. These statements are
independent of the shape of the potential at small distances r and are not sensitive
to bounded variations in the choice of the Maslov index, so they are quite generally
valid and do not depend on the applicability of semiclassical approximations.

Thus the number of bound states in a potential V.r/ depends decisively on
the asymptotic behaviour of the potential. Shorter-ranged potentials, namely those
which vanish more rapidly than 1=r2, can support at most a finite number of
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bound states. Very-long-ranged potentials, namely those behaving asymptotically

as V.r/
r!1! �C˛=r˛ with 0 < ˛ < 2, always support an infinite number of bound

states. This class of attractive very-long-ranged potentials includes, of course, the
attractive Coulomb potential discussed in Sect. 1.3.3. The fact that the threshold
E D 0 represents the semiclassical limit of the Schrödinger equation for such
very-long-ranged potential tails is consistent with the notion that the limit of large
quantum numbers, n ! 1, corresponds to the semiclassical limit. For shorter-
ranged potentials falling off faster than �1=r2, the number of bound states may
be large if the potential well is deep enough, but it is always finite, the limit
n ! 1 does not exist, which is consistent with the observation that the threshold
represents the anticlassical, the extreme quantum limit for shorter-ranged potential
tails. A detailed comparison of very-long-ranged and shorter-ranged potentials is
given further on in Sect. 3.1.

Potentials asymptotically proportional to 1=r2 represent a special case. A
potential behaving asymptotically as

V.r/
r!1! „2

2�

�

r2
; � < 0 ; (1.321)

supports an infinite number of bound states if and only if � < �1=4 (see [MF53]
p. 1665 and Sect. 3.1.5). Note that the integrated action (1.320) is infinite in the limit
E ! 0 for an attractive 1=r2-potential. The condition for supporting infinitely many
bound states in a 1=r2 potential coincides with the requirement that the potential
still be attractive after being subjected to the Langer modification (1.305). (See
Problem 1.9.)

The qualitatively different properties of long-ranged and short-ranged potentials
are also manifest at positive energies, E D „2k2=.2�/ > 0. Figure 1.15 shows
the quantality function (1.298) for attractive inverse power-law potentials (1.313)
with ˛ D 1, 2 and 3 at a given positive energy with scales chosen such that
E D jV.�/

˛ .r D 1/j D 1 in all cases. For large distances, the energy term
in the Schrödinger equation eventually dominates over the potential term, so
p.r/

r!1� const ¤ 0 and the quantality function goes to zero. For r ! 0, the
quantality function is determined by the potential term and depends strongly on
whether ˛ < 2, ˛ D 2 or ˛ > 2. As expected from (1.314), Q.r/ diverges in the
limit r ! 0 for ˛ D 1 and approaches a constant finite value for ˛ D 2. For ˛ D 3,
on the other hand, as for any ˛ > 2, Q.r/ ! 0 for r ! 0.

For attractive inverse power-law potentials (1.313) with ˛ > 2 there is a
semiclassical regime of small r values where WKB wave functions are accurate
approximations to the exact solutions of the Schrödinger equation, even though
the potential is a rapidly varying function of r. For sufficiently deep potentials of
the type shown in Fig 1.14, this inner semiclassical regime may reach well beyond
the domain of short distances where the potential neccessarily deviates from the
inverse-power form. The quantum mechanical regime of the potential tail, where
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Fig. 1.15 Quantality function (1.298) for attractive inverse power-law potentials (1.313) with ˛ D
1; 2 and 3. Parameters were chosen as C˛ D 1, E D 1 and „2=.2�/ D 1

the quantality function is significantly non-vanishing, is then localized between the
semiclassical regimes at small and large r values.

The extent and location of the quantal region of an attractive potential tail is
well understood for inverse power-law potentials (1.313). Note that, as for all
homogeneous potentials, the properties of the Schrödinger equation do not depend
on energy and potential strength independently. If we rewrite the Schrödinger
equation at energy E D „2k2=.2�/ in terms of the dimensionless variable x D r=ˇ˛ ,
with the quantum length ˇ˛ given by (1.316),

�
d2

dx2
C .kˇ˛/

2 C 1

x˛

�
 .x/ D 0 ; (1.322)

we see that the “scaled energy” .kˇ˛/2 is the one essential parameter affecting the
quantum mechanical properties of the system. Figure 1.16 shows the quantality
function (1.298) for the attractive inverse-cube potential, ˛ D 3, for three values
of the scaled energy, namely 0.1, 1 and 10. The lower panel of the figure shows the
scaled potential, � D V.�/

3 .r/ � 2�.ˇ3/
2=„2 D �.ˇ3=r/3. The quantal region of

coordinate space shrinks and moves to smaller distances as the energy increases.
For attractive inverse power-law potentials with ˛ > 2 and positive energies

E D „2k2=.2�/ > 0, it can be shown that the maximum of jQ.r/j lies close to the
characteristic distance rE, where the absolute value of the potential equals the total
energy,

jV.�/
˛ .rE/j D E I (1.323)
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Fig. 1.16 Quantality function (1.298) for an attractive inverse-cube potential, (1.313) with ˛ D 3,
for three values of the scaled energy .kˇ3/2. The lower panel shows, for comparison, the scaled
potential � D V.�/

3 .r/ � 2�.ˇ3/
2=„2 D �.ˇ3=r/3. Note that the maximum of jQj is close to

the characteristic distance at which the absolute value of the (scaled) potential is equal to the total
(scaled) energy

rE is the classical turning point for the inverted potential �V.�/
˛ .r/ D V.C/

˛ .r/ as
given by (1.315),

rE D
�

C˛
E

�1=˛
D ˇ˛.kˇ˛/

�2=˛ : (1.324)

Indeed, the quantality function can be calculated analytically, and the maximum of
jQ.r/j occurs at

rmax D c˛rE ; (1.325)

where c3 D 0:895, c4 D 1 and 1 < c˛ < 1:06 for larger powers ˛, see Problem 1.10.
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1.7 Angular Momentum and Spin

An angular momentum operator OJ is a vector of operators OJx; OJy; OJz obeying the
following commutation relations (see (1.56)):

ŒOJx; OJy� D i„OJz ; ŒOJy; OJz� D i„OJx ; ŒOJz; OJx� D i„OJy : (1.326)

These can be summarized in the suggestive if somewhat unorthodox equation

OJ � OJ D i„OJ : (1.327)

From the commutation relations (1.326) it already follows, that the eigenvalues of
OJ2 D OJ2x COJ2y COJ2z have the form j. jC1/„2 and that to each value of j there are exactly

2j C 1 different eigenvalues of OJz, namely m„ with m D �j;�j C 1; : : : ; j � 1; j.
The number 2j C 1 must be a positive integer so that j itself must be integer or
half-integer. For orbital angular momenta, which can be written as operators in the
spatial varibles (see (1.66)), the requirement of uniqueness of the wave function in
coordinate space restricts the angular momentum quantum numbers to integers. This
restriction does not hold for spin angular momenta for which there are no classical
counterparts in coordinate space.

1.7.1 Addition of Angular Momenta

Let OJ1 and OJ2 be two commuting angular momenta (ŒOJ1x; OJ2x� D ŒOj1x; Oj2y� D 0, etc.)
with angular momentum quantum numbers j1;m1 and j2;m2 respectively. Since OJ1
and OJ2 obey the commutation relations (1.326), the sum

OJ D OJ1 C OJ2 (1.328)

also obeys these relations and is also an angular momentum. OJ2 has the eigenvalues
j. j C 1/„2 and OJz has the eigenvalues m„.

The squares of the angular momenta commute,

ŒOJ2; OJ21� D ŒOJ2; OJ22� D 0 ; (1.329)

and the components of the summed angular momentum OJ commute with OJ21 and OJ22,
e.g. for OJz D OJ1z C OJ2z:

ŒOJz; OJ21� D ŒOJz; OJ22� D 0 : (1.330)
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However, the components of OJ1 and OJ2 do not commute with the square of the
summed angular momentum,

OJ2 D OJ21 C OJ22 C 2 OJ1 � OJ2 ; (1.331)

because e.g. OJ1z doesn’t commute the terms OJ1x OJ2x and OJ1y OJ2y in the scalar product
OJ1 � OJ2.

Four mutually commuting operators are already sufficient to completely classify
the angular momentum eigenstates, and these four operators can be chosen in dif-

ferent ways. In the uncoupled representation the four operators are OJ21; OJ1z; OJ22; OJ2z.
The corresponding eigenstates jj1;m1; j2;m2i are also eigenstates of OJz D OJ1z C OJ2z

with the eigenvalues m„ .m D m1 C m2/, but they are in general not eigenstates of
OJ2. In the coupled representation the basis states jj;m; j1; j2i are eigenstates of the

four operators OJ2; OJz; OJ21 and OJ22. They are in general not eigenstates of OJ1z and OJ2z.
For given values of j1 and j2, the basis states in the coupled representation can of

course be expressed as linear combinations of the uncoupled basis states:

jj;m; j1; j2i D
X

m1;m2

hj1;m1; j2;m2jj;mijj1;m1; j2;m2i : (1.332)

Vice-versa we can express the uncoupled states as linear combinations of the
coupled states:

jj1;m1; j2;m2i D
X
j;m

hj;mjj1;m1; j2;m2ijj;m; j1; j2i : (1.333)

The coefficients appearing in (1.332), (1.333) are the Clebsch-Gordan coefficients
[Edm60],

hj1;m1; j2;m2jj;mi D hj;mjj1;m1; j2;m2i�
; (1.334)

which are real if the phases of the basis states are appropriately chosen.
Obviously the Clebsch-Gordan coefficient hj1;m1; j2;m2jj;mi is only non-zero if

m1 C m2 D m : (1.335)

A further selection rule is the triangle condition which determines the minimal and
maximal summed angular momentum quantum number j for given values of j1 and j2

jj1 � j2j � j � j1 C j2 : (1.336)

For fixed j1 and j2, each possible summed angular momentum quantum number j
encompasses exactly 2j C 1 eigenstates corresponding to the different eigenvalues
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m„ of OJz. Since coupling cannot affect the dimension of the space spanned by the
basis states, the total number of coupled states for all possible values of j (at fixed
values of j1 and j2) is equal to the number .2j1 C 1/ � .2j2 C 1/ of states in the
uncoupled basis:

j1Cj2X
jDjj1�j2j

.2j C 1/ D .2j1 C 1/.2j2 C 1/ : (1.337)

1.7.2 Spin

It is known from experimental investigations that an electron has an internal angular
momentum called spin, and that the total angular momentum OJ of an electron ist the
sum of its orbital angular momentum OL and its spin OS:

OJ D OL C OS : (1.338)

The electron’s spin has no classical counterpart and cannot be related to ordinary

spatial coordinates. All physical states are eigenstates of OS2 with eigenvalue
s.s C 1/„2, and the spin quantum number s always has the same value s D 1=2.
Any component, e.g. OSz of OS has two eigenvalues ms„, namely ms D C1=2 and
ms D �1=2.

The wave function of an electron thus depends not only on e.g. the spatial
coordinate r, but also on the spin variable ms:

 D  .r;ms/ : (1.339)

Since the discrete variable ms can only take on two values, it is convenient to write
the wave function (1.339) as a pair of ordinary functions of r corresponding to the
two values ms D 1=2 and ms D �1=2:

 D
�
 C.r/
 �.r/

�
D
�
 .r;ms D C 1

2
/

 .r;ms D � 1
2
/

�
: (1.340)

These two-component entities are called spinors in order to distinguish them from
ordinary vectors in coordinate space. If we introduce the two basis spinors

�C D
�
1

0

�
; �� D

�
0

1

�
; (1.341)
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we can write the general one-electron wave function (1.340) as

 D  C.r/�C C  �.r/�� : (1.342)

The scalar product of two spinors of the form (1.340) or (1.342) is

h j�i D
Z

d3r

C 1
2X

msD� 1
2

 �.r;ms/�.r;ms/ D h Cj�Ci C h �j��i : (1.343)

States  normalized to unity fulfill the condition

h Cj Ci C h �j �i D
Z

d3r.j C.r/j2 C j �.r/j2/ D 1 ; (1.344)

and j C.r/j2 is e.g. the probability density for finding the electron at the position r
and in the spin state �C.

Linear operators can not only act on the component functions  C;  �, they can
also mix up the components in a spinor. The most general linear operators in spin
space are 2 � 2 matrices of complex numbers. These can be expressed as linear
combinations of four basis matrices; the most commonly used basis consists of the
unit matrix and the three Pauli spin matrices:

O�x D
�
0 1

1 0

�
; O�y D

�
0 �i
i 0

�
; O�z D

�
1 0

0 �1
�
: (1.345)

Thus the most general linear operator in the Hilbert space of one electron states has
the form

OO D OO0 C OO1 O�x C OO2 O�y C OO3 O�z ; (1.346)

where OOi are spin-independent operators such as Op; Or and functions thereof.
The spinors �C and �� of (1.341) are eigenstates of O�z with eigenvalues C1 and

�1 respectively. Since they are also supposed to be eigenstates of the z-component
OSz of the spin with eigenvalues C.1=2/„ and �.1=2/„ respectively, the relation
between OSz and O�z must simply be:

OSz D 1

2
„ O�z : (1.347)

Together with the other two components,

OSx D 1

2
„ O�x ; OSy D 1

2
„ O�y ; (1.348)
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we have the spin operator OS as

OS D 1

2
„ O� : (1.349)

From the commutation relations of the Pauli spin matrices,

O�x O�y D i O�z D �O�y O�x ; etc: ; (1.350)

it immediately follows, that the spin components defined by (1.347)–(1.349) obey
the commutation relations (1.326) characteristic of angular momentum operators:

ŒOSx; OSy� D i„OSz ; ŒOSy; OSz� D i„OSx ; ŒOSz; OSx� D i„OSy : (1.351)

Furthermore, the properties

O�2x D O�2y D O�2z D 1 (1.352)

imply that

OS2 D OS2x C OS2y C OS2z D 3

4
„2 ; (1.353)

which of course just means that all states are eigenstates of OS2 with eigenvalue
s.s C 1/„2 corresponding to s D 1=2.

The spin OS is a vector operator consisting of three components, just like the
position Or and the momentum Op. The components of OS are however, in contrast
to position and momentum, not ordinary operators acting on functions, but 2 � 2

matrices which linearly transform the spinor components. The spinor components
must not be confused with the components of ordinary vectors in coordinate space.

1.7.3 Spin-Orbit Coupling

In addition to the usual kinetic and potential energy terms, the Hamiltonian for an
electron in a radially symmetric potential V.r/ contains a further term which couples
the spin and spatial degrees of freedom:

OH D � „2
2�
�C V.r/C VLS.r/ OL� OS : (1.354)

The spin-orbit coupling term can be physically understood as the interaction energy
of two magnetic dipoles associated with the orbital angular momentum OL and the
spin OS respectively. More precisely the spin-orbit coupling appears as an additional
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contribution to the conventional Hamiltonian (1.53) in the non-relativistic limit of
the relativistic Dirac equation (see Sect. 2.1.4, (2.45)). The coupling function VLS

derived in this way is

VLS.r/ D 1

2�2c2
1

r

dV

dr
: (1.355)

The Hamiltonian (1.354) no longer commutes with the components of the orbital
angular momentum OL, but it commutes with the components of the total angular
momentum OJ D OL C OS; because we can express the spin-orbit coupling operator in
terms of the squares of the angular momenta

OL� OS D 1

2
.OJ2 � OL2 � OS2/ ; (1.356)

and the components of the summed angular momentum commute with all squares
(see (1.330)). Hence it is appropriate to couple the eigenstates of orbital angular
momentum and spin to eigenstates of the total angular momentum OJ. This is done
with the Clebsch-Gordan coefficients as a special case of (1.332):

jj;m; l; si D
X
ml;ms

hl;ml; s;msj j;mi Yl;ml.�; �/�ms : (1.357)

The quantum number s in (1.357) is of course always 1/2. Since l and ml are always
integers, j and m must always be half integers (meaning odd multiples of 1/2).
Because of the triangle condition (1.336) there are exactly two possible values of j
for each value of l larger than zero, namely j D l C 1=2 and j D l � 1=2. For l D 0

there is only one possible value of j, namely +1/2.
The coupled eigenstates jj;m; l; si are called generalized spherical harmon-

ics and are written as Yj;m;l. They are two-component spinors, and it is clear
from (1.341) and the selection rule m D ml C ms (see (1.335)) that the upper
component corresponding to a contribution with ms D C1=2 contains a spherical
harmonic with ml D m � 1=2, while the lower component contains a spherical
harmonic with ml D m C 1=2. The generalized spherical harmonics are thus
essentially two-component spinors of spherical harmonics. Inserting the known
Clebsch-Gordan coefficients [New82, Tin64] yields the explicit expressions

Yj;m;l D 1p
2j

 p
j C m Yl;m� 1

2
.�; �/p

j � m Yl;mC 1
2
.�; �/

!
; j D l C 1

2
;

Yj;m;l D 1p
2j C 2

 
�p

j C 1 � m Yl;m� 1
2
.�; �/p

j C 1C m Yl;mC 1
2
.�; �/

!
; j D l � 1

2
: (1.358)

The time-independent Schrödinger equation OH D E with the Hamilto-
nian (1.354) corresponds to two coupled partial differential equations for the two
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components  C.r/ and  �.r/ of the spinor wave function (1.340). A substantial
simplification can be achieved if we extend the ansatz (1.74) for separating radial
and angular variables to the present case of spinor wave functions using the
generalized spherical harmonics:

 .r;ms/ D �j;l.r/

r
Yj;m;l : (1.359)

In addition to the relation (1.70) (with (1.58)) we can now use the fact that the
generalized spherical harmonics Yj;m;l are eigenfunctions of the spin-orbit coupling
operator (1.356),

OL� OSYj;m;l D „2
2
Œj. j C 1/� l.l C 1/� s.s C 1/�Yj;m;l ; (1.360)

where s.s C 1/ D 3=4. For the two possible cases j D l ˙ 1=2 we have

OL� OSYj;m;l D „2
2

�
lYj;m;l for j D l C 1=2 ;

�.l C 1/Yj;m;l for j D l � 1=2 :
(1.361)

Thus the Schrödinger equation can be reduced to a radial Schrödinger equation

�
� „2
2�

d2

dr2
C l.l C 1/„2

2�r2
C V.r/C „2

2
F. j; l/VLS.r/

�
�j;l.r/ D E�j;l.r/ ;

(1.362)

and the factor F. j; l/ is l or �.l C 1/ for j D l C 1=2 and j D l � 1=2 respectively.
For a given orbital angular momentum quantum number l, the spin-orbit potentials
for the two possible values of j have opposite sign.

Including the spin variable in the description of an electron in a radially
symmetric potential still allows us to reduce the time-independent Schrödinger
equation to an ordinary differential equation for the radial wave function. The
radial Schrödinger equation now depends not only on the orbital angular momentum
quantum number l, but also on the total angular momentum quantum number j (not,
however, on m).

Problems

1.1 Consider a point particle of mass � in a radially symmetric potential

V.r/ D
� �V0 for r � r0 ;

0 for r > r0 ;
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where V0 is a positive constant considerably larger than „2=.�r20/. Give an approxi-
mate .˙1/ estimate for the number of bound states for l D 0.

1.2

a) Consider the following radial wave function which is normalized to unity:

�.r/ D .
p
�b/�

1
2
2r

b
e�r2=.2b2/ :

Calculate the overlaps (i.e. the scalar products) h�j�n;lD0i with the radial
eigenfunctions (1.82) of the harmonic oscillator with an oscillator width ˇ ¤ b.

b) Consider the following radial wave function which is normalized to unity:

�.r/ D 2b� 1
2

r

b
e�r=b :

Calculate the overlaps h�j�n;lD0i with the radial eigenfunctions (1.139) of the
attractive Coulomb potential with a Bohr radius a ¤ b.

c) Evaluate the first four or five terms of the sum

X
n

jh� j�n;lD0ij2

for the explicit values b D ˇ=2 and b D a=2 respectively. Estimate the limit to
which the sum converges in both cases.

d) Repeat the exercise (c) for the Coulomb potential for b D a and b D 2a. Hint:

Z 1

0

e�sx x˛ L˛� .x/ dx D � .˛ C � C 1/.s � 1/�
�Š s˛C�C1 ;

Z 1

0

e�sx x˛C1 L˛� .x/ dx D � d

ds

�Z 1

0

e�sx x˛ L˛� .x/ dx

�
:

1.3 Use the recurrence relation (A.16) and the orthogonality relation (A.15) in
Appendix A.2 to show that the expectation value of the radius r in the Coulomb
eigenfunctions (1.139) (with Bohr radius a) is given by:

h�n;ljrj�n;li D a

2
Œ3n2 � l.l C 1/� :

1.4 A free point particle of mass � in one spatial dimension is described at time
t D 0 by the wave function (1.167),

 .x; t D 0/ D .ˇ
p
�/�1=2 exp

 
� .x � x0/

2

2ˇ2

!
eik0x :
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Calculate the momentum representation Q .k; t D 0/ of the initial wave function,

Q .k; t D 0/ D 1p
2�

Z 1

�1
e�ikx .x; t D 0/ dx ;

and discuss the time evolution of Q .k; t/ according to the time-dependent
Schrödinger equation (1.38).

Calculate the time-dependent wave function  .x; t/ in coordinate space and
discuss the evolution of the uncertainties�x, �p as defined by (1.35).

1.5 Show that the free Green’s function for l D 0,

G0.r; r
0/ D � 2�

„2k sin .kr</ cos .kr>/ ;

(r< is the smaller, r> the larger of the two radii r; r0) fulfills the defining equation:

�
E C „2

2�

d2

dr2

�
G.r; r0/ D ı.r � r0/ :

1.6 Consider a Hamiltonian

OH D OH0 C OW

in a two-dimensional Hilbert space, where

OH0 D
�
"1 0

0 "2

�
; OW D

�
0 w
w 0

�
:

Calculate the eigenstates and eigenvalues of OH
(a) in lowest non-vanishing order perturbation theory treating OW as the perturba-

tion,
(b) by exact diagonalization of OH.

How do the results in both cases depend on the difference "1 � "2 of the
unperturbed energies?

1.7

a) Use the Bohr-Sommerfeld quantization rule (1.310) to calculate the energy
eigenvalues of the bound states of a one-dimensional harmonic oscillator: V.x/ D
.�=2/!2x2.

b) Use the quantization rule (1.308) to calculate the energy eigenvalues of the bound
states in a one-dimensional infinitely deep well,

V.x/ D
�

0 ; 0 < x < L ;
C1 ; x < 0 or x > L :
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c) Consider a particle of mass � reflected by a one-dimensional potential step,

V.x/ D
�

0 ; x < L ;
CV0 ; x � L ;

at an energy E, 0 < E < V0. Calculate the reflection phase � and the amplitude
N for the WKB wave function according to the connection formula (1.300).

Now consider a particle of mass � bound in the finite sharp-step potential

V.x/ D
�

0 ; 0 < x < L ;
CV0 ; x � 0 or x � L :

Discuss the accuracy of the wave functions and the energy eigenvalues obtained
via the quantization rule (1.308) when the appropriate reflection phases and
normalization constants are used.

1.8 Consider a point particle of mass � in a one-dimensional potential V.x/.
Calculate the energy expectation value for the Gaussian wave function

 .x/ D .
p
�b/�1=2 e�x2=.2b2/;

(which is normalized to unity), and think about the limit b ! 1.
Show that a potential V.x/ with limjxj!1V.x/ D 0, which is more attractive than

repulsive, meaning

Z 1

�1
V.x/ dx < 0 ;

always supports at least one bound state. Why doesn’t this statement hold for a
particle in three dimensions?

1.9 Consider a point particle of mass � in a radially symmetric potential V.r/,
which is equal to �C=r2 (C > 0) beyond a certain radius r0,

V.r/ D � C

r2
; r > r0 ;

and which is repulsive near the origin r D 0. Use the WKB approximation and
the Langer modification (1.305) to show that, for values of C larger than a certain
l-dependent threshold C.l/, the energy eigenvalues for high quantum numbers n are
given by

En;l D �c1e�c2.l/n :

Determine the constant c2.l/.
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1.10 Calculate the quantality function (1.298) for an attractive inverse power-law
potential,

V.�/
˛ .r/ D � „2

2�

.ˇ˛/
˛�2

r˛
; ˛ > 2 ;

at energy E D „2k2=.2�/ > 0, and show that the maximum of jQ.r/j is located at

r D ŒF.˛/�1=˛rE ; F˛ D 5

4
� 9

2˛ C 4
C 9˛

4˛ C 8

s
1 � 20

27

�
˛ C 2

˛ C 1

�
;

where rE is the length defined in (1.323), (1.324). Evaluate ŒF.˛/�1=˛ for integer
values of ˛ from 3 to 10.

1.11 Use (1.70) to verify the following identities:

ŒOp2; r� D �2„2
�
@

@r
C 1

r

�
;

ŒOp2; r2� D �2„2
�
2r
@

@r
C 3

�
:
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Chapter 2
Atoms and Ions

This chapter summarizes the traditional theory of one- and many-electron systems,
which has been developed and successfully applied to many atomic problems for
almost a century. The presentation is deliberately brief. A more detailed introduction
to atomic physics can be found in the textbook by Bransden and Joachain [BJ83].
At a much more formal level there is “Atomic Many-Body Theory” by Lindgren
and Morrison [LM85]. Finally we mention “Atomic Structure” by Condon and
Odabasi [CO80], where a comprehensive account of conventional atomic structure
calculations can be found.

2.1 One-Electron Systems

2.1.1 The Hydrogen Atom

In non-relativistic quantum mechanics, a hydrogen atom consisting of a proton of
mass mp and an electron of mass me is described by the following Hamiltonian:

OHH D Op2p
2mp

C Op2e
2me

� e2

jre � rpj ; (2.1)

where Opp and Ope are the momentum operators for the proton and the electron
respectively, and rp and re are the respective spatial coordinates. Introducing the
centre-of-mass coordinate R and the relative distance coordinate r,

R D mprp C mere

mp C me
; r D re � rp ; (2.2)

© Springer International Publishing AG 2017
H. Friedrich, Theoretical Atomic Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-47769-5_2

93



94 2 Atoms and Ions

we can rewrite (2.1) as

OHH D
OP2

2.mp C me/
C Op2
2�

� e2

r
; (2.3)

where OP is the total momentum and Op the relative momentum in the two-body
system:

OP D Opp C Ope ;
Op
�

D Ope

me
� Opp

mp
: (2.4)

In coordinate representation the momentum operators have the explicit form:

OP D „
i
rR ; Op D „

i
rr : (2.5)

The mass � appearing in (2.3) and (2.4) is the reduced mass

� D memp

me C mp
D me

1C me=mp
: (2.6)

Since the ratio me=mp D 0:000544617021352.52/ is very small (the numerical
value is taken from [MN16]), the reduced mass � is only little smaller than the rest
mass me of the electron, namely by about 0:50=00.

Thus the Hamiltonian OHH consists of a part OP2=Œ2.mp C me/� describing the free
motion of the centre of mass and an internal Hamiltonian,

OH D Op2
2�

� e2

r
; (2.7)

describing the motion of the electron relative to the position of the proton.
Eigenfunctions  cm.R/ and eigenvalues Ecm for the centre-of-mass motion are
known,  cm.R/ / exp.iK � R/, Ecm D „2K2=Œ2.mp C me/�, so solving the two-
body problem (2.1) or (2.3) is reduced to the problem of solving the one-body
Schrödinger equation with the internal Hamiltonian (2.7).

This is just the one-body problem in an attractive Coulomb potential which was
discussed in detail in Sect. 1.3.3. The energy eigenvalues are

En D �R
n2
; n D 1; 2; 3; : : : ;

l D 0; 1; : : : ; n � 1 ;

m D �l; �l C 1; : : : ; l � 1; l ; (2.8)
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where the Rydberg energy R D �e4=.2„2/ is smaller by a factor �=me than the
Rydberg energy R1 D mee4=.2„2/ corresponding to a proton of infinite mass
[BN97, UH97, MN16]:

R1 D 2:179872325.27/� 10�18J D 13:605693009.84/eV ;

R1=.2�„c/ D 109737:31568508.65/cm�1 ;

R1=.2�„/ D 3:289841960355.19/� 1015 Hz : (2.9)

In coordinate space, the bound eigenfunctions of the Hamiltonian (2.7) have the
form (1.74) and the radial wave functions are given by (1.139). The Bohr radius
a D „2=.�e2/ is larger by a factor me=� than the Bohr radius a0 D „2=.mee2/
corresponding to an infinite proton mass. According to [MN16] the numerical value
for a0 is:

a0 D 0:52917721067.12/� 10�8 cm : (2.10)

In atomic units we measure energies in units of twice the Rydberg energy and
lengths in units of the Bohr radius, r ! ar, Op ! Op„=a, OH ! 2R OH. The time scale
in atomic units is t0 D „=.2R/. Inserting the Rydberg energy R1 corresponding to
infinite proton mass we have (http://physics.nist.gov/cgi-bin/cuu/Value?aut), t10 D
„=.2R1/ D 0:2418884326509.14/� 10�16 s:

In atomic units and coordinate representation, the (internal) Hamiltonian for the
hydrogen atom is:

OH D �1
2
� � 1

r
; (2.11)

which corresponds to � D 1, „ D 1 and e D 1. In atomic units, the bound spectrum
of the hydrogen atom is simply En D �1=.2n2/ and the Bohr radius is unity.

2.1.2 Hydrogenic Ions

The considerations of the preceding section apply almost without change to a system
consisting of an electron and an arbitrary atomic nucleus with charge number Z.
Such a system is a hydrogenic ion which is (Z �1)-fold positively charged. In the
formula for the reduced mass, the mass mp must now be replaced by the mass mnuc

of the nucleus which depends not only on the charge number Z, but also on the mass
number A (or equivalently, on the number of neutrons A�Z):

� D memnuc

me C mnuc
D me

1C me=mnuc
: (2.12)

http://physics.nist.gov/cgi-bin/cuu/Value?aut
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Since mnuc > mp for all nuclei barring the proton itself, � is now even closer to the
electron mass me.

For charge numbers Z > 1, the essential difference between a hydrogenic ion
and the hydrogen atom lies in the potential energy which is stronger by a factor Z:

OHZ D Op2
2�

� Ze2

r
: (2.13)

Looking at the formula (1.136) for the Rydberg energy and (1.102) for the Bohr
radius we see that the formulae (2.8) for the energy eigenvalues and (1.139) for the
radial wave functions still hold, provided we insert the Rydberg energy RZ instead
of R,

RZ D Z2�e4

2„2 ; (2.14)

and the Bohr radius aZ ,

aZ D „2
Z�e2

; (2.15)

instead of a. In atomic units the Hamiltonian OHZ and the energy eigenvalues En are
given by

OHZ D �1
2
� � Z

r
; En D � Z2

2n2
; (2.16)

while the Bohr radius is aZ D 1=Z.
The hydrogen atom and the hydrogenic ions HeC, LiCC, BeCCC; : : :, U91C; : : :

constitute the simplest example of an iso-electronic sequence: atoms and ions with
the same number of electrons have very similar spectra. In sequences with more than
one electron however, the energies don’t follow such a simple scaling rule as (2.16),
because only the electron-nucleus part of the potential energy is proportional
to Z, while the electron-electron interaction is independent of Z (see Sect. 2.2 and
Sect. 2.3).

2.1.3 The Dirac Equation

The time-dependent Schrödinger equation (1.39) violates the symmetry require-
ments of special relativity, as is already obvious from the different roles played
by the spatial coordinates and the time; the Schrödinger equation contains second
derivatives with respect to the spatial coordinates, but only first derivatives with
respect to time. As a way out of this situation Dirac proposed a Hamiltonian
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containing the momentum components Opx D .„=i/@=@x etc. linearly. For a free
particle of mass m0 Dirac’s Hamiltonian is

OH D c ˛� Op C ˇm0c
2 : (2.17)

Here c D 2:99792458� 108ms�1 is the speed of light, which is included so that the
coefficient ˇ and the vector of coefficients .˛x; ˛y; ˛z/ � .˛1; ˛2; ˛3/ are physically
dimensionless.

The square of Dirac’s Hamiltonian,

OH2 D c2
3X

i;kD1

1

2
.˛i˛k C ˛k˛i/Opi Opk C m0c

3

3X
iD1

.˛iˇ C ˇ˛i/Opi C ˇ2m2
0c
4 ; (2.18)

can only fulfill the relativistic energy momentum relation, E2 D p2c2 C m2
0c
4, if the

coefficients ˛i, ˇ fulfill the following anticommutation relations:

˛i˛k C ˛k˛i D 2ıi;k ; ˛iˇ C ˇ˛i D 0 ; ˇ2 D 1 : (2.19)

This means they can’t simply be numbers. As square matrices they must at least be
4�4matrices in order to fulfill (2.19). We thus replace the Schrödinger equation by
an equation

.c˛� Op C ˇm0c
2/ D i„@ 

@t
(2.20)

for four-component quantities called four-component spinors:

 .r; t/ D

0
BB@
 1.r; t/
 2.r; t/
 3.r; t/
 4.r; t/

1
CCA : (2.21)

Equation (2.20) is the Dirac equation representing four partial differential equations
for the four components of  . In the so-called standard representation the coeffi-
cients ˛i, ˇ are expressed through the Pauli spin matrices (1.345):

˛x D
�
0 O�x

O�x 0

�
; ˛y D

�
0 O�y

O�y 0

�
;

˛z D
�
0 O�z

O�z 0

�
; ˇ D

�
1 0

0 �1
�
:

(2.22)

Each entry in a matrix in (2.22) stands for a 2 � 2 matrix, e.g.
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˛x D

0
BB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCA ; ˇ D

0
BB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1
CCA : (2.23)

Inserting an ansatz for a stationary solution,

 .r; t/ D  .r; t D 0/ e�.1=„/Et ; (2.24)

turns the Dirac equation (2.20) into a time-independent Dirac equation,

.c ˛� Op C ˇm0c
2/ D E : (2.25)

In order to simplify notation and interpretation we write the four-component spinors
 as pairs of two-component quantities:

 D
�
 A

 B

�
;  A D

�
 1
 2

�
;  B D

�
 3
 4

�
: (2.26)

Inserting (2.26) into (2.25) and using the representation (2.22) of the coefficients
˛i, ˇ leads to two coupled equations for the two-component spinors  A and  B :

O� � Op B D 1

c
.E � m0c

2/ A ;

O� � Op A D 1

c
.E C m0c

2/ B : (2.27)

For a particle at rest, Op A D 0, Op B D 0, we obtain two (linearly independent)

solutions of (2.27) with positive energy E D m0c2; namely A D
�
1

0

�
or

�
0

1

�
and

 B D 0, and two solutions with negative energy E D �m0c2, namely  B D
�
1

0

�

or

�
0

1

�
and  A D 0. The positive energy solutions are interpreted as the two

spin states of the ordinary particle (of spin s D 1=2), and the negative energy
solutions are related to the corresponding states of the associated anti-particle. (For
a discussion of the concept of anti-particles see textbooks on relativistic quantum
mechanics, e.g. [BD64].) In situations more general than a particle at rest, the
positive energy solutions of (2.27) usually have non-vanishing lower components
 B, but these are small, except in the extremely relativistic case .E 	 m0c2/, and
are consequently called small components in contrast to the large components  A.

In order to describe e.g. a hydrogen atom, we must extend the above treatment
of a free particle to the case of a particle in a potential. The concept of a particle
in a static potential V.r/ obviously contradicts the basic requirements of relativity,
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because it distinguishes one reference frame from all others. On the other hand,
a relativistic theory does not allow the simple separation of a two-body problem
into a centre-of-mass part and an internal relative motion part, as was possible in
the non-relativistic case (Sect. 2.1.1). We can nevertheless justify the relativistic
treatment of an electron in the potential of an atomic nucleus, because the nucleus
is comparatively heavy and can be assumed to be at rest (in an appropriate reference
frame). This picture makes sense as long as the energy of the electron is small
compared with the rest energy mnucc2 of the atomic nucleus.

We extend the Dirac equation (2.20) or (2.27) to a particle in a static potential
V.r/ by simply adding V.r/ to the Hamiltonian. Equation (2.27) then becomes

O� � Op B D 1

c
.E � V.r/� m0c

2/ A ;

O� � Op A D 1

c
.E � V.r/C m0c

2/ B : (2.28)

If the potential is radially symmetric, V D V.r/, then the radial motion can be
separated from the angular motion as in the non-relativistic case. To this end we use
the generalized spherical harmonics Yj;m;l introduced in Sect. 1.7.3 and make the
following ansatz for the two-component spinors  A and  B:

 A D F.r/

r
Yj;m;lA ;  B D i

G.r/

r
Yj;m;lB : (2.29)

We make use of the identity (Problem 2.1)

O� � Op D 1

r2
. O� �r/

�„
i

r
@

@r
C i O� � OL

�
; (2.30)

of the properties

1

r
. O� �r/Yj;m;lDjC1=2 D �Yj;m;lDj�1=2 ;

1

r
. O� �r/Yj;m;lDj�1=2 D �Yj;m;lDjC1=2 ; (2.31)

and of the fact that the operator O� � OL D .2=„/ OS � OL can be expressed through
OJ2 � OL2 � OS2, in other words, through Œj.j C 1/ � l.l C 1/ � 3=4�„2 (1.360).
From (2.30), (2.31) we see that each total angular momentum quantum number j
allows exactly two possibilities for the orbital angular momentum quantum numbers
lA and lB in the ansatz (2.29):

.i/ lA D j � 1

2
; lB D j C 1

2
I .ii/ lA D j C 1

2
; lB D j � 1

2
: (2.32)
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Inserting (2.29) into (2.28) and using (2.30), (2.31) leads to the radial Dirac
equation for the radial wave functions F.r/ and G.r/:

„c

�
dF

dr
C 	

r
F

�
D �

E � V.r/C m0c
2
	

G ;

„c

�
dG

dr
� 	

r
G

�
D �

E � V.r/� m0c
2
	

F : (2.33)

The absolute value of the constant 	 ist j C 1=2; its sign depends on the orbital
angular momentum numbers given by (2.32)1:

	 D �j � 1

2
for .i/ ; 	 D j C 1

2
for .ii/ : (2.34)

The radial Dirac equation (2.33) is a system of two coupled ordinary differential
equations of first order. Solving the radial Dirac equation is in general no more
difficult than solving the radial Schrödinger equation (1.75) or (1.362). For an
attractive Coulomb potential, V.r/ D �Ze2=r, the energy eigenvalues can be given
analytically in the regime of bound particle states 0 < E < m0c2:

En;j D m0c
2

"
1C .Z˛fs/

2

.n � ıj/
2

#� 1
2

;

ıj D j C 1

2
�
q
.j C 1=2/2 � .Z˛fs/

2 : (2.35)

Here ˛fs D e2=.„c/ D 0:0072973525664.17/ � 1=137 [MN16] is the dimension-
less fine-structure constant which characterizes the strength of the electromagnetic
interaction. Note that, in atomic units corresponding to „ D 1, e D 1, the speed of
light is 1=˛fs.

The energies (2.35) depend not only on the principal quantum number n D
1; 2; 3; : : : ; but also on the total angular momentum quantum number j, which,
for given n, can assume the values j D 1=2; 3=2; : : : n � 1=2. For each j with
1=2 � j < n � 1=2 (i.e. j ¤ n � 1=2/ there are two linearly independent solutions of
the radial Dirac equation characterized by the orbital angular momentum quantum
numbers lA D j C 1=2 and lA D j � 1=2 in the large components. Obviously the
formula (2.35) is only valid for Z˛fs < 1. This implies Z < 137, which is fulfilled
for all known atomic nuclei.

1The constant 	 is related to the factor F.j; l/ in front of the spin-orbit contribution in the radial
Schrödinger equation (1.362) by 	 D �1� F.j; lA/.
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Expanding (2.35) in powers of Z˛fs yields

En;j D m0c
2

"
1 � .Z˛fs/

2

2n2
� .Z˛fs/

4

2n3

�
1

j C 1=2
� 3

4n

�
C � � �

#
: (2.36)

The first term is simply the rest energy m0c2 of the particle and the second term
corresponds to the non-relativistic spectrum with binding energies R=n2. The
next term contains corrections which are smaller than the non-relativistic binding
energies by at least a factor of .Z˛fs/

2=n. This fine structure causes an n- and j-
dependent lowering of all energy levels. For a given n the shift is largest for j D 1=2

and smallest for j D n � 1=2.
Figure 2.1 shows the fine-structure splitting of the low-lying levels of the

hydrogen atom, as predicted by the Dirac equation. The standard nomenclature for
hydrogenic single-particle states is as follows: Energy levels are labelled n lj, where

Fig. 2.1 Fine-structure splitting of the energy levels up to n D 3 in the hydrogen atom, as
predicted by the Dirac equation (2.35). The numbers are energies in 10�6 atomic units; on this
scale the non-relativistic binding energies are 0:5 � 106=n2
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n is the Coulomb principal quantum number and j is the total angular momentum
quantum number. The orbital angular momentum quantum numbers lA � l D
0; 1; 2; 3; : : : are denoted by the letters s; p; d; f ; : : : (continue alphabetically).
Examples: 2s1=2 stands for n D 2; l D 0; j D 1=2 and 7g9=2 stands for n D 7,
l D 4; j D 9=2.

Going beyond the Dirac equation, the electron-proton interaction can be treated
with the methods of quantum electrodynamics which leads to still finer corrections
to the energy levels, the Lamb shift. Further corrections follow from the fact that
the proton is not a structureless point particle. Such higher-order corrections to the
energy eigenvalues are more important for states of low angular momentum and
they lift the degeneracy of the lA D j ˙ 1=2 states for given n and j. The Lamb
shift has been measured to a high degree of precision [BH95] and amounts to about
1:24 � 10�6 atomic units for the 1s state in hydrogen, whereas the 2s1=2 level comes
to lie 0:16 � 10�6 atomic units above the 2p1=2 level, a separation corresponding to
about 10% of the fine-structure splitting of the n D 2 level.

2.1.4 Relativistic Corrections to the Schrödinger Equation

The Dirac equation (2.28) can be rewritten as one second-order partial differential
equation for the large components  A. To see this, resolve the lower equation for
 B,

 B D c

E � V.r/C m0c2
O� � Op A ; (2.37)

and insert the result into the upper equation:

O� � Op c2

m0c2 C E � V
O� � Op A D .E � V � m0c

2/ A ; (2.38)

or, replacing E � m0c2 by ":

1

2m0

O� � Op
�
1C "� V

2m0c2

��1
O� � Op A D ." � V/ A : (2.39)

In the weakly relativistic case the energy E of the particle is not very different
from its rest energy m0c2, so the difference " D E � m0c2 is small compared
with m0c2, as is the potential V . It then makes sense to expand the square bracket
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in (2.39), and the left-hand side becomes

1

2m0

O� � Op
�
1 � " � V

2m0c2

�
O� � Op A

D
��
1 � " � V

2m0c2

�
. O� � Op/ . O� � Op/

2m0

C „
i

. O� �rV/ . O� � Op/
4m2

0c
2

�
 A : (2.40)

Using the identity (Problem 2.1)

. O� �A/. O� �B/ D A�B C i O� �.A�B/ (2.41)

(in particular . O� � Op/. O� � Op/ D Op2) and assuming a radially symmetric potential, V D
V.r/, rV D .r=r/ dV=dr, we obtain the equation

"�
1 � " � V

2m0c2

� Op2
2m0

C „
i

1

4m2
0c
2

1

r

dV

dr
.r� Op/

C „
4m2

0c
2

1

r

dV

dr
O� �.r� Op/

�
 A D ." � V/ A : (2.42)

In the first term on the left-hand side we approximate " � V by Op2=.2m0/. In the
last term we have „ O� � .r � Op/ D 2 OL � OS. The middle term is not Hermitian. This
is due to the fact that we are trying to account for the coupling between the large
components  A and the small components  B in a Schrödinger-type equation for
the large components alone. Darwin introduced the Hermitian average,

OHD D 1

8m2
0c
2

�„
i

1

r

dV

dr
.r� Op/� „

i
.Op�r/ 1

r

dV

dr

�

D „2
8m2

0c
2

�
2

r

dV

dr
C d2V

dr2

�
D „2
8m2

0c
2
�V.r/ : (2.43)

With these manipulations we obtain a Schrödinger equation including relativistic
corrections to first order in Op2=.m0c/2:

 
Op2
2m0

� Op2 Op2
8m3

0c
2

C V.r/C OHLS C OHD

!
 A D " A : (2.44)

Besides the Darwin term (2.43) the Hamiltonian in (2.44) contains the spin-orbit
coupling

OHLS D 1

2m2
0c
2

1

r

dV

dr
OL� OS (2.45)
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and a correction to the kinetic energy including the fourth power of the momentum
operator. This makes (2.44) a differential equation of fourth order, which is actually
no progress compared with the original Dirac equation (2.28) or (2.33). However,
the effects of the relativistic corrections to the non-relativistic Schrödinger equation
are small and can usually be calculated with perturbative methods.

In an attractive Coulomb potential V.r/ D �Ze2=r, the spin-orbit coupling and
the Darwin term are explicitly:

OHLS D Ze2

2m2
0c
2

1

r3
OL� OS ; OHD D �„2Ze2

2m2
0c
2
ı.r/ : (2.46)

In this case the Darwin term contributes only for l D 0; the spin-orbit coupling
always contributes only for l > 0. We can recover the result (2.36) using first-order
perturbation theory with the perturbing operator consisting of the two terms (2.46)
and the Op2 Op2 term (Problem 2.2).

As indicated at the end of Sect. 2.1.3, further corrections can be obtained by
considering that the atomic nucleus isn’t a structureless point particle, but has a
finite spatial size of the order of 10�12 cm and an internal angular momentum called
the nuclear spin. These corrections are even smaller than the fine structure effects
discussed above and appear in the spectrum as hyperfine structure.

2.2 Many-Electron Systems

2.2.1 The Hamiltonian

For an atom or ion consisting of N electrons and an atomic nucleus of mass mnuc

and charge number Z, the non-relativistic Hamiltonian for the whole system is

OHN;Z D Op2nuc

2mnuc
C

NX
iD1

 
Op2ei

2me
� Ze2

jrei � rnucj

!
C
X
i<j

e2

jrei � rejj I (2.47)

Opnuc and rnuc are the momentum and the position of the nucleus, and Opei and rei

are the momenta and position coordinates of the N electrons. We can separate the
centre-of-mass motion from the internal dynamics by introducing the centre-of-
mass coordinate,

R D 1

M

 
mnucrnuc C me

NX
iD1

rei

!
; M D mnuc C Nme ; (2.48)
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together with the relative distance coordinates ri, which stand for the displacement
of the respective electrons from the position of the nucleus:

ri D rei � rnuc : (2.49)

The associated momenta are

OP D „
i
rR ; Opi D „

i
rri : (2.50)

Expressing the momenta Opnuc and Opei in (2.47) in terms of the momenta (2.50),

Opnuc D mnuc

M
OP �

NX
iD1

Opi ; Opei D me

M
OP C Opi ; (2.51)

allows us to decompose the total kinetic energy in (2.47) into a centre-of-mass part
and an internal part:

Op2nuc

2mnuc
C

NX
iD1

Op2ei

2me
D

OP2
2M

C
NX

iD1

Op2i
2�

C 1

mnuc

X
i<j

Opi � Opj : (2.52)

Here � D memnuc=.me C mnuc/ again is the reduced mass of an electron relative
to the atomic nucleus. The two-body potential describing the mutual electrostatic
repulsion of the electrons depends on differences of two electron coordinates, and
these differences do not depend on whether we use the electron coordinates rei in a
fixed reference frame or the displacements (2.49) from the atomic nucleus.

The Hamiltonian describing the internal structure of the atom or ion has the form

OH D
NX

iD1

Op2i
2�

C
NX

iD1
OV.i/C

X
i<j

OW.i; j/ : (2.53)

It differs from the Hamiltonian we would obtain for an infinitely heavy nucleus
in that the kinetic energy term contains the reduced mass � instead of the free-
electron mass me. Furthermore, the last term on the right-hand side of (2.52) leads
to a momentum-dependent correction Opi � Opj=mnuc to the two-body interaction. This
correction is called the mass polarization term and originates from the fact, that the
centre of mass (2.48) of the whole system is not identical to the position rnuc of
the nucleus, from where the internal electron displacements (2.49) are measured.
However, this correction is very small and can be treated perturbatively. The same
is true, at least in light atoms (and ions), for the relativistic corrections such as
spin-orbit coupling discussed in Sect. 2.1.4. Ignoring these corrections for the time
being, we have an N-electron problem defined by the Hamiltonian (2.53) with the
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electrostatic attraction of the electrons by the nucleus as the one-body interaction,

OV.i/ D �Ze2

ri
; (2.54)

and a two-body interaction due to the mutual electrostatic repulsion of the electrons,

OW.i; j/ D e2ˇ̌
ri � rj

ˇ̌ : (2.55)

2.2.2 Pauli Principle and Slater Determinants

The wave functions describing the internal dynamics of an N-electron atom or ion
depend on the internal spatial coordinates ri and the spin coordinates msi , which we
shall collect in one symbol xi. The indistinguishability of the electrons manifests
itself in the fact that the Hamiltonian (2.53) does not depend on the ordering of the
electron labels i. If we change a given wave function  .x1; : : : xN/ by permuting the
electron labels,

OP .x1; : : : xN/ WD  .xP.1/; : : : xP.N// ; (2.56)

then the action of the Hamiltonian on the wave function does not depend on whether
it acts before or after such a permutation:

OP OH .x1; : : : xN/ D OH OP .x1; : : : xN/ : (2.57)

Each permutation P of the numbers 1; : : : ;N defines an operator OP according
to (2.56), and each such operator commutes with the Hamiltonian, because of (2.57):

h OH; OP
i

D 0 : (2.58)

It would seem reasonable to classify the eigenstates of OH according to the
eigenvalues of the permutation operators, i.e. according to their behaviour under
reordering of the particle labels. In a two-body system there is only one non-
trivial permutation, namely P21, which replaces the pair 1, 2 by 2, 1. Obviously
the corresponding operator gives the unit operator when squared, OP21 OP21 D 1,
so its only possible eigenvalues are C1 and �1. In systems of more than two
indistinguishable particles the situation is more complicated. Two classes of many-
particle wave functions are particularly important: totally symmetric wave functions
for which interchanging any two particle labels doesn’t change the wave function
at all, and totally antisymmetric wave functions for which interchanging any two
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particle labels multiplies the wave function by �1:

OPij .x1; ::; xi�1; xi; ::; xj�1; xj; :: xN/

D  .x1; ::; xi�1; xj; ::; xj�1; xi; ::xN/

D � .x1; ::; xi�1; xi; ::; xj�1; xj; ::xN/ : (2.59)

For systems of more than two indistiguishable particles, the totally symmetric or
totally antisymmetric wave functions represent only a fraction of the functions
one might construct mathematically, but only these two possibilities are realized in
nature. Furthermore, the behaviour of the wave functions under permutations of the
particle labels is an internal property of the particles and does not depend on their
dynamic state or their environment. Particles with totally symmetric wave functions
are called bosons, particles with totally antisymmetric wave functions are called
fermions. Electrons are fermions. The statement that fermions only occur in totally
antisymmetric states is called the Pauli principle.

Any permutation of the numbers 1; : : : ; N can be decomposed into a sequence
of successive swaps of just two numbers. This decomposition is not unique, but
the number of swaps making up a given permutation is either always even or
always odd. One calls the permutation itself even or odd accordingly. The total
antisymmetry of a wave function can thus be written compactly:

OP D .�1/P ; (2.60)

with .�1/P D 1 for even permutations and .�1/P D �1 for odd permutations.
From a given wave function  , which need not be totally antisymmetric, we can

project out a totally antisymmetric part using the antisymmetrizer

OA D 1p
NŠ

X
P

.�1/P OP : (2.61)

To see that OA is totally antisymmetric, we apply an arbitrary permutation Q:

OQ OA D 1p
NŠ

X
P

.�1/P OQ OP : (2.62)

Since the permutations mathematically form a group, the set of all permutations QP
(Q fixed, P covering all permutations) again contains each permutation exactly once.
Furthermore .�1/P D .�1/Q.�1/QP, so that we can rewrite (2.62) using P0 D QP:

OQ OA D .�1/Q 1p
NŠ

X
P0

.�1/P0 OP0 D .�1/Q OA : (2.63)
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In a similar way it can be shown that

OA OA D p
NŠ OA ; OA� D OA : (2.64)

This means that OA=pNŠ has the properties of a projection operator.
A particularly important set of totally antisymmetric wave functions consists of

those constructed by antisymmetrizing simple product wave functions:

�0 D
NY

iD1
 i.xi/ : (2.65)

Such product wave functions appear e.g. as eigenfunctions of an N-body Hamil-
tonian which can be written as a sum of one-body Hamiltonians (such as the
Hamiltonian (2.53) if we were to leave out the two-body interaction OW.i; j//.
Applying the antisymmetrizer to (2.65) produces the antisymmetrized product wave
function

OA�0 D 1p
NŠ

X
P

.�1/P
NY

iD1
 i.xP.i// � 1p

NŠ
det. i.xj// : (2.66)

We write det . i.xj//, because the sum over the products in (2.66) can formally be
written as the determinant of the N � N matrix . i.xj//:

det. i.xj// D

ˇ̌
ˇ̌
ˇ̌
ˇ

 1.x1/  1.x2/ � � �  1.xN/
:::

:::
:::

 N.x1/  N.x2/ � � �  N.xN/

ˇ̌
ˇ̌
ˇ̌
ˇ
: (2.67)

Antisymmetrized product wave functions are called Slater determinants.
The determinant notation shows that an antisymmetrized product wave function

vanishes identically when two or more single-particle wave functions  i are the
same. This leads to an alternative formulation of the Pauli principle, applicable
to Slater determinants: no two fermions may occupy the same single-particle
state. A more general and at the same time more precise formulation is: a Slater
determinant vanishes identically if and only if the single-particle states from which
it is built are linearly dependent.

Like an ordinary determinant, a Slater determinant is invariant under elementary
replacements of rows:

 i !  0
i D  i C

X
j¤i

cj j : (2.68)

More generally: if we replace the (linearly independent) set of single-particle
wave functions  i by any set of linearly independent linear combinations  0

i ,



2.2 Many-Electron Systems 109

then det. 0
i .xj// differs from det. i.xj// by at most a constant factor. A Slater

determinant is thus characterized not so much by a particular set of single-particle
states, but rather by the subspace spanned in the single-particle Hilbert space by
these single-particle states.

When many-body wave functions are Slater determinants, the many-body scalar
products such as (1.1) can be expressed in terms of scaler products of the single-
particle wave functions involved. The overlap of two Slater determinants � D
.NŠ/�1=2 det. i.xj// and ˚ D .NŠ/�1=2 det.�i.xj// is:

h˚ j� i D det
�˝
�ij j

˛	
; (2.69)

and the right-hand side is now an ordinary determinant of a matrix of numbers, viz.
the numbers

Aij D h�ij ji : (2.70)

For a one-body operator, more precisely, for a many-body operator which can be
written as a sum of single-particle operators OV , we have

h˚ j
NX

iD1
OV.i/j�i D h˚ j� i

NX
i;jD1

h�ij OVj ji Bji ; (2.71)

where the matrix B is the inverse of the matrix A defined by (2.70). For an operator
which can be written as a sum of two-particle operators we have

h˚ j
X
i<j

OW.i; j/j� i

D 1

2
h˚ j� i

NX
i;j;k;lD1

h�i�jj OWj k li.BkiBlj � BkjBli/ : (2.72)

The formulae (2.71), (2.72) are valid for any (not necessarily orthonormal) set of
single-particle wave functions as long as det A ¤ 0. Simpler formulae apply when
˚ and � are built from the same set of orthonormal single-particle states. Then
h˚ j� i is only non-vanishing if the same single-particle states are occupied in ˚
and � . Furthermore, h� j� i D 1. The factor 1=

p
NŠ in (2.66) is just chosen such

that a Slater determinant built from orthonormal single-particle states is normalized
to unity.

For orthonormal single-particle states and ˚ D � , the formula (2.71) is
simplified to

h� j
NX

iD1
OV.i/j� i D

NX
iD1

h ij OVj ii : (2.73)
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There is also a non-vanishing matrix element h˚ jPN
iD1 OV.i/j� i when at most one

of the single-particle states occupied in � . h; say/ is replaced in ˚ by another
single-particle state . p; say/ which is unoccupied in � . Such a Slater determinant
˚ is called a one-particle-one-hole excitation �ph of � . The matrix element of a
one-body operator between �ph and � is:

h�phj
NX

iD1
OV.i/j� i D h pj OVj hi: (2.74)

(Formula (2.71) cannot be applied to this case, because h�phj� i D 0:)
For orthonormal single-particle states and ˚ D � , the formula (2.72) for two-

body operators is simplified to

h� j
X
i<j

OW.i; j/j� i D 1

2

NX
i;jD1



h i jj OWj i ji � h i jj OWj j ii

�
: (2.75)

The matrix element of a two-body operator between � and a one-particle-one-hole
excitation �ph is:

h�phj
X
i<j

OW.i; j/j� i D
NX

iD1



h i pj OWj i hi � h i pj OWj h ii

�
: (2.76)

If the bra is a two-particle-two-hole excitation �p1p2h1h2 of � , i.e. �h1 D  p1,
�h2 D  p2 and �i D  i for all other  i, then there is also a non-vanishing matrix
element

h�p1p2h1h2 j
X
i<j

OW.i; j/j� i

D h p1 p2 j OWj h1 h2i � h p1 p2 j OWj h2 h1i : (2.77)

2.2.3 The Shell Structure of Atoms

If the Hamiltonian (2.53) contained only the one-body interaction and there were
no two-body interactions, then it would describe independent motion of the N
electrons. The Hamiltonian would be a sum of N single-particle Hamiltonians of the
form (2.13) whose eigenfunctions are simply the eigenfunctions of the hydrogenic
ion. Each product of N such single-particle eigenfunctions would be an eigenfunc-
tion of the N-particle Hamiltonian, and so would each Slater determinant made by
antisymmetrizing such a product (because OH commutes with all permutations and
hence also with the antisymmetrizer (2.61)). The energy eigenvalue of such a Slater
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determinant would simply be the sum of the single-particle energies of the occupied
states. The energetically lowest N single-particle states would make up the ground
state (Pauli principle), and the excited states would be one-particle-one-hole, two-
particle-two-hole, etc. excitations of the ground-state Slater determinant.

This simple picture is disturbed by the two-body interaction
P OW.i; j/. It is not

small and contributes significantly to the total energy of the atom or ion. However,
a large part of the two-body interaction can be accounted for by a mean single-
particle potential, often called mean field, which formally retains the independence
of the electrons. A consistent derivation of the mean single-particle potential is
given in Sect. 2.3.1. Qualitatively, the electrostatic repulsion of one given electron
by all other electrons is described by an average screening potential which modifies
the single-particle potential (electrostatic attraction by the nucleus) acting on that
electron. Those parts of the two-body interaction which are not included in the
mean single-particle potential constitute a residual two-body interaction and this
is much less than the full two-body interaction. Take e.g. an electron in an N-
electron atom or ion whose nucleus has charge number Z. At large distances from
the nucleus (and the other electrons) the electron feels a screened Coulomb potential
�.Z �N C1/e2=r. At small separations r < aZ , however, it feels the full unscreened
attraction of the naked nucleus: �Ze2=r. In the transition region from small to
large separations the mean single-particle potential changes smoothly from the
unscreened potential to the screened potential as is illustrated schematically for the
case of a neutral sodium atom .Z D N D 11/ in Fig. 2.2.

The single-particle eigenstates in such a mean single-particle potential are no
longer the eigenstates of a pure Coulomb potential, but they can still be classified
by the quantum numbers n; l;m. Since the mean single-particle potential is always
taken to be radially symmetric, the single-particle energies for given angular
momentum quantum number l are degenerate in the azimuthal quantum number m.
However, eigenstates with a given principal quantum number n are no longer
degenerate in l, because the potential is no longer a pure Coulomb potential.

Fig. 2.2 Schematic
illustration of the mean
single-particle potential V.r/
(solid line) in the Na atom
.Z D N D 11/

V(r)

0

0 5 10

V=–11e2 / r

V=–e2 / r

15
r / a

/
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Fig. 2.3 Typical spectrum of single-particle energies in a single-particle potential as in Fig. 2.2

A glance at Fig. 2.2 shows that states with low l are most strongly influenced by
the stronger attraction of the unscreened nucleus, because their wave functions have
the largest amplitudes at small separations—see Fig. 1.4 and (1.78). As a result the
levels with low l are shifted downwards quite strongly, relative to the levels with
higher l. A typical spectrum of a single-particle Hamiltonian containing a mean
single-particle potential as in Fig. 2.2 is shown in Fig. 2.3. The downward shift of
the l D 0 levels is so large that the energy of the 4s state already lies below the
energy of the 3d state. Larger gaps appear in the spectrum above the 1s; 2p; 3p; : : :
levels.

The energy levels in Fig. 2.3 define subshells which accomodate a number of
single-particle states according to their degeneracy, and each of these single-particle
states can be occupied by at most one electron. (We reserve the term “shell” for
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all states belonging to one principal quantum number n.) Considering that there
are two possible spin states associated with each orbital wave function  .r/, the
total number of single-particle states in each nl subshell is simply 2.2l C 1/. In
s; p; d; f ; : : : subshells there are 2; 6; 10; 14; : : : etc. states.

We assume that the ground state wave functions of neutral atoms are built
by successively filling the subshells of single-particle states. The electrons in the
energetically lower closed (i.e. completely filled) subshells are comparatively tightly
bound, and the least bound electrons are the outer electrons in the last occupied
subshell. In this picture, chemically similar elements, which were grouped together
in the periodic table long before the invention of quantum mechanics, have the same
number of outer electrons, and the last partially occupied subshells within a group
have the same angular momentum quantum number l. The noble gases He, Ne,
Ar, Kr, Xe, Rn are built wholly of closed, i.e. fully occupied subshells and the last
occupied subshell is that of a single-particle level at the lower edge of one of the
larger gaps in the single-particle spectrum 1s; 2p; 3p; 4p; 5p; 6p.

The simple picture of the shell structure of atoms (in their ground states)
following from Figs. 2.2 and 2.3 is able to explain the positions assigned to the
elements in the periodic table according to their chemical properties. This is a
great success of the concept of independent electrons in well defined single-particle
states. Nevertheless, the exact eigenstates of the Hamiltonian (2.53) are of course
much more complicated. For a quantitative description of atoms with more than one
electron we need to consider correlations which go beyond the independent-single-
particle picture.

2.2.4 Classification of Atomic Levels

In order to classify the eigenstates of the N-electron Hamiltonian it is reasonable to
look for constants of motion, i.e. for good quantum numbers. Let’s assume for the
time being that the effects of the spin-orbit coupling are negligible. Then the total
orbital angular momentum OL and the total spin OS, which are made up of the single-
particle orbital angular momenta OLi and the single-particle spins OSi of the electrons
respectively,

OL D
NX

iD1
OLi ; OS D

NX
iD1

OSi ; (2.78)

are constants of motion, i.e. their components and their squares OL2 and
OS2 commute with the Hamiltonian (2.53). The eigenvalues of OL2 and OS2 are
L.L C 1/„2 and S.S C 1/„2 respectively, and to each pair of values of L and S
there are .2L C 1/ � .2S C 1/ degenerate eigenstates corresponding to the different
eigenvalues of OLz and OSz.
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It is customary to denote the total orbital angular momentum quantum number
L D 0; 1; 2; 3; : : : by the capital letters S; P; D; F; : : : (continue alphabetically),
while the total spin quantum number S is noted by writing the spin multiplicity
2S C 1 to the upper left of the letter denoting L: thus 3P means S D 1 and L D 1,
4D means S D 3=2 and L D 2, etc. Since all electron spins are 1=2, the total spin
quantum number S is an integer and the spin multiplicity 2S C 1 odd for an even
number N of electrons, while S is a half-integer and 2S C 1 even if N is odd.

In the presence of a small spin-orbit term VLS.ri/ OLi�OSi in the one-body interaction,
the Hamiltonian (2.53) no longer commutes with the components of the orbital
angular momenta and the spins, but it commutes with the total angular momentum
of the electrons:

OJ D OL C OS : (2.79)

We can treat the effects of the spin-orbit coupling approximately if we couple

the states classified by L and S to eigenstates of OJ2 and OJz, similar to the one-
electron case described in Sect. 1.7.3. The resulting states are now labelled by a
further quantum number J for the total angular momentum, and it is written as a
subscript to the letter denoting L, in analogy to the labelling of one-electron levels.
Example: 4D5=2 means S D 3=2; L D 2; J D 5=2. According to the triangle
condition (1.336), each term 2SC1L splits into 2S C 1 (in case S � L) or 2L C 1 (in
case L � S) levels 2SC1LJ, J D jL � Sj; jL � Sj C 1; : : : ; L C S � 1; L C S, and
each such level encompasses 2J C 1 eigenstates of OJz which remain degenerate in
the presence of the spin-orbit coupling. (This degeneracy is lifted if we consider the
effects of the hyperfine interaction with a non-vanishing nuclear spin OI, because then
only the total angular momentum OI C OJ of atomic nucleus plus the orbiting electrons
is a constant of motion.)

As long as the picture of independent particles is applicable, we can in addition
label the atomic states by the principal and orbital angular momentum quantum
numbers n; l of the occupied single-particle states. The complete set of n; l quantum
numbers of the occupied single-particle states defines a configuration. A configu-
ration with, say, two occupied 1s single-particle states, two occupied 2s states and
three occupied 2p states is conventionally written as .1s/2.2s/2.2p/3.

When constructing a many-body state out of single-particle states we must of
course respect the requirements of the Pauli principle. This is still comparatively
easy for atoms and ions with two electrons (or with two outer electrons), because
the coupled spin states of two s D 1=2 particles have a well defined symmetry
with respect to permutation of the two particle labels. In this special case of angular
momentum coupling .j1 D 1=2, j2 D 1=2/ let’s abbreviate (1.332) to

jS;MSi D
X

ms1 ;ms2

hms1 ;ms2 jS;MSijms1 ;ms2i : (2.80)
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In this notation the triplet of states coupled to S D 1 is simply

j1; 1i D j1=2; 1=2i ;

j1; 0i D 1p
2
.j1=2;�1=2i C j � 1=2; 1=2 i/ ;

j1;�1i D j � 1=2;�1=2i ; (2.81)

and the S D 0 (singlet) state is

j0; 0i D 1p
2
.j1=2;�1=2i � j � 1=2; 1=2i/ : (2.82)

The three states of the triplet S D 1 are symmetric with respect to interchanging
the two labels ms1 and ms2 , while the singlet state is antisymmetric. Since the whole
two-particle wave function .r1;ms1 ; r2;ms2 / has to be antisymmetric, its behaviour
with respect to interchange of the two spatial coordinates must be symmetric in the
singlet state and antisymmetric in the triplet states. Thus a helium configuration in
which both electrons occupy the (non-degenerate) 1s spatial state is only possible
in the singlet spin state. Figure 2.4 shows the energy levels of the bound states of

Fig. 2.4 Energies of the bound states of the helium atom. The left half of the figure shows the
singlet states of para-helium and the right half of the figure shows the triplet states of ortho-helium
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helium, separated according to S D 0 (para-helium) and S D 1 (ortho-helium).
Provided they are allowed by the Pauli principle, the configurations of ortho-helium
lie energetically lower than the corresponding configurations in para-helium. This
can be understood as an effect of the residual interaction involving a short-ranged
repulsion of the electrons. It is less effective in a wave function antisymmetric with
respect to interchange of spatial coordinates, which has to vanish for jr1 � r2j D 0,
than it is in a symmetric wave function, where it yields a positive contribution to the
total energy. (See Problem 2.3.)

When the spins of more than one electron from a given subshell are coupled
to total spin S, then the state with the largest value of S is energetically lowest,
because it feels the effects of the short-ranged electron-electron repulsion least due
to the symmetry properties of the spatial part of the wave function. This is Hund’s
first rule. For a given value of S the electrons can couple to different values L of the
total orbital angular momentum. Amongst these states, the effect of the short-ranged
repulsion is least in the states with the largest values of L. Of all states with the same
value of S, the state with the maximum value of L is hence the energetically lowest.
This is Hund’s second rule.

As an example Fig. 2.5 shows the lowest-lying states of the carbon atom which
has two electrons in the 2p subshell. The ground state triplet 3P and the next two
excited singlets 1D and 1S are based on the .1s/2.2s/2.2p/2 configuration in which
the lowest single-particle states are occupied. The next highest term is a quintuplet
5So corresponding to a .1s/2.2s/.2p/3 configuration in which the 2s subshell is
occupied by only one electron, while the 2p subshell is occupied by three electrons.
The small “o” at the upper right of the letter denoting L stands for odd parity and
indicates that the whole many-body wave function has odd parity with respect to
the simultaneous reflection of all spatial coordinates at the origin. This notation
was already used for the P and the F states in helium in Fig. 2.4. The parity of
a many-body wave function is important, because it influences the selection rules
for electromagnetic transitions. A configuration characterized by the single-particle
orbital angular momentum quantum numbers l1; : : : lN has odd parity if the sumPN

iD1 li is odd (see (1.72)). Note that the parity of a many-electron state is in general
a good quantum number, and this is not bound to the validity of the independent
particle picture.

Figure 2.5 also shows the splitting of the ground state triplet into three 3PJ

levels, J D 0; 1; 2 due to the spin-orbit coupling. The 1D, 1S and 5So terms do
not split up, because either L or S (or both) are zero. The ground state triplet is
regular, meaning that the energies of the levels increase with increasing values
of J. Multiplets with the opposite behaviour are called inverted. It is empirically
established, that ground state terms of atoms whose outer subshell is at most half
filled form regular multiplets, while the ground state multiplets are inverted in atoms
whose outer subshell is more than half filled.

The above classification of atomic states is based on the assumption that orbital
and spin angular momenta are at least approximately constants of motion. This LS
coupling, which is also called Russell-Saunders coupling, loses its justification when
the influence of the spin-orbit coupling in the one-body interaction increases as is
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Fig. 2.5 The lowest energy levels in the carbon atom. The configuration labels should in principle
carry a further .1s/2 for the two occupied states in the n D 1 shell. Amongst the .2s/2.2p/2

states the triplet term .S D 1/ is lowest according to Hund’s first rule. The Pauli principle forbids
3S and 3D terms, because they would contain a spatial wave function symmetric in the particle
labels in conjunction with a spin wave function which is also symmetric in the particle labels. The
L D 1 triplet is regular, i.e. the energy increases with increasing total angular momentum quantum
number J. The L D 2 term is the lower of the singlet states according to Hund’s second rule.
The first excited configuration shows up in the quintuplet term of the 2s.2p/3 configuration. This
configuration has odd parity

the case for the heavier atoms. It may then be more appropriate to assume that the
single-particle total angular momenta of the electrons

OJi D OLi C OSi ; (2.83)

are approximate constants of motion, and to couple these to the total angular
momentum of all the electrons. For two electrons,

OJ D OJ1 C OJ2 ; (2.84)

this can be done in a straightforward way (compare Sect. 1.7.1) and leads to the jj
coupling scheme.

A comprehensive compilation of the known levels of atoms and ions from
hydrogen to manganese can be found in [BS75, BS78, BS81, BS82]. A detailed
and comprehensive discussion of the levels of atoms with one or two electrons
is contained in the classic book by Bethe und Salpeter [BS77]. For a thorough
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discussion of the structure of low-lying states see also Atomic Structure by Condon
and Odabasi [CO80].

2.3 The N-Electron Problem

The many-body problem poses a major challenge in all areas of physics. It is not
soluble in general, but various approximations have been successful in different
fields. This section contains a brief summary of some techniques which have been
successful and/or widely used in the many-electron problem of atomic physics.

2.3.1 The Hartree-Fock Method

The central idea of the Hartree-Fock method is to retain the simplicity of the
independent single-particle picture, and to approximate an exact solution of the
N-electron problem as well as possible within this framework. This means that
we describe the system by the “best” Slater determinant. In the spirit of the Ritz
variational method (Sect. 1.6.2) we search for a Slater determinant � for which
the energy expectation value EŒ� � remains stationary under small variations � !
� C ı� of the Slater determinant: ıEŒ� � D 0.

Let � D .1=
p

NŠ/ det. i.xj// be a Slater determinant of orthonormalized single-
particle states  i. When varying � we must take care that the varied wave function
is again a Slater determinant. Appropriate variations are achieved by modifying
the single-particle states occupied in � through small admixtures of single-particle
states  pi which are not occupied in � :

 i !  0
i D  i C 
i pi : (2.85)

Expanding the Slater determinant � 0 D .1=
p

NŠ/ det. 0
i .xj// around the original

Slater determinant � shows that the leading terms in ı� D � 0 � � are those in
which only one single-particle state is modified. These terms yield contributions
of the form 
i�pii, where �pii is a one-particle-one-hole excitation of � in which
the single-particle state  i is replaced by the single-particle state  pi (which is
unoccupied in � ). Contributions in which more than one single-particle state are
modified correspond to two-particle-two-hole, three-particle-three-hole excitations,
etc. They, however, carry two, three or more factors 
i and are hence small to higher
order than the contributions of the one-particle-one-hole excitations.

The infinitesimal variations of a Slater determinant which ensure that the
varied wave function is again a Slater determinant are thus one-particle-one-
hole excitations. From (1.270), (1.271) it immediately follows, that the condition
ıEŒ� � D 0 is equivalent to the condition that all matrix elements of OH between �
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and one-particle-one-hole excitations vanish:

ıEŒ� � D 0 ” h�phj OHj� i D 0 for all �ph : (2.86)

This is Brillouin’s Theorem.
Brillouin’s Theorem leads directly to a set of equations for the “best” Slater

determinant. With the Hamiltonian (2.53) as a sum of one-body and two-body
operators and the formulae (2.74), (2.76) for its matrix elements with one-particle-
one-hole excitations, we have

h pj Op2
2�

C OVj hi C
NX

iD1



h i pj OWj i hi � h i pj OWj h ii

�
D 0 : (2.87)

The whole left-hand side of (2.87) can be interpreted as the matrix element of an
effective one-body Hamiltonian Oh� between the single-particle state  p, which is
unoccupied in � , and the single-particle state  h, which is occupied in � . The
condition ıEŒ� � D 0 is fulfilled if the one-body operator Oh� , which itself depends
on � , has no non-vanishing matrix elements between single-particle states which
are occupied in � and single-particle states which are unoccupied in � . A sufficient
(but not necessary) condition is that the one-body operator Oh� be diagonal in the
single-particle states  1; : : : ;  N ; : : : ;  p; : : : :

h ˛j Op2
2�

C OVj ˇi C
NX

iD1



h i ˛j OWj i ˇi � h i ˛j OWj ˇ ii

�

D h ˛jOh� j ˇi D "˛ı˛;ˇ : (2.88)

Now  ˛ and  ˇ are any occupied or unoccupied single-particle states, but the sum
in (2.88) runs only over the single-particle states occupied in � ,  1; : : : ;  N . These
are the Hartree-Fock equations.

The one-body Hamiltonian Oh� contains various contributions:

Oh� D Op2
2�

C OV C OWd � OWex : (2.89)

The kinetic energy Op2=.2�/ and the one-body potential OV come from the one-
body part of the N-electron Hamiltonian OH and do not depend on the Slater
determinant � . The first terms in the bracket following the summation sign
in (2.88) constitute the direct potential OWd, which is defined by its one-body matrix
elements

h ˛j OWdj ˇi D
NX

iD1
h i ˛j OWj i ˇi : (2.90)
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For the two-body interaction (2.55) without spin-dependent corrections, OWd is
simply a local potential depending on the spatial coordinate r:

OWd � Wd.r/ D
NX

iD1
h ij e2

jr � r0j j ii

D
Z

dr0
NX

iD1

X
ms

j i.r0;ms/j2 e2

jr � r0j : (2.91)

The integrand in (2.91) contains the electrostatic two-body interaction e2=jr � r0j
multiplied by the single-particle density % at the position r0:

%.r0/ defD h� j
NX

iD1
ı.r0 � ri/j� i D

NX
iD1

X
ms

j i.r0;ms/j2 : (2.92)

Thus Wd.r/ is the electrostatic potential due to the N electrons of the Slater
determinant � .

The second terms in the bracket following the summation sign in (2.88) yield
the exchange potential OWex. It is also a one-body operator defined by its matrix
elements,

h ˛j OWexj ˇi D
NX

iD1
h i ˛j OWj ˇ ii ; (2.93)

but it has the much more complicated form of a nonlocal potential. The action of
such a nonlocal potential on a single-particle wave function  .r;ms/ is determined
by an integral kernel Wex.r;msI r0;m0

s/:

OWex .r;ms/ D
Z

dr0X
m0

s

Wex.r;msI r0;m0
s/ .r

0;m0
s/ : (2.94)

Writing out the two-body matrix elements on the right-hand side of (2.93) shows
that the integral kernel in (2.94) corresponds to

Wex.r;msI r0;m0
s/ D

NX
iD1

 �
i .r

0;m0
s/

OW i.r;ms/ : (2.95)
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If we neglect momentum-dependent corrections and take OW simply to be the
electrostatic repulsion (2.55), then

Wex.r;ms; r0;m0
s/ D

NX
iD1

 i.r;ms/
e2

jr � r0j 
�
i .r

0;m0
s/

D ıms;m0

s

NX
iD1

ıms;msi
 i.r/

e2

jr � r0j 
�
i .r

0/ : (2.96)

On the right-hand side of (2.96) we assumed that the single-particle states  i each
correspond to a well defined spin state,  i.r;ms/ D  i.r/�msi

(compare (1.341)).

When we calculate the expectation value of OWd � OWex for a given single-particle
state  j occupied in � , the two contributions corresponding to i D j cancel, leaving

h jj OWd � OWexj ji D
X
i¤j



h i jj OWj i ji � h i jj OWj j ii

�
: (2.97)

Thus a part of the exchange potential just cancels the unphysical self-energies
h i ij OWj i ii in the contribution of the direct potential.

The Hartree-Fock equations (2.88) replace the N-electron problem by a one-
body problem characterized by the one-body Hamiltonian Oh� (2.89). But Oh� still
depends on the Slater determinant � , which is to be determined by solving
the Hartree-Fock equations. Thus the Hartree-Fock method involves a problem
of self-consistency, which is usually solved iteratively. We start with a Slater
determinant �0, diagonalize the one-body Hamiltonian Oh�0 defined by the single-
particle states occupied in �0, obtain a new set of single-particle states and a
new Slater determinant �1, diagonalize Oh�1 obtain �2, etc., until the procedure
reaches convergence. A widespread simplification of this unrestricted Hartree-Fock
procedure is the restricted Hartree-Fock procedure, in which we assume that the
single-particle wave functions in each iteration step are eigenfunctions of the single-
particle orbital angular momentum,

 i.r;ms/ D �
.l/
i .r/

r
Yl;m.�; �/�msi

; (2.98)

and that all radial wave functions in a subshell are identical. The Hartree-Fock
equations can then be reduced to a set of radial equations for the determination
of the radial wave functions �.l/i in each occupied subshell.

In the Hartree-Fock method, the variational method doesn’t lead to diagonaliza-
tion of a reduced Hamiltonian in a subspace of Hilbert space (compare Sect. 1.6.2).
The reason for this is that the set of variational wave functions, i.e. of Slater
determinants, is not a subspace which is closed with respect to linear superposition;
a sum of Slater determinants need not itself be a Slater determinant. Consequently,
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two different Slater determinants which solve the Hartree-Fock equations (for the
same values of the good quantum numbers of the system) need not be diagonal in OH.
Only for the ground state (of a given symmetry) do we know that the Hartree-Fock
energy EŒ�HF� D h�HFj OHj�HFi is an upper bound for the exact energy eigenvalue.

The Hartree-Fock energy EŒ�HF� is not identical to the sum of single-particle
energies "i of the occupied states, as obtained by solving the Hartree-Fock equa-
tions (2.88). This is because the summation of the single-particle energies counts the
contribution of the two-body interaction between electron pairs twice. With (2.73)
and (2.75) we have

h�HFj OHj�HFi D
NX

iD1
h ij Op2

2�
C OVj ii

C1

2

NX
i;jD1



h i jj OWj i ji � h i jj OWj j ii

�
(2.99)

D
NX

iD1
"i � 1

2

NX
i;jD1



h i jj OWj i ji � h i jj OWj j ii

�
:

In general the final Hartree-Fock wave function is not a single Slater determinant,
but a sum of several Slater determinants each containing the same occupied radial
single-particle states and whose spin and angular parts are coupled to good quantum
numbers of the total angular momentum and perhaps also of the total orbital angular
momentum and the total spin (compare Sect. 2.2.4).

For lighter atoms and ions, the effects of relativistic corrections to the non-
relativistic Schrödinger equation are small and can be treated in first-order per-
turbation theory starting from the Hartree-Fock wave function. For heavier atoms
and ions the effective fine-structure constant Z˛fs � Z=137 is no longer such a
small number and, as Z becomes larger, perturbation theory becomes increasingly
inadequate for describing relativistic corrections. One way of improving the descrip-
tion of relativistic effects is to replace the kinetic energy Op2=.2�/ in the one-body
Hamiltonian (2.89) by Dirac’s Hamiltonian (2.17) for a free particle:

OhD
� D c ˛� Op C ˇ�c2 C OV C OWd � OWex : (2.100)

In this way, relativistic corrections to the one-electron problem are included
consistently (cf. Sect. 2.1.4). The relativistic treatment of the two-body interaction
is much more difficult, because the picture of a heavy resting mass as origin of the
static potential only holds for the attraction of the electrons by the atomic nucleus
(compare Sect. 2.1.3) and not for the interaction between two electrons. In practice
the potentials OWd and OWex are initially defined via the static interaction (2.55).
Retardation effects due to the fact that all interactions can propagate no faster than
the speed of light are subsequently treated with perturbative methods. The Dirac-
Fock method consists in looking for self-consistent eigenfunctions of the one-body
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Hamiltonian (2.100). For radially symmetric potentials this means self-consistently
solving the radial Dirac equation instead of the radial Schrödinger equation.

2.3.2 Correlations and Configuration Interaction

The Hartree-Fock method (or the Dirac-Fock method) yields the best N-electron
wave function compatible with the picture of N independent electrons. In order
to account for correlations, which go beyond this picture, we have to admit
variational wave functions which are more general than single Slater determinants.
An obvious ansatz for a correlated N-electron wave function is a sum of NS Slater
determinants �� , which may include various different N-electron configurations
(with the same values of the good quantum numbers):

 D
NSX
�D1

c��� : (2.101)

Effects of configuration interaction are included if we diagonalize the N-electron
Hamiltonian in the subspace spanned by the �� in Hilbert space. This corresponds
to a variational calculation in which the mixing coefficients c� in (2.101) are the
variational parameters (compare Sect. 1.6.2). In the multi-configurational Hartree-
Fock method (MCHF) the energy expectation value EŒ � is minimized with respect
to variations both of the coefficients c� in (2.101) and of the single-particle states
in the Slater determinants �� . If the sum in (2.101) includes enough terms, this
procedure can in principle approximate the exact solution to any accuracy, because
every totally antisymmetric N-electron wave function can be written as a sum of
Slater determinants. In practice of course, the MCHF problem is most readily solved
if not too many terms are included in the sum in (2.101).

Configuration interaction calculations can also be performed with the Slater
determinants of the Dirac-Fock method. The corresponding generalization of the
MCHF method is called multi-configurational Dirac-Fock method (MCDF) [IL05].

If the number of configurations included in the ansatz (2.101) is sufficiently
large, then a simple diagonalization of the Hamiltonian in the subspace spanned
by the �� can yield a good approximation of the exact eigenstates, even without
explicit consideration of self-consistency as in the MCHF method. If we start
from a complete basis of single-particle states, then the exact eigenstates can in
principle be approximated within arbitrary accuracy in this way. Such large scale
diagonalizations are quite generally called “configuration interaction calculations”
(CI). Usually various many-electron configurations are constructed from single-
particle wave functions which are chosen so that the corresponding one-body and
two-body matrix elements are not too difficult to calculate. The N-electron energies
and eigenfunctions are obtained by diagonalizing the Hamiltonian matrix which
now may have quite large dimensions—typically up to many thousands.
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Table 2.1 Ground state energies (in atomic units) for the helium iso-electronic sequence

EHF EMCHF Enr Enr � EHF EDF � EHF Eexp

H� �0:487927 �0:527510 �0:527751 �0:039824 < 0:00001 �0:52776
He �2:861680 �2:903033 �2:903724 �0:042044 �0:00013 �2:90378
LiC �7:236416 �7:279019 �7:279913 �0:043497 �0:00079 �7:28041
BeCC �13:611300 �13:654560 �13:655566 �0:044266 �0:00270 �13:65744
B3C �21:986235 �22:029896 �22:030972 �0:044737 �0:00692 �22:03603
C4C �32:361194 �32:405123 �32:406247 �0:045053 �0:01480 �32:41733
N5C �44:736163 �44:780287 �44:781445 �0:045282 �0:02804 �44:80351
O6C �59:111141 �59:155411 �59:156595 �0:045454 �0:04865 �59:19580
F7C �75:486124 �75:530508 �75:531712 �0:045588 �0:07898 �75:59658
Ne8C �93:861111 �93:905586 �93:906807 �0:045696 �0:12169 �94:00835

A frequent choice for the spatial part of the single-particle wave functions is
based on expansions in Slater-type orbitals: �l.r/ / rm exp .��r/. The coefficients
in such expansions as well as the coefficients � in the exponents are treated as vari-
ational parameters. Another basis of single-particle states, which are characterized
by their similarity to the eigenfunctions (1.139) of the pure Coulomb potential, is
the Sturm-Liouville basis. The single-particle states in this basis have the same form
as in (1.139), but the number n in the argument of the Laguerre polynomial and
the exponential function is replaced by a constant integer n0 rather than varying
from shell to shell. In contrast to the pure Coulomb bound states (1.139), the Sturm-
Liouville states form a complete set, because of the completeness of the Laguerre
polynomials. Furthermore, the single-particle states with n D n0 are identical to
the eigenstates of the pure Coulomb potential with this principle quantum number.
On the other hand, in a Sturm-Liouville basis, single-particle states with different
principle quantum numbers are no longer orthogonal.

As simplest example of a many-electron system Table 2.1 summarizes the ground
state energies of the two-electron helium iso-electronic sequence from H� to Ne8C
as they are obtained in various approximations, together with the experimental
values Eexp [BS75]. The first column contains the Hartree-Fock energies2 [Fro77,
Fro87, SK88] and the second column contains the results of an MCHF calculation
[SK88]. The third column contains the “exact” results Enr within non-relativistic
quantum mechanics, as obtained by Pekeris [Pek58] in a very clever CI calculation
as early as 1958—a time when computer capacity was far less abundant than

2The fact that the energy of the H� ion in the first column of Table 2.1 lies above the energy �0:5
of the H atom shows a weakness of the restricted Hartree-Fock method, which was used here and
in which both electrons were restricted to having the same spatial part of the single-particle wave
function. In an unrestricted Hartree-Fock calculation the Hartree-Fock energy can at least come
arbitrarily close to the value �0:5. To see this construct a two-electron Slater determinant in which
one occupied single-particle state is the ground state of atomic hydrogen and the other is a very
distant almost plane wave with (almost) vanishing wave number.
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today. The difference between the exact ground state energy and the Hartree-Fock
energy (fourth column) is usually called the correlation energy; it is a measure of
the deviation of the exact (correlated) two-body wave function from the Hartree-
Fock configuration. The absolute magnitude of the correlation energy changes little
within the iso-electronic sequence, because the electron-electron interaction doesn’t
depend on the charge number Z. On the other hand, the one-body contribution to
the total binding energy increases rapidly with increasing Z, and so the relative
importance of the correlations decreases with increasing charge number in the iso-
electronic sequence. An estimate of the magnitude of relativistic corrections can
be derived from the fifth column which lists the differences between the energies
obtained in the Dirac-Fock and Hartree-Fock methods. These differences are of
the same order of magnitude as the differences between the exact non-relativistic
results (column 3) and the experimental data (column 6). At this level of accuracy
we must however also consider the effects of radiative corrections which follow
from a more sophisticated description of the atoms and ions in the framework of
quantum electrodynamics. For precision calculations of the various corrections in
the two-electron system see e.g. [KH86, Dra88, Dra01].

The art of solving the Hartree-Fock equations has been driven to a high degree
of perfection [Fro77, Fro87, Fro94]. The same is true for high-dimensional CI
calculations for the determination of energies and wave functions of low-lying states
[Sch77, Fro94]. A thorough description of the details of such calculations for the
structure of atomic many-body systems can be found in the book by Lindgren und
Morrison [LM85]. (See also [CO80].)

In contrast to the substantial and comprehensive body of knowledge which
has accumulated during many years of successful investigations of the electronic
structure of low-lying states, our understanding of highly excited atomic states is
still very incomplete. Only in the situation that just one electron is highly excited
with the other electrons forming a low-lying state of the atomic (or ionic) “core”,
can we make far reaching and general statements concerning the structure of atomic
spectra and wave functions. This case, which largely corresponds to a one-electron
problem, is treated in detail in Chap. 3. The systematic understanding of the
spectrum of an atom or ion already becomes a very difficult problem if two electrons
are highly excited. For a detailed description of the problem of two or more highly
excited electrons, see [Fan83] or Part D of the book by Fano and Rau [FR86]. The
complications involved can already be appreciated by studying high doubly-excited
states in the helium atom, see Sect. 5.3.5 (c) in Chap. 5.

2.3.3 The Thomas-Fermi Model

One of the simplest models of an N-electron atom or ion is the Thomas-Fermi model,
which was developed 90 years ago [Tho27, Fer28]. The model is based on the single-
particle density of a degenerate free-electron gas, in which all single-particle states
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up to the Fermi energy,

EF D „2
2�

k2F ; (2.102)

are occupied and all single-particle states with higher energies are unoccupied. In
6N-dimensional phase space, the occupied single-particle states fill a volume which
is the product of the spatial volume Vs and the volume 4�

3
.„kF/

3 of the Fermi sphere
in momentum space. A volume of Vs

4�
3
.„kF/

3 is thus filled in phase space, and each
cell of size h3 D .2�„/3 can accomodate two single-particle states—one with spin
up and one with spin down. The number N of occupied one-electron states is thus
(see also Problem 2.4)

N D 2

.2�„/3Vs
4�

3
.„kF/

3 D k3F
Vs

3�2
: (2.103)

This gives us a relation between the density % D N=Vs and the Fermi wave
number kF:

kF D .3�2%/1=3 : (2.104)

In the Thomas-Fermi model we describe an atom by a radially symmetric single-
particle potential V.r/ for the electrons, and we let the Fermi momentum „kF

depend on the radial distance r, just like the semiclassical momentum in the WKB
approximation (1.286) (see Fig. 2.6):

E0 D „2
2�

k2F.r/C V.r/ ; (2.105)

where E0 � 0 is the total energy of the least bound electron. In this picture the
kinetic energy of the least bound electron is

T.r/ D E0 � V.r/ D „2
2�

k2F.r/ ; (2.106)

and it depends on the spatial coordinate r, in analogy to the semiclassical approx-
imation (1.286). The kinetic energy (2.106) of the least bound electron vanishes at
the outer turning point r0 which defines the “edge” of the atom.

We can obtain a differential equation for the single-particle potential V.r/, or
for T.r/, by relating the electrostatic potential �V=e to the sources of charge �e%
(outside of the atomic nucleus at r D 0) via the Poisson equation:

�V D ��T D �4�e2% : (2.107)
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Fig. 2.6 Schematic representation of an atom or ion in the Thomas-Fermi model. All single-
particle states in the single-particle potential V.r/ are occupied up to the energy E0. Locally the
system resembles a degenerate free-electron gas in which the states are occupied up to the Fermi
energy EF D .„2=2�/k2F D E0 � V.r/ D T.r/. The local kinetic energy T.r/ of the least bound
electron vanishes at the outer turning point r0

We can express the density % in terms of kF via (2.104) and in terms of T via (2.106),

% D 1

3�2

�
2�

„2 T

�3=2
; (2.108)

and so we obtain the following differential equation for the function T.r/ (com-
pare (1.70)):

�
d2

dr2
C 2

r

d

dr

�
T D 1

r

d2

dr2
.rT/ D 4e2

3�

�
2�

„2 T

�3=2
: (2.109)

This equation assumes a universal form when we refer the local kinetic energy of
the least bound electron T.r/ to the potential Coulomb energy �Ze2=r due to the
atomic nucleus and introduce the dimensionless Thomas-Fermi function

� D rT

Ze2
: (2.110)

Equation (2.109) thus becomes the Thomas-Fermi equation,

d2�

dx2
D �3=2p

x
; (2.111)
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where x is a dimensionsless length:

x D r

b
; b D aZ � 1

3

�
9�2

128

�1=3
I (2.112)

a D „2=.�e2/ is the Bohr radius. The outer turning point x0 D r0=b is the first zero
of �.x/I� vanishes identically beyond x0.

The boundary condition for the Thomas-Fermi function at x D 0 follows from
the fact that the potential V.r/ in (2.106) is dominated by the attractive Coulomb
potential �Ze2=r near the atomic nucleus r D 0. From (2.110) we get the boundary
condition for �:

�.0/ D 1: (2.113)

The behaviour of �.x/ for small x is in fact [Eng88]:

�.x/
x!0D 1C Bx C 4

3
x3=2 C O

�
x5=2

	
: (2.114)

Since the Thomas-Fermi function � is never zero between x D 0 and the outer
turning point x0 D r0=b, its second derivative (2.111) never vanishes and its first
derivative cannot change sign in this interval. It follows that �.x/ is a monotonically
decreasing function falling from unity at x D 0 to zero at the outer turning point x0.
The gradient at x D 0 is given by the (negative) constant B in (2.114).

The outer boundary condition for the Thomas-Fermi function follows from the
consideration that the integral of the single-particle density from the origin to the
outer turning point must yield the total number N of electrons:

4�

Z r0

0

%.r/r2 dr D N : (2.115)

With (2.108), (2.110) and (2.112) this can be expressed in the dimensionless
quantities:

Z
Z x0

0

Œ�.x/�3=2
p

x dx D N : (2.116)

From the differential equation (2.111) we can replace �3=2 by �00px and formally
integrate (2.116):

N D Z
Z x0

0

x�00 dx D ZŒx�0 � ��x00 : (2.117)
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With �.0/ D 1 and �.x0/ D 0, (2.117) becomes

x0 �
0.x0/ D N � Z

Z
: (2.118)

Since �.x/ is a monotonically decreasing function, the right-hand side of (2.118)
cannot be positive. This means that N cannot be larger than the charge number Z of
the nucleus. For N D Z corresponding to a neutral atom, the outer turning point x0
lies at infinity; the energy E0 in (2.105), (2.106) vanishes and the single-particle
potential is simply (cf. (2.106), (2.110))

V.r/ D �Ze2

r
�0


 r

b

�
: (2.119)

All neutral atoms are described in the Thomas-Fermi model by a universal Thomas-
Fermi function �0 which is shown as the solid line in Fig. 2.7. It is the (unique)
solution of the (2.111) with the boundary conditions that �.0/ D 1 and that the first
zero of � lies at infinity. The gradient at x D 0 in this case is B D �1:588 (see e.g.
[Eng88], p. 65).

Solutions of (2.111) which fall off faster than �0 at x D 0 cut the x-axis at finite
values of x and with finite (negative) gradient. For these solutions the right-hand side
of (2.118) is a finite negative number which corresponds to a positively charged ion,
N < Z. For example: The solution �.x/ starting with a gradient B D �1:608 at
x D 0 already cuts the x-axis at x � 2:9 and the right-hand side is approximately
�1=2. This case corresponds to an ion with half as many electrons as the associated
neutral atom and is shown as the dashed line in Fig. 2.7. Solutions of (2.111) which
fall off more slowly than �0 at x D 0 never reach the x-axis, not even at infinity,

Fig. 2.7 Solutions of the Thomas-Fermi equation (2.111). The solid line shows the case of a
neutral atom N D Z, the dashed line shows an example of a positively charged ion with N � Z=2
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and are not suited for the description of isolated atoms or ions in the Thomas-Fermi
model. The Thomas-Fermi model cannot describe negative ions.

Although the Thomas-Fermi model represents a drastic approximation of the N-
electron problem, it is very useful for describing general trends in the properties of
atoms. Equation (2.112) for example, shows that the behaviour of typical lengths as
a function of charge number Z is given by proportionality to Z�1=3. For a detailed
description of Thomas-Fermi theory in particular and of semiclassical theories in
atomic physics in general see [Eng88].

2.3.4 Density Functional Methods

The one-body contribution EV to the potential energy of N electrons in an external
local potential V.r/ is

EV D h� j
NX

iD1
V.ri/j� i D

Z
V.r/%.r/ dr : (2.120)

EV is a unique function, i.e. a functional, of the single-particle density %.r/,
which is defined quite generally (and not only for Slater determinants) by the first
equation (2.92). The relation (2.120) can be obtained by replacing the V.ri/ in the
matrix element by

R
ı.r � ri/V.r/dr and then pulling the integral over the vector r

out of the matrix element. If we are dealing with Slater determinants, then the direct
part OWd of the two-body interaction (compare (2.91)) contributes a term

Ed D e2

2

Z
dr1

Z
dr2

%.r1/%.r2/
jr1 � r2j (2.121)

to the total energy (compare (2.75)), and this term is also a functional of the single-
particle density %.

Investigating the quite general question whether the energy of an N-electron
system is a functional of the single-particle density leads to a very strong statement
concerning the ground state of an N-electron system. This is the Hohenberg-Kohn
Theorem [HK64, KS65] which states: “For a system of N electrons in an external
potential V.r/ there is a universal functional FŒ%� of the single-particle density %,
which is independent of V and has the property that the expression

EŒ%� D
Z

V.r/%.r/dr C FŒ%.r/� (2.122)
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assumes a minimum for the density corresponding to the ground state of the system,
and the value at this minimum is the correct ground state energy (in this external
potential).”

The first term on the right-hand side of (2.122) is the one-body contribu-
tion (2.120) to the potential energy. The universal functional F in (2.122) contains
a term of the form (2.121) for the direct two-body contribution to the potential
energy. Beyond this it contains a contribution Ekin of the kinetic energy as well
as an “exchange and correlation” term, which collects all those contributions to the
potential energy not already contained in (2.120) or (2.121). The nature of this term
and of the kinetic energy contribution Ekin is in general unknown.

In the simple Thomas-Fermi model where the atom is treated locally as a
degenerate electron gas (Sect. 2.3.3), it is easy to evaluate the kinetic energy as
a functional of the single-particle density: The sum of the kinetic energies of
all occupied single-particle states is equal to the integral of „2k2=.2�/ over the
occupied states in phase space:

TF D 2

.2�„/3Vs 4�

Z kF

0

„3k2 dk
„2k2
2�

D „2
10�2�

Vsk
5
F : (2.123)

The total kinetic energy Ekin is equal to the integral of the kinetic energy density
TF=Vs over the spatial volume of the Thomas-Fermi atom. Inserting the expres-
sion (2.104) for kF yields Ekin as functional of % (in the framework of Thomas-Fermi
model):

.Ekin/TF D „2
10�2�

4�

Z r0

0

Œ3�2%.r/�
5=3

r2 dr : (2.124)

Within the Thomas-Fermi model, the energy as functional of the single-particle
density is thus given by a term of the form (2.120) for the potential energy of the
electrons in the external potential due to the electrostatic attraction by the atomic
nucleus, a term of the form (2.121) for the mutual electrostatic repulsion of the
electrons and the kinetic energy term (2.124). The condition that this functional be
stationary with respect to small variations of the single-particle density actually does
lead to the Thomas-Fermi equation (2.111) [Eng88].

Next to the N-body Schrödinger equation, the Hohenberg-Kohn Theorem offers
an alternative approach to the N-electron problem. Usually one starts with a
physically or pragmatically founded ansatz for the density functional FŒ%.r/�
in (2.122) and tries to minimize the energy EŒ%�. In recent years, density functional
theory has evolved into a sophisticated and powerful tool for accurately calculating
the properties of many-electron systems in physics and chemistry [DG90]. In 1998
Walter Kohn shared the Nobel Prize in Chemistry for the development of this theory.
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2.4 Electromagnetic Transitions

The Hamiltonians (2.1) and (2.7) or (2.47) and (2.53) describe the atomic degrees of
freedom of a one- or many-electron atom (or ion) with and without inclusion of the
atomic nucleus respectively. Such an atomic Hamiltonian OHA possesses a spectrum
of eigenvalues, and the associated eigenstates are solutions of the corresponding
stationary Schrödinger equation. The eigenstates of OHA are usually “seen” by
observing electromagnetic radiation emitted or absorbed during a transition between
two eigenstates. The fact that such transitions occur and that an atom doesn’t
remain in an eigenstate of OHA forever, is due to the interaction between the
atomic degrees of freedom and the degrees of freedom of the electromagnetic field.
A Hamiltonian OH able to describe electromagnetic transitions must thus account not
only for the atomic degrees of freedom, but also for the degrees of freedom of the
electromagnetic field. An eigenstate of the atomic Hamiltonian OHA is in general not
an eigenstate of the full Hamiltonian OH; a system which is in an eigenstate of OHA at
a given time will evolve as prescribed by the time evolution operator (1.40), (1.41)
containing the full Hamiltonian OH, and may be in a different eigenstate of OHA

at a later time. If we look at the interaction between atom and electromagnetic
field as a perturbation of the non-interacting Hamiltonian, then this perturbation
causes time dependent transitions between the unperturbed eigenstates, even if the
perturbation itself is time independent. Such transitions can be generally described
in the framework of time-dependent perturbation theory which is expounded in the
following section.

2.4.1 Transitions in General, “Golden Rule”

Consider a physical system which is described by the Hamiltonian

OH D OH0 C OW ; (2.125)

but which is in an eigenstate �i of the Hamiltonian OH0 at time t D 0. This
Hamiltonian OH0 is assumed to differ from the full Hamiltonian OH by a “small
perturbation” OW. Even if OH0 isn’t the exact Hamiltonian, its (orthonormalized)
eigenstates �n,

OH0�n D En�n ; (2.126)

still form a complete basis in which we can expand the exact time-dependent wave
function  .t/:

 .t/ D
X

n

cn.t/�n exp

�
� i

„Ent

�
: (2.127)
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The coefficients cn.t/ in this expansion are time dependent, because the time
evolution of the eigenstates of OH0 is, due to the perturbation OW, not given by the
exponential functions exp Œ�.i=„/Ent� alone.

The initial condition that the system be in the eigenstate �i of OH0 at time t D 0 is
expressed in the following initial conditions for the coefficients cn.t/:

cn.t D 0/ D ın;i : (2.128)

At a later time t, the probability for finding the system in the eigenstate �f of OH0 is:

wi!f.t/ D jcf.t/j2: (2.129)

In order to calculate the coefficients cn.t/ we insert the expansion (2.127) in the
time-dependent Schrödinger equation (1.38) and obtain, using (2.125), (2.126),

i„
X

n

�n

�
dcn

dt
� i

„Encn

�
exp

�
� i

„Ent

�

D
X

n

cn exp

�
� i

„Ent

�
.En�n C OW�n/ : (2.130)

If we multiply from the left with the bra h�mj; (2.130) becomes a system of coupled
ordinary differential equations for the coefficients cn.t/:

i„dcm

dt
D
X

n

Wmn cn exp

�
i

„ .Em � En/t

�
; (2.131)

with

Wmn D h�mj OWj�ni : (2.132)

We can formally integrate the equations (2.131):

cm.t/ D cm.0/C 1

i„
Z t

0

dt0
X

n

Wmn exp

�
i

„ .Em � En/t
0
�

cn.t
0/

D cm.0/C 1

i„
Z t

0

dt0
X

n

Wmn exp

�
i

„ .Em � En/t
0
�

cn.0/

C 1

.i„/2
Z t

0

dt0
X

n

Wmn exp

�
i

„ .Em � En/t
0
�

�
Z t0

0

dt00
X

l

Wnl exp

�
i

„.En � El/t
00
�

cl.t
00/ ;

etc: (2.133)
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To obtain the second equation (2.133) we inserted the expression given by the first
equation for cn.t0/ in the integral (in the first equation). To obtain higher terms insert
a similar expression for cl.t00/ in the integral in the last row.

To first order in the matrix elements of the perturbing operator OW, the coefficients
cn.t/ are given by the second row in (2.133). Inserting the initial conditions (2.128)
we obtain an expression for the transition amplitude cf.t/ to the final state �f:

cf.t/ D 1

i„
Z t

0

dt0 Wfi exp

�
i

„ .Ef � Ei/t
0
�
: (2.134)

If the perturbing operator OW, and hence the matrix element Wfi, do not depend on
time, we can integrate (2.134) directly and obtain

jcf.t/j2 � wi!f.t/ D jWfij2 sin2Œ.Ef � Ei/t=.2„/�
Œ.Ef � Ei/=2�

2
: (2.135)

For large times t, (2.135) becomes

wi!f.t/ � jWfij2 2�„ t ı.Ef � Ei/ : (2.136)

This means that for large times t the transition probability per unit time, Pi!f,
becomes independent of t:

Pi!f D 1

t
wi!f.t/ D 2�

„ jWfij2 ı.Ef � Ei/ : (2.137)

It makes sense to assume that the diagonal matrix elements h�ij OWj�ii and
h�fj OWj�fi vanish, because a perturbing operator diagonal in the unperturbed basis
doesn’t cause transitions. Then Ei and Ef are not only the eigenvalues of the
unperturbed Hamiltonian OH0 in the initial and final state respectively, but they are
also the expectation values of the full Hamiltonian OH D OH0 C OW in the respective
states. The delta function in the formula (2.137) for the transition probabilities
expresses energy conservation in the long-time limit.

In many practical examples (such as the electromagnetic decay of an atomic
state) the energy spectrum of the final states of the whole system (in this case of atom
plus electromagnetic field) is continuous. In order to obtain the total probability per
unit time for transitions from the initial state �i to all possible final states �f we must
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integrate over an infinitesimal energy range around Ei:

Pi!f D lim
"!0

Z EiC"

Ei�"
2�

„ jh�fj OWj�iij2 ı.Ef � Ei/%.Ef/ dEf (2.138)

or rather,

Pi!f D 2�

„ jh�fj OWj�iij2 %.Ef D Ei/ : (2.139)

Here %.Ef/ is the density of final states.
The formula (2.139) is Fermi’s famous Golden Rule; it gives the probability per

unit time for transitions caused by a time-independent perturbing operator in first-
order perturbation theory.

The precise definition of the density %.Ef/ of final states �f depends on the
normalization of the final states. Consider for example a free particle in a one-
dimensional box of length L. The number of bound states (normalized to unity)
per unit energy is (see Problem 2.5)

%L.E/ D L

2�

� „2
2�

E

��1=2
: (2.140)

The bound states normalized to unity have the form
p
2=L sin kx, where

E D „2k2=.2�/. Matrix elements like jWfij2 contain the square of the factorp
2=L, so the product jWfij2%L.E/ no longer depends on the length L of the box. If

we normalize the wave functions �f so that they are simply a sine with factor unity,
then the density % must obviously be

%.E/ D 1

�

� „2
2�

E

��1=2
: (2.141)

The amplitude of the wave functions and the density of states % are now independent
of L, and there is a smooth transition to the continuum case L ! 1. If we work
with (unbound) wave functions normalized in energy,

˝
�f.E/j�f.E

0/
˛ D ı.E � E0/ ; (2.142)

their amplitude is a sine with a factor
p
2�=.�„2k/ D Œ2�=.�2„2E/�1=4 (see (1.151)

in Sect. 1.3.5), and the correct density of states is

%.E/ D 1 : (2.143)

When applying the Golden Rule (2.139) we have to take care that the density of the
final states and their normalization are chosen consistently.
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The Feshbach resonances discussed in Sect. 1.5.2 can also be described in the
framework of time-dependent perturbation theory. If we regard the equations (1.217)
without channel coupling as the (time-independent) Schrödinger equation with
the unperturbed Hamiltonian OH0 and the coupling potentials V1;2;, V2;1 as the
perturbation, then the transition probability per unit time from a bound initial state
 1 D 0;  2 D �0.r/ to an unbound final state  1 D �reg.r/;  2 D 0 is, according
to the Golden Rule,

P D 2�

„ j ˝�0jV2;1j�reg
˛ j2%.E/ : (2.144)

Since the density of final states is unity according to (2.143), the width � given
by (1.232) is related to P by

P D �

„ ; or
1

P
D � D „

�
: (2.145)

P describes the time rate of change (decrease) of the occupation probability wi of
the initial state,

dwi

dt
D �Pwi ; (2.146)

which corresponds to an exponential decay law:

wi.t/ D wi.0/e
�t=� : (2.147)

The time � is the lifetime of the bound initial state �0 with respect to the decay
into the continuum which is mediated by the coupling potential V2;1. The second
equation (2.145) states that the width � and the lifetime � of a resonance fulfill a
relation similar to the uncertainty relation. Note that the lifetime of the resonant state
is of the same order of magnitude as the time delay suffered during scattering of an
almost monochromatic wave packet whose (mean) energy lies near the resonance
energy, see (1.240) in Sect. 1.5.2.

2.4.2 The Electromagnetic Field

Classically we describe the electromagnetic field with the help of the scalar
potential ˚.r; t/ and the vector potential A.r; t/, which together define the electric
field E.r; t/ and the magnetic field B.r; t/ (see any textbook on electrodynamics, e.g.
[Jac98]):

E D �r˚ � 1

c

@A
@t
; B D r � A : (2.148)
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c is the speed of light (compare Sect. 2.1.3). The potentials are not unique and
depend on the choice of gauge. The fields E and B remain unchanged when we
replace the potentials˚ and A by new potentials˚ 0 and A0 which are related to the
original potentials by a gauge transformation:

A0 D A C r� ; ˚ 0 D ˚ � 1

c

@�

@t
: (2.149)

� is a scalar function of r and t. In the Coulomb gauge, which is also called radiation
gauge or transverse gauge, we have

r�A D 0 ; �˚ D �4�% ; (2.150)

where % is the electric charge density. If there are no sources of charge the scalar
potential vanishes in the Coulomb gauge. A physical system of electrically charged
particles in an electromagnetic field is described by a Hamiltonian in which the
kinetic energy is defined via the kinetic momenta Opkin D Op � .q=c/A while the
potential energy contains the scalar potential ˚ . When the electromagnetic field is
included, the Hamiltonian for a system of N electrons with charge q D �e and
mass � is thus

OH D
NX

iD1

 
ŒOpi C .e=c/ A.ri; t/�

2

2�
� e˚.ri; t/

!
C OV : (2.151)

Since the Hamiltonian (2.151) contains the potentials A and ˚ , and not the physical
fields (2.148), it depends on the particular choice of gauge, as do its absolute
energy eigenvalues. Observable quantities such as energy differences and transition
probabilities are however independent of the choice of gauge.

The interaction of an atom or ion with an external electromagnetic field is most
easily described by treating the field classically and inserting the corresponding
potentials A.ri; t/, ˚.ri; t/ as functions in the Hamiltonian (2.151). This procedure
cannot however account for the observed phenomenon of spontaneous emission,
in which an excited atom (or ion) emits a photon in the abscence of an external
field. For a consistent description of the observed electromagnetic transitions
including spontaneous emission, we must treat the electromagnetic field quantum
mechanically. The full Hamiltonian then contains an interaction between atom
and field which causes transitions between the eigenstates of the non-interacting
Hamiltonian as described in Sect. 2.4.1, even if there is initially no field present.

To obtain a prescription for the quantization of the electromagnetic field we study
the source-free field in a vacuum. As can be derived from Maxwell’s equations, the
vector potential A.r; t/ fulfills the free wave equation,

�
@2

@x2
C @2

@y2
C @2

@z2

�
A D 1

c2
@2

@t2
A : (2.152)
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A general solution of (2.152) can be obtained by superposing plane wave solutions,
which we shall mark with a mode label 
. Each mode 
 is characterized by a wave
vector k
 pointing in the direction of propagation of the plane wave, by an angular
frequency !
 D cjk
j and by a polarization vector �
 of unit length:

A
 e�i!
t D L�3=2 �
 ei.k
	r�!
 t/ : (2.153)

Many relations are easier to formulate if we discretize the continuous distribution
of wave vectors. To this end we think of the three-dimensional space as divided into
large but finite cubes of side length L and require periodic boundary conditions for
the plane waves. With the normalizing factor L�3=2 on the right-hand side of (2.153),
the integral of the square of the amplitude over one such cube is unity for each
mode 
:

Z
L3

d3r jA
.r/j2 D 1 : (2.154)

In the Coulomb gauge (2.150) it follows from r�A D 0 that

�
 �k
 D 0 (2.155)

in each mode 
. To each wave vector k
 there are thus only two independent
directions of polarization and both are perpendicular to the direction of propagation.
A real polarization vector �
 implies linearly polarized light, with the electric field
vector oscillating in the direction defined by �
. Two vectors �
1 and �
2 can
serve as a basis for the possible states of polarization with the electric field vector
perpendicular to the direction of propagation. Polarization vectors with complex
components can be used to account for phase differences in the field components.
For example, for a monochromatic wave travelling in the direction of the positive
z-axis, the polarization vector

�
1 � �
.r/

 D 1p

2

0
@1i
0

1
A (2.156)

describes right-handed circular polarization, while

�
2 � �
.l/

 D 1p

2

0
@ i
1

0

1
A (2.157)

describes left-handed circular polarization. Note that the two polarization vec-
tors (2.156) and (2.157) are related by

�
2 D ek
 � .�
1 /
� ; (2.158)
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where ek
 is the unit vector in the direction of k
. Equation (2.158) represents an
appropriate way of defining a second polarization vector orthogonal to a complex
first one.3

The general (real) vector potential for a source-free electromagnetic field in a
vacuum is a real superposition of the plane waves (2.153),

A.r; t/ D
X



.q
A


e�i!
t C q�


A�

eCi!
t/ ; (2.159)

and the associated electric field E and magnetic field B are

E D �1
c

@A
@t

D i

c

X



!
.q
A
e�i!
 t � q�

A�


eCi!
t/ ;

B D r � A D i
X



k
 � .q
A
e�i!
t � q�

A�


eCi!
t/ : (2.160)

The energy E of the electromagnetic field is obtained by integrating the energy
density 1

8�
.E2 C B2/ over a cube of length L:

E D 1

8�

Z
L3

d3r .E2 C B2/ D 1

2�c2
X



!2
q�

q
 : (2.161)

Here we used the fact that integrals like
R

L3 d3r exp .2ik
� r/ with oscillating
integrands vanish because of the periodic boundary conditions.

We obtain a more familiar form of (2.161) if we replace the mode amplitudes q

and q�


 by the real variables

Q
 D 1p
4�c2

.q�

 C q
/ ; P
 D i!
p

4�c2
.q�

 � q
/ ; (2.162)

namely:

E D
X



1

2
.P2
 C !2
Q2


/ : (2.163)

This form underlines the similarity between the source-free electromagnetic field
and a set of uncoupled harmonic oscillators. The correspondence of the free
electromagnetic field and a set of harmonic oscillators is apparent in the energy
spectrum. To each mode 
 there belongs a sequence of equidistant energies n
„!
,
n
 D 0; 1; 2; : : : representing the contribution of this mode to the total energy. In
the case of the electromagnetic field, n
 is the number of photons in the mode 
;

3Vectors a, b with complex components are orthogonal when a�

x bx C a�

y by C a�

z bz D 0.
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for the set of oscillators, n
 is the quantum number determining the excitation of the
oscillator in the mode 
.

To quantize the electromagnetic field we interpret the variables P
 and Q
 as
quantum mechanical momentum and displacement operators for the oscillators in
the various modes 
. So the Hamiltonian OHF for the field is

OHF D
X



1

2
. OP2
 C !2


OQ2

/ : (2.164)

The eigenstates of this Hamiltonian are labelled by the occupation numbers
n
1 ; n
2; : : : in the individual modes.

Eigenstates and eigenvalues of the Hamiltonian (2.164) can be derived elegantly
if we introduce the operators

Ob�
 D .2„!
/� 1
2 .!
 OQ
 � i OP
/ �

r
!


2�„c2
q�

 ;

Ob
 D .2„!
/� 1
2 .!
 OQ
 C i OP
/ �

r
!


2�„c2
q
 ; (2.165)

as is usually done for ordinary harmonic oscillators. (See also Sect. 5.2.2.) The com-
mutation relations for the operators Ob�
, Ob
 follow from the canonical commutation
relations (1.36) for the displacement and momentum operators OQ
, OP
:

ŒOb
; Ob�

0 � D ı
;
0 : (2.166)

Ob�
 and Ob
 are creation and annihilation operators for photons which respectively
raise or lower the occupation number in the mode 
 by unity (see Problem 2.6):

Ob�
j: : : ; n
; : : :i D
p

n
 C 1 j : : : ; n
 C 1; : : :i ;
Ob
j : : : ; n
; : : :i D p

n
 j : : : ; n
 � 1; : : :i : (2.167)

The operator ON
 D Ob�
 Ob
 counts the number of quanta (photons) in the mode 
:

ON
 j: : : ; n
; : : :i D n
 j: : : ; n
; : : :i ; (2.168)

and the Hamiltonian for the whole electromagnetic field is

OHF D
X



„!
 Ob�
 Ob
 : (2.169)

Going from (2.164) to (2.169) involves a renormalization of the Hamiltonian
which consists in neglecting the constant but infinite contribution of the zero-point
energies of all modes

P

 „!
=2. The quantization prescription used above isn’t
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unique anyway. In the classical formula (2.161) for the energy we could have
changed the order of q�


 and q
 and inserting the quantum operators (2.165) would

then have given a Hamiltonian
P


 „!
 Ob
 Ob�
 which, because of (2.166), differs
from (2.169) by twice the total zero-point energy,

P

 „!
.

We obtain a quantum mechanical operator corresponding to the classical vector
potential A.r; t/ by expanding the latter according to (2.159) and identifying the
amplitudes q
 and q�


 with the annihilation and creation operators of photons Ob

and Ob�
 according to (2.165). The time dependence of the combinations Ob
e�i!
t

and Ob�
 eCi!
t appearing in this procedure is just that describing the evolution of the
field operators in the Heisenberg representation (cf. (1.45) in Sect. 1.1.3). To see this
recall that with UF.t/ D expŒ�.i=„/ OHFt� we have

OU�
F.t/Ob
 OUF.t/ D Ob
 e�i!
t ; OU�

F.t/Ob�
 OUF.t/ D Ob�
 eCi!
t : (2.170)

We have thus constructed the operator OAH D OU�
F.t/ OA OUF.t/ in the Heisenberg

representation. To get the corresponding operator OA for the vector potential in
the Schrödinger representation we just leave away the oscillating time-dependent
factors e�i!
t and eCi!
t:

OA.r/ D
X



s
2�„c2

!

.A
 Ob
 C A�



Ob�
/ : (2.171)

Here the functions A
 and A�

 are the spatial parts of the plane waves (2.153),

normalized to a cube of length L, together with an appropriate polarization vector,
e.g.:

A
.r/ D L�3=2�
 eik
	r : (2.172)

Later on we shall apply the Golden Rule (2.139) to electromagnetic transitions,
and for this purpose it is important to know the density of photon states. The plane
waves (2.153) which fit into a cube of length L (with periodic boundary conditions)
have wave numbers given by k D .nx; ny; nz/2�=L (with integer nx; ny and nz).
The density of possible wave vectors is thus .2�=L/�3. If we ask for the number
of photon states of a given polarization whose wave vector has an absolute value
between k and k Cdk and a direction in the solid angle d˝ , then we obtain a density
.L=2�/3k2d˝ . In reference to the energy „! D „ck, the density %L of photon states
of given polarization is given by,

%Ld˝ D
�

L

2�

�3 k2

„c
d˝ D

�
L

2�

�3
.„!
/2
.„c/3

d˝ : (2.173)
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2.4.3 Interaction Between Atom and Field

Multiplying out the contributions in the Hamiltonian (2.151) for an N-electron atom
(or ion) we obtain

OH D
NX

iD1

Op2i
2�

C OV C e

2�c

NX
iD1

ŒOpi �A.ri; t/C A.ri; t/� Opi�

C e2

2�c2

NX
iD1

A.ri; t/
2 � e

NX
iD1

˚.ri; t/ : (2.174)

For classical fields the potentials A.r; t/ and ˚.r; t/ are real-valued functions. For
a fully quantum mechanical treatment of a system consisting of an atom and an
electromagnetic field we need a Hamiltonian encompassing the atomic degrees of
freedom and the degrees of freedom of the field. To this end we add the Hamil-
tonian (2.169) describing a free electromagnetic field to the expression (2.174);
the interaction between atom and field is taken into account by replacing the
potentials in (2.174) by the corresponding operators. For a source-free field in the
radiation gauge we set ˚ D 0, while OA is given by the expression (2.171). The full
Hamiltonian thus contains a non-interacting part OH0 for the degrees of freedom of
the atom plus the field (without interaction),

OH0 D OHA C OHF D
NX

iD1

Op2i
2�

C OV C OHF ; (2.175)

and an interaction term OW. If, in the spirit of first-order perturbation theory, we
neglect the contribution quadratic in the vector potential, then

OW D e

2�c

NX
iD1
Œ Opi � OA.ri/C OA.ri/� Opi� ; (2.176)

with OA.r/ as defined in (2.171).
In most cases of interest, the wave lengths 2�=jk
j of the photons emitted or

absorbed by an atom are much larger than its spatial dimensions. The exponential
functions entering via (2.172) in the matrix elements of the interaction opera-
tor (2.176) are thus well approximated by unity:

eik
	ri � 1 : (2.177)

For reasons which will become clear in the next section, this approximation
is called the dipole approximation. In the dipole approximation the interaction
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operator (2.176) simply becomes

OW D L�3=2 e

�c

NX
iD1

X



s
2�„c2

!

Opi �.�


Ob
 C ��



Ob�
/ : (2.178)

2.4.4 Emission and Absorption of Photons

The Golden Rule (2.139) enables us to calculate the probabilities for the emission
and absorption of photons in the dipole aproximation via matrix elements

Wfi D h�fj OWj�ii (2.179)

of the operator (2.178). The initial state �i and the final state �f are eigenstates of
the non-interacting Hamiltonian (2.175) and can each be written as a product of an
atomic eigenstate j˚ni of OHA and an eigenstate of the field operator OHF (2.169):

j�ii D j˚iij : : : ; n
; : : :i ; j�fi D j˚fij : : : ; n0

; : : :i : (2.180)

The corresponding energies Ei and Ef of the initial and final state consist of
respective eigenvalues "i or "f of OHA plus the energy of the photon field. If only
one mode 
 has a different number of photons in the initial and final states while all
other modes play a spectator role, then

Ei D "i C n
„!
 plus energy of the spectator modes;

Ef D "f C n0

„!
 plus energy of the spectator modes: (2.181)

The matrix element (2.179) can now be reduced to a matrix element involving only
the atomic degrees of freedom:

Wfi D L�3=2 e

�c

s
2�„c2

!

�

 
h˚fj

NX
iD1

�
 � Opi j˚ii Fabs

 C h˚fj

NX
iD1

��

 � Opi j˚ii Fem




!
; (2.182)

where the factors F
 stand for the field contribution to the transition matrix element,

Fabs

 D h: : : ; n0


; : : : jOb
j : : : ; n
; : : :i ;
Fem

 D h: : : ; n0


; : : : jOb�
j : : : ; n
; : : :i ; (2.183)
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and can be readily evaluated via (2.167) for given values of n
 and n0

. Note that Fabs




is non-zero only when n0

 D n
 � 1 while Fem


 is non-zero only when n0

 D n
 C 1.

The requirement of energy conservation, Ef D Ei, can also be divided into an atomic
and a photonic part:

"f � "i D .n
 � n0

/ „!
 ; (2.184)

which merely says that the energy loss (or gain) of the atom is equal to the energy
of the emitted (or absorbed) photon.

In the atomic matrix elements such as h˚fjPN
iD1 �
 � Opij˚ii in (2.182), the

momenta Opi can be expressed through commutators of the displacement vectors ri

with the non-interacting Hamiltonian OH0. If we neglect momentum-dependent
corrections such as the mass polarization term (cf. Sect. 2.2.1, Problem 2.8), only
the first term on the right-hand side of (2.175) contributes to the commutator Œ OH0; ri�.
Then

Opi D �
i

„ Œ
OH0; ri� D �

i

„ Œ
OHA; ri� ; (2.185)

and the atomic matrix element becomes a matrix element of the electric dipole
operator

Od D �e
NX

iD1
ri ; (2.186)

e.g.,

� e

�
h˚fj

NX
iD1

�
 � Opij˚ii D ."f � "i/
i

„ �
 �h˚fj Odj˚ii : (2.187)

This representation of the atomic matrix element follows from the assump-
tion (2.177) which is hence called the “dipole approximation”. If we denote the
vector h˚fjPN

iD1 rij˚ii by rfi, then

h˚fj Odj˚ii D �e h˚fj
NX

iD1
rij˚ii D � erfi : (2.188)

Inserting (2.182) and (2.187) into the Golden Rule (2.139) we now obtain
with (2.188)

Pi!f D 4�2

„2 L�3 ."f � "i/
2

!

e2 j�
 �rfiFabs


 C ��

 �rfiFem


 j2 %L.Ef/ : (2.189)
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2.4.4.1 Spontaneous Emission

In order to apply the formula (2.189) to spontaneous emission we start with an initial
state of the electromagnetic field containing no photons in any mode, n
 D 0, for
all 
. The transition matrix element (2.179) now differs from zero only if the final
state of the field contains precisely one photon in one mode 
, n0


 D 1, and the
values of the corresponding field factors (2.183) are, according to (2.167), Fabs


 D 0,
Fem

 D 1. Furthermore, the atomic energy difference "i �"f must in this case exactly

equal the energy „!
 of the emitted photon. With (2.173) the probability per unit
time for an atomic transition from an initial state ˚i to a final state ˚f accompanied
by the emission of a photon of polarization �
 into the solid angle d˝ is

Pi!f d˝ D 1

2�„
!3
e2

c3
j��


 �rfij2 d˝ : (2.190)

If, for a given wave vector k
, we add the contributions (2.190) from the two
possible directions of polarization perpendicular to k
, then the sum of the absolute
squares of the scalar product yields the absolute square of the projection of the
vector rfi onto the plane perpendicular to k
,

j��

1

�rfij2 C j��

2

�rfij2 D jrfij2 sin2� ; (2.191)

where � is the angle between the wave vector k
 and the real vector consisting of
the magnitudes of the three components of rfi. To derive (2.191) we assume that the
two normalized polarization vectors �
1 and �
2 fulfill the relation (2.158).

Integrating over all possible directions ˝ of the wave vector k
 we obtain the
probability per unit time Pse

i!f for the atomic transition ˚i ! ˚f accompanied by
the emission of a photon of arbitrary polarization in any direction,

Pse
i!f D

Z
Pi!f d˝ D 4

3

e2w3

„c3

jrfij2 defD Afi : (2.192)

The Afi are called the Einstein A coefficients for the transitions i ! f [New02].
To obtain the total spontaneous decay rate per unit time Pi of an atomic state ˚i

we sum the decay rates (2.192) over all possible final states ˚f:

Pi D
X
"f<"i

Pse
i!f : (2.193)

This total decay rate corresponds to the time rate of change (decrease) of the
occupation probability wi.t/ of the initial state ˚i, and the reciprocal quantity

� D 1=Pi (2.194)

is, in analogy to (2.147), the lifetime of the atomic state ˚i with respect to
electromagnetic decay.
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In a more complete description going beyond the framework of perturbation
theory, we should not assume infinitely sharp atomic energy levels. Due to the
interaction between the atom and the field only the ground state of the atom,
which cannot spontaneously decay, is a truly bound state. All excited states are
strictly speaking resonances in the continuum analogous to the Feshbach resonances
described in Sect. 1.5.2. Thus each excited state of an atom has a natural line
width � , which is related to its lifetime with respect to electromagnetic decay via
the second equation (2.145).

2.4.4.2 Induced Emission

If the electromagnetic field in the initial state is not empty but contains n
 photons in
the mode 
, then a non-trivial field factor jFem


 j2 D n
C1 has to be multiplied to the
right-hand sides of (2.190) and (2.192) (cf. (2.183), (2.167)). The part proportional
to n
 describes the probability for induced emission which depends on the strength
of the external field. The connection between the external field strength and the
number n
 actually to be inserted in the formulae depends on the particular physical
experiment.

Let’s look for example at an atom in an electromagnetic field in which all
modes are occupied isotropically with an intensity distribution I.!/. Then the
energy density in the frequency interval between ! and ! C d! is equal to the
number of modes with arbitrary polarization and direction of propagation N!„d!,
N! D 2 � 4�%L; multiplied by the (mean) energy density per mode, n
„!=L3.
With (2.173) this means that

I.!/d! D 8�%L„d! n
 „!=L3 D „
�2


!
c

�3
n
 d! ; (2.195)

in other words,

n
 D �2
I.!/

„

 c

!

�3
: (2.196)

Multiplying this factor onto the right-hand side of (2.192) gives the following
formula for the probability per unit time Pie

i!f for an atomic transition from ˚i to ˚f

through induced emission of a photon of arbitrary polarization in any direction:

Pie
i!f D 4

3

�2

„2 e2 jrfij2 I.!/ : (2.197)

The factors

Bfi D 4

3

�2

„2 e2jrfij2 (2.198)
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are the Einstein B coefficients, which also appear in an analogous treatment of
absorption [New02]. Historically, the Einstein A and B coefficients played an impor-
tant role for the understanding of Planck’s formula for the intensity distribution I(!)
in the particular example of black-body radiation.

2.4.4.3 Absorption

Absorption can occur only if the electromagnetic field in the initial state has a non-
vanishing number n
 of photons in at least one mode 
. After absorption of a photon
from this mode the occupation number in the final state is n0


 D n
�1; and the field
factor (2.183) is jFabs


 j2 D n
. In the case of absorption there is no additional free
photon in the final state and, provided the final state of the atom lies in the discrete
part of the (atomic) spectrum, we must use the discrete form (2.137) of the Golden
Rule. In place of (2.189) we obtain the absorption probability per unit time as

Pi!f D 4�2L�3!
 e2 j�
 �rfij2 n
 ı."f � "i � „!
/ : (2.199)

In order to describe absorption out of a uniform radiation field with an intensity
distribution I.!/ we would have to integrate over the frequencies ! and over all
directions, which, with the appropriate expression for n
, would lead to a formula
analogous to (2.197).

Another experimentally important situation is the bombardment of an atom by
a uniform monochromatic beam of photons (see Fig. 2.8). In this case the relevant
physical quantity is the cross section �abs for the absorption of a photon. �abs is the
absorption probability per unit time (2.199) divided by the current density of the
incoming photons. This current density is simply the density n
=L3 of the photons
multiplied by their speed of propagation c, so we have

�abs.E/ D 4�2
e2

„c
„!
 j�
 �rfij2 ı."f � "i � E/ : (2.200)

For initial and final states ˚i and ˚f normalized to unity the vector rfi defined
by (2.188) has the dimensions of length and the cross section (2.200) has the

Fig. 2.8 (a) Photoabsorption out of a monochromatic beam of photons: An electron is elevated
from a low-lying bound state to a higher lying bound state. (b) Photoionization: A bound electron
is excited into a continuum state
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dimensions of an area. Quantitatively the number of photons absorbed equals the
number incident on an area of size �abs perpendicular to the direction of incidence.

2.4.4.4 Photoionization

With slight modifications, the formula (2.200) can be used to describe the ionization
of an atom through absorption of a photon. In this case the wave function ˚f of the
atomic final state has the following form asymptotically (i.e. for large separations of
the outgoing electron):

˚f.x1; : : : ; xN�1; xN/ D ˚ 0
f .x1; : : : ; xN�1/ .xN/ : (2.201)

Here  .xN/ is the continuum wave function of the outgoing electron and may
have the form (1.359) or (1.74) with a radial wave function of the form (1.117)
or (1.122). ˚ 0

f is an .N �1/-electron wave function for the other electrons which
are still bound after photoionization. Since the final states now have a continuous
spectrum, we have to use the continuum version (2.139) of the Golden Rule. For
energy normalized radial wave functions of the outgoing electron (cf. (1.151)) the
density of final states is unity according to (2.143), and in place of (2.200) we obtain
the following formula for the photoionization cross section:

�ph.E/ D 4�2
e2

„c
„!
 j�
 �rfij2 : (2.202)

Due to the normalization of final states, h˚f.E/j˚f.E0/i D ı.E � E0/, the vector rfi

defined by (2.188) now has the dimensions of a length times the inverse square
root of an energy, so that �ph.E/ again has the dimensions of an area. The constant
e2=.„c/ � 1=137 appearing in (2.200), (2.202) is of course the fine-structure con-
stant which characterizes the strength of the electromagnetic interaction (see (2.35)).

In real situations the initial and/or final atomic states, ˚i and/or ˚f, may be
members of degenerate or almost degenerate multiplets which are not resolved
experimentally. This must then be taken into consideration when applying formulae
like (2.200) or (2.202) for transition probabilities or cross sections. Our ignorance
of the precise initial state is taken into account by averaging over all initial states
in the multiplet. The fact that transitions to any state in a multiplet of final states
contributes to the observed transion is taken into account by summing over all final
states in the multiplet. This is performed explicitly in Sect. 3.2.3 for the particular
example of one-electron atoms.
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2.4.5 Selection Rules

The probability for an electromagnetic transition depends decisively on the atomic
matrix element

rfi D h˚fj
NX

iD1
rij˚ii D h˚fjOrj˚ii : (2.203)

This matrix element of the vector operator Or D �.1=e/Od (cf. (2.186)) is conveniently
evaluated via its spherical components

Or.˙/ D 
NX

iD1

1p
2
.xi ˙ iyi/ ; Or.0/ D

NX
iD1

zi : (2.204)

In spherical components the scalar product of Or with another vector a is

Or�a D
C1X
�D�1

�Or.�/	�a.�/ : (2.205)

For a one-electron atom the spherical components of Or can be expressed in terms
of the radius r D p

x2 C y2 C z2 and the spherical harmonics Yl;m.�; �/ defined in
Sect. 1.2.1 (cf. Table 1.1):

Or.˙/ D
r
4�

3
r Y1;˙1.�; �/ ; Or.0/ D

r
4�

3
r Y1;0.�/ : (2.206)

If the atomic states ˚i and˚f are simply one-electron wave functions (without spin)
of the following form:

˚i.r/ D �li

r
Yli;mi .�; �/ ; ˚f.r/ D �lf

r
Ylf;mf.�; �/ ; (2.207)

then we can use the formula (A.11) in Appendix A.1 for an integral over a product
of three spherical harmonics to reduce the matrix elements r.�/fi .� D C1; 0; �1/ of
the spherical components (2.206) of Or to an integral over the radial wave functions:

r.�/fi D h˚fjOr.�/j˚ii

D
Z 1

0

��
lf
.r/ r �li.r/ dr

r
4�

3

Z
d̋ Y�

lf;mf
.˝/Y1;�.˝/Yli;mi.˝/

D
Z 1

0

��
lf .r/ r �li.r/ dr F.lf; li/hlf;mfj1; �; li;mii : (2.208)
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Here hlf;mfj1; �; li;mii is the Clebsch-Gordan coefficient for coupling the initial
angular momentum li;mi together with the angular momentum 1, � of the spherical
component of the vector operator Or to the final angular momentum lf;mf (see
Sect. 1.7.1).

The angular momentum quantum numbers lf, 1 und li must fulfill a triangle
condition of the form (1.336), and this means that lf and li can differ by at most
unity. It furthermore follows from the parity (1.72) of the spherical harmonics that
the sum of lf, 1 und li must be even, since the parity of the integrand in the integral
over˝ in (2.208) would otherwise be negative causing the integral itself to vanish.
Together with the condition mi C � D mf (cf. (1.335)) we obtain the following
selection rules for the one-body orbital angular momentum in dipole transitions :

�l D lf � li D ˙1 ; �m D mf � mi D 0; ˙1 : (2.209)

Transitions which do not fulfill these selection rules are forbidden (in the dipole
approximation). The factor F.lf; li/ in (2.208) is explicitly

F.lf; li/ D
� p

lf=.2lf C 1/ for lf D li C 1 ;

�pli=.2lf C 1/ for lf D li � 1 : (2.210)

If we include the spin dependence of the one-electron wave functions and assume
atomic eigenstates of the form (1.359), then the formula (2.208) is replaced by an
equation of the form

r.�/fi D h˚fjOr.�/j˚ii D h jfjjOrjj jiih jf;mfj1; �; ji;mii ; (2.211)

where the m quantum numbers now characterize the eigenvalues of the z-component
of the total angular momentum OJ D OL C OS. The quantity hjfjjOrjjjii in (2.211) is
called reduced matrix element of the vector operator Or, and it no longer depends
on the m quantum numbers of the atomic states or on the component index � of
the operator. Equation (2.211) is an illustration of the Wigner-Eckart Theorem, as
is (2.208) above. This important theorem holds quite generally for matrix elements
of the (spherical) components of a vector or tensor operator in angular momentum
eigenstates. It says that the dependence of such matrix elements on the m quantum
numbers and on the component index of the operator is given solely by the
appropriate Clebsch-Gordan coefficients. The correct Clebsch-Gordan coefficients
are those which couple the angular momentum of the initial state (here ji;mi)
with the order and the component index of the operator (here 1, �) to the angular
momentum of the final state (here jf;mf). From the conditions (1.335), (1.336) for
non-vanishing Clebsch-Gordan Coefficients we obtain the selection rules for the
quantum numbers of the total angular momentum:

�j D jf � ji D 0; ˙1; �m D mf � mi D 0; ˙1 : (2.212)
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The Wigner-Eckart theorem allows us to derive analogous selection rules for
the angular momentum quantum numbers in many-electron atoms without knowing
the precise structure of the atomic wave functions. For the total angular momen-
tum (2.79) with the quantum numbers J, M we obviously have

�J D Jf � Ji D 0; ˙1 ; �M D Mf � Mi D 0 ; ˙1: (2.213)

If the atomic wave funcions are well described in LS coupling so that the total
orbital angular momentum and the total spin are “good quantum numbers”, then
the selection rules for the orbital angular momentum quantum numbers L, ML are

�L D Lf � Li D 0; ˙1 ; �ML D MLf � MLi D 0; ˙1 : (2.214)

Since the interaction operator (2.178) doesn’t act on the spin parts of the wave
functions, the quantum numbers of the total spin cannot change in a transition,

�S D 0 ; �MS D 0 : (2.215)

As in a one-electron atom, the parity of the initial and final atomic states must be
different for the matrix element of the dipole operator to be non-vanishing. In a
many-electron atom however, the parity is not simply related to the orbital angular
momentum, and hence �L D 0 transitions aren’t generally forbidden.

Above and beyond the selection rules (2.213), (2.214), all transitions in which
both the initial angular momentum (Ji or Li) and the corresponding final angular
momentum vanish, are forbidden. This is because the initial and final angular
momenta and the order 1 of the vector operator Or must always obey a triangle
condition of the form (1.336).

Transitions which are forbidden in the dipole approximation may be allowed
for electromagnetic processes of higher order. If e.g. we go beyond the dipole
approximation (2.177) by including the next term ik
 � ri in the expansion of the
exponential function we obtain the probabilities for electric quadrupole transitions
as well as for magnetic dipole transitions. These are generally very small, because
the absolute value of k
 � ri is very small for typical wave numbers k
 and for
displacement vectors ri corresponding to the spatial dimensions of an atom. In order
to obtain probabilities for transitions in which two or more photons are emitted or
absorbed simultaneously, we have to go beyond a description based on first-order
perturbation theory (see also Sect. 5.1 in Chap. 5).

2.4.6 Oscillator Strengths, Sum Rules

Dipole transitions between atomic states ˚i and ˚f can be characterized using the
dimensionless oscillator strengths. These are the absolute squares of appropriately
normalized matrix elements of the components of the vector operator Or. In a
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cartesian basis the oscillator strength f .x/fi is, for example, defined by

f .x/fi D 2�

„2 „! jh˚fj
NX

iD1
xij˚iij2 ; (2.216)

where „! D "f � "i. Summed over the three cartesian components we obtain:

ffi D f .x/fi C f .y/fi C f .z/fi D 2�

„ ! j h˚fjOrj˚ii j2 : (2.217)

The contribution of the transition from ˚i to ˚f in the cross section �abs.E/ for
absorption of photons polarized in x-direction, �
 D Oex, out of a uniform beam is
e.g. (cf. (2.200))

�abs.E/ D 4�2
e2

„c

„2
2�

f .x/fi ı."f � "i � E/ : (2.218)

Consider a given (normalized) initial atomic state ˚i and a complete set of
(bound) final states ˚n, then using the commutation relation (1.33) between position
and momentum we obtain:

„
i

N D h˚ij
NX

iD1
.Opxixi � xi Opxi/ j˚ii

D
X

n

h˚ij
NX

iD1
Opxi j˚nih˚nj

NX
iD1

xij˚ii

�
X

n

h˚ij
NX

iD1
xij˚nih˚nj

NX
iD1

Opxi j˚ii

D �
i

„
X

n

2 ."i � "n/ h˚ij
NX

iD1
xij˚nih˚nj

NX
iD1

xij˚ii

D 2�

i„
X

n

„!njh˚nj
NX

iD1
xij˚iij2 ; (2.219)

where the momentum components Opxi were replaced by the commutators
� OHA;xi


according to (2.185) in the second last line, and we used the fact that the ˚n are
eigenfunctions of OHA with the eigenvalues "n. With the definition (2.216) we obtain
a sum rule for the oscillator strengths f .x/ni :

X
n

f .x/ni D N : (2.220)



2.4 Electromagnetic Transitions 153

Analogous sum rules obviously hold for the y- and z- components, and so we obtain
the Thomas-Reiche-Kuhn sum rule for the oscillator strengths defined by (2.217):

X
n

fni D
X

n



f .x/ni C f .y/ni C f .z/ni

�
D 3N : (2.221)

Before applying the above considerations to an atomic system we have to
complement the formulae in order to take account of the fact that the complete
set of final states contains continuum states. For final states ˚E in the continuum we
modify the definitions (2.216), (2.217) of the oscillator strengths,

df .x/Ei

dE
D 2�

„2 „! jh˚Ej
NX

iD1
xij˚iij2 ; etc: ;

dfEi

dE
D df .x/Ei

dE
C df .y/Ei

dE
C df .z/Ei

dE
: (2.222)

If the final states ˚E are energy normalized, then the functions df .x/Ei =dE and dfEi=dE
have the dimensions of an inverse energy. The photoionization cross section (2.202)
for incoming photons polarized in x-direction is

�ph.E/ D 4�2
e2

„c

„2
2�

df .x/Ei

dE
: (2.223)

Inclusion of continuum states complements the sum rules (2.220), (2.221) to

X
n

f .x/ni C
Z 1

0

df .x/Ei

dE
dE D N ; etc: ;

X
n

fni C
Z 1

0

dfEi

dE
dE D 3N ; (2.224)

where we have assumed the ionization threshold to lie at E D 0.
The sum rules for the oscillator strengths are a valuable help for estimating the

importance of individual transitions in a particular physical system. In a numerical
calculation of the transition probabilities to a finite number of final states, an
estimate of the extent to which the corresponding oscillator strengths exhaust the
sum rule may give valuable information on the reliability of the calculation and the
importance of neglected contributions. The number N need not always be the total
number of electrons. For photoabsorption by a lithium atom with one outer electron
we may for example assume N D 1 at low energies. If the energy is large enough to
excite the electrons in the low-lying 1s shell, then we must count these electrons in
the formulation of the sum rule.
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Problems

2.1 A and B are two vectors and O� is the vector of the Pauli spin matrices (1.345).
Prove the identity

. O� �A/ . O� �B/ D A�B C i O� �.A � B/ :

Show that the scalar product of O� and the momentum operator Op can be expressed
by the orbital angular momentum OL and the displacement vector r as follows:

O� � Op D 1

r2
. O� �r/

�„
i

r
@

@r
C i O� � OL

�
:

2.2 Use first-order perturbation theory to calculate the energy shifts due to the spin-
orbit coupling OHLS, the Darwin term OHD and the relativistic correction OHke to the
kinetic energy in the eigenstates of the hydrogen atom with quantum numbers up to
n D 2.

OHLS D Ze2

2m2
0c
2

1

r3
OL� OS ; OHD D �„2Ze2

2m2
0c
2
ı.r/ ; OHke D � Op2 Op2

8m3
0c
2
:

2.3

a) Assume that both electrons in the helium atom or in a helium-like ion occupy
the same orbital wave function

 .r/ D 1p
�
ˇ�3=2e�r=ˇ :

For which value of ˇ is the expectation value of the two-body Hamiltonian

OH D
X
iD1;2

 
Op2i
2�

� Ze2

ri

!
C e2

jr1 � r2j

a minimum? How do ˇ and the minimal energy depend on the charge number
Z?

Hint: Use (A.10) in Appendix A.1.
b) Calculate the expectation values of OH in the 1P and 3P states of the helium atom,

constructed by appropriate angular momentum coupling from the 1s 2p config-
uration. Use hydrogenic single-particle wave functions with the parameter ˇ as
obtained in Problem 2.3 a).
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2.4 Consider a “gas” of non-interacting fermions in a finite cube of side length L:

V D
�

0 inside the cube
C1 outside of the cube

a) Determine the eigenfunctions and eigenvalues of the one-body Hamiltonian

OH D Op2
2�

C V :

b) Let each single-particle wave function with an energy not greater than EF D
„2k2F= .2�/ be occupied with two fermions (spin up and spin down). How does
the number N of fermions depend on the energy EF when EF is large?

2.5 Calculate the eigenfunctions and eigenvalues of the Hamiltonian for a particle
of mass � in a one-dimensional box of length L:

V .x/ D
�

0 for 0 � x � L ;
C1 for x < 0 or x > L :

Show that the number of eigenstates per unit energy is given by the formula (2.140)
for large E.

2.6 Let  n .x/ be the eigenfunctions of the Hamiltonian for a one-dimensional
harmonic oscillator:

OH D Op2
2

C 1

2
!2x2 ; OH n D

�
n C 1

2

�
„!  n :

Show that the operators

Ob� D .2„!/�1=2 .!x � iOp/ ; Ob D .2„!/�1=2 .!x C iOp/

act as creation and annihilation operators of oscillator quanta and, with suitable
choice of phases of the eigenstates  n, are given by

Ob� n D p
n C 1 nC1 ; Ob n D p

n n�1 :

Hint: Calculate the commutators of Ob� and Ob with OH.

2.7 Calculate the lifetime of the 2p state of the hydrogen atom with respect to
electromagnetic decay.

2.8 How is the relation (2.185),

Opi D �
i

„
h OHA; ri

i
;
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affected if OHA contains not only the usual kinetic energy, but also the mass
polarization term (Sect. 2.2.1)?

OHA D
X
iD1

Op2i
2�

C 1

mnuc

X
i<j

Opi � Opj C terms commuting with ri :

How are formulae for transition probabilities such as (2.189) and sum rules such
as (2.220) modified if the mass polarization term is taken into account?
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Chapter 3
Atomic Spectra

A precise theoretical description of the energies and other properties of atomic states
in principle requires the solution of the N-electron problem discussed in Sect. 2.2
and Sect. 2.3. This is of course not possible in general, but a lot of work based
on various approximate and numerical methods has, over the years, been quite
successful in explaining important properties of atomic spectra qualitatively and in
simple cases quantitatively, mainly in the region of low-lying states [LM85, CO80].
On the other hand, the description of the structure of an atom or ion soon becomes
very complicated when several electrons are highly excited [Fan83, FR86]. The
many-electron problem in the regime of highly excited states is in fact still largely
unsolved today.

The structures of atomic spectra and wave functions can be understood relatively
simply and systematically if there is at most one electron in a highly excited
state, while all other electrons are described by more tightly bound wave functions
close to the atomic nucleus. The reason is that the interaction between the highly
excited electron and the residual atom or ion is asymptotically described by a
local potential. For neutral atoms and positively charged ions this local potential
is the long-ranged attractive Coulomb potential, for (singly charged) negative ions
it is a shorter-ranged power-law potential. Near the threshold to the continuum,
the properties of the energy spectrum depend crucially on whether the potential
tail behaves asymptotically as an attractive very-long-ranged potential, meaning
that it vanishes slower than �1=r2, or as a shorter-ranged potential falling off
faster than 1=r2. Shorter-ranged potentials occur in the interaction of atoms (or
molecules) with surfaces and with each other, and the intense research activity
involving ultracold atoms and molecules has made a deeper understanding of
the near-threshold properties of such shorter-ranged potentials a subject of great
interest.

Section 3.1 contains a detailed discussion of spectra of shorter-ranged potentials
and their near-threshold properties, while the following sections in this chapter focus
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160 3 Atomic Spectra

on potentials with Coulombic tails, as seen by a single highly excited electron in a
neutral atom or positive ion.

The study of highly excited Rydberg atoms became a field of intense research in
the late 1970’s and thereafter, and this was largely due to advances in high precision
experimental techniques such as laser spectroscopy. A detailed study of the general
subject of Rydberg atoms can be found in the monograph by Gallagher [Gal94].
Further interest in Rydberg atoms was founded on the expectation that they may be
of practical use in quantum information processing [LF01, TF04, RT05]. Journal
of Physics B published a special issue on Rydberg physics in 2005 [CP05]. More
recently, attention has also focussed on the interaction of Rydberg atoms with each
other and the many-body properties of many-Rydberg-atom systems [CK07, GP08,
PS09, LL13].

3.1 Long-Ranged and Shorter-Ranged Potentials

3.1.1 Very-Long-Ranged Potentials

The expressions “long-ranged” and “short-ranged” are often used with different
meanings by different authors. Sometimes the term “short-ranged” is used to imply
that a potential falls off exponentially or faster, whereas a potential which vanishes
only as a power of the distance is termed “long-ranged” [BC02]. For a potential with
an attractive tail falling off asymptotically as �1=r˛,

V.r/
r!1� V�̨.r/ D �C˛

r˛
D � „2

2�

.ˇ˛/
˛�2

r˛
; (3.1)

the structure of the quantum mechanical energy spectrum depends crucially on
whether the power ˛ is smaller or larger than two, as already discussed in Chapter 1,
Sect. 1.6.4. Potentials falling off more slowly than 1=r2 might be called “very-long-
ranged potentials” in order to distinguish them from shorter-ranged potentials with
power-law tails corresponding to ˛ > 2. For Coulombic potential tails, which play
a dominant role in atomic systems, we have ˛ D 1, which is the only integer in
the range 0 < ˛ < 2. Potential tails falling off asymptotically as (3.1) with non-
integer powers ˛ have little physical relevance, but studying these cases is helpful
for understanding the transition from the very-long-ranged to the shorter-ranged
potentials.

The generalized quantization rule as introduced in Sect. 1.6.3, Equations (1.308)
and (1.309), reads

S .E/

2„ D 1

„
Z rout.E/

rin.E/
p .r/ dr D n� C �in

2
C �out

2
: (3.2)
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This assumes that there is a WKB region between the inner classical turning
point rin and the outer classical turning point rout, where WKB wave functions
are accurate solutions of the Schrödinger equation. For very-long-ranged potentials
this condition is always fulfilled near the threshold E D 0, because the threshold
represents the semiclassical limit of the Schrödinger equation and the WKB
approximation becomes increasingly accurate for r ! 1, see (1.314) in Sect. 1.6.4.

For attractive potential tails (3.1) with ˛ < 2, the action integral S.E/ grows
beyond all bounds as E ! 0; the potential well supports an infinite number of bound
states and conventional WKB quantization, with �out D �=2 at the outer classical
turning point, becomes increasingly accurate towards threshold. For energies E D
�„2	2= .2�/ close enough to threshold, the action integral can be written as

S .E/

2„ D C C
Z rout.E/

r0

s
.ˇ˛/

˛�2

r˛
� 	2 dr

	!0� C0 C F .˛/

.	ˇ˛/
.2=˛/�1 ; F .˛/ D

p
�

2˛

�
�
1
˛

� 1
2

	
�
�
1
˛

C 1
	 ; (3.3)

which leads to the near-threshold quantization rule,

n
n!1� C00 C F .˛/

�.	ˇ˛/
.2=˛/�1 : (3.4)

The point r0 in (3.3) is to be chosen large enough for the potential to be accurately
described by the leading asymptotic term proportional to 1=r˛. The constants C, C0
and C00 in (3.3) and (3.4) depend on the potential at shorter distances r < r0, but
the energy dependent terms depend only on the potential tail beyond r0, i.e. only
on the power ˛ and the strength parameter ˇ˛ determining the leading asymptotic
behaviour of the potential tail. For a Coulombic potential tail, ˛ D 1, F.1/ D �=2

we obtain the Rydberg formula,

En D �„2	 .n/2
2�

D � R
.n � C00/2

; R D „2
2� .2ˇ1/

2
; (3.5)

with Bohr radius 2ˇ1 and Rydberg constant R, cf. Sect. 2.1.1.
The level density is defined as the (expected) number of energy levels per unit

energy. If the quantum number n is known as a function of energy, then the level
density is simply the energy derivative of the quantum number, dn=dE. Simple
derivation of (3.4) with respect to E D �„2	2=.2�/ gives the near-threshold
behaviour of the level density,

dn

dE
E!0D F .˛/

�

�
1

˛
� 1

2

�� „2
2� .ˇ˛/

2

� 1
˛� 1

2
�
1

jEj
� 1

˛C 1
2

: (3.6)



162 3 Atomic Spectra

For Coulombic tails, ˛ D 1, this reduces to the well known form,

dn

dE
E!0D 1

2

pR
jEj3=2 : (3.7)

3.1.2 Shorter-Ranged Potentials

We focus on the radial Schrödinger equation (1.75) for s-waves (l D 0),

�
� „2
2�

d2

dr 2
C V.r/

�
u.r/ D E u.r/ : (3.8)

When the potential V.r/ vanishes faster than 1=r2 at large distances, then the action
integral S.E/ remains bounded at threshold. The number of bound states is finite,
and conventional WKB quantization deteriorates towards threshold [TE98, EF01,
BA01]. The modified quantization rule (3.2), however, becomes exact in the limit
E D �„2	2=.2�/ ! 0, when the reflection phases are adapted according to the
behaviour of the potential tail.

Consider a potential V.r/ which falls off faster than 1=r 2 at large distances and
is so deeply attractive at small distances that it supports a large, albeit finite number
of bound states. An example with 24 bound states is shown in Fig. 3.1. Since such
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Fig. 3.1 Deep potential falling off faster than 1=r 2 at large distances. The example is actually
the Lennard-Jones potential (3.74) with strength parameter BLJ D 104 , which supports 24 bound
states, � D 0; 1; 2; : : : 23. The brown shaded area in the left-hand panel schematically indicates
where the WKB approximation is accurate at near-threshold energies
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potentials typically describe the interatomic interaction in diatomic molecules, we
adopt the molecular physics notation and use the letter “�” for “vibrational” to label
the bound states. The potential in Fig. 3.1 actually corresponds to a Lennard-Jones,
which is discussed as example in Sect. 3.1.3. The theory below is, however, very
general and does not rely on any special properties of the potential, except that it
should be deep and fall off faster than 1=r 2 at large distances.

Since the potential is deep, a total energy near threshold implies that the kinetic
energy is large in a region of r-values between the inner classical turning point
rin.E/ and the outer classical turning point rout.E/. This justifies the assumption, that
there is a “WKB region” between rin.E/ and rout.E/, where the condition formulated
as (1.297) in Sect. 1.6.3 is well fulfilled; the generalized quantization rule (3.2) in
present notation reads,

1

„
Z rout.E�/

rin.E�/
p.E� I r/ dr D �� C �in.E�/

2
C �out.E�/

2
; � integer : (3.9)

At threshold, E D 0, the condition (3.9) with integer � is fulfilled only if there a
bound state exactly at threshold. For the general case, we write

1

„
Z 1

rin.0/

p.E D0I r/ dr D �D� C �in.0/

2
C �out.0/

2
; (3.10)

where �D is the threshold quantum number, which is in general non-integer. For
vibrational states of diatomic molecules or molecular ions, the bound-to-continuum
threshold is the dissociation threshold, hence the subscript “D” on the threshold
quantum number.

Subtracting (3.9) from (3.10) yields the quantization rule,

�D � � D F.E�/ ; (3.11)

with the quantization function F.E/ given by

F.E/ D 1

�„

"Z 1

rin.0/

p.0I r/ dr �
Z rout.E/

rin.E/
p.EI r/ dr

#

� �in.0/� �in.E/

2 �
� �out.0/� �out.E/

2 �
: (3.12)

By definition, F.E/ vanishes at threshold,

F.E D 0/ D 0 : (3.13)

Equation (3.11) is the general form of the quantization rule for a potential which
falls off faster than 1=r2 asymptotically and hence can support at most a finite
number of bound states. The threshold quantum number �D, more precisely, its
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noninteger remainder�D D �D �b�Dc, plays a crucial role in determining not only
the precise energies of the near-threshold bound states, but also the near-threshold
behaviour of s-wave scattering states, as discussed later in Sect. 4.1.

In contrast to the case of very-long-ranged potentials, the threshold solution of
the radial Schrödinger equation (3.8) with a potential falling off faster than 1=r2 at
large distances has at most a finite number of nodes. For potentials falling off faster
than 1=r3, the asymptotic behaviour of regular solution is,

u.r/
r!1/ const:� r / 1 � r

a
: (3.14)

The constant a is the s-wave scattering length, which plays a prominent role in the
description of near-threshold scattering, as described in detail later in Sect. 4.1. The
threshold quantum number and the scattering length can both be seen as properties
of the threshold (E D 0) solution of the radial Schrödinger equation (3.8), and they
are related via (3.59) below.

Since the bound-state energies form a discrete finite set, it is always possible to
find a smooth function F.E/with (3.13) such that (3.11) is fulfilled at all bound-state
energies E� . The explicit expression (3.12) is trivially valid, if we allow appropriate
values of �in.E/ and �out.E/. If, at a given energy E, there is a WKB region between
the inner and outer classical turning points where the WKB approximation is
sufficiently accurate, then the reflection phases �in.E/ and �out.E/ can be determined
precisely via the appropriate representation of wave function u.r/ for r-values in the
WKB region,

u.r/ / 1p
p.EI r/

cos

�
1

„
Z r

rin.E/
p.EI r0/ dr0 � �in.E/

2

�
;

u.r/ / 1p
p.EI r/

cos

"
1

„
Z rout.E/

r
p.EI r0/ dr0 � �out.E/

2

#
: (3.15)

The leading near-threshold energy dependence of the quantization func-
tion (3.12) is a property of the large-distance behaviour of the potential. To be
specific, we assume that the potential is accurately given at large distances by a
reference potential, the “tail potential” Vtail.r/,

V.r/
r large� Vtail.r/ : (3.16)

As reference potential, Vtail.r/ is defined for all r > 0, but it only represents
the true interaction for large distances. The phrase “r large” over the “�” sign
in (3.16) has been chosen deliberately in order to emphasize that, in general, it
is not just the leading asymptotic behaviour of V.r/ that is important. The radial
Schrödinger equation with the reference potential Vtail.r/ alone and vanishing
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angular momentum reads

� „2
2�

d2u

dr 2
C Vtail.r/ u.r/ D E u.r/ : (3.17)

Being an approximation to the full potential at large distances, the reference
potential Vtail.r/ falls off faster than 1=r 2 for r ! 1. At small distances, the full
interaction is not well described by the reference potential Vtail.r/, and its precise
form is usually not well known anyhow. In the following we choose Vtail.r/ such
that it diverges to �1 more rapidly than �1=r 2 for r ! 0. This has the advantage
that the WKB representations of the solutions of (3.17), at any energy E, become
increasingly accurate for decreasing r and are, in fact, exact in the limit r ! 0.
This can be confirmed by verifying that the quantality function (1.298) vanishes for
r ! 0 when the potential is more singular than 1=r 2 in this limit.

The proximity to the semiclassical or anticlassical limits can be estimated via the
value of a typical classically defined action in units of „. Such a classical action is
provided by the product of the momentum-like quantity „	 and the outer classical
turning point rout.E/, which is the same for the full interaction and for the reference
potential Vtail.r/ at near-threshold energies and diverges to infinity at threshold,

rout.E/
	!0�! 1 : (3.18)

The typical action „	 rout.E/ in units of „ is thus 	 rout.E/, a quantity that has been

called the “reduced classical turning point” [TE98]. With Vtail.r/r2
r!1�! 0 it

follows from (3.18) that

jVtail .rout.E//j rout.E/
2 D „2	2

2�
rout.E/

2 	!0�! 0 H) 	 rout.E/
	!0�! 0 :

(3.19)

The threshold E D 0 represents the anticlassical or extreme quantum limit of the
Schrödinger equation (3.17). For the singular attractive reference potential Vtail.r/,
the outer classical turning point moves towards the origin for E ! �1,

rout.E/
	!1�! 0 ; (3.20)

and with Vtail.r/r2
r!0�! �1 it follows that

jVtail .rout.E//j rout.E/
2 D „2	2

2�
rout.E/

2 	!1�! 1 H) 	 rout.E/
	!1�! 1 :

(3.21)

The semiclassical limit of the Schrödinger equation (3.17) is at 	 ! 1, i.e. for
large binding energies. How close the semiclassical limit is approached in a realistic
potential well depends on its depth.
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The quantization function (3.12) contains a contribution Ftail.E/, which is
determined solely by the reference potential Vtail.r/,

Ftail.E/ D lim
rin!0

1

�„

"Z rout.0/

rin

ptail.0I r/ dr �
Z rout.E/

rin

ptail.EI r/ dr

#

� �out.0/� �out.E/

2 �
; (3.22)

where ptail is the local classical momentum defined with Vtail.r/,

ptail.EI r/ D p
2� ŒE � Vtail.r/� : (3.23)

As the inner point of reference rin tends to zero, the action integrals in (3.22) actually
diverge, but their difference remains well defined in the limit. The tail part (3.22) of
the quantization function contains no contribution from the inner reflection phases,
because the wave functions become independent of energy for r ! 0 so the
difference �in.0/� �in.E/ vanishes for rin ! 0.

In addition to the tail contribution Ftail.E/, the quantization function contains
a contribution Fsr.E/ arising from the deviation of the full interaction from the
reference potential Vtail.r/ at small distances:

F.E/ D Ftail.E/C Fsr.E/ : (3.24)

Since the full quantization function F.E/ vanishes at threshold according to (3.13),
and since Ftail.E D 0/ is obviously zero, the same must hold for Fsr.E D 0/.
Furthermore, Fsr.E/ is defined in the short-range region of the potential, where the
bound-to-continuum threshold is not an outstanding value of the energy, so it must
be a smooth function of energy near threshold. Hence we can write

Fsr.E/
	!0� �srE C O

�
E2
	
; (3.25)

where �sr is a constant with the dimension of an inverse energy.
As will be seen in the following, the leading near-threshold behaviour of Ftail.E/

is of lower order than E, so this is also the leading near-threshold behaviour
of the full quantization function F.E/. The short-range contribution Fsr.E/ is of
higher order, namely O.E/, and its magnitude depends on how accurately the
reference potential Vtail.r/ describes the full interaction at finite distances. Its
influence is small if Vtail.r/ is a good approximation of the full interaction down
to distances where the WKB representation, on which the definition of Ftail.E/ is
based, accurately describes the solutions of (3.17). Since the WKB approximation
breaks down at the outer classical turning point rout.E/, this implies that the
reference potential be a good approximation of the full interaction down to distances
somewhat smaller than rout.E/.
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If the quantization function is known accurately for a reasonable range of near-
threshold energies, then a small number of energy eigenvalues in this range can be
used to complement the spectrum and extrapolate to the dissociation threshold. This
can, for example, make it possible to reliably predict the energy of the dissociation
threshold from the relative separations of a few observed energy levels some
distance away from threshold.

With the quantization function decomposed into a tail contribution and a short-
range part as in (3.24), and with the ansatz (3.25) for the short-range part, the
quantization rule (3.11) can be rewritten as

� C Ftail.E�/ D �D � Fsr.E/
E!0� �D � �srE� : (3.26)

As expressed on the far right of (3.26), the effects of the short-range deviation of the
full interaction from the reference potential Vtail.r/ are contained in two parameters,
the threshold quantum number �D and the short-range correction coefficient �sr; the
next term is of order E2. According to (3.26), a plot of �CFtail.E�/ against E� should
approach a straight-line behaviour towards threshold; �D and �sr can be deduced
from the interception of this line with the ordinate and the gradient of the line,
respectively.

The decomposition (3.24) of the full quantization function into a tail contribution
and a short-range part and the representation (3.26) of the quantization rule are
always valid. There is no semiclassical approximation involved, even though the tail
contribution Ftail.E/ to the quantization function is expressed in terms of WKB wave
functions. For the short-range correction term to be small, however, the deviation
of the full interaction from the reference potential Vtail.r/ should be restricted to
sufficiently small distances, at which the WKB representations of the solutions of
(3.17) are accurate.

The near-threshold behaviour of Ftail.E/ is crucially determined by the near-
threshold energy dependence of the outer reflection phase. This can be derived under
very general conditions, as described in detail in [RF08] and summarized below.

The solution of (3.17) obeying bound-state boundary conditions,

u.	/.r/
r!1� e�	 r ; (3.27)

is accurately the represented for r ! 0 by the WKB expression

u.	/.r/
r!0� D.	/p

ptail.EI r/
cos

 
1

„
Z rout.E/

r
ptail.EI r0/ dr0 � �out.E/

2

!
: (3.28)

Similar to the established derivation of the effective-range expansion for scattering
phase shifts (see Sect. 4.1.7 in Chapter 4), we introduce two wave functions u.	/.r/
and u.0/.r/ which solve (3.17) at the energies E D �„2	2=.2�/ and E D 0,
respectively. We also introduce two solutions w.	/ and w.0/, which have the same
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large-r boundary conditions, but are solutions of the free equation, without Vtail.r/,

w.	/.r/ D e�	 r; w.0/.r/ � 1;

u.	/.r/
r!1� w.	/.r/ ; u.0/.r/

r!1� w.0/.r/ : (3.29)

From the radial Schrödinger equation we obtain,

Z ru

rl

�
u.	/u.0/00 � u.	/00u.0/

	
dr D �

u.	/u.0/0 � u.	/0u.0/
ru

rl

D � 	2
Z ru

rl

u.	/u.0/dr (3.30)

for arbitrary lower and upper integration limits rl and ru. The contribution of
the upper integration limit ru to the square bracket in the middle part of (3.30)
vanishes in the limit ru ! 1, because of the exponential decay of u.	/.r/ at
large r. The contribution from the lower integration limit rl follows from the WKB
representation of the wave function (3.28) and its derivative,

u.	/0.r/ D D.	/p
ptail.EI r/

�
"

� 1

2

p 0
tail.EI r/

ptail.EI r/
cos

 
1

„
Z rout.E/

r
ptail.EI r0/ dr0 � �out.E/

2

!

C ptail.EI r/

„ sin

 
1

„
Z rout.E/

r
ptail.EI r0/ dr0 � �out.E

2

!#
: (3.31)

Equations (3.28) and (3.31) also apply for u.0/ if we insert E D 0. Since Vtail.r/ is
more singular than �1=r 2 at the origin, 1=ptail.EI r/ vanishes faster than r, and the
contributions from the cosine in (3.31) to the products u.	/u.0/0 and u.	/0u.0/ in (3.30)
vanish for rl ! 0. With the abbreviations

Stail.E/ D
Z rout.E/

rl

ptail.EI r/ dr ; I	 D Stail.E/

„ � �out.E/

2
(3.32)

we obtain from (3.28) and (3.31),

�
u.	/u.0/0 � u.	/0u.0/


rl!0

D D.	/D.0/
„ sin.I0 � I	/

ˇ̌
ˇ̌
rl!0

D � 	2
Z 1

0

u.	/u.0/dr : (3.33)
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For the free-particle solutions we obtain

�
w.	/w.0/0 � w.	/0w.0/

ru

rl
D �	2

Z ru

rl

w.	/w.0/dr : (3.34)

Again, the contributions from ru vanish for ru ! 1 while the contribution from rl

is

�
w.	/w.0/0 � w.	/0w.0/


rl!0

D 	 D �	2
Z 1

0

w.	/w.0/dr : (3.35)

Combining (3.33) and (3.35) gives

D.	/D.0/
„ sin.I0 � I	/

D D.	/D.0/
„ sin

�
Stail.0/� Stail.E/

„ � �out.0/� �out.E/

2

�

D 	 C 	2
Z 1

0

�
u.	/.r/u.0/.r/� w.	/.r/w.0/.r/


dr : (3.36)

Resolving for �out.E/ gives

�out.E/

2
D �out.0/

2
� Stail.0/� Stail.E/

„ C arcsin

�
	 � �.E/ 	2
D.0/D.	/=„

�
; (3.37)

with the length �.E/ defined by

�.E/ D
Z 1

0

�
w.	/.r/w.0/.r/ � u.	/.r/u.0/.r/


dr : (3.38)

The action integrals Stail.0/ and Stail.E/ diverge as the lower integration limit tends
to zero, but the difference Stail.0/�Stail.E/ tends to a well defined value in this limit.

In order to account correctly for the contributions of order 	2 in the arcsin term
in (3.37), it is necessary to know the zero-energy limit of �.E/,

�.0/ D
Z 1

0

h�
w.0/.r/

	2 � �
u.0/.r/

	2i
dr

defD �eff ; (3.39)

as well as the behaviour of D.	/ up to first order in 	. This can be obtained, as
described in [FT04], on the basis of the two linearly independent threshold (E D0)
solutions u.0/0 .r/ and u.0/1 .r/ of the Schrödinger equation (3.17) which are defined by
the following large-r boundary conditions,

u.0/0 .r/
r!1� 1 ; u.0/1 .r/

r!1� r : (3.40)
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For r ! 0, these wave functions can be written as WKB waves,

u.0/0;1.r/
r!0� D0;1p

ptail.0I r/
cos

�
1

„
Z 1

r
ptail.0I r0/ dr0 � �0;1

2

�
; (3.41)

which exactly defines the amplitudes D0;1 and the phases �0;1. The amplitude D0 is
the threshold value D.0/ of the amplitude defined in (3.28), and �0 is the threshold
value of the outer reflection phase �out.E/. For small but non-vanishing values of 	,
the solution u.	/.r/ obeying the bound-state boundary condition (3.27) is given, up
to and including the first order in 	, by

u.	/.r/
	 r!0� u.0/0 .r/� 	 u.0/1 .r/

r!1� 1 � 	 r : (3.42)

The WKB representation of the wave function (3.42), which is valid for small r and
exact in the limit r ! 0, follows via (3.41),

u.	/.r/
r!0� D0p

ptail.0I r/
�

�
cos

�
Stail.0/

„ � �0

2

�
� D1

D0

	 cos

�
Stail.0/

„ � �1

2

��

D D0p
ptail.0I r/

�
1� D1

D0

	 cos

�0��1

2

��
�

cos

�
Stail.0/

„ � �1
2

� D1

D0

	 sin

�0��1

2

��
C O

�
	2
	
: (3.43)

Comparing amplitude and phase of the right-hand sides of (3.28) and (3.43) gives

D.	/ D D0

�
1 � D1

D0

	 cos

�0 � �1

2

��
C O

�
	2
	
; (3.44)

�out.E/

2
D �0

2
� Stail.0/� Stail.E/

„ C b	 C O
�
	2
	
; (3.45)

with the length b in (3.45) defined as

b D D1

D0

sin

�0 � �1

2

�
: (3.46)

Expanding the arcsin term on the right-hand side of (3.37) gives the near-threshold
expansion of the outer reflection phase up to and including second order in 	 as

�out.E/

2

	!0� �out.0/

2
� Stail.0/� Stail.E/

„ C b 	 � .d	/2

2
I (3.47)
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the length d is defined by

d 2

2
D b .�eff � Na/ with Na D D1

D0

cos

�0 � �1

2

�
D b cot


�0 � �1

2

�
:

(3.48)

In deriving (3.47) we compared the linear terms in (3.37) and (3.45) to deduce
„=D.0/2 D b.

Away from threshold, 	 ! 1, the outer reflection approaches its semiclassical
limit �

2
. A measure for the proximity to the semiclassical limit is given by the

reduced classical turning point 	 rout.E/, see discussion involving (3.18) to (3.21)
above, so it is reasonable to assume that the leading high-	 behaviour of the outer
reflection phase is given by

�out.E/
	!1� �

2
C D

	 rout.E/
; (3.49)

with some dimensionless constant D characteristic for the reference potential
Vtail.r/.

A remarkable feature of the near-threshold expansion (3.47) of the outer reflec-
tion phase is, that the term containing the difference of the action integrals exactly
cancels the corresponding contribution to the quantization function, as represented
by the big square bracket in the expression (3.22). The near-threshold behaviour of
Ftail.E/ is thus given by

Ftail.E/
	!0� b	

�
� .d	/2

2�
: (3.50)

The leading term on the right-hand side of (3.50), linear in 	, is reminiscent of
Wigner’s threshold law for s-waves, see Sect. 4.1.7 in Chapter 4. Since the short-
range correction Fsr.E/ is of order E at threshold, this term also represents the
leading energy dependence of the full quantization function F.E/:

F.E/
	!0� b	

�
; (3.51)

which is universally valid for all potentials falling off faster than 1=r 2 at large
distances. The second term on the right-hand side of (3.50), quadratic in 	, is only
well defined for reference potentials falling off faster than 1=r 3, see the paragraph
after (3.59) below.

For a potential V.r/ falling off faster than 1=r 3 at large distances, the asymptotic
behaviour of the regular solution u.r/ of the Schrödinger equation (3.8) exactly
at threshold is given by (3.14) containing the s-wave scattering length a. When
there is an s-wave bound state exactly at threshold, u.r/ approaches a finite value
asymptotically, so the scattering length a in (3.14) diverges. The threshold quantum
number �D is an integer in this case. The derivation above enables us to formulate
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an explicit relation connecting the scattering length a with the threshold quantum
number �D.

The asymptotic behaviour of the regular solution u.r/ of the Schrödinger
equation with the full potential V.r/ is, according to (3.14) and (3.40),

u.r/
r!1/ 1 � r

a
H) u.r/

r large/ u.0/0 .r/ � 1

a
u.0/1 .r/ : (3.52)

The phrase “r large” refers to distances which are large enough for the full potential
to be well approximated by Vtail.r/ and at the same time small enough for the WKB
representations (3.41) to be accurate representations of u.0/0 .r/ and u.0/1 .r/. For such
values of r,

u.r/ / D1p
p.0I r/

cos

�
1

„
Z 1

r
p.0I r0/ dr0 � �1

2

�

� a D0p
p.0I r/

cos

�
1

„
Z 1

r
p.0I r0/ dr0 � �0

2

�

/ 1p
p.0I r/

cos

�
1

„
Z 1

r
p.0I r0/ dr0 � �C

4
�
�
; (3.53)

with the angles �˙ and  given by

�˙ D �0 ˙ �1 ; tan  D a C D1=D0

a � D1=D0

tan

�
��
4

�
: (3.54)

Taking the inner classical turning point as reference gives

u.r/ / 1p
p.0I r/

cos

�
1

„
Z r

rin.0/

p.0I r0/ dr0 � �in.0/

2

�
; (3.55)

and compatibility of (3.53) and (3.55) implies

1

„
Z 1

rin.0/

p.0I r/ dr D �in.0/

2
C C �C

4
.mod �/ : (3.56)

Comparison with (3.10) gives

 D �D� C ��
4
.mod �/ : (3.57)
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Resolving the second equation (3.54) for a and inserting (3.57) for  yields

a D D1

D0

tan


�D� C ��

4

�
C tan



��

4

�

tan


�D� C ��

4

�
� tan



��

4

�

D D1

D0

sin

�
��
2

�2
4 1

tan


��

2

� C 1

tan.�D�/

3
5 : (3.58)

In terms of the parameters b and Na as defined in (3.46) and (3.48), this relation
simplifies to

a D Na C b

tan.�D�/
D Na C b

tan.�D�/
; �D D �D � b�Dc : (3.59)

Equation (3.59) is very fundamental, giving an explicit relation between the s-
wave scattering length a and the threshold quantum number �D. Because of the
periodicity of the tangent, it is actually only the remainder �D that counts. The
remainder can assume values between zero and unity and quantifies the proximity
of the most weakly bound state to threshold. A value of �D very close to zero
indicates a bound state very close to threshold, while a value very close to unity
indicates that the potential just fails to support a further bound state.

Equation (3.59) enables a physical interpretation of the parameters entering the
derivation of the expression (3.50) for the near-threshold behaviour of the tail
contribution Ftail.E/ of the quantization function. In an ensemble of potentials
characterized by evenly distributed values of the remainder �D, the values of the
scattering length will be evenly distributed around the mean value Na, hence Na is
called the mean scattering length, a term first introduced by Gribakin and Flambaum
in [GF93]. We call the length b, which determines the leading term in the near-
threshold behaviour (3.50) of the quantization function and the second term on
the right-hand side of (3.59), the threshold length. The definition (3.39) of �eff

resembles, except for a factor two, the definition of the effective range reff in
scattering theory, see (4.100) in Sect. 4.1.7; we call �eff the subthreshold effective
range. Note however, that the wave functions u.0/ and w.0/ that enter in the definition
of �eff remain bounded for r ! 1, according to (3.29), so the expression (3.39)
gives a well defined value for �eff for any reference potential falling off faster than
1=r 3 at large distances. The length d, which defines the next-to-leading term in the
near-threshold behaviour (3.50) of the quantization function, is related to the mean
scattering length Na, the threshold length b and the subthreshold effective range �eff

via the first equation (3.48). We use the term effective length for the parameter d.
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The relation (3.59) makes it possible to derive a relation connecting the asymp-
totic inverse penetration depth 	b of a bound state very near threshold and the
scattering length a. With the quantization rule (3.11) we can rewrite (3.59) as

a D Na C b

tan Œ�F.Eb/�
D Na C b

tan Œ� .Ftail.Eb/C Fsr.Eb//�
; (3.60)

where Eb D �„2	2b=.2�/ is the energy of the very weakly bound state. Replacing
Fsr.Eb/ by its leading term �srEb according to (3.25) and using the leading two terms
of the Taylor expansion of the tangent yields [RF08]

a D 1

	 b
C �eff C �

„2�sr

2� b
C O.	 b/ : (3.61)

It is interesting to observe, that the next-to-leading term in the expansion (3.61),
i.e. the term of order 	 0b , is not the mean scattering length Na, as one might guess from
(3.59) [GF93], but the subthreshold effective range �eff, plus a contribution which
comes from short-range effects and is proportional to the constant �sr. In this light,
one might ask what sense it makes to extend the near-threshold expansion (3.50) of
Ftail.E/ up to second order in 	, when short-range effects bring in a term of the same
order. The answer lies in the observation, that the length scales associated with the
potential tail are generally very large, so that both �eff and b are much larger than
typical length scales associated with �sr. The dimensionless ratio ��sr„2=.2�b�eff/

of the third term on the right-hand side of (3.61) to the second term is thus usually
very small, see also Example 1 below. Furthermore, a clean identification of the
tail function Ftail.E/ over the whole range of energies from threshold to �1 is a
prerequisite for the identification of the short-range correction Fsr.E/ due to the
deviation of the full interaction from the reference potential at small distances.

At energies far from threshold, 	 ! 1, the outer reflection phase approaches its
semiclassical limit according to (3.49), so the leading high-	 behaviour of Ftail.E/
is,

Ftail.E/
	!1� Stail.0/� Stail.E/

� „ �
�
�0

2�
� 1

4

�
C D=.2�/

	 rout.E/
: (3.62)

The zero-energy value �0 of the outer reflection phase, the lengths defining its
low-	 expansion (3.47), i.e. b, Na, �eff and d, and the parameter D in (3.49), (3.62)
are tail parameters; they are properties of the reference potential Vtail.r/ alone. For
a reference potential Vtail for which the Schrödinger equation (3.17) has analytically
known solutions at threshold, E D0, the tail parameters can be derived analytically.
The exact behaviour of Ftail.E/ in between the near-threshold regime and the high-	,
semiclassical regime is generally not known analytically, but it can be calculated
numerically by a straightforward evaluation of (3.22).

The application of the theory described in this section is particularly elegant for
potentials with a large-distance behaviour that is well described by a single-power
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tail,

Vtail.r/ � Vatt
˛ .r/ D �C˛

r ˛
D � „2

2�

.ˇ˛/
˛�2

r ˛
; C˛ > 0; ˛ > 2 : (3.63)

The potential strength coefficient C˛ in (3.63) is expressed in terms of the
characteristic quantum length

ˇ˛ D
�
2�C˛

„2
�1=.˛�2/

; (3.64)

which does not exist in classical mechanics. The beauty of single-power reference
potentials (3.63) is that the properties of the solution of the Schrödinger equa-
tion (3.17) depend only on the dimensionless product 	 ˇ˛ and not on energy and
potential strength independently, see (1.322) in Sect. 1.6.4. For example, the reduced
classical turning point is given by

	 rout.E/ D .	ˇ˛/
1�2=˛ ; (3.65)

and the difference of the action integrals appearing in (3.22), (3.62) is

lim
rin!0

1

�„

"Z 1

rin

ptail.0I r/ dr �
Z rout.E/

rin

ptail.EI r/ dr

#

D .	ˇ˛/
1�2=˛

.˛�2/p�
�
�
1
2

C 1
˛

	
�
�
1C 1

˛

	 : (3.66)

The tail parameters �out.0/ � �0, b, Na, �eff and d defining the low-	 expan-
sion (3.47) of the outer reflection phase, and the parameter D in (3.49) are explicitly
given for attractive inverse-power tails (3.63) by [FT04, RF08],

�0 D
�
�C 1

2

�
� ;

b

ˇ˛
D �2�

� .1��/
� .1C�/ sin.��/ ;

Na
ˇ˛

D �2�
� .1��/
� .1C�/ cos.��/ ; (3.67)

�eff

ˇ˛
D �.2�/2� � �

�
1
2

C 2�
	

sin.��/ �
�
1
2

C �
	
� .1C 3�/

; D D
p
�

12

˛ C 1

˛

�
�
1
2

� 1
˛

	
�
�
1 � 1

˛

	 ;

with the abbreviation � D 1=.˛ � 2/. The expression for d follows from those for
b, Na and �eff via (3.48). Numerical values are given in Table 3.1.

The behaviour of the outer reflection phase �out.E/ is illustrated in Fig. 3.2 for
powers ˛ D 3; : : : 7. The abscissa is linear in 	 rout D .	ˇ˛/

1�2=˛ , so the initial
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Table 3.1 Numerical values of tail parameters for single-power reference potentials (3.63), as
given analytically in (3.67). The last row contains the values of the dimensionless parameter B˛
governing the exponential fall-off of the modulus of the amplitude for quantum reflection according
to (5.344) in Sect. 5.7.3

˛ 3 4 5 6 7 ˛ ! 1
�0

3
2
� � 5

6
� 6

8
� 7

10
�

�
1
2

C 1
˛�2

	
�

b=ˇ˛
3
2

1 0.6313422 0.4779888 0.3915136 1
˛�2

�

Na=ˇ˛ � 0 0.3645056 0.4779888 0.5388722 1

�eff=ˇ˛ � �
3

0.7584176 0.6973664 0.6826794 1

d=ˇ˛ �
q

2�
3

0.7052564 0.4579521 0.3355665 6:43
.˛�2/3=2

D 0.8095502 0.5462620 0.4554443 0.4089698 0.3806186 1
12
�

B˛ 2.24050 1.69443 1.35149 1.12025 0.95450 2
˛
�
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Fig. 3.2 Outer reflection phase �out for attractive inverse-power potentials (3.63) as function of
the reduced classical turning point 	 rout D .	ˇ˛/

1�2=˛ (Adapted from [TE98])

decrease is linear in the plot, compare (3.45) and (3.66). The threshold values �0
depend on the power ˛ as given in the first equation (3.67).

For a given power ˛ > 2, one quantization function Ftail.E/ � F˛.	 ˇ˛/
applies for all potential strengths. An expression for F˛.	 ˇ˛/ which is accurate
all the way from threshold to the semiclassical limit of large 	, can be obtained
by interpolating between the near-threshold expression (3.50) and the high-	
limit (3.62). With (3.65) and (3.66), the high-	 limit of F˛.	 ˇ˛/ is,

F˛.E/
	!1� .	ˇ˛/

1�2=˛

.˛�2/p�
�
�
1
2

C 1
˛

	
�
�
1C 1

˛

	 � 1

2.˛ � 2/ C D=.2�/

.	 ˇ˛/1�2=˛
: (3.68)
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For ˛ D 6, an analytical expression involving one dimensionless fitting
parameter B was derived in [RF08],

F˛D6.E/ D 2b	 � .d	/2

2�Œ1C .	B/4�

C .	B/4

1C .	B/4

"
�1
8

C D

2�.	ˇ6/2=3

�
�
2
3

	
.	ˇ6/

2=3

4
p
��

�
7
6

	
#
: (3.69)

All other parameters appearing in (3.69) are as given in (3.67) and Table 3.1 for
˛ D 6. With the value B D 0:9363 ˇ6, the expression (3.69) reproduces the exact
values, calculated by evaluating (3.22) numerically, to within an accuracy near 10�4
or better in the whole range from threshold to the high-	 limit [RF08].

For ˛ D 4, a more sophisticated treatment of the semiclassical, high-	 limit is
needed to achieve a comparable accuracy on the basis of a small number of fitting
parameters. An extension of the high-	 expansion (3.49) of the outer reflection
phase to higher inverse powers of the reduced classical turning point .	ˇ4/1=2,

�out.E/
	ˇ4!1� �

2
C

X
jD1;3;5;7

D. j/

.	ˇ4/j=2
; (3.70)

leads to the following analytical expression based on two fitting parameters, the
lengths B6 and B7,

F˛D4.E/ D Œ2b	 � .d	/2�=.2�/

1C.	B6/6C.	B7/7
C .	B6/6C.	B7/7

1C.	B6/6C.	B7/7
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� 1

4
C �

�
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4

	
�
�
5
4

	 .	ˇ4/1=2
2
p
�

C D.1/=.2�/

.	ˇ4/1=2
C D.3/=.2�/

.	ˇ4/3=2

C D.5/=.2�/

.	ˇ4/5=2
C D.7/=.2�/

.	ˇ4/7=2

#
: (3.71)

The coefficients D.j/, which determine the expansion (3.70), are given analytically
and numerically in Table 3.2. With the values B6 D 1:622 576 ˇ4 and B7 D
1:338 059 ˇ4 for the fitted lengths, the expression (3.71) reproduces the exact values,

Table 3.2 Coefficients D.j/ in the high-	 expansion (3.70) of the outer reflection phase for a �1=r 4

reference potential
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calculated by evaluating (3.22) numerically, to within an accuracy near 10�4 or
better in the whole range from threshold to the high-	 limit [RF09].

For ˛ D 3, it turned out to be more practical [MF11] to approximate F˛D3.E/ by
a rational function of the reduced classical turning point .	ˇ3/1=3,

F˛D3.E/ D �
�
5
6

	
p
� �

�
4
3

	 .	ˇ3/1=3 C 3CPimax
iD1 ci.	ˇ3/

i=3

4CPimax
iD1 di.	ˇ3/i=3

� 3

4
: (3.72)

With expansions up to imax D 8 in the numerator and the denominator of the second
term on the right-hand side of (3.72), the formula is able to reproduce the exact
quantization function, calculated by evaluating (3.22) numerically, to within an
accuracy near 5 � 10�8 or better in the whole range from threshold to the high-	
limit [MF11]. The coefficients ci and di with which this is achieved are listed in
Table 3.3.

The quantization functions (3.22) for the single-power tails (3.63) are shown
for the cases ˛ D 6; 4 and 3 in Fig. 3.3 as functions of 	ˇ˛ . The solid blue lines
show exact functions, which are accurately approximated by the expressions (3.69),
(3.71) and (3.72) all the way from threshold to the high-	 limit. The dashed
green lines show the LeRoy-Bernstein functions FLB

˛ .E/ [LB70, Stw70], which are
obtained by ignoring the contribution from the outer reflection phase in (3.22). The
LeRoy-Bernstein function is given explicitly by the first term on the right-hand side
of (3.68). It is wrong at threshold, because it misses the energy-dependence (3.47)
cancelling the contribution from the action integrals, and it is also wrong in the
high-	, semiclassical limit, because it misses contribution

� �out.0/

2�
� �=2

2�
D � 1

2.˛ � 2/
: (3.73)

This leads to significant errors when extrapolating from bound-state energies to
threshold, e.g. in order to determine the value of the dissociation threshold or of
the scattering length from spectroscopic energies [RF08, RF09, MF11].

The dashed red lines in the three right-hand panels in Fig. 3.3 show the low-
energy expansion (3.50) of F˛.E/, including both terms, linear and quadratic in 	ˇ˛
for ˛ D 6 and ˛ D 4 and only the leading linear term for ˛ D 3. They allow us
to estimate the extent of the near-threshold quantum regime. From the quantization
rule (3.11) it is clear, that the value of F.E�/ lies between zero and unity for the

Table 3.3 Coefficients ci, di in the expression (3.72) for F˛D3.E/

i ci di i ci di

1 8:198 894 514 574 7:367 727 350 550 5 185:465 618 264 420 242:028 021 052 411

2 38:229 531 850 326 32:492 317 936 470 6 141:484 936 909 078 250:115 055 730 896

3 85:724 646 494 548 85:380 005 002 970 7 60:927 524 697 423 63:749 260 455 229

4 147:081 920 247 084 169:428 485 967 491 8 56:372 265 754 601 112:744 531 509 202
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Fig. 3.3 Tail contribution Ftail.E/ � F˛.	 ˇ˛/ to the quantization function for single-power
reference potentials (3.63). The solid blue lines are the exact results, which are accurately given
by the expressions (3.69), (3.71) and (3.72) for ˛ D 6; 4 and 3, respectively. The dashed green
lines show the LeRoy-Bernstein functions [LB70, Stw70], and the dashed red lines in the three
panels on the right-hand side show the low-energy expansion (3.50) including both terms, linear
and quadratic in 	ˇ˛ for ˛ D 6 and ˛ D 4 and only the leading linear term for ˛ D 3
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highest bound state with quantum number �max D b�Dc, between one and two
for the second-highest bound state with quantum number �max � 1, etc. The range
covered in the left-hand panels of Fig. 3.3 thus only accommodates the highest three
bound states of a potential with the respective single-power tail. The enlargements
in the right-hand part of the figure show that the near-threshold linear behaviour of
the quantization function is restricted to a very small energy range indeed; in the
majority of cases, it does not even contain the highest bound state, and the second-
highest bound state is definitely beyond the range of validity of the near-threshold
expansion (3.50), even when the second term, quadratic in 	, is included in the
examples ˛ D 6 and ˛ D 4. The range of validity of near-threshold, effective-range
type expansions is tiny. Nevertheless, an accurate description of this near-threshold
quantum regime and a reliable interpolation to the large-	 semiclassical regime
are paramount to a practicable application of the quantization-function concept in
realistic situations.

3.1.3 Example 1. The Lennard-Jones Potential

We consider the Lennard-Jones potential,

VLJ.r/ D E
�
 rmin

r

�12 � 2

 rmin

r

�6�
: (3.74)

The quantum mechanical properties of the potential (3.74) are characterized by the
ratio of the energy E to energy scale „2=.2� r 2min/ provided by the length rmin,

BLJ D E
„2=.2� r 2min/

: (3.75)

The natural definition of the reference potential Vtail.r/ in this case is

Vtail.r/ � Vatt
6 .r/ D �2E .rmin/

6

r 6
D � „2

2�

.ˇ6/
4

r 6
with ˇ6 D rmin .2BLJ/

1=4 :

(3.76)

For BLJ D 104 we have ˇ6 D 10 � 21=4 rmin, and the potential supports 24
bound states, � D 0; 1; : : : 23. This is actually the potential illustrated in Fig. 3.1.
It was used by Paulsson et al. [PK83] to discuss the accuracy of higher-order
WKB approximations. The energies of the highest twelve bound states are listed
in Table 3.4.

According to (3.26), a plot of �CF6.	�ˇ6/ against E� should approach a straight-
line behaviour towards threshold, 	� being the asymptotic inverse penetration depth
at the energy E� . This is illustrated impressively in Fig. 3.4. The solid squares
represent the highest ten bound states in the left-hand part and the highest five
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Table 3.4 Energies in units of E of the highest twelve bound states in the Lennard-Jones
potential (3.74) with BLJ D 104 [PK83]

� E� � E� � E�
12 �0.115225890999 16 �0.031813309316 20 �0.003047136244

13 �0.087766914229 17 �0.020586161356 21 �0.001052747695

14 �0.064982730497 18 �0.012350373216 22 �0.000198340301

15 �0.046469911358 19 �0.006657024344 23 �0.000002696883
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Fig. 3.4 Plot of � C F6.	�ˇ6/ against energy for the highest ten bound states in the Lennard-
Jones potential (3.74) with BLJ D 104 . The energies are as listed in Table 3.4 and the quantization
function F6.	ˇ6/ is as given by (3.69)

bound states in the right-hand part. The x-coordinate of each square is its energy
eigenvalue E� (in units of E), and the y-coordinate is �C F6.	�ˇ6/, where F6.	ˇ6/
is the quantization function (3.69), and ˇ6 is as given in (3.76).

The fact that the linear behaviour in Fig. 3.4 reaches from threshold down to
several states below threshold shows that the quantization rule based on (3.69)
is reliable over this large energy range. To demonstrate this more quantitatively,
Table 3.5 lists the values of the threshold quantum number �D and the short-range
correction parameter �sr as obtained by fitting a straight line through two successive
points, � and �C1. The values both of �D and of �sr converge rapidly and smoothly
with increasing quantum number � . The value of the threshold quantum number
obtained by extrapolating from the sixth- and fifth-highest states (� D 18 and
� D 19) already lies within 0:0004 of the value extrapolated via the highest two
states, �D D 23:23270. This is also reflected in the similarly rapid and smooth
convergence of the values of the scattering length a, as derived from the respective
values of the threshold quantum number �D and the tail parameters Na and b according
to (3.59). In the present case of a 1=r 6 reference potential, Na and b are identical and
both approximately equal to 0:478 ˇ6, see Table 3.1. With ˇ6 as given in (3.76),
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Table 3.5 Values of the threshold quantum number �D and the short-range correction parame-
ter �sr [in units of E�1] as obtained by fitting a straight line through two successive bound states,
� and � C 1, according to (3.26), see Fig. 3.4. Also listed are the values of the scattering length a
[in units of rmin] as obtained via (3.59) with the respective values of �D

� �D �srE a=rmin � �D �srE a=rmin

13 23.227230 �0.926599 12.2461 18 23.232378 �1.075980 12.0355

14 23.229053 �0.954646 12.1706 19 23.232591 �1.107941 12.0270

15 23.230401 �0.983664 12.1155 20 23.232685 �1.138876 12.0232

16 23.231354 �1.013615 12.0768 21 23.232699 �1.151726 12.0227

17 23.231988 �1.044432 12.0512 22 23.232700 �1.159540 12.0226

we have Na D b � 5:684 rmin in the present case. The well converged value of the
scattering length, as obtained with the highest two states, is already predicted to
within 0:1% when extrapolating from the sixth- and fifth-highest states (� D 18

and � D 19).
Note that the magnitude of the short-range correction coefficient �sr is of the

order of 1=E , where E is the depth of the potential. Characteristic energies associated
with the potential tail are typically of the order

Eˇ6 D „2
2�.ˇ6/2

: (3.77)

In the present example, Eˇ6 � 0:7 � 10�6E , so the short-range correction coeffi-
cient �sr is near to six powers of ten smaller than typical inverse energies associated
with the scale set by the reference potential V6.r/. This justifies carrying the
near-threshold expansions of the outer reflection phase (3.47) and the quantization
function (3.50) to second order in 	, even though the short-range corrections come
in at the same order.

The results above show, that the quantization function (3.69) for a 1=r 6 reference
potential accurately accounts for the level progression of the high-lying bound states
in the deep Lennard-Jones potential (3.74), with the large value of BLJ allowing the
full potential to support 24 bound states. With only two parameters, �D and �sr,
to account for all short-range effects, an accurate extrapolation to threshold, e.g.
to deduce the value of the scattering length, is possible from several states below
threshold. Such a clean separation of short-range effects from the influence of
the potential tail is possible, when the distances at which the full interaction
deviates significantly from the reference potential Vtail.r/ are small compared to
characteristic length scales of Vtail.r/. In the present example, it was sufficient to
take the leading single-power term of the potential as reference potential, because
the deviation of V.r/ from Vtail.r/ is only given by the repulsive 1=r12 contribution,
which is of very short range. In more realistic cases, a more sophisticated choice
of reference potential may be needed to describe a range of near-threshold energies
containing more than one or two bound states. This is demonstrated as Example 2
for the H C

2 molecular ion below.
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3.1.4 Example 2. The H C
2

Molecular Ion

The HC
2 ion, consisting of a proton and a neutral hydrogen atom, is one of the

most fundamental molecular systems. Since its properties have been thoroughly
examined in experiments and ab initio calculations, the system is ideally suited
for testing and demonstrating the strengths and possible weaknesses of a theory
focussing on the role of the potential tail, as done recently in [KM13].

Highly accurate energy eigenvalues of bound states of H C
2 have been calculated

by Hilico et al. [HB00]; the energies of the highest ten L D 0, 1s�g bound states are
listed in Table 3.6.

The p-H potential at large distances can be decomposed into a polarisation
term Vpol.r/, and an exchange term Vex.r/ which is responsible for the energy
splitting of the states with gerade and with ungerade parity (see [LL65], p. 81). The
present example focusses on the 1s�g configuration, where the polarisation term is
attractive,

V1s�g.r/ D Vpol.r/� Vex.r/ : (3.78)

The expansion of Vpol.r/ and Vex.r/ for large internuclear separations r was given
to a large number of terms in 1968 by Damburg and Propin [DP68]. Leading terms,
in atomic units, are

VDP
pol .r/ D � 9

4 r4
� 15

2 r6
� 213

4 r7
; VDP

ex .r/ D 2r e�r�1
�
1C 1

2 r
� 25

8 r2

�
:

(3.79)

Including only the leading asymptotic term of the polarisation potential to define
the reference potential gives a single-power tail (3.63) with ˛ D 4,

V.1/
tail.r/ D � 9

4r4
� � „2

2�

.ˇ4/
2

r4
: (3.80)

With the reduced mass � D 918:32627 a.u. this translates into a quantum length
ˇ4 D 64:2843 a.u.

Table 3.6 Energy eigenvalues (in atomic units) relative to the dissociation threshold of the highest
ten bound states in the L D 0, 1s�g series of the HC

2 molecular ion according to Hilico et al. [HB00]

� E� � E� � E� � E�
10 �0:021970529704 13 �0:009458409007 16 �0:001967933877 18 �0:000109592359
11 �0:017272525961 14 �0:006373841570 17 �0:000709200873 19 �3:39093933	10�6

12 �0:013097363811 15 �0:003867245551
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Fig. 3.5 Reference potentials V.1/
tail.r/ [(3.80)], V.2/

tail.r/ [(3.81)], V.3/
tail.r/ [(3.82)] and V.4/

tail.r/ [(3.83)]
in an energy range encompassing the highest ten bound states in the L D 0, 1s�g configuration,
see Table 3.6. The corresponding energy levels are shown as horizontal dashed lines. The potential
VBO.r/ corresponds to the minimal electronic energy at internuclear separation r; this should be a
good approximation to the full interaction for the range of r-values in the figure (From [KM13])

The reference potential (3.80) is shown in Fig. 3.5 (dot-dashed blue line) together
with the potential VBO.r/ (solid black line), which represents the electronic ground-
state energy at each internuclear separation r [Pee65] and should be a good
approximation to the full interaction in the range of distances in the figure. The
energies of the highest ten bound states, as listed in Table 3.6, are shown as
horizontal dashed lines in the figure. The single-power reference potential (3.80)
is clearly far too weak for distances less than about 12 a.u., while the outer classical
turning point lies in this range at the energies E� of all states with � � 17. Since the
dominance of Ftail.E/ over short-range corrections requires the reference potential
to be an accurate approximation of the full interaction down to distances somewhat
smaller than the outer classical turning point, the usefulness of the single-power
tail (3.80) is expected to be limited to a very narrow range of near-threshold energies,
encompassing at most the highest one or two levels.

In order to understand how the choice of reference potential affects the separation
of short-range and tail effects, the authors of [KM13] investigated three further
versions for Vtail.r/:

V.2/
tail.r/ D � 9

4r4
� 15

2r6
; (3.81)

V.3/
tail.r/ D � 9

4r4
� 2r e�r�1 ; (3.82)

V.4/
tail.r/ D � 9

4r4
� 15

2r6
� 213

4 r7
� 2r e�r�1

�
1C 1

2 r
� 25

8 r2

�
: (3.83)
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Fig. 3.6 Plots of �CFtail.E� / against E� with the quantization function Ftail.E/ defined via (3.22),
(3.23) on the basis of the definitions (3.80)–(3.83) of Vtail. The straight dashed green and solid red
lines are fitted according to (3.26) through the highest two states, �D18 and �D19, with Ftail.E/
based on V.3/

tail and V.4/
tail , respectively (Adapted from [KM13])

Table 3.7 Values �CFtail.E� / at the energies E� given in Table 3.6 for the quantization functions
based on the definitions (3.80)–(3.83) of Vtail.r/

� V.1/
tail V.2/

tail V.3/
tail V.4/

tail � V.1/
tail V.2/

tail V.3/
tail V.4/

tail

10 17:4612 17:2870 18:6570 18:5089 15 19:7486 19:6804 19:4491 19:4310

11 18:0115 17:8571 18:8562 18:7444 16 19:9740 19:9285 19:5374 19:5304

12 18:5268 18:3929 19:0367 18:9557 17 20:0268 20:0028 19:5976 19:5968

13 18:9980 18:8853 19:1968 19:1416 18 19:8143 19:8073 19:6291 19:6287

14 19:4120 19:3213 19:3349 19:3007 19 19:6468 19:6467 19:6346 19:6343

These further reference potentials are shown as dotted orange
�
V.2/

tail.r/

, dashed

green
�
V.3/

tail.r/


and solid red
�
V.4/

tail.r/


lines in Fig. 3.5. The addition of the

next-order dispersion term �15=.2r 6/, which defines V.2/
tail.r/, is not a significant

improvement over V.1/
tail.r/, but V.3/

tail.r/ and V.4/
tail.r/, which include a contribution

from the polarisation potential, offer a far better representation of the full potential
in the whole range r > 5 a.u.

The quality with which the reference potentials V.i/
tail.r/ approximate the full

potential is reflected in the accuracy with which a plot of � C Ftail.E�/ against E�
yields a straight line with a small gradient according to (3.26). The plots are shown
in Fig. 3.6, and the numerical values on which they are based are listed in Table 3.7.

As already seen in Fig. 3.5, the potential tails V.1/
tail.r/ and V.2/

tail.r/ are only a
fair approximation of the full potential for distances larger than about 12 a.u. The
energy levels for which the outer classical turning point lies in this range are the
highest state � D 19 and the second-highest state � D 18, only. Correspondingly,
the behaviour of � C Ftail.E�/ for � � 17 and for � � 18 cannot, not even
approximately, be reconciled to one straight line, see blue circles and red triangles
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Table 3.8 For the definitions (3.80)–(3.83) of the reference potential, the table lists the values
of the threshold quantum number �D and the short-range correction coefficient �sr as obtained by
fitting a straight line through the highest two states � D 18 and � D 19 according to (3.26),
together with the tail parameters Na, b and �0. The last column shows the value obtained for the
scattering length according to (3.59)

Vtail �D �sr [a.u.] Na [a.u.] b [a.u.] �0 a [a.u.]

V
.1/
tail 19.6414 1577.3 0 64.28 � �30.60

V
.2/
tail 19.6410 1517.4 O.10�15/ 64.27 3.14396 �30.49

V.3/
tail 19.6348 �51.57 �2.49 63.09 3.07548 �30.93

V.4/
tail 19.6345 �52.91 �2.38 63.12 3.06881 �30.77

in Fig. 3.6. In contrast the points based on V.3/
tail.r/ show a much smoother energy

dependence, while for V.4/
tail.r/ the behaviour of � C Ftail.E�/ is quite close to linear

down to � D 10.
Table 3.8 lists the values of the threshold quantum number �D and the short-range

correction coefficient �sr as obtained by fitting a straight line through the last two
states � D 18 and � D 19 according to (3.26) for the various choices of reference
potential. Also listed are the tail parameters Na (mean scattering length), b (threshold
length) and �0 (threshold value of the outer reflection phase). The last column shows
the respective values of the scattering length a that follow via (3.59). Although the
choice of reference potential strongly influences the energy range over which the
tail contribution to the quantization function governs the energy progression of the
near-threshold bound states, the extrapolation to E D 0 yields a very stable value
of the threshold quantum number �D, which turns out to be quite insensitive to the
choice of Vtail.r/. This puts rather tight bounds on the value of the scattering length,
which follows via (3.59) and is seen to lie in the range between �31 and �30:5 a.u.
Interestingly, this range does not include the value a D �29:3 a.u., which was
derived in [CL03] by solving the appropriate Faddeev equations for the three-body
ppe system. Two of the authors of [HB00], who obtained the energy eigenvalues in
Table 3.6, were also coauthors of [CL03]. It seems that the scattering length given
there is not quite consistent with the progression of near-threshold energy levels
given in [HB00]. The same applies to the value a D �28:8 a.u., which was obtained
in [BZ08] by calculating p-H scattering cross sections down to very low energies.

Figure 3.7 shows the scattering length derived via (3.59), with the threshold
quantum number �D obtained by fitting a straight line through two bound states
� and � C 1 according to (3.26), as function of the quantum number � . For the
reference potentials (3.80) and (3.81), the predictions are outside the range of the
figure for � � 17. With the more sophisticated choices (3.82) and (3.83) of reference
potential, a rapid and smooth convergence with � is observed, similar to the case
of the Lennard-Jones potential, see Table 3.5. With the reference potential V.4/

tail.r/,
the scattering length obtained from the fifth and fourth highest state (� D 15 and
� D 16) already lies within 0:3 a.u. of the value obtained with the highest two states.
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Fig. 3.7 Scattering length a according to (3.59) with �D obtained by fitting a straight line through
the points � and �C 1 in Fig. 3.6 according to (3.26). The blue circle and the red triangle at
�D18 are based on V.1/

tail.r/ and V.2/
tail.r/. The upright green and diagonal red crosses are based on

V.3/
tail.r/ and V.4/

tail.r/, respectively. The dashed horizontal lines show the values a D �29:3 a.u. and
aD�28:8 a.u. given in [CL03] and [BZ08] (Adapted from[KM13])

This example shows, how a sufficiently sophisticated choice of reference poten-
tial can substantially increase the energy range over which the progression of
near-threshold energy levels can be understood as a property of Vtail.r/. The “bad
news” is, that any choice of Vtail.r/ beyond the single-power form (3.63) destroys
the universality of the quantization function. Whereas the quantization function
F˛.	ˇ˛/ for a single-power tail caters for all values of the potential strength,
expressed through the quantum length ˇ˛ , adding any further term to the definition
of Vtail.r/ only makes sense in an application to a specific system. For any reference
potential containing two or more terms, however, the quantization function will
depend on the ratios of the strengths of the various terms. These ratios are most
likely to be unique to a particular system, so the quantization function derived for a
given system will be applicable to this special case only.

3.1.5 The Transition From a Finite Number to Infinitely Many
Bound States, Inverse-Square Tails

The near-threshold quantization rule (3.4) for an attractive potential tail vanishing
as �1=r˛ with 0 < ˛ < 2 becomes meaningless as ˛ approaches the value 2 (from
below). For potential tails vanishing faster than 1=r2, the universal near-threshold
quantization rule follows from (3.11) and (3.51),

n
	!0� nth � b

�
	 C O.	2/ I (3.84)



188 3 Atomic Spectra

here nth is the finite but not necessarily integer threshold quantum number, which
was called �D in Sects. 3.1.2–3.1.4. The threshold length b in (3.84) diverges
to infinity for a (homogeneous) tail vanishing as �1=r˛, when the power ˛
approaches 2 from above implying � ! 1, see (3.67). In order to understand the
transition from potential wells with tails vanishing faster than �1=r2, which support
at most a finite number of bound states, to those with tails vanishing more slowly
than �1=r2, which support infinitely many bound states, it is necessary to look in
some detail at potentials with tails asymptotically proportional to the inverse square
of the distance,

V .r/
r!1� V� .r/

defD „2
2�

�

r2
: (3.85)

Inverse-square potentials of the form (3.85) with positive or negative values of
the strength parameter � occur in various physically relevant situations. For a one-
particle Schrödinger equation in f -dimensional coordinate space ( f � 2), radial and
angular motion can be separated via an ansatz,

 .r/ D  rad .r/

r.f �1/=2 � Y .angles/ I (3.86)

the one-dimensional radial Schrödinger equation for  rad.r/ contains a centrifugal
potential of the form (3.85) with

� D
�

lf C f � 1

2

��
lf C f � 3

2

�
: (3.87)

In three-dimensional space we have the well-known result � D l3.l3 C 1/, l3 D
0; 1; 2; : : : [see (1.75) in Sect. 1.2.2], and in two-dimensional space we have

� D .l2/
2 � 1

4
; l2 D 0; ˙1; ˙2; : : : : (3.88)

Attractive and repulsive inverse-square potentials occur in the interaction of an
electrically charged particle with a dipole, e.g. in the interaction of an electron
with a polar molecule or with a hydrogen atom in a parity-mixed excited state, see
Sect. 3.1.6.

If the inverse-square tail (3.85) is sufficiently attractive, more precisely, if

�
defD �g < �1

4
; g >

1

4
; (3.89)

then the potential supports an infinite number of bound states, usually called a
“dipole series”, and towards threshold, E = 0, the energy eigenvalues of the bound
states depend exponentially on the quantum number n, [GD63, MF53]

En
n!1� �E0 exp

0
B@� 2�nq

g � 1
4

1
CA : (3.90)
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The strength g of the attractive inverse-square tail determines the asymptotic value
of the ratio of successive energy eigenvalues,

En

EnC1
n!1� exp

0
B@ 2�q

g � 1
4

1
CA ; (3.91)

but not the explicit positions of the energy levels, which are fixed by the constant E0
in (3.90). This reflects the fact that there is no energy scale in a Schrödinger equation
with a kinetic energy and an inverse-square potential; if  .r/ is a solution at energy
", then  .sr/ is a solution at energy s2". For a pure �1=r2 potential one can obtain
a discrete bound-state spectrum corresponding to the right-hand side of (3.90) by
requiring orthogonality of the bound-state wave functions at different energies,
but the resulting spectrum is unbounded from below, En ! �1 for n ! �1
[MF53].

In a realistic potential well with a sufficiently attractive inverse-square tail,
(3.89), the actual positions of the bound-state energies are determined by the
behaviour of the potential at small distances, where it must necessarily deviate
from the pure �1=r2 form. If the potential tail contains a further attractive term
proportional to �1=rm; m > 2, then as r decreases this term becomes dominant
and the WKB approximation becomes increasingly accurate. Potential wells with
two-term tails,

V .r/
r!1� Vg;m .r/ D � „2

2�

 
.ˇm/

m�2

rm
C g

r2

!
; m > 2; g >

1

4
; (3.92)

support an infinite dipole series of bound states and there may be a WKB region at
moderate r values if the well is deep enough. In this case, near-threshold properties
of the bound states can be derived [ME01] by matching the asymptotic .r ! 1/

solutions of the Schrödinger equation with the inverse-square term alone to zero-
energy solutions of the tail (3.92), which are then expressed as WKB waves in the
WKB region in a procedure similar to that used in Sect. 3.1.2. This results [ME01] in
an explicit expression for the factor E0, which asymptotically .n ! 1/ determines
the positions of the energy levels in the dipole series (3.90),

E0 D 2„2.m � 2/ 4
m�2

�.ˇm/
2

exp

(
2

�

"
� C �C �

2
C arctan

 
tan.QS0= .2„//
tanh .��=2/

!#)
:

(3.93)
The parameters � , �, � and � appearing in (3.93) are,

� D
r

g � 1

4
; � D 2�

m � 2
; � D arg� .i�/ ; � D arg� .i�/ ; (3.94)
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and QS0 is essentially the threshold value of the action integral from the inner classical
turning point rin.0/ to a point r in the WKB region,

QS0
2„ D 1

„
Z r

rin.0/

p0.r
0/dr0 C 2

m � 2
�
ˇm

r

� m�2
2

� �in.0/

2
� �

4
: (3.95)

A condition for the applicability of the formula (3.93) is, that near the point r in
the WKB region the potential must be dominated by the �1=rm term so that the
inverse square contribution can be neglected; the sum of the integral and the term
proportional to 1=r.m�2/=2 in (3.95) is then independent of the choice of r.

More explicit solutions are available when the whole potential consists of an
attractive inverse-square tail and a repulsive 1=rm core,

V.r/ D „2
2�

 
.ˇm/

m�2

rm
� g

r2

!
; m > 2 : (3.96)

The existence of a WKB region in the well is not necessary in this case, because
analytical zero-energy solutions of the Schrödinger equation are available for the
whole potential. The zero-energy solution which vanishes at r D 0 approximates
finite energy solutions to order less than O(E) in the region of small and moderate r
values, and it can be matched to the solution which vanishes asymptotically in the
presence of the attractive inverse-square tail. This yields the following expression
for the factor E0 defining the energies of the near-threshold bound states of the
dipole series (3.90) [ME01],

E0 D 2„2.m � 2/ 4
m�2

�.ˇm/
2

exp

�
2
� C �

�

�
; (3.97)

where � , � and � are as already defined in (3.94). Note that E0 is only defined
to within a factor consisting of an integer power of the right-hand side of (3.91);

multiplying E0 by an integer power of exp.2�=
q

g � 1
4
/ does not affect the energies

in the dipole series (3.90) except for an appropriate shift in the quantum number n
labelling the bound states.

A potential with an attractive inverse-square tail (3.85) no longer supports an
infinite series of bound states, when the strength parameter � is equal to (or larger
than) � 1

4
. This can be expected from the breakdown of formulae such as (3.90),

(3.93) and (3.97) when �� D g D 1
4
. It is also physically reasonable, considering

that the inverse-square potential V�D�1=4 is the s-wave .l2 D 0/ centrifugal potential
for a particle moving in two spatial dimensions, see (3.88). It is difficult to imagine
a physical mechanism that would bind a free particle in a flat plane, so the
discontinuation of dipole series of bound states at the value � 1

4
of the strength

parameter � seems more than reasonable.
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A potential well with a weakly attractive inverse-square tail, i.e. with a strength
parameter in the range

� 1

4
� � < 0; (3.98)

can support a (finite) number of bound states if supplemented by an additional
attractive potential. If the additional potential is regular at the origin, then the action
integral from the origin to the outer classical turning point diverges because of the
�1=r2 singularity of the potential at r = 0, so a naive application of the generalized
quantization rule (3.2) doesn’t work. This can be overcome by shifting the inner
classical turning point to a small positive value and adjusting the reflection phase �in

accordingly [FT99].
The near-threshold quantization rule for a weakly attractive inverse-square tail

was studied in some detail by Moritz et al. [ME01], and analytical results were
derived for tails of the form

V.r/
r!1� V.weak/

g;m .r/ D � „2
2�

 
.ˇm/

m�2

rm
C g

r2

!
; m > 2; g � 1

4
: (3.99)

For g < 1
4

(i.e., excluding the limiting case g D 1
4
), the near-threshold quantization

rule is [ME01],

n D nth � �.	ˇm=2/
2��

sin.��� /.m � 2/2����Œ� .�� /� .�/�2

C O
�
.	ˇm/

4��
	C O.	2/; (3.100)

with

�� D
r
1

4
� g D

r
� C 1

4
and � D 2��

m � 2 : (3.101)

The threshold quantum number nth in (3.100) is given by

nth� D 1

„
Z r

rin.0/

p0
�
r0	 dr0 C 2

m � 2

�
ˇm

r

� m�2
2

� �in .0/

2
� �

4
� �

2
� : (3.102)

As in the discussion of (3.93) and (3.95), the point r defining the upper limit
of the action integral must lie in a region of the potential well where the WKB
approximation is sufficiently accurate and the potential is dominated by the �1=rm

term, so the inverse-square contribution can be neglected; the sum of the integral
and the term proportional to 1=r.m�2/=2 in (3.102) is then independent of the choice
of r.
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When we express 	 in terms of the energy E D �„2	2=.2�/, the near-threshold
quantization rule (3.100) becomes

n D nth � B.�E/�� ; (3.103)

with

B D
�


�.ˇm/

2=
�
2„2	���

sin
�
���

	
.m � 2/2����

�
�
�
��
	
� .�/

2 : (3.104)

The limiting case � D � 1
4

corresponding to �� D 0 and � D 0 requires special
treatment; the near-threshold quantization rule in this case is [ME01],

n D nth C 2=.m � 2/

ln.�E=B/
C O

�
1

Œln.�E=B/�2

�
; B D „2

2�.ˇm/
2
: (3.105)

Again, nth is given by the expression (3.102); note that � vanishes in this case.
We now have a very comprehensive overview of near-threshold quantization

in potential wells with attractive tails. Potentials falling off as �1=r˛ with a
power 0 < ˛ < 2 support an infinite number of bound states, and the limit of
infinite quantum numbers is the semiclassical limit. The near-threshold quantization
rule (3.4) contains a leading term proportional to 1=.�E/

1
˛� 1

2 in the expression for
the quantum number n. For ˛ D 2, the threshold E D 0 no longer represents the
semiclassical limit of the Schrödinger equation, but the potential still supports an
infinite number of bound states, if the attractive inverse-square tail is strong enough,

(3.89); the near-threshold quantization rule now contains
q

g � 1
4

ln .�E/ in the
expression for the quantum number n, see (3.90). The attractive inverse-square tail
ceases to support an infinite series of bound states at the value g D �� D 1

4
of

the strength parameter, which corresponds to the strength of the (attractive) s-wave
centrifugal potential for a particle in a plane. In the near-threshold quantization rule,
the leading term in the expression for the quantum number now is a finite number nth

related to the total number of bound states, and the next-to-leading term contains

the energy as 1= ln .�E/ for � D � 1
4

[(3.105)], or as .�E/
p
�C 1

4 for � > � 1
4
,

see (3.103).
It is interesting to note, that the properties of potential wells with shorter-ranged

tails falling off faster than 1=r2 fit smoothly into the picture elaborated for inverse-
square tails when we take the strength of the inverse-square term to be zero. The
near-threshold quantization rule (3.100) acquires the form (3.84) when � D 0,
�� D 1

2
, and the coefficient of 	 becomes b.m/=� with b.m/ given by the second

equation in the upper line of (3.67) when we also insert � D 1=.m � 2/.
The discussion of weakly attractive inverse-square tails, defined by the condi-

tion (3.98), can be continued without modification into the range of weakly repulsive
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inverse-square tails, defined by strength parameters in the range

0 < � <
3

4
: (3.106)

The parameter �� D
q
� C 1

4
determining the leading energy dependence on the

right-hand sides of (3.100) and (3.103) then lies in the range

1

2
< �� < 1; (3.107)

and the leading energy dependence .�E/�� expressed in these equations is still
dominant compared to the contributions of order O(E), which come from the
analytical dependence of all short-ranged features on the energy E and were
neglected in the derivation of the leading near-threshold terms. We can thus
complete the comprehensive overview of near-threshold quantization by extending
it to repulsive potential tails. For weakly repulsive inverse-square tails (3.106), the
formulae (3.100) and (3.103) remain valid. The upper boundary of this range is
given by

� D 3

4
; �� D

r
� C 1

4
D 1; (3.108)

which corresponds to the p-wave centrifugal potential in two spatial dimensions,
l2 D ˙1, see (3.88). At this limit, the near-threshold quantization rule has the form,

n D nth � O.E/; (3.109)

and this structure prevails for more strongly repulsive inverse-square tails, � > 3
4
,

and for repulsive potential tails falling off more slowly than 1=r2. Repulsive
tails falling off more rapidly than 1=r2 comply with the case � D 0, i.e. of
vanishing strength of the inverse-square term in the potential, and, provided there
is a sufficiently attractive well at moderate r values, the quantization rule has the
form (3.84) with the threshold length b and a threshold quantum number nth which
also depends on the shorter-ranged part of the potential.

Note that the condition (3.108) also defines the boundary between systems with a
singular and a regular level density at threshold. For attractive potential tails and for
repulsive potential tails falling off more rapidly than 1=r2 or as an inverse-square
potential with � < 3

4
, the level density dn=dE is singular at threshold, and the

leading singular term is determined by the tail of the potential. For a repulsive
inverse-square tail with � � 3

4
, and for a repulsive tail falling off more slowly

than 1=r2, the level density is regular at threshold, and the leading (constant) term
depends also on the shorter-ranged part of the potential.

A summary of the near-threshold quantization rules reviewed in this section is
given in Table 3.9.
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Table 3.9 Summary of near-threshold quantization rules for attractive and repulsive potential
tails. The second column gives the leading term(s) to the quantization rule in the limit of vanishing
energy, E D �„2	2=.2�/ ! 0. The third column lists equations where explicit expressions for
the constants appearing in the second column can be found; these can apply quite generally, as in
the first row, or to special models of potential tails with the asymptotic behaviour given in the first
column

V.r/ for r ! 1 Quantization rule for E ! 0 Refs. for constants

� „
2

2�
.ˇ˛/

˛�2=r˛; 0 < ˛ < 2 n 
 1
�

F.˛/=.	ˇ˛/.2=˛/�1 F.˛/: (3.3)

„
2

2�
�=r2; � < � 1

4
n 
 � 1

2�
ln.�E=E0/

q
j� j � 1

4
E0: (3.92), (3.96)

� D � 1
4

n 
 nth C A= ln.�E=B/ nth: (3.101)

A;B: (3.104)

� 1
4
< � < 3

4
n 
 nth � B.�E/

p

�C1=4 nth: (3.101)

B: (3.103)

� � 3
4

n 
 nth � O.E/ nth: (3.101)

/ C1=r˛; 0 < ˛ < 2 n 
 nth � O.E/

nth: (3.9)

/ ˙1=r˛; ˛ > 2 n 
 nth � 1
�

b	 b: (3.66)

Table 3.1

3.1.6 Example: Truncated Dipole Series in the H� Ion

The interaction between an electron and a neutral atom usually behaves asymptot-
ically as a shorter-ranged potential falling off faster than 1=r2. The excited energy
levels of the hydrogen atom are an exception, because the degenerate eigenstates
of different parity can mix to form states with a finite dipole moment, and the
interaction of such a dipole with the negatively charged electron is given by a
potential proportional to 1=r2.

Consider a system consisting of a hydrogen atom and an additional, “outer”
electron at a distance r. Let us ignore the spin degrees of freedom for the time
being, so the Hamiltonian is

OH D Op21
2�

� e2

r1
C Op2
2�

� e2

r
C e2

jr � r1j ; (3.110)

and the total wave function is a function of the coordinate vector r � .r;˝/ for
the outer electron and of r1 � .r1;˝1/ for the “inner” electron in the atom. If we
restrict the study to excited states of hydrogen in a given shell n, then the wave
function for the inner electron is an eigenstate of the Hamiltonian Op21=.2�/ � e2=r1
with eigenvalue En D �1=.2n2/ a.u., and the total wave function can be written as,

�.r1; r/ D
X
l1;m1

�n;l1 .r1/

r1
Yl1;m1 .˝1/

X
l;m

�l1;m1Il;m.r/
r

Yl;m.˝/ : (3.111)
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The right-hand side of (3.111) represents an expansion in channels as described
in Sect. 1.5.1, where the radial coordinate r of the outer electron describes the
dynamic degree of freedom, whereas the radial coordinate r1 of the inner electron
together with all angular degrees of freedom describes the internal variables whose
eigenstates label the various channels. For given values of the (conserved) total
orbital angular momentum quantum numbers L, M, there is only a finite number
of channels. E.g., for n D 2 the internal angular momentum l1 can be either zero or
one, and the angular momentum l of the outer electron can, for given L, only have
the values L � 1, L or L C 1. For L D 0 there are only two possibilities, namely l = 0
which implies that l1 must also be zero, and l D 1 which can only couple to L D 0

when l1 D 1.
For the simple case n D 2 and L D 0, the channel expansion (3.111) thus reduces

to

�LD0 D �2;0 .r1/

r1

�0 .r/

r
Y0 C �2;1 .r1/

r1

�1 .r/

r
Y1; (3.112)

where Y0 and Y1 stand for the normalized angular parts of the wave function, coupled
to L = 0, M = 0 [Edm60]:

Y0 D Y0;0 .˝1/ Y0;0 .˝/ D 1

4�
;

Y1 D
1X

mD�1
h1;m; 1;�mj0; 0i Y1;m .˝1/ Y1;�m .˝/

D
1X

mD�1

.�1/1�m

p
3

Y1;m .˝1/ Y1;�m .˝/ D � 1p
3

1X
mD�1

Y1;m .˝1/ Y�
1;m .˝/

D �
p
3

4�
cos .�/ ; (3.113)

where � is the angle between r and r1. The last line in (3.113) follows from the
properties of the spherical harmonics, see (A.9) in Appendix A.1.

We insert the two-channel wave function (3.112) into the two-electron
Schrödinger equation with the Hamiltonian (3.110) and take matrix elements with
the channel states Y0�2;0.r1/=r1 and Y1�2;1.r1/=r1. This involves integrating over r1
and all angular variables and leads to the coupled-channel equations for the wave
functions �0.r/ and �1.r/,

� „2
2�

d2�0
dr2

C
�

�e2

r
C V0;0

�
�0 C V0;1�1 D .E � I/ �0;

� „2
2�

d2�1
dr2

C
� „2
2�

2

r2
� e2

r
C V1;1

�
�1 C V1;0 �0 D .E � I/ �1 : (3.114)



196 3 Atomic Spectra

The potentials Vi;j;, i; j D 0; 1, are defined by,

Vi;j .r/ D
�
�2;i .r1/

r1
Yi

ˇ̌
ˇ̌ e2

jr � r1j
ˇ̌
ˇ̌ �2;j .r1/

r1
Yj

�
r

; (3.115)

where the subscript r on the matrix elements implies integration over all variables
except r. The threshold I below which both channels are closed is just the energy
eigenvalue E2 D � 1

8
a.u. of the isolated hydrogen atom in an n D 2 excited state.

At large distances r of the outer electron we can assume jr1j < jrj and expand
the inverse separation in (3.115) using (A.9) and (A.10) in Appendix A.1,

e2

jr � r1j
r1<rD

1X
lD0

e2 .r1/
l

rlC1
4�

2l C 1

lX
mD�l

Yl;m .˝/Y�
l;m .˝1/

r!1� e2

r
C e2r1

r2
4�

3

1X
mD�1

Y1;m .˝/ Y�
1;m .˝1/C O

�
1

r3

�
: (3.116)

For i D j D 0, only the leading term in the lower line of (3.116) contributes to
the matrix element (3.115), due to the orthogonality of the spherical harmonics. For
i D j D 1 the contribution of the second term in the lower line of (3.116) involves
integrals over products of three spherical harmonics of the same odd order l D 1,
and these vanish according to (A.11), (A.12) in Appendix A.1. For the diagonal
potentials we thus have,

V0;0 .r/ D e2

r
; V1;1 .r/ D e2

r
C O

�
1

r3

�
: (3.117)

For the non-diagonal coupling potential we have

V0;1 .r/ D V1;0 .r/
r!1� e2

r2
Mrad

1

3
p
3

� .�1/ �
X
m;m0

Z
d˝1

Z
d˝ Y1;m .˝/Y�

1;m .˝1/Y1;m0 .˝1/ Y�
1;m0 .˝/ ; (3.118)

where

Mrad D
Z 1

0

�2;0.r1/ r1 �2;1.r1/ dr1 D �3p3 a (3.119)

is the radial matrix element involving the n D 2 radial eigenfunctions of the
hydrogen atom, as defined in (1.139) and Table 1.4 in Sect. 1.3.3; here a D „2=.�e2/
is the Bohr radius. The sum of the integrals over all the spherical harmonics in the
lower line of (3.118) amounts to three.
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In the coupled-channel equations (3.114), the terms �e2=r describing the
attraction of the outer electron by the atomic nucleus are exactly cancelled by
the terms e2=r in (3.117), which are the leading contributions from the repulsive
interaction with the inner electron. The electron-atom potential is thus asymptoti-
cally dominated by the terms proportional to 1=r2, which consist of the centrifugal
potential for l D 1, l.lC1/ D 2 in the second equation (3.114) and the non-diagonal
coupling potential (3.118),

V0;1 .r/ D V1;0 .r/
r!1� 3

e2a

r2
D 6

„2
2�r2

: (3.120)

The coupled-channel equations (3.114) can be written as a matrix equation for the
two-component vectors consisting of the channel wave functions �0 and �1, and at
large distances this matrix equation is

� „2
2�

�
1

d2

dr2
� v

1

r2

��
�0
�1

�
D
�

E � I 0

0 E � I

��
�0
�1

�
;

where 1 D
�
1 0

0 1

�
and v D

�
0 6

6 2

�
: (3.121)

The constant matrix v in (3.121) can be diagonalized by replacing �0 and �1
by appropriate linear combinations; its eigenvalues are �˙ D 1˙ p

37. Asymptot-
ically, the coupled-channel equations (3.114) thus decouple into two independent
equations for channels corresponding to parity-mixed superpositions of the 2s and
the 2p states of the hydrogen atom. Through this mixing, the inverse-square terms in
the non-diagonal coupling potential (3.120) contribute to the asymptotic potentials
in the decoupled channels. The superposition corresponding to the eigenvalue
�� D 1 � p

37 � �5:08 asymptotically obeys a Schrödinger equation with an
attractive inverse-square potential (3.85), which is clearly strong enough (3.89) to
support a dipole series of states as described in Sect. 3.1.5. Strictly speaking, these
states are not bound states, because they lie above the threshold E1 D � 1

2
a.u. for

decay into the n D 1 ground state of the hydrogen atom; instead of a dipole series
of bound states we actually expect a dipole series of resonant states converging to
the series limit, the n D 2 threshold at E D I D � 1

8
a.u. One L D 0 resonance has

actually been observed at an energy of about 0.024 atomic units below the n D 2

threshold in H�, and further states have been derived from ab initio calculations by
several authors, for details see [Pur99].

The low-lying states are, of course, affected by further details of the electron-
atom interaction, in particular the shorter-ranged contributions of the electron-
electron repulsion (3.116) as well as effects due to the Pauli principle and the
spin-orbit interaction. The observed state at E � I D �0:024 a.u. is actually a
spin singlet state, so the orbital wave function should be symmetric with respect
to exchange of r and r1, see Sect. 2.2.4. Towards the threshold I, the short-ranged
part of the wave functions is expected to change only marginally within the series, so
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the higher states differ only in their long-ranged tails which are strongly influenced
by the attractive inverse-square potential. In this respect, the highly excited states in
a dipole series resemble the highly excited states in an attractive Coulomb potential
as discussed in Sect. 1.3.3, see Figs. 1.4–1.6.

The ratio of successive energy eigenvalues in a dipole series (relative to the
threshold) approaches a constant value R near threshold, see (3.90). For g D ��� �
5:08 we have,

Ei � I

EiC1 � I
n!1� R D e2�=

p
g�1=4 � 17:43 : (3.122)

With the lowest 21S state of H� roughly 0.024 atomic units below I, we would
expect further states of the dipole series near 0:024=Ri�1, i D 2; 3 : : :. As the
distance to threshold, jEi � Ij, becomes smaller and smaller, we have to focus on
smaller contributions to the Hamiltonian of the system, which were ignored so far.
Indeed, the degeneracy of the n D 2 states of the hydrogen atom, which is an
essential ingredient in decoupling the coupled-channel equations (3.114), (3.121)
at large r, is only a reasonable assumption as long as we neglect the fine-structure
splitting of roughly 1:7 � 10�6 a.u. between the j D 1=2 and j D 3=2 states, see
Fig. 2.1. If the “internal energies” are not equal in both channels, then the matrix
containing the energy relative to threshold on the right-hand side of (3.121) is still
diagonal, but it no longer commutes with v, so a superposition of the 2s and the 2p
channels cannot decouple the two equations. However, including relativistic effects
as prescribed by the Dirac equation in Sect. 2.1.3 still leaves a degenerate pair of
parity-mixed n D 2 states in the hydrogen atom, namely the 2s1=2 and the 2p1=2
states. At this stage, the appropriate good quantum number is the total angular
momentum J rather than the total orbital angular momentum L. For the simplest
case J D 0 and positive parity (meaning l1 C l is even), the 2s1=2 state of the
inner electron can combine with l D 0 and j D 1=2 of the outer electron, whilst
the 2p1=2 state combines with l D 1, j D 1=2. The potential matrix determining
the strength of the 1=r2 term in the coupled-channel equations (3.121) again has
one negative eigenvalue which fulfills the condition (3.89) for supporting a dipole
series, namely � D 1 � p

13 � �2:6 [PF98, Pur99]. The near-threshold value of
the ratio of successive energies relative to threshold increases to R � 60 for this
value of � , meaning that the energies approach the threshold even more rapidly
than in (3.122). At still finer energy resolution we have to consider the Lamb shift
which splits the 2s1=2 and 2p1=2 states by 0:16 � 10�6 a.u. When this small energy
splitting is taken into account, decoupled equations can no longer be generated via
linear combinations of the 2s1=2 and 2p1=2 channels, and there is no attractive inverse
square term in the electron-atom potential.

A rough estimate of where the various corrections to the simple picture of
degenerate n D 2 states become important in coordinate space can be obtained
by looking at the position where the inverse-square potential, naively calculated
assuming degeneracy, reaches values comparable to the correction in the energies
of the channel thresholds. The absolute value of the potential „2�= �2�r2

	
, with
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� D 1 � p
37 � �5:08—as obtained assuming degeneracy of all states in the

n D 2 shell—reaches the energy 1:7 � 10�6 a.u. corresponding to the fine-structure
splitting between the j D 1=2 and j D 3=2 states near r � 1200 a.u. For
� D 1 � p

13 � �2:6—as obtained with the channel thresholds given by the
Dirac equation but neglecting the Lamb shift—the potential reaches values near the
Lamb shift (1:6 � 10�7 au) for r � 3000 a.u.

The low-lying states of the electron-atom system are insensitive to the long-
ranged features of the potentials, because the wave functions �0 and �1 solving the
coupled equations (3.114) decay rapidly for large or moderate values of jE � Ij. The
highly excited states, on the other hand, are quite similar to the lower states at small
distances and depend with increasing sensitivity on the potential tail as the energy
approaches threshold. The splitting of the n D 2 states in the hydrogen atom due
to fine structure and the Lamb shift leads to a truncation of the otherwise expected
infinite dipole series when the energy relative to the threshold is of the order of this
splitting.

Purr et al. [PF98, Pur99] studied this truncation of dipole series using a simple
model for the short-ranged part of the (diagonal and non-diagonal) electron-atom
potentials together with the exact longer-ranged terms proportional to 1=r2 and
1=r3, as well as the exact binding energies of the isolated hydrogen atom, including
fine structure and the Lamb shift. The short-ranged model potential was adjusted
to reproduce the lowest two states below the n D 2 threshold, which are known
from experiment and/or ab initio calculations neglecting relativistic and quantum
electrodynamic effects. Higher states, for which these effects are essential, were then
obtained by solving the coupled channel equations with the previously determined
potentials. Results for the J� D 0C series starting with the experimentally known
1S state below the n D 2 threshold are summarized in Table 3.10. The ratio
of successive energies (relative to threshold) is fairly close to the value (3.122)
expected from the strength of the attractive inverse-square potential obtained by
asymptotically decoupling the equations (3.114), (3.121), in particular the ratio R2
for the i D 2 and i D 3 states. The ratio R1 is a bit larger, which can be attributed to
effects of the short-ranged part of the interaction on the lowest state of the series. The
ratio R3 is also a bit larger, which can be attributed to the influence of fine-structure
splitting on the fourth state in the series. This state is separated from the lowest

Table 3.10 Energies (in atomic units) of electron-hydrogen J� D 0C resonances below the n D 2

threshold relative to the unperturbed threshold energy I D � 1
8

a.u. Due to fine-structure splitting
the lowest channel threshold actually lies at I2p1=2 D I � 2:08� 10�6 a.u. The last column lists the
ratios Ri D .Ei � I2p1=2 /=.EiC1 � I2p1=2 /

i Ei � I Ri

1 �2:379 � 10�2 23.4

2 �1:018 � 10�3 17.4

3 �6:05 � 10�5 20.3

4 �4:95 � 10�6
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channel threshold I2p1=2 by only 2:9�10�6 a.u., and a hypothetical fifth state should
be closer to threshold by a factor between 17 and 60. On such a fine energy scale,
the corrections lifting the degeneracy of the s and p states can no longer be ignored
in the channel thresholds, the picture of an attractive inverse-square potential breaks
down and the dipole series is truncated. The i D 4 state is actually the last state
obtained below I2p1=2 by solving the coupled-channel equations (3.114).

The investigation sketched above can be applied for other values J� in the
electron-atom system. The J� D 1� states below the n D 2 threshold were
studied in [LB98, PF98, Pur99]. The coupled-channel equations now encompass
seven channels and the degenerate-threshold approximation yields two decoupled
channels with attractive inverse-square potentials of sufficient strength, (3.89),
which can roughly be identified as 1Po and 3Po channels in standard LS-notation
appropriate at small electron-atom separations, see Sect. 2.2.4. The 1P states are
more easily accessible that S states, because they can be reached via laser excitation
from the 1S ground state of the negative hydrogen ion. Two 1Po states below the
n D 2 threshold of the hydrogen atom have actually been observed using laser
spectroscopy [AB97], and a coupled-channel calculation as outlined above predicts
one third state of dominantly of 1Po character and a series of four states dominantly
of 3Po character. Interestingly, fine-structure and Lamb shift corrections lead to
appreciable mixing of singlet and triplet configurations for the higher states in the
series [PF98].

3.2 One Electron in a Modified Coulomb Potential

3.2.1 Rydberg Series, Quantum Defects

In a neutral atom or a positive ion, a highly excited electron at large separations r
from the residual ion moves in an attractive Coulomb field, i.e., in a very-long-
ranged potential proportional to 1=r. For an electron with orbital angular momentum
quantum number l in a pure Coulomb potential,

VC .r/ D I � Ze2

r
C l .l C 1/ „2

2�r2
; (3.123)

the solutions of the radial Schrödinger equation have the energy eigenvalues
(cf. (1.135), (2.8))

En D I � R
n2
; n D l C 1; l C 2; : : : ; (3.124)

where R is the Rydberg energy; I is the continuum threshold. If the potential V.r/
differs from the pure Coulomb form (3.123) only through a shorter-ranged potential,

V .r/ D VC .r/C Vsr .r/ ; lim
r!1 r2Vsr .r/ D 0 ; (3.125)
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then the energy eigenvalues can still be written in the form (3.124) [compare (3.5)]
if we replace the quantum number n by an effective quantum number

n� D n � �n : (3.126)

Explicitly:

En D I � R
.n�/2

D I � R
.n � �n/2

: (3.127)

The corrections �n are called quantum defects and the energies (3.127) form a
Rydberg series.

The usefulness of the Rydberg formula (3.127) follows from the fact that the
quantum defects �n depend only weakly on n for large n and converge to a finite
value in the limit n ! 1. That this is so can be understood most easily in the
framework of the semiclassical approximation which was discussed in Sects 1.6.3
and 3.1.1.

For an energy E < I the relevant action integral in the quantization condi-
tion (1.308) is, in the pure Coulomb case,

SC.E/ D 2

Z b

a

p
2�.E � VC.r// dr : (3.128)

For l D 0 the inner classical turning point is the origin. The outer classical turning
point b grows larger and larger as E ! I:

b.E/ D Ze2

I � E
; (3.129)

and

SC.E/ D 2

Z b

0

s
2�

�
E � I C Ze2

r

�
dr D 2

p
2�Ze2

Z b

0

r
1

r
� 1

b
dr

D 2�

r
b.E/�Ze2

2
; (3.130)

or, with (3.129),

E D I � �Z2e4

2

�
2�

SC.E/

�2
: (3.131)

The quantization condition reads SC.E/ D 2�„.n C ��=4/ [cf. (1.308), (3.2)].
With the appropriate Maslov index �� , which must obviously must be four in
the present case, it yields the energy formula (3.124) with the correct Rydberg
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energy R D �Z2e4=.2„2/. The Maslov index four can be interpreted as sum of
a contribution one, coming from the reflection at the outer classical turning point
where the potential is smooth, and a contribution three, coming from the reflection
at the attractive 1=r singularity at the origin [MK69].

For l > 0 the inner and outer classical turning points a and b are given by,

a.E/ D 1

	2aZ
� 1

	

s
1

.	aZ/
2

� �; b.E/ D 1

	2aZ
C 1

	

s
1

.	aZ/2
� �; (3.132)

where we have introduced the abbreviations,

	 D 1

„
p
2�.I � E/ ; aZ D �Ze2

„2 ; � D l.l C 1/ : (3.133)

The action integral (3.128) can still be evaluated in closed form, and the quantization
condition SC.E/ D 2�„.nC��=4/ actually reproduces the exact energy eigenvalues
if the Maslov index �� is taken to be two and the centrifugal potential is subjected
to the Langer modification, l.l C 1/ ! .l C 1=2/2; this trick even works for
l D 0, where it corresponds to introducing an otherwise absent inverse-square
potential „2=.8�r2/. The fact that WKB quantization with Langer modification
yields the exact bound state energies in a superposition of centrifugal and attractive
Coulomb potentials [Lan37], is a coincidence which should not be given too much
weight [Tro97]. For a Coulomb potential, the quantality function (1.298) becomes
arbitrarily large as r ! 0, see (1.314) in Sect. 1.6.4. For a Coulomb potential, the
WKB ansatz cannot be expected to be a good approximation for the wave function
for small values of the radial coordinate.

Close to threshold E ! I however, the energy dependence of the bound-
state wave functions is dominated by the regime of large values of r, where the
semiclassical approximation is increasingly reliable. The influence of an additional
shorter-ranged potential on the spectrum near threshold can be found out by
replacing the action SC in the quantization condition by the full action

S.E/ D 2

Z b

a0

p
2�.E � V.r// dr : (3.134)

This involves an additional contribution Ssr.E/ given by

Ssr.E/ D S.E/� SC.E/

D 2

Z b

a0

p
2�.E � V.r// dr � 2

Z b

a

p
2�.E � VC.r/ dr : (3.135)

The inner turning classical point is a in the absence and a0 in the presence of the
additional shorter-ranged potential; near threshold the outer classical turning point b
is determined by the long-ranged Coulomb potential according to (3.129) in both
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Fig. 3.8 Radial modified Coulomb potential (3.125) (including centrifugal potential) with inner
classical turning point a0 and outer classical turning point b.E/. The energy dependence of the
outer classical turning point is given by (3.129) close to threshold

cases, cf. Fig. 3.8. The quantization condition now connects the integer n not to SC

but to SC C Ssr; in place of (3.124) we now obtain the Rydberg formula (3.127) and
the quantum defects are, in semiclassical approximation,

�sc
n D 1

2�„Ssr.En/ : (3.136)

In the limit E ! I, b ! 1 the diverging contributions to the two integrals in (3.135)
cancel and their difference converges to a finite value.1

As an example for Rydberg series Table 3.11 lists the spectrum of one-electron
excitations in potassium (see [Ris56]). In order to derive the quantum defects
from the experimental term energies with sufficient accuracy, the corrections to the
Rydberg energy which arise from the mass of the nucleus (cf. (2.12)) must be taken
into account. With the nuclear masses from [WB77] and the Rydberg energy R1
from (2.9) we obtain the following result for the isotope K39 W R D R1�=me D
109735:771 cm�1. The continuum threshold is at I D 35009:77 cm�1.

The quantum defects of the excited states in potassium are shown as functions
of the energy relative to the continuum threshold, E � I, in Fig. 3.9. For each set of
quantum numbers S

�D 1
2

	
, L, J we obtain a Rydberg series of states nl in which

the quantum defects depend only weakly on the principal quantum number n or
energy E. The energy dependence in each series can be reproduced very accurately
by a straight line. The quantum defects decrease rapidly with increasing angular

1These considerations still hold if the “shorter-ranged potential” falls off a little more slowly
than required by (3.125), e.g. if it contains inverse-square contributions, limr!1 r2Vsr.r/ D
const: ¤ 0:
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Table 3.11 Excitation energies E (in cm�1), effective quantum numbers n� and associated
quantum defects �n D n � n� for one-electron excitations in the potassium atom (from [Ris56])

Term E n� �n Term E n� �n

4s 2S1=2 0.00 1.77043 2.22957 4p 2P1=2 12985.17 2.23213 1.76787

5s 2S1=2 21026.58 2.80137 2.19863 2P3=2 13042.88 2.23506 1.76494

6s 2S1=2 27450.69 3.81013 2.18987 5p 2P1=2 24701.43 3.26272 1.73728

7s 2S1=2 30274.28 4.81384 2.18616 2P3=2 24720.17 3.26569 1.73431

8s 2S1=2 31765.37 5.81577 2.18423 6p 2P1=2 28999.27 4.27286 1.72714

9s 2S1=2 32648.35 6.81691 2.18309 2P3=2 29007.71 4.27587 1.72413

10s 2S1=2 33214.22 7.81763 2.18237 7p 2P1=2 31069.90 5.27756 1.72244

11s 2S1=2 33598.54 8.81810 2.18190 2P3=2 31074.40 5.28058 1.71942

12s 2S1=2 33817.46 9.81847 2.18153 8p 2P1=2 32227.44 6.28015 1.71985

13s 2S1=2 34072.22 10.8187 2.1813 2P3=2 32230.11 6.28316 1.71684

9p 2P1=2 32940.21 7.28174 1.71826
2P3=2 32941.94 7.28478 1.71522

3d 2D5=2 21534.70 2.85370 0.14630 10p 2P1=2 33410.23 8.28279 1.71721
2D3=2 21537.00 2.85395 0.14605 2P3=2 33411.39 8.28579 1.71421

4d 2D5=2 27397.10 3.79669 0.20331
2D3=2 27398.14 3.79695 0.20305 4f 2F 28127.85 3.99318 0.00682

5d 2D5=2 30185.24 4.76921 0.23079
2D3=2 30185.74 4.76946 0.23054 5f 2F 30606.73 4.99227 0.00773

6d 2D5=2 31695.89 5.75448 0.24552
2D3=2 31696.15 5.75470 0.24530 6f 2F 31953.17 5.99177 0.00823

7d 2D5=2 32598.30 6.74580 0.25420
2D3=2 32598.43 6.74598 0.25402 7f 2F 32764.80 6.99148 0.00852

8d 2D5=2 33178.12 7.74021 0.25979
2D3=2 33178.23 7.74045 0.25955 8f 2F 33291.40 7.99127 0.00873

9d 2D5=2 33572.06 8.73652 0.26348
2D3=2 33572.11 8.73667 0.26333 9f 2F 33652.32 8.99109 0.00891

10d 2D5=2 33851.55 9.73371 0.26629
2D3=2 33851.59 9.73388 0.26612 10f 2F 33910.42 9.99094 0.00906

11d 2D5=2 34056.94 10.7317 0.2683
2D3=2 34057.00 10.7320 0.2680 11f 2F 34101.36 10.9909 0.0091

momentum l, because the inner region, where the full potential deviates from the
pure Coulomb potential, is screened more and more effectively by the centrifugal
potential (see Problem 3.1).

Because of their weak energy dependence, it is useful to complement the
quantum defects �n D �.En/ defined at the discrete energies En to a continuous
quantum defect function �.E/ which describes the influence of the shorter-ranged
potential Vsr. In the semiclassical approximation an extension of the formula (3.136)
to arbitrary energies E < I immediately yields an explicit formula for the quantum
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Fig. 3.9 Quantum defects ( filled circles) of the 2L Rydberg series in the potassium atom as
functions of the energy relative to the continuum threshold (see also Table 3.11). The splitting
within the individual doublets is not resolved in the figure. The almost horizontal straight lines
are the quantum defect functions �.E/; their intersections with the set of curves (3.142) define
the energies [in atomic units] of the bound states. At the continuum threshold E D I the quantum
defects match smoothly to the asymptotic phase shifts divided by � , which are shown as dashed
lines in the figure. (The Roman numeral I behind the element symbol “K” indicates the neutral
potassium atom. In this notation potassium ions with a single positive charge are written K II,
doubly charged ions are written K III, etc.)

defect function:

�sc.E/ D 1

2�„Ssr.E/ : (3.137)

An exact definition of the quantum defect function (beyond the semiclassical
approximation) can be formulated by asymptotically matching the solutions of the
radial Schrödinger equation to linear combinations of Whittaker functions [Sea83].
In practice it is customary to approximate the weakly energy-dependent function
�.E/ by fitting a polynomial in E � I through the discrete values given by the
quantum defects, �.En/ D �n.

In the bound-state region E < I we can introduce the variable �, defined by

�.E/ D
r

R
I � E

; E D I � R
�2
; (3.138)
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as a substitute for the energy variable E. The variable � is the continuous effective
quantum number. In a pure Coulomb potential the condition that the energy
corresponding to a given value of the continuous effective quantum number � is
one of the eigenvalues (3.124) of the Schrödinger equation reads

�.E/ D n D l C 1; l C 2; : : : : (3.139)

For a modified Coulomb potential of the form (3.125) the condition for a bound
state is, according to (3.127),

�.E/C �n D n; (3.140)

or, expressed in terms of the quantum defect function �.E/,

�.E/C �.E/ D n : (3.141)

Thus the energies En of the bound states are given by the intersections of the
quantum defect function with the set of curves

�.n/ D n � �.E/ D n �
r

R
I � E

(3.142)

in the �-E plane, as shown in Fig. 3.9.
The technology of high resolution laserspectroscopy has made the observation of

very highly excited Rydberg states possible. The left-hand part of Fig. 3.10 shows
an observed photoabsorption spectrum (cf. (2.200) in Sect. 2.4.4) with lines up to
n D 310 in the 6snd 1D2 Rydberg series in barium. The right-hand part of the
figure shows the energy differences EnCl �En as a function of the effective quantum
number n� on a logarithmic scale. The straight line shows the proportionality to
.n�/�3 following from the Rydberg formula (3.127). Apart from resolving such
small energy differences (� 10�8 atomic units), it is a remarkable achievement that
measurements involving such highly excited Rydberg atoms are possible at all. The
spatial extension of a Rydberg atom grows quadratically with the principal quantum
number n (see Problem 1.3) and exceeds 105 Bohr radii for n � 300, this means that
the Rydberg atoms observed in Fig. 3.10 are almost one hundredth of a millimetre in
size! In further measurements, states in this Rydberg series with principal quantum
numbers n > 500 were identified [NR87].

3.2.2 Seaton’s Theorem, One-Channel Quantum Defect
Theory

Below the continuum threshold, the shorter-ranged deviation of the full potential
from a pure Coulomb potential is described by the quantum defects or the quantum
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Fig. 3.10 The left-hand part shows photoabsorption cross sections with final states in the 6s nd1D2

Rydberg series in barium. The right-hand part shows the energy differences of successive Rydberg
states as a function of the effective quantum number n�

f on a logarithmic scale (every fifth energy
difference is plotted). The straight line shows the proportionality .n�

f /
�3 following from the

Rydberg formula (3.127) (From [NJ88])

defect function. Above the continuum threshold the shorter-ranged deviation from
the Coulomb potential manifests itself in the asymptotic phase shifts (cf. Sect. 1.3.2,
(1.122)). At the continuum threshold, the quantum defects are related to the phase
shifts, because the appropriately normalized solutions of the radial Schrödinger
equation in the limit n ! 1 (i.e. E ! I from below) and in the limit E ! I
(from above) converge to the same well defined solution at E D I, just as in the
pure Coulomb case (see (1.153)). The quantitative connection between the quantum
defects and the phase shifts at threshold is given by Seaton’s Theorem:

lim
n!1�n D �.E D I/ D 1

�
lim
E!I

ı.E/ : (3.143)

The factor 1=� appears on the right-hand side of (3.143), because a shift of one half-
wave in the asymptotic part of a wave function corresponds to a change of unity in
the effective quantum number and the quantum defect below threshold, while it
corresponds to a change of � in the phase shift above threshold.
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The relation (3.143) can immediately be verified in the framework of the
semiclassical approximation. There the radial wave function has the form (1.289)

�.r/ / p.r/�1=2 exp

�
i

„
Z r

p.r0/dr0
�
; (3.144)

and the phase of the wave is just the action integral in the exponent divided by „.
The asymptotic phase shift caused by a shorter-ranged potential Vsr added to the
pure Coulomb potential is the difference of the phases with and without Vsr:

ısc.E/ D 1

„
Z r

a0

p
2�.E � VC.r0/ � Vsr.r0// dr0

�1„
Z r

a

p
2�.E � VC.r0// dr0: (3.145)

(Again, the inner classical turning point is a in the absence and a0 in the presence of
Vsr.) Because of the short range of Vsr the difference (3.145) becomes independent
of r for sufficiently large r. Thus the asymptotic phase shift in semiclassical
approximation is just 1=.2„/ times the additional contribution to the action due to
the shorter-ranged potential (cf. (3.135)). In the limit E ! I this is precisely � times
the right-hand side of (3.136) in the limit b ! 1 corresponding to n ! 1.

The close connection between the “quasi-continuum” of the bound states just
below threshold and the genuine continuum above threshold is characteristic for
long-ranged Coulomb-type potentials. The wave functions consist mainly of a large
number of oscillations far out in the 1=r potential, be it a large finite number just
below threshold or an infinite number above threshold. The main influence of an
additional shorter-ranged potential Vsr is to shift these outer oscillations, and this
manifests itself in the phase shift above threshold and in the quantum defect function
and the quantum defects below threshold.

The two mathematically similar but physically different situations just below and
just above the continuum threshold can be summarized in one uniform equation of
one-channel quantum defect theory (QDT),

tan Œ�.� C �/� D 0 : (3.146)

Here �.E/ is the function which describes the physical effects of the addi-
tional shorter-ranged potential: below threshold � is the quantum defect function
described above, and above threshold �.E/ is the asymptotic phase shift ı.E/
divided by � . Below threshold �.E/ is a variable corresponding to the energy,
namely the continuous effective quantum number (3.138). Above threshold, � stands
for the asymptotic phase shift divided by ��:

�.E/ D
r

R
I � E

for E < I; �.E/ D � 1

�
ı.E/ for E � I : (3.147)
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With the identification (3.147) the QDT equation (3.146) above threshold is,
for the present one-channel case, a trivial identity ı.E/ D ı.E/. Below thresh-
old (3.146) simply means that �.E/ C �.E/ must be an integer n—this is just the
condition (3.141) for the existence of a bound state.

Just as the asymptotic phase shifts are defined only to within an additive multiple
of � , the quantum defects and the quantum defect function are only unique modulo
unity. The particular choice of quantum defects or the quantum defect function
determines where to start counting in a given Rydberg series.

3.2.3 Photoabsorption and Photoionization

The cross sections (2.200) for photoabsorption and (2.202) for photoionization
are given, as discussed in Sect. 2.4.6, by the respective oscillator strengths f .i/fi

and df .i/Ei =dE. The relation between the cross sections and the oscillator strengths
depends on the polarization of the incoming light and on the orientation, i.e. on
the azimuthal quantum numbers, of the initial and final atomic states. In order to
get rid of these geometric dependences it is convenient to define mean oscillator
strengths, which is quite easily done for one-electron atoms with wave functions of
the form (1.74).

For initial and final state wave functions

˚ni;li;mi.r/ D �ni;li .r/

r
Yli;mi.�; �/;

˚nf;lf;mf.r/ D �nf;lf.r/

r
Ylf;mf.�; �/; (3.148)

we define the mean oscillator strength for transitions from the initial multiplet ni; li
to the final state multiplet nf; lf by averaging over the initial states and summing over
the final states (cf. last paragraph in Sect. 2.4.4) as well as averaging over the three
spatial directions x; y; z :

Nfnflf;ni li D 1

2li C 1

CliX
miD�li

ClfX
mfD�lf

1

3

3X
iD1

f .i/
n flfmf;ni limi

D 2�

3„ !
ClfX

mfD�lf

1

2li C 1

CliX
miD�li

jh˚nf;lf;mf jrj˚ni;li;miij2 : (3.149)

We can rewrite the absolute square in (3.149) in spherical components (2.204):

jh˚nf;lf;mf jrj˚ni;li;miij2 D
C1X
�D�1

jh˚nf;lf;mf jr.�/j˚ni;li ;miij2: (3.150)
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With the expression (2.208) for the matrix elements of the spherical components
of r we have

liX
miD�li

jh˚nf;lf;mf j r j˚ni;li;miij2

D
liX

miD�li

�Z 1

0

�nf;lf.r/ r �ni;li.r/ dr

�2
F.lf; li/

2

�
C1X
�D�1

hlf;mf j1; �; li;mi i2

D
�Z 1

0

�nf;lf.r/ r �ni;li.r/ dr

�2 l>
2lf C 1

: (3.151)

Here we have assumed that lf is either li C1 or li �1 and used the fact that the sum of
the squares of the Clebsch-Gordan coefficients over mi and � gives unity [Edm60].
For the factors F.lf; li/ we inserted the explicit expression (2.210); l> is the larger of
the two angular momentum quantum numbers li and lf. Since the expression (3.151)
no longer depends on the azimuthal quantum number mf of the final state, the factor
1=.2lf C 1/ cancels with the summation over mf in (3.149), and the expression for
the mean oscillator strengths is simplified to

Nfnflf;nili D 2�

3„ !
l>

2li C 1

�Z 1

0

�nf;lf.r/ r �ni;li .r/ dr

�2
: (3.152)

The frequency ! D ."f � "i/=„, and hence also the oscillator strengths, are positive
for "f > "i (absorption) and negative for "f < "i (emission). From (3.152) it is easy
to see that the mean oscillator strengths fulfill the relation

.2li C 1/Nfnflf;ni li C .2lf C 1/Nfnili;nflf D 0 : (3.153)

For the mean oscillator strengths, where the sum over the azimuthal quantum
numbers is already contained in their definition, we obtain a sum rule of the form
(see also (3.161) below)

X
nf;lf

Nfnflf;nili D 1 : (3.154)
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The sum may further be decomposed into contributions from the two possible
angular momentum quantum numbers in the final states, lf D li C 1 and lf D li � 1,
yielding [BS57] (see also (3.162) below):

X
nf

NfnfliC1;nili D 1

3

.li C 1/.2li C 3/

2li C 1
;

X
nf

Nfnfli�1;nili D �1
3

li.2li � 1/

2li C 1
: (3.155)

The matrix elements (3.150) contain no spin dependence and allow no spin
changing transitions. If, however, the final state multiplets with good total angular
momentum quantum number j, which are split due to the effects of spin-orbit
coupling, can be resolved in the experiment, then the (mean) oscillator strength for
given final state quantum numbers nf and lf will be distributed among the various
j multiplets in proportion to their multiplicity 2j C 1. In an ni

2S1=2 ! nf
2Pj

transition, for example, the transition to the j D 3=2 states .2j C 1 D 4/ is twice as
strong altogether as the transition to the j D 1=2 states (2j C 1 D 2).

The cross section for the absorption of photons of arbitrary polarization by a
one-electron atom of undetermined orientation is a series of sharp spikes, whose
strength is given by the mean oscillator strength (3.152) (multiplied by the constant
factor 2�2e2„=.�c/ from (2.218)). Only comparatively small distances r contribute
in the radial integral in (3.152), because the initial wave function �ni;li.r/ vanishes
for large r. With increasing principal quantum number nf of the final states the
amplitudes of the radial wave functions �nf;lf.r/ of the final states (which are
normalized to unity) become smaller and smaller in the inner region, just as for
the pure Coulomb functions in Fig. 1.4. Hence the oscillator strengths also become
smaller and smaller with increasing principal quantum number nf of the final states.

In order to expose the dependence of the cross sections and oscillator strengths on
the principal quantum number for large principal quantum numbers, we renormalize
the radial wave functions of the final states in analogy to (1.140) so that the square
of their norm becomes inversely proportional to the separation 2R=�n�

f

	3
between

successive energy eigenvalues:

�E
nf;lf D

s�
n�

f

	3
2R �nf;lf : (3.156)

Here n�
f are the effective quantum numbers nf � �nf which determine the energies

of the final states according to (3.127). In the limit n�
f ! 1 corresponding to

E ! I (from below), the wave functions (3.156) merge smoothly into the energy
normalized continuum wave functions �E;lf for E � I. With (3.156) we can rewrite
the (mean) oscillator strengths (3.152) as

Nfnflf;nili D 2R
.n�

f /
3

2�

3„ !
l>

2li C 1

�Z 1

0

�E
nf;lf .r/ r�ni;li.r/ dr

�2
; (3.157)
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where the radial matrix element now converges to a finite number at the continuum
threshold E D I.

The representation (3.157) of the discrete oscillator strengths facilitates their
smooth matching to the photoabsorption cross sections and oscillator strengths
to final states in the continuum. We define mean oscillator strengths in analogy
to (3.149) as

dNfElf;nili

dE
D 1

2li C 1

CliX
miD�li

ClfX
mfD�lf

1

3

3X
iD1

d f .i/Elfmf;nilimi

dE

D 2�

3„ !
ClfX

mfD�lf

1

2li C 1

CliX
miD�li

jh˚E;lf;mf jrj˚ni;li;mi ij2; (3.158)

and the same manipulations which led from (3.149) to (3.152) yield

dNfnili;Elf

dE
D 2�

3„ !
1>

2li C 1

�Z 1

0

�E;lf.r/ r �ni;li .r/ dr

�2
: (3.159)

The cross section for the photoionization of atoms of unknown orientation by
photons of arbitrary polarization is given by the mean oscillator strength (3.159)
(multiplied by the constant factor 2�2e2„=.�c/ from (2.223)). From (3.157) we see
that the discrete oscillator strengths multiplied by the density .n�

f /
3=.2R/ of the

final states merge smoothly into the continuous form (3.159) at the threshold E D I:

lim
nf!1

.n�
f /
3

2R
Nfnflf;nili D lim

E!I

dNfElf;nili

dE
: (3.160)

An example of the smooth transition from the discrete line spectrum below the
continuum threshold to the continuous photoionization spectrum above threshold
is shown in Fig. 3.11 for the case of sodium. The left-hand part of the figure
shows the discrete oscillator strengths (3.157) multiplied by .n�

f /
3=.2R/ (2R ist

unity in atomic units), and the right-hand part shows the photoionization cross
sections divided by 2�2e2„=.�c/. The pronounced minimum at an energy around
0.05 atomic units above the threshold is attributed to a zero with an accompanying
sign change in the radial matrix element in (3.159). In the discrete part of the
spectrum the separation between successive lines in the near-threshold region is
just 2R=.n�

f /
3, so that the areas under the dashed lines correspond to the original

oscillator strengths.
The transitions to the continuum must of course be taken into account when

formulating sum rules. Thus (3.154) correctly reads

X
nf;lf

Nfnflf;nili C
Z 1

I

dNfElf;nili

dE
dE D 1 : (3.161)
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Fig. 3.11 Measured oscillator strengths for 3S ! nP transitions in sodium. The discrete oscillator
strengths (from [KB32]) are multiplied by the respective factors .n�

f /
3. Near threshold the areas

under the dashed lines correspond to the original oscillator strengths. The continuous oscillator
strengths above threshold are the photoionization cross sections from [HC67] divided by the factor
2�2e2„=.�c/

The correct form of (3.155) is

X
nf

NfnfliC1;nili C
Z 1

I

dNfE liC1;nili

dE
dE D 1

3

.li C 1/.2li C 3/

2li C 1
;

X
nf

Nfnfli�1;nili C
Z 1

I

dNfE li�1;nili

dE
dE D �1

3

li.2li � 1/

2li C 1
: (3.162)

Finally it should be mentioned, that the derivation of the sum rules in Sect. 2.4.6
relied on a commutation relation of the form (2.185), in particular on the commuting
of the dipole operator and the potential energy. In a one-electron atom this is only
fulfilled if the potential energy is a local function of the displacement variable.
For nonlocal one-body potentials as they occur in the Hartree-Fock method (see
Sect. 2.3.1), the Thomas-Reiche-Kuhn sum rule can, strictly speaking, not be
applied with N D 1. We find a way out of this problem by realizing that the non-
locality in the Hartree-Fock potential originates from the Pauli principle, which
requires e.g. the wave function of the valence electron in an alkali atom to be
orthogonal to the occupied single-particle states in the lower closed shells. The sum
rule with N D 1 holds approximately, if we include fictitious transitions to the states
forbidden by the Pauli principle. Since "f < "i for such transitions and hence Nfnflf;nili
is negative, the sum of the oscillator strengths for the allowed transitions becomes
larger.
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3.3 Coupled Channels

3.3.1 Close-Coupling Equations

The simple picture of one electron in a modified Coulomb potential described in
Sect. 3.2 can be transferred, to a large part, to many-electron atoms, when one
electron is in a highly excited loosely bound state, while all other electrons form
a more or less tightly bound core. In the simplest case we can assume that the
core electrons are not excited and only affect the spectrum via their influence on
the mean single-particle potential for the “outer” electron. In a further step we can
allow a finite number of excitations of the core electrons. The total wave function of
the atom (or ion) then has the form

�.x1; : : : ; xN/ D OA1

X
j

 
.j/
int .ms1 ; x2; : : : xN/ j.r1/; (3.163)

where the summation index j labels the various internal states of the core whose
wave functions  .j/int each define a “channel” and depend on the internal variables.
The internal variables are all variables except the spatial coordinate r1 of the outer
electron; we are counting the spin of the outer electron as one of the internal
variables. In each channel j,  j.r1/ is the associated channel wave function; it is
simply a one-electron wave function for the outer electron. We shall later include
the angular coordinates of the outer electron among the internal coordinates, so
the channel wave functions will depend only on the radial coordinate of the outer
electron. To begin with however, we shall derive the equations of motion for the full
orbital one-electron wave functions  j.r1/.

We assume that the wave functions of the core are antisymmetric with respect to
exchange amongst the particle labels 2 to N; the total wave function is made fully
antisymmetric by the residual antisymmetrizer which takes care of the exchange of
the outer electron with the electrons 2; : : :N of the core:

OA1 D 1 �
NX
�D2

OP1$� : (3.164)

In order to derive equations of motion for the channel wave functions, we rewrite
 j.r1/ as

R
dr0ı.r1 � r0/ j.r0/ in (3.163) giving

�.x1; : : : ; xN/ D
X

j

Z
dr0˚j.r0/  j.r0/ (3.165)

with

˚j.r0/ D OA1

n
 
.j/
int .ms1 ; x2; : : : xN/ ı

�
r1 � r0	o :
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Equation (3.165) represents an expansion of the total wave function in the basis
of states ˚j.r0/ which are labelled by the discrete index j numbering the channels
and the continuous vector parameter r0 corresponding to the position of the outer
electron. Due to the effect of the residual antisymmetrizer (3.164), this basis is not
orthogonal, i.e. the overlap matrix

h˚i.r/j˚j.r0/i D h .i/intı.r1 � r/j OA�
1

OA1j .j/intı.r1 � r0/i
D Nh .i/intı.r1 � r/j OA1j .j/intı.r1 � r0/i (3.166)

need not necessarily vanish for i ¤ j, or r ¤ r0. For the second line of (3.166)
we have used the property OA�

1
OA1 D N OA1 of the residual antisymmetrizer (3.164)

(which is defined without a normalization factor—cf. (2.61), (2.64)).
Diagonalizing the Hamiltonian OH in the basis (3.165) leads to an equation of the

type (1.277), generalized to the case of discrete and continuous basis state labels:

X
j

Z
dr0.Hi;j.r; r0/ � E Ai;j.r; r0//  .r0/ D 0; (3.167)

with

Hi;j.r; r0/ D h .i/intı.r1 � r/j OH OA1j .j/intı.r1 � r0/i;
Ai;j.r; r0/ D h .i/intı.r1 � r/j OA1j .j/intı.r1 � r0/i : (3.168)

In (3.167) we have cancelled the common factor N appearing in front of the matrix
elements, cf. (3.166).

Equation (3.167) represents a set of coupled-channel equations

OHi;i i C
X
j¤i

OHi;j j D E

0
@ OAi;i i C

X
j¤i

OAi;j j

1
A; (3.169)

for the channel wave functions  j, and the Hamiltonian and overlap operators
OHi;j and OAi;j are integral operators defined by the integral kernels (3.168). These

equations look a little more complicated than the coupled-channel equations (1.207)
which were derived under quite general assumptions in Sect. 1.5.1. This is due to
the non-orthogonality of the basis states which results from the fact that our present
ansatz (3.163) already takes into account the indistinguishability of all electrons and
collects all equivalent channels, which differ only by rearrangement of the electron
labels, into one channel.

The overlap kernels Ai;j.r; r0/ can be decomposed into a direct part originating
from the 1 in the residual antisymmetrizer (3.164), and an exchange part Ki;j.r; r0/
coming from the genuine permutations in (3.164). Because of the orthonormality of
the core states the direct part of the overlap kernels is simply a Kronecker symbol in
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the channel indices and a delta function in the spatial coordinate, but the exchange
parts are genuinely nonlocal:

Ai;j.r; r0/ D ıi;jı.r � r0/� Ki;j.r; r0/;

Ki;j.r; r0/ D
NX
�D2

h .i/intı.r1 � r/j OP1$� j .j/intı.r1 � r0/i : (3.170)

In each contribution to the exchange part, the spatial coordinate r1 of the outer
electron is exchanged with one of the coordinates r2; : : : rN of the core electrons, and
the matrix element vanishes for large jr0j (or large jrj) because of the exponential
decay of the wave function of the bound core state  

.j/
int (or  .i/int /. For large

separations the overlap operator thus becomes the unit operator.
Similar considerations apply for the Hamiltonian operators OHi;j. They too can

be decomposed into a direct part OHd arising from the 1 in the residual anti-
symmetrizer (3.164), and an exchange part OHex described by an integral kernel
OHex i;j.r; r0/, which is short ranged and nonlocal just as in the case of the overlap

operators.
In order to expose the structure of the direct part OHd of the one-body Hamiltonian,

it is useful to decompose the N-electron Hamiltonian (2.53) as follows:

OH D OH1 C OH2�N C OHW : (3.171)

OH1 acts only on functions of r1 and OH2�N acts only on functions of the remaining,
the internal, variables:

OH1 D Op21
2�

C V.r1/;

OH2�N D
NX
�D2

Op2�
2�

C
NX
�D2

V.r�/C
X

1<�<�0

OW.�; � 0/ : (3.172)

r1 is coupled to the other degrees of freedom by the interaction term

OHW D
NX
�D2

OW.1; �/ : (3.173)

Since OH1 does not act on the internal wave functions, the integration over the internal
variables in h .i/intı.r�r1/j OH1j .j/intı.r

0�r1/i yields a Kronecker symbol in the channel
indices and the diagonal matrix elements are simply the one-body matrix elements
of the kinetic energy Op21=.2�/ plus the potential energy V.r1/ of the outer electron.
From OH2�N we obtain diagonal contributions corresponding to the internal energies
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in the respective channels,

Ei D h .i/int j OH2�N j .i/int i0; (3.174)

multiplied by ı.r � r0/. The prime on the ket bracket indicates integration and
summation over the internal variables. We assume that the internal wave functions
are eigenfunctions of OH2�N , or at least that OH2�N is diagonal in the internal states
included in the expansion (3.163); then its contributions to the direct one-body
Hamiltonian which are non-diagonal in the channel labels vanish. The contribution
from the interaction term OHW couples the channels. With the expression (2.55)
for the electron-electron interaction this contribution consists of the local coupling
potentials

Vi;j.r/ D h .i/int j
NX
�D2

e2

jr � r� j j 
.j/
int i0 : (3.175)

The decomposition of the Hamiltonian and overlap operators into direct and
exchange parts exposes the structure of (3.169) as a system of coupled Schrödinger-
like equations:

 
Op2
2�

C V.r/

!
 i.r/C

X
j

Vi;j.r/ j.r/

C
X

j

Z
Hex i;j.r; r0/ j.r0/ dr0

D .E � Ei/ i.r/� E
X

j

Z
Ki;j.r; r0/ j.r0/ dr0 : (3.176)

The coupled equations (3.176) are generally known under the name of close-
coupling equations. They consist of a set of coupled integro-differential equations
for the channel wave functions  i.r/. The interactions consist of a direct local
potential and a nonlocal exchange potential. The explicit energy dependence of
the nonlocal contribution on the right-hand side is due to the fact that the equation
of motion has the form of a generalized eigenvalue problem (3.167). This energy
dependence can be removed by redefining the channel wave functions, so that
they absorb the short-ranged exchange parts of the overlap kernels in (3.170), see
e.g. [Fri81]. In the space of such renormalized channel wave functions, the many-
channel Hamiltonian defining the coupled-channel equations is Hermitian, as long
as it does not contain terms accounting for coupling to many-body wave functions
not included in the expansion (3.165) [cf. Sect. 4.1.14 on Feshbach projection].
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The longest-ranged contributions to the potential energy in (3.176) are the direct
diagonal potential V.r/ describing the electrostatic attraction by the atomic nucleus,

V.r/ D �Ze2

r
; (3.177)

and the direct interaction potentials (3.175). Using the multipole expansion (A.10)
in Appendix A.1,

1

jr � r� j D
1X

lD0

Œminfr; r�g�l
Œmaxfr; r�g�lC1 Pl.cos ��/; (3.178)

we can expand the potentials (3.175) in a series for large jrj,

Vi;j.r/ D
1X

lD0

e2

rlC1 h .i/int j
NX
�D2

rl
� Pl.cos ��/j .j/int i0; jrj ! 1 : (3.179)

Here Pl are the Legendre polynomials and �� is the angle between r and r� . The
l D 0 contribution in (3.179) yields a potential which is diagonal in the channel
indices and describes the electrostatic repulsion by the core electrons. It ensures
that the outer electron only sees the net charge Z � .N � 1/ of atomic nucleus plus
core electrons at large distances. The higher contributions corresponding to l > 0

depend on the multipole moments and multipole matrix elements

M.l/
i;j D h .i/int j

NX
�D2

rl
� Pl.cos ��/j .j/int i0 (3.180)

of the internal states. Since the internal states are usually eigenstates of the parity
operator for the N � 1 core electrons (cf. Sect. 2.2.4), the diagonal multipole
moments M.l/

i;i vanish for odd l. For neutral atoms and positive ions (i.e. for Z � N),
the structure of the close-coupling equations is thus dominated by the diagonal long-
ranged Coulomb potential �.Z � N C 1/e2=r describing the attraction of the outer
electron by the net charge of nucleus plus core electrons. The next contributions
depend on multipole moments and multipole matrix elements of the internal core
states; they fall off at least as fast as 1=r3 in the diagonal potentials and at least as
fast as 1=r2 in the nondiagonal coupling potentials. Due to the exponential decay
of the bound state wave functions of the internal core states, the nonlocal exchange
potentials fall off exponentially at large distances.

The internal states  .i/int defining the channels generally have a well defined
angular momentum, the channel spin. It is made up of the orbital angular momenta
of the core electrons 2; : : :N together with the spin angular momenta of all electrons.
The resulting channel spin must still be coupled with the orbital angular momentum
of the outer electron to form the total angular momentum of all electrons, which is
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a good quantum number. When we separate the close coupling equations (3.176)
into radial and angular parts, there will only be coupling between terms belonging
to the same values of the total angular momentum quantum numbers J, MJ and, if
the perturbation due to spin-orbit coupling is sufficiently small, to the same values
L, ML of the total orbital angular momentum and S, MS of the total spin. The coupled
equations (3.176) thus fall into various sets of coupled radial equations which, apart
from the nonlocal exchange potentials, each have the general form (1.215). Each
such set of coupled radial equations is characterized by the quantum numbers J, L, S
and the N-electron parity, as was described for atomic states in general in Sect. 2.2.4.
The transition from the coupled equations (3.176) to coupled radial equations will
be discussed in more detail in connection with inelastic scattering in Sect. 4.4.2.

3.3.2 Autoionizing Resonances

The internal energy E2 of an excited state  .2/int of the core electrons lies higher

than the internal energy E1 of the ground state  .1/int . The channel threshold I1 in
channel 1 coincides with the continuum threshold of the whole system, and the
channel threshold I2, above which channel 2 is open, lies higher by the amount
E2 � E1 corresponding to the internal excitation energy of the core.

I1 D I; I2 D I C E2 � E1 : (3.181)

At energies between I1 and I2 there can be states in channel 2 which would be bound
if there were no coupling to the open channel 1. In the independent-particle picture
such a state corresponds to a two-electron excitation: firstly a core electron is excited
defining the internal state  .2/int ; secondly the outer electron occupies an (excited)
state in the electron-core potential (see Fig. 3.12). Due to channel coupling, the
excited core electron can impart its excitation energy E2 � E1 to the outer electron,
which thus attains an energy above the continuum threshold and can be ejected
without absorption or emission of electromagnetic radiation. This process is called
autoionization.

Such autoionizing states appear in the coupled-channel equations as Feshbach
resonances which were described in Sect. 1.5.2. The bound state in the uncoupled
channel 2 is described by a bound radial wave function �0.r/, and all other

Fig. 3.12 Schematic illustration of an autoionizing resonance in the single-particle picture.
Electrons are indicated by filled circles, unoccupied single-particle states by empty circles
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coordinates (including the angular coordinates of the outer electron) are accounted
for in the internal wave function of the excited core state  

.2/
int . The radial

wave function  reg in the uncoupled open channel 1 has the asymptotic form
Œ2�=.�„2k/�1=2 sin.kr C ıbg/ (cf. (1.223)), where ıbg is the background phase shift
due to the diagonal potential. The factor Œ2�=.�„2k/�1=2 ensures normalization in
energy. The effects of the channel coupling can easily be calculated if we assume
that the channel wave function �2 in the closed channel 2 is always proportional to
the wave function of the bound state �0. We then obtain a solution of the coupled
equations in the following form:

�1.r/ D cos ıres �reg.r/C sin ıres ��1.r/;

�2.r/ D cos ıres

˝
�0jV2;1j�reg

˛
E � ER

�0.r/ : (3.182)

The modification of the wave function in channel 1 is described by the term
sin ıres��1, in which ��1.r/ asymptotically merges into the irregular solution of
the uncoupled equation:

��1.r/ D
p
2�=.�„2k/ cos.kr C ıbg/; r ! 1 : (3.183)

ıres is the additional asymptotic phase due to coupling of the bound state in channel 2
to the open channel 1. Near the energy ER of the autoionizing resonance it rises more
or less suddenly by � and is quantitatively given rather well by the formula (1.234):

tan ıres D � � =2

E � ER
: (3.184)

According to (1.232), the width � is given by

� D 2�j˝�regjV1;2j�0
˛ j2; (3.185)

and it determines the lifetime of the state with respect to autoionization according
to (2.145). The potential V1;2 encompasses all contributions which couple the chan-
nels, including nonlocal exchange contributions, and we assume h�0jV2;1j�regi D
h�regjV1;2j�0i�.

The channel wave functions (3.182) correspond exactly to the solutions of the
two-channel equations in Sect. 1.5.2, together with the common factor cos ıres which
ensures that the wave functions in the open channel 1 are energy normalized.
The associated total wave functions are then also energy normalized, because the
normalization integrals are dominated by the divergent contributions from the radial
wave functions in the open channel.
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With (3.184) and (3.185), the radial wave function �2 in (3.182) can be rewritten
as

�2.r/ D � sin ıres

�
˝
�regjV1;2j�0

˛ �0.r/; (3.186)

so that the entire N-electron wave function has the form

˚E D cos ıres OA1

�
 
.1/
int

�reg.r/

r

�

� sin ıres

�
˝
�regjV1;2j�0

˛ OA1

�
 
.2/
int

�0.r/

r
� �

˝
�regjV1;2j�0

˛
 
.1/
int

��1.r/

r

�
: (3.187)

It is appropriate to normalize the radial wave function �0 of the bound state in the
(uncoupled) channel 2 such that the contribution OA1f .2/int �0.r/=rg of channel 2 to
the N-electron wave function (3.187) is normalized to unity. Due to antisymmetriza-
tion, this does not necessarily mean that �0 itself is normalized to unity. With (3.184)
and (3.185), the absolute square of the factor in front of the contribution from
channel 2 in (3.187) can be written as

sin2 ıres

�2jh�regjV1;2j�0ij2 D 1

�

� =2

.E � ER/2 C .� =2/2
D 1

�

dıres

dE
: (3.188)

Thus the admixture of channel 2 near an autoionizing resonance is described by
a Lorentzian curve with a maximum at the resonance energy ER and a width
corresponding to the width of the resonance (see Fig. 1.8 in Sect. 1.5.2).

Equation (3.187) shows that the “unperturbed wave function” .ıres D 0/ acquires
an admixture due to the coupling of the channels. This admixture is not merely the
naked bound state OA1f .2/int �0.r/=rg, but is itself dressed by a modification of the
open-channel wave function.

The existence of autoionizing resonances manifests itself not only in the
radiationless decay of excited states, but also in other observable quantities such
as photoabsorption cross sections. In order to calculate, for example, the oscillator
strength df .x/Ei =dE for photoionization from an initial N-electron state ˚i we have to
apply the upper formula (2.222) and insert the two-channel final state wave function
˚E from (3.187):

df .x/Ei

dE
D 2�

„ !

ˇ̌
ˇ̌
ˇd1 cos ıres � d2

sin ıres

�
˝
�regjV1;2j�0

˛
ˇ̌
ˇ̌
ˇ
2

D 2�

„ ! jd1j2 cos2ıres

ˇ̌
ˇ̌
ˇ1 � d2

d1

tan ıres

�
˝
�regjV1;2j�0

˛
ˇ̌
ˇ̌
ˇ
2

: (3.189)
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Here d1 and d2 are the N-electron matrix elements which describe the dipole
transitions from the initial state ˚i to the two components of the final state (3.187):

d1 D h .1/int

�reg.r/

r
j

NX
�D1

x� OA1j˚ii;

d2 D h .2/int

�0.r/

r
� �h�regjV1;2j�0i .1/int

��1.r/

r
j

nX
�D1

x� OA1j˚ii : (3.190)

It is worth commenting on the physical dimensions of d1 and d2. Due to the energy
normalization of the wave function �reg, each occurrence of �reg, rather than a
normalized bound-state wave function, contributes the inverse square root of an
energy to the physical dimension, as is e.g. obvious in (3.185). The same holds for
��1. Hence the dipole transition strength d1 as defined in (3.190) has the dimension
of length times an inverse square root of energy, whereas d2 is just a length.

The formula (3.189) shows that the observable photoabsorption cross sections
in the vicinity of an autoionizing resonance are formed from two interfering
amplitudes. The resulting line shapes can best be discussed if we rewrite it as

df .x/Ei

dE
D 2�

„ !jd1j2 jq C "j2
1C "2

; (3.191)

where

" D � cot ıres D E � ER

� =2
(3.192)

is the dimensionless reduced energy, which measures the energy relative to the
position of the resonance in units of half the width of the resonance. The parameter

q D d2
d1�

˝
�regjV1;2j�0

˛ (3.193)

is the dimensionless shape parameter which depends on the relative strength of the
dipole transition matrix elements (3.190) and determines the shape of the absorption
line. In (3.191), .2�=„/!jd1j2 is a weakly energy-dependent factor corresponding
to the oscillator strength we would expect in the absence of coupling to the bound
state in channel 2. The energy dependence of the cross section near the resonance is
dominantly given by the modulus of the Beutler-Fano function

F.qI "/ D .q C "/2

1C "2
; (3.194)

which is real and non-negative when the shape parameter q is real.
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Fig. 3.13 Beutler-Fano function (3.194) for various negative (left) and positive (right) values of
the shape parameter q

Beutler-Fano resonances of the form (3.191) occur not only in photoabsorption,
but in all observable quantities which are determined by a transition matrix element
h˚Ej OOj˚ii as in (2.222). The matrix elements (3.190) must then be replaced by the
corresponding matrix elements of the transition operator OO.

Different values of the shape parameter q in the Beutler-Fano function (3.194)
lead to absorption lines of different shape as illustrated in Fig. 3.13. For real q, the
function and hence also the oscillator strength vanish at " D �q. This corresponds
to completely destructive interference of the two terms in (3.189). The absorption
line is steeper on the side of this zero and flatter on the other side. The sign of q
determines which side is the steep one. The maximum of the Beutler-Fano function
is at " D 1=q; the height of the maximum is 1 C q2. Far from resonance, i.e. for
" ! ˙1, the Beutler-Fano function is unity and the oscillator strength merges into
the oscillator strength we would expect in the absence of channel coupling. For very
small values of q the Beutler-Fano function describes an almost symmetric fall off
to zero around the resonance energy (window resonance). (See Problem 3.4.)

3.3.3 Configuration Interaction, Interference of Resonances

A straightforward and instructive extension of the case of a single isolated Feshbach
resonance is the consideration of two bound states in different closed channels
coupling to one open channel, as illustrated in Fig. 3.14. The coupled equations
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Fig. 3.14 Schematic
illustration of a three-channel
system. The potential Vi.r/
represents the potential in
channel i plus the respective
internal excitation energy,
Vi.r/ D Vi;i.r/C Ei. The
uncoupled upper potentials
V2, V3 each support a bound
state at energy E02 and E03,
respectively. Due to channel
coupling, these states appear
as Feshbach resonances in the
lower channel i D 1, which is
open for E > E1
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for the three radial channel wave functions are

�
� „2
2�

d2

dr 2
C Vi

�
�i.r/C

X
j¤i

Vi;j�j.r/ D E �i.r/ ; (3.195)

and the energy is chosen in the interval E1 < E < minfE2;E3g so that channel 1
is open while channels 2 and 3 are closed. The bound-state wave functions �02 and
�03 in the closed channels 2 and 3 are, in the absence of channel coupling, solutions
of the associated radial equation at the energies E02 and E03, respectively, and they
are assumed to be normalized to unity,

�
� „2
2�

d2

dr 2
C V2

�
�02.r/ D E02 �2.r/ ;

�
� „2
2�

d2

dr 2
C V3

�
�03.r/ D E03 �3.r/ ;

h�02j�02i D 1 ; h�03j�03i D 1 : (3.196)

Again we assume, that the closed-channel wave functions are restricted to multiples
of the respective uncoupled bound-state wave functions, i.e. we now look for
solutions of the three-channel problem in the space of three-component wave
functions,

˚ �
0
@ �1.r/

A2�02.r/
A3�03.r/

1
A : (3.197)
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Inserting A2�02 for �2 and A3�03 for �3 in the radial equations (3.195) with i D 2

and i D 3 and projecting onto h�02j and h�03j gives, as generalization of the lower
equation (1.219),

A2.E � E02/ D h�02jV2;1j�1i C A3h�02jV2;3j�03i ;
A3.E � E03/ D h�03jV3;1j�1i C A2h�03jV3;2j�02i : (3.198)

The equation for �1, i.e. the equation (3.195) with i D 1, can be written as

�
E C „2

2�

d2

dr 2
� V1

�
�1.r/ D A2 V1;2 �02.r/C A3 V1;3 �03.r/ (3.199)

and solved with the help of the Green’s function (1.228),

�1.r/ D �reg.r/C
Z 1

0

G.r; r0/
�
A2 V1;2.r

0/ �02.r0/C A3 V1;3.r
0/ �03.0/


dr0

r!1� �reg.r/ � ��A2˝�reg

ˇ̌
V1;2

ˇ̌
�02
˛CA3

˝
�reg

ˇ̌
V1;3

ˇ̌
�03
˛
�irr.r/; (3.200)

so the expression for the resonant contribution to the open-channel phase shift reads

tan ıres D �� �A2˝�reg

ˇ̌
V1;2

ˇ̌
�02
˛C A3

˝
�reg

ˇ̌
V1;3

ˇ̌
�03
˛
: (3.201)

Inserting the upper line of (3.200) for �1 in (3.198) leads to two simultaneous
equations for the coefficients A2 and A3,

A2
h
E � E02 � h�02jV2;1 OG V1;2j�02i

i
� A3h�02jV2;3 OG V1;3j�03i

D h�02jV2;1j�regi C A3h�02jV2;3j�03i;
A3
h
E � E03 � h�03jV3;1 OG V1;3j�03i

i
� A2h�03jV3;2 OG V1;2j�02i

D h�03jV3;1j�regi C A2h�03jV3;2j�02i : (3.202)

With the abbreviations,

"i D E0i C h�0ijVi;1 OG V1;ij�0ii; Wi;1 D h�0ijVi;1j�regi D W �
1;i; i D 2; 3 ;

(3.203)
and

W2;3 D h�02jV2;3j�03i C h�02jV2;1 OG V1;3j�03i D W �
3;2; (3.204)
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the solutions of (3.202) are

A2 D .E � "3/W2;1 C W2;3W3;1

.E � "2/.E � "3/ � jW2;3j2 ; A3 D .E � "2/W3;1 C W3;2W2;1

.E � "2/.E � "3/ � jW2;3j2 ;
(3.205)

so (3.201) for the resonant contribution to the phase shift becomes

tan ıres D (3.206)

�� .E � "3/jW2;1j2 C W1;2W2;3W3;1 C .E � "2/jW3;1j2 C W1;3W3;2W2;1

.E � "2/.E � "3/� jW2;3j2 :

The matrix element W2;3 defined in (3.204) describes the interaction of the closed-
channel bound states, both by direct coupling through the term containing V2;3, and
by indirect coupling via the open channel 1 through the term containing OG. In the
absence of this interaction, the resonance energies are "2=3, as defined in (3.203),
and they are shifted from the uncoupled bound-state energies E02=03 as in the single-
resonance case (1.233). Note that the matrix element W2;3 has the dimension of
an energy, while the matrix elements W1;2, W1;3 have the dimension of the square
root of an energy; this is due to the fact that the bound-state wave functions �0i

are normalized to unity while the continuum wave functions �reg are normalized in
energy.

Instead of a single pole as in (1.230), (1.234), the right-hand side of (3.206)
features two poles, namely the zeros of the denominator

D.E/ D .E � "2/.E � "3/� jW2;3j2 ; (3.207)

which lie at

E˙ D "2 C "3

2
˙
r
"2 � "3

2

�2 C jW2;3j2 : (3.208)

The interaction of the resonances via the matrix element W2;3 leads to a level
repulsion of the resonance energies, an effect well known from bound two-level
systems, see Problem 1.6 in Chapter 1.

The widths of the resonances are related to the residue of tan ıres at the respective
poles and are explicitly given in terms of the energy derivative of ıres by (1.236),

�˙ D 2

�
dıres

dE

ˇ̌
ˇ
EDE

˙

��1
: (3.209)

If we introduce the abbreviation

N.E/D� �.E�"3/jW2;1j2CW1;2W2;3W3;1 C .E�"2/jW3;1j2CW1;3W3;2W2;1


(3.210)
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then (3.206) becomes

tan ıres D �N.E/

D.E/
(3.211)

and we obtain a compact expression for the derivative at the poles, where D.E/ D 0,

dıres

dE

ˇ̌
ˇ
DD0 D

�
1C N2

D 2

��1 �
D 0N � N0D

D 2

� ˇ̌
ˇ
DD0 D D 0

N

ˇ̌
ˇ
E

˙

: (3.212)

Inserting D 0=N for the derivative of ıres in (3.209) gives

�˙ D �
�jW2;1j2 C jW3;1j2

	
(3.213)

˙ �

1
2
."2 � "3/

�jW2;1j2 � jW3;1j2
	C W1;2W2;3W3;1 C W1;3W3;2W2;1q

1
4
."2 � "3/2 C jW2;3j2

:

If the coupling matrix element W3;2 vanishes, the resonance energies are "2=3 and
the associated widths are �2 D 2�jW2;1j2 and �3 D 2�jW3;1j2. The closed-closed
channel coupling not only leads to a level repulsion of the resonance positions, as
noted after (3.208) above, it also affects the resonance widths according to (3.213).
The sum of the widths of the two interfering resonances is unaffected,

�C C �� D 2�
�jW2;1j2 C jW3;1j2

	 D �2 C �3 ; (3.214)

but the distribution of the total width over the two resonances can be strongly
affected by the coupling. The extreme situation is that one resonance carries the
whole width while the other resonance has exactly vanishing width and corresponds
to a bound state in the continuum. Such a vanishing width implies an infinite
energy derivative of ıres according to (3.209), and it occurs when a zero of the
numerator (3.210) coincides with a zero of the denominator (3.207), see (3.212).
The condition for this to happen is:

E � "2 D �W3;2W2;1=W3;1 and E � "3 D �W2;3W3;1=W2;1 ; (3.215)

which means that the energies "i and matrix elements Wi;j fulfill the relations

"2 � "3 D W3;2

W2;1

W3;1

� W2;3

W3;1

W2;1

: (3.216)

If the Hamiltonian governing the coupled-channel equations (3.195) in the space
defined by the three-component wave functions (3.197) is not only Hermitian, but
also time-reversal invariant, then its matrix representation can be based on real
symmetric matrices. In this case, the right-hand side of (3.216) is real, and the
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Fig. 3.15 Schematic illustration of the effect of interference of two Feshbach resonances on the
phase shift (left-hand part) and on the contribution (1.114) to the scattering cross section (right-
hand part). The parameter values entering (3.206) are: "2 D 8:0, "3 D 10:0, W1;2 D W2;1 D 0:5

and W1;3 D W3;1 D 0:3. The solid lines were obtained with a coupling matrix element W2;3 D
W3;2 D �1:5 while the dashed lines show the results in the absence of coupling, W2;3 D W3;2 D 0.
In the right-hand part, a background phase shift of ı bg D ��=6 is assumed

condition can be fulfilled if one (or more) of the parameters involved can be tuned,
e.g. by varying the strength of an external field. When a bound state in the continuum
is realized at a certain energy, the open-channel phase shift is indeterminate at
this energy, because the open-channel wave function obeys bound-state boundary
conditions.

Results for a model example are illustrated in Fig. 3.15. In the absence of closed-
closed coupling (W2;3 D 0), there are two Feshbach resonances of different but
comparable width, located at E D 8 and E D 10. A finite coupling matrix element
W2;3 leads to a repulsion of the resonance positions and a concentration of almost
all the width in the lower resonance. In the expression sin2

�
ı bg C ıres

	
, which

represents the associated contribution (1.114) to the scattering cross section, the
very narrow resonance at E � 10:8 is seen as a sharp cut into the Beutler-Fano
profile of the broad lower resonance. Note that the strongly asymmetric distribution
of the resonance widths as a consequence of the coupling does not necessarily
require that the resonances be overlapping, i.e. that their separation be smaller than
their widths. The two resonant features in the left-hand part of Fig. 3.15 are well
separated, regardless of whether or not channel coupling via W2;3 is considered.

An approximation to the formula (3.213) can be obtained with Fermi’s Golden
Rule (2.139), if we take the initial state to be an appropriate superposition of the
bound states in the two uncoupled closed channels 2 and 3 and the final state as the
(energy normalized) regular wave function in the uncoupled open channel 1 with no
contributions from the closed channels; the perturbation OW is defined accordingly:

�
.˙/
i D

0
B@

0

a.˙/2 �02

a.˙/3 �03

1
CA ; �f D

0
@�reg

0

0

1
A ; OW D

0
@ 0 V1;2 V1;3

V2;1 0 V2;3
V3;1 V3;2 0

1
A : (3.217)
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The initial states �.˙/i are the results of diagonalizing the two-level problem
defined by the bound states �02, �03 and the coupling potential V2;3. This yields
energy eigenvalues E˙ as given by (3.208), except that the terms containing
the open-channel propagator OG are missing in the expressions for "i and W2;3,
compare (3.203), (3.204). The two-level diagonalization also yields the appropriate
superposition amplitudes a.˙/2=3 , which are required to obey the usual orthonormality
relations. Inserting the objects (3.217) into the Golden Rule (2.139) and taking �
to be unity according to (2.143), reproduces the expression (3.213), but again, the
energies and matrix elements are missing the contributions from the open-channel
Green’s operator OG. (See problem 3.3) The non-perturbative derivation of (3.206)
and (3.213) above shows, that the possible existence of interference-induced exact
bound states in the continuum, i.e. of resonances with exactly vanishing width, is
not an artefact of the perturbative approach underlying the Golden Rule but is a real
feature of systems involving two Feshbach resonances and only one open channel
[FW85]. Such bound states in the continuum have recently been studied also in
quantum-billiard and quantum-dot systems [SB06, SL08].

The interference of two resonances from different closed channels also affects
the photoabsorption cross sections and oscillator strengths. For the three channel
wave functions making up the energy normalized final state ˚E, the corresponding
generalization of (3.182) is

�1.r/ D cos ıres�reg.r/C sin ıres��1.r/;

�2.r/ D cos ıresA2�02.r/; �3.r/ D cos ıresA3�03.r/ ; (3.218)

and the total wave function ˚E is a corresponding generalization of (3.187). If we
calculate the oscillator strengths (2.222) with this final state wave function, then we
obtain, as extension of (3.189),

dfEi

dE
D 2�

„ ! jd1j2 cos2ıres

ˇ̌
ˇ̌1C d2

d1
A2 C d3

d1
A3

ˇ̌
ˇ̌2 : (3.219)

Here .2�=„/ !jd1j2 is the oscillator strength we would expect in the absence of
coupling of the open channel to the closed channels. The parameters d2 and d3 are
the dipole transition matrix elements connecting the initial state to the components
from the respective closed channels in the final-state wave function. These are
essentially the channel wave functions �02 and �03, which may be dressed with
small admixtures from the open channel as in (3.190). Replacing the cos2 in (3.219)
by 1=.1C tan2/ and using the explicit expressions (3.205) for the amplitudes A2, A3,
we obtain

dfEi

dE
D 2�

„ ! jd1j2
ˇ̌
ˇD.E/C d2

d1
Œ.E � "3/W2;1 C W2;3W3;1�

Cd3
d1
Œ.E � "2/W3;1 C W3;2W2;1�

ˇ̌
ˇ2 1

D.E/2 C N.E/2
; (3.220)
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where D.E/ and N.E/ again stand for the denominator (3.207) and the numer-
ator (3.210) in the expression (3.206) for the phase shift. For different values
of the coupling matrix elements Wi;j, of the (shifted) energies "2, "3 of the
non-interacting resonances and of the relative dipole matrix elements d2=d1 and
d3=d1, the formula (3.220) for the oscillator strengths can produce very different
energy dependences and line shapes. Figure 3.16 shows two examples in which
qualitatively different interference effects lead to a narrow resonance. In both cases
the phase shift (3.206) and the oscillator strength (3.220) were calculated using
the same matrix elements W2;1 D 0:5 and W3;1 D 0:3 for the direct coupling
of the closed channels to the open channel and the same relative dipole matrix
elements (d2=d1 D d3=d1 D 2:0/. In Fig. 3.16 (a) the other parameters are "2 D
4:0; "3 D 6:0; W2;3 D �1:5. In this case both resonances are clearly separated,
but the lower resonance carries almost all the width while the upper resonance is
very narrow, because the conditions (3.216) for a bound state in the continuum are
almost fulfilled—compare also Fig. 3.15. In the oscillator strength we clearly see a
broad and a narrow resonance of the Beutler-Fano type. The maximum of the narrow

Fig. 3.16 Resonant phase shifts (3.206) and oscillator strengths (3.220) for two examples of two
interfering resonances. The coupling of the two closed channels 2 and 3 to the open channel is
given by the matrix elements W2;1 D 0:5, W3;1 D 0:3, and the relative dipole matrix elements are
d2=d1 D d3=d1 D 2:0. Further parameters in case (a) are "2 D 4:0, "3 D 6:0; W3;2 D �1:5.
In case (b) we have "2 D 4:9, "3 D 5:1, W3;2 D 0. The oscillator strengths in the lower parts of
the figure are given in units of the oscillator strength .2�=„/!jd1j2 which we would obtain in the
absence of coupling to the two closed channels
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resonance is very high, because the denominator D.E/2 C N.E/2 on the right-hand
side of (3.220) becomes very small. The zero of the oscillator strength lies to the
left of the maximum for both resonances and this corresponds to a positive shape
parameter q (see Fig. 3.13).

In Fig. 3.16 (b) the matrix element W3;2 for the direct coupling of the two
closed channels was taken to vanish and the energies "2 and "3 were chosen very
close together (namely at 4.9 and 5.1 respectively). This case corresponds to the
superposition of two resonances which do not interact directly and whose separation
is substantially smaller than their widths. Now the separation between the two
poles (3.208) of tan ıres is so small that it is no longer possible to identify two
independent resonances. However, the phase shift is forced to rise from one half-
integral multiple of � to the next half-integral multiple of � in the narrow interval
between the two poles, and this also leads to a sudden jump in the phase shift (see top
half of the figure). In the oscillator strengths (bottom half of the figure) we observe
a very narrow (and high) Beutler-Fano resonance cutting into a broad resonance.

Apart from the examples illustrated in Figs. 3.15 and 3.16, there are many
other possible line shapes corresponding to different widths, separations and
shape parameters of the resonances. Observable spectra often are the product of
complicated interference effects and it is by no means obvious that a maximum
in a photoabsorption cross section unambiguously corresponds to a well defined
autoionizing state of the atom.

So far we have assumed that only one channel is open. If e.g. two channels are
open, then the asymptotic phase shifts of the continuum waves are not uniquely
defined and there are two linearly independent solutions of the coupled-channel
equations for each energy E. If we use the Golden Rule to calculate transition prob-
abilities we obtain an incoherent superposition of two contributions corresponding
to the two independent final states. For a detailed and comprehensive description of
the theory of photoabsorption spectra see e.g. the article by Starace [Sta82].

3.3.4 Perturbed Rydberg Series

We can describe the effect of an isolated autoionizing resonance in the framework
of quantum defect theory by adding a pole term to the right-hand side (3.146):

tan Œ�.� C �/� D � =2

E � ER
: (3.221)

Again �.E/ is a weakly energy-dependent quantum defect function expressing the
deviation of the potential in the open channel 1 from a pure Coulomb potential, and
�.E/ has the two meanings (3.147) below and above threshold. At energies E below
threshold the modified QDT equation (3.221) remains an equation for determining
bound-state energies, but these energies are now given by the intersections of the set
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of curves (3.142) with the function

Q�.E/ D �.E/� 1

�
arctan

� =2

E � ER
: (3.222)

For energies E above threshold the QDT equation (3.221) describes the resonant
jump of the phase shift through � ,

ı D ��.E/� arctan
� =2

E � ER
; (3.223)

and the weakly energy-dependent function ��.E/ appears as background phase
shift.

Strictly speaking we cannot simply superpose the effects of the potential and the
Feshbach resonance linearly; hence the quantum defect function �.E/ in (3.221)–
(3.223) may differ slightly from the quantum defect function for the open channel
in the absence of the Feshbach resonance.

A typical realization of the QDT equations (3.221)–(3.223) including an autoion-
izing resonance at an energy ER above the continuum threshold is illustrated with
the blue curve in Fig. 3.17.
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Fig. 3.17 The solid black line shows an almost energy independent quantum-defect function
� � 0:7, and the brown lines show the family of functions n � �.E/ with �.E/ D pR=.I � E/
according to (3.142). Their intersections with �.E/ determine the energy eigenvalues En of the
bound states and their quantum defects �n. The black vertical lines in the upper part of the figure
show the unperturbed energy levels. The effects of a Feshbach resonance with � D 0:01R and
ER D I C 0:02R, ER D I and ER D I � 0:02R are shown by the blue, maroon and red lines,
which represent the modified quantum-defect function (3.222) for the respective cases. The energy
levels of the correspondingly perturbed Rydberg series are shown as vertical lines in the same
colours in the upper part of the figure. For ER D I �0:02R (red lines), the perturbation appears as
a smooth rise of roughly unity in the quantum defects corresponding to one additional bound state
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Although the physical situation is quite different, the formal aspects of the
considerations above change little when the energy of the two-electron excitation
lies not above, but below the continuum threshold I. Since the mathematical
justification of quantum defect theory holds both above and below threshold
[Sea83], we can also apply the formulae (3.221), (3.222) to the case where the
energy ER, at which the bound state in channel 2 makes itself felt, lies below the
threshold. Now the two-electron excitation is not an autoionizing resonance, but
an additional bound state which appears as a pseudo-resonant perturbation of the
Rydberg series of bound states. Instead of a jump by � in the phase shift we now
have a more or less sudden jump by unity in the quantum defects of the bound
states. This is illustrated with the red curve in Fig. 3.17. Far below the energy ER of
the perturber, the quantum defects lie on the weakly energy-dependent curve �.E/.
Near ER the quantum defects become larger, so that the effective quantum numbers
n� D n � �n and hence also the energies (3.127) lie closer than in the unperturbed
Rydberg series. Far above the energy of the perturber, the quantum defects are
shifted by unity in comparison to the unperturbed states. That doesn’t change their
energies, but it does change their numbering: the n-th state in the unperturbed series
at En D I � R=.n � �n/

2 is now the (n C 1)-st state in the perturbed series at
roughly the same energy. Over an energy range corresponding approximately to the
width � , the spectrum is compressed in order to accommodate one additional bound
state. The effect of the perturber on the energy levels can also be seen in the spectra
shown as vertical lines at the top of Fig. 3.17.

Finally it may happen, that the energy ER of the resonance lies very close to
the threshold so that the interval ER � � =2, ER C � =2 covers both energies below
threshold and energies above threshold. In this case, which is illustrated with the
maroon curve in Fig. 3.17, the bound state in the closed channel 2 manifests itself
partly as a perturbation of the Rydberg series of bound states and partly as the tail
of a resonance in the continuum.

A pseudo-resonant perturbation of a Rydberg series of bound states affects
not only the energy eigenvalues but also other observable quantities such as
photoabsorption cross sections or oscillator strengths. The effect of a perturber on
the discrete oscillator strengths fn in a Rydberg series can be described by a formula
analogous to (3.191), if we replace the left-hand side by discrete oscillator strengths
multiplied by the density of states (cf. (3.160)):

.n�/3

2R fn D .n�/3

2R f .0/n

jq C "j2
1C "2

; (3.224)

with

" D E � ER

� =2
; q D d2=d1

�
˝
�E

n jV1;2j�0
˛ : (3.225)

Here f .0/n are the discrete oscillator strengths one would expect without the pertur-
bation of the Rydberg series, and d2=d1 is a weakly energy-dependent parameter
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describing the relative strength of the dipole transitions to the two channels,
as in (3.193). The matrix element

˝
�E

n jV1;2j�0
˛

contains the renormalized wave
functions �E

n in channel 1, which merge smoothly into the energy normalized
continuum wave functions at the continuum threshold; it is a weakly energy-
dependent quantity describing the effective strength of the channel coupling.

3.4 Multichannel Quantum Defect Theory (MQDT)

3.4.1 Two Coupled Coulomb Channels

In this section we study a two-channel system in which the diagonal potentials both
correspond to a modified Coulomb potential:

Vi.r/
r!1D Ii � C

r
: (3.226)

Between the two channel thresholds I1 and I2 .I1 < I2/ the closed channel 2
now contains not only one bound state leading to an autoionizing resonance (see
Sect. 3.3.4), but an infinite number of such states which form a Rydberg series.
Due to coupling to the open channel 1 this leads to a whole Rydberg series of
autoionizing resonances at the energies

En2 D I2 � R
.n�
2 /
2

D I2 � R
Œn2 � �2.n2/�2

; (3.227)

where n�
2 and �2.n2/ are now effective quantum numbers and quantum defects in

channel 2. The widths �n2 of the resonances are described by a formula analogous
to (3.185):

�n2 D 2� jh�regjV1;2j�n2ij2 D 2�
2R
.n�
2 /
3
jh�reg jV1;2j�E

n2ij2 : (3.228)

Here �n2 are the bound radial wave functions in the closed channel 2, and

�E
n2 .r/ D

s
.n�
2 /
3

2R �n2 .r/ (3.229)

are the corresponding renormalized wave functions which merge smoothly into
the energy normalized continuum wave functions—now in channel 2—at the
threshold I2. Near this threshold, the matrix element on the right-hand side of (3.228)
depends only weakly on energy and we see immediately, without any calculation,
that the autoionization widths are inversely proportional to the third power of the
effective quantum number n�

2 in channel 2 for large n2. The autoionization widths
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thus decrease at the same rate as the separations between successive resonances as
we approach the series limit.

The physics of a Rydberg series of autoionizing resonances as described above
can be summarized in a compact and transparent way by an extension of the
formula (3.221):

tan Œ�.�1 C �1/� D jR1;2j2
tan Œ�.�2 C �2/�

: (3.230)

In the energy range between the two channel thresholds �1 is just the asymptotic
phase shift of the continuum wave function in the open channel 1 multiplied by
�1=� (as in (3.147)),

�1.E/ D � 1

�
ı1.E/ ; E > I1 ; (3.231)

while �2 represents the continuous effective quantum number in the closed
channel 2, which is defined via the energy separation from the channel threshold I2:

�2.E/ D
s

R
I2 � E

; E < I2 : (3.232)

The dimensionless quantity R1;2 describes the strength of the coupling between the
channels 1 and 2 and should depend at most weakly on energy.

In the energy region between the channel thresholds I1 and I2 equation (3.230)
is an explicit equation for the asymptotic phase shift ı1 of the open-channel wave
function:

ı1 D ��1.E/� arctan

� jR1;2j2
tan Œ�.�2 C �2/�

�
: (3.233)

The term ��1.E/ appears as a background phase shift due to the diagonal potential
in channel 1 (more precisely: due to its deviation from a pure Coulomb potential),
just like the term ��.E/ in (3.223). The arcus-tangent term now yields not only one
single isolated jump of the phase shift through � , but a whole Rydberg series of
jumps, which occur at the energies En2 where the denominator tan Œ�.�2 C �2/�

in the argument vanishes. But this condition is just the single-channel QDT
equation (3.146) for the closed channel 2, and �2.E/ now plays the role of the
weakly energy-dependent quantum defect function which smoothly connects the
quantum defects �2.n2/ in the Rydberg series of energies (3.227). Near a zero
of tan Œ�.�2 C �2/� we can expand the function in a Taylor series and, using the
abbreviation

T2.E/ WD tan Œ�.�2 C �2/� ; (3.234)
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we obtain

T2.E/ � .E � En2 /
dT2
dE

ˇ̌
ˇ̌
EDEn2

D .E � En2/
�

2R .n�
2 /
3 : (3.235)

Near the zeros of T2.E/ the equation (3.233) thus simplifies to

ı1 D ��1.E/� arctan

"
2R

�.n�
2 /
3

jR1;2j2
.E � En2 /

#
: (3.236)

If we write R1;2 as �� times the coupling matrix element containing the renormal-
ized bound-state wave functions (3.229),

R1;2 D �� ˝�regjV1;2j�E
n2

˛
; (3.237)

then (3.236) assumes the form (3.223) for an isolated resonance at the position En2
with the width (3.228). Transferring the picture of an isolated Feshbach resonance
to a Rydberg series of autoionizing resonances thus leads to the approximate
expression (3.237) for the (dimensionless) coupling parameter R1;2. (The minus-
sign, which doesn’t play a role at this stage, corresponds to the most usual
convention [GF84].)

Beside the behaviour of the phase shift ı1, several other results from Sect. 3.3.2
can be adapted to the case of a Rydberg series of resonances. The explicit
formulae (3.182) and (3.186) for the radial channel wave functions become

�1.r/
r!1D cosŒ�.�1 C �1/� �reg.r/� sinŒ�.�1 C �1/� �irr.r/ ;

�2.r/ D � sin Œ�.�1 C �1/�

R1;2

s
.n�
2 /
3

2R �n2 .r/

D � sin Œ�.�1 C �1/�

R1;2
�E

n2 .r/ : (3.238)

Apart from a minus-sign, �.�1 C �1/ D �.ı1 � ��1/ is just the resonant part of
the asymptotic phase shift without the weakly energy-dependent background phase
shift ��1, which is already accounted for in the regular and irregular solutions �reg

and �irr in the (uncoupled) open channel. �E
n2

are the renormalized bound-state wave
functions (3.229) which merge smoothly into the energy normalized continuum
wave functions �.2/reg of channel 2 at the threshold I2.

If we use the wave functions (3.238) as final state wave functions to calculate
the oscillator strengths for photoabsorption according to (2.222), then in place
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of (3.189) we now obtain

dfEi

dE
D 2�

„ !jd1j2 cos2Œ�.�1 C �1/�

ˇ̌
ˇ̌1 � d2

d1

tanŒ�.�1 C �1/�

R1;2

ˇ̌
ˇ̌2

D 2�

„ !jd1j2 jtan Œ�.�2 C �2/� � R2;1 d2=d1j2
tan2 Œ�.�2 C �2/�C jR1;2j4 ; (3.239)

where .2�=„/!jd1j2 represents the weakly energy-dependent oscillator strength
which we would expect in the absence of coupling to the closed channel 2, and the
ratio d2=d1, which is now dimensionless, describes the relative oscillator strength
for transitions from the initial state to both final state channels. In deriving the lower
line of (3.239) we inserted the expression jR1;2j2= tanŒ�.�2C�2/� for tanŒ�.�1C�1/�
according to (3.230). Equation (3.239) has the same form as (3.191),

dfEi

dE
D 2�

„ !jd1j2 jq C "j2
1C "2

; (3.240)

provided we define the reduced energy " as

" D tan Œ�.�2 C �2/�

jR1;2j2 : (3.241)

The shape parameter q is now

q D �d2=d1
R1;2

: (3.242)

Near a resonance energy, i.e. near a zero of tan Œ�.�2 C �2/�, the reduced
energy (3.241) is a linear function of the energy E (see (3.235)), and it is indeed
given by the expression on the right-hand side of (3.192) if we express jR1;2j2
through the width � (cf. (3.256) below). As the continuous effective quantum
number �2 varies through the interval reaching from 1=2 below to 1=2 above a
resonance position, the reduced energy (3.241) takes on values covering the entire
interval �1 to C1. In the Rydberg series of resonances each individual “Beutler-
Fano resonance” is thus compressed into an energy interval corresponding to an
interval of unit length in the continuous effective quantum number in the closed
channel 2. (See Fig. 3.18.)

The discussion above as summarized in Fig. 3.18 refers to the energy interval
I1 < E < I2 in which channel 1 is open while channel 2 is closed. In order to
describe the situation at energies below the threshold I1, where both channels are
closed, we must return to the interpretation of the quantity �1 as the continuous



238 3 Atomic Spectra

Fig. 3.18 Phase shift (3.233) and oscillator strength (3.239) in a Rydberg series of autoionizing
resonances for the following values of the 2QDT parameters: �1 D 0:1, �2 D 0:1, R1;2 D 0:3,
d2=d1 D �1:0. The separation of the two channel thresholds I1 and I2 is 0:1 Rydberg energies.
The oscillator strengths in the lower part of the figure are given in units of the oscillator strength
.2�=„/!jd1j2, which we would expect in absence of coupling to the Rydberg series in the closed
channel 2

effective quantum number in channel 1:

�1.E/ D
s

R
I1 � E

; E < I1 : (3.243)

Now (3.230) is an equation for determining the energies of the bound states in
the coupled two-channel system. If the (uncoupled) channel 2 supports a bound
state at an energy below I1, then the associated zero in the function T2.E/ (3.234)
leads to a pseudo-resonant perturbation in the Rydberg series of bound states and it
manifests itself as a jump by unity in the quantum defects, as described for a single
perturber in Sect. 3.3.4. As an example Fig. 3.19 shows the quantum defects of a
Rydberg series in calcium consisting of 4s np states coupled to 1Po. Near n D 7
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Fig. 3.19 The left-hand part of the figure shows the quantum defects (modulo unity) of the
4s np 1Po Rydberg series in Ca I, which is perturbed by the lowest state in the 3d np 1Po channel.
The right-hand part of the figure shows 1=� times the asymptotic phase shift in the now open
4s np 1Po channel (again modulo unity). The resonant jumps in the phase shift are due to higher
states in the 3d channel and correspond to autoionizing resonances as in Fig. 3.18 (From [Sea83])

this Rydberg series is perturbed by the lowest state in the 3d np 1Po channel. Above
threshold the picture continues as a series of jumps of the phase shift corresponding
to autoionizing resonances as in Fig. 3.18.

In the photoabsorption spectrum, the perturber below threshold appears as a
modulation of the oscillator strengths (renormalized with the factor .n�/3/ as
described in (3.224), but we now have to insert the periodic form (3.241) for the
reduced energy ".

Above the second channel threshold I2, both channels are open. At each energy
E > I2 > I1 there are two linearly independent solutions of the coupled-channel
equations and each linear combination hereof is again a solution. At a given energy
the asymptotic phase shift in channel 1 is not fixed but depends on the asymptotic
behaviour of the wave function in channel 2. Conversely, a definite choice of the
asymptotic phase shift in channel 1 fixes the asymptotic behaviour of the wave
function in channel 2.

The asymptotic behaviour of the solutions in the case of two open channels can
be readily understood if we continue the explicit expressions (3.238) for the wave
functions just below the channel threshold I2 to energies above I2. Pairs �1, �2 of
wave functions containing a maximum admixture from channel 2 are characterized
by sinŒ�.�1 C �1/� D ˙1 and cosŒ�.�1 C �1/� D 0. When moving to energies
above I2, the renormalized bound state wave functions �E

n2 merge into the energy

normalized regular solutions �.2/reg in uncoupled channel 2. With the appropriate
choice of sign we thus obtain a pair of channel wave functions with the following
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asymptotic behaviour:

�1.r/
r!1D �

.1/
irr .r/; �2.r/

r!1D 1

R1;2
�.2/reg.r/ : (3.244)

(The superscript (1) has been introduced in order to distinguish the irregular (and
regular) solutions in channel 1 from the corresponding solutions in channel 2.) As
both channels are open we can interchange the channel labels to construct a solution
of the coupled-channel equations with an asymptotic behaviour complementary to
that described by (3.244):

�1.r/
r!1D 1

R2;1
�.1/reg.r/; �2.r/

r!1D �
.2/
irr .r/ : (3.245)

For the coupling matrix elements R1;2 and R2;1 appearing in (3.244) and (3.245) we
can extend the (approximate) formula (3.237) to energies E > I2 and obtain the
(approximate) expressions

R1;2 D ��h�.1/reg jV1;2j�.2/regi ; R2;1 D ��h�.2/reg jV2;1j�.1/regi D R �
1;2 : (3.246)

The matrix elements are finite, because the coupling potential falls off asymptoti-
cally at least as fast as 1=r2.

The general solution of the coupled equations in the case of two channels is
a linear combination of the two solutions with the asymptotic behaviour (3.244)
and (3.245) respectively:

�1.r/
r!1D B

R2;1
�.1/reg.r/C A�.1/irr .r/ ;

�2.r/
r!1D A

R1;2
�.2/reg.r/C B�.2/irr .r/ : (3.247)

For the asymptotic phase shifts ı1���1 D ��.�1C�1/, ı2���2 D ��.�2C�2/

we obtain

tan Œ�.�1 C �1/� D �A

B
R2;1 ; tan Œ�.�2 C �2/� D �B

A
R1;2 ; (3.248)

from which follows

tan Œ�.�1 C �1/� tan Œ�.�2 C �2/� D jR1;2j2 : (3.249)

Equation (3.249) again has the same form as (3.230), but it now represents a
compatibility equation for the asymptotic phase shifts in the two open channels.
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The equations (3.230), (3.233) and (3.249) can be written in a unified way as one
equation of two-channel quantum defect theory (2QDT):

ˇ̌
ˇ̌ tan Œ�.�1 C �1/� R1;2

R2;1 tan Œ�.�2 C �2/�

ˇ̌
ˇ̌ D 0 : (3.250)

Its different meanings—as an equation for determining the bound state energy
eigenvalues when both channels are closed, as an explicit equation for the phase
shift of the open-channel wave function when just one channel is open, or as
a compatibility equation for the asymptotic phase shifts when both channels are
open—follow in a straightforward way if we insert the different definitions of the
quantities �i, namely continuous effective quantum number in channel i below the
respective channel threshold Ii and �1/� times the asymptotic phase shift above Ii:

�i.E/ D
( q

R
Ii�E for E < Ii;

� 1
�
ıi for E > Ii :

(3.251)

The formulae in this section were derived by generalizing the considerations of
Sect. 1.5.2 on isolated Feshbach resonances. The approximate expressions (3.238)
for the wave functions and (3.237), (3.246) for the coupling parameter are based
on this picture of isolated Feshbach resonances. A more rigorous treatment,
e.g. by Seaton [Sea83] and by Giusti and Fano [GF84], shows that the 2QDT
equation (3.250) is valid quite generally, even if the channel coupling parameter
jR1;2j is large, so that resonances and perturbers aren’t isolated. The only condition
for the validity of the formulae of quantum defect theory is that the deviations
of the diagonal potentials from the pure Coulomb potential and the non-diagonal
coupling potentials fall off sufficiently fast for large r. In a rigorous derivation, the
2QDT parameters�1, �2, R1;2 appear as weakly energy-dependent quantities whose
precise definition is given by the actual solutions of the coupled-channel equations.

Finally it should be pointed out that there are various formulations of quantum
defect theory in use. In this chapter we asymptotically represent the channel wave
functions as superpositions of the regular and irregular solutions of the uncoupled
equations including the deviations of the diagonal potentials from the pure Coulomb
potential. The original formulation of Seaton was based on the regular and irregular
(pure) Coulomb functions. The argument of tangent functions such as (3.234)
then contains the asymptotic phase shift including the weakly energy-dependent
background phase shift. The effect of deviations of the diagonal potentials from
the pure Coulomb potential is contained in diagonal elements Ri;i of the matrix
appearing in the MQDT equation. For two channels the MQDT equation in Seaton’s
formulation reads

ˇ̌
ˇ̌ tan.��1/C R1;1 R1;2

R2;1 tan.��2/C R2;2

ˇ̌
ˇ̌ D 0 : (3.252)
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When both channels are open, the matrix .Ri;j/ is the reactance matrix of scattering
theory, which will be defined in Sect. 4.4.2. The formulation of MQDT used in the
present chapter and summarized in (3.250) can be derived from Seaton’s MQDT
by shifting the phases of the basis wave functions until the diagonal elements of the
matrix Ri;j vanish. The resulting matrix which has no diagonal elements is frequently
referred to as the phase shifted reactance matrix.

A further formulation of MQDT is due to Fano [Fan70] and is based on
a diagonalization of Seaton’s reactance matrix. The resulting superpositions of
channels are called eigenchannels. The eigenvalues of the reactance matrix are
written as tan ı and the angles ı are the eigenphases (see also Sect. 4.4.2).

3.4.2 The Lu-Fano Plot

The physical content of 2QDT can easily be illustrated graphically. Below the upper
threshold I2 channel 2 is closed and the 2QDT equation (3.250) is

� �1 D �1 � 1

�
arctan

� jR1;2j2
tan Œ�.�2 C �2/�

�
defD Q�1 : (3.253)

The right-hand side is a function Q�1 which depends on the energy E or on the
continuous effective quantum number �2 D ŒR=.I2 � E/�1=2. It is an extension of
the function (3.222) for a single perturber to the case of a whole Rydberg series
of perturbers. If the 2QDT parameters �1, �2 and R1;2 were not weakly energy
dependent but constant, then Q�1 would be exactly periodic in �2 with period unity.
Above the lower threshold I1 the left-hand side of (3.253) stands for 1=� times the
asymptotic phase shift in the open channel 1, which is only defined modulo unity,
and below I1 it is �1 times the continuous effective quantum number in channel 1.
As in the case of a single isolated perturber discussed in Sect. 3.3.4, the intersections
of the function Q�1 below I1 with the set of curves (3.142) define the quantum defects

�n1 D n1 � �1.En1 / (3.254)

and energies En1 of the bound states. If we plot these quantum defects together with
the phase ı1.E/=� (both modulo unity) as functions of the continuous effective
quantum number �2 in the upper channel 2 (also modulo unity), then—given
constant 2QDT parameters—both the quantum defects and the phases lie on one
period of the function Q�1 from (3.253). This representation is called Lu-Fano plot
[LF70]. Figure 3.20 shows three typical examples of Lu-Fano plots.

Some general properties of the Lu-Fano-plot can be formulated quantitatively
if we study the derivatives of the function Q�1.�2/. With the abbreviation (3.234),
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Fig. 3.20 Examples of Lu-Fano plots with the constant 2QDT parameters: (a) �1 D 0:3, �2 D
0:4, R1;2 D 0:1. (b) �1 D 0:3, �2 D 0:4, R1;2 D 0:6. The parameters in part (c), �1 D 0:1,
�2 D 0:1, R1;2 D 0:3, are the same as in Fig. 3.18. Figure 3.20 (c) is thus a reduction of the upper
part of Fig. 3.18 to one period in energy (or rather �2) and phase

T2 D tan Œ�.�2 C �2/� , we have

d. Q�1/
d�2

D jR1;2j2 1C T22
T22 C jR1;2j4 ;

d2. Q�1/
d�22

D 2�jR1;2j2 T2.jR1;2j4 � 1/
.T22 C jR1;2j4/2

.1C T22 / :

(3.255)

The gradient of the curve is always positive. For weak coupling, jR1;2j < 1, the
maximum gradient is at T2 D 0 which corresponds to �2 D n2 � �2, and we obtain
resonant jumps around the zeros of T2 as expected. The value of the maximum
gradient is 1=jR1;2j2 and defines the width of the resonance (or of the pseudo-
resonant perturbation) according to the general formula (1.236):

� D 4R
�.n�

2 /
3
jR1;2j2 : (3.256)

Here we have used the fact that

d

dE
D �32
2R

d

d�2
: (3.257)

Strictly speaking a maximum of the derivative with respect to E will not lie at exactly
the same position as the corresponding maximum of the derivative with respect
to �2. This difference is generally ignored, firstly because it is very small due to the
weak energy dependence of the factor �32=R in (3.257), and secondly because this
makes formulae such as (3.256) very much simpler. The minimal gradients of the
function Q�1.�2/ lie at T2 D 1, i.e at �2 D n2 C 1

2
� �2 (for jR1;2j < 1) which is

exactly in the middle between the resonance energies, and the value of the minimal
gradient is jR1;2j2.
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For strong coupling, i.e. for jR1;2j > 1, conditions reverse: the gradient in the Lu-
Fano plot is minimal for T2 D 0 and maximal for T2 D 1. In this case the resonant
jumps occur at �2 D n2 C 1

2
� �2 and the associated widths of the resonances (or

pseudo-resonant perturbations) are

� D 4R
��32

1

jR1;2j2 : (3.258)

Very strong coupling of the channels thus leads to a Rydberg series of very narrow
resonances whose positions lie between the positions of the bound states in the
excited channel [Mie68].

The case jR1;2j � 1 is somewhat special. The Lu-Fano plot is now essentially
a straight line with unit gradient and it is no longer possible to uniquely define the
positions of resonances.

A peculiarity of the 2QDT formula (3.253) is, that the 2QDT parameters it
contains are not uniquely defined. The function Q�1.�2/ which one obtains with the
parameters �1, �2, R1;2 is not affected if we replace the parameters by

�0
1 D �1 C �

2
; �0

2 D �2 C �

2
; R0

1;2 D ˙1
R1;2

: (3.259)

In real physical situations the 2QDT parameters are not constant but weakly
energy dependent. Hence the function (3.253) is not exactly periodic in �2 and
we obtain a slightly different curve in the Lu-Fano plot for each period of
tanŒ�.�2 C �2/�. This is illustrated in Fig. 3.21 for the example of the coupled 1Po

series in Ca I discussed in Sect. 3.4.1 above (cf. Fig. 3.19).

3.4.3 More Than Two Channels

After the detailed treatment of two-channel quantum defect theory in Sects. 3.4.1
and 3.4.2 it is now relatively easy to extend the results to the more general case of
N coupled Coulomb channels. The central formula of MQDT is a generalization of
the two-channel equation (3.250) and reads

detftan Œ�.�i C �i/� ıi;j C .1� ıi;j/Ri;jg D 0 : (3.260)

The coupling of the various channels i D 1; 2; : : :N is described by the weakly
energy-dependent Hermitian matrix Ri;j. We shall continue to use the representation
corresponding to the phase shifted reactance matrix which has no diagonal elements.
The diagonal effects of deviations from the pure Coulomb potential are contained
in the weakly energy-dependent parameters �i: The quantities �i have one of two
meanings depending on whether the respective channel i is closed or open. For
energies below the channel threshold Ii, �i is the continuous effective quantum
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Fig. 3.21 Lu-Fano-plot for coupled 4s np and 3d np 1Po channels in Ca I (From [Sea83])

number in the closed channel i; at energies above Ii the quantity ���i is the
asymptotic phase shift of the channel wave function in the open channel i,
see (3.251).

Because it is so important we shall derive the MQDT equation (3.260) in another
way. Let’s first consider the energy range where all N channels are open. For
a given energy there are then N linearly independent solutions of the coupled-
channel equations, and each solution ˚ has N components, namely the channel
wave functions �i.r/; i D 1; : : :N. We choose a basis˚.j/ of solutions with channel
wave functions �.j/i whose asymptotic behaviour corresponds to a generalization
of (3.244), (3.245):

�
.j/
j .r/

r!1D �.j/reg.r/ ; �
.j/
i .r/

r!1D Ri;j �
.i/
irr .r/ ; i ¤ j : (3.261)

The general solution of the coupled-channel equations is now an arbitrary superpo-
sition

˚ D
NX

jD1
Zj˚

.j/ (3.262)
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of these basis solutions. In a given channel i the channel wave function of the general
solution (3.262) is

�i.r/ D
NX

jD1
Zj�

.j/
i .r/

r!1D Zi�
.i/
reg.r/C

0
@X

j¤i

Ri;jZj

1
A�.i/irr .r/ : (3.263)

The quotient of the coefficients in front of �.i/irr and �.i/reg in the asymptotic expression
on the right-hand side of (3.263) is the tangent of the additional phase ıi � ��i D
��.�i C �i/ by which the channel wave function �i is asymptotically shifted with
respect to the regular solution �.i/reg in channel i. In other words,

tanŒ�.�i C �i/�Zi D �
X
j¤i

Ri;jZj ” tanŒ�.�i C �i/�Zi C
X
j¤i

Ri;jZj D 0 :

(3.264)

Equation (3.264) is a homogeneous system of N linear equations for the N
unknowns Zi, and its matrix of coefficients consists of the diagonal elements
tan Œ�.�i C �i/� and the non-diagonal elements Ri;j. Non-vanishing solutions exist
when the determinant of this matrix vanishes, and this is just the content of the
MQDT equation (3.260).

This derivation of the MQDT equation can be extended to lower energies at
which some or all channels are closed. To this end the definitions of the regular and
irregular solutions �.i/reg and �.i/irr must be continued to energies below the respective
channel thresholds Ii in the closed channels. A detailed description of such a
procedure has been given by Seaton for the case that �.i/reg and �.i/irr are the regular
and irregular Coulomb functions [Sea83].

The MQDT equation (3.260) has different meanings in different energy ranges.
For simplicity we number the channels in order of increasing channel thresholds:

I1 < I2 < � � � < IN : (3.265)

For E < I1 all channels are closed and (3.260) is a condition for the existence of a
bound state.

For I1 < E < I2 only channel 1 is open while all other channels are closed.
The MQDT equation is now an explicit equation for the asymptotic phase shift
of the wave function in the open channel 1. Expanding the determinant we can
rewrite (3.260) as

tanŒ�.�1 C �1/� det R11 D
NX

jD2
.�1/jR1;j det R1;j; (3.266)
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or

ı1 D ��1 � arctan

"PN
jD2 .�1/jR1;j det R1j

det R11

#
: (3.267)

Here R1j is the matrix which emerges from the matrix ftan Œ�.�i C �i/�ıi;jC
.1�ıi;j/Ri;jg in (3.260) if we eliminate the first row and the jth column. In particular,
R11 is the matrix we would use to formulate an MQDT equation for the N � 1

closed channels i D 2; : : :N without considering coupling to the open channel 1.
The zeros of det R11 thus correspond to bound states of the mutually coupled closed
channels i D 2; : : :N: Equation (3.267) describes N � 1 coupled Rydberg series of
autoionizing resonances due to these bound states of the coupled closed channels.

For I1 < : : : < In < E < InC1 < : : : < IN the lower n channels are open
and the upper N � n channels are closed. Now there are n linearly independent
solutions of the coupled-channel equations and each solution is characterized by n
asymptotic phase shifts ıi in the open channels i D 1; : : : n: For n � 2 the MQDT
equation (3.260) has the meaning of a compatibility equation for these asymptotic
phase shifts.

The intricate and complicated structure which spectra can acquire when more
than two channels couple already becomes apparent in the three-channel case
[GG83, GL84, WF87]. In the energy interval I1 < E < I2 < I3 in which channel 1
is open while channels 2 and 3 are closed, the interference of two Rydberg series
of autoionizing resonances leads to quite complex spectra. In this energy range the
3QDT equation (3.260) (with N = 3) is an explicit equation for the phase shift ı1 in
the open channel. Using the abbreviations

T2.E/ D tan Œ�.�2 C �2/� ; T3.E/ D tan Œ�.�3 C �3/� ; (3.268)

the 3QDT equation reads

tan.ı1 � ��1/ D �jR1;2j2 T3 C jR1;3j2 T2 � R1;2R2;3R3;1 � R1;3R3;2R2;1
T2T3 � jR2;3j2 :

(3.269)

The 3QDT equation (3.269) has the same form as (3.206) in Sect. 3.3.3 which
describes the influence of coupling to just two bound states in different closed
channels. Equation (3.206) becomes the 3QDT equation (3.269) if we replace
.E � "i/, i D 2; 3 by 1/� times the periodic functions Ti.E/ defined in (3.268),
and the coupling matrix elements Wi;j by �Ri;j=� as suggested by (3.246),

E � "i ! Ti

�
D 1

�
tan Œ�.�i C �i/� ; Wi;j ! �Ri;j

�
: (3.270)

Both ıres in (3.206) and ı1 � ��1 in (3.269) refer to the additional phase shift due
to the non-diagonal coupling effects.
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Whereas Sect. 3.3.3 described the interference of just two autoionizing reso-
nances, the 3QDT equation (3.269) accounts for the interference of two whole
Rydberg series of resonances.

If coupling to the open channel 1 is neglected, then the closed channels 2 and 3
support a series of bound states at the energies given by

T2T3 D jR2;3j2 ; (3.271)

which is just the two-channel QDT equation. We had assumed that I2 < I3, so this
defines a Rydberg series of bound states below I2, which is distorted by a Rydberg
series of perturbers from channel 3, as described in Sect. 3.4.1. Due to their coupling
to the open channel 1, these bound states appear as a perturbed Rydberg series of
Feshbach resonances, and they are characterized by the poles on the right-hand side
of (3.269).

Equation (3.269) has the form

tan.ı1 � ��1/ D �N.E/

D.E/
; (3.272)

similar to (3.211) in Sect. 3.3.3, but numerator and denominator are now defined by

N.E/ D jR1;2j2 T3 C jR1;3j2 T2 � R1;2R2;3R3;1 � R1;3R3;2R2;1;

D.E/ D T2T3 � jR2;3j2 : (3.273)

The resonance positions are the zeros of D.E/, and the energy derivative of phase
shift at resonance is given by

d

dE
.ı1 � �1/

ˇ̌
ˇ
DD0 D D 0

N

ˇ̌
ˇ
DD0 ; (3.274)

as in (3.212). Neglecting a possible weak energy dependence of the QDT parameters
�i and Ri;j gives

dT2
dE

D �
1C T 2

2

	 �� 3
2

2R ;
dT3
dE

D �
1C T 2

3

	 �� 3
3

2R : (3.275)

When D.E/ D 0 we can insert jR2;3j2=T3 for T2, so

d

dE
.ı1 � ��1/

ˇ̌
ˇ
DD0 D � � 32

2RjR1;2j2
T 2
3 C jR2;3j4 C .1C T 2

3 /jR2;3j2.�3=�2/3
.T3 � R2;3R3;1=R2;1/.T3 � R3;2R1;3=R1;2/

;

(3.276)
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and we obtain

� D 2

�
d

dE
.ı1 � ��1/

ˇ̌
ˇ
ER

��1

D 4RjR1;2j2
� � 32

.T3 � R2;3R3;1=R2;1/.T3 � R3;2R1;3=R1;2/

T 2
3 C jR2;3j4 C .1C T 2

3 /jR2;3j2.�3=�2/3

D 4RjR1;2j2
� � 32

j.T3 � R2;3R3;1=R2;1/j2
T 2
3 C jR2;3j4 C .1C T 2

3 /jR2;3j2.�3=�2/3
: (3.277)

The interpretation of the expression (3.277) as the width of the Feshbach resonance
associated with a given pole of tan.ı1 � ��1/ at ER assumes that this width and
the widths associated with neighbouring poles are not so large that the resonances
overlap strongly.

We had assumed that I2 < I3, so �3.E/ remains finite while �2.E/ ! 1
as the energy approaches I2 from below. When the Rydberg series of Feshbach
resonances converging to the lower closed-channel threshold I2 is perturbed by the
Rydberg series of resonances from the closed channel with the higher threshold I3,
the resonance positions are perturbed as described by (3.271), and (3.277) shows
how the perturbations from channel 3 affect the associated resonance widths. The
factor

�0 D 4RjR1;2j2
� � 32

(3.278)

describes the widths expected in an unperturbed Rydberg series of Feshbach
resonances, compare (3.256) in Sect. 3.4.2, while the following quotient describes
the modifications due to the perturbations from channel 3. Towards the lower closed-
channel threshold I2 the ratio �3.E/=�2.E/ tends to zero, so the last term in the
denominator on the right-hand sides of (3.277) becomes negligible. The modified
widths can then be written as

� D 4RjR1;2j2
� � 32

j"C pj2
1C "2

; (3.279)

with

" D T3
jR2;3j2 ; p D � R3;1

R3;2R2;1
: (3.280)

Equation (3.279) represents the unperturbed widths (3.278) multiplied by the
modulus of a Beutler-Fano function, compare (3.194) in Sect. 3.3.2. The shape
parameter is p, and the role of the reduced energy is played by the quantity " as
defined in (3.280). It varies from �1 to C1 during each period of the tangent
defining T3.E/ according to (3.268), and it passes through zero at each energy of
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the Rydberg series of bound states in the uncoupled closed channel 3. If the shape
parameter p is real, then in each such period corresponding to one perturber from
the closed channel 3, there is a point of maximum width when " D 1=p and a point
of vanishing width when " D �p. If this point of vanishing width coincides with
the position of one of the resonances in the perturbed series, which are the zeros of
D.E/, cf. (3.273), then there actually is a resonance of vanishing width, i.e., a bound
state in the continuum. The condition for this to occur is,

T3 D R2;3R3;1
R2;1

; T2 D jR2;3j2
T3

D R3;2R2;1
R3;1

: (3.281)

If (3.279) is not a good description of resonance widths in the perturbed series,
either because the resonances overlap too strongly or because it is not justified
to neglect the term containing .�3=�2/3 in the denominators on the right-hand
sides of (3.277), there nevertheless always is a bound state in the continuum when
the conditions (3.281) are fulfilled. This is because the zeros of numerator and
denominator on the right-hand side of (3.272) vanish simultaneously, compare
discussion around (3.215) in Sect. 3.3.3.

Let us now estimate the maximum broadening caused according to (3.277) by
perturbation of the Rydberg series of resonances. The right-hand side of (3.279) is an
upper limit to the right-hand sides in (3.277), because it was obtained by neglecting
the term proportional to .�3=�2/

3 in the denominator. The modulus of the Beutler-
Fano function can be no larger that 1C jpj2, and hence the maximum widths can be
no larger than

�max D 4R
��32

"
jR1;2j2 C

ˇ̌
ˇ̌R3;1
R3;2

ˇ̌
ˇ̌2
#
: (3.282)

The zeros in the denominator on the right-hand side of (3.269) can only be
interpreted as the positions of resonances if their separation is larger than the widths
of the resonances. This condition is fulfilled if the maximum widths (3.282) are
smaller than the separations which can be approximated by the separations 2R=�32
in the unperturbed Rydberg series (of resonances). We thus obtain the following
condition for the validity of the general formula (3.277) for the widths in a perturbed
Rydberg series of autoionizing resonances:

jR1;2j2 C
ˇ̌
ˇ̌R1;3
R2;3

ˇ̌
ˇ̌2 < �

2
: (3.283)

Remember, however, that if the conditions (3.281) for a bound state in the
continuum are fulfilled exactly or approximately, then numerator and denominator
on the right-hand side of (3.269) vanish at exactly or almost exactly the same energy
and we obtain vanishing or very small widths irrespective of whether (3.283) is
fulfilled or not.
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Finally we can also give a formula for the photoabsorption cross sections or
oscillator strengths in a perturbed Rydberg series of autoionizing resonances. To this
end we exploit the analogy to the situation described in Sect. 3.3.3, where there are
just two bound states in different closed channels and where the oscillator strengths
are described by (3.220). Making the transition (3.270) we obtain

dfEi

dE
D 2�

„ ! jd1j2

�
ˇ̌
ˇD � d2

d1
.T3R2;1 � R2;3R3;1/� d3

d1
.T2R3;1 � R3;2R2;1/

ˇ̌
ˇ2

D2 C N2
I (3.284)

N and D are again as defined in (3.273) above. This formula for oscillator strengths
in a system of three coupled Coulomb channels was first derived in 1984 by Giusti
and Lefebvre-Brion [GL84].

The general expression (3.284) can formally be written as a product of an unper-
turbed oscillator strength multiplied by the modulus of a Beutler-Fano function
(cf. (3.240)):

dfEi

dE
D 2�

„ ! jd1j2 jQq C Q"j2
1C Q"2 ; (3.285)

where the energy parameter Q" and the parameter Qq are now given by

Q" D D.E/=N.E/ and (3.286)

Qq D �
d2
d1
.T3R2;1 � R2;3R3;1/C d3

d1
.T2R3;1 � R3;2R2;1/

N.E/
: (3.287)

Near a zero ER of D.E/, the energy parameter is again a linear function of energy,

Q" D E � ER

� =2
; (3.288)

where � is the width given by (3.277). The formula (3.287) can be used to define
shape parameters as long as it makes sense to assign a single value of Qq to an
individual resonance. If the widths are not too large, (3.285) again describes a
series of Beutler-Fano-type resonances. In contrast to an unperturbed Rydberg series
of autoionizing resonances however, the widths vary strongly within the series
according to (3.277) and the shape parameters can no longer be accounted for by
one energy-independent or only weakly energy-dependent number as in (3.242). If
the resonances are so narrow that we can take the function T2.E/ D tan Œ�.�2C�2/�,
which covers the whole range of values from �1 to C1 in each period, as
essentially constant over the width of a resonance, then we can insert its value
T2.E/ D jR1;2j2=T3.E/ at each resonance energy into (3.287) and obtain a simple
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formula describing the variation of the shape parameter Qq within a perturbed
Rydberg series of autoionizing resonances:

Qq D
�

�d2=d1
R1;2

��
T3 � R3;2 d3=d2

T3 � R3;2R1;3=R1;2

�
: (3.289)

The first factor on the right-hand side of (3.289) is the shape parameter q which one
would expect in an unperturbed Rydberg series of autoionizing resonances accord-
ing to (3.242). The second factor describes the changes due to the perturbations. If
the 3QDT parameters are real, then in each period of T3 there is a zero of Qq at

T3 D R3;2
d3
d2

(3.290)

and a pole at

T3 D R3;2
R1;3
R1;2

: (3.291)

The pole position (3.291) is just the point of vanishing width, see (3.281). Here the
height 1 C Qq2 of a resonance line becomes infinite in principle, but the product of
the height and the width (3.277) remains finite. The sign of the shape parameter Qq
changes both at the zero (3.290) and at the pole (3.291). This sign change is known
under the name of q-reversal and is conspicuous in spectra as an interchange of the
steep and the flat sides of Beutler-Fano-type resonance lines (see Fig. 3.22).
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Fig. 3.22 Oscillator strengths (3.284) in a perturbed Rydberg series of autoionizing resonances.
The following 3QDT parameters are common to both parts of the figure: �2 D �3 D 0, R1;2 D 0:4,
R1;3 D �0:2, R2;3 D 0:5, I3 � I2 D 0:017 Rydberg energies. The centre of the perturber .T3 D 0

for �3 D 7:0/ is at �2 D 17:13. In part (a) the dipole transition parameters are d2=d1 D d3=d1 D 1,
so that the point of vanishing width and the point of vanishing q-value lie on opposite sides of the
centre T3 D 0. In part (b) we have d2=d1 D 0:5, d3=d1 D �1, so that both q-reversals lie to the left
of T3 D 0. The oscillator strengths df=dE are given in units of the oscillator strength .2�=„/!jd1j2
which we would expect in absence of coupling to the channels 2 and 3



3.4 Multichannel Quantum Defect Theory (MQDT) 253

The relation (3.289) was derived from (3.287) with the help of some rather
crude approximations, but it does enable us to qualitatively understand some of the
different structures which can appear in a perturbed Rydberg series of autoionizing
resonances. Figure 3.22 shows two examples of the oscillator strength (3.284) as a
function of the continuous effective quantum number �2 in channel 2. The series is
perturbed around �2 � 17 by a state with effective quantum number �3 D 7 (in
channel 3). The two q-reversals, one at the point of vanishing width and one at the
zero of the shape parameter, are easy to discern in both cases.

If more than one channel is open, then a resonant state in a Rydberg series
of autoionizing resonances can decay into several decay channels, and the total
autoionization width is a sum of the partial widths into the individual open channels.
If such a Rydberg series is perturbed by states in further closed channels, then
one consequence of such perturbations is a strong energy dependence of the
branching ratios, which are the ratios of the partial decay widths [VC88]. A detailed
description of characteristic features of MQDT spectra in cases with two or more
open channels was given by Cohen in [Coh98].

In real physical situations we often have to consider more than two or three
Coulomb channels. Figure 3.23 shows part of a photoionization spectrum to J D 2

states in neutral barium in an energy interval in which both the 5d3=2 ns and
the 5d3=2 nd series of autoionizing resonances are perturbed by the 5d5=214s1=2
resonance. The lower part of the figure shows the results of an MQDT calculation
involving six closed and two open channels. Many significant features in the
spectrum are accurately reproduced by the MQDT fit. Note however, that an
application of MQDT with so many channels already involves a large number of
parameters which are not easy to determine uniquely by fitting even such a rich
spectrum.

Problems of non-uniqueness of the MQDT parameters typically occur when
we treat them as independent empirical parameters to be determined in a fit to
experimental data. In an analysis of Rydberg spectra of molecules, Jungen and
Atabek implemented a frame transformation which allowed them to calculate a
large number of independent elements of the reactance matrix on the basis of a
few fundamental dynamical parameters. This made it possible to apply the MQDT
with quite large numbers (up to 30) of channels [JA77].

An ab initio theory without empirical parameters requires a solution (at least
an approximate solution) of the many-electron Schrödinger equation, or, in the
present case, of the coupled-channel equations. In the so-called R matrix method
[Gre83, OG85], coordinate space is divided into an inner region of radius R and
an outer region. The many-electron problem is solved approximately in the inner
region and, at r D R, the solutions are matched to the appropriate asymptotic
one-electron wave functions in each channel, which consist of superpositions of
regular and irregular Coulomb functions or, in closed channels, of the corresponding
Whittaker functions. MQDT is still useful in connection with such ab initio theories,
because the weakly energy-dependent MQDT parameters can be calculated (and
stored) on a comparatively sparse mesh of energies and the complicated and
sometimes violent energy dependences in physical observables follow from the
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Fig. 3.23 Photoionization spectrum in barium near the 5d5=2 14s1=2 J D 2 state which perturbs
the 5d3=2 ns and the 5d3=2 nd series. The lower part of the figure shows the results of an MQDT
analysis involving six closed and two open channels (From [BH89])

MQDT equations. The combination of MQDT and R matrix methods has been
applied with considerable success, especially to the description of the spectra of
alkali earth atoms [AL87, AL89, LA91, AB94, AL94, LA94, LU95, AG96].

3.5 Atoms in External Fields

Everything said up to now has to be modified more or less strongly if we consider
atoms (or ions) which are not isolated, but influenced by an external electromagnetic
field. For low-lying bound states of an atom the influence of external fields can
often be satisfactorily accounted for with perturbative methods, but this is no
longer possible for highly excited states and/or very strong fields, in which case
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intricate and physically interesting effects occur, even in the “simple” hydrogen
atom. The study of atoms (and molecules) in strong external fields has been a topic
of considerable interest for many years, and this is documented by the publication
of several books on the subject [NC90, RW94, CK97, SS98].

In this section we consider a classical electromagnetic field described by the
scalar potential ˚.r; t/ and the vector potential A.r; t/. The Hamiltonian for an
N-electron atom or ion is then (see (2.151))

OH D
NX

iD1

 
Œ Opi C .e=c/A.ri; t/�

2

2�
� e˚.ri; t/

!
C OV : (3.292)

An important consequence of external fields is, that the Hamiltonian (3.292) is in
general no longer rotationally invariant, so that its eigenstates aren’t simultaneously
eigenstates of angular momentum. For spatially homogeneous fields and the
appropriate choice of gauge the Hamiltonian does however remain invariant under
rotations around an axis parallel to the direction of the field, so that the component
of total angular momentum in the direction of the field remains a constant of
motion. For an electron in a potential which is not radially symmetric but invariant
under rotations around the z-axis, say, we can at least reduce the three-dimensional
problem to a two-dimensional problem by transforming to cylindrical coordinates
%; z; �:

x D % cos� ; y D % sin � ; z D z I % D
p

x2 C y2 : (3.293)

With the ansatz

 .r/ D fm.%; z/ eim� (3.294)

we can reduce the stationary Schrödinger equation to an equation for the function
fm.%; z/:

�
� „2
2�

�
@2

@%2
C 1

%

@

@%
� m2

%2
C @2

@z2

�
C V.%; z/

�
fm.%; z/ D Efm.%; z/ : (3.295)

3.5.1 Atoms in a Static, Homogeneous Electric Field

We describe a static homogeneous electric field E, which is taken to point in the
direction of the z-axis, by a time-independent scalar potential

˚.r/ D �Ez z (3.296)
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and a vanishing vector potential. The Hamiltonian (3.292) then has the following
special form:

OH D
NX

iD1

Op2i
2�

C OV C eEz

NX
iD1

zi : (3.297)

The shifts in the energy eigenvalues caused by the contribution of the field
in (3.297) are given in time-independent perturbation theory (see Sect. 1.6.1) to first
order by (1.249),

�E.1/n D eEz h nj
NX

iD1
zi j ni ; (3.298)

where  n are the eigenstates of the unperturbed .Ez D 0/ Hamiltonian. As
mentioned in Sect. 2.2.4, these eigenstates are usually eigenstates of the N-electron
parity operator, so that the expectation values (3.298) of the operator

PN
iD1 zi, which

changes the parity, vanish. In second order, the energy shifts are given by (1.255)
or (1.266),

�E.2/n D .eEz/
2
X

Em¤En

ˇ̌˝
 njP N

iD1zij m
˛ˇ̌2

En � Em
; (3.299)

where En and Em are the eigenvalues of the unperturbed Hamiltonian. The right-
hand side of (3.299) should include the continuum, so the sum is to be replaced
by an integral above the continuum threshold. The energy shifts (3.299) depend
quadratically on the strength Ez of the electric field and are known under the name
quadratic Stark effect.

The energy shifts (3.299) are closely connected with the dipole polarizability
of the atom in an electric field. The modification of wave functions caused by
an infinitesimally weak electrical field can be described in first-order perturbation
theory. As long as the unperturbed state  n is not degenerate with an unperturbed
state of opposite parity, the modified eigenfunctions to first order are described
by (1.253),

ˇ̌
 0

n

˛ D j ni C eEz

X
m¤n

h mjPN
iD1 zij ni

En � Em
j mi : (3.300)

The wave functions (3.300) are no longer eigenfunctions of the N-electron parity,
and they have a dipole moment induced by the external field and pointing in the
direction of the field (the z-direction). The z-component of the induced dipole
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moment is

dz D �eh 0
nj

NX
iD1

zij 0
ni

D 2e2Ez

X
m¤n

jh mjPN
iD1 zij nij2

Em � En
WD ˛dEz : (3.301)

Using the dipole polarizability ˛d defined by (3.301) (for the state  n) we can write
the energy shift (3.299) of the quadratic Stark effect as

�E.2/n D �˛d

2
E2z : (3.302)

In the unusual case that an eigenvalue of the unperturbed Hamiltonian is
degenerate and has eigenstates of different parity, we already obtain non-vanishing
energy shifts in first order, and this is called the linear Stark effect. The first-order
energy shifts are calculated by diagonalizing the perturbing operator eEz

PN
iD1 zi

in the subspace of the eigenstates with the degenerate (unperturbed) energy, see
equation (1.258). An important example is found in the one-electron atoms, where
each principal quantum number n � 2 corresponds to a degenerate energy
eigenvalue with eigenfunctions of different parity .�1/l. The interaction matrix
elements between two degenerate eigenfunctions  1.r/ D Yl1;m1 .˝/�n;l1 .r/=r and
 2.r/ D Yl2;m2 .˝/�n;l2 .r/=r are

h 1jeEzzj 2i D eEzr
.0/
1 2 ; (3.303)

where r.0/1 2 is the � D 0 spherical component of the vector matrix element as defined
in (2.208). The matrix element (3.303) is non-vanishing only if the azimuthal
quantum numbers in bra and ket are the same, m1 D m2. For n D 2 there is a
non-vanishing matrix element between the l D 0 and l D 1 states with m D 0. The
two further l D 1 states with azimuthal quantum numbers m D C1 and m D �1
are unaffected by the linear Stark effect (see Problem 3.8). Figure 3.24(a) shows the
splitting of the n D 2 term in the hydrogen atom due to the linear Stark effect. For
comparison Fig. 3.24(b) shows the energy shift (3.302) of the n D 1 level due to the
quadratic Stark effect (see Problem 3.9).

The perturbative treatment of the Stark effect is not unproblematic. This becomes
obvious when we consider that the perturbing potential eEz

PN
iD1 zi (positive field

strength Ez assumed) tends to �1 when one of the zi goes to �1. The perturbed
Hamiltonian (3.297) is not bounded from below and has no ground state; strictly
speaking it has no bound states at all and no discrete eigenvalues, but a continuous
energy spectrum unbounded from above and below. In the presence of the electric
field the bound states of the unperturbed Hamiltonian become resonances and the
width of each such resonance is „=� , where � is the lifetime of the state with
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Fig. 3.24 (a) Splitting of the
degenerate n D 2 level in
hydrogen due to the linear
Stark effect (Problem 3.8).
(b) Energy shift of the
hydrogen ground state due to
the quadratic Stark
effect (3.302). f is the electric
field strength in units of E0 �
5:142 � 109 V=cm (3.308),
and the energies are in atomic
units

respect to decay via field ionization. For low-lying states and not too strong fields
these lifetimes are so long that the states can be regarded as bound for all practical
purposes, but for highly excited states and/or very strong fields the lifetimes can
be short and the widths of the resonant states large. Even for an arbitrarily small
but finite field strength perturbation theory loses its justification at sufficiently high
excitations. The transition from vanishing to small but finite field strengths is not
continuous at threshold. For vanishing strength of the external field the long-ranged
Coulomb potential supports infinitely many bound states accumulating at threshold.
In an arbitrarily weak but non-vanishing electric field there are no bound states.

Classically, field ionization is possible above the Stark saddle. For a one- electron
atom,

V.r/ D �Ze2

r
C eEzz ; Ez > 0 ; (3.304)

the Stark saddle is located on the negative z-axis at the local maximum of
V.xD0; yD0; z/. Here the potential energy has a minimum in the two directions
perpendicular to the z-axis (see Fig. 3.25). The position zS and energy VS of the
Stark saddle are:

zS D �
s

Ze

Ez
; VS D �2e

p
ZeEz : (3.305)

For a one-electron atom described by a pure Coulomb potential �Ze2=r, it
is possible in parabolic coordinates to decouple the Schrödinger equation into
ordinary differential equations, even in the presence of an external electric field.
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Fig. 3.25 Potential energy (3.304) for a one-electron atom in an electric field of f D 0:02 atomic
units (see (3.308)). (a) Potential along the z-axis; (b) equipotential lines in the zx-plane. The point
“S” marks the Stark saddle

As the electric field in z-direction doesn’t disturb the rotational symmetry around
the z-axis, it is sensible to keep the azimuthal angle � as one of the coordinates.
The two other coordinates � and  have the physical dimension of a length and are
defined by

� D r C z ;  D r � z I r D 1

2
.� C / ; z D 1

2
.� � / : (3.306)

The coordinates � and  can assume values between zero and C1. They are called
parabolic, because surfaces defined by � D const. and  D const. are rotational
paraboloids around the z-axis.

In parabolic coordinates and atomic units the Hamiltonian for an electron under
the influence of a Coulomb potential and an external electric field is

OH D � 2
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(3.307)

Here f is the electric field strength in atomic units:

f D Ez

E0
; E0 D e

a2
D �2e5

„4 � 5:142 � 109V=cm : (3.308)

If we multiply the Schrödinger equation OH D E by .� C /=2 and insert the
product ansatz

 D f1.�/f2./ eim� (3.309)
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for  , then we obtain two decoupled equations for f1.�/ and f2./
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C f
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�

f2 C Z2f2 D 0 : (3.310)

There are two separation constants, Z1 and Z2, which are related by

Z1 C Z2 D Z : (3.311)

Dividing the upper equation (3.310) by 2� and the lower equation by 2 yields
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f2./ : (3.313)

The equations (3.312), (3.313) have the form of two cylindrical radial
Schrödinger equations with azimuthal quantum number m=2 (cf. (3.295)). In
addition to the cylindrical radial potential .m=2/2=.2�2/, Equation (3.312) for f1.�/,
the uphill equation, contains a Coulomb potential �Z1=2� and an increasing linear
potential .f=8/� originating from the electric field. For any (positive or negative)
value of the separation constant Z1, this uphill potential supports a sequence of
bound solutions with discrete eigenvalues. Conversely, for each energy E there is a
discrete sequence of values of Z1 for which the uphill equation has bound solutions,
which are characterized by the respective number n1 D 0; 1; 2; : : : of nodes of f1.�/
in the region � > 0. As Z1 grows larger and larger (it may even be larger than the
nuclear charge Z) the number n1 increases. We obtain a minimal value of Z1 (which
may be negative if the energy E is positive) when the whole uphill potential is just
deep enough to support one nodeless eigenstate. (See Fig. 3.26.)

In the field-free case f D 0, (3.313) has the same form as (3.312). In the negative
energy regime there is a discrete sequence of energies, namely En D �Z2=.2n2/,
n D 1; 2; : : :, at which both equations (3.312) and (3.313) with appropriate values
of Z1 and Z2 simultaneously have square integrable solutions with n1 and n2 nodes
respectively. For a given azimuthal quantum number m D 0; ˙1; ˙2; : : : ˙.n � 1/
the parabolic quantum numbers n1 D 0; 1; 2; : : : and n2 D 0; 1; 2; : : : are related
to the separation constants Z1, Z2 and the Coulomb principal quantum number n by
[LL65]

ni C jmj C 1

2
D n

Zi

Z
; i D 1; 2 I n1 C n2 C jmj C 1 D n : (3.314)
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Fig. 3.26 Effective potentials in the uphill equation (3.312) (a) and in the downhill equa-
tion (3.313) (b) for m D 1 and four different values of the separation constant Z1, (Z1 C Z2 D 1).
The electric field strength is f D 0:02 atomic units

If however, the field strength f is non-vanishing (positive), then the downhill
equation (3.313) can be solved for a given value of the separation constant
Z2 (D Z � Z1) at any energy with the appropriate boundary conditions. The solu-
tions f2./ do not behave like regular and irregular Coulomb functions asymptoti-
cally, because the potential decreases linearly and so the kinetic energy increases
linearly with . The wave function for the asymptotic motion of an electron
accelerated in such a linear potential is a superposition of Airy functions (see
Appendix A.4), and it is increasingly well approximated by the semiclassical WKB
expression (1.289), because the quantality function (1.298) asymptotically vanishes
as the inverse cube of the coordinate. The low-lying bound states of the field-free
case become narrow resonances in the presence of a finite field, and these can be
identified by more or less sudden jumps through � of a phase shift describing the
influence of deviations from the homogeneous linear potential [TF85], cf. Sect. 1.5.
As the energy increases, so does the width of these resonances corresponding to a
decreasing lifetime with respect to field ionization.

A systematic theoretical investigation of the Stark spectrum of hydrogen was
published in 1980 by Luc-Koenig and Bachelier [LB80]. Figure 3.27 shows the
spectrum for azimuthal quantum number jmj D 1. In the field-free case each
principle quantum number n accommodates n � jmj degenerate eigenstates, which
can be labelled by the possible values of the parabolic quantum number n1 D
0; 1; : : : ; n � jmj � 1. A finite field strength lifts the degeneracy in this n manifold.
The energy is shifted downward most for states with small values of the (uphill)
quantum number n1, because they have the largest fraction of the wave function
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Fig. 3.27 Stark splitting and decay widths with respect to field ionization for the jmj D 1 states
in hydrogen. The thin lines show states with widths less than 5 � 10�12 atomic units, the thick
lines indicate widths between 5 � 10�12 and 5 � 10�8 , and the dashed lines represent resonances
broader than 5 � 10�8 atomic units. The energy of the Stark saddle is shown by the thick curve
running from the upper left to the lower right corner in the figure (From [LB80])

concentrated in the downhill direction. Since small values of n1 are connected to
small values of the separation constant Z1 and correspondingly large values of Z2 D
1� Z1, these states have the largest decay widths, because larger values of Z2 imply
a more strongly attractive Coulomb potential and a smaller potential barrier against
field ionization in the downhill equation. Conversely, solutions corresponding to
large values of n1 and small values of n2 can have very small widths and large
lifetimes with respect to field ionization even above the Stark saddle. A pronounced
resonance structure above the Stark saddle and even above the “field-free ionization
threshold” can indeed be observed e.g. in photoionization spectra [RW86].

Stark states of hydrogen are studied by many authors with continually improving
experimental and calculational techniques [GN85, RW86, Kol89, Ali92, SR13], in
particular in the interesting region near the saddle and the field-free threshold.
Kolosov [Kol89] calculated the positions and widths of resonant Stark states
appearing as eigenstates of the Hamiltonian with complex eigenvalues. Results for
resonances with maximum uphill quantum number, n1 D n � 1, n2 D 0, m D 0,
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Fig. 3.28 Experimental photoionization spectra of hydrogen in a Stark field for three field
strengths Ez: (a) 6.5 kV/cm, (b) 8.0 kV/cm, (c) 16.7 kV/cm [GN85]. The arrows show the
calculated positions of resonant Stark states with parabolic quantum numbers .n1; n2/ .m D 0/.
The hatchings show the widths of the states with maximum uphill quantum number n1 (D n � 1).
The widths of the states with n1 D n � 2, n2 D 1 are shown as horizontal bars (From [Kol89])

and with second largest n1 for energies around the field-free threshold are shown
in Fig. 3.28 and compared with experimental photoionization spectra from Glab et
al. [GN85] at three different electric field strengths. The calculated positions of the
resonances with n1 D n � 1, n2 D 0 and with n1 D n � 2, n2 D 1 are indicated by
arrows, and the widths are shown as hatching or as horizontal bars. A correlation
between experimental structures and calculated resonances is obvious, even at
positive energies.

Alijah [Ali92] calculated the photoionization spectrum as function of energy
from the wave functions obtained by direct numerical integration of the Schrödinger
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Fig. 3.29 Photoionization spectrum of hydrogen in an electric field (5.714 kV/cm) from the initial
state n1 D 1, n2 D 0, m D 0 with �m D 0. The upper part of the figure shows the experimental
results of Rottke and Welge [RW86]; the sharp lines below the zero field ionization threshold are
labelled by the quantum numbers .n1; n2;m/, while the oscillations in the positive energy region
are labelled just by n1. The lower part of the figure shows the numerical results of Alijah (From
[Ali92])

equation. His results are shown in Fig. 3.29 together with the experimental photoion-
ization spectrum of Rottke and Welge [RW86] at a field strength of 5.714 kV/cm.
The numerical calculation reproduces all the experimentally observed features.

More recently, Stodolna et al. reported photoionization microscopy experiments,
in which the nodal structure of eigenstates of the Stark Hamiltonian (3.307) could be
observed directly. Their experiments “provide a validation of theoretical predictions
that have been made over the last three decades.” [SR13]
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3.5.2 Atoms in a Static, Homogeneous Magnetic Field

A static homogeneous magnetic field pointing in z direction can be described in the
symmetric gauge by a vector potential

A.r/ D �1
2
.r � B/ D 1

2

0
@�y

x
0

1
ABz : (3.315)

In this gauge the Hamiltonian (3.292) keeps its axial symmetry around the z-axis
and has the following special form:

OH D
NX

iD1

Op2i
2�

C OV C ! OLz C
NX

iD1

�!2

2
.x2i C y2i / : (3.316)

Here ! is one half of the cyclotron frequency which characterizes the energy
eigenstates of an otherwise free electron in a magnetic field (see Problem 3.10):

! D !c

2
D eBz

2�c
: (3.317)

In the Hamiltonian (3.316), OLz stands for the z-component of the total orbital angular
momentum of the N electrons, and the contribution ! OLz is just the energy ��L �B
of the magnetic moment �L D �e=.2�c/ OL due to this orbital motion in the
magnetic field B. The ratio �e=.2�c/ of the magnetic moment to the orbital angular
momentum is the gyromagnetic ratio.

If, for the time being, we neglect the term in the Hamiltonian (3.316) which is
quadratic in the field strength Bz, i.e. quadratic in !, then the external magnetic field
simply leads to an additional energy ! OLz. Eigenstates of the unperturbed (field-
free) Hamiltonian, in which effects of spin-orbit coupling are negligible and in
which the total spin vanishes, i.e. in which the orbital angular momentum equals
the total angular momentum, remain eigenstates of the Hamiltonian in the presence
of the magnetic field, but the degeneracy in the quantum number ML is lifted.
Quantitatively the energies are shifted by

�EML D e„Bz

2�c
ML : (3.318)

This is the normal Zeeman effect. Note that the result (3.318) is not based on
perturbation theory, but only on the neglect of spin and of the contributions quadratic
in ! to the Hamiltonian (3.316). Except for the small difference between the reduced
mass � and the electron mass me, the constant e„=.2�c/ is the Bohr magneton
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(http://physics.nist.gov/cuu/Constants/Table/allascii.txt),

�B D e„
2mec

D 5:7883818012.26/� 10�5eV=Tesla : (3.319)

Except in states with vanishing total spin, we generally cannot neglect the
contributions of the spin to the energy shifts in a magnetic field. The most important
contribution comes from the magnetic moments due to the spins of the electrons.
The interaction of these spin moments with a magnetic field is obtained most
directly if we introduce the field (cf. Sect. 2.4.2) into the Dirac equation (2.28)
via the substitution Opi ! Opi C .e=c/A.ri/ and perform the transition to the
non-relativistic Schrödinger equation (Problem 3.11). To first order we obtain the
following Hamiltonian for a free electron in an external magnetic field:

OH.0/
B D Op2i

2�
C e

2�c
. OLi C 2 OSi/�B : (3.320)

Note the factor two in front of the spin. It implies that the spin „=2 of an electron
leads to a magnetic moment just as big as that due to an orbital angular momentum
of „.

The interaction of an atom with a magnetic field is thus given to first order in the
field strength by a contribution

OWB D e

2�c
. OL C 2 OS/�B D eBz

2�c
. OLz C 2 OSz/ (3.321)

in the N-Electron Hamiltonian. This corresponds to the energy of a magnetic dipole
with a magnetic moment �. OL C 2 OS/e=.2�c/ in the magnetic field B. The magnetic
moment now is no longer simply proportional to the total angular momentum OJ D
OL C OS, which means that there is no constant gyromagnetic ratio. The splitting of

the energy levels in the magnetic field now depends not only on the field strength
and the azimuthal quantum number as in the normal Zeeman effect (3.318); for this
reason the more general case, in which the spin of the atomic electrons plays a role,
is called anomalous Zeeman effect.

The unperturbed atomic states can be labelled by the total angular momentum
quantum number J and the quantum number MJ for the z-component of the total
angular momentum, and the unperturbed energies don’t depend on MJ . If the atom is
described in LS coupling, then the unperturbed eigenstates �L;S;J;MJ in a degenerate
J-multiplet also have a good total orbital angular momentum quantum number L
and a good total spin quantum number S (cf. Sect. 2.2.4). If the energy shifts due
to the perturbing operator (3.321) are small compared with the separations of the
energies of different J-multiplets, then these energy shifts are given in first-order
perturbation theory by the expectation values of the perturbing operator (3.321) in
the unperturbed states �L;S;J;MJ . As shown below, the perturbing operator is diagonal

http://physics.nist.gov/cuu/Constants/Table/allascii.txt
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in the quantum number MJ within each J-multiplet and hence a diagonalization
according to the formula (1.258) of degenerate perturbation theory is not necessary.

We can derive a quantitative formula for the matrix elements of the perturbing
operator (3.321) by applying the Wigner-Eckart theorem for the components of
vector operators in the angular momentum eigenstates. Thereby the dependence
of the matrix elements on the (spherical) component index of the vector and on
the azimuthal quantum numbers in bra and ket is the same for all vector operators
and is given by appropriate Clebsch-Gordan coefficients (see Sects. 1.7.1, 2.4.5). In
particular,

h�L;S;J;MJ j OSzj�L;S;J;MJ i D hLSJjj OSjjLSJihJ;MJj1; 0; J;MJi ;
h�L;S;J;MJ j OJzj�L;S;J;MJ i D hLSJjj OJjjLSJihJ;MJj1; 0; J;MJi ;
h�L;S;J;MJ j OJ � OSj�L;S;J;MJ i D hLSJjj OJjjLSJihLSJjj OSjjLSJifCGg ;
h�L;S;J;MJ j OJ2 j�L;S;J;MJ i D hLSJjj OJjjLSJihLSJjj OJjjLSJifCGg : (3.322)

All matrix elements like (3.322) which are not diagonal in MJ vanish. This follows in
the two lower equations, because we actually calculate matrix elements of a scalar
product of two vector operators, and in the two upper equations, because we are
dealing with the � D 0 spherical component of a vector operator in both cases. (This
also implies that non-diagonal matrix elements of the perturbing operator (3.321)
vanish.) Quantities such as hLSJjj OSjjLSJi are the reduced matrix elements, which
are characteristic of the whole J-multiplet and independent of azimuthal quantum
numbers or component indices. The expression fCGg in the two lower equations
stands for the same combination of Clebsch-Gordan coefficients, and its precise
composition is irrelevant for the following discussion.

Dividing the first equation (3.322) by the second and the third by the fourth
leads to the same number in both cases, namely the quotient of the reduced matrix
elements hLSJjj OSjjLSJi and hLSJjj OJjjLSJi. Hence the quotients of the left-hand sides
must also be equal, giving

h�L;S;J;MJ j OSzj�L;S;J;MJ i

D h�L;S;J;MJ j OJ � OSj�L;S;J;MJ i
h�L;S;J;MJ j OJ2j�L;S;J;MJ i

h�L;S;J;MJ j OJzj�L;S;J;MJ i

D h�L;S;J;MJ j OJ � OSj�L;S;J;MJ i
J.J C 1/„2 MJ„ : (3.323)

We can replace the operator product OJ� OS by . OJ2 C OS2 � OL2/=2 in analogy to (1.356)

and express the expectation value of OJ� OS in terms of the eigenvalues of OJ2, OS2 and OL2:
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h�L;S;J;MJ j OSzj�L;S;J;MJ i D J.J C 1/C S.S C 1/� L.L C 1/

2J.J C 1/
MJ„ : (3.324)

With OLz C 2 OSz D OJz C OSz we obtain the following expression for the energy shifts of
the anomalous Zeeman effect in first-order perturbation theory:

�EL;S;J;MJ D eBz

2�c
h�L;S;J;MJ j OJz C OSzj�L;S;J;MJ i

D eBz

2�c

�
1C J.J C 1/C S.S C 1/� L.L C 1/

2J.J C 1/

�
MJ„

D e„BZ

2�c
g MJ : (3.325)

The dependence of the gyromagnetic ratio on the J-multiplet is contained in the
Landé factor

g D 1C J.JC1/C S.SC1/� L.LC1/
2J.JC1/ D 3J.JC1/C S.SC1/� L.LC1/

2J.JC1/ :

(3.326)

For S = 0 and J D L we have g D 1 and recover the result of the normal Zeeman
effect (3.318).

As the strength of the magnetic field increases, the interaction with the field
becomes stronger than the effects of spin-orbit coupling. It is then sensible to
first calculate the atomic states without spin-orbit coupling and to classify them
according to the quantum numbers of the z-components of the total orbital angular
momentum and the total spin: �L;S;ML ;MS . The energy shifts due to the interac-
tion with the magnetic field (3.321) are then—without any further perturbative
assumptions—simply

�EML;MS D e„Bz

2�c
.ML C 2MS/ : (3.327)

This is the Paschen-Back-Effekt. An example for the transition from the anomalous
Zeeman effect in weak fields to the Paschen-Back effect in stronger fields is
illustrated schematically in Fig. 3.30.

The perturbing operator (3.321) describes the paramagnetic interaction between
the magnetic field and the (permanent) magnetic dipole moment of the atom. The

operators OLz and OSz commute with OL2 and OS2. If the total orbital angular momentum L
and the total spin S are good quantum numbers in the absence of an external
magnetic field, then they remain good quantum numbers in the presence of the
perturbing operator (3.321). L is no longer a good quantum number when the
contribution quadratic in ! in (3.316) (the diamagnetic term) becomes important.
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Fig. 3.30 Schematic illustration of level splitting in a magnetic field for the example of a 2P1=2
and a 2P3=2 multiplet, which are separated by a spin-orbit splitting�E0 in the field-free case. If the
product of field strength B and magneton (3.319) is smaller than �E0 we obtain the level splitting
of the anomalous Zeeman effect (3.325), for �BB > �E0 we enter the region of the Paschen-Back
effect (3.327)

This term is a two-dimensional harmonic oscillator potential in the two directions
perpendicular to the direction of the magnetic field.

Consider the Schrödinger equation for a free electron (without spin) in an
external field in the symmetric gauge. This is easy to solve in cylindrical coordinates
(Problem 3.10). The eigenfunctions are

 N;m;k.%; �; z/ D ˚N;m.%/ eim� eikz ; (3.328)

and the energy eigenvalues are

EN;m;k D .2N C m C jmj C 1/„! C „2k2
2�

; N D 0; 1; 2; : : : ;

m D 0; ˙1; ˙2; : : : ;
�1 < k < C1 : (3.329)

Here ˚N;m.%/ exp.im�/ are the eigenstates of the two-dimensional harmonic oscil-
lator (Landau states) labelled by the cylindrical principal quantum number N
and the azimuthal quantum number m for the z-component of the orbital angular
momentum. The factor exp.ikz/ describes the free motion of the electron parallel to
the direction of the magnetic field.

We obtain a measure for the relative importance of the diamagnetic term
when we compare the oscillator energy „! in (3.329) with the Rydberg energy
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R D �e4=.2„2/ characterizing the atomic interactions:

� D „!
R D Bz

B0
;

B0 D �2e3c

„3 � 2:35 � 109 Gauss D 2:35 � 105 Tesla : (3.330)

For field strengths appreciably smaller than B0, which (still) includes all fields that
can be generated in a terrestrial laboratory, the diamagnetic term has no influence
on low-lying atomic states. This justifies its omission in the treatment of the normal
and anomalous Zeeman effects and the Paschen-Back effect. In an astrophysical
context however, magnetic field strengths of the order of 104 to 108 T have been
observed at the surfaces of white dwarfs and neutron stars. At such field strengths
the quadratic contribution to the Hamiltonian (3.316) can by no means be neglected
[WZ88]. The influence of this term is often called the quadratic Zeeman effect.

At field strengths of several Tesla as can be generated in the laboratory, the
magnetic field strength parameter � defined by (3.330) is of the order of 10�5 and
the quadratic Zeeman effect is not important for low-lying states of atoms. It may
play a role however, in the context of semiconductor physics, where electrons bound
to a shallow donor are often described in a hydrogen model with an effective mass
roughly one power of ten smaller than the electron mass and an effective charge
roughly one power of ten smaller than the elementary charge e. In such situations
effective field strength parameters near unity may be achieved at field strengths of a
few Tesla [KG90].

For small field strength parameters, typically around 10�5 for free atoms in strong
laboratory fields, the quadratic Zeeman effect does have a considerable influence on
highly excited Rydberg states. Since the separation of successive terms in a Rydberg
series decreases as 2R=n3 with increasing principal quantum number n, we can
already expect a significant perturbation due to the diamagnetic term near n D 40

or n D 50.
The intricacy of the quadratic Zeeman effect can already be illustrated in the

simplest example of a one-electron atom, e.g. the hydrogen atom. An overview of
many papers written on the H atom in a magnetic field can be found e.g. in [FW89,
HR89], see also [Gay91]. A monograph devoted to this subject was published by
Ruder et al. [RW94].

Ignoring spin effects the Schrödinger equation for a hydrogen atom in a uniform
magnetic field is, in atomic units and cylindrical coordinates (cf. (3.316), (3.295)),

�
�1
2

�
@2

@%2
C 1
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@%
C @2

@z2
� m2
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2
� C 1

8
�2%2 � 1p

%2 C z2

#
fm.%; z/ D Efm.%; z/ : (3.331)
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Effects of spin-orbit coupling are mainly important for relatively weak fields, and
the centre-of-mass motion, whose separation is not quite as straight-forward as in
the absence of an external field, only becomes important in extremely strong fields.
For values of the field strength parameter between � � 10�5 and � � 10C4, the one-
electron Schrödinger equation (3.331) is a reliable description of the real physical
system. The azimuthal quantum number m is a good quantum number, as is the
parity � which is frequently expressed in terms of the z-parity, �z D .�1/m� , which
describes the symmetry of the wave function with respect to a reflection at the xy-
plane (perpendicular to the direction of the magnetic field). In each m�z subspace of
the full Hilbert space, the Schrödinger equation remains a non-separable equation
in two coordinates, i.e. there is no set of coordinates in which it can be reduced to
ordinary differential equations as was possible for the Stark effect. If we drop the
trivial normal Zeeman term .m=2/� , the potential in (3.331) is independent of the
sign of m:

Vm.%; z/ D m2

2%2
� 1p

%2 C z2
C 1

8
�2%2 : (3.332)

Equipotential lines of the potential (3.332) are shown in Fig. 3.31 for the case m D 0.

For very strong fields corresponding to field strength parameters � near unity
or larger, the energies needed to excite Landau states perpendicular to the field are
larger than the typical Coulomb energies for the motion of the electron parallel to the
field. In this regime it makes sense to expand the wave function fm.%; z/ in Landau
channels:

fm.%; z/ D
1X

ND0
˚N;m.%/ N.z/ : (3.333)

Inserting the ansatz (3.333) into the Schrödinger equation (3.331) and projecting
onto the various Landau channels yields, in each m�z subspace, a set of coupled-

Fig. 3.31 Equipotential lines for the potential (3.332) with m D 0
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channel equations for the channel wave functions  N.z/, and the potentials are

VN;N0.z/ D EN;mıN;N0 C
Z 1

0

% d%˚N;m.%/
�1p
%2 C z2

˚N0;m.%/ : (3.334)

The diagonal potentials are asymptotically Coulomb potentials proportional to 1=jzj,
and the channel thresholds EN;m are (without the normal Zeeman term .m=2/� )

EN;m D ŒN C .jmj C 1/=2�� D Em C N� : (3.335)

The continuum threshold in a given m�z -subspace is at Em D .jmj C 1/�=2,
which lies higher than the “zero-field threshold” above which the atom can ionize
classically. This is because an electron escaping to z D ˙1 must at least have the
zero-point energy of the lowest Landau vibration.

For very strong fields the Schrödinger equation (3.331) thus describes a system
of coupled Coulomb channels, and the separation of successive channel thresholds
is larger than the Coulomb binding energies in the various channels. In each m�z -
subspace we obtain a Rydberg series of bound states with wave functions dominated
by the lowest Landau channel N D 0, and a sequence of Rydberg series of
autoionizing resonances corresponding to the excited Landau channels N > 0.
Autoionization occurs, because an excited Landau state, which would be bound
in the absence of channel coupling, can transfer its energy perpendicular to the
field into energy parallel to the field and decay into the continuum. Autoionization
doesn’t require two electrons, only two (coupled) degrees of freedom! The calcula-
tion of bound-state spectra and of the energies and widths of autoionizing states is
comparatively easy in the strong field regime [Fri82, FC83]. Results of numerical
calculations in this region were confirmed experimentally in far-infrared magneto-
optical experiments on shallow donors in the GaAs semiconductor, where a small
effective mass and a small effective charge give access to effective field strength
parameters near unity for laboratory field strengths of a few Tesla [KG90].

Figure 3.32 illustrates the spectrum in the regime of very strong fields for three
values of the field strength parameter in the m�z D 0C subspace. As the field
strength decreases, the separation of successive Landau thresholds becomes smaller
and smaller and we get interferences between the various Landau channels. In a
comparatively small range of field strengths—down to � � 0:01—the coupled
equations can be solved directly and the spectrum can be interpreted qualitatively in
the framework of multichannel quantum defect theory. At laboratory field strengths
corresponding to � � 10�5, the separation of successive Landau thresholds is of
the order of 10�3 to 10�4 eV, so a realistic calculation in the Landau basis would
involve tens of thousands of coupled Landau channels.

For weak fields � 
 1 and energies clearly below the zero-field threshold E D 0,
the quadratic Zeeman effect can largely be treated with perturbative methods. In
the zero-field case the degenerate states belonging to given values of the Coulomb
principal quantum n and the azimuthal quantum number m can be labelled by the
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Fig. 3.32 Spectrum of bound states and autoionizing resonances for a hydrogen atom in a very
strong magnetic field in the m� D 0C subspace at three different values of the field strength
parameter � (3.330)

orbital angular momentum quantum number l D jmj; jmj C 1; : : : ; n � 1, and states
with even l have z-parity .�1/m while states with odd l have the opposite z-parity. For
finite field strengths we initially observe “l-mixing” and the degeneracy is lifted by
a splitting proportional to the square of the magnetic field strength. It is customary
to label the states originating from a given .n;m/manifold with an integer k, starting
with k D 0 for the energetically highest state and ending with k D n � jmj � 1 for
the energetically lowest state. States from successive n-manifolds in a given m�z -
subspace begin to overlap as the field strength (or the principal quantum number n)
increases. The interaction between different states is small at first and they can still
be labelled by the two numbers n and k. With further increasing field strength or
excitation energy, however, the order within the spectrum is lost more and more
(see Fig. 3.33), until finally, as we approach the zero-field threshold, it becomes
impossible to assign two meaningful quantum numbers to individual quantum states
of this two-dimensional system. As we shall see in Sect. 5.3.5(b), this is the region
where the classical dynamics becomes chaotic.
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Fig. 3.33 Part of the spectrum of the hydrogen atom in a homogeneous magnetic field with field
strengths up to 7 Tesla. The figure shows the bound states in the m�z D 0C subspace in an energy
region corresponding roughly to principal quantum numbers around n D 40 (From [FW89])

The fact that the hydrogen atom is a two-body system has been ignored above,
except for the use of the reduced mass � in (3.330). This is, strictly speaking, not
enough, because the reduction of the two-body problem to a one-body problem for
the internal motion of the atom is non-trivial in the presence of an external magnetic
field. The Hamiltonian for the two-body atom in a uniform magnetic field B D r�A
is,

OH.re; rpI Ope; Opp/ D ŒOpp � e
c A.rp/�

2

2mp

C ŒOpe C e
c A.re/�

2

2me
� e2

jre � rpj ; (3.336)

where mp; rp and Opp denote the mass and the displacement and momentum
vectors for the proton, while me; re and Ope are for the electron. Neither
the total canonical momentum Opp C Ope nor the total kinetic momentum
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OPk D Opp � e
c A.rp/C Ope C e

c A.re/ are conserved in the presence of the external
fields, but the so-called pseudomomentum,

OK D Opp � e

c
A.rp/C e

c
B�rp C Ope C e

c
A.re/� e

c
B�re

D OPk � e

c
B�.re � rp/ ; (3.337)

is. Conservation of the pseudomomentum means that the total Hamiltonian can be
separated into an internal part, depending only on the relative coordinate r D re � rp

and its canonically conjugate momentum Op, and a pseudomomentum part which
however depends on a combination of internal and centre-of-mass variables. This
pseudoseparation of variables leads to the following Hamiltonian describing the
internal motion of the hydrogen atom [DS94, RW94, SC97]:

OHint.r; Op/ D 1

2�

�
Op C e

c

mp � me

mp C me
A.r/

�2
C Œ OK C e

c B�r�2

2.me C mp/
� e2

r
; (3.338)

where � D memp=.me C mp/ is the usual reduced mass.
The Hamiltonian (3.338) contains a correction to the charge in the kinetic energy

term and an additional gauge-independent potential term

1

2M

h OK C e

c
B�r

i2 D
OK2

2M
C e

Mc
OK�B� r C e2

2Mc2
.B�r/2 ; (3.339)

where the total mass me C mp of the atom has been abbreviated as M. The first term
on the right-hand side of (3.339) is a constant. The last term is quadratic in B and can
easily be seen in the symmetric gauge (3.315) to cancel the above-mentioned charge
correction in the diamagnetic (quadratic) contribution arising from the kinetic
energy. The linear term on the right-hand side of (3.339) corresponds to the effect
of an external electric field,

OEms D 1

Mc
OK � B : (3.340)

Thus the motion of the atom as a whole in a magnetic field B, more precisely:
a non-vanishing component of the pseudomomentum (3.337) perpendicular to B,
effectively leads to an additional electric field (3.340) in the Hamiltonian describing
the internal motion of the atom. This effect is called motional Stark effect.

The fact that the (conserved) pseudomomentum depends on both the centre of
mass and the internal variables introduces a correlation between the internal motion
and the motion of the centre of mass of the atom. Vanishing pseudomomentum
does not mean that the centre of mass is at rest. In fact it can be shown [SC97],
that the classical centre of mass meanders diffusively when the (classical) internal
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Fig. 3.34 Photoabsorption spectra for transitions from the 3s state to bound and continuum states
around threshold in the m� D 0� subspace in a magnetic field of 6.113 T. The upper half of the
figure shows experimental results for lithium, the lower half shows the calculated spectrum for
hydrogen. To facilitate the comparison, the spectra have been convoluted with a Gaussian of width
0:05 cm�1 (From [IW91])

motion is chaotic, which is the case for energies close to the zero-field threshold,
see Sect. 5.3.5(b).

For vanishing pseudomomentum, the internal Hamiltonian (3.338) in the sym-
metric gauge differs from the Hamiltonian (3.316) for the one electron case N D 1

only in a correction of the normal Zeeman term by a factor .mp � me/=.mp C me/.
The potential (3.332) is unaffected in this case.

The development of high resolution laser spectroscopy and advanced computer
technology made detailed comparisons between measured and calculated spectra
of the hydrogen atom in a uniform magnetic field possible, even in the highly
irregular region close to the zero-field threshold [HW87]. Delande et al. [DB91]
extended calculations to the continuum region at laboratory field strengths, which
was a remarkable achievement. The bottom part of Fig. 3.34 shows their computed
photoabsorption spectrum for transitions from the 3s state to bound and continuum
states around threshold in the m� D 0� subspace at a field strength of 6.113 T
.� D 2:6 � 10�5/. The top part of the figure shows the corresponding experimental
spectrum measured by Iu et al. [IW91]. The agreement is hardly short of perfect.
Interestingly the experiments were performed with lithium, which is easier to handle
than atomic hydrogen. Obviously the two tightly bound 1s electrons in the lithium
atom have virtually no influence on the near threshold final states of the outer
electron, which are very extended spatially and contain no l D 0 components
because of their negative parity.
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3.5.3 Atoms in an Oscillating Electric Field

The theory of the interaction between an atom and the electromagnetic field as
discussed in Sect. 2.4 describes the resonant absorption and emission of photons
between stationary eigenstates of the field-free atom. But an atom is also influenced
by a (monochromatic) electromagnetic field if its frequency doesn’t happen to
match the energy of an allowed transition. For small intensities we obtain splitting
and frequency-dependent shifts of energy levels; for sufficiently high intensities as
are easily realized by modern laser technology, multiphoton processes (excitation,
ionization) play an important role.

The most important contribution to the interaction of an atom with a monochro-
matic electromagnetic field is the influence of the oscillating electric field,

E.r; t/ D E0 cos.k�r � !t/ : (3.341)

We assume that the wave length of the field is so much larger than the dimensions of
the atom that the spatial inhomogeneity of the field can be neglected, and we neglect
magnetic interactions. In addition to these assumptions, which amount to the dipole
approximation of Sect. 2.4.3, we take the light to be linearly polarized in z-direction:

E D E0 cos!t ; E0 D
0
@ 0

0

Ez

1
A : (3.342)

In the radiation gauge (2.150) such a field is given by the electromagnetic potentials

A D � c

!
E0 sin!t ; ˚ D 0 : (3.343)

Alternatively, in the field gauge we have

A D 0; ˚ D �E0 �r cos!t : (3.344)

The field gauge (3.344) has the advantage that the interaction between atom and field
only contributes as an additional oscillating potential energy in the Hamiltonian. In
this case the Hamiltonian (3.292) has the form

OH D
NX

iD1

Op2i
2�

C OV C eEz

NX
iD1

zi cos!t : (3.345)

The periodic time dependence of the Hamiltonian (3.345) suggests looking for
solutions of the time-dependent Schrödinger equation which are, to within a phase,
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also periodic with the same period T D 2�=!. If we insert the resulting ansatz

 .t/ D e�.i=„/"t ˚".t/; ˚".t C T/ D ˚".t/ ; (3.346)

into the time-dependent Schrödinger equation OH D i„ @ =@t; then we obtain an
equation for determining the periodic function ˚".t/:

�
OH � i„ @

@t

�
˚" D "˚" : (3.347)

Equation (3.347) has the form of an eigenvalue equation for the operator

OH D OH � i„ @
@t
: (3.348)

Its eigenvalues are called quasi-energies and the associated solutions (3.346)
are the quasi-energy states or Floquet states. They are complete in the sense
that any solution of the time-dependent Schrödinger equation can be written as
a superposition of Floquet states with time-independent coefficients. For each
eigenstate ˚" of OH with eigenvalue " there is a whole family of eigenstates ˚"eik!t

with the eigenvalues " C k „!; k D 0; ˙1; ˙2; : : : : They all belong to the same
Floquet state (3.346).

The dynamics described by the Hamiltonian (3.348) become formally similar
to the quantum mechanics of a time-independent Hamiltonian, if we consider the
space spanned by the basis states ˚" as functions of the coordinates and the time in
the interval Œ0;T�. The scalar product of two states �1 and �2 in this Hilbert space
is defined as the time average of the ordinary scalar product over a period T and is
denoted by a double bracket:

hh�1j�2ii WD 1

T

Z T

0

h�1.t/j�2.t/i dt : (3.349)

The “quasi-energy method” summarized in equations (3.346)–(3.349), and
extensions thereof, have been applied to numerous problems related to the dynamics
of the interaction of light with atoms. Comprehensive summaries can be found in
the monograph by Delone and Krainov [DK85] and in the article by Manakov et al.
[MO86].

If we want to apply perturbation theory in the spirit of Sect. 1.6.1, we start with
eigenstates  n of the field-free Hamiltonian OH0 with eigenvalues En, and we take
the products

�n;k D  neik!t (3.350)

as the unperturbed states. They are eigenstates of the Hamiltonian

OH0 D OH0 � i„ @
@t

(3.351)
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with the respective eigenvalues

En;k D En C k „! : (3.352)

If we treat the oscillating potential in (3.345) as a small perturbation in the
“Schrödinger equation”, then we can adapt the formalism of time-independent
perturbation theory as described in Sect. 1.6.1 to the present situation. In the case
of non-degenerate unperturbed eigenstates, the energy shifts are given in first order
by the expectation values of the perturbation, which trivially vanish, because the
time average (3.349) over one period of the cosine vanishes. In second order we
obtain, in analogy to (1.255),

�E.2/n D .eEz/
2
X

Em;k¤En

jhh�n;0jPN
iD1 zi cos!tj�m;kiij2
En � Em;k

: (3.353)

Time averaging over one period causes all matrix elements
hh�n;0jPN

iD1 zi cos!tj�m;kii to vanish—except those for k D C1 and k D �1. In the
two non-vanishing cases we obtain a factor 1/2 times the ordinary matrix element
between  n and  m. Equation (3.353) thus becomes

�E.2/n D .eEz/
2

4

2
4 X

EmC„!¤En

jh njPN
iD1 zij mij2

En � Em � „!

C
X

Em�„!¤En

jh njPN
iD1 zij mij2

En � Em C „!

3
5 : (3.354)

The energy shifts in this ac Stark effect thus depend on the frequency ! of the
oscillating (i.e. alternating current) field. In the limit ! ! 0 (3.354) reverts to
the formula (3.299) for the ordinary quadratic Stark effect—except for a factor
1/2 arising from the fact that an ac field of amplitude Ez and intensity E2z cos2!t
corresponds, time averaged, to a dc field of intensity E2z=2:

Similar to (3.302) we can describe the ac Stark shifts via a frequency- dependent
polarizability, which is defined in analogy to (3.301):

˛d.!/ D e2

2
4 X

EmC„!¤En

jh njPN
iD1 zij mij2

Em C „! � En

C
X

Em�„!¤En

jh njPN
iD1 zij mij2

Em � „! � En

3
5 : (3.355)
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For ! ! 0; ˛d.!/ becomes the ordinary static (or dc) polarizability ˛d. As a
function of ! the frequency-dependent polarizability goes through a singularity
whenever „! passes the energy of an allowed dipole transition. If the function
˛d.!/ is known from other sources, e.g. from a non-perturbative solution of the
Schrödinger equation, then its pole structure can be used to extract the energies and
other properties of the states  m. An example for the calculation and analysis of
frequency-dependent polarizabilities can be found in [MO88].

The derivation of the formula (3.354) was based on the choice (3.344) for the
gauge of the electromagnetic field. Different gauges lead to different formulae for
the energy shifts in the ac Stark effect. These formulae make sense despite their
gauge dependence, because the physically observable quantities are not the absolute
energy values but only energy differences, and they do not depend on the choice of
gauge. The gauge dependence of energy shifts in the ac Stark effect is discussed in
more detail e.g. by Mittleman [Mit82].

Beyond the observations which can be described by perturbative means, there
are several experiments concerning the behaviour of matter in an external laser or
microwave fields which crucially require a reliable theory for atoms (and ions) in
an oscillating external field. Such a theory is necessary in order to understand e.g.
multiphoton processes occurring in strong fields or the role played by “chaos” in the
microwave ionization of Rydberg atoms. These special topics will be discussed in
more detail in Chapter 5.

Problems

3.1 Consider an electron in a radially symmetric potential

V.r/ D
(

�e2=r for r > r0;

�Ze2=r for r � r0; Z > 1 :

Use the semiclassical formula (3.136) to discuss how the quantum defects �n;l

(n large) depend on the angular momentum quantum number l.

3.2 Use the sum rules (3.155) to show that electromagnetic dipole transitions,
in which the principal quantum number n and the angular momentum quantum
number l change in the same sense (i.e. both become larger or both become smaller),
tend to be more probable than transitions in which n and l change in opposite sense.

Calculate the mean oscillator strengths for the 2p ! 3s and the 2p ! 3d
transition in hydrogen.

3.3

a) Two bound states �02.r/ and �03.r/ in the closed channels 2 and 3 interact via
a real channel-coupling potential V2;3.r/ D V3;2.r/. Determine the eigenvalues
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EC and E� and the eigenstates,

 C D
�

a2 �02
a3 �03

�
;  � D

�
b2 �02
b3 �03

�
;

of the Hamiltonian in the space spanned by these two states, i.e. solve the
two-state problem defined by (3.198) in the absence of coupling to the open
channel 1.

b) Use the Golden Rule (Sect. 2.4.1) to calculate the lifetimes and widths of the
states  C and  � in a) with respect to decay into the open channel 1. Compare
your results with (3.213).

3.4 For two non-interacting resonances, W2;3 D 0, the formula (3.220) for the
oscillator strength determining the photoabsorption cross sections simplifies to:

dfEi

dE
D 2�

„ !d 21

n
D C d2

d1
.E � "3/W2;1 C d3

d1
.E � "2/W3;1

o 2
D2 C N2

;

with

N.E/ D �Œ.E � "3/W
2
2;1 C .E � "2/W

2
3;1�; D.E/ D .E � "2/ .E � "3/ :

(Assume real parameters di; Wi;j.)
Discuss the location of zeros and maxima of dfEi=dE in the two special cases:

jW2;1

d2
d1

j � jW3;1

d3
d1

j 
 j"2 � "3j; jW2;1

d2
d1

j � jW3;1

d3
d1

j 	 j"2 � "3j :

Hint: The structure of the oscillator strength function becomes clearer if written as,

dfEi

dE
D 2�

„ !d 21
f1C � � � g2
1C .N=D/2

:

3.5 A Rydberg series of bound states characterized by vanishing quantum defect
� D 0 is perturbed by an isolated pseudo-resonant perturbation of width � located
at ER D I � 0:04R. Use graphical methods to determine the energies and effective
quantum numbers of the bound states with quantum numbers n D 3 to n D 10 for
the following values of the width:

� D 0:01R; � D 0:001R ; � ! 0:

3.6

a) Extract from Fig. 3.19 numerical values for the energies of the lowest six 1Po

states of the calcium atom relative to the ionization threshold.
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b) Give an estimate for the two-channel MQDT parameters �1; �2, (both modulo
unity) and jR1;2j in the description of the 4(s np) and 3(d np) 1Po series in
calcium.

3.7 An isolated perturbation of constant width � (see (3.222)) wanders through a
Rydberg series of bound states,

En D I � R
.n�/2

;

i.e. its energy ER is a variable parameter. Show that the minimal separation of
two successive energy levels En and EnC1 relative to the unperturbed separation
2R=.n�/3 is given in the limit of small width � by

�
EnC1 � En

2R=.n�/3

�
min

�
�
� .n�/3

�R
� 1

2

:

3.8 The degeneracy of the four orbital wave functions with principal quantum num-
ber n D 2 in the hydrogen atom is lifted in the presence of an external homogeneous
electric field of strength Ez. Calculate the matrix .h nD2;l;mjeEzzj nD2;l0 ;m0i/ of the
perturbing operator and determine its eigenstates and eigenvalues.

3.9 Verify that applying the commutator of the Hamiltonian
OH0 D Op2=.2�/ � e2=r with the operator Ob D az.a C r=2/ to the ground state

wave function  0.r/ D exp.�r=a/=.a
p
�a/ of the hydrogen atom amounts to

multiplying this wave function by .„2=�/z (see also Problem 1.11):

h OH0;
Ob
i
 0 D „2

�
z 0 :

Use the completeness relation (1.22) to calculate the static dipole polarizability

˛d D 2e2
X
m¤0

jh mjzj 0ij2
Em � E0

for the hydrogen atom in its ground state.

3.10 A homogeneous magnetic field B D Bzez (ez is the unit vector in z-direction)
can be described e.g. by a vector potential As in the symmetric gauge (3.315),

As.r/ D �1
2
.r � B/ D 1

2

0
@�y

x
0

1
ABz;
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or by a vector potential AL in the Landau gauge,

AL.r/ D
0
@�y
0

0

1
A Bz :

a) Determine the scalar function f .r/ which transforms one gauge into the other
according to As D AL C rf :

b) Show that if the wave function L solves the stationary Schrödinger equation for
a free electron in the Landau gauge,

1

2�



Op C e

c
AL

�2
 L D E L;

then the gauge-transformed wave function

 s.r/ D exp

�
� ie

„c
f .r/

�
 L.r/

solves the corresponding equation in the symmetric gauge:

1

2�



Op C e

c
As

�2
 s D E s :

c) Calculate the eigenstates and eigenvalues of the Hamiltonian for a free electron
in a uniform magnetic field B,

OH D 1

2�



Op C e

c
A.r/

�2
;

in both the symmetric gauge and the Landau gauge. Discuss the spectrum and its
degeneracies.

3.11 In the presence of an electromagnetic field, the Dirac equation (2.28) becomes

O� �



Op C e

c
A
�
 B D 1

c
.E C e˚ � m0c

2/ A;

O� �



Op C e

c
A
�
 A D 1

c
.E C e˚ C m0c

2/ B;

where A is the vector potential and ˚ is the scalar potential.
Derive a Schrödinger equation for the large components A in the nonrelativistic

limit.
Hint: Approximate the expression following from the lower equation for the

small components  B by replacing c=.E C e˚ C m0c2/ by 1=.2m0c/.
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Chapter 4
Simple Reactions

Next to spectroscopic investigations of atoms, reactions provide one of the most
important sources of information on the structure of atoms and their interactions.
Reaction theory in general is a prominent and well developed field of theoretical
physics [Tay72, Bur77, AJ77, New82, Bra83, Joa87, Sit91]. In this chapter we
shall largely focus on the discussion of simple reactions which are induced by
the collision of an electron as projectile with a target consisting of an atom or an
ion. Nevertheless, many of the results are quite general and also applicable if the
projectile is an ion or an atom. In the simplest case, where we can assume both
projectile and target to be structureless objects, the projectile-target system is a two-
body problem which can be reduced to a one-body problem for a particle with a
reduced mass as described in Sect. 2.1.

4.1 Elastic Scattering

The (elastic) scattering of a particle by a potential is a time-dependent process.
Under typical laboratory conditions it can, however, be adequately described using
the time-independent Schrödinger equation (see e.g. [Mes70]). The precise form of
the boundary conditions, which the wave function must fulfill in order to correctly
describe incoming and scattered particles, depends on whether the potential is very-
long-ranged or of shorter range.

4.1.1 Elastic Scattering by a Shorter-Ranged Potential

In order to describe the elastic scattering of a structureless particle of mass � by a
shorter-ranged potential V.r/,

lim
r!1 r2V.r/ D 0; (4.1)
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288 4 Simple Reactions

at energy E D „2k2=.2�/, we look for solutions of the time-independent
Schrödinger equation,

�
� „2
2�
�C V.r/

�
 .r/ D E .r/; (4.2)

which have the following asymptotic form:

 .r/ D eikz C f .�; �/
eikr

r
; r ! 1: (4.3)

The first term on the right-hand side of (4.3) describes an incoming plane wave with
particle density % D j j2 D 1, moving with a velocity v D „k=� in direction of the
positive z-axis; the current density (1.158),

j D „
2i�

. �r �  r �/; (4.4)

is just „k=� times the unit vector in z-direction for such a plane wave. The second
term on the right-hand side of (4.3) describes an outgoing spherical wave (see
Fig. 4.1); it is modulated by a scattering amplitude f which depends on the polar
angle � and the azimuthal angle � [see (1.57)]. This outgoing spherical wave
corresponds to an outgoing current density jout which, according to (4.4), is given in
leading order in 1/r by

jout D „k

�
j f .�; �/j2 r

r3
C O

�
1

r3

�
: (4.5)

Asymptotically the particle flux scattered into the solid angle d˝ , i.e. through the
surface r2d˝ D r2 sin � d� d�, is simply .„k=�/j f .�; �/j2d˝I the ratio of this flux

Fig. 4.1 Schematic
illustration of the incoming
plane wave and the outgoing
spherical wave as described
by a stationary solution of the
Schrödinger equation obeying
the boundary conditions (4.3)

incoming

plane

wave

wave

scattering

centre

outgoing spherical
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to the incoming current density defines the differential scattering cross section,

d� D j f .�; �/j2d˝; d�

d˝
D j f .�; �/j2 : (4.6)

Integrating over all directions .�; �/ yields the integrated scattering cross section
which is also called the total elastic scattering cross section,

� D
Z

d�

d˝
d˝ D

Z 2�

0

d�
Z �

0

sin � d� j f .�; �/j2 : (4.7)

Each solution of the stationary Schrödinger equation (4.2) fulfills the continuity
equation in the form

r �j D �@%
@t

D 0; or
I

j�ds D 0 : (4.8)

This means that the net particle flux through a closed surface vanishes. For an
asymptotically large sphere .r ! 1/ with surface element ds D r2 d˝ r=r, the
integrated contribution of the incoming plane wave in (4.3) to this net flux vanishes
on symmetry grounds, while the contribution Iout from the outgoing spherical wave
is positive unless the scattering amplitude vanishes identically,

Iout D
I

jout � ds D „k

�

Z
j f .˝/j2 d˝ D „k

�
� : (4.9)

Since the total particle flux through the surface vanishes, the current density (4.4)
must contain terms which cancel the positive contribution (4.9). The terms describ-
ing the interference between the incoming plane wave and the outgoing spherical
wave do just this. An explicit calculation (Problem 4.1) shows that such interference
is only important in the forward direction � D 0, and this leads to a relation between
the scattering amplitude in the forward direction and the integrated scattering cross
section,

1

2i

�
f .� D 0/� f �.� D 0/

 D = Œf .� D 0/� D k

4�
� : (4.10)

The relation (4.10) expresses particle number conservation and is called optical
theorem.

It is often useful to treat scattering problems using an equivalent integral equation
in place of the Schrödinger equation (4.2). In order to derive the integral equation we
rewrite the Schrödinger equation to make it look like an inhomogeneous differential
equation,

�
E C „2

2�
�

�
 .r/ D V.r/ .r/ : (4.11)
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This is solved using the free-particle Green’s function

G �r; r0	 D � �

2�„2
eikjr�r0j

jr � r0j ; (4.12)

which fulfills the following equation:

�
E C „2

2�
�

�
G.r; r0/ D ı.r � r0/ : (4.13)

The Green’s function (4.12) is an extension of the Green’s function defined in
Sect. 1.5.2 to three-dimensional vector arguments. It is the coordinate representation
of the Green’s operator OG which has the properties of an inverse operator to
E C .„2=2�/� D E � Op2=.2�/:

OG D lim
"!0

1

E ˙ i" � Op2=.2�/ : (4.14)

An infinitesimally small imaginary contribution ˙i" is added to the real energy E
so that we can invert the operator E � Op2=.2�/. The plus or minus signs lead
to a different asymptotic behaviour of the resulting wave function. A positive
infinitesimal imaginary part of the energy corresponds to the Green’s function (4.12)
above and leads to a solution (4.15) below, containing an outgoing spherical wave
as in (4.3); a negative imaginary part of the energy corresponds to the complex
conjugate Green’s function and leads to incoming spherical waves in the asymptotic
region.

It is easy to verify that the wave function

 .r/ D eikz C
Z

G.r; r0/V.r0/ .r0/ dr0 (4.15)

solves the Schrödinger equation (4.11). Since the right-hand side of (4.11) isn’t
a genuinely inhomogeneous term but depends on the solution  , equation (4.15)
isn’t an explicit solution of the Schrödinger equation but a transformation into an
equivalent integral equation, which is known as the Lippmann-Schwinger equation.
Its solutions automatically fulfill the boundary conditions (4.3). For r 	 r0 we can
approximate the free-particle Green’s function (4.12) by (see Problem 4.2)

G.r; r0/ D � �

2�„2
eikr

r

�
e�ikr 	r0 C O

�
r0

r

��
(4.16)

and obtain the form (4.3) with an implicit expression for the scattering amplitude,

f .�; �/ D � �

2�„2
Z

e�ikr	r0

V.r0/  .r0/ dr0 : (4.17)
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In (4.16) and (4.17) kr is the wave vector with length k which points in direction of
the radius vector r (without 0).

We can interpret the integral in (4.17) as the matrix element of an abstract
transition operator OT between an initial state  i.r0/ D exp.ikz0/ and a final state
 f.r0/ D exp.ikr �r0/,

Tfi D h fj OTj ii defD h fjVj i D �2�„2
�

f .�; �/ : (4.18)

Using the T-Matrix defined in this way, we can interpret the scattering process in
the spirit of time-dependent perturbation theory (Sect. 2.4.1) as a transition from the
incoming plane wave  i, travelling in the direction of the z-axis, to an outgoing
plane wave  f, travelling outwards in the direction of the vector r � .r; �; �/
(Problem 4.3).

If the influence of the potential is small, it may be justified to replace the exact
wave function .r0/ in the integrand on the right-hand side of (4.15) or (4.17) by the
“unperturbed” incoming plane wave i.r0/ D exp.ikz0/. This assumption defines the
Born approximation. In the Born approximation equations (4.15) and (4.17) become
explicit expressions for the wave function and the scattering amplitude respectively.
E.g. the scattering amplitude is, in Born approximation,

f B D � �

2�„2
Z

e�iq	r0

V.r0/ dr0 D � �

2�„2 h fjVj ii : (4.19)

Here q D k.er � ez/. The vector ez is the unit vector in the direction of the
positive z-axis and er is the unit vector in the direction of the radius vector r. The
formula (4.19) shows that the scattering amplitude in Born approximation is derived
by a Fourier transformation from the potential. The argument q is the wave vector of
the momentum transfer occurring for elastic scattering in the direction of the radius
vector r:

„q D .„k/er � .„k/ez: (4.20)

Comparing (4.18) and (4.19) shows that the Born approximation amounts to
replacing the transition operator OT by the potential V .

4.1.2 Partial-Waves Expansion

For a radially symmetric potential, the Schrödinger equation (4.2) is rotationally
invariant, but the boundary conditions (4.3) for the scattering wave function  .r/
are not. So  is not an eigenfunction of angular momentum, but it can be expanded
in eigenfunctions of angular momentum. Since rotational symmetry around the
z-axis is conserved both by the Schrödinger equation (4.2) and the boundary
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conditions (4.3), the azimuthal quantum number m is conserved. Since the incoming
plane wave has m D 0, the same can be assumed for the full wave function  .r/,
which thus no longer depends on the azimuthal angle �,

 .r/ D  .r; �/ D
1X

lD0

ul.r/

r
Pl.cos �/ : (4.21)

Equation (4.21) represents an expansion of the full scattering wave  .r/ in partial
waves, each such partial wave being labelled by its orbital angular momentum
quantum number l. The contribution of each partial wave is determined by its
radial wave function ul.r/. Radial wave functions were already introduced for a
single angular momentum quantum number l in Sect. 1.2.2, cf. (1.74); the present
ansatz (4.21) represents a coherent superposition of contributions from all partial
waves.

Inserting the expansion (4.21) into the Schrödinger equation (4.2) leads to a set
of radial Schrödinger equations (1.75) for the radial wave functions ul.r/:

�
� „2
2�

d2

dr 2
C l.lC1/„2

2�r 2
C V.r/

�
ul.r/ D E ul.r/ : (4.22)

The 1=r on the right-hand side of (4.21) ensures that the radial Schrödinger equation
(4.22) contains only the second and not the first derivative of ul, so it has the form of
a Schrödinger equation for a particle moving in one dimension under the influence
of the effective potential

Veff.r/ D V.r/C Vcent.r/ ; Vcent.r/ D l.lC1/„2
2�r 2

; (4.23)

subject to the condition that the coordinate r is non-negative, r � 0. In the space of
all possible radial wave functions in the l-th partial wave, the unitary scalar product
of two radial wave functions, ul and Qul is defined as

huljQuli D
Z 1

0

ul.r/
� Qul.r/ dr : (4.24)

4.1.3 Scattering Phase Shifts

In the absence of the potential V.r/, the radial Schrödinger equation (4.22)
represents the angular momentum components of the free-particle wave equation,
and its solutions can be written as functions of the dimensionless product kr. Two
linearly independent solutions of the radial free-particle equation are,

u.s/l .kr/ D kr jl.kr/ ; u.c/l .kr/ D �kr yl.kr/ ; (4.25)
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where jl and yl stand for the spherical Bessel functions of the first and second kind,
respectively (see Appendix A.4 and [AS70]). Their asymptotic behaviour is given
by

u.s/l .kr/
kr!1D sin



kr � l

�

2

�
C O

�
1

kr

�
;

u.c/l .kr/
kr!1D cos



kr � l

�

2

�
C O

�
1

kr

�
: (4.26)

For small values of kr, the radial free-particle wave functions (4.25) behave as,

u.s/l .kr/
kr!0�

p
�.kr/lC1

2lC1�
�
lC 3

2

	
�
1 � .kr/2

4lC6
�
;

u.c/l .kr/
kr!0� 2l�

�
lC 1

2

	
p
�.kr/l

�
1C .kr/2

4l�2
�
: (4.27)

The wave function u.s/l is the physical, regular solution; u.c/l is an unphysical,

irregular solution. For l > 0, the irregular solution u.c/l is not square integrable
due to the divergence at r ! 0; for l D 0 its contribution proportional to 1=r in the
full wave function (4.21) would lead to a delta function contribution in � , which
cannot be compensated by any other term in the Schrödinger equation (4.2).

For a potential V.r/ less singular than 1=r 2 at the origin, the effective poten-
tial (4.23) is dominated near r D 0 by the centrifugal term, so we can expect
two linearly independent solutions of (4.22), ureg

l and uirr
l .r/, whose small-distance

behaviour is

ureg
l .r/

r!0/ r lC1 ; uirr
l .r/

r!0/ r�l : (4.28)

Here ureg
l denotes the physical, regular solution; uirr

l is an unphysical, irregular
solution. In the following, we shall mostly be dealing with regular solutions of the
radial Schrödinger equation, which vanish for r ! 0, and we shall dispense with
the superscript “reg” unless it is explicitly needed.

At large distances, the effective potential (4.23) is again dominated by the
centrifugal term, because we have assumed that V.r/ falls off faster than 1=r 2. The
regular solution of the radial Schrödinger equation (4.22) can, at large distances,
be taken to be a superposition of the two radial free-particle wave functions (4.25)
obeying (4.26),

ul.r/
r!1/ A u.s/l .kr/C B u.c/l .kr/

r!1/ sin



kr � l
�

2
C ıl

�
; (4.29)

with tan ıl D B=A. Since the potential is real, we can assume that ul is, except for a
constant complex factor, a real function of r, so that the ratio B=A and the phase ıl
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are real. The phases ıl, l D 0; 1; 2; : : :, contain the information about the effect
of the potential on the asymptotic behaviour of the wave function (4.21). They are
called scattering phase shifts, because they determine the scattering amplitude, as
shown in the following.

The partial-waves expansion of the incoming plane wave is

eikz D
1X

lD0
.2lC1/ il jl.kr/Pl.cos �/ ; (4.30)

where the jl are the spherical Bessel functions of the first kind, already introduced
in (4.25). At large distances, the full wave function consists of the plane wave (4.30)
and an outgoing spherical wave according to (4.3). The scattering amplitude f
depends only on the polar angle � , because the whole wave function does not depend
on the azimuthal angle �. We expand f into partial wave contributions,

f .�/ D
1X

lD0
fl Pl.cos �/ ; (4.31)

with constant coefficients fl, the partial-wave scattering amplitudes. Expressing the
sum of plane and spherical wave in the form (4.21) gives an explicit expression for
the asymptotic behaviour of the radial wave functions,

ul.r/
r!1� il

�
2lC1

k
sin



kr � l
�

2

�
C fl ei.kr�l�=2/

�

D il
��
2lC1

k
C i fl

�
sin



kr � l
�

2

�
C fl cos



kr � l

�

2

��
: (4.32)

Comparing (4.32) and (4.29) shows that the coefficients of the sine and cosine terms
in the square bracket in the lower line of (4.32) can be interpreted as the coefficients
A and B in (4.29), for which tan ıl D B=A. With the coefficients in (4.32),

cot ıl D A

B
� 2lC1

k fl
C i ) cot ıl � i D e�iıl

sin ıl
D 2lC1

k fl
; (4.33)

which leads to

fl D 2lC1
k

eiıl sin ıl D 2lC1
2ik

�
e2iıl � 1	 : (4.34)

With (4.32) the asymptotic form of the radial wave functions is,

ul.r/
r!1� 2lC1

k
il eiıl sin



kr � l

�

2
C ıl

�
; (4.35)
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and the asymptotic form of the full wave function (4.21) is

 .r/
r!1�

1X
lD0

2lC1
kr

il eiıl sin



kr � l
�

2
C ıl

�
Pl.cos �/ : (4.36)

The explicit expression, (4.31) with (4.34), for the scattering amplitude allows us
to express the differential scattering cross section in terms of the scattering phase
shifts ıl,

d�

d˝
D j f .�/j2 D 1

k2
X
l;l 0

ei.ıl�ıl0 /.2lC1/ sin ıl.2l 0C1/ sin ıl 0 Pl.cos �/Pl 0.cos �/ :

(4.37)

For the integrated scattering cross section we can exploit the orthogonality of the
Legendre polynomials ((A.2) in Appendix A.1),

� D
1X

lD0

4�

2lC1 j flj2 D 4�

k2

1X
lD0
.2lC1/ sin2 ıl D �

k2

1X
lD0
.2lC1/ ˇ̌e2iıl � 1ˇ̌2 :

(4.38)

The integrated scattering cross section is the incoherent sum of the contributions �Œl�
from each partial wave,

� D
1X

lD0
�Œl� ; �Œl� D 4�

k2
.2lC1/ sin2 ıl : (4.39)

The maximum contribution of a given partial wave l to the integrated cross section
is realized when ıl is an odd multiple of �

2
, so sin2 ıl D 1,

�
�Œl�
	

max D 4�

k2
.2lC1/ : (4.40)

4.1.4 Radial Lippmann-Schwinger Equation

The radial Schrödinger equation (4.22) can be rewritten as

�
E C „2

2�

d2

dr 2
� l.lC1/ „2

2� r 2

�
ul.r/ D V.r/ ul.r/ (4.41)
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and transformed into an integral equation with the help of the radial free-particle
Green’s function Gl.r; r0/, which fulfills

�
E C „2

2�

d2

dr 2
� l.lC1/ „2

2� r 2

�
Gl.r; r

0/ D ı.r � r0/ (4.42)

and is explicitly given by

Gl.r; r
0/ D � 2�

„2k u.s/l .kr</ u.c/l .kr>/ I (4.43)

here u.s/l and u.c/l stand for the regular and irregular free-particle radial waves as
defined in (4.25), and r< stands for the smaller while r> stands for the larger of the
two radial coordinates r and r0.1 A wave function obeying the integral equation

ul.r/ D u.s/l .kr/C
Z 1

0

Gl.r; r
0/V.r0/ ul.r

0/ (4.44)

necessarily obeys the radial Schrödinger equation (4.41). This would also hold if
the first term u.s/l .kr/ were replaced by any other solution of the “homogeneous”
version ŒE C � � � � ul.r/ D 0 of (4.41). Similar to the situation described in (4.11),
the right-hand side of (4.41) is not a genuinely inhomogeneous term, independent
of the solution ul.r/, and (4.44) is not an explicit solution of the radial Schrödinger
equation, but an equivalent formulation as integral equation.

Equation (4.44) is the radial Lippmann-Schwinger equation in the l-th partial
wave. Asymptotically, r ! 1, we can assume r D r> and r0 D r< in the radial
Green’s function, so the factor u.c/l .kr>/ D u.c/l .kr/ can be drawn out of the integral
over r0,

ul.r/
r!1� u.s/l .kr/ �

�
2�

„2k
Z 1

0

u.s/l .kr0/V.r0/ ul.r
0/ dr0

�
u.c/l .kr/ : (4.45)

Comparing with (4.29) shows that the coefficient of u.c/l .kr/ in (4.45) is the tangent
of the scattering phase shift,

tan ıl D � 2�

„2k
Z 1

0

u.s/l .kr/V.r/ ul.r/ dr : (4.46)

The expression on the right-hand side of (4.46) cannot be evaluated explicitly,
because it still contains the (usually unknown) exact solution ul of the radial

1The prefactor on the right-hand side of (4.43) reflects the asymptotic normalization of the radial
wave functions (4.26). With energy-normalized radial wave functions, the Green’s function is as
given in (1.228).
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Schrödinger equation. It does, however, offer a possibility for approximation in
the spirit of the Born approximation. Replacing ul.r/ in the integrand in (4.46)
by the regular free-particle radial wave u.s/l .kr/ gives an explicit but approximate
expression for tan ıl, in the spirit of the first-order Born approximation:

tan ıBorn
l D � 2�

„2k
Z 1

0

h
u.s/l .kr/

i2
V.r/ dr : (4.47)

Note that the right-hand side of (4.47) is a smooth function of k that always
remains finite. Hence ıBorn

l as function of k can never cross an odd multiple of �
2

.
Equation (4.47) can only be a useful approximation when the phase shifts are
restricted to a small interval around zero (or an integer multiple of �); for potentials
which are bounded and short ranged, this happens both in the limit of high energies
and in the limit of large angular momentum quantum numbers l.

4.1.5 S-Matrix

The asymptotic behaviour of the radial wave function (4.35) can be written as

ul.r/
r!0� 2lC1

2k
ilC1

h
e�i.kr�l�=2/ � e2iıl eCi.kr�l�=2/

i

D 2lC1
2k

i2lC1 �e�ikr � .�1/le2iıl eCikr

: (4.48)

In both lines of (4.48), the square bracket contains an incoming radial wave
proportional to e�ikr::: and an outgoing radial wave proportional to eCikr:::. The factor
e2iıl in the outgoing wave is the contribution of the l-th partial wave to the scattering
matrix or S-matrix,

Sl D e2iıl : (4.49)

For the radial potential V.r/, the S-matrix is diagonal, because there is no coupling
between the radial Schrödinger equations (4.22) of different l.

The S-matrix is unitary, which, for the partial-wave contribution (4.49) means
jSlj D 1. This is an expression of particle conservation and is fulfilled as long as
the scattering phase shifts ıl are real. Equation (4.40) is based on the assumption,
that the phase shifts are real, i.e., that the S-matrix is unitary. Its right-hand side�
4�=k2

	
.2l C 1/ is hence called the unitarity limit of the contribution of the

respective partial wave to the integrated scattering cross section.
For real ıl, the scattering amplitude (4.31) with the partial-wave ampli-

tudes (4.34) can be decomposed into real and imaginary parts as follows:

f .�/ D
1X

lD0

2lC1
k

�
cos ıl sin ıl C i sin2 ıl


Pl.cos �/ : (4.50)
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For the forward direction, � D 0, we insert Pl.1/ D 1 and recall (4.38),

= Œ f .� D 0/� D
1X

lD0

2lC1
k

sin2 ıl D k

4�
� ; (4.51)

thus recovering the optical theorem (4.10). The unitarity of the S-matrix is an
expression of particle conservation. Note that the radial Born approximation
(4.47) yields real phase shifts and a unitary S-matrix, so it is compatible with
particle conservation. This is in contrast to the Born approximation (4.19) for the
scattering amplitude. For a radially symmetric potential V , the Born scattering
amplitude (4.19) is a real function of the modulus of the momentum transfer
vector (4.20) and necessarily violates the optical theorem.

4.1.6 Determination of the Scattering Phase Shifts

The boundary condition ul.r/
r!0/ rlC1 (cf. (4.28)) uniquely determines the radial

wave function except for a constant factor. The scattering phase shifts ıl can be
calculated by integrating the radial Schrödinger equation (4.22) with this boundary
condition from small r to a finite radius rm, where the potential V.r/ has already
fallen off sufficiently to be negligible. Matching the logarithmic derivative u 0

l =ul

to the logarithmic derivative of a superposition (4.29) of the free-particle wave
functions at r D rm yields tan ıl.

Due to the influence of the potential at short distances, the nodes (beyond r D 0)
and antinodes of the radial wave function ul.r/ are shifted relative to those of the
regular free-particle wave function u.s/l . This leads to asymptotic spatial shifts dl,
which are related to the phase shifts ıl by dl D ıl=k, as can be seen by writing ul as

ul.r/
r!1/ sin

�
k

�
r C ıl

k

�
� l
�

2

�
: (4.52)

For a repulsive potential V , the radial wave function is suppressed at small
distances and its nodes (beyond r D 0) and antinodes are pushed to larger values of r
by the potential; the spatial shifts, and hence also the phase shifts, are negative. The
simplest example is scattering by hard sphere of radius R. For r > R, the potential
vanishes, and the radial wave function can be written as A u.s/l .kr/C B u.c/l .kr/, see
(4.29). The wave function must vanish for r � R, so the inner boundary condition is
pushed out from r D 0 to r D R. The condition A u.s/l .kR/C B u.c/l .kR/ D 0 yields

B

A
D � u.s/l .kR/

u.c/l .kR/
D jl.kR/

yl.kR/
; ıl D arctan

�
jl.kR/

yl.kR/

�
: (4.53)
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From (4.27) and (4.26), the low- and high-energy behaviour of the hard-sphere
phase shifts is

ıl
kR!0� � �

�
�
l C 3

2

	
�
�
l C 1

2

	
�

kR

2

�2lC1 "
1 �

�
kR

2

�2  
1

l� 1
2

C 1

lC 3
2

!#
;

ıl
kR!1� �kR C l

�

2
(4.54)

for l > 0, while ılD0 D �kR for all k. Note that the high-energy behaviour in
the lower line of (4.54) implies that the radial wave function (4.52) has the same
asymptotic behaviour in all partial waves in the high-energy limit,

ul.r/
r!1; kR!1/ sin.kr � kR/ : (4.55)

This is because, for any angular momentum l, the radial classical turning point
always reaches the radius R of the hard sphere at a sufficiently high energy, and
the influence of the centrifugal potential diminishes continuously as the energy rises
further above this value. The phase shifts (4.53) for scattering by a hard sphere are
shown in Fig. 4.2 for partial waves from l D 0 to l D 5.

For an attractive potential, the oscillations are of smaller wavelength in the
interaction region and a given node (beyond r D 0) or antinode is pulled in to
shorter distances by the potential; the spatial shift and the phase shift are positive.
The behaviour of the phase shift depends on whether the effective potential features
an attractive well that is deep enough to support one or more bound states, and the
near-threshold behaviour of the phase shift depends sensitively on whether or not
there is a bound state close to threshold.

Fig. 4.2 Scattering phase
shifts (4.53) for scattering by
a hard sphere of radius R

0 2 4 6

kR
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δ l /
 π

l = 0

l = 1

l = 2
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l = 4
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4.1.7 Near-Threshold Behaviour of the Scattering Phase Shifts

The leading near-threshold behaviour of the phase shifts can be derived from the
small-argument behaviour of the free-particle solutions. At distances r beyond the
range of the potential, the radial wave function ul.r/ is a superposition of the free-
particle wave functions (4.25); towards threshold, k ! 0, the product kr tends to
zero so we can make use of the small-argument expressions (4.27),

ul.r/
kr!0/ u.s/l .kr/C tan ıl u.c/l .kr/ (4.56)

�
p
� k lC1

2lC1�
�
lC 3

2

	
"

r lC1 C tan ıl
22lC1�

�
lC 1

2

	
�
�
lC 3

2

	
� k 2lC1 r l

#
:

Directly at threshold, the radial Schrödinger equation (4.22) has a regular solution
u.0/l .r/ which is defined up to a constant by the boundary condition u.0/l .0/ D 0 and
is function of r only. The wave function (4.56) must become proportional to this
k-independent solution for k ! 0, so in the second term in the square bracket in the
lower line of (4.56), the k-dependence of tan ıl must compensate the factor k2lC1 in

the denominator, tan ı
k!0/ k2lC1. More explicitly,

tan ıl
k!0� � �

�
�
lC 1

2

	
�
�
lC 3

2

	
�

al k

2

�2lC1
: (4.57)

The characteristic length al appearing on the right-hand side of (4.57) is the
scattering length in the l-th partial wave.

The proportionality to k2lC1 in (4.57) expresses growing suppression with
increasing l due to the influence of the centrifugal barrier separating the asymptotic
region of free-particle motion from the interaction region at small distances. It
is typical for the l-dependence of quantum mechanical quantities involving a
centrifugal barrier and is generally referred to as Wigner’s threshold law.

Equation (4.57) implies that the leading behaviour of the partial-wave scattering
amplitude (4.34) is

fl
k!0/ k2l ; (4.58)

which means that small l-values dominate the scattering amplitude (4.31) and the
scattering cross sections (4.37), (4.38) at low energies. For s-waves, (4.57) reads

tan ı0
k!0� �a k ; (4.59)

where we have dropped the subscript on the a, as is customary. The s-wave
scattering length a in (4.59) is generally referred to as the scattering length, a
concept introduced by Fermi and Marshall in 1947 [FM47]. The scattering length is
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a property of the threshold solution of the radial Schrödinger equation and already
played an important role in the discussion of near-threshold quantization of bound
states in Sect. 3.1.2

From (4.58) it follows that only the s-wave retains a nonvanishing contribution
to the scattering amplitude (4.31) in the limit k ! 0,

lim
k!0

f .�/ D f0 P0 � �a H) lim
k!0

d�

d˝
D a2 and lim

k!0
� D 4�a2 :

(4.60)

For hard-sphere scattering, the scattering length is the radius of the sphere, and
the threshold limit of the quantum mechanical integrated scattering cross section is
4�R2, which is four times the classical cross section.

The definition (4.59) of the scattering length for s-waves is universally accepted.
For l > 0, the definitions of the scattering length vary. Some authors, e.g. [Tay72],
even call the whole coefficient of k2lC1 in (4.57) scattering length, although
this coefficient has the physical dimension of a length to the power 2l C 1. The
definition (4.57) ensures that al is a length and that for scattering by a hard sphere
of radius R we have al D R for all l, as can be seen by comparing with (4.54).

With (4.57), the threshold solution of the radial Schrödinger equation (4.22)
behaves asymptotically as,

u.0/l .r/
r!1/ r lC1 � a2lC1

l

r l
; (4.61)

so the scattering length appears as the zero of the asymptotic behaviour of the
threshold solution of the radial Schrödinger equation. This was already apparent
for s-waves (l D 0) in (3.14) in Sect. 3.1.2.

For all potentials V.r/ falling off faster than 1=r 2 at large distances, the leading
term proportional to r lC1 is a natural consequence of the repulsive centrifugal
potential, which is always dominant at sufficiently large distances. The fact that the
next-to-leading term is 2lC1 powers of r lower than the leading term is nontrivial and
requires a sufficiently rapid fall-off of V.r/ for large r. Equation (4.61) is obviously
valid for all partial waves l if V.r/ vanishes exactly beyond some finite distance, and
it also holds if V.r/ falls off faster than any inverse power of r. For a potential tail
falling off as 1=r ˛, ˛ > 2, its validity is limited to the partial waves

l <
˛ � 3

2
; ˛ > 2l C 3 ; (4.62)

as shown in the following.
Consider a potential behaving asymptotically as

V.r/
r!1� V˛.r/ D C˛

r ˛
D ˙ „2

2�

.ˇ˛/
˛�2

r ˛
; ˛ > 2 : (4.63)
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Such behaviour is ubiquitous in nature. It applies, e.g., with ˛ D 6 for the van
der Waals potential between two uncharged polarizable particles such as atoms or
molecules, with ˛ D 4 for the interaction of a charged particle with a polarizable
neutral, and with ˛ D 3 for the resonant dipole-dipole interaction of two identical
atoms in different internal states. In quantum mechanics, the inverse-power term
possesses a characteristic length ˇ˛ which does not exist in classical mechanics. It
is related to the strength coefficient C˛ via

ˇ˛ D
�
2�jC˛j

„2
�1=.˛�2/

: (4.64)

The length ˇ˛ has been called “van der Waals length” for attractive inverse-power
tails with ˛ D 6 [NT07]. Since the theory does not depend on whether or not the
potential tail is associated with a van der Waals interaction, it seems appropriate to
choose a more general name, such as the characteristic quantum length associated
with the inverse-power term C˛=r ˛.

At large distances r, the radial Schrödinger equation at threshold (E D 0) for a
potential fulfilling (4.63) reads

�
� d2

dr 2
C l.lC1/

r 2
˙ ˇ˛�2

r ˛

�
u.0/l .r/ D 0 I (4.65)

we dispense with the subscript on the characteristic quantum length ˇ, as long as
only one power ˛ is in the focus of attention. The solutions of (4.65) are known
analytically,

u.0/l .r/ D
r

r

ˇ
ŒA C�.�/C BD�.�/� ; (4.66)

where C� and D� stand for Bessel functions whose order � and argument � are,

� D 2lC1
˛ � 2

; � D 2

˛ � 2
�
ˇ

r

�.˛�2/=2
: (4.67)

In the attractive case, for which the “˙” in front of the inverse-power term in (4.65)
is a “�”, C� and D� are the ordinary Bessel functions J� and Y� . In the repulsive
case, for which the “˙” in front of the inverse-power term in (4.65) is a “C”, C� and
D� are the modified Bessel functions I� and K� , see Appendix A.4.

Large distances r correspond to small arguments � of the Bessel functions in
(4.66). For the repulsive case, the small-argument expansions of the modified Bessel
functions are [AS70],

I�.�/
�!0� .�=2/�

� .1C �/

�
1C O

�
� 2
	
; K�.�/

�!0� � .�/

2.�=2/�

�
1C O

�
� 2
	
:

(4.68)
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Since

�
�

2

��
D
�

1

˛ � 2
�.2lC1/=.˛�2/ �

ˇ

r

�lC1=2
and � 2 /

�
ˇ

r

�˛�2
; (4.69)

the asymptotic behaviour of the wave function (4.66) is,

u.0/l .r/
r!1/ A0

�
ˇ

r

�l

C B 0
�

r

ˇ

�lC1 "
1C O

 �
ˇ

r

�˛�2!#
; (4.70)

where the first term originates from the I�-contribution and the second term from
the K� -contribution in (4.66). If 2lC1 < ˛ � 2, then the term O

�
.ˇ=r/˛�2	 in the

square bracket leads to a contribution of higher order than l in 1=r, the asymptotic
expression (4.61) is valid and defines the scattering length in the partial wave l. On
the other hand, if 2lC1 > ˛ � 2, then the term O

�
.ˇ=r/˛�2	 in the square bracket

leads to a contribution of lower order than l in 1=r. In this case, (4.61) is not valid,
and a scattering length in the partial wave l cannot be defined. Similar arguments
apply for the attractive case, where the modified Bessel functions I� and K� are
replaced by the ordinary Bessel functions J� and Y� .

For 2 C 1 > ˛ � 2 corresponding to 2l C 3 > ˛, the leading near-threshold
behaviour of tan ıl can be obtained using the expression (4.46) derived with the
help of the radial Lippmann-Schwinger equation. Changing the integration variable
in (4.46) from r to � D kr yields,

tan ıl D � 2�

„2k2
Z 1

0

u.s/l .�/V

�

k

�
ul.�/ d� : (4.71)

Towards threshold, k ! 0, the regular solution of the Schrödinger equation ul.�/

is, beyond the range of V , dominated by the centrifugal potential. The potential V
is a function of the distance r and is given by the inverse-power term V˛ at large
distances. Its range is characterized by the quantum length ˇ, and it shrinks to ever
smaller values of � for k ! 0. Beyond this range, the regular radial wave function
has the form u.s/l .�/Ctan ıl u.c/l .�/ and can be replaced by u.s/l , because tan ıl tends to
zero for k ! 0. Furthermore, in the limit k ! 0, the integral in (4.71) is dominated
by contributions from large arguments r D �=k of the potential V , which can thus
be replaced by its asymptotic form V˛ defined in (4.63). Inserting V˛ in (4.71) and
replacing ul by u.s/l gives

tan ıl
k!0� .kˇ/˛�2

Z 1

0

u.s/l .�/
2

�˛
d� : (4.72)

The integrand in (4.72) falls off as 1=�˛ at large scaled distances, because u.s/l

approaches sin
�
� � l�

2

	
for large �. For small �, u.s/l .�/ is proportional to �lC1, so
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the integrand is proportional to �2lC2�˛ . The integral converges when 2lC2�˛ > �1,
i.e. when ˛ < 2lC3.

The integral on the right-hand side of (4.72) can be evaluated analytically for the
inverse-power potential V˛ of (4.63) with ˛ < 2lC3,

tan ıl
k!0� �

4

� .˛�1/ � �l C 3
2

� ˛
2

	
�
�
�
˛
2

	2
�
�
l C 1

2
C ˛

2

	
�

kˇ

2

�˛�2
; ˛ < 2lC3 : (4.73)

Note that the right-hand side of (4.73) is determined exclusively by the asymptotic
inverse-power behaviour of the potential and does not depend on deviations from
this form at smaller distances.

For ˛ > 2lC3, the asymptotic form of the threshold solution is given by (4.61).
The leading near-threshold behaviour of the scattering phase shift is as given in
(4.57), with a scattering length al depending on the whole potential, not only its
asymptotic behaviour. The s-wave scattering length is well defined for potentials
falling off faster than 1=r3, the p-wave (l D 1) scattering length for potentials falling
off faster than 1=r5.

For repulsive single-power potentials,

V.rep/
˛ .r/ D „2

2�

.ˇ˛/
˛�2

r˛
; ˛ > 2; (4.74)

the s-wave scattering length can be derived directly from the zero-energy solution
of the radial Schrödinger equation (4.22). The regular s-wave solution is

u.0/lD0.r/ /
r

r

ˇ˛
K�

 
2�

�
ˇ˛

r

�1=.2�/!
; � D 1

˛ � 2 ; (4.75)

where K� is a modified Bessel function, see Appendix A.4. The large-argument
behaviour K� gives the small-r behaviour of u.0/lD0.r/,

u.0/lD0.r/
r!0/

�
r

ˇ˛

�˛=4
e�2�.ˇ˛=r/1=.2�/ : (4.76)

The asymptotic (r ! 1) behaviour of u.0/lD0.r/ follows from the small-argument
behaviour of K� ,

u.0/lD0.r/
r!1/ ���

� .1 � �/

r

ˇ˛
� ��

� .1C �/
C O

 �
ˇ˛

r

�̨ �3!
: (4.77)

From the zero of this threshold solution we conclude from (4.61) for l D 0, that the
s-wave scattering length for the potential (4.74) is:

a D �2�
� .1 � �/
� .1C �/

ˇ˛ ; (4.78)
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Table 4.1 Scattering lengths (4.78) for repulsive inverse-power potentials (4.74) in units of ˇ˛

˛ 4 5 6 7 8 ˛ ! 1
a=ˇ˛ 1 0.729011 0.675978 0.666083 0.669594 1

which gives a finite result for ˛ > 3.
The scattering length (4.78) scales with the characteristic quantum length ˇ˛; the

prefactor depends on the power ˛ and is in general close to unity. Numerical values
of the scattering length in units of ˇ˛ are given for ˛ D 4; : : : 8 in Table 4.1.

When the scattering length vanishes, the threshold solution (4.61) is asymptot-
ically proportional to r lC1, just as the regular solution of the radial Schrödinger
equation for the centrifugal potential alone. An infinite scattering length, jalj ! 1,
implies that the threshold solution of the radial Schrödinger equation (4.22) decays
as 1=r l for large distances. For l > 0 this means that there is a normalizable wave
function solving the radial Schrödinger equation at E D 0, i.e., a bound state exactly
at threshold.

For s-waves, (4.61) reads

u.0/lD0
r!1/ r � a / 1 � r

a
: (4.79)

An infinite s-wave scattering length means that the threshold solution becomes
constant at large distances. One speaks of a bound state at threshold in this case
as well, even though the wave function is not normalizable.

The scattering length depends very sensitively on whether there is a bound state
very close to threshold, or whether the potential just fails to bind a further bound
state. This is easily demonstrated via the simple but instructive example of an
attractive sharp-step potential,

V.r/ D
(

�VS for r � L ;

0 for r > L ;
VS D „2K 2

S

2�
: (4.80)

When KSL D �
2

, which corresponds to a depth VS equal to the energy E0 D�
�
2
„	2 =.2�L2/, the potential (4.80) has a threshold solution which becomes

constant for r > L. For a slightly deeper step, VS D 1:4E0, the potential supports a
weakly bound state at the energy Eb � �0:189E0, indicated by the horizontal dotted
brown line in the left half of Fig. 4.3; the associated bound-state wave function is
shown as dashed brown line. As is customary in such illustrations, the zero-axis for
a wave function is chosen to lie at the energy for which it solves the Schrödinger
equation. The threshold solution at E D 0 (solid blue line) is not very different from
the bound-state wave function for r � L. For r > L the potential vanishes, so the
threshold solution assumes its asymptotic behaviour (4.79) corresponding to a linear
fall-off; it cuts the r-axis at a value defining the scattering length a (� 2:8 L in the
present case). The right half of Fig. 4.3 shows a shallower step, VS D 0:8E0, for
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Fig. 4.3 Sharp-step potential (4.80). The energy is given in units of E0 D �
�
2

„	2 =.2�L2/. For
VS D E0, the s-wave radial Schrödinger equation has a zero-energy solution which becomes
constant for r � L. The left half of the figure shows the case VS D 1:4E0, for which the potential
supports a bound state at the energy Eb � �0:189E0 , indicated by the horizontal dotted brown
line. The bound-state wave function is shown as dashed brown line, and its zero-axis lies at its
energy Eb. The threshold solution is shown as solid blue line with zero-axis at E D 0; for r > L it
is a linear function which cuts the axis at a distance defining the scattering length a. The right half
of the figure shows the case VS D 0:8E0 , for which there is no bound state; the threshold solution
(solid blue line) is a straight line for r > L, and the extrapolation of this line to smaller r-values
leads to an intersection with the r-axis at a large negative value, corresponding to a large negative
scattering length a

which the potential just fails to support a bound state. The threshold solution (solid
blue line) now grows linearly for r > L. Extrapolation of this linear behaviour to
smaller r-values eventually leads to a crossing of the r-axis at a large negative value,
corresponding to a large negative scattering length.

The dependence of the scattering length on the potential depth VS, or on the
related threshold wave number KS D p

2�VS=„, can be easily deduced from

the threshold solution u.0/lD0
r�L/ sin.KSr/. Its logarithmic derivative at r D L is

KS cot.KSL/ which must be equal to 1=.L � a/ according to (4.79), so [Joa87]

a D L � tan.KSL/

KS
: (4.81)

Figure 4.4 shows the behaviour of the scattering length as function of the threshold
wave number KS. It is typical for the behaviour of the scattering length of a potential
as function of a parameter which can tune the number and positions of bound states
in the potential. The scattering length has a pole whenever there is a bound state at
threshold. Before the first pole (KSL < 0:5 � in Fig. 4.4), the potential has no bound
states. The number of bound states increases by one every time KS increases through
a pole.

A quantitative relation between the diverging scattering length and the vanishing
eigenenergy of a near-threshold bound state can be derived quite generally as
follows: Assume that there is a bound s-state at an energy Eb D �„2	2b=.2�/ very
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Fig. 4.4 Scattering length for
the sharp-step potential as
function of the threshold
wave number KS, as given by
(4.81). Each pole indicates
the existence a bound state at
threshold; nb is the number of
bound states supported by the
potential for values of KS
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close to threshold. The radial wave function u.	b/
lD0 at this energy is asymptotically

proportional to e�	br and behaves as

u.	b/
lD0.r/ / 1 � r

�
	b C O

�
	 2b
	

.	b > 0/ ; (4.82)

beyond the range of the potential. The terms below order 	 2b in (4.82) are compatible
with (4.79) if we assume

1

a
	b!0� 	b C O

�
	 2b
	
: (4.83)

This is plausible, since the radial Schrödinger equation at energy Eb differs from the
radial Schrödinger equation at threshold by a term of order 	 2b . Equation (4.83)
implies the following relation between the scattering length a and the inverse
penetration depth 	b of a bound state very near threshold,

a
	b!0� 1

	b
C O

�
	 0b
	
: (4.84)

Conversely, a large positive scattering length a implies a near-threshold bound state,
whose energy is given by,

Eb D �„2	 2b
2�

a!1� � „2
2�a2

C O

�
1

a3

�
: (4.85)

When the potential just fails to bind a further bound state, there may be a
solution uv

łD0 of the s-wave radial Schrödinger equation which is asymptotically
proportional to eC	vr with a very small positive 	v. By the same arguments as
above, such a solution of (4.22) gives rise to a large negative scattering length,

a
	v!0� �1=	v C O

�
	 0v
	
. In such a situation one speaks of a virtual state at the

energy Ev D �„2	 2v =.2�/ [Tay72, New82].



308 4 Simple Reactions

The unambiguous identification of a virtual state poses a problem. The discrete
energy of a genuine bound state is easily found via the condition that the wave
function must decay to zero as e�	r at large distances. When solving the radial
Schrödinger equation, e.g. by integrating it from smaller to larger r-values, any
contribution from the exponentially growing solution soon becomes dominant and
indicates that the energy under consideration is not a bound-state eigenvalue. On
the other hand, the solution proportional to eC	r cannot be unambiguously defined,
unless the potential vanishes exactly after some finite, preferably short, distance.
Any contribution of the solution proportional to e�	r is soon dominated by the
exponentially growing term, so it is very difficult in practice to decide, whether
the contribution of the decaying solution vanishes exactly or not. This problem is
aggravated as 	 increases, so the concept of virtual states is most useful very close
to threshold.

For a potential which falls off sufficiently rapidly at large distances, the next-to-
leading behaviour of the scattering phase shifts near threshold, following the leading
term (4.57), can be derived from solutions of the radial Schrödinger equation at
threshold [Bet49]. This is shown below for s-waves, l D 0. We shall drop the
subscript l D 0, but remember that we are dealing with s-waves.

Let u.0/ and u.k/ be regular radial wave functions that solve the radial Schrödinger
equation at threshold and for wave number k > 0,

d2u.0/

dr 2
D 2�

„2 V.r/ u.0/.r/ ;
d2u.k/

dr 2
D
�
2�

„2 V.r/ � k2
�

u.k/.r/ : (4.86)

There are two alternative representations for the integral

Iu.r0/ D
Z r0

0

�
u.0/.r/

d2u.k/

dr 2
� u.k/.r/

d2u.0/

dr 2

�
dr : (4.87)

One involves multiplying the first of the two equations (4.86) by u.k/, the second by
u.0/, and integrating the difference; this leads to

Iu.r0/ D �k2
Z r0

0

u.0/.r/ u.k/.r/ dr : (4.88)

An alternative representation of the integral (4.87) is obtained by partial integration,

Iu.r0/ D
�

u.0/.r/
du.k/

dr
� u.k/.r/

du.0/

dr

�r0

0

D u.0/.r0/
du.k/

dr

ˇ̌
ˇ̌
ˇ
r0

� u.k/.r0/
du.0/

dr

ˇ̌
ˇ̌
ˇ
r0

: (4.89)

Contributions from the lower limit of integration, r D 0, vanish, because the regular
solutions u.r/ vanish for r ! 0.
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We now repeat the procedure for two (not necessarily regular) radial wave
functions, w.0/ and w.k/, which solve the free-particle radial Schrödinger equation
at threshold and for wave number k > 0,

d2w.0/

dr 2
D 0 ;

d2w.k/

dr 2
D �k2 w.k/.r/ : (4.90)

The integral

Iw.r0/ D
Z r0

0

�
w.0/.r/

d2w.k/

dr 2
� w.k/.r/

d2w.0/

dr 2

�
dr (4.91)

can, in analogy to (4.88) and (4.89), be written as

Iw.r0/ D �k2
Z r0

0

w.0/.r/w.k/.r/ dr ; or as (4.92)

Iw.r0/ D w.0/.r0/
dw.k/

dr

ˇ̌
ˇ̌
ˇ
r0

� w.k/.r0/
dw.0/

dr

ˇ̌
ˇ̌
ˇ
r0

� w.0/.0/
dw.k/

dr

ˇ̌
ˇ̌
ˇ
0

C w.k/.0/
dw.0/

dr

ˇ̌
ˇ̌
ˇ
0

: (4.93)

Equation (4.93) includes the contributions from the lower integration limit, r D 0,
because the free-particle solutions w.r/ are not assumed to vanish at r D 0. Instead,
they shall be assumed to be asymptotically equal to the regular solutions u.r/, which
behave as (4.79) and (4.29). Explicitly and with appropriate normalization:

w.0/.r/ D 1 � r

a
; w.k/.r/ D � 1

ka
sin.kr C ı/ I

u.0/.r/
r!1� 1 � r

a
; u.k/.r/

r!1� � 1

ka
sin.kr C ı/ : (4.94)

According to (4.88) and (4.92), the difference of the integrals (4.87) and (4.91) is,

Iu.r0/� Iw.r0/ D k2
Z r0

0

�
w.0/.r/w.k/.r/ � u.0/.r/u.k/.r/


dr : (4.95)

The integral converges in the limit r0 ! 1, provided that the regular solutions u.r/
approach their asymptotic forms w.r/ sufficiently fast,

Iu.r0/ � Iw.r0/
r0!1� k2I.k/ ;

I.k/ D
Z 1

0

�
w.0/.r/w.k/.r/ � u.0/.r/u.k/.r/


dr : (4.96)
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Note that I.k/ has the physical dimension of a length. When expressing the
difference Iu.r0/ � Iw.r0/ via (4.89) and (4.93), the contributions from the upper
integration limit r0 vanish, so

Iu.r0/� Iw.r0/
r0!1� w.0/.0/

dw.k/

dr

ˇ̌
ˇ
0
�w.k/.0/

dw.0/

dr

ˇ̌
ˇ
0

D �cos ı

a
� sin ı

ka2
: (4.97)

Equating the right-hand side of (4.97) with k2I.k/ yields

ka cot ı D � �1C k2a I.k/= cos ı
�1

: (4.98)

In the limit of small wave numbers, cos ı tends to unity and I.k/ assumes a certain
value which is usually expressed in terms of the effective range, reff D 2 limk!0 I.k/,
so the leading near-threshold behaviour of (4.98) is,

k cot ı
k!0� �1

a
C 1

2
reff k2 C O

�
k4
	
; (4.99)

reff D 2

Z 1

0


�
w.0/.r/

2 � �
u.0/.r/

2�
dr : (4.100)

Translating (4.99) into an expansion for the scattering phase shift itself gives,

ı
k!0� �ka C k3

3

�
a3 � 3

2
reff a2

�
C O

�
k5
	
.mod �/ : (4.101)

Equation (4.99) features the two leading terms of the effective-range expansion.
For potentials which fall off faster than any inverse power of r at large distances,
k cot ı is known to be an analytical function of energy, i.e. of k2. The same
applies for nonvanishing angular momenta to the function k2lC1 cot ıl [CG49]. Note,
however, that most realistic potentials in atomic and molecular systems do not fall

off so quickly, but rather as an inverse power of r, V.r/
r!1/ 1=r ˛. In such cases,

k cot ı is not an analytical function of k2, and the second term in (4.99) can only be
defined in general when ˛ > 5; see Sect. 4.1.8 below.

The scattering length a has an immediate physical significance, because it
determines the near-threshold limits of the differential and the integrated scattering
cross sections according to (4.60). Only when the potential is repulsive or so weakly
attractive that it is not near to supporting a bound state, can the scattering length
and the effective range reff be related to a distance up to which the potential has
nonnegligible values. For scattering by a hard sphere of radius R, we have a D R
and reff D 2

3
R, so the k3- term in (4.101) vanishes, as do all higher terms.

As soon as the potential is attractive enough to support one or more bound
states, the proximity of a bound (or virtual) state to threshold dominantly influences
the scattering length as illustrated for the attractive sharp-step potential in Fig. 4.4
above. The behaviour of the effective range is strongly correlated to the behaviour
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of the scattering length. When a D 0, for example, which happens for the sharp-step
potential (4.80), (4.81) whenever KSL is an integer multiple of � , there is no bound
or virtual state near threshold, the effective range diverges, but the product a2 reff in
(4.101) remains finite.

4.1.8 Modified Effective-Range Expansions

For potentials falling off asymptotically as 1=r˛, the scattering length al can only be
defined for partial waves l < .˛ � 3/=2, as already discussed in Sect. 4.1.7. For s-
waves (l D 0), the scattering length a can only be defined if ˛ > 3. The next terms in
the expansions (4.99), (4.101) contain the effective range (4.100). The convergence
of the integral in (4.100) depends on how rapidly u.0/.r/ approaches its asymptotic
form w.0/.r/ D 1� r=a, and this, in turn, depends on the asymptotic fall-off of V.r/.

For a potential falling off as an inverse power according to (4.63), the threshold
solutions of the radial Schrödinger equation are, at large distances, of the formp

r=ˇ C�.�/; here C�.�/ stands for a Bessel function whose order � and argument �
are given by (4.67); for l D 0 :

� D 1

˛ � 2
; � D 2�

�
ˇ

r

�1=.2�/
: (4.102)

As already observed for arbitrary l in Sect. 4.1.7, the Bessel functions J� (for an
attractive 1=r ˛ potential) and I� (in the repulsive case) lead to a near-threshold wave
function proportional to .ˇ=r/l asymptotically, i.e. to a constant for l D 0, while

r
r

ˇ

�
Y�.�/
K�.�/

�
r=ˇ!1/ r

ˇ

"
1C O

 �
ˇ

r

�̨ �2!#
; (4.103)

see (4.70). The asymptotic behaviour of u.0/ is thus

u.0/.r/
r!1� 1 � r

a
C O

 �
ˇ

r

�̨ �3!
) �

u.0/.r/
2 r!1�



1 � r

a

�2 C O
�
r 4�˛

	
:

(4.104)

Consequently, the integrand in (4.100) falls off as r 4�˛ asymptotically, and this
must be faster than 1=r for the integral to converge. A finite expression for the
effective range (4.100) requires ˛ > 5, i.e., the potential must fall off faster than
1=r 5 asymptotically.

There is one exception to this condition. If the scattering length a is infinite, i.e.,
if there is a bound state exactly at threshold, then the wave function (4.66) contains
only the J� or I� contribution, so u.0/.r/

r!1� 1 C O
�
r 2�˛

	
and the integrand

in (4.100) falls off as r 2�˛ asymptotically. In this case, ˛ > 3 is sufficient for the
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integral to converge. When there is an s-wave bound state exactly at threshold, the
leading near-threshold behaviour of the s-wave scattering phase shift is, according
to (4.99),

cot ılD0
k!0� reffk

2
; (4.105)

and this holds for all potentials falling off faster than 1=r 3 asymptotically.
When the potential falls off as 1=r ˛ asymptotically, with ˛ > 3, then the

effective-range expansion for the s-wave scattering phase shift starts as in (4.99),
but the expansion in powers of k2 does not continue indefinitely. As shown above,
the k2-term (generally) requires ˛ > 5, and analogous considerations [LK63] show
that the expansion (4.99) is only valid up to terms k2n with 2n < ˛�3. Higher terms
include odd powers of k and can also contain non-analytic, logarithmic factors.

These observations further limit the practical use of the effective-range expansion
(4.99). When both target and projectile are spherical, the highest power ˛ of
practical significance is ˛ D 7, which occurs in the interaction between two neutral
polarizable atoms (or molecules) when the electrostatic van der Waals interaction
(/ 1=r6 at large distances) is corrected for asymptotically relevant retardation
effects [CP48]. In this case the leading, constant term in the expansion for
k2lC1 cot ıl, which defines the scattering length, exists only for l D 0 and l D 1.
The expansion holds up to the second term proportional to k2 only for l D 0, and the
expansion is not valid up to the k4-term, even for l D 0. The naïve expansion (4.99)
has to be modified substantially for potentials falling off as an inverse power at large
distances.

Such a modified effective-range expansion was formulated by O’Malley, Spruch
and Rosenberg [OS61, OR62] in 1961 for the important case of a potential with an
attractive tail proportional to 1=r 4, as occurs in the interaction of a charged particle
with a polarizable neutral partner,

V.r/
r!1� V.�/

˛D4.r/ D �C4
r 3

D �„2.ˇ4/2
2� r 4

; ˇ4 > 0 : (4.106)

Up to and including terms of order k2, the modified effective-range expansion for
s-waves reads

k cot ılD0
k!0� �1

a
C �

3a2
.ˇ4/

2k C 4.ˇ4/
2

3a
k2 ln

�
kˇ4
4

�
(4.107)

C
� Qreff

2
C �

3
ˇ4 C

�
20

9
� 8

3
 

�
3

2

��
.ˇ4/

2

a
� �.ˇ4/

3

3a2
� �2

9a3
�2.ˇ4/

4

9a3

�
k2;

where  .z/ D � 0.z/=� .z/ is the digamma function,  
�
3
2

	 D 0:0364899740 : : :.
(See Appendix A.3.) The modified effective range Qreff is defined as in (4.100), except
that w.0/.r/ now is the, not necessarily regular, radial wave function that solves the
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s-wave radial Schrödinger equation containing the attractive inverse-power potential
V.�/
˛D4, as defined in (4.106), and behaves asymptotically as w.0/.r/

r!1� 1 � r=a.
Beyond the s-wave, i.e. for l � 1, the condition 2l C 3 > ˛ is always fulfilled for
˛ D 4, so the leading near-threshold behaviour of the scattering phase shifts is given
by,

tan ıl
k!0� � .kˇ4/2

.2lC3/.2lC1/.2l�1/ ; l � 1 ; (4.108)

in accordance with (4.73).
For a potential behaving asymptotically as an inverse cube of the distance,

V.r/
r!1� V.˙/

3 .r/ D ˙C3
r 3

D ˙ „2ˇ3
2� r 3

; C3; ˇ3 > 0; (4.109)

a finite scattering length does not exist even for l D 0. The leading near-threshold
behaviour of the s-wave phase shift is [LK63],

tan ılD0
k!0� ˙kˇ3 ln.kˇ3/C O.k/ ; (4.110)

so, towards threshold, the s-wave partial-wave scattering amplitude diverges loga-
rithmically, (see (4.34) in Sect. 4.1.3),

flD0
k!0� ˙ˇ ln.kˇ3/ ; (4.111)

and the differential scattering cross section also diverges logarithmically towards
threshold.

The usefulness of the expressions (4.110), (4.111) is limited to a very small
range in k, however, because the next term in the expansion is only of marginally
higher order. For a repulsive inverse-cube potential, i.e. with a “C” sign on the
right-hand side of (4.109), an extended formula was derived by Del Giudice and
Galzenati [DG65] in 1965 and rederived by Gao [Gao99] in 1999. According to
(120) in [DG65],

tan ılD0 D Œln.kˇ3/C 3�E C ln 2 � 3=2� .kˇ3/C O
�
k2
	
; (4.112)

were �E D 0:577 � � � is Euler’s constant, see Appendix A.3.
For a potential with an attractive inverse-cube tail, i.e. with a “�” sign on the

right-hand side of (4.109), the near-threshold behaviour of the phase shift depends
sensitively on whether or not there is a bound state close the threshold. For potentials
falling off faster than 1=r3, a bound state near threshold manifests itself in the
divergence of the scattering length, see e.g. (3.61) in Sect. 3.1.2, but the threshold
quantum number �D, or rather its remainder �D, can equally serve as critical
parameter reflecting the proximity of a bound state to the continuum threshold, see
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the discussion following (3.59). For the inverse-cube potential tail, there is no finite
scattering length, but the near-threshold behaviour of the scattering phase shift can
be expressed using the threshold quantum number’s remainder�D. As derived only
recently by Müller [Mul13]:

tan ı0 D �
�

ln.kˇ3/C �

tan.��D/
C 3�E C ln 2 � 3

2

�
.kˇ3/ (4.113)

C�
�

ln.kˇ3/C �

tan.��D/
C 3�E C ln 2 � 19

12

�
.kˇ3/

2 C O.k3/ :

All nonvanishing angular momentum quantum numbers l > 0 fulfill the

condition 2l C 3 > ˛ for inverse-cube tails, so tan ıl
k!0/ k according to (4.73). It

follows that all partial-wave scattering amplitudes fl with l > 0 tend to a finite limit
and all partial waves l > 0 give a finite contribution to the scattering cross section
at threshold. The magnitude of these contributions decreases with increasing l
according to (4.73),

tan ıl
k!0�  1

2l.lC1/ kˇ3 ; fl
k!0�  2l C 1

2l.lC1/ ˇ3 for ˛ D 3; l > 0 :

(4.114)

Remember that ˇ3 is positive in the definition (4.109); in (4.114), the “�” signs
apply for repulsive and the “C” signs for attractive inverse-cube tails.

4.1.9 Levinson’s Theorem

If the effective potential (4.23) features a sufficiently deep attractive well, then the
radial wave function shows oscillations in the region of this well. As the energy
approaches the threshold from above, these inner oscillations can persist all the
way down to E D 0. Matching the radial wave function ul to a superposition of
free-particle waves at a matching radius rm beyond the range of the potential only
determines the phase shift ıl to within an integer multiple of � . By comparing ul.r/
to the regular free-particle wave u.s/l .kr/ in the whole range of r-values from r D 0 to
r D rm we can also keep track of an additional integer multiple of � corresponding
to spatial shifts by as many half-waves.

This is illustrated in Fig. 4.5 which shows radial wave functions for s-waves in
the model potential

V.r/ D V0
h
16 e�r 2=ˇ2 � 12 e�r 2=.4ˇ/2

i
; V0 D „2

2�ˇ2
: (4.115)



4.1 Elastic Scattering 315

0 10 20 30 40

r / β

-1

0

1

with potential
free waves

E V

[V=V
0

16 12e e-r2
/(4β)

2-r2
/β2

]-

=
 (

kβ
)2

ra
d
ia

l 
w

av
e 

fu
n
ct

io
n
s

δ/k

δ/k

0

Fig. 4.5 Solutions of the radial Schrödinger equation (4.22) for l D 0. The thick violet lines show
the wave functions in the potential (4.115) (orange line) for E D V0 and E D 0:25V0; the thin
blue lines are the free waves / sin.kr/. The zero-axes for the wave functions lie at the respective
energies. The red arrows show the spatial shift from the third minimum of the free wave to the
third minimum of the wave function in the potential

This potential consists of a repulsive Gaussian of height 16V0 and range ˇ and an
attractive Gaussian tail of depth 12V0 and range 4ˇ. It is qualitatively similar to the
Lennard-Jones potential (3.74) studied in Sect. 3.1.3, but there are two important
differences: it falls off faster than any inverse power of r at large distances, and
it remains bounded at small distances. The radial wave functions ulD0.r/ (with
conveniently chosen amplitudes) are shown in Fig. 4.5 as thick violet lines for the
two energies E D 0:25V0 and E D V0, together with the respective free-particle
wave functions / sin.kr/ (thin blue lines). [The zero-axis for a wave function is
again chosen to lie at the energy for which it solves the Schrödinger equation.]
The red arrows show the spatial shift from the third minimum of the free-particle
wave function to the third minimum of the radial wave function obtained with
the potential. This spatial shift contains a contribution Qd not larger than the range
of the potential, plus an integer number nhw of half waves, d D Qd C nhw
=2.
The wavelength 
 D 2�=k (beyond the range of the potential) diverges towards
threshold, so the spatial shift d D Qd C nhw�=k is dominated by the term containing
nhw. For the phase shift, this implies

lim
k!0

ıl.k/ D nhw� ; (4.116)

where nhw is the number of additional nodes in the radial wave function, compared
to the free-particle wave. Equation (4.116) is also valid for angular momenta l > 0.
The number nhw of additional nodes is well defined towards threshold, because
those nodes of ul (beyond r D 0) which are not additional nodes due to attractive
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behaviour of the potential V at short distances wander to infinity in the limit k ! 0,
as do the nodes (beyond r D 0) of the free-particle wave u.s/l .

Since the potential V.r/ falls off faster than 1=r2 at large distances and is less
singular than 1=r2 at small distances, it supports at most a finite number of bound
states. The number nb of bound states supported by the effective potential Veff in the
l-th partial wave is equal to the number nhw of additional nodes in the radial wave
function near threshold. To see this recall, that the ground-state wave function in a
potential well has no nodes, and that the number of nodes increases by one for each
successive excited state. A wave function solving the radial Schrödinger equation
at a positive energy very near threshold has one more node in the interaction region
than the highest bound state; this is a necessary condition for its orthogonality to all
the bound eigenfunctions in the potential well.

If V.r/ is bounded, its influence becomes negligible at high energies,

lim
k!1 ıl.k/ D 0 : (4.117)

In the high-energy limit, the nodes of ul and of the free-particle wave u.s/l coalesce
and ul has no additional nodes. This holds also for potentials which are not
necessarily bounded, but less singular than 1=r2 for r ! 0. If we consider ıl

as a continuous function of wave number (or energy), then combining (4.117)
and (4.116), with nhw D nb, yields

lim
k!0

ıl.k/� lim
k!1 ıl.k/ D nb�; (4.118)

where nb is the number of bound states in the l-th partial wave. Equation (4.118)
was first derived by Levinson in 1949 [Lev49] and is known as Levinson’s theorem.

There is one exception to the rule (4.116), and hence also to (4.118), namely
when there is an s-wave bound state exactly at threshold, with jaj D 1 according
to (4.79). The threshold wave function is asymptotically proportional to cos.kr/ in
the limit k ! 0, which corresponds to a phase shift of �=2 relative to the free-
particle wave sin.kr/, so ılD0.k/ converges to an odd multiple of �=2 for k ! 0.

The model potential (4.115) falls off faster than any inverse power of r at
large distances, so the leading near-threshold behaviour of the phase shifts is given
by (4.57) for all l. Furthermore, the potential is bounded so the phase shifts obey
Levinson’s theorem (4.118). Figure 4.6 shows the corresponding phase shifts as
functions of the scaled wave number kˇ for angular momentum quantum numbers
up to l D 15.

Some features in Fig. 4.6 can be understood by looking at the effective poten-
tials (4.23), which are shown in Fig. 4.7. The number nb of bound states, corre-
sponding to the threshold value nb� of ıl, decreases from five for l D 0 to zero for
l D 8, where the minimum of the effective potential already lies above the threshold
E D 0. There are no bound states above threshold, but almost bound states can
form at certain energies below the maximum of the potential barrier formed by
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Fig. 4.6 Phase shifts for scattering by the model potential (4.115) as functions of the scaled wave
number kˇ for angular momentum quantum numbers up to l D 15. Even and odd l are shown in
separate panels to avoid overcrowding in the figure
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Fig. 4.7 Effective potentials (4.23) for the model potential (4.115) and angular momenta up to
l D 15

the centrifugal potential Vcent and the attractive potential V . Such almost bound
states above the threshold of a potential are called potential resonances or shape
resonances, and were already introduced in Sect. 1.5.3; they lead to more or less
sudden jumps of the phase shift by � , as seen for many of the partial waves in
Fig. 4.6.
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4.1.10 An Example

When calculating the interaction potential between an electron and a neutral
spherical atom according to the considerations in Sect. 3.3.1, we see that there is
no very-long-ranged Coulomb potential .N D Z C 1/ and all higher .l > 0/ direct
diagonal contributions of the form (3.179) also vanish, because the internal wave
function  int has vanishing total angular momentum, and hence all expectation
values of vector operators and higher tensors vanish according to the Wigner-Eckart
theorem. At large electron-atom separations the leading contribution to the potential
comes from the fact that the electric field of the electron polarizes the atom and
induces a dipole moment and this leads to a �1=r4 potential (4.106),

V.r/
r!1D �e2

˛d

2r4
; (4.119)

where ˛d is the static dipole polarizability of the atom (see Problem 4.5). Com-
paring (4.119) and (4.106) shows that the ˛d is related to the potential strength
parameter ˇ4 by

˛d D „2
�e2

.ˇ4/
2; ˇ4 D

r
�e2

„2 ˛d : (4.120)

Here „2=.�e2/ is just the Bohr radius a0, so ˇ4 D p
˛d=a0. Note that (4.119)

and (4.120) also hold for the polarization potential between any other charged
particle such a positive or negative ion and a polarizable neutral atom (or molecule)
in a spherical state, except that e2 is to be replaced by the square of the charge of
the charged particle; � stands for the reduced mass of the charged and the neutral
particle.

At smaller separations it is not so obvious that the electron-atom interaction can
be adequately described by a simple potential. In addition to the so-called direct
static potential involving the density of the electrons in the occupied states of the
target atom (cf. (2.91) or, more generally (3.175) for i D j), the consideration of
exchange effects in the elastic channel alone already leads to complicated non-local
contributions. One consequence of these exchange contributions is the orthogonality
of the scattering wave functions to the occupied single-particle states in the target
atom as required by the Pauli principle.

Figure 4.8 shows phase shifts for the example of elastic electron scattering by
neon at energies up to about E D „2k2=.2�/ D 20 eV in the partial waves
l D 0; 1 and 2 as functions of the wave number k. The crosses are the experimental
phase shifts deduced from measured elastic differential cross sections (such as the
one illustrated in Fig. 4.9) by Williams [Wil79]. The solid lines are the results of
solving the radial Schrödinger equation with a simple local potential consisting
of the direct static terms plus a polarization potential (4.119) which merges into
a constant for separations smaller than a certain value r0. At negative energies this
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Fig. 4.8 Phase shifts for
elastic scattering of electrons
by neon. The crosses show
experimental data from
[Wil79]. The solid lines were
obtained by solving the radial
Schrödinger equation with a
simple local potential
consisting of the electrostatic
terms plus a polarization
potential (4.119) which
merges into a constant for
separations smaller than a
phenomenological parameter
r0. The polarizability was
taken to be the experimental
value ˛d D 2:66 a30 [TP71]
and the value of r0 was
0:974 a0 for l D 0, 1:033 a0
for l D 1 and 1:11 a0 for
l D 2 (From [IF92])

Fig. 4.9 Differential
scattering cross section (in
atomic units, a 20 ) for the
elastic scattering of electrons
by neon at E D 20 eV as
measured by Register and
Trajmar [RT84]. The solid
line shows the cross section
calculated via (4.37) with the
phase shifts of Fig. 4.8 for
l � 2 and the phase shifts
given by (4.108) for l > 2
(From [IF92])

potential supports bound states quite similar to the single-particle states occupied
in the target atom. The automatic orthogonality of the scattering wave functions
to these bound states already accounts for a large part of the exchange effects
expressing the requirements of the Pauli principle. The phase shifts ıl are only
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defined to within an integral multiple of � . If we draw the function ıl.E/ [or ıl.k/]
continuously from k D 0 to k ! 1, then for a local potential the difference
ıl.0/�ıl.1/ is equal to the number of bound states (in the partial wave l) multiplied
by � according to Levinson’s theorem (4.118). For a more sophisticated description
involving non-local potentials, a generalization of Levinson’s theorem [Swa55] tells
us that occupied single-particle states in the target atom, which cannot be occupied
by the projectile electron due to the Pauli principle, have to be included in the bound-
state count when applying Levinson’s theorem. The electron-neon phase shifts in
Fig. 4.8 are drawn to start at threshold at 2� for l D 0, at � for l D 1 and at zero for
l D 2, corresponding to the occupied target states .1s; 2s; 2p/ [Bur77]. If the simple
potential picture were valid up to arbitrarily high energies, all phase shifts would
tend to zero in the high energy limit in this representation. (There are no genuine
bound states in the electron-neon system.)

Phase shifts for low energy elastic electron scattering by noble gas atoms can
be derived with more sophisticated theories [OL83], but Figs. 4.8 and 4.9 show that
simple model potentials with the correct asymptotic behaviour can work quite well.

4.1.11 Semiclassical Description of Elastic Scattering

The problem of elastic scattering by a radially symmetric potential is a convenient
example for demonstrating the use of semiclassical approximations based on
classical mechanics supplemented by interference effects, see e.g. [BM72]. In
the semiclassical approximation of the scattering amplitude, the partial-waves
expansion (4.31) is transformed into a sum over classical trajectories or rays. A basic
tool for this transformation is the Poisson summation formula,

1X
lD0

g.l/ D
1X

MD�1

Z 1

�1=2
g.l/ e2� iMl dl; (4.121)

which follows from the identity,

1X
MD�1

e2� iMl �
1X

nD�1
ı.l � n/; (4.122)

and relates the sum over discrete angular momentum quantum numbers to a sum
of integrals over a continuous angular momentum. The length of the angular
momentum vector is

p
l.l C 1/„, and it is well approximated by

L D „
�

l C 1

2

�
; (4.123)
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when l is large. For large l the Legendre polynomial Pl.cos �/ is well approximated
by

Pl.cos �/ �
r

2„
�L sin �

cos

�
L�

„ � �

4

�
; (4.124)

except for a small range of angles � within „=L of the forward direction � D 0 or the
backward direction � D � . With this approximation the scattering amplitude (4.31)
with the partial-wave amplitudes fl given by (4.34) is

f .�/ D
1X

lD0

2l C 1

2ik
.e2iıl � 1/Pl.cos �/

�
1X

MD�1
e�i�M

Z 1

0

L dL

i„2k e
i
„ 2�ML

.e2iıl � 1/

r
2„

�L sin �
cos

�
L�

„ � �

4

�

D �i

2
p
�„�E sin �

1X
MD�1

e�i�M
�
e�i�=4 IC

M C eCi�=4 I�
M

	
: (4.125)

The integrals IC
M and I�

M come from decomposition of the cosine of the second last
line of (4.125) into two exponentials; with the abbreviation

Qı.L/ D „ıl; (4.126)

where L is related to l via (4.123), we have

IṀ D
Z 1

0

p
L dL �

�
exp

�
i

„


2 Qı.L/˙ L� C 2�ML

��
� exp

�
i

„ .˙L� C 2�ML/

��
: (4.127)

Equation (4.125) with (4.127) re-expresses the scattering amplitude (4.31) in
terms of the angular momentum (4.123) and the phase function (4.126) which
both have the dimensions of an action. If we regard (4.123) as a definition of the
variable L rather than as an approximation, then the only approximation at this stage
is the replacement of the Legendre polynomials according to (4.124). The phase of
the first exponentials in (4.127) contains the contribution 2 Qı.L/ which expresses, in
terms of an action, the phase shift in the radial wave function during the scattering
process. The contribution ˙L� C 2�ML constitutes the action of a projectile with
angular momentum L which propagates through an angle ˙� , 0 < � < � , in
addition to M complete turns through 2� around the origin. The last line of (4.125)
contains terms connecting all possible angular momenta L with all possible angles
˙� C 2�M. This expression is condensed to a sum over classical trajectories in
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the spirit of the semiclassical approximation by exploiting the assumption, that
the actions involved are very large compared to „. The contributions of almost
all angular momenta to the integrals over L are assumed to vanish, because of
cancellations due to the very rapid oscillations of the exponential factors. Non-
vanishing contributions are assumed to come only from the immediate vicinity of
such angular momenta for which the phase of the exponential is stationary as a
function of L; this defines the stationary phase approximation.

The phases of the second exponentials in (4.127) depend linearly on L and have
no stationary points. Points of stationary phase of the first exponentials are given by

2�M ˙ � D �2 d Qı
dL
: (4.128)

An explicit expression for the phase function Qı can be obtained from the WKB
approximation to the radial wave function (cf. (1.300)),

uWKB
l .r/ / 1p

pl.r/
cos

�
1

„
Z r

rt

pl.r
0/ dr0 � �

2

�
; (4.129)

defined via the radial classical momentum

pl.r/ D
r
2�.E � V.r// � l.l C 1/„2

r2
: (4.130)

The phase � on the right-hand side of (4.129) is the phase loss of the WKB wave
due to reflection at the classical turning point rt, which corresponds to the radius
of closest approach of the projectile. Equating the asymptotic phase of the WKB
wave function (4.129) and the asymptotic phase of the quantum mechanical radial
wave function (4.35) yields an explicit relation between the quantum mechanical
scattering phase shift ıl and the reflection phase � in the WKB wave function (cf.
Sect. 1.6.3),

ıl D l
�

2
C �

2
C lim

r!1

�
1

„
Z r

rt

pl.r
0/ dr0 � kr

�
� �

2
: (4.131)

If, in the spirit of the semiclassical approximation, we replace l.l C 1/„2 by L2

(cf. (4.123)) and � by �=2, then the phase function (4.126) becomes

Qı.L/ D L
�

2
C
Z 1

rt

. pL.r/ � p1/ dr � rtp1; (4.132)

where

pL.r/ D
p
2�.E � V.r// � L2=r2 ; p1 D p

2�E I (4.133)
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the derivative of the phase function is

d Qı
dL

D �

2
�
Z 1

rt

L dr

r2
p
2�.E � V.r// � L2=r2

D 1

2
�.L/ : (4.134)

Here we have introduced the classical deflection function �.L/, which gives
the total angle � through which a classical projectile of mass � is scattered
by the radially symmetric potential V.r/, as function of the (classical) angular
momentum L; it is often expressed in terms of the impact parameter b D L

p
2�E,

see e.g. [LL71], Paragraph 18, (18.1), (18.2). Thus the condition of stationary
phase (4.128) is

�.L/ D � � 2M� I (4.135)

it selects, for each scattering angle � , those values of angular momentum L, for
which the total deflection angle � is equal to plus or minus � modulo 2� . In a
typical quantum mechanical scattering experiment, it is only the scattering angle � ,
0 � � � � between the incoming and outgoing beam of particles that can be
detected. Classically we can, in addition, distinguish whether the projectile was
deflected in a clockwise or anticlockwise sense and how often, if at all, it encircled
the target completely. The integer M in the relation (4.135) between� and � counts
how many times the classical trajectory encircles the origin in the clockwise sense.
The relation between � and � is illustrated in Fig. 4.10.

The contribution of the vicinity of a given point L0 of stationary phase to the
integrals IṀ in (4.127) is estimated by expanding the phase of the exponential

Fig. 4.10 Schematic illustration of classical trajectories for a few angular momenta (impact
parameters) leading to different deflection angles � corresponding to the same scattering
angle �
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around its stationary point,

2 Qı.L/˙ L� C 2�ML � 2 Qı.L0/˙ L0� C 2�ML0 C d2 Qı
dL2

.L � L0/
2 : (4.136)

Extending the integral over L in the vicinity of L0 to an integral from �1 to 1
and ignoring the L-dependence of the factor

p
L reduces the integral to a factor

depending on L0, times a simple Gaussian integral

Z 1

1
expf�a2.L � L0/

2g dL D
p
�

a
; a2 D � i

„
d2 Qı
dL2

D � i

2„
d�

dL
: (4.137)

Inserting this result into the integrals (4.127) in the last line of (4.125) yields the
following expression for the semiclassical approximation fsc.�/ to the scattering
amplitude:

fsc.�/ D �ip
2�E sin �

X
Li

0
@ei˛

p
Li exp



i
„ Œ2 Qı.Li/ � Li �.Li/�

�
pjd�=dLjLi

1
A : (4.138)

For a given scattering angle � , the sum is to be taken over all angular momenta Li

for which the total deflection angle � corresponds to the (observable) scattering
angle � according to (4.135).

The expression (4.138) illustrates several features which are characteristic
for semiclassical approximations to quantum mechanical amplitudes describing
physical processes:

(i) The amplitude is expressed as a sum over terms each corresponding to a
classical trajectory for realizing the process. Here this is a sum over (classical)
angular momenta (impact parameters) leading to the given scattering angle.

(ii) Each term contains a phase essentially given by the classical action along the
trajectory in units of „. Here this phase consists of a radial and an angular
contribution and is Œ2 Qı � Li��=„.

(iii) Each term also contains a topological phase, which is usually a multiple of �=4
and is related to the topology of the classical trajectory. Here this phase is ˛ D
�M��=4˙�=4, where M is the number of times the trajectory encircles the
origin completely. The “” sign comes from the coefficients e�i�=4 in front of
IC
M and I�

M in the last line of (4.125) and corresponds to the sign in front of � on
the right-hand side of (4.135); the “˙” sign stands for the sign of the gradient
d�=dL of the deflection function at the point of stationary phase.

(iv) Each term is weighted by an amplitude depending on the density of classical
trajectories in the vicinity of the trajectory concerned. Here this factor isp

Lijd�=dLj�1=2; it diverges at stationary points of the deflection function
corresponding to an accumulation of trajectories deflected by the same angle,
an effect known as rainbow scattering.
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If there is only one classical angular momentum contributing to the scattering
angle � according to (4.135), then all the phases in (4.138) drop out of the expression
for the differential cross section, giving

�
d�

d˝

�
sc

D j fsc.�/j2 D L

2�E sin �

ˇ̌
ˇ̌d�

dL

ˇ̌
ˇ̌�1 D b

sin �

ˇ̌
ˇ̌d�

db

ˇ̌
ˇ̌�1 I (4.139)

this is exactly the same as the classical expression, see [LL71], Paragraph 18, (18.8).
If more than one classical trajectory contribute to the semiclassical approxi-

mation (4.138) of the scattering amplitude, then the corresponding approximation
to the differential cross section will contain the effects of interference of the
various contributions. The semiclassical cross section goes beyond the pure classical
description in that it contains these quantum mechanical interference effects.

The semiclassical approximation can be useful in providing an intuitive picture
of a given quantum mechanical process. An application to electron-atom scattering
was given by Burgdörfer et al. in 1995. [BR95]. They studied the elastic scattering
of electrons by krypton atoms using a parametrized electron-atom potential derived
from Hartree-Fock calculations. Figure 4.11 shows the quantum mechanical and

Fig. 4.11 Description of electron krypton scattering at E D 100 eV with a parametrized electron-
atom potential. The upper panel shows quantum mechanical phase shifts (open circles) together
with the semiclassical approximation Qı.L/=„ [cf. (4.126), (4.132)] (solid line). The lower panel
shows the classical deflection function �.L/ in units of � . The abscissa is labelled by the angular
momentum L defined by (4.123) (From [BR95])
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Fig. 4.12 Experimental differential cross section (filled circles and triangles) for electron scatter-
ing by krypton at 100 eV [WC75, JH76]. The solid line (QM) is the calculated quantum mechanical
result (4.37), the dashed curve (SC) is the result obtained by calculating the scattering amplitude
according to (4.125) with (4.127), and the dotted curve (PSC) is the result of the (primitive)
semiclassical approximation based on the scattering amplitude (4.138) (From [BR95])

semiclassical (4.132) scattering phase shifts for this potential, together with the
classical deflection angle as functions of the (classical) angular momentum L for
an impact energy of 100 eV. The differential scattering cross section at 100 eV
is shown in Fig. 4.12. The solid line is the quantum mechanical result (4.37),
which agrees quite well with the experimental data. The three distinct minima
indicate a dominance of the l D 3 partial wave in determining the shape of
the cross section. The dashed curve shows the differential cross section obtained
by calculating the scattering amplitude according to (4.125) with (4.127), and it
reproduces the result of the direct partial wave summation very satisfactorily. This
shows that the approximation of the Legendre polynomials according to (4.124)
doesn’t cause serious error, even though low angular momentum quantum numbers
provide the dominant contributions to the cross section. Finally, the dotted line in
Fig. 4.12 shows the result of the semiclassical approximation based on the scattering
amplitude (4.138). Although there are noticeable deviations from the full quantum
mechanical result, the semiclassical approximation does reproduce the oscillatory
structure of the cross very well qualitatively. In the semiclassical description this
oscillatory structure is due to the interference of amplitudes from three classical
trajectories, as can be deduced from the deflection function in Fig. 4.11 with the
help of (4.135). There is always one trajectory with angular momentum larger than
about 3„ which is deflected by an angle � between zero and �� , so that � D �� ,
.M D 0/ corresponds to the scattering angle � in the interval Œ0; ��. There are two
further trajectories, one with angular momentum close to 3„ and one with smaller
angular momentum, for which the deflection angle lies between �� and �2� , so
that � D � � 2� , .M D 1/ corresponds to the same scattering angle � . The very
good qualitative agreement between the quantum mechanical and the semiclassical
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cross sections shows that the two interpretations, one based on a purely quantum
mechanical picture and attributing the oscillatory structure to the dominance of the
l D 3 partial wave, and the other semiclassical interpretation attributing it to the
interference of a small number of classical trajectories, are not mutually exclusive.

4.1.12 Elastic Scattering by a Pure Coulomb Potential

In order to describe scattering by a pure Coulomb potential,

VC.r/ D �Ze2

r
; (4.140)

we have to modify the description of Sect. 4.1.1 substantially because of the very-
long-ranged nature of the potential. There is an analytic solution of the stationary
Schrödinger equation, which is regular at the origin and fulfills asymptotic boundary
conditions appropriate to the scattering problem,

 C.r/ D e��=2� .1C i/ eikz F.�i; 1I ik.r � z// : (4.141)

Here  is the Coulomb parameter (Sommerfeld parameter) as in (1.119),

 D �Z�e2

„2k D � 1

kaZ
; (4.142)

� is the complex gamma function defined by (A.17) in Appendix A.3, and F is
the confluent hypergeometric series, (A.69) in Appendix A.5. For large values of
k.r � z/ the wave function  C.r/ has the form

 C.r/ D eiŒkzC ln k.r�z/�

�
1C 2

ik.r � z/
C : : :

�

CfC.�/
ei.kr� ln 2kr/

r

"
1C .1C i/2

ik.r � z/
C : : :

#
(4.143)

with

fC D �
2k sin2.�=2/

e�iŒ ln .sin2.�=2//�2�0�; �0 D arg Œ� .1C i/� : (4.144)

To the left of the scattering centre, z D r cos � < 0, the first term on the right-
hand side of (4.143) asymptotically describes an incoming wave exp.ikeffz/, but its
effective wave number keff D k C Œln k.r � z/�=z converges only very slowly to its
asymptotic value k. For a given angle � ¤ 0; the contribution jin of this term to the
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current density according to (4.4) is, in leading order in 1=r;

jin D „k

�
ez C O

�
1

r

�
: (4.145)

The second term on the right-hand side of (4.143) describes an outgoing spherical
wave with an effective wave number k � .ln 2kr/=r; which also converges
very slowly to its asymptotic value k as r ! 1: The angular modulation is
asymptotically described by the function fC of (4.144) which is called the Coulomb
scattering amplitude or Rutherford scattering amplitude. The corresponding current
density (again for given � ¤ 0) is, in leading order in 1=r,

jout D „k

�
j fC.�/j2 r

r3
C O

�
1

r3

�
: (4.146)

The differential cross section is again defined as the asymptotic ratio of outgoing
particle flux to the incoming current density and is, in analogy to (4.6),

d�C

d˝
D j fC.�/j2 D 2

4k2 sin4.�=2/
D 4

a2Z q4
: (4.147)

Here q is the length of the vector q which stands for the vector difference of the
outgoing and ingoing wave vectors as in (4.20), q D 2k sin.�=2/ (see Fig. 4.13c).

The formula (4.147) is the famous Rutherford formula for elastic scattering by a
pure Coulomb potential. The differential cross section doesn’t depend on the sign
of the potential. Furthermore, it does not depend on energy and scattering angle
independently, but only on the absolute value of the momentum transfer „q. The
Rutherford cross section (4.147) diverges strongly in the forward direction .� ! 0/

so that the integrated cross section becomes infinite. This is of course due to the
very long range of the Coulomb potential which even deflects particles passing the
scattering centre at large distances. Figure 4.13a shows the hyperbolical classical
orbits of a particle scattered by an attractive Coulomb potential, and Fig. 4.13b
shows the Rutherford cross section (4.147).

The Rutherford cross section (4.147) is also obtained if the scattering amplitude
fC.�/ is replaced by its Born approximation according to (4.19). The classical
formula (4.139) also reproduces the Rutherford cross section (4.147) [LL71]. For
Coulomb scattering in three dimensions we are confronted with the remarkable
coincidence that quantum mechanics, classical mechanics and the Born approxi-
mation all give the same differential scattering cross section. Note however, that
the scattering amplitudes are real both in the classical description and in the Born
approximation, and differ from the exact quantum mechanical expression (4.144),
which has a non-trivial phase. It is also interesting to note that the equality of
Coulomb cross sections obtained in quantum mechanics, classical mechanics and
the Born approximation is a peculiarity of three-dimensional coordinate space. It no
longer holds for scattering by a potential proportional to 1=r e.g. in two-dimensional
coordinate space, see Sect. 4.2.6.
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Fig. 4.13 (a) Hyperbolical classical orbits of a particle scattered by an attractive Coulomb
potential for k D 1=aZ and  D �1: The coordinates x and z are in units of the Bohr radius aZ .
(b) The Rutherford cross section (4.147) in units of .aZ=2/

2 . Part (c) illustrates the identity
q D 2k sin.�=2/

4.1.13 Elastic Scattering by a Modified Coulomb Potential,
DWBA

An important real situation frequently encountered in charged-particle scattering is,
that the potential only corresponds to a pure Coulomb potential at large separations
and that there are shorter-ranged modifications due e.g. to decreasing screening of
the nucleus of the target ion by its electrons. (cf. Fig. 2.2),

V.r/ D VC.r/C Vsr.r/; lim
r!1r2Vsr.r/ D 0 : (4.148)

In order to expose the effect of the additional shorter-ranged potential we again
make the Schrödinger equation look like an inhomogeneous differential equation
[cf. (4.11)], but we now take the “inhomogeneous term” to be only the part due to
the additional shorter-ranged potential,

�
E C „2

2�
� � VC.r/

�
 .r/ D Vsr.r/ .r/ : (4.149)
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Let GC.r; r0/ be the appropriate Green’s function obeying

�
E C „2

2�
� � VC.r/

�
GC.r; r0/ D ı.r � r0/ : (4.150)

The equivalent integral equation in this case is

 .r/ D  C.r/C
Z

GC.r; r0/Vsr.r0/ .r0/ dr0 : (4.151)

In the asymptotic region r ! 1; the second term on the right-hand side of (4.151)
has the form of an outgoing spherical wave (in the very-long-ranged Coulomb
potential),

 .r/ D  C.r/C f 0.�; �/
ei.kr� ln 2kr/

r
; r ! 1 : (4.152)

In contrast to (4.17) the angular amplitude f 0 is now not defined via incoming plane
waves but via distorted waves N C;r ,

f 0.�; �/ D � �

2�„2
Z

N �
C;r.r

0/Vsr.r0/ .r0/ dr0 : (4.153)

The distorted waves N C;r.r0/ are solutions of the Schrödinger equation with a pure
Coulomb potential, but their asymptotic form [cf. (4.141), (4.143)] corresponds to
an incoming modified plane wave in the direction of the radius vector r instead of in
the direction of the z-axis, plus an incoming instead of an outgoing spherical wave
[Bra83]. Explicitly,

N C;r.r0/ D e��=2 � .1 � i/ eikr	r0

F.i; 1I �i.jkrjr0 C kr �r0// : (4.154)

As in (4.16) and (4.17), kr is the wave vector with length k which points in direction
of the radius vector r (without 0).

Since the first term on the right-hand side of (4.152) also contains an outgoing
spherical wave [see (4.143)], modulated by the Coulomb amplitude (4.144), the
total amplitude modulating the outgoing spherical wave is a sum of the Coulomb
amplitude fC and the additional amplitude (4.153),

 .r/
r!1D eiŒkzC ln k.r�z/� C Œ fC.�/C f 0.�; �/�

ei.kr� ln 2kr/

r
: (4.155)

The differential cross section for elastic scattering is now

d�

d˝
D j fC.�/C f 0.�; �/j2 : (4.156)
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The scattering amplitude for the elastic scattering of a particle by a potential
VC C Vsr is thus a sum of two contributions: the first contribution is the amplitude
for scattering by the “unperturbed” potential VC, the second contribution describes
the modification of the exact solution in the unperturbed potential caused by the
additional perturbing potential. This decomposition is named after Gell-Mann and
Goldberger and can be performed quite generally for a sum of two potentials. The
cross section contains a contribution j fCj2 from the Coulomb scattering amplitude, a
contribution j f 0j2 from the additional scattering amplitude and a further contribution
fCf 0� C f �

C f 0 due to interference of the two amplitudes fC and f 0.
If the influence of the additional shorter-ranged potential is small, we can replace

the exact wave function  in the integrand on the right-hand side of (4.153) by the
(distorted) incoming Coulomb wave (4.141) in the spirit of the Born approximation.
This is the distorted wave Born approximation(DWBA) and leads to the following
explicit expression for the additional scattering amplitude,

f DWBA D � �

2�„2
Z

N �
C;r.r

0/Vsr.r0/  C.r0/ dr0 : (4.157)

If the additional shorter-ranged potential Vsr is radially symmetric, it makes sense
to expand the wave function in partial waves. For an incoming Coulomb wave  C.r/
travelling in z-direction we have, in analogy to (4.30),

 C.r/ D
1X

lD0
.2l C 1/ il ei�l

Fl.; kr/

kr
Pl.cos �/ : (4.158)

Here Fl are the regular Coulomb functions, as introduced in Sect. 1.3.2, which
solve the radial Schrodinger equation in a pure Coulomb potential. The Coulomb
phases �l are defined by (1.121). The additional scattering amplitude f 0 doesn’t
depend on the azimuthal angle � and can be expanded in analogy to (4.31):

f 0.�/ D
1X

lD0
f 0
l Pl.cos �/ : (4.159)

The same steps that lead to (4.34) now allow us to extract from the wave
function (4.152) a relation between the partial-wave amplitudes f 0

l and the phase
shifts ıl due to the effect of the additional shorter-ranged potential in the respective
partial waves [cf. (1.120), (1.122)]:

f 0
l D 2l C 1

2ik
e2i�l .e2i�l � 1/ D 2l C 1

k
e2i�l eiıl sin ıl : (4.160)

Because of the shorter range of the potential Vsr, the additional phase shifts ıl

in (4.160) converge rapidly to zero (or to an integral multiple of �) as the
angular momentum quantum number l increases. Hence the expansion (4.159) is
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rapidly convergent. On the other hand, the partial-waves expansion of the Coulomb
scattering amplitude fC converges very slowly. In order to calculate e.g. the cross
section (4.156) it is thus best to use the analytically known expression (4.144) for fC
and to expand only the additional scattering amplitude f 0 in partial waves. The phase
shifts ıl can be extracted from the asymptotic behaviour of the radial wave functions
ul.r/,

ul.r/ / Fl.; kr/C tan ıl Gl.; kr/; r ! 1 ; (4.161)

(cf. Table 1.3).
We obtain an implicit equation for the phase shifts by extending (4.46) to the

case of modified Coulomb potentials,

tan ıl D �
r
2��

„2k
Z 1

0

Fl.; kr0/Vsr.r
0/ ul.r

0/ dr0 : (4.162)

In the spirit of the DWBA we obtain an approximate explicit expression for tan ıl

if we replace the exact radial wave function ul in the integrand on the right-hand
side of (4.162) by the regular Coulomb function Fl (multiplied by Œ2�=.�„2k/�1=2
to ensure normalization in energy),

tan ıl � � 2�

„2k
Z 1

0

ŒFl.; kr0/�2 Vsr.r
0/ dr0 : (4.163)

If the Coulomb potential is repulsive,  > 0, then tan ıl vanishes at the threshold
k ! 0 just as in the case of a shorter-ranged potential alone. For an attractive
Coulomb potential,  < 0, tan ıl generally tends to a finite value. Remember that the
phase shifts at threshold are connected to the quantum defects of the corresponding
Rydberg states below threshold, as expressed in Seaton’s theorem (3.143) and
illustrated in Fig. 3.9 for the e�-KC system. A byproduct of this consideration is
the insight, that the additional phase shift ıl due to a shorter-ranged potential on top
of a pure Coulomb potential cannot in general be identical to the phase shift caused
by the shorter-ranged potential alone.

4.1.14 Feshbach Projection. Optical Potential

All real applications of the considerations in the preceding sections of this chapter
depend crucially on the potential. For large projectile-target separations the leading
terms are known, e.g. the polarization potential (4.119) for the scattering of a
charged particle by a neutral atoms or the Coulomb potential (4.140) for the
scattering of an electron by a target ion of charge Z. At smaller separations
however, excitations of the target become important as do exchange effects, and the
interaction potential may become very complicated. In this region it is not obvious



4.1 Elastic Scattering 333

that it is justified to describe e.g. an electron-atom interaction by a Schrödinger
equation with a potential.

One possibility of deriving an equation of motion of the Schrödinger type is
Feshbach’s projection formalism. This involves projection operators OP and OQ which
decompose the whole space of wave functions into a subspace of wave functions
OP� , whose dynamics are to be studied further, and an orthogonal residual space,

the OQ-space, which is only of interest in so far as it is coupled to and influences the
states in OP-space:

� D OP� C OQ� ; OP C OQ D 1; OP OQ D 0 : (4.164)

Elastic scattering is usually described in a OP-space in which the target atom is given
by a fixed (generally the ground-state) wave function, while arbitrary wave functions
are allowed for the projectile electron. This corresponds to a single term in the close-
coupling expansion (3.163). All wave functions orthogonal to OP-space constitute
OQ-space.

Multiplying from the left by OP and by OQ enables us to transform the stationary
Schrödinger equation OH� D E� for the wave function � in (4.164) into two
coupled equations for OP� and OQ� ,

OP OH OP. OP�/C OP OH OQ. OQ�/ D E. OP�/;
OQ OH OQ. OQ�/C OQ OH OP. OP�/ D E. OQ�/ : (4.165)

Here we used the property of projection operators, viz. OP OP D OP and OQ OQ D OQ. If
we resolve the lower equation (4.165) for OQ� ,

OQ� D 1

E � OQ OH OQ
OQ OH OP. OP�/; (4.166)

and insert the result into the upper equation we obtain an effective Schrödinger
equation for the component OP� �  ,

OHeff D E ; OHeff D OP OH OP C OP OH OQ 1

E � OQ OH OQ
OQ OH OP : (4.167)

The first term OP OH OP in the formula for the effective Hamiltonian OHeff contains all
direct and exchange contributions of the elastic channel, but no contributions due
to coupling to excited states of the target atom. These are contained in the second
term OP OH OQŒE � OQ OH OQ��1 OQ OH OP , which introduces an explicitly energy-dependent
contribution to the effective potential. If the energy E lies above the continuum
threshold of OQ OH OQ, it should be given an infinitesimally small imaginary part in
the denominator in (4.167), similar to (4.14). This makes the effective Hamiltonian
non-Hermitian. The projection of the Schrödinger equation onto a subspace of the
full space of states thus leads to an explicitly energy-dependent additional potential
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in the effective Schroödinger equation for the projection of the total wave function
onto this subspace. If the projectile electron can decay into continuum states of OQ-
space, this effective OP-space potential is non-Hermitian. The effective potential OVeff

in the effective Schrödinger equation in OP-space is usually called optical potential.
One immediate consequence of the non-Hermitian nature of the optical potential

OVeff is, that the continuity equation is no longer fulfilled in the form (4.8). We
actually have

r �j D „
2i�

. �� �  � �/ D 1

i„ . 
� OVeff �  OV�

eff 
�/;

I
j�ds D

Z
r �j d3r D 2

„=Œh j Veff j i� : (4.168)

If the boundary conditions are chosen such that the projectile electron travels
outward in OQ-space and not inward, then =Œh j OVeffj i� is negative, corresponding
to a loss of particle flux due to absorption from OP-space into OQ-space.

If the non-Hermitian optical potential has the form of a complex radially
symmetric potential Veff.r/, then an expansion in partial waves still makes sense,
but the radial wave functions ul and the phase shifts ıl are now complex. The
imaginary part of the phase shift is generally positive for a negative imaginary
part of the potential (cf. (4.47)), so the absolute value of exp.2iıl/ is smaller than
unity. The formulae (4.37) and (4.38) for the elastic scattering cross section remain
valid in a (shorter-ranged) complex potential. In addition, the total absorption cross
section �abs is defined as the loss of particle flux relative to the incoming current
density „k=�: The asymptotic form of the wave function (4.36) is

 .r/
r!1D

1X
lD0

.2l C 1/

2ik

�
e2iıl

eCikr

r
� .�1/l e�ikr

r

�
Pl.cos �/; (4.169)

and the total loss of particle flux is

�
I

j�ds D „
4�k

1X
lD0

.2l C 1/2.1 � je2iıl j2/
Z

Pl.cos �/2 d˝; (4.170)

where we have already exploited the orthogonality of the Legendre polynomials Pl.
Using

R
Pl.cos �/2d˝ D 4�=.2lC1/ [cf. (A.4) in Appendix A.1, (1.59)] the loss of

particle flux divided by the incoming current density, i.e. the total absorption cross
section, amounts to

�abs D � �

„k

I
j�ds D �

k2

1X
lD0
.2l C 1/.1� je2iıl j2/ : (4.171)
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How well the Schrödinger-type equation (4.167) describes elastic scattering
depends of course on how accurately the effective Hamiltonian OHeff or rather the
optical potential OVeff is calculated. One of the simplest approximations consists in
completely ignoring the coupling to OQ-space. This leads to the one-channel version
of the close-coupling equations (3.176), which disregards all excitations of the target
atom but includes exactly the exchange effects between projectile electron and
target. The resulting potential is known as static exchange potential. If the target
atom or ion is described by a Hartree-Fock wave function, then the static exchange
potential is simply the associated Hartree-Fock potential (Sect. 2.3.1).

In order to derive the polarization potential (4.119), one has to go beyond the
static exchange approximation and consider the coupling to OQ-space. An exact
treatment of the coupling term in (4.167) would however involve an exact solution
of the N-electron problem, which is of course impossible. A successful approximate
access to the coupling potential is provided by replacing the whole set of eigenstates
of OQ OH OQ by a finite (small) number of cleverly chosen pseudostates [CU87, CU89].
For a calculation of optical potentials in this spirit see e.g. [BM88].

4.2 Scattering in Two Spatial Dimensions

Two-dimensional scattering problems arise naturally when the motion of projectile
and target is restricted to a plane, e.g. a surface separating two bulk media.
A scattering problem can also become effectively two-dimensional, if a three-
dimensional configuration is translationally invariant in one direction. This is
the case for a projectile scattering of a cylindrically symmetric target, e.g., an
atom or molecule scattering off a cylindrical wire or nanotube. The motion of
the projectile is free in the direction parallel to the cylinder axis, and we are
left with a two-dimensional scattering problem in a plane perpendicular to the
cylinder axis. Essential features of the two-dimensional scattering problem were
illuminated by Lapidus [Lap82], Verhaar et al. [VE84] and Adhikari [Adh86] some
decades ago. The recent intense activity in physics involving ultracold atoms and
their interaction with nanostructures such as cylindrical nanotubes has lead to a
renewed interest in this subject, in particular in the low-energy, near-threshold
regime [AF08, KM09, Tic09, FE12].

We assume that the 2D scattering process occurs in the y-z plane, where the
scattering angle � varies between �� and � , see Fig. 4.14. As in Sect. 4.1.1,
the quantum mechanical description of the scattering process is based on the
Schrödinger equation

�
� „2
2�
�C V.r/

�
 .r/ D E .r/ ; (4.172)

but r now stands for the two-component displacement vector in the y-z plane.
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Fig. 4.14 Two-dimensional
scattering in the y-z plane.
The z-axis shows in the
direction of incidence, and
the scattering angle � varies
between �� and �

θ

y

z

4.2.1 Scattering Amplitude and Scattering Cross Section

We look for solutions of (4.172) with the following boundary conditions,

 .r/
r!1� eikz C f .�/

eikr

p
r
: (4.173)

Essential differences to the three-dimensional case (4.3) are, that the outgoing
spherical wave becomes an outgoing circular wave whose amplitude decreases
proportional to 1=

p
r instead of to 1=r, and that the physical dimension of the

scattering amplitude f .�/ is the square root of a length in the two-dimensional case.
The current density jout.r/ associated with the outgoing circular wave is

jout.r/ D „k

�
j f .�; �/j2 Oer

r
C O

�
1

r 3=2

�
; (4.174)

while the incoming current density associated with the “plane wave” eikz in (4.173)
can again be written as jin D Oez„k=�. The surface element of a large sphere in the
three-dimensional case, r 2d˝ , is now replaced by the arc-element of a large circle,
r d� , and the differential scattering cross section is defined by the flux scattered into
this arc, jout.r/ � Oerr d� , normalized to the incoming current density j jinj D „k=�,

d
 D j f .�/j2 d� ;
d


d�
D j f .�/j2 : (4.175)

The integrated scattering cross section is


 D
Z �

��
d


d�
d� D

Z �

��
j f .�/j2 d� : (4.176)

Note that the differential and the integrated scattering cross sections have the
physical dimension of a length. The differential cross section can be interpreted



4.2 Scattering in Two Spatial Dimensions 337

as the length perpendicular to the direction of incidence from which the incoming
particles are scattered into the differential arc defined by d� , while the integrated
cross section corresponds to the length from which particles are scattered at all.

Particle conservation implies that the total flux through a circle of radius r,R �
�� j�Oerr d� , should vanish for large r. The contribution from the incoming wave eikz

vanishes on symmetry grounds, while the contribution from the outgoing circular
wave is:

Iout D lim
r!1

Z �

��
jout.r/ � Oerr d� D „k

�

Z �

��
j f .�/j2 d� D „k

�

 : (4.177)

The contribution jint.r/ of the interference of incoming “plane” and outgoing circular
wave to the current density is,

jint.r/ D „k

2�
f .�/

eik.r�z/

p
r
.Oer C Oez/ C cc C � � � ; (4.178)

so the interference contribution to the flux through a circle of large radius r is

jint.r/ � Oerr d� D „k

2�
f .�/ eikr.1�cos �/pr .1C cos �/ C cc : (4.179)

The integral over the right-hand side of (4.179) can be evaluated by the method of
stationary phase, since the integrand contributes only around cos � D 1 for r ! 1.
This gives

Iint D
Z �

��
jint.r/ � Oerr d� D 2

„k

�

r
�

k
Œ< f f .� D 0/g � = f f .� D 0/g� : (4.180)

Particle conservation requires Iout C Iint D 0, so with (4.177) we obtain the optical
theorem for scattering in two-dimensional space,


 D 2

r
�

k
Œ= f f .� D 0/g � < f f .� D 0/g� : (4.181)

4.2.2 Lippmann-Schwinger Equation and Born Approximation

Adapting the treatment of Sect. 4.1.1 to the case of two spatial dimensions leads to
the Lippmann-Schwinger equation

 .r/ D eikz C
Z

G2D.r; r 0/V.r 0/ .r 0/ dr 0 ; (4.182)
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which looks just like the corresponding equation (4.15) in 3D, except that the free-
particle Green’s function G2D.r; r 0/, defined by the 2D version of (4.13), is

G2D.r; r 0/ D i�

2„2 H.1/
0 .kjr � r0j/ kjr�r0j!1� i�

2„2 e�i�=4

s
2

�kjr � r0j eikjr�r0j :

(4.183)

Here H.1/
0 stands for the zero-order Hankel function of the first kind, see (A.44)

and (A.45) in Appendix A.4. In the asymptotic region jrj 	 jrj0 the Green’s function
in (4.182) can be replaced by

G2D.r; r0/ D �ei�=4

„2p2�k

eikr

p
r

�
e�ikr	r0 C O

�
r0

r

��
: (4.184)

This is the 2D version of (4.16); kr again stands for kOer, but Oer is now the radial unit
vector in the y-z plane. Inserting (4.184) in (4.182) gives the asymptotic form (4.173)
with

f .�/ D �ei�=4

„2p2�k

Z
e�ikr	r0

V.r0/  .r0/ dr0 : (4.185)

The Born approximation is defined by replacing the exact solution  .r0/ in the
integrand in (4.185) by the incoming “plane” wave eikz0 D ei.kOez/	r0

,

f Born.�/ D �ei�=4

„2p2�k

Z
dr0e�ikr	r0

V.r0/ eikz0 D �ei�=4

„2p2�k

Z
dr0e�iq	r0

V.r0/ ;
(4.186)

where „q is the momentum transferred from the incoming wave travelling in the
direction of Oez to the outgoing wave travelling in the direction of Oer,

q D k .Oer � Oez/ ; q D jqj D 2k sin.�=2/ : (4.187)

For a radially symmetric potential V.r/ D V.r/, (4.186) can be simplified via an
expansion of the exponential e�iq	r0

in polar variables [compare (4.197) below],

f Born.�/ D �ei�=4

„2p2�k
2�

Z 1

0

V.r/ J0
�
2kr sin.�=2/

	
r dr : (4.188)

4.2.3 Partial-Waves Expansion and Scattering Phase Shifts

For planar motion in the y-z plane, there is only one relevant component of angular
momentum, namely OL D yOpz � zOpy, and in terms of the angle � ,

OL D „
i

@

@�
: (4.189)
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The eigenfunctions of OL are eim� with m D 0; ˙1; ˙2; : : :, and the corresponding
eigenvalues are m„. Any wave function �.r/ � �.r; �/ can be expanded in the
complete basis of eigenfunctions of OL,

�.r/ D
1X

mD�1

um.r/p
r

eim� : (4.190)

From the polar representation of the Laplacian in 2D, we can write the kinetic energy
operator in (4.172) as,

� „2
2�
� D � „2

2�

�
@2

@r 2
C 1

r

@

@r

�
C OL2
2� r2

: (4.191)

We assume a radially symmetric potential, V.r/ D V.r/. Inserting the expan-
sion (4.190) into the Schrödinger equation (4.172) then gives, with the help
of (4.191), an uncoupled set of radial equations for the radial wave functions um.r/,

"
� „2
2�

d2

dr2
C
�
m2 � 1

4

	„2
2� r2

C V.r/

#
um.r/ D E um.r/ : (4.192)

The 2D radial Schrödinger equation looks similar to the 3D radial Schrödinger
equation (4.22) in Sect. 4.1.2. In fact, (4.192) and (4.22) are identical, if we equate
jmj � 1

2
with the 3D angular momentum quantum number l:

l � jmj � 1

2
: (4.193)

Many results derived for the 3D radial waves in Sect. 4.1.2 can be carried over to
the 2D radial waves simply via (4.193), but integer values of m imply half-integer
values of l, so the results of Sect. 4.1.2 have to be checked to see whether they hold
in these cases. This is particularly important for s-waves in 2D (m D 0), which
correspond to l D � 1

2
.

For the free-particle case V.r/ � 0, two linearly independent solutions of the
radial equation (4.192) are

u.s/m .kr/ D
r
�

2
kr Jjmj.kr/ ; u.c/m .kr/ D �

r
�

2
kr Yjmj.kr/ ; (4.194)
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where Jjmj and Yjmj stand for the ordinary Bessel functions of the first and second
kind, respectively [see Appendix A.4]. Their asymptotic behaviour is given by2

u.s/m .kr/
kr!1� sin

�
kr �

�
jmj � 1

2

�
�

2

�
;

u.c/m .kr/
kr!1� cos

�
kr �

�
jmj � 1

2

�
�

2

�
: (4.195)

The the influence of a potential V.r/ is manifest in the asymptotic phase shifts ım

of the regular solutions of the radial Schrödinger equation (4.192). When V.r/
falls off faster than 1=r2 at large distances the effective potential in (4.192) is
dominated by the centrifugal term at large distances, and the regular solution can
be taken to be a superposition of the two radial free-particle wave functions (4.194)
obeying (4.195),

um.r/
r!1/ A u.s/m .kr/C B u.c/m .kr/

r!1/ sin

�
kr �

�
jmj � 1

2

�
�

2
C ım

�
;

(4.196)
with tan ım D B=A.

In order to relate the scattering phase shifts to the scattering amplitude, we first
expand the incoming “plane” wave of (4.173) in partial waves,

eikz D
1X

mD�1
imJm.kr/ eim� kr!1�

1X
mD�1

1p
2�ikr

�
eikr C .�1/mi e�ikr

	
:

(4.197)
The appropriate partial-waves expansion for the scattering amplitude is

f .�/ D
1X

mD�1
fm eim� ; (4.198)

and the constant coefficients fm are the partial-wave scattering amplitudes. Express-
ing the sum of “plane” and circular wave in the form (4.190) gives an explicit
expression for the asymptotic behaviour of the radial wave functions,

um.r/
r!1� 1p

2�ik

h
.1C p

2�ik fm/ eikr C i.�1/m e�ikr
i

D i.�1/mp
2�ik

h
e�ikr � i.�1/m.1C p

2�ik fm/ eikr
i
: (4.199)

2Due to the m-independent term �
4

appearing in the arguments both of u.s/m .kr/ and of u.c/m .kr/
in (4.195), there is no a priori preference for the assignment of an asymptotic “sine-” or “cosine-
like” behaviour. The present nomenclature is chosen to make the connection to the 3D case as
transparent as possible.
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We can rewrite the asymptotic form of the regular solution (4.196) as

um.r/
r!1/ sin

�
kr �

�
jmj � 1

2

�
�

2
C ım

�

/ e�iŒkr�.jmj� 1
2 /

�
2 Cım�eCiım � eiŒkr�.jmj� 1

2 /
�
2 Cım�eCiım

/ e�ikr � e�i.jmj� 1
2 /� eikr e2iım : (4.200)

Comparing the lower lines of (4.199) and (4.200) gives

e2iım D 1Cp
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Equation (4.201) can be used to express the scattering cross sections in terms of
the scattering phase shifts,
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The scattering amplitude in forward direction is
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hence
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 ; (4.205)

which again yields the optical theorem (4.181).
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4.2.4 Near-Threshold Behaviour of the Scattering Phase Shifts

The leading near-threshold behaviour of the phase shifts can be derived from the
small-argument behaviour of the free-particle solutions (4.194),

u.s/m .kr/
kr!0�

p
�

� .jmj C 1/

�
kr

2

� 1
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; (4.206)

u.c/m .kr/
kr!0� � .jmj/p

�

�
kr

2

� 1
2�jmj

for m ¤ 0 : (4.207)

The case m D 0 is special, because the two powers of r appearing in (4.206)
and (4.206), namely 1

2
C jmj and 1

2
� jmj are equal in this case. We focus first

on the case m ¤ 0; the special case of s-waves in 2D is treated in Sect. 4.2.5 below.
At distances r beyond the range of the potential, the radial wave function um.r/

is a superposition of the free-particle wave functions (4.194); towards threshold,
k ! 0, the product kr tends to zero so we can make use of the small-argument
expressions (4.206), (4.207),
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(4.208)
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#
:

Directly at threshold, the radial Schrödinger equation (4.192) has a regular solution
u.0/m .r/ which is defined up to a constant by the boundary condition u.0/m .0/ D 0 and
is a function of r only. The wave function (4.208) must become proportional to this
k-independent solution for k ! 0, so in the second term in the square bracket in
the bottom line of (4.208), the k-dependence of tan ım must compensate the factor

.k=2/�2jmj: tan ı
k!0/ k2jmj. More explicitly,

tan ım
k!0�  �

� .jmj/� .jmj C 1/

�
am k

2

�2jmj
: (4.209)

The characteristic length am appearing on the right-hand side of (4.209) is the
scattering length in the partial wave m ¤ 0. Equation (4.209) is essentially identical
to (4.57) in Sect. 4.1.7 if we replace jmj by l C 1

2
, except that the power 2jmj

in (4.209) is always even for integer m, so the possibility of having positive or
negative values on the right-hand side has to be explicitly included via the  sign.
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As in the 3D case, the threshold behaviour (4.209) is only valid in all partial
waves if the potential V.r/ in the radial Schrödinger equation (4.192) falls off faster
than any power of 1=r at large distances. For potentials falling off as 1=r ˛, the
considerations of Sect. 4.1.7 can be carried over to the 2D case, remembering that l
now stands for jmj � 1

2
. In particular, the condition for the validity of (4.209) now

reads 2jmj < ˛ � 2. For 2jmj > ˛ � 2, (4.73) in Sect. 4.1.7 is applicable, provided
l C 1

2
is replaced by jmj.

4.2.5 The Case mD0, s-Waves in Two Dimensions

The case of s-waves in two dimensions is special, because the radial Schrödinger
equation (4.192) now reads

�
� „2
2�

d2

dr2
� 1

4

„2
2� r2

C V.r/

�
umD0.r/ D E umD0.r/ ; (4.210)

and the centrifugal potential is attractive. This degree of attractivity of the inverse-
square potential marks the boundary between potentials supporting at most a finite
number of bound states and those supporting infinitely many bound states. If the
factor 1

4
in front of the inverse-square term in (4.210) were replaced by 1

4
C" with an

ever so small positive ", then the radial Schrödinger equation (4.210) would support
an infinite dipole series of bound states, as described in Sect. 3.1.5.

The free-particle solutions, for V.r/ � 0 in (4.210), are

u.s/mD0.r/ D
r
�

2
kr J0.kr/ ; u.c/mD0.r/ D �

r
�

2
kr Y0.kr/ : (4.211)

Their small-argument behaviour is
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kr ; (4.212)
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	�
;

cf. (A.36) and (A.42) in Appendix A.4. Beyond the range of the interaction
potential V.r/, the regular solution of the radial Schrödinger equation (4.210) is
a superposition of the free-particle waves (4.211), and its asymptotic behaviour is,

umD0.r/
r!1/ p

kr ŒJ0.kr/ � tan ımD0Y0.kr/�

kr!1/ sin



kr C �

4
C ımD0

�
: (4.213)
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The condition, that the right-hand side of the upper line in (4.213) become,
except for a simple proportionality, independent of k in the limit k ! 0, implies
the following leading near-threshold behaviour of the s-wave scattering phase shift,

cot ımD0
k!0� 2

�

�
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�
ka

2

�
C �E

�
: (4.214)

Equation (4.214) defines the scattering length a for s-waves in two dimensions. In
the limit k ! 0, the wave function (4.213) converges to a k-independent limit u.0/mD0,

umD0.r/
k!0/ u.0/mD0.r/

r!1/ �p
r ln


 r

a

�
: (4.215)

The wave function on the right-hand side of (4.215) has exactly one node (beyond
r D 0), and this node lies at r D a. For a potential falling off as 1=r ˛ at large
distances, a well-defined scattering length in the partial wave m exists as long as
2jmj < ˛ � 2. For m D 0, this condition is fulfilled for all ˛ > 2. The scattering
length a defined according to (4.214), (4.215) is well defined for all interaction
potentials which fall off faster than 1=r2 at large distances.

It is worthwhile to reflect a little on the remarkable situation of s-waves in 2D. At
threshold, the regular free-particle wave is proportional to

p
r, corresponding to r lC1

when l D � 1
2
. The “irregular” solution, which we might expect to be proportional

to r�l, is actually proportional to
p

r ln r, which seems only marginally less regular
than the regular wave. An arbitrary superposition of these two free-particle waves
can be written as

u.r/ / A
p

r � p
r ln r D �p

r ln

 r

eA

�
; (4.216)

which is just the form on the right-hand side of (4.215), with the scattering length
given by a D eA. In two-dimensional scattering, the scattering length is never
negative.

The leading near-threshold behaviour of the s-wave phase shift (4.214) was
already given in [VE84], together with the next term of the effective-range
expansion in two dimensions,
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I (4.217)

the effective range in 2D is defined by

r 2eff D 2

Z 1

0


�
w.0/.r/

2 � �
u.0/.r/

2�
dr ; (4.218)

see also [AF08]. Here u.0/.r/ is the regular solution, at threshold, of (4.210), which
behaves as the right-hand side of (4.215) asymptotically, and w.0/.r/ is the free-
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particle solution which has this form for all r,

w.0/.r/ D �p
r ln


 r

a

�
; u0/.r/

r!1� �p
r ln


 r

a

�
: (4.219)

In contrast to the similar-looking definition of the effective range in 3D, see (4.100)
in Sect. 4.1.7, the right-hand side of (4.218) has the physical dimension of a length
squared. Note that r 2eff defined in this way can be negative. The integral on the
right-hand side of (4.218) converges to a well defined limit for interaction potentials
falling off faster than 1=r 4 at large distances [AF08].

The leading near-threshold behaviour of the scattering cross sections is, naturally,
dominated by the contribution from the s-wave. From (4.198), (4.201) and (4.214)
we obtain

f .�/
k!0� f0
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; (4.220)

so
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j ln
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	C �Ej2 and 

k!0� �2=k

j ln
�

ka
2

	C �Ej2 : (4.221)

The quantum mechanical scattering cross sections in two dimensions diverge at
threshold. This divergence is essentially as 1=k, moderated marginally by the
logarithmic factor. Note that the expressions in (4.220) and (4.221), where the
leading behaviour contains the logarithm in the expression ln .ka=2/C �E, are only
meaningful when ka=2 is so small, that ln .ka=2/ < ��E, i.e., for

ka < 2 exp .��E/ : (4.222)

4.2.6 Rutherford Scattering in Two Dimensions

An instructive example showing interesting differences to the well-studied case of
scattering in 3D is the case of Rutherford scattering in two dimensions, which was
first treated comprehensively by Barton [Bar83]. The potential is

V.r/ D C

r
: (4.223)

This could be the interaction between two point particles whose motion is
restricted to a two-dimensional plane embedded in three-dimensional space. It
is worth remembering, however, that the Coulomb interaction in a genuinely
two-dimensional space does not have this r-dependence. In terms of the scaled
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coordinate � D kr, the Schrödinger equation reads

�
��� C 2 

�

�
 D  ; (4.224)

where  is the Sommerfeld parameter

 D �C

„2k : (4.225)

As in Sect. 4.1.12, we introduce the quantum mechanical length aC, which does not
exist in classical mechanics,

aC D 1

jjk D „2
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aCk
: (4.226)

For an attractive potential, C < 0 in (4.223), aC is the usual Bohr radius.
As in the 3D case, the Schrödinger equation (4.224) has analytical solutions in

2D as well. Equations (4.141), (4.143) and (4.144) in Sect. 4.1.12 are replaced in
2D by
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and

fC.�/ D �  ei�=4p
2 k sin2.�=2/

�
�
1
2

C i
	

� .1 � i/
e�i lnŒsin2.�=2/� ; (4.229)

respectively. The function F in (4.227 ) again denotes the confluent hypergeometric
function, see Appendix A.5 . With the identities
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we obtain the differential cross section for Rutherford scattering in two dimensions,
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In contrast to the 3D case, the quantum mechanical result (4.231) does not agree
with the classical Rutherford cross section in two dimensions,
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; (4.232)

see, e.g., (1.55) in Sect. 1.4 of [Fri16]. On the other hand, evaluating (4.188) gives
the corresponding result in Born approximation,
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In terms of the quantum mechanical length aC (the “Bohr radius”) defined in
(4.226),
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Comparing (4.234) and (4.235) shows that the coincidence of Rutherford scattering
in 3D, namely that classical mechanics, the Born approximation and the full
quantum mechanical treatment all yield the same result (4.147) for the differential
scattering cross section, is lifted in two spatial dimensions. The angular dependence,
d
=d� / 1= sin2.�=2/, is the same in all three cases, but the energy dependent
prefactors of the classical cross section and of the Born approximation differ
from the exact quantum mechanical result. This is illustrated in Fig. 4.15, where
the respective differential cross sections, multiplied by sin2.�=2/, are plotted as a
functions of the dimensionless product kaC D 1=jj.

Both the classical cross section and the Born approximation overestimate the
exact quantum mechanical cross section (4.231), (4.234). As already observed by
Barton [Bar83], the Born approximation becomes accurate in the high-energy limit,
whereas the classical result becomes exact in the low-energy limit,
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Fig. 4.15 Rutherford
scattering in two spatial
dimensions. The solid black
line shows the exact quantum
mechanical differential cross
section (4.234) [in units of
the “Bohr radius” aC]
multiplied by sin2.�=2/ as
function of the dimensionless
product aCk D 1=jj. The
dashed red line and the dotted
blue line show the
corresponding classical result
and the result of the Born
approximation (4.235)
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The example is a nice illustration of the fact that, for homogeneous potentials of
degree �1, i.e., of the Coulomb type, the classical limit is at the threshold E D 0, and
the classical treatment becomes increasingly inaccurate for large values of jEj. This
is well accepted for bound states at negative energies, where E ! 0 corresponds
to the limit of infinite quantum numbers, but it is not so widely appreciated for the
regime of positive energies.

4.3 Spin and Polarization

In Sect. 4.1 we didn’t consider the fact that electrons have spin. If the potential by
which an electron is scattered is completely independent of spin, then the spin state
of the electron is not affected by the scattering process and the cross sections are
independent of the state of spin. In general however, electron-atom interactions at
least contain a spin dependence in the form of a spin-orbit coupling—see Sect. 1.7.3.
Hence the spin state is affected by scattering and the cross sections depend on the
state of spin before and after the collision.

4.3.1 Consequences of Spin-Orbit Coupling

Let’s assume for the time being that the spin of the incoming electron is given by the
spin-up state j�Ci [cf. (1.341)]. The asymptotic form of the wave function solving
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the stationary Schrödinger equation (with a shorter-ranged potential) is now [instead
of (4.3)]

 D eikz

�
1

0

�
C eikr

r

�
f .�; �/
g.�; �/

�
; r ! 1 : (4.237)

The differential cross section for elastic scattering is the outgoing particle flux,
which now contains a spin-up and a spin-down contribution, divided by the
incoming current density,

d�

d˝
D j f .�; �/j2 C jg.�; �/j2 : (4.238)

Here g.�; �/ is the spin-flip amplitude, and its absolute square describes the proba-
bility that the orientation of the spin is reversed by the collision. The formula (4.238)
implies that we do not separate spin-up and spin-down components for the outgoing
electron, i.e. we don’t measure the spin of the scattered electron.

If the target atom (or ion) itself has no spin, and if there are no further
contributions in the potential breaking radial symmetry, then the spin of the
projectile electron and its orbital angular momentum couple to good total angular
momentum labelled by the quantum number j D l˙1=2. The stationary Schrödinger
equation can be decomposed into radial Schrödinger equations (1.362), in which the
potentials depend not only on the orbital angular momentum quantum number l but
also on the total angular momentum quantum number j. The solutions of these radial
Schrödinger equations are asymptotically characterized by phase shifts ı. j/

l .
We choose the quantization axis for all angular momenta to be the z-axis, which

points in the direction of the incoming particle current, and we can assume the total
wave function to be an eigenstate of the z-component of the total angular momen-
tum. The corresponding quantum number must be m = +1/2 for consistency with
the right-hand side of (4.237). We use the generalized spherical harmonics Yj;m;l

introduced in Sect. 1.7.3 to decompose the wave function (4.237) into components
with good values of j, m and l. In the special case m D C1=2, (1.358) becomes
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These relations can be inverted,
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Expanding the spatial part of the plane wave according to (4.30) and using the
upper equation (4.240) yields
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: (4.241)

If we expand the scattering amplitudes f and g in spherical harmonics in analogy
to (4.31),
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then we can use (4.240) and decompose the outgoing spherical wave into compo-
nents with good j, m and l,
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If we now collect the radial parts of the incoming plane wave and the outgoing
spherical wave for given values of l and j, we obtain expressions which look like the
expressions in the big square brackets in (4.32), except that the coefficient fl in (4.32)
is now replaced by different linear combinations of fl and gl, namely fl C lgl for
j D l C 1=2 and fl � .l C 1/gl for j D l � 1=2. The same steps which led from (4.32)
to (4.34) now give
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Resolving for the partial wave amplitudes fl and gl yields
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We can use (4.243), (4.245) to deduce the direct and the spin-flip parts of
the cross section (4.238) from the phase shifts, which can be obtained from the
asymptotic solutions of the radial Schrödinger equations (1.362). By the way, the
dependence of the spin-flip amplitude on the azimuthal angle � is given simply by
exp.i�/ regardless of l, so the cross section again depends only on � . If the effect
of spin-orbit coupling is negligible, then the phase shifts are independent of j for
given l; in this case gl vanishes and fl is again given by the expression (4.34).

For scattering by a long-ranged modified Coulomb potential we obtain formulae
such as (4.243) and (4.245) for the additional scattering amplitude due to the shorter-
ranged deviations from a pure Coulomb potential, which now include the effects of
spin-orbit coupling. The corresponding extension of (4.160) reads
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We can also apply the Gell-Mann–Goldberger procedure to a decomposition of
the total potential in the radial Schrödinger equation (1.362) into an unperturbed
part containing everything except the spin-orbit coupling and the spin-orbit part
.„2=2/F. j; l/VLS.r/. Since the effect of the spin-orbit coupling is small, we can
apply the DWBA formula (4.163) to obtain an approximate expression for the
additional phase due to the spin-orbit term in the radial potential:



tan ı. j/

l

�
LS

� ��
k

F. j; l/
Z 1

0
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0/ dr0: (4.247)

Now ul is the regular solution [asymptotically normalized to sin(kr + . . . )] of the
radial Schrödinger equation containing the full radial potential with the exception
of the spin-orbit coupling. For a given l the j-dependence of the right-hand side
of (4.247) is determined by the factor F(j, l), which is simply l for j D l C 1

2
and

�.l C 1/ for j D l � 1
2

(see Sect. 1.7.3).

4.3.2 Application to General Pure Spin States

A pure state of a physical system is one which can be described by a single quantum
mechanical wave function—in contrast to a mixed state consisting of a statistical
mixture of various quantum mechanical states (see Sect. 4.3.3) below. A pure spin

state of an electron is defined by a two-component spinor

�
A
B

�
. In order to describe

the scattering of an electron whose incoming wave is in such a general pure spin
state, we have to complement the treatment based on (4.237) above.
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First we consider the case that the incoming electron is in the spin-down state
j��i. Instead of (4.237) we now have

 0 D eikz
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; r ! 1 : (4.248)

The z-component of the total angular momentum is now m0 D �1=2. The partial-
waves expansion of the scattering amplitudes is now [instead of (4.242)]
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and leads to the same expressions (4.245) for the partial-wave amplitudes fl and gl

(see Problem 4.6). The amplitudes f , g in (4.237) and f 0, g0 in (4.248) thus only
differ in their �-dependence of the spin-flip amplitude which is given by the
spherical harmonics Yl;˙1 and is proportional to  exp.˙i�/ [see (A.4), (A.5) in
Appendix A.1]. We thus have f 0 .�/ D f .�/, and the spin-flip amplitudes g, g0 can
be expressed by a common function g0 which depends only on the polar angle � :

g.�; �/ D g0.�/ eCi�; g0.�; �/ D �g0.�/ e�i� : (4.250)

The wave function corresponding to an incoming electron in an arbitrary pure
spin state can now be constructed as a linear combination of the two special
cases (4.237) and (4.248),

A C B 0 r!1D eikz

�
A
B

�
C eikr

r

�
Af .�/ � Bg0.�/e�i�

Ag0.�/eCi� C Bf .�/

�
: (4.251)

The differential cross section is again defined by the ratio of the outgoing flux to the
incoming current density and is now

d�

d˝
D
ˇ̌
Af .�/ � Bg0.�/ e�i�

ˇ̌2 C ˇ̌
Ag0.�/ eCi� C Bf .�/

ˇ̌2
jAj2 C jBj2

D j f .�/j2 C jg0.�/j2 C 2=Œ f .�/g0.�/��2=ŒAB� ei��

jAj2 C jBj2 : (4.252)

Again this formula implies that we don’t measure the spin of the scattered electron.
If both A and B are different from zero, the incoming electron is no longer polarized
parallel to the z-axis and the differential cross section (4.252) depends not only on
the polar angle � but also on the azimuthal angle � (see Fig. 4.16). The relative
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Fig. 4.16 Scattering of electrons polarized perpendicular to the direction of incidence. The cross
section depends not only on the polar angle � but also on the azimuthal angle �

importance of the �-dependent contribution is determined by the imaginary part of
the product fg�

0 and is usually expressed with the help of the Sherman function S(�),

S.�/ D �2 =Œ fg�
0 �

j f j2 C jg0j2 D i
fg�
0 � f �g0

j f j2 C jg0j2 : (4.253)

It is a speciality of spin 1
2

particles, that an arbitrary (pure) spin state is a spin-up
(or a spin-down) state with respect to an appropriately chosen quantization axis. To

see this consider an arbitrary normalized spin state j�i D
�

A
B

�
, jAj2 C jBj2 D 1.

Using the Pauli spin matrices (1.345) we define the three-component polarization
vector

P D h�j O� j�i : (4.254)

In the present case its components are

Px D 2<ŒA�B�; Py D 2=ŒA�B�; Pz D jAj2 � jBj2; (4.255)

and its length is unity. The projection of the spin operator O� onto the direction of P
is

O�P D P� O� D Px O�x C Py O�y C Pz O�z; (4.256)

and it is easy to show (Problem 4.7) that the spinor j�i D
�

A
B

�
is an eigenstate of

O�P with eigenvalue +1.3

3The deeper reason for the fact that every two-component spinor uniquely corresponds to
a direction of polarization, lies in the isomorphism of the group SU(2) of special unitary
transformations of two-component spinors with the group SO(3) of rotations in three-dimensional
space. A similar correspondence does not apply for spinors with more than two components, i.e.
for spins larger than or equal to one.
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Equation (4.251) shows that scattering of the electron into the direction .�; �/

transforms the initial spin state j�i D
�

A
B

�
of the incoming wave into the new spin

state

�
A0
B0
�

D S
�

A
B

�
; S D 1pj f j2 C jg0j2

�
f .�/ �g0.�/e�i�

g0.�/ei� f .�/

�
: (4.257)

The transformation is described by the transformation matrix S, which is in general
not unitary and is not to be confused with the scattering matrix to be treated later
(see Sect. 4.4.2). The polarization vector P0 of the scattered electron is

P0 D h�j S� O� S j�i
h�j S�S j�i : (4.258)

The denominator in (4.258) is needed for correct normalization, because the
transformed spinor Sj�i is no longer normalized to unity.

4.3.3 Application to Mixed Spin States

A mixed state of a quantum mechanical system contains different wave functions
with certain statistical probabilities. In order to describe our lack of knowledge
of the precise state of a physical system we imagine a collection or ensemble of
copies the system covering all individual states which are compatible with our
limited knowledge. Such a statistical mixture of states cannot be described by a
single wave function, but only by an incoherent superposition of quantities related
to the individual members of the ensemble. An appropriate quantity for describing
an ensemble is the density operator

O% D
X

n

wn j�ni h�nj : (4.259)

Here j�ni are (orthonormalized) state vectors (wave functions) for pure quantum
mechanical states, and the sum (4.259) covers all states which might be contained
in the ensemble. Partial information which may make some states more probable
than others is contained in the real, non-negative probabilities wn. The sum of these
probabilities is of course unity. If we have no information at all about the system,
then all wn are equal and their value is the inverse of the number of possible states,
i.e. of the number of states in the ensemble.

The density operator (4.259) is a weighted mean of the projection operators
j�nih�nj onto the individual states j�ni. A density operator is always Hermitian
and its trace is the sum of the probabilities, i.e. unity. In a particular representation
the density operator becomes the density matrix. The statistical expectation value
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hh OOii of an observable OO in a mixed state is the appropriately weighted mean of the
quantum mechanical expectation values in the individual states,

hh OOii D
X

n

wn h�nj OO j�ni D Trf OO O%g: (4.260)

A pure state corresponds to the special case that one probability wn is unity
while all other probabilities vanish. The statistical expectation value (4.260) then
is identical to the quantum mechanical expectation value in the (pure) state. The
density operator O%P for a pure state is just the projection operator onto this state, in
particular

O%p O%p D O%p : (4.261)

A completely unpolarized electron is one for which absolutely nothing is known
about its spin state. With respect to an arbitrary axis of quantization, both spin states
j�Ci and j��i are equally probable. The corresponding density operator is

O% D 1

2
j�Ci h�Cj C 1

2
j��i h��j ; (4.262)

and the associated density matrix is just 1/2 times the 2 � 2 unit matrix. In order
to describe the scattering of unpolarized electrons we have to incoherently add the
cross section (4.238) from Sect. 4.3.1 and the corresponding cross section for an
incoming electron in a spin-down state, both weighted with the factor 1/2. (Because
of f D f 0 and (4.250) both cross sections are equal in this case, and the sum (4.238)
is unchanged.) This corresponds to averaging over the initial states compatible with
the measured boundary conditions, as discussed in connection with electromagnetic
transitions in Sect. 2.4.4.

A general mixed spin state is neither completely polarized like a pure state,
nor completely unpolarized as in (4.262). In the spirit of (4.260) we define the
polarization vector for a mixed spin state as

P D hh O� ii D Trf O� O%g : (4.263)

If we take the direction of P as the axis of quantization and assume a density operator

O% D wC j�Ci h�Cj C w� j��i h��j ; wC C w� D 1; (4.264)

then the component of P in the direction of this axis is obviously the difference of
the probabilities for the spin pointing parallel and antiparallel to P, namely wC�w�.
This is also the length of the polarization vector, which is smaller than unity for a
mixed spin state. The length of the polarization vector serves as definition for the
(degree of) polarization. The polarization can vary between zero and unity; it is
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unity for completely polarized electrons (pure spin state) and zero for completely
unpolarized electrons.

If the incoming electron is partially polarized with respect to an axis of
quantization, which need not be the z-axis, then we describe such a (mixed) spin
state by a density operator like (4.264). In order to calculate the differential cross
section in such a case, we must first determine the differential cross sections for the
two pure states j�Ci and j��i with respect to the axis of quantization according
to (4.252) and then incoherently superpose the results with the weights wC and w�.

Scattering into the direction .�; �/ transforms an incoming (pure) spin state j�i
into the spin state Sj�i according to (4.257). Extending this result to mixed states
shows that the density operator O% of an incoming electron is transformed into the
density operator

O%0 D S O%S�

TrfS O%S�g (4.265)

by the scattering process. The denominator in (4.265) ensures correct normalization,
Trf O%0g D 1. With (4.263) we can give a general formula for the polarization
vector P0 of the electron scattered into the direction .�; �/,

P0 D Trf O� O%0g D Trf O�S O%S�g
TrfS O%S�g : (4.266)

As an application of the formula (4.266) consider the case that the incoming
electron is completely unpolarized. Then O% is just 1/2 times the unit matrix
and (4.266) simplifies to

P0 D Trf O�SS�g
TrfSS�g : (4.267)

Inserting the explicit expression (4.257) for the transformation matrix S yields

P0 D S.�/ Oe�; i.e. P
0

x D �S.�/ sin�; P
0

y D S.�/ cos�; P
0

z D 0 I (4.268)

here S(�) again stands for the Sherman function (4.253). This means that scattered
electrons can have a finite polarization even if the incoming electrons are unpo-
larized. The direction of the polarization vector is perpendicular to the scattering
plane, which is spanned by the direction of the incoming electron (the z-axis) and
the direction of the scattered electron .�; �/.

The polarization of electrons by scattering can be exploited in double scattering
experiments in which a beam of initially unpolarized electrons is successively
scattered by two targets. After scattering by the first target the electrons are
(partially) polarized, and the cross section for scattering by the second target
acquires a left-right asymmetry due to its dependence on the azimuthal angle �.
Thus polarization effects can be observed without actually having to distinguish the
spin states of the electrons (see e.g. [Kes85, GK91]).
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If the target atom or ion itself has a non-vanishing angular momentum, then the
angular momentum coupling for the whole system becomes much more compli-
cated. In this case we must consider various states of polarization not only of the
projectile electron, but also of the target atom (or ion). In general there are several
orbital angular momenta l which can couple with the spin of the projectile electron
and the angular momentum of the target atom to a given total angular momentum
quantum number of the system. This leads to coupled radial Schrödinger equations
as they also appear in the description of inelastic scattering—see Sect. 4.4.2.

The number and quality of experiments with polarized electrons is impressive—
see e.g. [Kes85, Kes91]. For a comprehensive monograph on the application of
density matrix techniques see [Blu81]. The treatment of polarization effects in
electron-atom scattering on the basis of the density matrix formalism is also
described extensively in [Bar89]. The density matrix formalism has also been
applied to situations of greater complexity, such as the scattering of electrons by
optically active molecules of given orientation [Kes00].

4.4 Inelastic Scattering

4.4.1 General Formulation

In an inelastic scattering process the target atom (or ion) undergoes a change from
its initial internal state to a different final internal state due to the collision with
the projectile electron. In order to describe such a process, our ansatz for the wave
function must contain contributions from at least two channels. A natural starting
point for the description of inelastic collisions is found in the coupled channel
equations (3.176), which we shall now write in the simplified form

�
� „2
2�
�C Vi;i

�
 i.r/C

X
j¤i

Vi;j j.r/ D .E � Ei/ i.r/ : (4.269)

Again r is the spatial coordinate of the projectile electron, j (or i) labels a number of
open channels defined by various internal states  . j/

int of the target atom and Ej are
the associated internal excitation energies. The potentials Vi;j are largely given by
the matrix elements of the interaction operator (3.173) between the internal states,

Vi;j D h .i/int j OHWj . j/
int i0 C : : : : (4.270)

The dots on the right-hand side stand for the (short-ranged) exchange terms in the
effective potential and for possible contributions due to coupling to a not explicitly
included OQ-space. The matrix of potentials Vi;j is an operator in the space of
vectors of channel wave functions . 1;  2; : : :/, and it is in general explicitly energy
dependent and non-Hermitian if coupling to and loss of flux into the OQ-space is
important.
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As long as all interactions are shorter ranged, a solution of the coupled channel
equations (4.269) describing an incoming electron in channel i fulfills the following
boundary conditions:

 j.r/ D ıj;ieikiz C eikjr

r
fj;i.�; �/; r ! 1 : (4.271)

Here

kj D
r
2�.E � Ej/

„2 (4.272)

is the asymptotic wave number of the outgoing electron in the (open) channel j.
Differential cross sections are defined as in Sect. 4.1.1 by the ratio of outgoing
particle flux through the surface element r2d˝ to the incoming current density. For
elastic scattering i ! i we again obtain the form (4.6),

d�i!i

d˝
D jfi;i.�; �/j2; (4.273)

but the differential cross section for inelastic scattering i ! j, j ¤ i has the slightly
modified form

d�i!j

d˝
D kj

ki
j fj;i.�; �/j2 : (4.274)

The origin of the factor kj=ki on the right-hand side of (4.274) is that the current
density in the entrance channel is „ki=�,while the outgoing current in channel j
is given by a formula similar to (4.5) but with a factor „kj=�. If we interpret the
inelastic scattering amplitude (or transition amplitude) fj;i as the matrix element
of a transition operator (cf. (4.18) and (4.284) below), then the expression (4.274)
can be derived in the spirit of time-dependent perturbation theory (Sect. 2.4.1),
and the proportionality to kj comes in via the density of final states in the Golden
Rule (2.139) (see Problem 4.3). Thus the phase space factor kj=ki accounts for the
different density of states for free electrons in the exit channel j and the entrance
channel i.

Integrated cross sections are defined in analogy to (4.7),

�i!j D
Z

d�i!j

d˝
d˝ D kj

ki

Z
j fj;i.˝/j2 d˝ : (4.275)

The total cross section (with respect to channel i as the entrance channel) is a sum
of the integrated elastic cross section �i!i, the total inelastic cross section �i;inel DP

j¤i �i!j and the absorption cross section �i;abs, which accounts for the loss of flux

into open channels of OQ-space,

�i;tot D �i!i C
X
j¤i

�i!j C �i;abs D �i;el C �i;inel C �i;abs : (4.276)
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We can also formulate a Lippmann-Schwinger equation in the many-channel
case. To this end we again proceed by making the Schrödinger equation (4.269)
look like an inhomogeneous differential equation,

�
E0 C „2

2�
�

�
� D OV� : (4.277)

We have introduced a more compact notation using vectors and matrices: �
stands for the vector of channel wave functions . 1;  2; : : :/, OV stands for the
matrix of potentials .Vi;j/, and E0 is the diagonal matrix containing the asymptotic
energies E � Ei in the respective channels as the diagonal matrix elements. Since

the “homogeneous equation”

 OV � 0

�
corresponds to a set of uncoupled free-

particle Schrödinger equations, we can easily define a diagonal matrix G of Green’s
functions,

G �

0
BB@
G1;1 0 0 � � �
0 G2;2 0 � � �
0 0 G3;3 � � �
� � � � � � � � � � � �

1
CCA ; Gi;i D � �

2�„2
eiki jr � r0j

jr � r0j ; (4.278)

which fulfills an extension of (4.13) to the many-channel case,

�
E0 C „2

2�
�

�
G D 1 : (4.279)

Using this multichannel Green’s function we can write the general solution
of (4.277) as

� D �hom C OG OV�; (4.280)

where �hom is a solution of the “homogeneous equation”.
The wave function (4.280) fulfills boundary conditions corresponding to an

incoming plane wave in channel i (and only in channel i) if we define �hom to have
the following components:

 i.r/ D  in;i.r/ D eikiz;  j D 0 for j ¤ i : (4.281)

The components of the full wave function (4.280) are then

 j.r/ D ıj;i eikiz C
Z

Gj;j.r; r0/
X

n

Vj;n n.r0/ dr0 : (4.282)

Since all Gj;j have the form (4.16) asymptotically (with kj in place of k), the channel
wave functions j have the asymptotic form (4.271), and we obtain a generalization
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of (4.17) as an implicit equation for the scattering amplitudes,

fj;i.�; �/ D � �

2�„2
X

n

Z
e�ikj	r0

Vj;n n.r0/ dr0: (4.283)

Here kj is the vector of length kj pointing in the direction of the radius vector r.
The right-hand side of (4.283) depends on the label i of the entrance channel,

because the channel wave functions  n to be inserted in the integrand are those
which solve the Schrödinger equation (or the Lippmann-Schwinger equation) with
incoming boundary conditions in the one channel i. Similar to the one-channel case,
we can interpret the sum over the integrals in (4.283) as the matrix element of a
transition operator OT between an initial state �in;i; defined by just an incoming plane
wave  in;i.r0/ D exp .ikiz0/ in channel i, and a final state �out;j, defined by just a
plane wave  out;j.r0/ D exp.ikj � r0/ in the exit channel j:

Tout;jIin;i D h�out;jjbTj�in;ii D h�out;jj OVj� i D �2�„2
�

fj;i.�; �/ : (4.284)

As in the one-channel case, the Born approximation now consists in replacing the
exact channel wave functions n in (4.282), (4.283) by the “homogeneous solution”
ın;i exp.ikiz0/, which is equivalent to replacing the transition operator OT by the
potential OV. The transition amplitudes in Born approximation are

f B
j;i D � �

2�„2
Z

e�ikj	r0

Vj;i eikiz0

dr0 D � �

2�„2
˝
 out;jjVj;ij in;i

˛

D � �

2�„2 h�out;jj OVj�in;ii : (4.285)

If we ignore the effects of antisymmetrization etc., we can write out the matrix
element in (4.285) explicitly according to (4.270). If we take the interaction OHW to
consist of just the Coulomb attraction between the outer electron 1 and the target
nucleus (charge number Z) and the Coulomb repulsion due to the other electrons
� = 2,. . . N, we obtain

f B
j;i D � �

2�„2 heikj	r1 . j/
int j

 
NX
�D2

e2

jr1 � r� j � Ze2

r1

!
jeiki	r1 .i/int i

D � �

2�„2
Z

dr1 : : :
Z

drN

X
mS1 ;:::mSN

ei.ki�kj/	r1 (4.286)

�Œ . j/
int .r2; : : : rN I : : :/��

 
NX
�D2

e2

jr1 � r� j � Ze2

r1

!
 
.i/
int .r2; : : : rN I : : :/ :
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Here ki is the wave vector of the incoming plane wave in channel i. Because of
the orthogonality of the internal states  .i/int in the entrance channel and  . j/

int in the
inelastic exit channel, the part of the potential which describes the attraction of
electron 1 by the target nucleus, and which depends only on r1, does not contribute
to the matrix element in (4.286). In order to calculate the contribution of the other
part coming from the electron-electron repulsion, we exploit the fact that 1=jr1� r� j
is the Fourier-transform of .2=�/1=2jki � kjj�2. The resulting identity,

Z
ei.ki�kj/	r1
jr1 � r� j dr1 D 4�

jki � kjj2 ei.ki�kj/	r� ; (4.287)

allows us to perform the integration over r1 in (4.286),

f B
j;i D � 2�e2

„2jki � kjj2 h . j/
int j

NX
�D2

ei.ki�kj/	r� j .i/int i0 : (4.288)

As in elastic scattering, we use the wave vector q to describe the momentum
transfer, which is now the difference of two momentum vectors of different length,

q D kj � ki; (4.289)

and the formula for the inelastic scattering cross section is (in Born approximation)

d�B
i!j

d˝
D kj

ki
j f Bj2

j;i D 4

q4a21

kj

ki
jh . j/

int j
NX
�D2

e�iq	r� j .i/int i0j2 : (4.290)

The first factor 4=.q4a21/ on the right-hand side is a generalization of the
Rutherford differential cross section (4.147) for the scattering of an electron of
mass � by a singly charged nucleus; a1 D „2=.�e2/ is the corresponding Bohr
radius. In contrast to the elastic scattering case however, this Rutherford factor does
not diverge in the forward direction, because the wave vector q (4.289) has a length
of at least

qmin D jki � kjj : (4.291)

The last factor on the right-hand side of (4.290) contains the information
about the structure of the initial and final states of the target atom. In analogy to
the oscillator strengths for electromagnetic transitions (Sect. 2.4.6) we can define
generalized oscillator strengths,

Fj;i.q/ D 2�

„2
Ej � Ei

q2
jh . j/

int j
NX
�D2

e�iq	r� j .i/int i0j2; (4.292)
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which depend on the length of the momentum transfer vector. These generalized
oscillator strengths merge into the ordinary oscillator strengths defined by (2.216)
in the hypothetic limit of vanishing momentum transfer.

The theory summarized in equations (4.286)–(4.292), which was originally
formulated by Bethe, establishes a connection between the cross sections of inelastic
electron scattering and photoabsorption. Conditions for the validity of the Bethe
theory are the applicability of the Born approximation (4.285) and the negligibility
of exchange contributions between the projectile electron and the electrons of the
target atom. It is thus most useful for high energies of the incoming and outgoing
electron. For a detailed treatise on Bethe theory see [Ino71].

When an electron is scattered by a charged ion, the diagonal potentials asymp-
totically have the form of a pure Coulomb potential (4.140). Let i label the entrance
channel; the asymptotic boundary conditions for the channel wave functions are
then [cf. (4.155), (4.271)]

 j.r/
r!1D ıj;i

�
eiŒkizCi ln ki.r�z/� C fC.�/

ei.kir�i ln 2kir/

r

�

C ei.kjr�jln 2kjr/

r
f 0
j;i.�; �/ : (4.293)

Since the asymptotic wave number kj depends on the channel label j via (4.272), the
Coulomb parameter (Sommerfeld parameter) (4.142) also depends on the channel
label, j D �1=.kjaZ/. The additional scattering amplitudes f 0

j;i in (4.293) are due
to the deviations of the full potential from a pure Coulomb potential �.Ze2=r/ıj;i.
These deviations consist of additional contributions to the diagonal potentials
( j D i) and all coupling potentials (j ¤ i). They are generally shorter ranged
according to the considerations of Sect. 3.3.1. As in the one channel case, the elastic
scattering cross section is the absolute square of a sum consisting of the pure
Coulomb scattering amplitude fC and the additional scattering amplitude f 0

i;i. The
inelastic cross sections are given by the additional scattering amplitude f 0

j;i alone,

d�i!i

d˝
D ˇ̌

fC.�/C f 0
i;i.�; �/

ˇ̌2
;

d�i!j

d˝
D kj

ki
j f 0

j;i.�; �/j2; j ¤ i : (4.294)

The additional scattering amplitudes f 0
j;i obey implicit equations of the

form (4.283), except that the plane waves exp .�ikj: r0/ are now replaced by
distorted (Coulomb) waves N �

C;j [cf. (4.153), (4.154)]. N C;j describes a Coulomb
wave in channel j with an incoming modified plane wave travelling in the direction
of the radius vector r plus an incoming spherical wave. With the usual assumptions
of the Born approximation (for distorted waves) we obtain an explicit expression
for the additional scattering amplitude in the elastic channel ( j D i) and for the
transition amplitude to the inelastic channels ( j ¤ i),

f DWBA
j;i D � �

2�„2
˝ N C;j

ˇ̌
Vj;i

ˇ̌
 C
˛
: (4.295)
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Here  C is the Coulomb wave (4.141) in the entrance channel i, i.e. with wave
number ki, Coulomb parameter i, incoming modified plane wave travelling in the
direction of the positive z-axis and outgoing spherical wave.

4.4.2 Coupled Radial Equations

The internal states  .i/int of the target atom or ion are eigenstates of the total angular
momentum of the N �1 electrons with total angular momentum quantum number Ji,
and we shall assume that they are also eigenstates of the z-component of the operator
with quantum number Mi. For a complete specification of all possible elastic and
inelastic reactions we assume that the channel label i (or j) characterizes not only
the internal state of the target atom with its angular momentum quantum numbers
Ji, Mi, but also the spin state �C or �� of the projectile electron.

When we expand the channel wave functions in partial waves we can no longer
assume that the z-component of the orbital angular momentum is a good quantum
number and zero (as in (4.21)), so we expand as follows:

 i.r/ D
1X

lD0

ClX
mD�l

ui;l;m

r
Yl;m.�; �/ : (4.296)

Furthermore, the potentials no longer conserve the orbital angular momentum; their
action on the angular coordinates can be expressed as follows:

Vi;jYl0 ;m0 D
X
l;m

Yl;mVi;j.l;mI l0;m0/ : (4.297)

The partial waves expansion (4.296) reduces matrix elements of the potentials Vi;j

to a sum of radial matrix elements of the “radial potentials” Vi;j.l;mI l0;m0/. The
connection between such radial matrix elements and the matrix elements of the
associated N-electron wave function is given by (4.270),

Dui;l;m

r
Yl;m

ˇ̌
Vi;j

ˇ̌uj;l0 ;m0

r
Yl0;m0

E

D
Dui;l;m

r
Yl;m  

.i/
int

ˇ̌
ˇ OHW

ˇ̌
ˇ uj;l0 ;m0

r
Yl0;m0  

. j/
int

E
C � � �

D ˝
ui;l;m

ˇ̌
Vi;j.l;mI l0;m0/

ˇ̌
uj;l0;m0

˛
: (4.298)

If we insert the expansion (4.296) into the coupled channel equations (4.269) we
thus obtain the coupled radial equations

�
� „2
2�
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dr2
C l.l C 1/„2

2�r2

�
ui;l;m.r/

C
X

j;l0 ;m0

Vi;j.l;mI l0;m0/ uj;l0;m0.r/ D .E � Ei/ ui;l;m.r/ : (4.299)
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How many and which combinations of channel label j and angular momentum
quantum number l0;m0 have to be included in the sum in (4.299) for given i, l and m,
depends crucially on the angular momentum quantum numbers Ji, Mi and Jj, Mj of

the internal states  .i/int and  . j/
int , because they determine the action of the potentials

on the spin and angular variables. Since the total angular momentum of the
N-electron system is a good quantum number, the coupled channel equations (4.299)
reduce to blocks belonging to different angular momentum quantum numbers of the
whole system. If we start with a (truncated) expansion involving a finite number of
internal states  . j/

int , each such block contains at most a finite number of equations.
A further reduction of these blocks may be possible if the N-electron Hamiltonian
has further symmetries or good quantum numbers. If e.g. spin-dependent forces
can be neglected, then the total orbital angular momentum and the total spin are
conserved and only partial waves belonging to the same values of the corresponding
quantum numbers couple.

For each block of coupled radial equations there are as many linearly independent
vectors U of channel wave functions ui;l;m solving the equations as there are
equations in the block. Asymptotically, each radial wave function of a solution is a
superposition of two linearly independent solutions of the uncoupled free equation,
e.g. of [cf. Table 1.3, (1.151)]

us
i;l.r/

r!1D
s

2�

�„2ki
sin.kir � l

�

2
/; uc

i;l.r/
r!1D

s
2�

�„2ki
cos.kir � l

�

2
/ :

(4.300)

The coefficients of such superpositions can be obtained e.g. by direct numerical
solution of the coupled channel equations if the potentials are known. They
determine the asymptotic form of the wave function for given initial conditions and
hence the observable cross sections.

A frequently used basis of vectors of solutions U.i;l;m/ is defined by the following
boundary conditions:

u.i;l;m/j;l0;m0 .r/
r!1D ıi;jıl;l0ım;m0 us

i;l.r/C Ri;l;mIj;l0 ;m uc
j;l0.r/ : (4.301)

The coefficients in front of the cosine terms define the reactance matrix R D
.Ri;l;mIj;l0 ;m0/, which is also known as the K-matrix.4 In the trivial case that the
coupled channel equations reduce to a single equation of the form (1.75) or (1.362),
the reactance matrix is simply the tangent of the asymptotic phase shift ı due to the
potential,

R D tan ı: (4.302)

4Not to be confused with the R-matrix. This defines a particular method for solving the Schrödinger
equation by first constructing bound auxiliary states in an internal region and then matching them to
the appropriate scattering wave functions with the help of the R-matrix (see e.g. [Bra83, MW91a]).
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If the potential is real, this phase shift and its tangent are also real. In the genuine
many-channel case, the reactance matrix is a Hermitian matrix as long as the
potential OV contains no non-Hermitian contributions (absorption).

We obtain an alternate basis of vectors of solutions of the coupled channel
equations, ˚.i;l;m/, if we express the radial wave functions as superpositions not
of sine and cosine functions as in (4.300), but of outgoing and incoming spherical
waves,

�C
i;l .r/ D uc

i;l.r/C ius
i;l.r/

r!1D
s

2�

�„2ki
eCi.kir�l�=2/;

��
i;l.r/ D uc

i;l.r/ � ius
i;l.r/

r!1D
s

2�

�„2ki
e�i.kir�l�=2/ I (4.303)

�
.i;l;m/
j;l0 ;m0 .r/

r!1D ıi;j ıl;l0 ım;m0��
i;l.r/ � Si;l;mIj;l0 ;m0�C

j;l0.r/ : (4.304)

The asymptotic coefficients of the outgoing components �C
j;l0 define the scattering

matrix or S-matrix: S D .Si;l;mIj;l0 ;m0/.
Since both bases of vectors of solutions, U.i;l;m/ and˚.i;l;m/ obeying the boundary

conditions (4.301) and (4.304) respectively, span the same space of solutions of the
coupled channel equations, there must be a linear transformation which transforms
one basis into the other. This transformation is

� i

0
@U.i;l;m/ C

X
j;l0 ;m0

Si;l;mIj;l0 ;m0 U. j;l0 ;m0/

1
A D ˚.i;l;m/ : (4.305)

We can see that (4.305) is correct by looking at the asymptotic behaviour of both
sides of the equation in the sine-cosine basis (4.300). The coefficients of the sine
terms on both sides form the same matrix �i.1 C S/. Requiring that the coefficients
of the cosine terms also be the same leads to

� i.1 C S/R D 1 � S : (4.306)

This yields an explicit expression for the S-matrix as a function of R,

S D .1 C iR/.1 � iR/�1 : (4.307)

Leaving effects of absorption aside, the S-matrix (4.307) is unitary, because R is
Hermitian. In the trivial case that the coupled channel equations reduce to a single
equation of the form (1.75) or (1.362), the S-matrix is simply given by the phase
shift ı due to the potential [cf. (4.302)],

S D 1C i tan ı

1 � i tan ı
D e2iı : (4.308)
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At a given energy E the Hermitian Matrix R can always be diagonalized. The
corresponding transformation defines linear combinations of the channels labelled
by i, l and m; these linear combinations are called eigenchannels. The eigenvalues %
of R are real and can each be written as the tangent of an angle as suggested
by (4.302). The corresponding angles are called eigenphases. Each eigenvalue %
of R is associated with a vector of solutions of the coupled channel equations in
which all radial wave functions are asymptotically proportional to a superposition of
the sine and cosine functions (4.300) with the same coefficient, namely % D tan ı, in
front of the cosine term. If the energy dependence of an eigenphase shows a sudden
rise by � , then this points to a resonant, almost bound state just as in the one-channel
case. Since the S-matrix S is a function of R, it is diagonal in the same basis in
which R is diagonal and the eigenvalues of S are simply given by the eigenphases:
exp.2iı/.

We can establish a relation connecting the S-matrix to observable cross sections
by recalling the boundary conditions (4.271) of the channel wave functions for
a typical scattering experiment. In a partial-waves expansion (4.296) of the total
wave function, we obtain incoming spherical waves only from the plane wave part
of the channel wave function in the entrance channel i [cf. (4.30)]. A comparison
with the spherical waves in (4.303) shows that the solution of the stationary
Schrödinger equation obeying the boundary conditions (4.271) is given as the
following superposition of the basis vectors ˚.i;l;mD0/:

˚ D
X
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.��„/il�1
s
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2�ki
˚.i;l;0/ : (4.309)

The associated channel wave functions �j.r/ are corresponding superpositions of
the radial wave functions (4.304),
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The relation connecting the scattering amplitudes defined by (4.271) with the
elements of the S-matrix is thus,
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If the potentials conserve orbital angular momentum, the S-matrix is diagonal in l
and m,

Si;l;0Ij;l0 ;m0 D Si;lIj;lıl;l0ı0;m0 : (4.312)

The expression (4.311) for the scattering amplitude then simplifies to

fj;i.�; �/ D 1

i
p

kikj

X
l

p
�.2l C 1/.Si;lIj;l � ıj;i/Yl;0.�/; (4.313)

and agrees with the result (4.31), (4.34) in the case of elastic scattering.
If the diagonal potentials contain a very-long-ranged Coulomb contribution, the

preceding considerations have to be modified as in Sect. 4.1.13. The sine and cosine
waves in (4.300) or the spherical waves in (4.303) have to be replaced by the
appropriate distorted waves of the pure Coulomb potential. The reactance-matrix R
now describes the influence of the short-ranged deviations from the pure Coulomb
potential. This reactance matrix and its continuation to energies at which some or
all channels are closed form the foundation of Seaton’s formulation of multichannel
quantum defect theory (see Sect. 3.4).

So far in this section we have not discussed the complications introduced by
explicitly considering the spin of the electron. How to incorporate the spin of the
projectile electron was discussed in Sect. 4.3 for the example of elastic scattering
by a target atom with vanishing total angular momentum. In general, a target atom
in an internal state  .i/int may have a non-vanishing angular momentum Ji associated
with 2Ji C 1 eigenstates of the z-component of the angular momentum labelled by
the quantum numbers Mi D �Ji; �Ji C 1; : : : Ji. An arbitrary pure or mixed spin
state of the electron is described by a 2 � 2 density matrix, as discussed in Sect. 4.3.
Correspondingly, an arbitrary pure or mixed state in the quantum numbers Mi of the
target atom is described by a .2Ji C 1/� .2Ji C 1/ density matrix. An arbitrary state
of polarization of electron and atom (with angular momentum Ji) is thus described
by a Œ2.2Ji C 1/� � Œ2.2Ji C 1/� density matrix. The theoretical description of the
change induced in the polarization of electron and atom by scattering is then based
on a study of the transformations which map the Œ2.2Ji C 1/�� Œ2.2Ji C 1/� density
matrices in the entrance channel onto Œ2.2Jj C 1/�� Œ2.2Jj C 1/� density matrices in
the respective exit channels. For a detailed discussion see [Bar89].

We shall now, for the time being, explicitly specify the quantum numbers
ms D ˙1=2 for the z-component of the electron spin and Mi for the z-component
of the angular momentum of the target atom, so that the channel label i accounts
only for the remaining degrees of freedom in  .i/int . The general inelastic scattering
amplitude is then fj;m0

s ;MjIi;ms ;Mi.�; �/ for the transition from the entrance channel i
to the exit channel j accompanied by a transition of the quantum numbers for the
z-components from ms;Mi to m0

s;Mj. A complete experimental determination of all
amplitudes for given channel labels i; j is very difficult in general, because e.g. it is
not easy to prepare the target atom in a definite eigenstate of the z-component of
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its angular momentum. The incomplete information about the states of polarization
of the electron and the target atom can be appropriately described using density
matrices. The density matrix e.g. for a totally unpolarized electron and a totally
unpolarized target atom (with angular momentum Ji) in the entrance channel is
simply 1=Œ2.2Ji C 1/� times the unit matrix. If we also forgo measuring the
components of the electron spin and the angular momentum of the atom in the exit
channel, then the differential cross section for inelastic scattering from channel i to
channel j is in this case an incoherent superposition of all contributions in question
with a weighting factor 1=Œ2.2Ji C 1/�,

d�i!j

d˝
D 1

2.2Ji C 1/

C 1
2X

msD� 1
2

JiX
MiD�Ji

C 1
2X

m0

sD� 1
2

JjX
MjD�Jj

�kj

ki
j fj;m0

s;MjIi;ms;Mi .�; �/j2 : (4.314)

This corresponds to averaging over all initial states and summing over all final states
compatible with the observed boundary conditions (cf. Sect. 2.4.4, last paragraph,
and Sect. 4.3.3).

4.4.3 Threshold Effects

The energy dependence of the cross section (4.274) or (4.275) for inelastic scattering
in the vicinity of a channel threshold E D Ej is largely determined by the phase
space factor kj=ki. The transition amplitude fj;i is given by a matrix element of the
form (4.283) and generally assumes a finite value at E D Ej. It will be essentially
constant in a sufficiently small interval around Ej. An exception occurs when lower
partial-waves are absent in the partial waves expansion for symmetry reasons.
Let l be the lowest orbital angular momentum quantum number contributing to
the integral in (4.283) in a partial-waves expansion of the plane wave  �

out;j D
exp .�ikj �r0/. Then the dependence of the integral on the wave number kj is given by
the spherical Bessel function jl.kjr0/ [cf. (4.30)] and is proportional to kl

j [(A.49) in
Appendix A.4]. The absolute square of the transition amplitude is thus proportional
to k2l

j and, remembering the phase space factor kj=ki, we obtain Wigner’s threshold
law for inelastic scattering cross sections,

�i!j.E/ /

p

E � Ej

�2lC1
: (4.315)

Here l is the lowest orbital angular momentum quantum number observed in the exit
channel.
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Wigner’s threshold law is a consequence of the long-ranged centrifugal potential
in the exit channel,

Vj;j.r/
r!1� „2

2�

�

r2
; � D l.l C 1/ : (4.316)

Whatever happens at short distances, the particle has to penetrate the repulsive
potential tail (4.316) in order to be detectable at large distances. If the potential in
the exit channel is attractive at small or moderate distances, then the cross section for
any process can be expected to be proportional to the probability PT for transmission
through the potential barrier formed by the long-ranged tail (4.316) and the shorter-
ranged attractive terms in the interaction. If the potential has a WKB region on the
near side of the barrier, then the problem of transmission through and reflection by
the barrier can be formulated as in Sect. 1.4.2, except that on the near side of the
barrier where the potential cannot be assumed to be constant, the plane waves e.g.
on the left-hand side of (1.175), are replaced by appropriate WKB wave functions.
Explicit expressions for the behaviour of the transmission probability through such
a centrifugal barrier at energies E D „2k2=.2�/ near threshold are given in [ME01],
see also [FT04], and have the general form

PT
k!0/ k2�� ; �� D

r
� C 1

4
D l C 1

2
: (4.317)

For the special case that the shorter-ranged attractive potential is well represented
by a power-law term in the barrier region,

V.r/
r!1� V�;m.r/ D „2

2�

 
�
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� .ˇm/

m�2

rm

!
; m > 2; (4.318)

the near-threshold behaviour of the transmission probability through the barrier is
exactly given by

PT
k!0� P.m; �/ .kˇm/

2�� ; (4.319)

with the coefficient

P.m; �/ D 4�2=22��

.m � 2/2����
�
� .��/� .�/

2 ; � D 2��

m � 2 : (4.320)

The equations (4.319), (4.320) hold not only for positive integer values of l but
for any value of the parameter � larger than �1=4 (corresponding to l > �1=2),
which is the limit below which the (attractive) inverse-square potential supports
an infinite dipole series of bound states, see Sect. 3.1.5. For vanishing or weakly
negative values of the strength of the inverse-square potential, �1=4 < � � 0,
there no longer is a barrier to tunnel through, but the potential tail still has a
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nonclassical quantal region separating the internal WKB region from the region
of asymptotic free-particle motion, and the probability for transmission through this
quantal region of the potential tail vanishes according to (4.317) near threshold.
Thus Wigner’s threshold law also applies to s waves, .� D 0; l D 0/, and it can
even be formally extended to weakly attractive inverse-square potentials as long
as � > �1=4. The opening of a channel j at the threshold Ej also affects the
energy dependence of inelastic cross sections to other exit channels as well as the
elastic scattering cross section. The qualitative behaviour of any observable near a
threshold can be understood quite generally using arguments similar to those already
applied for near-threshold quantization in Sect. 3.1.2. The calculation of the value
of any observable generally involves the full solution of the Schrödinger equation
with contributions from all channels. Directly at an inelastic threshold E D Ej, the
contribution of channel j involves the threshold wave function u0 which is defined
in (3.40) and tends to unity asymptotically. Immediately above Ej, i.e. at energy
E D Ej C „2.kj/

2=.2�/, the wave function in channel j is a superposition of the two
fundamental solutions which are asymptotically proportional to exp.˙ikjr/ and can,
to lowest order in kj, be written as u0 ˙ ikju1; where u1 is the threshold solution
which behaves asymptotically as r, see (3.40). Immediately below threshold, E D
Ej � „2.	j/

2=.2�/, the wave function in channel j is asymptotically proportional to
exp.�	jr/, i.e. to u0�	ju1. The full solution of the Schrödinger equation can thus be
expected to contain a contribution proportional to kj / p

E � Ej just above Ej and a
contribution proportional to 	j / p

Ej � E just below Ej. The contributions from all
other channels with thresholds away from Ej can be expected to be smooth functions
of energy around E � Ej. When calculating, e.g., the integrated elastic scattering
cross section, we expect a sudden decline just above the inelastic threshold Ej,
because flux is now lost into the newly opened channel j; this is described by a
leading term proportional to

p
E � Ej with a negative coefficient. Just below Ej the

energy dependence of the integrated elastic scattering cross section is dominated by
a leading term proportional to

p
Ej � E: If the coefficient is also negative, then we

observe a conspicuous cusp at threshold, as illustrated in Fig. 4.17(a); a positive

Fig. 4.17 Schematic illustration of singularities in the integrated elastic cross section at an
inelastic channel threshold Ej: (a) cusp, (b) rounded step
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coefficient leads to a rounded step as in Fig. 4.17(b). In both cases the channel
threshold Ej manifests itself as a singularity with infinite gradient in the integrated
elastic cross section, provided s-waves are not excluded in the exit channel j on
symmetry grounds; otherwise the corresponding contributions are proportional to
.kj/

2lC1 or to .	j/
2lC1, l � 1, and they are masked by other terms depending

smoothly on energy, i.e. on .kj/
2 or .	j/

2.
It may well happen that the internal energy Ei in the entrance channel is larger

than the internal energy Ej in the exit channel. This case, which corresponds to an
exothermic reaction in chemistry, is called superelastic scattering. The exit channel j
is then already open at the threshold Ei of the entrance channel, and the outgoing
electron has an asymptotic kinetic energy which is larger by Ei � Ej than the
asymptotic kinetic energy of the incoming electron. At the reaction threshold Ei,
the wave number ki in the entrance channel starts at zero, but the wave number kj

in the exit channel is finite. Unless the corresponding scattering amplitudes vanish,
the cross sections (4.274), (4.275) diverge at the reaction threshold for superelastic
scattering.

The threshold behaviour of inelastic scattering cross sections is very different
when the interaction potentials contain a very-long-ranged Coulomb term. In the
matrix element for the scattering amplitude [cf. (4.283)] we now have a Coulomb
wave instead of the plane wave in the exit channel. The partial-waves expan-
sion (4.158) shows that the energy dependence of the transition amplitude f 0

j;i just
above the threshold Ej is given by the regular Coulomb functions Fl.j; kjr/ (divided
by kjr). In an attractive Coulomb potential we have according to (1.145), (1.141)

Fl.j;kjr/
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�„2
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1

aZ

pR J2lC1

 s
8r

aZ

!
; (4.321)

so that jf 0
j;ij2 is inversely proportional zu kj just above Ej, regardless of which

angular momenta contribute to the partial waves sum. Thus the inelastic cross
sections (4.294) tend smoothly to finite values at the respective thresholds, when
there is an attractive Coulomb potential in the exit channel.

The differential cross section for elastic scattering in the presence of an attractive
Coulomb potential behaves smoothly above an inelastic threshold, in accordance
with the smooth behaviour of the inelastic cross sections—remember, the integrated
elastic cross section diverges. Below an inelastic threshold however, an attractive
Coulomb potential supports whole Rydberg series of Feshbach resonances. Con-
sider the simple case that only the elastic channel i is open below the channel
threshold Ej and that the electron-ion interaction can be described by a radially
symmetric potential. The phase shift ıl in each partial wave l is then given by a
formula like (3.233),

ıl D ��i � arctan

"
jRi;jj2

tan
�
�.�j C �j/


#
; �j D

s
R

Ej � E
: (4.322)



372 4 Simple Reactions

Here �i, Ri;j and �j are just the weakly energy-dependent MQDT parameters in the
two-channel case (Sect. 3.4.1), which also depend on l. Equation (4.322) describes
a Rydberg series of resonant jumps of the phase shift by � (cf. Fig. 3.18). The
individual partial-wave amplitudes f 0

l [see (4.160)] oscillate between zero and a
maximum value of jfl0j D .2l C 1/=ki an infinite number of times just below the
threshold Ej, and this leads to increasingly narrow oscillations in the differential
cross section (4.156) as we approach Ej from below. In practice these oscillations
can only be resolved up to a certain energy above which the observed cross section
merges into a smooth function which connects to the cross section above the
threshold.

4.4.4 An Example

A comprehensive review on electron-atom scattering was written by McCarthy
and Weigold in 1991 [MW91a]. Most of the theoretical investigations of inelastic
electron-atom scattering have of course been performed for the hydrogen atom. Here
the spectrum and the eigenstates of the target atom are known and many matrix
elements can be evaluated analytically.

Detailed calculations of cross sections for inelastic electron-hydrogen scattering
at comparatively low energies were performed e.g. by Callaway [Cal82, Cal88].
Williams [Wil76, Wil88] performed accurate measurements in the energy region
between the first inelastic threshold .3=4/R � 10:20 eV and the n D 3 threshold at
.8=9/R � 12:09 eV, see also [SS89]. In this energy region the channels in which
the hydrogen-atom electron is excited to the n D 2 shell are open, but all higher
channels are closed.

The calculations in [Cal82] are based on a close-coupling expansion. Eigenstates
of the hydrogen atom up to principal quantum number n D 3 were included
exactly; higher closed channels were approximated by pseudostates. When spin-
dependent effects are neglected, the coupled channel equations reduce to blocks
labelled by a good total orbital angular momentum quantum number L and a good
total spin S. Different variational methods [Cal78, Nes80] were used to solve the
coupled channel equations.

Figure 4.18 shows integrated inelastic scattering cross sections for energies just
above the first inelastic threshold. The upper curve shows the excitation of the
hydrogen atom into the 2p state, the lower curve shows excitation into the 2s
state. The dots are the experimental values and the solid lines show the results
of the calculations of [Cal82], which have been smoothed a little in order to
simulate the finite experimental resolution. This gives the theoretical curves a finite
gradient at threshold (10.20 eV), where it really should be infinite. A bit above the
inelastic threshold both curves show a distinct maximum suggesting a resonance.
The calculations for L D 1 and S D 0 actually do yield a resonant eigenphase in
this region. Fitting its energy dependence to an analytic form similar to (1.234) gives
a resonance position ER � 10:2 eV and a width of � � 0:02 eV.
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Fig. 4.18 Integrated cross sections for inelastic electron scattering by hydrogen just above the
inelastic threshold (10.20 eV). The upper curve shows the 1s ! 2p excitation, the lower curve
shows the 1s ! 2s excitation. The dots are the experimental data of Williams and the solid lines
are the theoretical results from [Cal82], which have been smoothed a little in order to simulate
finite experimental resolution (From [Wil88])

Figure 4.19 shows the integrated inelastic cross sections of Fig. 4.18 at somewhat
higher energies just below the n D 3 threshold. Again the upper curve shows the
1s ! 2p transition while the lower curve shows the 1s ! 2s transition. The solid
curves again show the (smoothed) results of the calculations [Cal82], and the dots
are the data from [Wil88]. Just below the n D 3 threshold the barely closed n D 3

channels support a number of bound states which couple to and can decay into
the open n D 1 and n D 2 channels and hence appear as Feshbach resonances.
The positions and widths of these resonances are derived from the jumps in the
eigenphases which are fitted to the analytic form (1.234) [Cal82]. The irregularly
oscillating structure in the cross sections is obviously due to these resonances, the
positions of which are shown as vertical lines above the abscissa. Similar structures
can also be seen in differential inelastic cross sections as measured by Warner et al.
[WR90].
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Fig. 4.19 Integrated cross sections for inelastic electron scattering by hydrogen just below the
threshold for n D 3 excitations of the hydrogen atom (12.09 eV). The upper curve shows the
1s ! 2p excitation, the lower curve shows the 1s ! 2s excitation. The dots are the experimental
data of Williams and the solid lines are the theoretical results from [Cal82], which have been
smoothed a little in order to simulate finite experimental resolution. The vertical lines above the
abscissa show the positions of a number of Feshbach resonances (From [Wil88])

Further experimental advances made high precision studies of Feshbach reso-
nances in H� possible [SZ95, BK96]. The hydrogen atom has the unique property
that its excited energy levels include degenerate states of different parity. This means
that the internal states need not be parity eigenstates, and the leading asymptotic
terms in the diagonal channel potentials can contain inverse-square terms which are
attractive and strong enough to support a dipole series of Feshbach resonances, see
Sect. 3.1.6.. Details on recent studies of H�—and of other negative ions—can be
found in the comprehensive review by Andersen [And04].

4.5 Exit Channels with Two Unbound Electrons

The considerations of Sects. 4.1–4.4 are based on the assumption that only one of
the spatial coordinates can become very large, namely the displacement vector of
the incoming or scattered electron. The many-electron wave function vanishes in
regions of coordinate space where the coordinates of two or more electrons are large.
In these circumstances the asymptotic boundary conditions of the wave functions are
easy to formulate, and an ab initio description of the possible elastic and inelastic
scattering processes can be justified in a straightforward way, e.g. via the close-
coupling ansatz (3.163) in connection with Feshbach’s projection formalism.
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The formulation of reaction theory becomes much more difficult if states with
two or more outgoing electrons become important. This is the case if the energy of
the projectile electron is sufficient to ionize the target atom or detach an electron
from the target ion. This section briefly sketches and highlights some aspects of the
theoretical description of such (e,2e) reactions with exactly two outgoing electrons
in the exit channel. For a more detailed description of (e,2e) reactions see e.g.
[Rud68] or the articles by Byron and Joachain [BJ89] and McCarthy and Weigold
[MW91b].

4.5.1 General Formulation

For a better understanding of the general structure of the wave functions in an (e,2e)
reaction we shall first replace the electrons by distinguishable particles without
electric charge. The complications due to the indistinguishability of the electrons
and the very-long-ranged Coulomb interactions will be discussed in Sect. 4.5.2.

The dynamics of two outgoing particles is described by continuum wave
functions depending on both displacement vectors r1 and r2, i.e. on six coordinates
altogether. The remaining degrees of freedom are described by bound internal wave
functions �.n/int depending on the remaining displacement vectors r3; : : : rN and all
spin coordinates. They may be taken to be eigenstates of a corresponding internal
Hamiltonian OHint with the respective eigenvalues En. Each such eigenstate defines a
break-up channel n.

The description of inelastic scattering in Sect. 4.4 was limited to scattering
channels with one outer electron. This made it easy to reduce the equations of
motion to the coupled channel equations (4.269) for the orbital wave functions of
the outer electron. If both scattering channels and break-up channels are important,
it is not so easy to formulate a set of coupled channel equations, because the
channel wave functions are functions in different spaces: either functions of one
displacement vector (scattering channels) or functions of two displacement vectors
(break-up channels). We can achieve a consistent description by working in the
space of wave functions of the whole N-particle system. A channel wave function
is always associated to a corresponding internal wave function depending on the
respective remaining degrees of freedom—�

.n/
int .r3; : : : rN I ms1 : : :msN / in the break-

up channels and  . j/
int .r2; : : : rN I ms1 : : :msN / in the scattering channels.

In order to study the asymptotic structure of the wave function, we again use
the method of Green’s functions. First we write the N-particle Hamiltonian OH as a
sum of the kinetic energies Ot1 D �.„2=2�/�r1 and Ot2 D �.„2=2�/�r2 of particle 1
and particle 2 respectively, plus an internal Hamiltonian OHint and a residual term OVR

containing all contributions not included in the previous terms,

OH D Ot1 C Ot2 C OHint C OVR; (4.323)
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and we make the N-particle Schrödinger equation look like an inhomogeneous
equation,

.E � Ot1 � Ot2 � OHint/� D OVR� : (4.324)

The Green’s function OG, which is now also an operator in the space of internal wave
functions �.n/int .r3; : : : rN I : : :/; is defined as a solution of the following equation,

.E � Ot1 � Ot2 � OHint/ OG D ı.r1 � r0
1/ ı.r2 � r0

2/ 1 : (4.325)

The bold 1 on the right-hand side of (4.325) stands for the unit operator in the space
of internal wave functions �.n/int :

A formal solution of the “inhomogeneous equation” (4.324) is

� D OG OVR � : (4.326)

In contrast to the Lippmann-Schwinger equations for elastic and inelastic scatter-
ing, (4.15) and (4.280), the right-hand side of (4.326) contains no solution of the
“homogeneous equation” . OVR � 0/ determined by the incoming boundary condi-
tions. The reason is that the initial state contains only one free (incoming) particle,
while all others are bound, and hence it is not a solution of the homogeneous
equation which now describes two free particles.

We can use the integral equation (4.326) to derive the asymptotic form of the
wave function in the break-up channels. Equation (4.325) can be fulfilled by a
Green’s function of the following structure,

OG D
X

n

Gn.r1; r2I r0
1; r

0
2/j �.n/int ih�.n/int j; (4.327)

where the sum should cover a complete set of internal states �.n/int (and not only
bound states). In the break-up channels, E > En; the dependence of the Green’s
function on the displacement vectors is given by the factors Gn.r1; r2I r0

1; r
0
2/ which

fulfill the following equations:

.E � En � Ot1 � Ot2/Gn.r1; r2I r0
1; r

0
2/ D ı.r1 � r0

1/ ı.r2 � r0
2/ : (4.328)

E �En is the asymptotic kinetic energy available to the two outgoing particles in the
open break-up channel n.

For a more economical notation we collect the two displacement vectors r1 and
r2 into one six-component displacement vector,

R � .r1; r2/ : (4.329)
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With the abbreviations

E � En D „2
2�

K2
n ;

�6 D �r1 C�r2 D @2

@x21
C @2

@y21
C @2

@z21
C @2

@x22
C @2

@y22
C @2

@z22
; (4.330)

(4.328) becomes the equation defining the Green’s function for the Helmholtz
equation in six dimensions (except for a factor 2�=„2),

.K2
n C�6/Gn.R;R0/ D 2�

„2 ı.R;R
0/ : (4.331)

The Green’s function which fulfills (4.331) and which is appropriate for two
outgoing particles in the break-up channel n, is (see Problem 4.9)

Gn.R;R0/ D � �K2
n

8�2„2
iH.1/

2 .KnjR � R0j/
jR � R0j2 : (4.332)

Here H.1/
� is the Hankel function of order � (see Appendix A.4). For small values of

jR � R0j we obtain (see (A.46) in Appendix A.4)

Gn.R;R0/ D � �

2�3„2
1

jR � R0j4 ; jR � R0j ! 0 I (4.333)

for large values of jR � R0j (see (A.45) in Appendix A.4),

Gn.R;R0/ D p
i
�

„2 K3=2
n

eiKn jR�R0j

.2�jR � R0j/5=2
; jR � R0j ! 1 : (4.334)

For R 	 R0 we can expand in R0=R; as we did in Sect. 4.1.1 [cf. (4.16)],

Gn.R;R0/ D p
i
�

„2 K3=2
n

eiKn R

.2�R/5=2

�
e�iKR 	R0 C O

�
R0

R

��
: (4.335)

Here KR is the six-component wave vector of length Kn pointing in the direction of
the (six-component) displacement vector R.

We obtain the asymptotic form of the wave function by inserting the Green’s
function given by (4.327) and (4.335) into (4.326),

�
R!1D X

n

p
i
�

„2 K3=2
n

eiKnR

.2�R/5=2
j�.n/int ih�.n/int  

.KR/
n j OVRj� i C : : : : (4.336)
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Here .KR/
n .R0/ D exp.iKR �R0/ is a plane wave with a six-component wave vector KR

for the free motion of the two particles 1 and 2, which together have a kinetic
energy E � En. The sum in (4.336) should be understood as a sum over all genuine
break-up channels, for which E > En and �.n/int is a bound state in the internal
coordinates. Channels with E < En do not contribute asymptotically .R ! 1/,
and unbound internal states, which correspond to a break-up into more than two
unbound particles, are hinted at by the dots on the right-hand side.

If we divide the six-component wave vector KR into two three-component parts,
k1 for the first three components and k2 for the last three components, we have

 .KR/
n .R0/ D eik1	r0

1 eik2	r0

2 : (4.337)

Thus  .KR/
n is just a product of two plane waves for the independent free motion of

the two outgoing particles 1 and 2.
Since KR points in the same direction as the six-component displacement vector R

in six-dimensional space, there is a common proportionality constant ˇ, such that

k1 D ˇr1; k2 D ˇr2 : (4.338)

Equation (4.338) says that the wave vector k1 points in the same direction as the
displacement vector r1 in three-dimensional space and that k2 points in the same
direction as r2. This amounts to four real conditions, because a direction in three-
dimensional space is fixed by two angles. However, a direction in six-dimensional
space is fixed by five angles. The remaining condition contained in the fact that the
six-component vectors KR and R are parallel, is

k1
k2

D r1
r2
: (4.339)

The length Kn of the vector KR is fixed by the kinetic energy available in the exit
channel,

„2K2
n

2�
D „2
2�
.k21 C k22/ D E � En : (4.340)

The distribution of this kinetic energy among the two outgoing particles 1 and 2 is
uniquely determined by the ratio (4.339).

The asymptotic form of the wave function � in a break-up channel n as given
by (4.336) is thus a product of the internal eigenstate �.n/int and an outgoing spherical

wave in six-dimensional coordinate space, multiplied by a phase space factor K3=2
n

and a break-up amplitude fn, which depends on the direction of the (six-component)
displacement vector R,

�
R!1D X

n

j�.n/int i eiKnR

.2�R/5=2
K3=2

n fn.˝1;˝2; ˛/C : : : : : (4.341)
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Here˝1 is the solid angle defining the direction of the vector r1 (in threedimensional
space), ˝2 is the solid angle for the direction of r2, and ˛ is the so-called
hyperangle; its tangent is just the ratio (4.339) which determines the distribution
of the asymptotic kinetic energy among the two outgoing particles,

tan˛ D r1
r2
: (4.342)

The length R of the six-component displacement vector is often called the
hyperradius. The hyperradius and the five angles ˝1;˝2; ˛ are the spherical
coordinates of R in six-dimensional coordinate space. These six-dimensional
spherical coordinates are called hyperspherical coordinates.

Comparing (4.341) with (4.336) shows that the break-up amplitude fn is given
by a matrix element containing plane waves for free particle motion in the bra, in
complete analogy to the case of elastic (4.17) or inelastic scattering (4.283), (4.284),

fn.˝1;˝2; ˛/ D p
i
�

„2 h�.n/int  
.KR/
n j OVRj� i : (4.343)

The operator OVR in the matrix element in (4.343) contains all contributions to
the Hamiltonian which are not already contained in the kinetic energy of the two
particles 1 and 2 or in the internal Hamiltonian for the remaining degrees of freedom.
The wave function � in the ket is a solution of the full stationary Schrodinger
equation which has the form (4.341) in the asymptotic part of six-dimensional
coordinate space for finite values of tan˛.

At this point the normalization of the total wave function � and the physical
dimensions of the break-up amplitude fn are not yet determined. The reason is, that
the Lippmann-Schwinger equation (4.326) has the form of a homogeneous integral
equation, so that neither the equation itself nor its asymptotic form (4.336) fix the
normalization of the wave function.5

We can fix the normalization of the total wave function by referring to the
boundary conditions in the entrance channel. In the asymptotic region R ! 1, the
hyperangle ˛ D �=2, tan˛ D r1=r2 D 1, just covers that part of configuration
space in which only particle 1 is very far away. In this region the asymptotic
behaviour of the wave function is thus determined by the boundary conditions in
the entrance channel i and all elastic and inelastic scattering channels,

� D eikiz1 j .i/int i C
X

j

eikjr1

r1
fj;i.˝1/j . j/

int i ; r1
r2

! 1 : (4.344)

5One Lippmann-Schwinger equation is not sufficient to uniquely determine the total wave function
in the presence of break-up channels. A detailed discussion of this problem can be found in
[Glo83].
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Fig. 4.20 Various asymptotic regions in six-dimensional coordinate space represented by the
hyperradius R and the hyperangle ˛

The wave functions  . j/
int are the internal wave functions in the scattering channels

and are eigenfunctions of a corresponding internal Hamiltonian for the particles 2
to N. For ˛ D 0, tan˛ D r1=r2 D 0, the asymptotic region R ! 1 covers that part
of configuration space in which only particle 2 is very far away. This corresponds
to elastic or inelastic scattering in conjunction with an exchange of the particles
1 and 2. Asymptotically the wave function is

� D
X

j

eikjr2

r2
gj;i.˝2/j . j/

int i ; r2
r1

! 1 : (4.345)

Here  . j/
int are the same internal wave functions as in (4.344), but they now describe

particles 1, 3,. . . N. The various asymptotic regions are illustrated in Fig. 4.20 with
the help of hyperradius and hyperangle.

In connection with the normalization of the wave functions we can now discuss
the physical dimensions of the quantities appearing in (4.343). The total wave
function � in the ket has the same dimension as a dimensionless plane wave
multiplied by a bound wave function, normalized to unity, for .N � 1/ particles
in three-dimensional coordinate space, i.e. Œlength��.3=2/.N�1/. On the other hand,
the wave function in the bra has the dimension of a bound wave function,
normalized to unity, (namely �.n/int ) for only .N � 2/ particles, multiplied by two
dimensionless plane waves (4.337); thus the dimension of the wave function in
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the bra is Œlength��.3=2/.N�2/. Since the integration over all 3N spatial coordinates
contributes a dimension Œlength�3N , the dimension of the matrix element in (4.343)
is energy � length9=2, and the dimension of the break-up amplitude fn is length5=2.

The definitions of cross sections are based on a generalization of the current
density (4.4) to particle currents in six-dimensional coordinate space,

j6 D „
2i�

Œ �.R/r6 .R/ �  .R/r6 
�.R/� : (4.346)

The subscript “6” refers to the six-dimensional space, as in (4.330). For a wave
function of the form (4.341) with a spatial part

 .R/
R!1D eiKnR

.2�R/5=2
K3=2

n fn.˝1;˝2; ˛/; (4.347)

we obtain an outgoing current density in six-dimensional space in complete analogy
to the three-dimensional case (4.5),

j6 D „K 4
n

�

jfn.˝h/j2
.2�R/5

R
R

C O

�
1

R6

�
: (4.348)

We have abbreviated the solid angle .˝1;˝2; ˛/ in six-dimensional space by ˝h.
The corresponding angular element is (see Problem 4.11)

d˝h D sin2˛ cos2˛ d˛ d˝1 d˝2

D sin2˛ cos2˛ d˛ sin �1 d�1 d�1 sin �2d�2 d�2 : (4.349)

The quantity

d3�i!n D jj6jR5 d˝h

„ki=�
(4.350)

is the particle flux into the solid angle d˝h, divided by the incoming current density
„ki=� (of one particle) in the entrance channel i. Outgoing particle flux in the solid
angle d˝h implies that particle 1 is travelling in a direction contained in d˝1, that
particle 2 is travelling in a direction contained in d˝2, and that the tangent of the
ratio k1=k2 lies between ˛ and ˛ C d˛. It is customary to express this ratio in terms
of the asymptotic kinetic energy T1 D „2k21=.2�/ of particle 1 or T2 D „2k22=.2�/
of particle 2. These kinetic energies are related to the hyperangle ˛ via

k1 D Kn sin ˛ ; k2 D Kn cos˛ : (4.351)
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Fig. 4.21 Schematic illustration of an (e,2e) reaction. ki is the wave vector of the incoming particle
parallel to the z-axis, k1 is the wave vector of the outgoing particle 1 travelling away in the
direction ˝1, and k2 is the wave vector of the outgoing particle 2 travelling away in the direction
˝2 with the kinetic energy T2 D „2k22=.2�/

With

K 4
n sin2˛ cos2˛ jd˛j D k21 k22 jd˛j D k1 k22 jdk2j

D k1 k2
2

jd.k22/j D k1 k2
�

„2 dT2 (4.352)

(4.350) becomes the triple differential cross section in its usual form,

d3�i�n

d˝1d˝2dT2
D k1k2

ki

�

„2
jfn.˝1;˝2;T2/j2

.2�/5
: (4.353)

This is the number of reactions, normalized to the incoming current density, in
which particle 1 travels away in the direction ˝1 and particle 2 travels away with
kinetic energy T2 in the direction ˝2, while the remaining particles stay behind
in the bound eigenstate �.n/int of the internal Hamiltonian (see also Fig. 4.21). Since
the square of the break-up amplitude has the physical dimension of a length to the
fifth power (see discussion shortly after (4.345) above), the triple differential cross
section (4.353) has the dimension of an area divided by an energy.

4.5.2 Application to Electrons

In order to apply the formulation of the preceding section to (e,2e) reactions, we
have to take into consideration firstly the indistinguishability of the electrons and
secondly their electric charge which is the origin of the very-long-ranged Coulomb
interaction.

If the target atom (or ion) is a one-electron atom, then there are only two electrons
whose indistinguishability must be considered. If there are more than two electrons
altogether, we must also consider effects of exchange between the two continuum
electrons in the break-up channels and the bound electrons left behind. Here we shall
assume that these latter effects are accounted for by appropriate modifications in the
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definition of the interaction OVR, similar to the discussion in Sect. 3.3.1 [cf. (3.176)],
and we shall only treat the exchange of the two continuum electrons.

The formulation in Sect. 4.5.1 with the asymptotic equations (4.341), (4.344),
(4.345) assumes that electron 1 is the incoming electron in channel i. We could
just as easily have chosen electron 2 as the incoming electron. If we call the
corresponding solution of the full Schrödinger equation � 0, then the asymptotic
formulae for � 0 are obviously

� 0 R!1D X
n

j�.n/int i eiKnR

.2�R/5=2
K3=2

n gn.˝1;˝2; ˛/C : : : ; (4.354)

� 0 D eikiz2 j .i/int i C
X

j

eikjr2

r2
fj;i.˝2/j . j/

int i; r2
r1

! 1; (4.355)

� 0 D
X

j

eikjr1

r1
gj;i.˝1/j . j/

int i; r1
r2

! 1 : (4.356)

The reciprocity in the direct scattering amplitudes fj;i and the exchange amplitudes
gj;i is already built into (4.355) and (4.356). The break-up amplitude gn in (4.354) is
given in analogy to (4.343) by

gn.˝1;˝2; ˛/ D p
i
�

„2 h�.n/int  
.KR/
n j OVRj� 0i : (4.357)

As can be seen by permuting the labels 1 and 2, it is related to the break-up
amplitude fn by

gn.˝1;˝2; ˛/ D fn.˝2;˝1;
�

2
� ˛/ or

gn.˝1;˝2;T2/ D fn.˝2;˝1;T1/ : (4.358)

The reciprocity relation (4.358) is known as the Peterkop theorem.
How the indistinguishability of the electrons 1 and 2 affects the triple differential

cross section for final states in the break-up channel n, depends on whether the spins
of the two electrons in the exit channel are coupled to a total spin zero (singlet) or 1
(triplet) [cf. Sect. 2.2.4, (2.81), (2.82)]. In the singlet case, the total wave function
must be symmetric with respect to an interchange of the spatial coordinates r1
and r2 alone, because the spin part of the wave function (2.82) is antisymmetric.
We obtain an appropriate solution of the full Schrödinger equation in this case, by
adding the solution � defined by (4.341), (4.344), (4.345) to the solution � 0 defined
by (4.354)–(4.356),

�SD0 D 1p
2
.� C � 0/ : (4.359)
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In the formula (4.353) for the triple differential cross section, this amounts to
replacing the break-amplitude fn by the sum of fn and gn (divided by

p
2). We also

have to add the cross sections for ˝1;˝2;T2 and ˝2;˝1;T1 because we cannot
distinguish the two electrons in the exit channel. With the help of the Peterkop
theorem (4.358) we thus obtain the following result for singlet coupling of the spins
of the outgoing electrons:

�
d3�i!n

d˝1d˝2dT2

�
SD0

D k1k2
ki

�

„2
j f s

n .˝1;˝2;T2/ j2
.2�/5

;

f s
n D fn C gn : (4.360)

The analogous result for triplet coupling of the spins of the outgoing electrons is

�
d3�i!n

d˝1d˝2dT2

�
SD1

D k1k2
ki

�

„2
j f t

n.˝1;˝2;T2/j2
.2�/5

;

f t
n D fn � gn : (4.361)

The spin coupling of the outgoing electrons is not measured in general, so
the observed triple differential cross section is the average of the expres-
sions (4.360), (4.361), weighted with the multiplicity 2S C 1,

d3�i!n

d˝1d˝2dT2
D k1k2

ki

�

„2
1
4
j f s

n j2 C 3
4
j f tj2

n

.2�/5
: (4.362)

The consideration of the very-long-ranged Coulomb interactions poses more
serious problems. In order to formulate an equation like (4.343) we must know the
asymptotic form of the two-electron wave function (in the presence of Coulomb
forces), firstly to determine the “free waves” in the bra and secondly to fix the
solution � of the full Schrödinger equation in the ket. The crucial difficulty is,
that the continuum electrons are never really free, not even at very large distances,
because they feel not only the Coulomb interaction due to the ion left behind (if it
doesn’t happen to be a neutral atom), but also their mutual long-ranged Coulomb
repulsion.

An obvious guess for extending the formula (4.343) to charged electrons in the
break-up channel consists in replacing the plane waves in the bra by Coulomb waves
N C;r1 and N C;r2 in the field of the residual ion. N C;r1 and N C;r2 are the distorted

waves (4.154) introduced in Sect. 4.1.13; the associated wave vector has the length
k1 or k2 and points in the direction of the radius vector r1 or r2 respectively. The fact
that the outgoing electrons do not travel independently, not even asymptotically, can
be incorporated in the form of a phase �. The expression for the break-up amplitude
then still has the form (4.343), but the “free wave” (4.337) in the bra is replaced by

N .KR/
C .R0/ D N C;r1 .r

0
1/

N C;r2 .r
0
2/ ei� : (4.363)
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For a naked residual ion (no electrons) we are dealing with a pure three-particle
Coulomb problem. In this case the wave function (4.363) actually is a solution
asymptotically if we take � to be the phase by which a Coulomb wave for the relative
motion of the two electrons differs from a plane wave (with the same asymptotic
wave number) [BB89]. For large separations of the two outgoing electrons we have

� D �0 ln
�
kr0 C k�r0	 ;

k D 1

2
.k1 � k2/; r0 D r0

1 � r0
2; 0 D �0e2

„2k : (4.364)

The Coulomb parameter 0 here is the one for the repulsive electron-electron
interaction (�0 is the reduced mass of the two electrons).

The wave function (4.363) solves the Schrödinger equation for two electrons
in the field of a naked nucleus asymptotically, i.e. for large separations of the
two electrons from the nucleus and from each other, but it becomes inaccurate for
small separations of the two electrons, because their correlations are insufficiently
accounted for by the phase factor ei� alone. Improvements have been engineered
into the wave function, e.g. by Berakdar and collaborators [Ber96, BO97] with
some success, but it remains a fact, that a globally accurate wave function for
the three-body Coulomb problem is not yet available. A detailed discussion of the
mathematics of the three- (and more-) particle Coulomb problem can be found in
the book by Faddeev and Merkuriev [FM93].

The Coulomb waves (4.363) represent approximate solutions of a Schrödinger
equation for two electrons in the field of a charged ion. If we base the derivation
of the expression for the break-up amplitude on an “inhomogeneous differential
equation” with an appropriate Green’s function for the associated “homogeneous
equation” as for uncharged particles in Sect. 4.5.1, then the potential in the
“inhomogeneous term” should only contain those interactions which are not already
included in the “homogeneous equation”. If we include the effects of the very-long-
ranged Coulomb interactions between the two outgoing electrons and the residual
ion by replacing the free wave (4.337) in the formula (4.343) by the two-electron
Coulomb wave (4.363), then we must at the same time leave the associated Coulomb
potentials out of the residual potential OVR.

Apart from the problem of finding the correct free waves for the bra in (4.343)
and (4.357), we also need the exact wave functions � and � 0 for the respective ket.
These are of course not available in general. We obtain an approximate formula in
the spirit of the Born approximation (with Coulomb waves), if we replace the exact
wave functions in the ket by Coulomb waves in the entrance channel. The break-up
amplitude (4.343) thus becomes

f DWBA
n .˝1;˝2; ˛/ D p

i
�

„2 h�.n/int
N .KR/

C j OVRj .i/int C.r0
1/i; (4.365)

where C is the Coulomb wave (4.141) with incoming part travelling in the direction
of the z-axis and wave number ki. The Born approximation works best when the
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energy of the incoming electron is large. If we focus our attention on final states
in which one electron has a large energy while the other electron has a much
smaller energy, then exchange effects become unimportant and we can identify the
fast electron with the incoming electron. Going one step further and replacing the
Coulomb waves of the fast electron in bra and ket by the corresponding plane waves
leads to the following customary form [Rud68, BJ89] of the break-up amplitude in
Born approximation:

f B
n .˝1;˝2; ˛/ D p

i
�

„2 h�.n/int eik1	r0

1 N C;r2

�
r0
2

	 j OVRj .i/int e
ikiz

0

1i : (4.366)

According to the considerations in the preceding paragraph, the residual
potential OVR in (4.366) no longer contains the Coulomb interaction between the
slow electron 2 and the residual ion, but it does contain the Coulomb interaction
between the fast electron and the residual ion as well as the Coulomb repulsion
of the two outgoing electrons. For an (e,2e) reaction on a one-electron atom (or
ion) the residual ion has no electrons at all and the residual potential to be inserted
in (4.366) is simply

VR.r0
1; r

0
2/ D �Ze2

r0
1

C e2

jr0
1 � r0

2j
: (4.367)

This applies for the “post” form of the (distorted wave) Born approximation,
where the residual interaction is that part of the full Hamiltonian that is not
diagonalized in the bra in (4.366). It can be advantageous to work with the “prior”
form of the DWBA, where the residual interaction refers to the incoming wave
function in the ket.

4.5.3 Example

The interest in cross sections for (e,2e) reactions has been continuously strong for
many years. Special attention has been given to the simplest such reaction,

e� C H ! HC C e� C e�; (4.368)

for which experimental data have been available for some time [EK85, EJ86, SE87,
CJ04]. As the residual ion HC has no internal degrees of freedom, there is precisely
one break-up channel in this reaction and the associated internal energy is zero.
Figure 4.22 shows the triple differential cross section for the reaction (4.368) as
a function of the angle �2 of the slow electron. The other variables were fixed as
follows: asymptotic kinetic energy of the incoming electron, E D 150 eV; kinetic
energy of the slow electron after collision, T2 D 3 eV; ki, k1 and k2 coplanar.
The different parts of the figure correspond to different scattering angles of the fast
electron, namely 4ı, 10ı and 16ı. Due to the different magnitudes of the energies
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Fig. 4.22 Triple differential cross section (4.353) for the reaction (4.368) in asymmetric coplanar
geometry as function of �2 for projectile energy Einc D 150 eV, T2 D 3 eV and (a) �1 D 4ı, (b)
�1 D 10ı, (c) �1 D 16ı. The experimental points are from [EK85] and from further measurements
by Ehrhardt et al. The dotted lines show the results of the Born approximation (4.366). The solid
lines were calculated using a formula similar to (4.365) with the correct asymptotic form (4.363)
for the free three-particle Coulomb wave. They are normalized to the experimental data at one
point in each panel. The dashed lines show the results of the same calculation for positron
collisions (4.369) (From [BB89])
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of the outgoing electrons and the plane geometry of the three wave vectors, such a
choice of reaction parameters is called asymmetric coplanar [LM84, BJ85].

In addition to the measured points in Fig. 4.22 [EK85], the dotted lines show
the calculated cross sections obtained in the Born approximation (4.366), (4.367).
Although the Born approximation can be expected to be quite a good approximation
at such high energies, there is still a considerable deviation from the experimental
results. Brauner, Briggs and Klar [BB89] were the first to evaluate the more
sophisticated expression (4.365) with a correct asymptotic form (4.363) for the free
three-particle Coulomb wave. The triple differential cross section calculated in this
way is shown as a solid line in each part of Fig. 4.22 and agrees very well with
the experimental data. Note, however, that the calculated curve in each panel was
normalized to the experimental data at one point. Finally the dashed lines show the
results obtained with the formula (4.365) for the case that the incoming particle and
the faster outgoing particle is not an electron but a positron:

eC C H ! HC C e� C eC : (4.369)

The difference between the results for electron and positron collisions emphasizes
the influence of the interaction between the two outgoing particles, which is
repulsive in (4.368) and attractive in (4.369). In the simple Born approximation
the cross sections for (4.368) and (4.369) are equal.

The two maxima in Fig. 4.22 are characteristic for the asymmetric coplanar
geometry. It can be shown within the framework of the Born approximation [BJ89],
that maxima are expected in the direction of the momentum transfer vector of the
fast electron,

q D k1 � ki; (4.370)

and in the direction of �q. Note that the length of the momentum transfer vector is
small if the energy loss of the fast electron is small (Problem 4.12).

If we assume axial symmetry of the whole reaction around the z-axis, i.e. if we
ignore polarization effects, then the triple differential cross section at a given impact
energy depends on four independent variables, namely �1, �2, �1 � �2 and T2 or T1.
Different geometries allow different approximations in the theory and illuminate
different dynamical aspects of the reaction. Apart from the asymmetric coplanar
geometry discussed above, considerable attention has been given e.g. to the non-
coplanar symmetric geometry, which was studied in particular by McCarthy and
collaborators. Here we have T1 D T2, �1 D �2 and �1��2 ¤ 0; � . In the framework
of the impulse approximation, in which the electron to be ejected is treated almost
as a free electron, the triple differential cross section in non-coplanar symmetric
geometry can be related to the wave function of the ejected electron before the
collision [MW76, MW88].

The calculations of [BB89] reproduce the angular dependence of the ionization
cross section quite well (Fig. 4.22), but they do not predict absolute cross sections.
In fact, the evaluation of absolute cross sections for the reaction (4.368) has proved
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to be a very difficult problem over the years. The integrated or total ionization cross
section,

�e;2e.E/ D
Z

d˝1

Z
d˝2

Z E

0

dT2
d3�

d˝1d˝2dT2
; (4.371)

was measured accurately as a function of energy by Shah et al. in 1987 [SE87],
and many theoretical groups have since tried to reproduce these data. The first
calculation able to reproduce the absolute values and the shape of the cross
section (4.371) over an energy range extending from comparatively small energies
up to high energies was published by Bray and Stelbovics in 1993 [BS93]. In their
method the Lippmann-Schwinger equation is solved in momentum space in the
spirit of the close-coupling expansion described in Sect. 3.3.1, and the judicious
choice of basis states representing the target leads to convergent results, in contrast
to some other close-coupling techniques; for this reason the authors call their
method the convergent close-coupling (CCC) method.

The performance of the CCC method in reproducing the total ionization cross
section (4.371) is illustrated in Fig. 4.23. The open circles are the experimental
results from [SE87] and the solid line is the calculated cross section from [BS93].
The calculation reproduces the experimental results well all the way from a bit
above threshold (at 13.6 eV) to high energies where the Born approximation (4.366)
works well. The fact that reproducing the shape of this curve has been no trivial
matter is demonstrated by comparison with the less successful results of other quite
sophisticated efforts. The long dashed line in Fig. 4.23 is from an “intermediate

Fig. 4.23 Total ionization
cross sections for electron
impact on hydrogen. The
open circles are the
experimental results from
[SE87] and the solid line is
the cross section calculated
via the CCC (convergent
close-coupling) method
[BS93]. The short dashed line
shows the result of the Born
approximation (4.366), the
long dashed line is from the
“intermediate energy
R-matrix” (IERM)
calculation of Scholz et al.
[SW90], and the asterisks
show the pseudo-state
calculation of Callaway and
Oza [CO79] (From [BS93])
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energy R-matrix” (IERM) calculation by Scholz et al. [SW90], and the asterisks
were obtained by Callaway and Oza [CO79] who calculated excitation probabilities
of the target hydrogen atom using a pseudo-state expansion and extracted the
ionization probabilities from the continuum components of the pseudo states. The
short dashed line in Fig. 4.23 shows the result of the Born approximation (4.366),
which becomes accurate only for energies above a few hundred eV.

The complexity of the two-electron problem in three-dimensional coordinate
space has encouraged investigations of simplifying models of two electron atoms.
On such model is the s-wave model, in which both electrons are restricted to
spherical states. The coordinate space for this model is spanned by two variables,
viz. the radial distances r1 and r2 of the electrons from the nucleus, and the potential
energy is,

V.r1; r2/ D �Ze2

r1
� Ze2

r2
C e2

r>
: (4.372)

The reduction of variables from vectors in three-dimensional space to one dimen-
sional variables r1, r2 means that physical cross sections are reduced to dimen-
sionless probabilities. In a related but not entirely equivalent picture developed
by Temkin and Poet [Tem62, Poe78], the three-dimensional picture is retained,
but the electron-electron interaction is truncated so as to act only for the s-wave
components of the one-electron wave functions, corresponding again to the potential
energy (4.372). The ionization probabilities in the s-wave model were calculated by
Ihra et al. [ID95] by solving the time dependent Schrödinger equation for wave
packets with a small energy spread; with this technique it is not necessary to
know the (stationary) wave functions for two continuum electrons. The resulting
ionization probabilities are shown in Fig. 4.24 together with the experimental ion-
ization cross sections of [SE87]; the spin averaged probabilities of the s-wave model
(solid line) are normalized to reproduce the experimental data at the maximum.
Considering how hard it is, for other approximate theories to reproduce the energy
dependence of the total ionization cross section (cf. Fig. 4.23), the agreement
between the ionization probabilities predicted in the s-wave model and the data
in Fig. 4.24 is remarkable. Since angular correlations are completely absent in the
s-wave model, the good agreement in Fig. 4.24 shows, that the net effects of such
angular correlations in the total ionization cross section must be negligible over a
wide range of energies. Note that the ionization cross section calculated in the three-
dimensional model based on the potential (4.372) contains a factor proportional to
the inverse projectile energy, which describes the diminishing contribution of the
s-wave to the incoming plane wave, so that the experimental energy dependence of
the ionization cross section is not well reproduced in that picture.
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Fig. 4.24 Ionization probabilities for electron impact on hydrogen in the s-wave model. The
dashed lines show the results for singlet and triplet symmetry and the solid line is their weighted
average. The open circles are again the experimental ionization cross sections from [SE87]. The
solid line is normalized to have the same height at maximum as the data (From [ID95])

4.5.4 Threshold Behaviour of Ionization Cross Sections

For total energies just above the break-up threshold En, both outgoing particles
in a break-up process must necessarily have small energies and wave numbers,
k1 ! 0, k2 ! 0. For short-ranged interactions the “free wave”  .KR/

n .R0/ in the
break-up amplitude (4.343) is given by (4.337) and tends to a constant in this
limit. The same is true for the break-up amplitude, unless the l D 0 components
of the plane waves in (4.337) give vanishing contributions to the matrix element
in (4.343), or the matrix element vanishes due to some other symmetry property.
The energy dependence of the cross section (4.353) near threshold is thus generally
dominated by the factors k1 and k2, which are both proportional to Kn according
to (4.351), so the differential cross section (4.353) depends linearly on the excess
energy E � En (4.330) in the limit of small excess energies. The integrated total
break-up cross section �n, defined in analogy to (4.371) acquires a further factor
proportional to E � En via the integration over T2 from zero to its maximum value
(which is E � En), so the energy dependence of the total break-up cross section is
generally given by,

�n / .E � En/
2; E ! En; E > En; (4.373)
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as long as the forces on the outgoing particles are of shorter range. Such situations
are not so common in atomic physics (electron detachment from a negative ion by
a neutral projectile would be an example), but they are important in nuclear physics
(e.g. neutron induced ejection of a neutron from a nucleus).

The situation is more complicated for electron impact ionization, because the
“free wave” (4.337) does not contain the effect of the very-long-ranged Coulomb
interaction. It is instructive to look at what could be expected, if the correlation of the
two continuum electrons were neglected, and the “free wave” (4.337) were replaced
by a product of two Coulomb waves, as in (4.363) but without the correlating
factor ei� . The low-energy behaviour .k ! 0/ of the radial Coulomb functions
in an attractive Coulomb potential can be deduced from (4.321) or from (A.78) in
Appendix A.5 and is seen to be proportional to jj�1=2 / p

k regardless of the
value of the angular momentum quantum number. This means that Fl.; kr/=.kr/
which enters into the partial-waves expansion of a free Coulomb wave in place of
the spherical Bessel functions in the expansion of the plane wave, is proportional to
1=

p
k for all l. The break-up amplitude (4.343) is now proportional to 1=

p
k1k2 for

small k1, k2, so the differential ionization cross section (4.362) becomes independent
of energy near the ionization threshold. After integrating over the energy of one of
the outgoing electrons this leads to the statement, that the total ionization cross
section depends linearly on the excess energy near threshold, if (!) the correlations
between the outgoing electrons are neglected.

How these correlations affect the threshold behaviour of ionization cross sections
has been a topic of interest and controversy for more than sixty years. A pioneering
study by Wannier from 1953 [Wan53] is still the valid reference today. Wannier
derived a threshold law for ionization by studying the volume of classical phase
space available to the two outgoing electrons. That this is reasonable can be
understood when considering that the classical limit for Coulombic systems is at
total energy zero, which is just the ionization threshold in a system consisting of
a projectile electron and a one-electron target atom (cf. Sects. 4.1.12, 5.3.4(b)).
Wannier’s derivation is based on the recognition that, due to the electron-electron
repulsion, the two electrons can only both escape exactly at threshold if they move
away from the nucleus in opposite directions with equal velocities which tend to
zero with increasing separation. For small positive energies a small volume of
classical phase space opens to the ionization process, and carefully analyzing how
this happens leads to the following dependence of the total ionization cross section
on the excess energy E above the ionization threshold, now at E D 0:

�e;2e.E/ / E�W ; �W D 1

4

 r
100Z � 9

4Z � 1 � 1
!
: (4.374)

This is Wannier’s threshold law. The Wannier exponent �W depends only on the
charge Z of the residual nucleus (or ion). Its value is 1:12689 : : : for Z D 1, it is
1:05589 : : : for Z D 2, and it approaches unity for Z ! 1. This is consistent with
the result expected when neglecting correlations between the outgoing electrons, an
approximation which should become better and better with increasing Z.
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The experimental and theoretical investigation of the energy region near the
two-electron threshold has long been a field of continuing and intense activity,
see e.g. [GL93, BS03] and references given there. Extensions were formulated to
account for difference between singlet and triplet coupling of the two electron spins
[KS76, GL93] and for ionization by positron impact [Kla81]. Wannier’s classical
theory was challenged frequently (see [Tem91] and references given there), but
it is still generally accepted as appropriate sufficiently close to threshold. Various
generalizations extended the range of energies above threshold, where the ionization
cross section can be fitted to a simple analytical form, both for electron induced
[Fea93] and positron induced [IM97a] ionization. The break-up threshold of atoms
with more than two electrons was studied in particular by Kuchiev and Ostrovsky
[KO98].

One widely studied simplification of the full two-electron problem is the collinear
model, in which both electrons are restricted to lie on opposite sides on a straight
line through the nucleus. The coordinate space for this model is spanned by two
variables, viz. the respective distances r1 and r2 of the electrons from the nucleus,
and the potential energy is,

V.r1; r2/ D �Ze2

r1
� Ze2

r2
C e2

r1 C r2
: (4.375)

Classical ionization probabilities were calculated within this model by Rost
[Ros94], simply by initiating classical trajectories corresponding to an incoming
projectile electron and a bound target electron oscillating between the nucleus
and an outer classical turning point, and counting those trajectories which
asymptotically (i.e. after long times) describe two outgoing electrons. The resulting
ionization probabilities for electron impact ionization of hydrogen are shown in
Fig. 4.25 (solid line) together with experimental data from [MC68]. The dashed
line shows the proportionality to E1:127::: expected from Wannier’s threshold
law (4.374). The solid line was normalized to the data at one point (5.84 eV).
Figure 4.25 illustrates two points. Firstly, the threshold behaviour (4.374) is
reproduced accurately for small energies, but the range where this formula is
relevant is quite small, and experimental verification or falsification of Wannier’s
law is difficult, because its deviation from a linear behaviour is not very pronounced.
[This difference is even less pronounced for nuclear charges larger than one, but it is
more pronounced in positron induced ionization [IM97a].] Secondly, the collinear
classical model reproduces the energy dependence of the experimental (!) data
well for energies up to several eV above the ionization threshold. This indicates
that the physics determining the ionization cross section is already contained in
the collinear configuration, and it shows that classical dynamics determines the
energy dependence of the cross section well beyond the regime where Wannier’s
law (4.374) is applicable.

The convincing results in Fig. 4.25 may conceal the fact that the relation between
classical mechanics and quantum mechanics for Coulomb systems near the break-
up threshold is enriched with unexpected subtleties. If for example we consider
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Fig. 4.25 Total ionization
cross sections for electron
impact on hydrogen in the
near-threshold region. The
circles are the experimental
results from [MC68] and the
solid line is the classical
ionization probability
calculated within the collinear
model (4.375). It was
normalized to the data at one
point (5.84 eV). The dashed
line shows the proportionality
to E1:127 expected from
Wannier’s threshold law
(From [Ros94])

the unphysical case of a continuously varying nuclear charge Z smaller than one,
then (4.374) shows that the Wannier exponent tends to infinity as Z ! 1=4.6 Indeed,
for Z D 1=4 two classical electrons at equal distances on opposite sides of the
nucleus feel no force at all, because the attraction by the nucleus is exactly cancelled
by the repulsion due to the other electron. Calculations by Ihra et al. predicted
an exponential damping of the ionization cross section by a factor proportional
to exp.�const:=E�/ in this case, but the power � and the constant involved
are different in the classical and quantum calculations [IM97b, CI98]. A further
interesting example is the s-wave model defined by the potential energy (4.372) in
Sect. 4.5.3, where classical ionization is strictly forbidden in a finite energy interval
above threshold [HD93]. A semiclassical treatment based on Wannier’s picture
predicts an exponential damping of the quantum ionization probability in this case
[MI97, CI00].

Problems

4.1

a) Verify the identity

lim
a!1 a

Z 1

�1
.1C x/f .x/eia.1�x/dx D 2if .1/:

6The unphysical case Z D 1=4 is however equivalent to a situation in which two particles of charge
�4Z move in the field of a central particle of charge CZ, which could be realized physically, at
least in principle.
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b) When we use the stationary scattering wave function (4.3) to calculate the
particle flux

H
j � ds through the surface of an asymptotically large sphere, we

obtain a contribution Iout as in (4.9) and a contribution Iinterf coming from
interference terms between the incoming plane wave and the outgoing spherical
wave. Use the identity a) to show that

Iinterf D „
�
2�iŒ f .� D 0/ � f �.� D 0/�;

which leads to the optical theorem (4.10).

4.2 Show that the free-particle Green’s function in three-dimensional coordinate
space,

G.r; r0/ D � �

2�„2
eikjr�r0j

jr � r0j ;

can be approximated by the expression (4.16) for r 	 r0,

G.r; r0/ D � �

2�„2
eikr

r

�
e�ikr	r0 C O

�
r0

r

��
; kr D k

r
r
:

4.3

a) Calculate the density of states %.E/ for plane waves of unit amplitude in three-
dimensional coordinate space,  .k/ D exp.ik � r/, E D „2k2=.2�/. (Impose
periodic boundary conditions in a cube of length L and study the limit L ! 1.)

b) Use the Golden Rule (2.139) to give an expression for the transition probability
per unit time from an initial state  i into final states consisting of the plane waves
above with wave vectors pointing in directions contained in the angular element
d˝ .

Confirm the following observation: If the matrix element of the transition
operator OT is related to the scattering amplitude f as in (4.18), then the transition
probability per unit time is just the differential scattering cross section j f j2
multiplied by the incoming current density „k=�.

4.4 Use the phase shifts (1.133) for elastic scattering by a hard sphere,

tan ıl D � jl.kr0/

nl.kr0/
;

to discuss the dependence of the integrated scattering cross section (4.38),

� D 4�

k2

1X
lD0

.2l C 1/ sin2 ıl;
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on energy. Which partial waves l contribute significantly to the cross section at high
energy E ?

4.5 An electron at a distance r from an atom generates an electric field E D er=r3

at the position of the atom. An electric field of strength E induces an electric dipole
moment d D ˛dE in an atom with a dipole polarizability ˛d. The force F which a
dipole of dipole moment d exerts on an electron at a distance r is

F D .e=r3/Œd � 3r.r � d/=r2� :

Show that an electron, which is brought from infinity to a point at a distance r from
an atom with dipole polarizability ˛d, does the work

W.r/ D e2
˛d

2r4
:

4.6 An electron .spin 1
2
/ is scattered by a potential. Consider the solution  0 of the

stationary Schrödinger equation with the boundary conditions (4.248)

 0 D eikz

�
0

1

�
C eikr

r

�
g0.�; �/

f 0.�/

�
; r ! 1 :

Show that the partial wave amplitudes f 0
l and g0

l in the expansions

f 0.�/ D
1X

lD0
f 0
l

r
4�

2l C 1
Yl;0.�/;

g0.�; �/ D
1X

lD1
g0

l

p
l.l C 1/

r
4�

2l C 1
Yl;�1.�; �/

are given by formulae like (4.245),

f 0
l D l C 1

2ik

h
exp



2iı.lC1=2/l

�
� 1

i
C l

2ik

h
exp



2iı.l�1=2/l

�
� 1

i
;

g0
l D 1

2ik

h
exp



2iıl

.lC1=2/�� exp


2iı.l�1=2/l

�i
:

Hint: Repeat the considerations following (4.239) for a z-component of the total
angular momentum m0 D �1=2.

4.7 Consider a two-component spinor normalized to unity,

j�i D
�

A
B

�
; jAj2 C jBj2 D 1 :



4.5 Exit Channels with Two Unbound Electrons 397

Show that the polarization vector P D h�j O� j�i has the components given in (4.255),

Px D 2<ŒA�B�; Py D 2=ŒA�B�; Pz D jAj2 � jBj2 :

O� is the vector of the three Pauli spin matrices,

O�x D
�
0 1

1 0

�
; O�y D

�
0 �i
i 0

�
; O�z D

�
1 0

0 �1
�
:

Show that the projection O�P D P � O� D Px O�x C Py O�y C Pz O�z onto the direction of P
is given by

O�P D
� jAj2 � jBj2 2AB�

2A�B jBj2 � jAj2
�
;

and that the spinor j�i is an eigenstate of O�p with eigenvalue C1.

4.8 Consider the elastic scattering of two electrons with parallel spins (total spin
S D 1). In the centre-of-mass system this corresponds to the scattering of a
particle of reduced mass � D me=2 in the repulsive Coulomb potential e2=r. The
indistinguishability of the two electrons leads to a modification of the formulae for
scattering amplitude and cross section.

a) Show that the Rutherford formula (4.147) for the differential cross section is
replaced by the following Mott formula,

d� t
M

d˝
D 2

4k2

"
1

sin4 1
2
�

C 1

cos4 1
2
�

� 2cos. ln tan2 1
2
�/

sin2 1
2
� cos2 1

2
�

#
:

b) Which orbital angular momentum quantum numbers l contribute to the partial-
waves expansion of the wave function?

c) What changes in a) and b) if we consider the scattering of two electrons whose
spins are coupled to S D 0‹ Which differential cross section do we observe in
the scattering of unpolarized electrons?

4.9 Show that the Green’s function of the Helmholtz equation in n dimensions,

G.x; x0/ D �
�

K

2�

�� iH.1/
� .Kjx � x0j/
4jx � x0j� ; � D n

2
� 1;

fulfills the defining equation

.K2 C�n/G.x; x0/ D ı.x � x0/ :
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Here H.1/
� .%/ is the Hankel function of order � (Appendix A.4). It is a solution of

Bessel’s differential equation

d2w

d%2
C 1

%

dw

d%
C
�
1 � �2

%2

�
w D 0

with the boundary conditions

iH.1/
� .%/

%!0D � .�/

�


%
2

���
; iH.1/

� .%/
%!1D

r
2i

�

ei%

i�
p
%
:

4.10 Evaluate the integral

In D
Z 1

�1
dx1 � � �

Z 1

�1
dxn; e�x21�x22			�x2n

in two different ways: (i) as a product of n one-dimensional integrals, (ii) by
transforming it into a radial integral. Show that this leads to the following formulae
for the surface Sn.R/ and the volume Vn.R/ of the n-dimensional sphere of radius R:

Sn.R/ D 2�n=2

�
�

n
2

	Rn�1; Vn.R/ D �n=2

�
�

n
2

C 1
	Rn :

4.11 Two displacement vectors r1 and r2 are described in hyperspherical coor-
dinates by the length R of the six-component vector .r1; r2/ and the five angles
�1; �1; �2; �2; ˛;

x1 D R sin˛ sin �1 cos�1; x2 D R cos˛ sin �2 cos�2;

y1 D R sin˛ sin �1 sin �1; y2 D R cos˛ sin �2 sin �2;

z1 D R sin˛ cos �1; z2 D R cos˛ cos �2;

where ˛ D 0; : : : �
2

, �i D 0; : : : � and �i D 0; : : : 2� .

a) Show that the hyperspherical angular element d˝h is given by

d˝h D sin2 ˛ cos2 ˛ d˛ d˝1 d˝2

D sin2 ˛ cos2 ˛ d˛ sin �1 d�1 sin �2 d�2 d�2 :

b) The surface Sn of an n-dimensional sphere of radius R is given by (Problem 4.10)

Sn D 2�n=2

�
�

n
2

	 Rn�1 :
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Verify that integration over the hyperspherical solid angle ˝h gives the correct
result for n D 6, namely �3.

4.12

a) Determine the length and the direction of the momentum transfer vector (4.370),
q D k1 � ki, for the (e, 2e) reaction (4.368) in asymmetric coplanar geometry
with the parameters of Fig. 4.22.

b) Determine the length and the direction of the momentum transfer vector q for
the (e, 2e) reaction (4.368) in symmetric coplanar geometry .�1 D �2, T1 D T2/
with incoming kinetic energy Einc D 150 eV.
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Chapter 5
Special Topics

The last decades have seen great advances in experimental atomic physics. Exotic
states of atoms can be prepared with the help of intense and short laser pulses,
experiments can be performed on individual atoms and ions in electromagnetic traps
and the dependence of their properties on their environment can be investigated,
and high resolution laser spectroscopy has made precision studies of the finest
details of complicated atomic spectra possible. The experimental advances have
confronted the theory with new challenges. It has become apparent that intricate
and interesting effects can occur even in seemingly simple systems with only few
degrees of freedom, and that their theoretical description often is by no means easy.
Complementary to high precision spectroscopy, the availability of ultra-short light
pulses on the femtosecond time scale and below has made it possible to study
highly localized excitations in atoms and molecules and to follow the evolution
of wave packets on an atomic scale. The availability of ultra-cold atoms has made
experimental tests of fundamental postulates of quantum mechanics possible, and
it has led to the realization in the laboratory of degenerate condensates of gases of
bosonic and of fermionic atoms. The new experimental techniques enable active
manipulation of ultra-cold atoms in the extremely quantum mechanical regime.

In order to describe multiphoton processes, which typically occur in intense
light fields, it is necessary to go beyond traditional perturbative treatments of
the interaction of atoms with light. This is the subject of Sect. 5.1. The power
of classical and semiclassical methods in understanding and describing structure
and dynamics on an atomic scale has become increasingly apparent since the
mid-1980’s. Section 5.2 presents a brief discussion of how far the concept of
coherent wave packets moving along classical trajectories can be formulated in
a quantum mechanically consistent way, and Sect. 5.3 describes recent advances
of our understanding of the relation between classical and quantum dynamics, in
particular for the interesting case that the classical motion is chaotic. Section 5.4 is
devoted to the subject of Bose-Einstein condensates of atomic gases, which were
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404 5 Special Topics

prepared and observed for the first time in 1995 and have since proved to be an
abounding source of exciting new physics.

In the study of Bose-Einstein condensates in particular, and of systems of
ultracold atoms (or molecules) in general, it is important to understand the properties
of states with extremely low energy. In a diatomic system these are the states very
close to the continuum threshold in an atom-atom potential, which typically supports
a number of bound states and falls off faster than 1=r2 for large values of the atom-
atom separation r. Near-threshold bound states in such shorter-ranged potentials
were treated in considerable detail in Sect. 3.1.2, and Sect. 5.5 shows how to connect
the near-threshold bound states below the continuum threshold to the continuum of
scattering states with energies just above the continuum threshold.

A crucial parameter influencing the properties of bound and continuum states
near the continuum threshold of an atom-atom system, i.e. the dissociation threshold
of the diatomic molecule, is the atom-atom scattering length, which is related to
the threshold quantum number via parameters depending only on the properties
of the tail of the shorter-ranged atom-atom potential. The value of the scattering
length, resp. of the threshold quantum number, can be manipulated with the tool
of Feshbach resonances, tuned to lie near the dissociation threshold. Section 5.6 is
devoted to the description of the properties and influence of near-threshold Feshbach
resonances.

Finally, Sect. 5.7 contains a brief introduction to some aspects of atom optics,
where the guiding and trapping of atom waves is the focus of attention.

5.1 Multiphoton Absorption

The description of electromagnetic transitions in Sect. 2.4 is based on the assump-
tion that the interaction of the electromagnetic field with an atom can be regarded
as a small perturbation. This justifies applying first-order perturbation theory in the
form of the Golden Rule and yields probabilities for transitions in which one photon
is absorbed or emitted (Sect. 2.4.4). Transitions in which two or more photons are
absorbed or emitted simultaneously only become important in very strong fields.
Such strong fields can be produced by very intense lasers, and the investigation
of atomic processes in the presence of a laser field, in particular of multiphoton
processes, is a very important subfield of atomic physics and optics. A summary
of experimental and theoretical work up to the early eighties is contained in
[CL84]. For comprehensive monographs see [DK85, Fai86]. Further developments
are summarized in [SK88]; see also [NC90, Gav92, DK94, DF00].
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5.1.1 Experimental Observations on Multiphoton Ionization

If the energy of a single photon is smaller than the ionization potential of an
atom (in a given initial state), then photoionization can only proceed via the
absorption of several photons. The intensity of the laser determines how much
electromagnetic field energy is available in the immediate vicinity of the atom
(see Problem 5.1). Laser powers well beyond 1012 W/cm2 with pulses lasting for
nanoseconds have been available for many years. Early experiments on multiphoton
ionization involved just counting the ions created by a strong laser pulse. An
example is shown in Fig. 5.1, where strontium atoms were exposed to the pulses
of a Nd:YAG laser (=neodymium:yttrium-aluminium-garnet). The wave length of
the laser light is 1:064�m corresponding to a photon energy of „! D 1:165 eV. At

Fig. 5.1 Numbers of SrC and SrCC ions observed in multiphoton ionization by a Nd:YAG-Laser
.„! D 1:165 eV/ as functions of the laser intensity (from [FK82])
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least five photons are needed to ionize a strontium atom; at least fifteen photons are
needed to eject two electrons [FK84].

The number of ions as a function of the laser intensity I follows a straight
line over large stretches in the doubly logarithmic representation of Fig. 5.1, which
indicates a power law. Extending the perturbation theory of Sect. 2.4 to higher orders
gives the probability P.n/ for absorbing n photons in lowest non-vanishing order as

P.n/ / In : (5.1)

The expected proportionality to I5 for singly ionized strontium is well fulfilled
in Fig. 5.1, but the probability for double ionization rises more slowly than the
minimum number (fifteen) of photons would suggest. The deviations from the
straight lines at higher intensities in Fig. 5.1 can be attributed to a saturation effect
which occurs when all atoms in the region hit by the laser pulse are ionized.
The applicability of lowest-order perturbation theory is limited to non-resonant
absorption. Resonance effects involving appropriate intermediate states can make
the picture much more complicated [TL89].

The general interest in multiphoton ionization grew rapidly after first investiga-
tions of the ejected electrons revealed that these could have kinetic energies much
larger than expected for absorption of the minimum number of photons necessary.
A first explanation of these observations was, that an electron already excited into
the continuum could acquire a higher final kinetic energy by the further absorption
of photons. This picture corresponds to ionizing an atom out of a continuum state
and led to the rather unfortunate name of above-threshold ionisation (ATI). A more
appropriate name is excess-photon ionization EPI, which merely expresses the
observed fact that electrons absorb more photons than necessary for ionization and
refrains from further interpretation.

Figure 5.2 shows ATI or EPI spectra for the ionization of xenon by photons from
a Nd:YAG-Laser .„! D 1:165 eV/ at four different laser intensities. The minimum
number of photons needed depends on whether the XeC ion is left behind in one or
the other of two states energetically separated by 1.31 eV. If the ion is left behind
in the lower P3=2 state, which corresponds to the ejection of an electron from a
5p3=2 state, then at least eleven photons are needed; for a XeC ion in the P1=2 state
corresponding to ejection of a 5p1=2 electron we need at least twelve photons. The
asymptotic kinetic energy of an electron after absorption of n photons is just the
difference of n„! and the ionization potential IP,

Ekin.n/ D n„! � IP : (5.2)

These energies are shown at the top of Fig. 5.2 for the two ionization channels. The
maxima in Fig. 5.2 show appreciable absorption of up to eight excess photons. The
figure also shows features which were established as characteristic in the course of
many further experiments. Amongst these are the observation that the relative prob-
ability for absorbing a larger number of excess photons increases with increasing
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Fig. 5.2 Energy spectra of electrons ejected in the multiphoton ionization of xenon by a Nd:YAG
laser .„! D 1:165 eV/ for various intensities (� numbers shown as mJ � 2� 1012

�
W=cm2


) and

pressures. The asymptotic kinetic energy expected according to (5.2) for electrons having absorbed
n photons is shown for the two ionization channels at the top edge of the figure (From [KK83])
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laser intensity, and that the probability for absorbing no or only one excess photon
is smaller than the probability for absorption of a larger number of excess photons
at sufficiently high intensity (see also Fig. 5.3 below).

Whereas perturbative methods may be applied to multiphoton ionization as long
as the field strengths are not too high, they are not appropriate for describing the
nonmonotonic dependence of the heights of the absorption peaks on the number
of excess photons. (For a discussion of perturbative methods see [Cra87, Kar91].)
The explanation of simple-looking spectra such as those in Fig. 5.2 is already a
serious challenge to theory. Further experimental data such as angular distributions
of the ejected electrons are available [FW88], and they should enable us to sort
out the merits of various theoretical approaches. The following two sections briefly
sketch two examples for a non-perturbative description of multiphoton ionization.
Both sections treat the example of an atom in a spatially constant monochromatic
field. Further complications arise when considering the finite temporal duration of a
light pulse and the rise and fall of its intensity explicitly. Large scale numerical
calculations which directly solve the time-dependent Schrödinger equation have
been quite successful in such situations, see e.g. [KS97] and references given there.

5.1.2 Calculating Ionization Probabilities via Volkov States

Consider a one-electron atom in an oscillating electromagnetic field described by
a vector potential A. In the radiation gauge (2.150) the vector potential for light
polarized linearly in the x-direction is

A.r; t/ D �A0ex sin!t : (5.3)

For right or left circular polarization around the z-axis we have

A.r; t/ D � A0p
2
.ex sin!t  ey cos!t/ : (5.4)

According to (2.148) the associated electric field E for linear or circular polarization
is

E.r; t/ D E0 ex cos!t ; or

E.r; t/ D E0p
2
.ex cos!t ˙ ey sin!t/ : (5.5)

In both cases the amplitudes E0 and A0 are related by

E0 D !

c
A0 : (5.6)
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Since the wave length of the laser light is much larger than typical spatial dimensions
of the atom, we can assume a spatially homogeneous field, i.e. constant amplitudes
E0, A0 (dipole approximation). The Hamiltonian is (cf. (2.151))

OH D Œ Op C .e=c/A.r; t/�2

2�
C V.r/ : (5.7)

Apart from the vector potential A it also contains the static potential V.r/ describing
the interaction of the electron with the residual ion in the absence of a laser field.

If we decompose the Hamiltonian (5.7) into an atomic part Op2=.2�/C V and an
additional term OH1 due to the laser field, then

OH1 D e

�c
A� Op C e2

2�c2
A2 : (5.8)

The technique of using a Green’s function to formally solve a Schrödinger equation,
which was repeatedly demonstrated in Chap. 4, can be generalized to the time-
dependent Schrödinger equation

i„ @
@t
 .r; t/ D OH .r; t/ (5.9)

(see e.g. Appendix A of [Rei80]). This yields an implicit expression for the
probability amplitude afi describing a transition caused by the time-dependent
interaction (5.8), in which an initial atomic state  i.r; t/ D �i.r/ expŒ�.i=„/Eit�
evolves into a final state  f.r; t/, which is a solution of the full Schrödinger
equation (5.9),

afi D 1

i„
Z 1

�1
h fj OH1j ii dt : (5.10)

If the ionization limit of the field-free atom is at E D 0 then the (negative)
energy eigenvalue Ei of the initial bound state is just minus the (positive) ionization
potential IP, which has to be overcome for ionization out of this state.

The formula (5.10) looks similar to the expression (2.134) for transition ampli-
tudes in time-dependent perturbation theory. In contrast to this expression however,
(5.10) is exact (like analogous formulae (4.17), (4.283) in time-independent scatter-
ing theory), provided the final state wave function  f really is an exact solution of
the Schrödinger equation.

In an approximation originally due to Keldysch and developed by Reiss [Rei80],
the exact solution  f in (5.10) is replaced by solutions of the Schrödinger equation
for a free electron in a laser field. The ket of the matrix element in (5.10) then
contains a solution of the (time-dependent) Schrödinger equation including the
atomic potential but without a laser field, while the bra contains a solution of
the Schrödinger equation containing the laser field but no atomic potential. For a
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spatially homogeneous monochromatic laser field these latter solutions are known
analytically and are called Volkov states.

In the absence of an atomic potential the Hamiltonian (5.7) is

OH0 D Œ Op C .e=c/A.r; t/�2

2�
: (5.11)

For linearly polarized light (5.3) we have

OH0 D Op2
2�

� eA0
�c

Opx sin!t C e2A20
2�c2

sin2!t ; (5.12)

and it is straightforward to verify that the following Volkov states are solutions of
the time-dependent Schrödinger equation:

 V.r; t/ D exp

�
ik�r � i

„k2

2�
t � ikx

eA0
!�c

cos!t

� i

„
e2A 2

0

2�c2

�
t

2
� 1

4!
sin 2!t

��
: (5.13)

For circular polarization (5.4) we have

OH0 D Op2
2�

� eA0p
2�c

. Opx sin!t  Opy cos!t/C e2A 2
0

4�c2
; (5.14)

and the corresponding Volkov states are

 V.r; t/ D exp

�
ik�r � i

„k2

2�
t

�i
eA0p
2!�c

.kx cos!t ˙ ky sin!t/� i

„
e2A 2

0

4�c2
t

�
: (5.15)

The Volkov states (5.13), (5.15) look like ordinary plane waves with an additional
oscillating phase,

 V D expŒik�r � .i=„/EVt C ıosc� : (5.16)

The oscillating phase describes the wiggling of the electron in the oscillating field.
In the energy there is an additional term which is constant in space and time and
depends quadratically on the amplitude of the field. It is called the ponderomotive
energy EP,

EV D „2k2
2�

C EP ; EP D e2A 2
0

4�c2
D e2E 2

0

4�!2
: (5.17)
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The Keldysch approximation allows an analytic evaluation of the integral in
(5.10). In the case of circular polarization (5.15) we obtain the following expression
for the probability per unit time that an electron is ejected into the solid angle d˝:

dP

d˝
/

1X
nDn0

�
n � EP

„!
�2p

n � " j Q�i.k/j2 J 2n

 
2 sin �

r
EP

„!
p

n � "

!
; (5.18)

where Jn is the ordinary Bessel function (Appendix A.4). The quantity " in (5.18)
stands for the sum of the ionization potential and the ponderomotive energy in units
of the photon energy „!,

" D IP C EP

„! : (5.19)

Q�i.k/ is the Fourier transform of the spatial part of the initial wave function �i.r/,
and � is the angle between the wave vector k and the z-axis. The right-hand side of
(5.18) depends only on the direction of the outgoing wave vector k (more precisely:
only on the polar angle �); the length of k is fixed by energy conservation,

„2k2
2�

D n„! � .IP C EP/ D .n � "/„! : (5.20)

The summation index n in (5.18) stands for the number of photons absorbed in the
ionization process. The summation begins with the smallest number n0 for which
n � " is positive. Note that the energy to be overcome consists of the ionization
potential IP plus the ponderomotive energy EP. More energy is needed to ionize the
atom in the presence of the electromagnetic field.

A formula like (5.18) can also be derived for linearly polarized light (see
[Rei80]). Expressions similar to (5.18) were already found in 1973 by Faisal [Fai73].

The Keldysch approximation is quite successful if the atomic potential V is
very short-ranged [BM89]. In realistic situations the Keldysch-Faisal-Reiss theory
(KFR) is not always so successful in describing the multiphoton ionization data
quantitatively [Buc89]. This may be due to the fact that the effect of the static
very-long-ranged Coulomb potential between the ejected electron and the residual
ion is not included. Furthermore, the consequences of the Keldysch approximation
are not gauge invariant. The KFR theory nevertheless is able to reproduce some
of the qualitative features of the energy spectra of the ejected electrons. As an
example Fig. 5.3 shows ionization probabilities (5.18) integrated over all angles,
in comparison with experimental spectra from the multiphoton ionization of xenon
by circularly polarized pulses from a Nd:YAG laser. The calculated ionization prob-
abilities have been decomposed into contributions from various photon numbers n
which are related to the energy of the ejected electron via (5.2).
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Fig. 5.3 The upper picture shows angle integrated ionization probabilities (5.18) decomposed into
contributions from various photon numbers n. The parameters correspond to the ionization of
xenon by photons with „! D 1:165 eV and a field strength characterized by a ponderomotive
energy of EP=„! D 1 (from [Rei87]). The lower picture shows the energy spectra of photo-
electrons from the ionization of xenon by circularly polarized pulses from a Nd:YAG laser
.„! D 1:165 eV/ at various intensities (from [MB87])

If the duration of the laser pulses is not too short, the energy of the photoelectrons
registered in the detector is given by (5.2) and the ponderomotive energy need
not be subtracted. The reason lies in the fact that the field strength and hence the
ponderomotive energy, which are regarded as constant over a few wave lengths of
the laser, fall off from their respective maximum values to zero over a distance
corresponding to the spatial extension of the pulse. The resulting gradient of the
ponderomotive energy exerts a force on the electron, the ponderomotive force.
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After absorbing n photons the electron leaves the atom with a kinetic energy given
by (5.20). The ponderomotive force then accelerates the electron away from the
centre of the pulse so that it reaches the detector with the asymptotic kinetic energy
given by (5.2). Such acceleration due to the ponderomotive force can also be
observed in different contexts, e.g. in the scattering of free electrons by a strong laser
pulse [Buc89]. For very short laser pulses (shorter than picoseconds) the laser field
has subsided before the acceleration by the ponderomotive force becomes effective,
and the energy shifts due to the ponderomotive energy in (5.20), which can also
be interpreted as ac-Stark shifts of the bound-state energies (see Sect. 3.5.3), are
observed in the detectors [RW90a, DP90].

5.1.3 Calculating Ionization Probabilities via Floquet States

This section briefly sketches the use of the theory of Floquet states introduced in
Sect. 3.5.3 for the nonperturbative treatment of multiphoton ionization. For more
details the reader is referred to an article on this subject by Potvliege and Shakeshaft
[PS92].

In the field gauge (3.344) the Hamiltonian OH for an atom in a spatially constant
and monochromatic field is the sum of the time-independent Hamiltonian OHA for the
field-free atom and an additional potential oscillating with the circular frequency !.
As discussed in Sect. 3.5.3 we can use the ansatz

 D expŒ�.i=„/"t�˚".t/ ; ˚".t C 2�=!/ D ˚".t/ (5.21)

to reduce the time-dependent Schrödinger equation to an eigenvalue equation for
the generalized Hamiltonian

OH D OH � i„ @
@t

(5.22)

(cf. (3.346), (3.347)). The eigenvalues of (5.22) are the quasi-energies ", and
the associated solutions (5.21) are the Floquet states or quasi-energy states. In a
monochromatic field the Hamiltonian including the atom-field interaction has the
general form

OH D OHA C OW ei!t C OW� e�i!t ; (5.23)

and the precise nature of the time-independent coupling operator OW depends on
polarization and gauge. If we express the periodic time dependence of the ˚" in
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terms of a Fourier series,

˚" D
X

n

e�in!t ";n ; (5.24)

then the eigenvalue equation for the generalized Hamiltonian (5.22) becomes a set
of time-independent coupled equations for the Fourier components ";n,

OHA  ";n C OW  ";nC1 C OW�  ";n�1 D ." � n„!/ ";n : (5.25)

Potvliege and Shakeshaft solved the coupled equations (5.25) numerically for
the case that OHA describes a hydrogen atom [PS89]. This involves the consideration
of asymptotic (r ! 1) boundary conditions whose explicit form depends on the
choice of gauge. The calculations yield complex eigenvalues

"i D Ei C�i � i
�i

2
; (5.26)

where Ei are the energy eigenvalues of the field-free hydrogen atom, and �i are
real energy shifts which should become the ac-Stark shifts (3.354) in the weak-field
limit. The origin of the imaginary part in (5.26) is that each initially bound state can
couple to and decay into continuum states for sufficiently large n, i.e. by coupling to
a sufficient number of photons. As a consequence the absolute square of the wave
function of the Floquet state decreases proportional to expŒ��it=„� corresponding
to an ionization rate per unit time of �i=„ (see also [PS90]). Figure 5.4 shows �i=„
for ionization from the 1s ground state of the hydrogen atom by a linearly polarized

Fig. 5.4 Probability per unit time for ionization of a hydrogen atom from its 1s ground state by a
strong laser field with the Nd:YAG frequency .„! D 1:165eV/ as a function of the laser intensity.
The dashed lines show the results of perturbation theory in lowest non-vanishing order (5.1) for
the absorption of n = 12 (S = 0) or n =13 (S = 1) photons (from [PS89, PS92])
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Nd:YAG laser .„! D 1:165 eV/ as a function of the laser intensity. The dashed
lines show for comparison the results of lowest non-vanishing order perturbation
theory for ionization by n = 12 or n = 13 photons. The resonance-like structures in
the non-perturbative curve occur when the quasi-energy of the Floquet state which
corresponds to the 1s state of the H atom in the field-free limit crosses or almost
crosses the quasi-energies of other states as the laser intensity is varied.

One remarkable feature of Fig. 5.4 is that the non-perturbative result, which
includes ionization by an arbitrary number (at least twelve) of photons, lies
substantially lower than the perturbative ionization probabilities for exactly twelve
or exactly thirteen photons. The authors of [PS89] conclude that perturbative
treatments can overestimate the probability for ionizing an atom in a strong laser
field by orders of magnitude. Perturbative methods have, on the other hand, been
successful in reproducing the angular distributions of the photo-electrons. Figure 5.5
shows angular distributions of electrons ejected in the multiphoton ionization of
hydrogen by photons with an energy of 3.5 eV. The minimum number of photons
needed for ionization is four. The various parts of the figure correspond to absorption
of up to three excess photons. The perturbative calculation reproduces the measured
angular distributions quite well in all cases.

The investigation of atoms under the influence of intense laser pulses has been
refined considerably in the last few decades. Spectra of the type shown in Fig. 5.2
with dozens of excess-photon peaks have been observed, revealing a not necessarily
monotonic dependence of the intensities of the higher-order peaks on their order.
Similar structures are also observed in photon spectra emitted by atoms under the
influence of intense laser pulses, the remarkable feature here being the occurrence
of higher-energy photons corresponding to odd harmonics of the frequency of the
original laser pulse. This generation of higher harmonics is a useful mechanism
for creating light pulses of very short wave lengths. The strengths of higher-order
peaks both in above-threshold (excess-photon) ionization and in higher-harmonic
generation show characteristic plateaus in their dependence on order, meaning that
the expected decline of intensity with order is attenuated over several peaks. The
non-trivial dependence of the peak intensity on order has been explained very
successfully on the basis of a classical picture in which the electron which is ejected
from the atom by the intense field is accelerated back towards the residual ion when
the oscillating field of the laser changes direction. The subsequent “re-scattering”
of the electron by the ion strongly influences the observed peak intensities in the
spectra of the (higher-harmonic) photons or of the photo-electrons. For details see
the comprehensive review by Becker et al. [BG02].

5.2 Classical Trajectories and Wave Packets

Many effects which are correctly and satisfactorily described by quantum mechanics
can already be largely explained within the framework of classical mechanics, which
is frequently considered easier to understand and visualize. It thus makes sense to
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Fig. 5.5 Angular distributions of photo-electrons observed in the multiphoton ionization of
hydrogen by photons with an energy of 3.5 eV. The various parts of the figure correspond to the
absorption of S = 0 to S = 3 excess photons. The left half of the picture shows the results of a
perturbative calculation, the right half shows the measured distributions whose absolute heights
were fitted to the calculated curves (from [KM88])
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compare the two theories, to establish the correspondence of classical and quantum
mechanical descriptions and to highlight the genuine quantum effects which cannot
be explained classically.

5.2.1 Phase Space Densities

In classical mechanics a physical system with f degrees of freedom is described
by a Hamiltonian function H(q1; : : : qf I p1; : : : pf I t) which depends on the f
coordinates qi, on f canonically conjugate momenta pi and perhaps also on the
time (see textbooks on mechanics, e.g. [Gol80, LL71] or [Sch90]). The temporal
evolution of the system is described by a trajectory .qi.t/; pi.t// in phase space. The
trajectory is a solution of the following system of 2f coupled ordinary differential
equations:

Pqi D @H

@pi
; Ppi D �@H

@qi
: (5.27)

These are the canonical equations of classical mechanics. The initial conditions
qi.t0/, pi.t0/ uniquely determine the evolution of the system for all times.

If we don’t know the state of the system at time t0 exactly, we can describe it by
a classical phase space density %cl.qi;piI t0/. It is the probability density for finding
the system in the state qi, pi at time t0. Being a probability density, %cl cannot be
negative, and its integral over all possible states in phase space must be unity at all
times,

Z
d f qi

Z
d f pi %cl.qi; piI t/ D 1 : (5.28)

We obtain an equation of motion for the classical phase space density by realizing
that the probability for a state of the system cannot change along a trajectory in
phase space, because this just describes the evolution of the system. This means
that %cl .qi .t/ ; pi .t/ I t/ must be constant in time if qi.t/; pi.t/ are solutions of the
canonical equations (5.27),

d

dt
%cl.qi.t/; pi.t/I t/ D

NX
iD1

�
Pqi
@%cl

@qi
C Ppi

@%cl

@pi

�
C @%cl

@t
D 0 : (5.29)

Inserting the expressions given by the canonical equations (5.27) for Pqi and Ppi into
(5.29) and writing the resulting sum as a Poisson bracket,

fH; %clg defD
NX

iD1

�
@H

@pi

@%cl

@qi
� @H

@qi

@%cl

@pi

�
; (5.30)
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reduces (5.29) to the compact form

@%cl

@t
D �fH; %clg : (5.31)

Equation (5.31) is the equation of motion for the classical phase space density in
a system described by the Hamiltonian function H, and it is called the Liouville
equation.

For simplicity we now consider a system consisting of a particle in a conservative
potential in three spatial dimensions. The Hamiltonian function is

H.r; p/ D p2

2�
C V.r/ ; (5.32)

and the Liouville equation has the form

@

@t
%cl.r; pI t/ D � p

�
� rr %cl � F.r/ � rp %cl ; F.r/ D �rr V.r/ : (5.33)

It describes the flow of %cl in phase space under the influence of the inertial term
(the first term on the right-hand side) and a field of force F.

In quantum mechanics we describe the state of a system by a wave func-
tion j .t/i which (in coordinate representation) is a function of the displacement
vector,  .r; t/, and should be normalized to unity. The time evolution of j i is
determined by the Hamiltonian operator OH and is described by the time-dependent
Schrödinger equation,

i„ @
@t

j i D OHj i : (5.34)

We can alternatively describe a pure state j i by the associated density operator

O%.t/ D j .t/ih .t/j (5.35)

(cf. Sect. 4.3.3). In coordinate representation the density operator is an integral
operator with the integral kernel

%.r; r0I t/ D  .r; t/  �.r0; t/ : (5.36)

The quantum mechanical wave function in momentum representation is a function Q 
depending on the momentum variable p, and it is related to the wave function .r; t/
in coordinate representation by a Fourier transformation:

Q .p; t/ D 1

.2�„/3=2
Z

e�ip	r=„ .r; t/ dr : (5.37)
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In momentum representation the density operator for the pure state (5.35) has the
form

Q%.p; p0I t/ D Q .p; t/ Q �.p0; t/ : (5.38)

A mixed quantum mechanical state is described by an incoherent superposition
of pure states with (non-negative) probabilities wn (see Sect. 4.3.3),

O%.t/ D
X

n

wnj n.t/ih n.t/j ; (5.39)

and its coordinate and momentum representations are corresponding generalizations
of (5.36) and (5.38) respectively.

If the wave function j .t/i of a pure state (5.35) or the wave functions j n.t/i of
the mixed state (5.39) obey the time-dependent Schrödinger equation (5.34), then
the associated density matrix obeys the von Neumann equation

@ O%
@t

D � i

„ Œ
OH; O%� : (5.40)

Here Œ OH; O%� D OH O% � O% OH is the commutator of OH and O% as usual.
The von Neumann equation (5.40) is more flexible than the Schrödinger equa-

tion, in particular because it can be generalized to describe dissipative effects, see
e.g. [Haa73]. If an initial (pure) state with a given energy E is subject to dissipative
effects due to coupling to other degrees of freedom such as internal excitations of the
particle, then the density matrix will generally evolve into a mixed state containing
contributions corresponding to other (lower) energies than E. This can be described
in by an additional dissipative term on the right-hand side of (5.40); the structure of
such a dissipative term is more complicated than a simple commutator of a given
operator with O�.

The von Neumann equation (5.40) for the quantum mechanical density operator
has the same form as the Liouville equation (5.31) for the classical phase space
density if we identify the Poisson bracket in the classical equation with .i=„/
times the commutator of quantum mechanics. The similarity between classical and
quantum mechanics becomes more apparent if we represent the density operator,
which depends on two displacement vectors in coordinate representation and
on two momentum vectors in momentum representation, by its Wigner function
%W.R;PI t/, which depends on one displacement vector and one momentum vector.
We obtain the Wigner function of O% either from the coordinate representation
% .r; r0I t/ by a Fourier transformation with respect to the variable r � r0, or from the
momentum representation Q%. p; p0I t/ by a Fourier transformation with respect to the
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variable p � p0,

%W.R;PI t/ D 1

.2�„/3
Z

e�iP	s=„%



R C s
2
;R � s

2
I t
�

ds

D 1

.2�„/3
Z

eCiR	q=„ Q%



P C q
2
;P � q

2
I t
�

dq : (5.41)

The Wigner function (5.41) is real, because the density operator is Hermitian. The
coordinate or momentum representation of the density operator can be recovered
from the Wigner function by inverting the corresponding Fourier transformation in
(5.41).

The Wigner function has several properties reminiscent of a classical phase space
density. Integrating over the momentum variables yields the (quantum mechanical)
probability density in coordinate space, e.g. for the pure state (5.35),

Z
%W .R;PI t/ dP D %.R;RI t/ D j .R; t/j2 : (5.42)

Conversely, integrating over the spatial variables yields the quantum mechanical
probability density in momentum space,

Z
%W .R;PI t/ dR D Q%.P;PI t/ D j Q .P; t/j2 : (5.43)

Integrating the Wigner function over the whole of phase space we obtain the
conservation of total probability [cf. (5.28)],

Z
%W .R;PI t/ dRdP D

Z
j .R; t/j2dR D

Z
j Q .P; t/j2dP D 1 : (5.44)

However, the Wigner function is also different from a classical phase space density
in some crucial aspects. In particular, the values of the function can be negative,
and it is only after integrations such as in (5.42)–(5.44) that genuine probability
interpretations become possible.

We obtain an equation of motion for the Wigner function by formulating the von
Neumann equation (5.40) in the Wigner representation. We assume a Hamiltonian
operator

OH D OT C OV ; OT D Op2
2�
; OV � V.r/ : (5.45)
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The Wigner function Œ OT; O%�W of the commutator of OT and O% is most easily calculated
by Fourier transformation from the momentum representation [lower line (5.41)],

Œ OT; O%�W D 1

.2�„/3
Z

dq eCiR	q=„ 1

2�

�

P C q

2

�2 �



P � q
2

�2�

� Q%



P C q
2
;P � q

2
I t
�

D „
i

P
�

rR %W.R;PI t/ : (5.46)

The Wigner function for the commutator of the potential energy and O% is more
easily calculated by Fourier transformation from the coordinate representation
(upper line (5.41)),

Œ OV; O%�W D 1

.2�„/3
Z

ds e�iP	s=„ hV 
R C s
2

�
� V



R � s

2

�i

�%



R C s

2
;R � s

2
I t
�
: (5.47)

The Wigner representation of the von Neumann equation now reads

@

@t
%W D � i

„


Œ OT ; O%�W C Œ OV; O%�W

�
; (5.48)

with the two terms Œ OT; O%�W and Œ OV; O%�W given by (5.46) and (5.47) respectively.
The kinetic energy term given by (5.46) has the same structure as the inertial term
in the classical Liouville equation (5.33). The potential energy term acquires the
same structure as the contribution due to the force-field in (5.33), if the potential
V.R ˙ s=2/ in (5.47) is expanded to second order in a Taylor series about V.R/,

V



R ˙ s
2

�
D V.R/˙ 1

2
s�rRV.R/C 1

8

X
i;j

sisi
@2V

@Ri@Rj
˙ : : : : (5.49)

If we insert the expansion (5.49) into (5.47) the even terms vanish and the Wigner
representation of the von Neumann equation becomes

@

@t
%W.R;PI t/D � P

�
� rR %W C rR V.R/ � rP %W C : : : : (5.50)

The dots on the right-hand side of (5.50) stand for contributions from cubic and
higher terms in the expansion of the potential (5.49).

For potentials depending at most quadratically on the coordinates, the expansion
(5.49) is exact and the quantum mechanical von Neumann equation in Wigner
representation is identical to the classical Liouville equation (5.33). A Wigner
function given at a certain time t0 will thus evolve in phase space exactly as if it
were a classical phase space density obeying the Liouville equation, provided the
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potential contains no anharmonic terms. Many phenomena which are often taught as
typical examples of quantum mechanical behaviour, such as the spreading of a wave
packet describing free-particle motion, can be completely understood classically. If,
in the case of a free particle, an initial phase space density containing a distribution
of momenta spreads in coordinate space in the course of time, then this is not a
quantum mechanical effect, just think e.g. of a 100-metre race with athletes running
at different speeds. The uncertainty relation of quantum mechanics does however
forbid an initial state with a finite uncertainty in coordinate space together with a
sharply defined momentum as would be necessary—both classically and in quantum
mechanics—to avoid dispersion of the probability distribution in coordinate space.
(See Problem 5.2.)

5.2.2 Coherent States

The concept of coherent states is useful for the description of the time-dependent
motion of wave packets, in particular if the Hamiltonian is the Hamiltonian of
a harmonic oscillator. To keep formulae simple we restrict the discussion in this
section to a one-dimensional harmonic oscillator,

OH D Op2
2�

C �

2
!2x2 D � „2

2�

@2

@x2
C �

2
!2x2 : (5.51)

(For a discussion of coherent states of a three-dimensional harmonic oscillator see
[AB91].)

The eigenvalues of the Hamiltonian (5.51) are En D �
n C 1

2

	„!, n D 0; 1; 2 : : :

The associated eigenstates (normalized to unity) are jni, and in coordinate represen-
tation they are polynomials of degree n multiplied by a Gaussian. The ground state
wave function consists of this Gaussian alone,

j0i �  0.x/ D �
ˇ

p
�
	�1=2

e�x2=.2ˇ2/ : (5.52)

According to (1.83) the natural oscillator width ˇ is related to the oscillator
frequency ! by

ˇ D
s

„
�!

: (5.53)

In momentum representation the ground state wave function is also a Gaussian (cf.
(5.37)),

Q 0 .p/ D 1p
2�„

Z 1

�1
e�ipx=„ 0.x/dx D �p

�„=ˇ	�1=2e�p2ˇ2=.2„2/ : (5.54)
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We define the operators

Ob D �!x C iOpp
2�„! ; Ob� D �!x � iOpp

2�„! : (5.55)

The commutation relations for Ob and Ob� follow from the commutation relations
(1.33) for position and momentum,

ŒOb; Ob�� D 1 : (5.56)

The Hamiltonian (5.51) has a very simple form if it is expressed in terms of the
operators Ob�, Ob :

OH D „!

Ob� Ob C 1=2

�
: (5.57)

From (5.56), (5.57) we obtain the commutation relations between Ob� or Ob and OH,

Œ OH; Ob�� D „! Ob� ; Œ OH; Ob� D �„! Ob : (5.58)

It follows from the first equation (5.58) and the commutation relation ŒOb; Ob�� D 1 that
the operator Ob� transforms the eigenstate jni of OH into the eigenstate jn C 1i (except
for a normalization constant), i.e. Ob� is a quantum creation operator. In the same
way it follows from the second commutation relation (5.58) that Ob is a quantum
annihilation operator which transforms the eigenstate jni into an eigenstate with
n�1 quanta. Together with the correct normalization and phase convention we have

Ob jni D p
n jn � 1i ; Ob� jni D p

n C 1 jn C 1i (5.59)

(see also Problem 2.6). Ob� Ob is an operator which just counts the number of oscillator
quanta excited in the eigenstates of the Hamiltonian (5.51) or (5.57),

Ob� Ob jni D n jni : (5.60)

The coherent states jzi are defined as superpositions of eigenstates of the
Hamiltonian (5.51),

jzi D e�zz�=2

1X
nD0

.z�/np
nŠ

jni D e�jzj2=2ez� Ob� j0i ; (5.61)

where z is an arbitrary complex number. The states (5.61) are normalized to unity,

hzjzi D e�jzj2X
n;n0

zn.z�/n0

p
nŠ n0Š

hnjn0i D e�jzj2
1X

nD0

.jzj2/n
nŠ

D 1 ; (5.62)
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but they are not orthogonal. The mean number of quanta excited in the coherent
state jzi is

hzjOb� Ob jzi D jzj2 (5.63)

(see Problem 5.3).
In order to obtain the wave function of the coherent state jzi in coordinate

representation, we start from the second equation (5.61). We can factorize the
operator exp.z� Ob�/ into a product

ez� Ob� D exp

 
z�.�!x � iOp/p

2�„!

!

D exp

 
.z�/2

4

!
exp

 
�iz� Opp
2�„!

!
exp

�
z�xp
2ˇ

�
: (5.64)

In doing so we have used the relation

e. OACOB/ D e OAe OBe�Œ OA; OB�=2 (5.65)

for the operators OA D �iz� Op=p2�„! and OB D z�x
p
�!= .2„/ D z�x=


p
2ˇ
�

.

The relation (5.65) is a special case of the Baker-Campbell-Hausdorff relation
which applies when the commutator Œ OA; OB� (here it is the constant �.z�/2=2)
commutes both with OA and with OB (see Problem 5.4). Before applying (5.64) we
recall that the action of an operator of the form exp.iaOp/ on an arbitrary wave
function  .x/ merely consists in shifting the argument by a„ [cf. (1.67)],

eiaOp .x/ D ea„ @=@x .x/ D
1X

nD0

.a„/n
nŠ

@n

@xn
 .x/ D  .x C a„/ : (5.66)

The coordinate representation of jzi is thus

jzi �  z .x/

D e�
h
jzj2 � .z�/2

i
=2 �p

�ˇ
	�1=2

exp

0
B@�



x � z�p

2ˇ
�2

2ˇ2

1
CA : (5.67)

The coherent state jzi is just a Gaussian wave packet which is shifted in position
and momentum from the harmonic oscillator ground state (5.52), (5.54). To see this
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we construct the associated Wigner function according to (5.41),

%W .X;P/ D 1

2�„
Z 1

�1
e�iPs=„ z.X C s=2/ �

z .X � s=2/ ds

D e.z�z�/2=2 .
p
�ˇ/�1

2�„
Z 1

�1
e�iPs=„ exp

 
� .X C s

2
� z�p

2ˇ/2

2ˇ2

!

� exp

0
B@�



X � s

2
� z

p
2ˇ
�2

2ˇ2

1
CA ds

D 1

�„ e�.X�Xz/
2=ˇ2 e�.P�Pz/

2ˇ2=„2 : (5.68)

The shifts Xz, Pz in position and momentum are

Xz D p
2ˇ<.z/ D ˇp

2
.z C z�/ ;

Pz D �p
2

„
ˇ

=.z/ D i„p
2ˇ
.z � z�/ : (5.69)

The Wigner function (5.68) of a coherent state is positive everywhere so there exists
a corresponding classical system described by a numerically identical phase space
density.

Coherent states evolve in time in a particularly simple way. Consider a coherent
state jz0i which is characterized at time t0 by the complex number z0. In order to
apply the time evolution operator expŒ�.i=„/ OH.t � t0/� cf. (1.41), to the first form
(5.61) of jz0i, we only have to multiply the eigenstates jni of OH by the respective
phase factors expŒ�i.n C 1=2/! .t � t0/�,

exp
h
� i

„ OH.t � t0/
i

jz0i D e�jz0j2=2
1X

nD0

.z�
0 /

n

p
nŠ

e�i.nC1=2/!.t�t0/ jni

D e�i!.t�t0/=2e�jzj2=2
1X

nD0

.z.t/�/np
nŠ

jni

D e�i!.t�t0/=2jz.t/i ; (5.70)

where jz.t/i again is a coherent state, namely the one characterized by the complex
number

z .t/ D ei!.t�t0/z0 : (5.71)
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Fig. 5.6 Time evolution of minimal wave packets in phase space under the influence of a harmonic
oscillator potential with the natural oscillator width ˇ. The wave packet starts at its maximum
(positive) displacement at time t D 0. Each part of the picture shows contour lines of the Wigner
function (corresponding from the inside outwards to %W=.%W/max D 0:9; 0:7; 0:5/ at t D 0, !t1 D
75ı and !t2 D 150ı. (a) shows the coherent state, (b) a state squeezed in amplitude and (c) a state
squeezed in phase

Except for a phase factor expŒ�i!.t � t0/=2�, which doesn’t affect probabilities, the
time evolution of a coherent state is simply given by a rotation of the characteristic
number z in the complex plane. Thus both real and imaginary part of z oscillate with
the oscillator frequency !, and the coherent wave packet jz.t/i oscillates in position
and momentum without changing its Gaussian shape or its widths, see Fig. 5.6(a).

The coherent state (5.61) represents a minimal wave packet in which the product
of position uncertainty �x D ˇ=

p
2 and momentum uncertainty �p D „=.p2ˇ/

takes on the minimum value „=2 allowed by the uncertainty relation (1.34). This
minimal property is a property of any Gaussian wave packet. Consider for example a
Gaussian wave packet of the form (5.67) but with a different width ˇ0 in place of the
natural oscillator width ˇ of (5.53). Now the position uncertainty is �x D ˇ0=

p
2

and the momentum uncertainty is�p D „=

p

2ˇ0
�

. If ˇ0 is smaller than the natural

oscillator width ˇ given by (5.53), then the wave packet is squeezed in coordinate
space in comparison with the coherent states; the momentum space distribution is
correspondingly broader. If ˇ0 is larger than the natural oscillator width ˇ, then the
momentum distribution is narrower than for the coherent states; the wave packet is
squeezed in momentum space.

The time evolution of squeezed states is not quite as simple as for the coherent
states, but almost. The Wigner function of any Gaussian wave packet has the form
(5.68) (with the appropriate width parameter) and is non-negative. Its time evolution
follows the quantum mechanical von Neumann equation and is exactly the same as
the time evolution of a numerically identical classical phase space density according
to the Liouville equation, because the potential is harmonic. So the Wigner function
follows the classical trajectories in phase space, and these are concentric circles
which are traversed uniformly with a period 2�=!. The Wigner function thus
executes a circular motion in phase space, during which it keeps its shape but
changes its orientation with respect to the position and momentum axes as illustrated
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in Figs. 5.6(b) and (c). (Note that all Wigner functions, and not only Gaussian wave
packets, evolve in this way as long as the potential is harmonic.) Figure 5.6(b)
shows the time evolution of a minimal wave packet which is squeezed in position
.ˇ0 D ˇ=2/ and starts at its maximum (positive) displacement at time t D 0. After
one quarter of a period, !t D �=2, it has moved to x D 0 and is now squeezed in
momentum, after half a period it has moved to its maximum negative displacement
and is again squeezed in position, and so it goes on until it returns to the original state
after a whole period. Figure 5.6(c) on the other hand shows the time evolution of a
minimal wave packet which is squeezed in momentum at t D 0, after a quarter of
a period it is squeezed in position, etc., etc.. A time-independent way of classifying
the squeezed nature of the states is to call the wave packet in Fig. 5.6(b) squeezed
in amplitude, .p2=�C �!2x2/1=2, and the wave packet in Fig. 5.6(c) squeezed in
phase, arctan. p=�!x/.

In the quantum mechanical description of the electromagnetic field in Sect. 2.4.2
we treated the photons in a given mode as quanta of a harmonic oscillator. For a
single mode 
 the equations (2.159), (2.160) become

A D �


L3=2
.q
e�i!
 t C q�


eCi!
t/ ;

E D �


L3=2
i!

c
.q
e�i!
t � q�


eCi!
t/ ;

B D ik
��


L3=2
.q
e�i!
t � q�


eCi!
t/ : (5.72)

We have invoked the dipole approximation .exp.ik
 � r/ � 1/, because this keeps
formulae simple and we are not concerned with the spatial structure of the fields
at the moment. If we replace the amplitudes q
 and q�


 by position and momentum
variables according to (2.162) and drop the factors exp .˙i!
t/ in order to move
from the Heisenberg representation to the Schrödinger representation as suggested
by (2.170), then we obtain the following relations connecting the electromagnetic
field operators to the position and momentum operators Ox
 and Op
 of the harmonic
oscillator associated with the mode 
 (in the Schrödinger representation):

OA D �


L3=2
p
4�c2 Ox
 ;

OE D � �


L3=2
p
4� Op
 ; OB D � k
��


jk
jL3=2
p
4� Op
 : (5.73)

In a given mode 
 the vector potential together with the electric or the magnetic
field strength thus play the role of conjugate position and momentum variables for
the harmonic oscillator describing this mode. (See also Problem 5.3.)

Coherent states play an important role in the investigation of the statistical
properties of light in the framework of quantum optics. States of the electromagnetic
field are usually called “classical” if they can be written as a superposition of
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coherent states jzi with a regular, non-negative amplitude function P.z/. A coherent
state jz0i itself would correspond to P.z/ D ı.z � z0/, which would be at the edge
of the classical regime defined in this way. A state of the field in which the photon
number distribution is more sharply peaked than in a coherent state can in general
not be represented in terms of superpositions of coherent states with regular, non-
negative amplitude P.z/. This is the regime of “nonclassical light”. An eigenstate
of the field with a fixed finite number n
 of photons in a given mode 
 is an
example of nonclassical light. The Wigner function (5.41) of such a state takes on
negative values and hence cannot be interpreted as a classical phase space density,
see Problem 5.3(c).

The time evolution of coherent states reflects the classical dynamics. The finite
widths of their position and momentum distributions satisfy the requirements of the
uncertainty relation. The creation and observation of squeezed states of light has
been a subject of considerable interest for many years. The popularity of squeezed
states stems from the fact that their uncertainty (in amplitude or phase) lies below
the natural quantum mechanical uncertainty (of the coherent state), and this makes
it possible to overcome limits to resolution due to natural quantum fluctuations in
sensitive measurement processes [MS83]. For a detailed treatment of the quantum
theory of light see e.g. [KS68, MS90, Lou00]. A special illumination of quantum
optics from the point of view of phase space representations is given in [Sch01].

After all that has been said in this section we must not forget that the simple
picture of a wave packet evolving along classical trajectories without changing its
shape is bound to the harmonic nature of the Hamiltonian. This makes the classical
oscillation frequency independent of the amplitude and the quantum mechanical
energy levels equidistant. Life isn’t always so simple, as can already be seen in
the example of wave-packet spreading for a free particle. The concept of coherent
states can however be used with advantage in other physical systems, e.g. in a
space of angular momentum eigenstates. The eigenvalues of the z component of
angular momentum are actually equidistant, but the spectrum for a given angular
momentum quantum number l is bounded from above and below (1.58). For a
general description of coherent states in systems characterized by various symmetry
groups see e.g. [Per86, Hec87, ZF90].

5.2.3 Coherent Wave Packets in Real Systems

The harmonic oscillator treated in the preceding section is untypical for the
dynamical evolution of wave packets in as far as two important results cannot
be transferred to more general systems. Firstly, the evolution of the classical
and the quantum mechanical phase space distributions is no longer the same if
the potential contains anharmonic terms. Secondly, phase space distributions with
finite uncertainties in position and momentum usually spread in coordinate space,
even classically. A wave packet for a particle moving in a general potential may
follow a classical trajectory in an average way, but beyond this there usually is
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dispersion, which can be understood classically, and there are genuine quantum
mechanical effects resulting from terms indicated by the dots on the right-hand sides
of equations (5.49), (5.50).

Considerable effort has gone into the search for coherent wave packets which
are exact solutions of the Schrödinger equation and at the same time expose
the correspondence to classical mechanics more clearly than the usual stationary
eigenstates [Nau89, GD89, DS90, YM90]. The behaviour of wave packets in a
Coulomb potential (1.134) is obviously of special interest in atomic physics. In a
pure Coulomb potential the energy eigenvalues En D �R=n2 are highly degenerate.
For each eigenvalue there are (without spin) n2 eigenstates which can be labelled
by the angular momentum quantum number l D 0; 1; : : : n � 1 and the azimuthal
quantum number m D �l; : : : l. In a pure Coulomb potential there is a further
constant of motion in the form of the Runge-Lenz vector

OM D 1

2�
.Op� OL � OL� Op/ � e2

r
r
: (5.74)

Classically its length is a measure for the excentricity of the closed Kepler ellipses,
and it points in the direction of the larger principal axis. Using the components of
the angular momentum OL and the Runge-Lenz vector (5.74) Nauenberg [Nau89]
and Gay et al. [GD89] constructed a generalized angular momentum in two and
three spatial dimensions respectively and searched for solutions of the Schrödinger
equation with a minimum uncertainty in appropriate components of this generalized
angular momentum. Superposing degenerate eigenstates with a given principal
quantum number n in this way leads to a stationary solution of the Schrödinger
equation which is no longer characterized by good angular momentum quantum
numbers l and m, but which is optimally localized around a classical Kepler ellipse
(see Fig. 5.7).

Fig. 5.7 Probability density j .r/j2 for a stationary solution of the Schrödinger equation in a pure
Coulomb potential showing optimal localization around a Kepler ellipse of given excentricity (0.6
in this case) (From [GD89])
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Fig. 5.8 Probability density for an initial wave packet which is localized around the perihelion of
a Kepler ellipse (a). After half a revolution it is localized around the aphelion (b). In the course
of time, spreading and interference effects become noticeable, as can already be seen after two
revolutions (c) (From [Nau89])

In order to construct a non-stationary wave packet to simulate classical motion
along a Kepler ellipse we have to superpose eigenstates with different principal
quantum numbers n. The time evolution of a Gaussian superposition is shown in
Fig. 5.8. Figure 5.8(a) shows a wave packet localized around the perihelion of a
Kepler ellipse at time t D 0. After half a revolution the wave packet has arrived at the
aphelion, Fig. 5.8(b). Localization along the trajectory is even a little narrower here.
This is due to the slower speed near the aphelion and simply illustrates congestion.
As time goes on the wave packet actually spreads. After two revolutions it has
already spread out over the whole Kepler ellipse, Fig. 5.8(c). Figure 5.8(c) also
shows signs of quantum mechanical interference where the faster head of the wave
packet has caught up with the slower tail. These interference effects, which lead to
oscillations in the probability density, are genuine quantum effects which cannot be
described classically.

Coherent wave packets which are sharply localized and move along classical
trajectories must be superpositions of stationary states involving different energies.
Such wave packets can only be produced in the laboratory by perturbations of the
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Fig. 5.9 Photoionization
probability for n � 65

Rydberg states of a potassium
atom which were excited by a
15 ps laser pulse. The
abscissa shows the time delay
of the second, the ionizing,
pulse. (a) Experiment,
(b) theoretical calculation
(From [YM90])

Hamiltonian which are strongly localized both in space and in time. This can be
achieved with intense laser pulses of durations of the order of picoseconds.

Figure 5.9 shows the results of an experiment in which Rydberg states around
n D 65 in potassium were excited by a laser pulse of 15 picoseconds. At the
corresponding energy the period of revolution for a classical Kepler ellipse is near
40 ps. The potassium atom is ionized by a second time-delayed laser pulse. Most
of the time the excited electron is far away from the KC ion and, similar to a
free electron, cannot absorb energy from the laser field (cf. Problem 5.5). There
is an appreciable probability for ionization only if the electron is close to the
KC ion, which happens every 40 picoseconds. The observed photoionization rate
as a function of the time delay of the second laser pulse indeed shows maxima
corresponding to this period. The signal is washed out after several periods due
to spreading of the wave packet. A little later we observe a revival to a more or
less coherent wave packet with oscillations again corresponding to the period of
the classical revolution. The reason for this revival is that the time evolution of a
state consisting of a superposition of a finite number of energy eigenstates always is



432 5 Special Topics

quasiperiodic (or periodic). The coherence of the various interfering contributions
is maintained during the evolution and enables the regeneration (to a large extent)
of the original localized wave packet.

Review articles on electronic wave packets in Rydberg atoms were published by
Alber and Zoller [AZ91] and by Jones and Noordham [JN98]. For a review on the
subject of quantum wave packet revivals see [Rob04]. With continuing progress on
the experimental side, very short laser pulses on the femtosecond timescale became
available, and time resolved studies of wave-packet evolution are being extensively
used to analyze the dynamics of atomic and molecular systems, see e.g. [EK99,
TA16].

5.3 Regular and Chaotic Dynamics in Atoms

The relation between classical mechanics and quantum mechanics is understood
reasonably well for systems which are integrable, meaning essentially that the
classical motion is quasiperiodic and corresponds, in an appropriate representation,
to a superposition of one-dimensional oscillations. Integrability is, however, the
exception rather than the rule in classical mechanics, even for seemingly simple
systems with few degrees of freedom. Although this has been known in principle
since the work of Poincaré and others more than a hundred years ago, the far-
reaching implications only became generally realized and accepted in the late
1970’s [LL83, SJ05]. A tangible consequence of this realization was the explosive
development field of the field of nonlinear dynamics, “chaos”, which permeated into
virtually all fields of physics and beyond. The continuing progress in understanding
the rich and diverse behaviour in classical dynamics made it urgently desirable to
understand if and how the nonlinearity of classical evolution survives the transition
to strictly linear quantum mechanics [Haa01]. Simple atoms provided important
examples of naturally occurring and experimentally accessible systems in which
the quantum manifestations of classical chaos can be studied. The study of simple
atoms, with or without the presence of external fields, led to important and exciting
advances in our understanding of the relation between classical and quantum
dynamics [GG89, Gay91, CK97, SS98]. A collection of articles by some of the
most prominent researchers in this field is contained in [FE97]. A monograph on
the subject was written by Blümel and Reinhardt [BR09].

5.3.1 Chaos in Classical Mechanics

The trajectories .qi.t/; pi.t// describing the evolution of a system with f degrees
of freedom are solutions of the canonical equations (5.27) and, for given initial
conditions qi.t0/, pi.t0/, they determine the state of the system for all later times.
It is helpful to collect the 2f components q1; : : : ; qf I p1; : : : pf of a point in phase
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space in one symbol x. How regular or “chaotic” the classical motion is depends on
how rapidly a small deviation�x from a given trajectory x.t/ can grow in time. We
generally regard a system as chaotic if a small deviation can increase exponentially
in time which means that neighbouring trajectories diverge exponentially.

In order to formulate this statement more precisely we consider a given trajectory
x.t/ and a small deviation �x.t0/ at time t0. At a later time t1 the trajectory which
started at x.t0/ C �x.t0/ will deviate from the original trajectory by a separation
�x.t1/. In the limit of infinitesimal deviations there is a linear relation connecting
the deviations at time t0 and at time t1. Since the phase space points as well as the
deviations�x are quantities with 2f components, this linear relation is mediated by
2f � 2f matrix which is called the stability matrix M.t1; t0/:

�x.t1/ D M.t1; t0/�x.t0/ : (5.75)

Since�x has several components, an initial deviation in one direction in phase space
may grow strongly in the course of time, while an initial deviation in a different
direction might increase at a slower rate or even become smaller. In a conservative
system the Hamiltonian function H does not depend explicitly on time, and it follows
from the special structure of the canonical equations (5.27) that the stability matrix
is a symplectic matrix, which means,;

MJM� D J; J D
�

0 1
�1 0

�
I (5.76)

here 0 is the f � f matrix full of zeros and 1 is the f � f unit matrix. If 
1 is an
eigenvalue of M, so are 
�

1 , 1=
1 and 1=
�
1 . The 2f eigenvalues of the stability

matrix occur in quartets or, if they are real or have unit modulus, in pairs. Their
product is unity, expressing the fact that the total phase space volume of a set
of initial conditions doesn’t change in the course of the dynamical evolution in a
conservative system (Liouville’s theorem).

The definition of chaos is based on the fastest growing deviation from a given
trajectory, and the growth rate is related to the matrix norm of the stability matrix.
A matrix norm kMk is non-negative and can e.g. be defined as the square root
of the largest eigenvalue of the Hermitian matrix M�M [HJ85]. The dynamics is
unstable in the point x in phase space if the norm of the stability matrix increases
exponentially along the trajectory beginning with x.t0/—more precisely, if the
Liapunov exponent



defD lim

t�t0!1
ln kM.t; t0/k

t � t0
; (5.77)

which is defined in the long-time limit, does not vanish but is positive. Roughly
speaking this says that neighbouring trajectories diverge exponentially, and the
Liapunov exponent (5.77) is the factor in the exponent which determines the rate
of divergence (see Fig. 5.10).
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Fig. 5.10 Schematic
illustration of the exponential
divergence of neighbouring
trajectories in phase space

The Liapunov exponent is a property of the classical trajectory; all phase space
points along one trajectory have the same Liapunov exponent (see Problem 5.6).
Every trajectory is either stable (if its Liapunov exponent vanishes), or unstable
(if its Liapunov exponent is positive). An unstable trajectory need not be very
complicated. Simple periodic trajectories (periodic orbits) can be stable or unstable.
The Liapunov exponent of a periodic orbit of period T can be defined via the
eigenvalues of the stability matrix over one period—the monodromy matrix M.T; 0/.
If � is the largest modulus of an eigenvalue of M.T; 0/, then the norm of M.T; 0/n

becomes equal to �n for large n [HJ85] and the Liapunov exponent is given by,


 D lim
n!1

ln.�n/

nT
D ln�

T
: (5.78)

Instability of a periodic orbit means that infinitesimally small deviations lead to
trajectories which move away from the periodic orbit at an exponential rate and
hence cannot themselves be periodic (see Problem 5.7).

A region in phase space is chaotic if all trajectories are unstable. Chaos can
already occur in a system with only one spatial degree of freedom if the Hamiltonian
function depends explicitly on time. A periodic time dependence as caused by
an oscillating external field is an important example. The simplest example of a
mechanical system driven by a periodic force is the periodically kicked rotor, which
has been studied in considerable detail in particular by Blümel and collaborators
[BR09]. The Hamiltonian function is

H.� I pI t/ D p2

2
C k cos �

X
n

ı.t � nT/ : (5.79)

The coordinate � describes the rotation around a fixed axis and p is the associated
canonically conjugate angular momentum (the moment of inertia is unity). At the
end of each period T the rotor gets a kick, the strength of which is determined by
the coefficient k and the momentary angle � (see Fig. 5.11). The kick changes the
angular momentum by k sin � . Between two kicks the rotor rotates freely so that the
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Fig. 5.11 The periodically
kicked rotor. At time nT it
experiences a torque
k sin � ı.t � nT/. Whether a
kick accelerates or
decelerates the rotational
motion depends on the sense
of rotation and the angle � at
the time of the kick

angle increases by pT in a period. The angle �nC1 and the angular momentum pnC1
after n C 1 periods can thus be expressed by the following recursion relation:

pnC1 D pn C k sin �n ; �nC1
D �n C pnC1T : (5.80)

This equation describes the entire dynamics of the kicked rotor as a mapping of the
two-dimensional phase space into itself. Because of its fundamental importance it is
known as the standard mapping. A trajectory which begins at � D �0, p D p0 at time
t D 0 is completely described by the sequence of points .�n; pn/, n D 0; 1; 2; : : :.

The dynamics described by the standard mapping (5.80) can be quite compli-
cated, as can be seen by studying the sequence of points .�n; pn/ in phase space. In
the integrable limit k D 0 we have uniform rotation, the angular momentum p
is constant and the angle � increases by pT each period. The points .�n; pn/ of
a trajectory in phase space all lie on the straight line p D const:. Obviously a
small deviation in initial conditions can only grow linearly in time in this case. For
finite values of k—actually kT is the relevant quantity—we observe more structure
in phase space. Figure 5.12 shows the sequence of points .�n; pn/ generated by
five different sets of initial conditions for kT D 0:97. We can clearly distinguish
two different types of trajectories: regular trajectories for which all points lie
on a one-dimensional curve, and irregular trajectories whose points .�n; pn/ are
spattered more or less uniformly over a finite area in phase space. The two regular
trajectories in Fig. 5.12 describe quasiperiodic motion and the associated curves
in phase space form boundaries which cannot be crossed by other trajectories and
hence divide phase space into separated regions. Detailed numerical calculations
by Greene [Gre79] and others have shown that the share of irregular or chaotic
trajectories increases with increasing values of the parameter kT. For large values
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Fig. 5.12 Trajectories of the periodically kicked rotor (5.79), (5.80) in phase space for a coupling
constant kT D 0:97 (from [Gre79])

of kT the boundary curves break up and the irregular trajectories can explore the
whole of phase space. Numerical calculations also show that the distribution P. p/
of angular momenta becomes a Gaussian after a large number n of kicks, provided
kT is sufficiently large, and that the square of the width of this Gaussian grows
linearly with n as in ordinary diffusion or random walk processes. After n periods
we have [CF86]

P. p/ � .kT
p

n�/
�1

e�p2=Œn.kT/2� ;

hp2i D
Z

p2P. p/ dp � 1

2
n.kT/2 : (5.81)

As p2 is proportional to the kinetic energy of the system, (5.81) implies that the
energy distribution of the system broadens as in diffusion.

In a conservative system the Hamiltonian function H does not depend explicitly
on time, the energy H.q1.t/; : : : qf .t/I p1.t/ : : : pf .t// of the system is always an
integral of motion and all trajectories with the same energy move on a .2f � 1/-
dimensional subspace of phase space called the energy shell. In a one-dimensional
conservative system any bound motion is a (not usually harmonic) oscillation
between two classical turning points and hence is periodic. The trajectories are
closed curves in the two-dimensional phase space, see Figs. 5.13(a) and (b). A small
deviation from a given trajectory leads to a slightly different trajectory which again
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Fig. 5.13 (a) Bound motion in a one-dimensional conservative system, H .q; p/ D 1
2
p2 C V .q/.

(b) Periodic trajectories of the one-dimensional conservative system in phase space. (c) Two-
dimensional torus in the three-dimensional energy shell of a conservative system with f D 2

degrees of freedom

is periodic and the separation of two trajectories can only grow linearly in time.
Such a system has no chaos (although there may be isolated unstable points).

The simplest conservative potentials capable of being chaotic have f D 2

degrees of freedom. Chaos is possible if the system is not integrable, i.e. if there
is no further integral of motion. Otherwise the motion of the system is usually
periodic or quasiperiodic. In a two-dimensional system with two independent
integrals of motion a trajectory in four-dimensional phase space is confined to a
two-dimensional surface which usually has the topology of a torus. The parameters
of the torus are determined by the energy and the second integral of motion,
see Fig. 5.13(c). More generally: a mechanical system with f degrees of freedom
is called integrable if its Hamiltonian function can be written as a function
of f independent integrals of motion and no longer depends on the associated
canonically conjugate variables [Gol80]. In an integrable system all Liapunov
exponents vanish [Mey86]. The f integrals of motion confine the trajectories in 2f -
dimensional phase space to f -dimensional subspaces which are also called “tori” if
f > 2.

Two anharmonically coupled oscillators already provide an example of a two-
dimensional conservative system which isn’t integrable. To be specific let’s consider
the Hamiltonian function

H D 1
2

�
p21 C p22 C q41 C q42 C �q21q

2
2

	
: (5.82)

The potential energy V D .q41C q42C�q21q
2
2/=2 in (5.82) is a homogeneous function

of the coordinates, V.�q1; �q2/ D �dV.q1; q2/, with d D 4. Hence the dynamics is
essentially independent of energy, see Sect. 5.3.4. The properties of the dynamics are
determined by the coupling parameter � . In the integrable limit � D 0 the motion
factorizes into two independent periodic oscillations in the variables q1 and q2.

We can visualize the dynamics in a conservative system with f D 2 degrees
of freedom in a way similar to Fig. 5.12 if we look at a two-dimensional surface
of section of the three-dimensional energy shell and register the points at which
a trajectory pierces this surface (perhaps subject to a condition concerning the
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Fig. 5.14 Poincaré surfaces of section for the system (5.82) with the following values of the
coupling parameter � : 6 (a), 7 (b), 8 (c) and 12 (d). The surface of section is the p1q1-plane at
q2 D 0 (From [Eck88])

direction of the motion normal to the surface). The resulting figure is called a
Poincaré surface of section. A periodic trajectory appears on a Poincaré surface
of section as a single point or a finite (small) number of points. A quasiperiodic
trajectory running on a two-dimensional torus in the energy shell appears as a
one-dimensional curve on the Poincaré surface of section, similar to Fig. 5.12. An
irregular or chaotic trajectory, which densely fills a finite three-dimensional volume
in the energy shell, covers a finite area of the Poincaré surface of section with more
or less uniformly spattered points. Figure 5.14 shows Poincaré surfaces of section
for the system (5.82) at four different values of the coupling constant � . At � D 6

the motion is still largely on regular tori. With increasing values of the coupling
constant the share of phase space filled with irregular trajectories becomes bigger
and bigger. At � D 12 the whole of phase space is filled with irregular trajectories,
except for small islands of regularity. For a numerical calculation of the Liapunov
exponents of the trajectories in this example see [Mey86].
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5.3.2 Traces of Chaos in Quantum Mechanics

Both the concept of Liapunov exponents and the picture of Poincaré surfaces of
section are defined via classical trajectories and cannot be transferred to quantum
mechanics in an obvious way. We shall not enter here into the frequently contro-
versial discussion on how to define “quantum chaos” or whether or not this concept
makes sense at all. Instead we shall turn to the more modest question of how the
fact that a classical system is chaotic affects the corresponding quantum mechanical
system.

The quantum mechanical version of the periodically kicked rotor (5.79) is
described by the Hamiltonian operator

OH D �„2
2

@2

@�2
C k cos �

X
n

ı.t � nT/ : (5.83)

Solutions of the time-independent Schrödinger equation (1.38) can easily be
constructed with the help of the time evolution operator (1.40). To this end we
expand the wave function  .�; t/ in a Fourier series in the angle � ,

 .�; t/ D
1X

�D�1
c� ei�� ; (5.84)

which is the same as expanding in eigenstates of the free rotor .k D 0/. The
Hamiltonian is time-independent between two kicks so that the time evolution (1.41)
simply amounts to multiplication of the basis functions exp.i��/ by the respective
factors expŒ�i.„=2/�2T�. In the infinitesimally short time between t� immediately
before and tC immediately after a kick the Hamiltonian depends explicitly on time
and we have to replace the product OH.tC � t�/ in the time evolution operator by the
integral

R tC
t�

OH.t/dt. Thus the wave function is just multiplied by exp.�ik cos �=„/
during a kick.

If  n.�/ D P
� c�.n/ exp.i��/ is the wave function immediately after the nth

kick, then the wave function one period later is

 nC1.�/ D e�ik cos �=„
1X

�D�1
c�.n/ ei.���„T�2=2/ ; (5.85)

and its expansion in a Fourier series defines a new set of coefficients c�.n C 1/ (see
e.g. [Eck88]).

The search for traces of chaos led to the question, whether the quantum
mechanical evolution according to (5.85) involves diffusive behaviour and a linear
increase of the kinetic energy in time or in number of kicks as in (5.81). If the
period T is an integral multiple of 4�=„, then the wave function is simply multiplied
by a factor exp.�ik cos �=„/ each period. In case of such a resonance the kinetic
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energy even increases quadratically with the number of kicks. According to [IS79]
such resonances, for which there is no classical equivalent, occur whenever the
period T is a rational multiple of �=„. The time evolution (5.85) away from
resonances was investigated numerically by Casati et al. [CF86]. This led to the
following picture: For small times an initially localized distribution with only one
or few non-vanishing coefficients c� spreads diffusively at first, but with a smaller
diffusion constant than in the corresponding classical case. After a certain time tS
a saturation is reached, the diffusive spreading ceases and we have quasiperiodic
motion in phase space. The time tS is larger if „ is smaller. Thus classical chaos is
suppressed in quantum mechanics by the finite value of „ [Cas90]. For more details
on the classical and quantum dynamics of the kicked rotor the reader is referred to
[Blu97, Haa01, BR09].

A conservative quantum mechanical system is primarily characterized by its
spectrum of energy eigenvalues. In a bound system the spectrum is discrete. A state
in a bounded energy interval is always a superposition of a finite number of energy
eigenstates and so its time evolution must be (at least) quasiperiodic. At sufficiently
high excitation energies and level densities the spectrum may nevertheless be very
complicated, and the investigation of statistical properties of spectra has revealed
connections to the regular or chaotic nature of the corresponding classical dynamics.
Some of the more basic results are presented below; more details are contained e.g.
in the monograph by Haake [Haa01].

The opposite of a (classically) chaotic system is an integrable system with a
Hamiltonian function which can be expressed in terms of integrals of motion.
The corresponding quantum mechanical Hamiltonian operator should then be a
corresponding function of constants of motion so that the energy eigenvalues depend
on several independent good quantum numbers. The eigenvalues e.g. of a separable
Hamiltonian of the form

OH D OH1 C OH2 C � � � C OHN (5.86)

are just sums of the eigenvalues Eni of the operators OHi,

En1;n2;			nN D En1 C En2 C � � � C EnN : (5.87)

If the individual eigenvalue sequences Eni , ni D 1; 2; : : : are not correlated, then
the summation in (5.87) produces a rather irregular sequence of eigenvalues for the
whole system, somewhat similar to a sequence of randomly distributed numbers.
Such a random spectrum is called a Poisson Spectrum.

If the classical system is chaotic it will probably not be possible to label the
energy eigenvalues of the corresponding quantum mechanical system by good
quantum numbers in a straightforward way. The energy eigenvalues are eigenvalues
of a Hermitian matrix. When there are no good quantum numbers at all (apart
from the energy) one tries to understand the spectrum by studying the spectra
generated by random matrices [GM98]; these are matrices whose elements are
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distributed randomly subject to certain restrictions. One generally considers a whole
ensemble of Hermitian N � N matrices, whose matrix elements are individually and
independently randomly distributed. One property of the eigenvalue distribution
in the limit N ! 1 is the concentration on a semicircle of unit radius (with
appropriate choice of energy scale) centred around a mean value. The probability
of realization of a particular matrix is given by

P.H/ / exp

�
� N


 �2
Tr.H2/

�
(5.88)

with 
 D 2; the parameter � defines the energy scale. The probability (5.88) is
invariant under a unitary transformation of the matrix H,

H0
i;j D h 0

i j OHj 0
j i D

X
k;l

U�
k;iHk;lUl;j or H0 D U�HU ; (5.89)

i.e., it does not depend on the choice of basis. The corresponding ensemble of
random matrices is called a Gaussian unitary ensemble GUE.

In some cases, e.g. for the coupled oscillators (5.82), we can assume that the
matrix of the quantum mechanical Hamiltonian is not only Hermitian but real and
symmetric. It is then reasonable to replace the requirement of invariance under
unitary transformations by the requirement that the probability for a given real and
symmetric random matrix be invariant under orthogonal transformations; these are
transformations of the form (5.89) except that the unitary matrix U is replaced by an
orthogonal matrix O (whose transposed matrix is equal to its inverse). The ensemble
of random matrices is now called a Gaussian orthogonal ensemble GOE, and the
parameter entering in the definition (5.88) is 
 D 4.

Although exact proofs are scarce, the results of many numerical experiments
indicate that a quantum mechanical spectrum shows similarities to a random or
Poisson spectrum if the corresponding classical system is regular, and to the
spectrum of random matrices (GOE or GUE) if the corresponding classical system
is chaotic.

In order to formulate these statements more quantitatively we consider a
spectrum E1 � E2 � : : : � En � : : :. Such a spectrum can be expressed in terms of
the mode number

N.E/ D
X

n

�.E � En/ : (5.90)

The step function�.x/ vanishes for x < 0 and is unity for x � 0, so that N.E/ is just
the number of eigenstates with energies up to (and including) E. The mode number
N.E/ is a staircase function; it fluctuates around the mean mode number QN.E/,
which can be obtained by dividing the classically allowed region in 2f -dimensional
phase space by the f th power of 2�„. An example for N.E/ and QN.E/ is illustrated
in Fig. 5.15. The derivative of the mode number with respect to energy is the level
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Fig. 5.15 Examples for the
mode number N.E/ and the
mean mode number QN.E/
(dashed)

density, and the derivative of the mean mode number defines the mean level density,

d.E/ D dN.E/

dE
D
X

n

ı.E � En/ ; Qd.E/ D d QN.E/
dE

: (5.91)

The statistical properties of a spectrum can best be studied if the weakly energy-
dependent effects reflecting the mean level density are normalized away. This can
be achieved by replacing the spectrum En by the sequence of numbers

"n D QN.En/ D
Z En

E1

Qd.E/dE ; (5.92)

which has all the fluctuation properties of the original spectrum but corresponds to
a mean level density of unity.

A frequently studied property of spectra is the distribution of the separations
between neighbouring levels, EnC1�En or "nC1�"n, the so-called nearest neighbour
spacings NNS. It is relatively straightforward to show that the NNS of a Poisson
spectrum follow an exponential distribution (see Problem 5.8). For a mean level
density unity the probability density P.s/ for a separation s of neighbouring levels
is given by

P.s/ D e�s : (5.93)

The high probability for small separations of neighbouring levels expresses the
fact that degeneracies or near degeneracies are not unusual if there are other
good quantum numbers beside the energy, as is the case when the corresponding
classical system is regular. On the other hand, if there are no further good quantum
numbers, the residual interaction leads to repulsion of close lying states and hinders
degeneracies (see Problem 1.6). It can actually be shown [Eck88, Haa01] that the
NNS distribution P.s/ for the eigenvalue spectra of random matrices is proportional
to s for small separations in the GOE case and to s2 in the GUE case. The NNS
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Fig. 5.16 NNS distributions of the quantum mechanical energy spectrum for the coupled oscilla-
tors (5.82). The four parts of the picture belong to the same values of the coupling parameter �
as in Fig. 5.14. The curve in (a) is the Poisson distribution (5.93). The curve in (d) is the Wigner
distribution (5.94) (From [Eck88])

distribution in the GOE case is quite well approximated by a Wigner distribution

P.s/ D �

2
s e�.�=4/s2 : (5.94)

Figure 5.16 shows the NNS distributions for energy spectra of the Hamiltonian
operator corresponding to the Hamiltonian function (5.82). The four parts of the
picture belong to the same four values of the coupling parameter as in Fig. 5.14. Note
the transition from a Poisson distribution (5.93) at � D 6 (a), where the classical
dynamics is still largely regular, to the Wigner distribution (5.94) at � D 12 (d),
where the classical dynamics is largely irregular.

Higher correlations of the spectrum can be studied via various statistical mea-
sures [BG84, BH85]. One popular measure is the spectral rigidity �3.L/ which
measures the deviation of the mode number from a straight line over a stretch of
spectrum of length L,

�3.L/ D 1

L
min
A;B

Z xCL

x
ŒN."/ � A" � B�2d" : (5.95)
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Fig. 5.17 Spectral rigidity of the quantum mechanical energy spectrum of the coupled oscillators
(5.82). The four parts of the figure correspond to the same values of the coupling parameter � as
in Figs. 5.14 and 5.16. The straight line in (a) is the expectation (5.96) for a Poisson spectrum. The
curve in (d) is the function (5.97) expected for a GOE spectrum (From [Eck88])

�3 is on the average independent of the starting point x in the special cases discussed
above. The dependence of�3 on L is linear for a Poisson spectrum,

�3.L/ D L

15
; (5.96)

and approximately logarithmic for a GOE spectrum,

�3 � 1

�2
ln.L/ � 0:007 ; L 	 1 : (5.97)

(See e.g. [BG84] for further details.) Figure 5.17 shows the spectral rigidity for the
coupled oscillators (5.82). The four parts of the figure again correspond to the same
four values of the coupling constant � as in Figs. 5.14 and 5.16.

Figures 5.14, 5.16 and 5.17 clearly show that the transition from regularity
to chaos in the classical system is accompanied by a simultaneous transition in
the statistical properties of the energy spectrum of the corresponding quantum
mechanical system. The NNS distribution and the spectral rigidity (and further
statistical measures—see e.g. [BH85]) correspond to the expectations for a Poisson
spectrum in the classically regular regime and to the expectations for an ensemble
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of random matrices in the classically chaotic regime. Beware of over-interpretations
of this statement! It does not mean that the quantum mechanical spectrum of a
classically chaotic system is identical in detail to a random matrix spectrum. All
the eigenvalues of a Hamiltonian together contain much more information than a
small number of statistical measures. The identity of the physical system itself is
still contained in the spectrum and can be extracted e.g. by analysing long-ranged
spectral correlations, as discussed in the following section. It is equally obvious that
the spectrum of a classically regular system won’t be identical in detail to a Poisson
spectrum, even if the NNS distribution and other statistical measures agree with the
corresponding expectations.

This section concludes with a further warning, namely that there are individual
physical systems whose behaviour deviates from the generic behaviour described
above. Consider e.g. a system of harmonic oscillators which is always integrable and
can be characterized by its normal modes. If the frequencies are commensurable,
then all energy eigenvalues (without zero-point energy) are integral multiples of a
smallest energy. There are many exact degeneracies but no level spacings between
zero and this smallest energy. The NNS distribution will never approach the Poisson
distribution (5.93) no matter how many states are included in the statistical analysis.

5.3.3 Semiclassical Periodic Orbit Theory

The use of classical trajectories and in particular of periodic orbits in the analysis
of quantum mechanical spectra has a long history [Gut97], and it has become
an important instrument for understanding and describing the quantum mechanics
of systems whose corresponding classical dynamics may be integrable or not
integrable [Cha92, FE97, BR09]. Elements of the theory are sketched here for the
case of a conservative system with f degrees of freedom. A detailed elaboration is
contained in the book by Brack and Bhaduri [BB97a].

The starting point is the quantum mechanical propagator or Green’s function
G.qa; taI qb; tb/, which describes the time evolution of a quantum mechanical wave
function in coordinate space,

 .qb; tb/ D
Z

G.qa; taI qb; tb/ .qa; ta/ dqa ; (5.98)

and is just the coordinate representation of the time evolution operator introduced
in Sect. 1.1.3,

G.qa; taI qb; tb/ D hqbj OU.tb; ta/jqai : (5.99)
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In Feynman’s path integral formulation of quantum mechanics, the propagator is
written as

G.qa; taI qb; tb/ D
Z

DŒq� exp

�
i

„
Z tb

ta

L.q; Pq/ dt

�
; (5.100)

where L.q1; : : : qf I Pq1; : : : Pqf / is the classical Lagrangian, which is related to the
Hamiltonian function H.q1; : : : qf I p1 : : : pf / by

L.q1; : : : qf I Pq1; : : : Pqf / D
fX

iD1
pi Pqi � H.q1; : : : qf I p1 : : : pf / : (5.101)

The symbol
R DŒq� in (5.100) stands for a mathematically non-trivial integration

over all paths in coordinate space connecting the initial coordinate qa at time ta to
the final coordinate qb at time tb.

A semiclassical approximation of the propagator is derived using the stationary
phase approximation in much the same way as it was used to derive a semiclas-
sical approximation to the integral representation of the scattering amplitude in
Sect. 4.1.11. The condition of stationary phase for the integrand in (5.100) selects
those paths between .qa; ta/ and .qb; tb/ for which the Lagrangian action,

W.qa; qbI tb � ta/ D
Z tb

ta

L.q; Pq/ dt ; (5.102)

is stationary under infinitesimal variations of path, and these are just those paths
which fulfill the classical equations of motion, i.e. the classical trajectories [LL71].
The resulting semiclassical expression for the propagator is,

Gsc.qa; taI qb; tb/ D .2�i„/�f=2

�
X
cl:traj

sˇ̌
ˇ̌det

@2W

@qa@qb

ˇ̌
ˇ̌ e�i	traj�=2 exp

�
i

„W.qa; qbI tb � ta/

�
: (5.103)

The significance of the various contributions to the expression on the right hand
side of (5.103) can be appreciated by recalling the expression (4.138) for the
semiclassical scattering amplitude in Sect. 4.1.11. Each term in the sum corresponds
to a classical trajectory and carries a phase given by the action along the trajectory.
The weight of each contribution is related to the density of trajectories and is given
by the square root of the determinant of the f � f matrix of second derivatives of the
Lagrangian action, which is called the van Vleck determinant and becomes singular
at focal points. Each term also contains an additional phase 	traj�=2 where 	traj

counts the number of focal points along the trajectory.
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A connection to the quantum mechanical energy spectrum can be made by
realizing that the Fourier transform of the time evolution operator, OU.tb; ta/ D
exp

h
� i

„ OH.tb � ta/
i
, is,

Z 1

0

e.i=„/Et OU.t; 0/ dt D
Z 1

0

e.i=„/.E� OH/tdt

D „ e.i=„/.E� OH/t

i.E � OH/

ˇ̌
ˇ̌
ˇ
1

0

D i„
E � OH ; (5.104)

where the contribution at t D 1 is argued to vanish via an infinitesimal positive
imaginary contribution to the energy E. An analogous Fourier transform of the
Green’s function (5.99) is just the coordinate representation of the term on the right
of lower line of (5.104),

QG .qa; qbI E/
defD 1

i„
Z 1

0

e.i=„/EtG .qa; 0I qb; t/ dt

D hqb j 1

E � OH j qai D
X

n

 n .qb/  n.qa/
�

E � En
: (5.105)

The expression on the right of the lower line of (5.105) is obtained by inserting
the unit operator expressed via a complete set of energy eigenfunctions  n.q/ with
eigenvalues En according to (1.22). The Green’s function (5.105) is thus a sum over
pole terms, one for each eigenstate, and the respective residua are defined by the
product of the eigenfunctions’ values at qa and qb. Taking the trace eliminates the
dependence on the wave functions,

TrŒ QG.E/� D
Z

QG .q; qI E/ dq D
X

n

1

E � En
: (5.106)

The pole terms 1=.E � En/ consist of a real principle value singularity at E D En

plus an imaginary component proportional to ı.E � En/, which can be traced back
to the infinitesimal imaginary contribution to the energy mentioned above,

lim
"!0

1

E C i" � En
D P

�
1

E � En

�
� i�ı .E � En/ ; (5.107)

so the imaginary part of the trace of the Green’s function is directly proportional to
the energy level density (5.91),

d .E/ D � 1
�
J
˚
Tr
� QG .E/� : (5.108)
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A semiclassical approximation to the energy-level density can thus be obtained
by subjecting the semiclassical approximation (5.103) of the time Green’s function
(propagator) to the Fourier transformation (5.105) and inserting the trace of the
result into (5.108). The Fourier transformation introduces an integral over time, so
the Fourier transformed Green’s function contains contributions from all classical
trajectories which travel from qa to qb in any time t. Approximating the time
integrals with the help of the stationary phase approximation selects only those
trajectories whose conserved energy is equal to the energy E in the argument of
the Fourier transformed (approximate) Green’s function, and the result is,

QGsc .qa; qbI E/

D 2�

.2�i„/.f C1/=2
X

cl:traj:

p
jDj exp

�
i

„S .qa; qbI E/� i�traj
�

2

�
: (5.109)

Now the phase in the contribution of each trajectory is dominantly determined by
the action,

S .qa; qbI E/ D
Z qb

qa

p dq ; (5.110)

which resembles the action integral introduced in Sect. 1.6.3 and is often referred to
as the reduced action in order to distinguish it from the Lagrangian action (5.102).
The amplitude factor

pjDj now involves the determinant of an . f C 1/ � . f C 1/

matrix,

D D det

0
@ @2S

@qa@qb

@2S
@qa@E

@2S
@E@qb

@2S
@E2

1
A ; (5.111)

and the index �traj counts the number of focal points along the trajectory.
Taking the trace over the semiclassical Green’s function (5.109) leads to a sum of

integrals over all coordinates q involving classical trajectories which begin and end
at q, qa D qb D q. The f coordinates are reexpressed locally as one coordinate
in the instantaneous direction of the respective trajectory and f � 1 coordinates
transverse to the instantaneous motion, and the integral over these latter f � 1

coordinates is performed via the stationary phase approximation. This selects just
those trajectories for which also p.qa/ D p.qb/, so the sum over trajectories
closed in coordinate space is now reduced to the sum over trajectories closed in
phase space, i.e. the periodic orbits. The integration over the coordinate along the
trajectory is performed explicitly, yielding a factor proportional to period of the
orbit. The resulting approximation of the expression (5.108) for the energy-level
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density eventually is,

d .E/ D Qd .E/� 1

�„<

8̂
<
:̂
X
ppo

Tppo

1X
npD1

exp
h
i



Sppo

„ � �ppo
�
2

�
np

i
qˇ̌

det
�
Mppo

np � 1
	ˇ̌

9>=
>; : (5.112)

The sums in (5.112) are over all “primitive periodic orbits”, i.e. periodic orbits run
around just once, and over all numbers np of passages around each “ppo”. Sppo is the
action (5.110) integrated over one passage of the ppo,

Sppo D
I

ppo
p dq ; (5.113)

and Tppo is its period. Mppo stands for the 2. f � 1/ � 2. f � 1/ reduced monodromy
matrix over one period of the orbit; it involves only the f � 1 coordinates and
conjugate momenta transverse to the orbit. The topologically invariant phase index
�ppo is a generalized Maslov index which counts the focal points along the trajectory
and contains additional contributions arising from the evaluation of integrals via
the stationary phase approximation—for more details see [BB97a]. Finally, the first
term Qd.E/ on the right-hand side of (5.112) is a smoothly energy-dependent term
due to the contribution of the trajectories of zero length (qb ! qa with no detours)
to the trace of the semiclassical Green’s function. It is identified with the mean level
density introduced in (5.91).

The formula (5.112) connects the fluctuating part d.E/ � Qd.E/ of the quantum
mechanical energy-level density to the periodic orbits of the corresponding classical
system and is known as Gutzwiller’s trace formula [Gut97]. In the form given
here it assumes that the periodic orbits are isolated, but extensions to more general
situations have been formulated [BB97a]. The beauty of the trace formula is, that
it is applicable, irrespective of whether the classical system is regular with stable
orbits or chaotic with unstable periodic orbits. The information on the stability or

instability of an orbit is contained in the amplitude factors 1=
qˇ̌

det.Mppo
np � 1/

ˇ̌
and their dependence on the number of passages np.

The amplitude factors have a particularly simple form in the case of two
degrees of freedom, where there is only one coordinate transverse to the orbit
and the reduced monodromy matrix has just two eigenvalues, �1 and �2. The
two further eigenvalues of the full monodromy matrix are both unity. Because of
the symplectic property of the monodromy matrix, there are only two essentially
different possibilities. If �1 and�2 are complex, they must have unit modulus and

�1;2 D e˙2� iw ) det.Mppo
np � 1/ D 4 sin2.�npw/ : (5.114)

In this case the orbit is stable. Such orbits are called elliptic periodic orbits and are
characterised by the winding number w in (5.114). If the eigenvalues�1, �2 of the
reduced monodromy matrix have moduli different from unity, then they must be real



450 5 Special Topics

and

�1 D ˙e
Tppo ; �2 D ˙e�
Tppo

) det
�
Mppo

np � 1
	 D

� �4 sinh2.np
Tppo=2/

4 cosh2.np
Tppo=2/
: (5.115)

In this case the orbit is unstable and its Liapunov exponent is j
j according to (5.78).
Such an orbit is called a hyperbolic orbit for the “+” version of ˙ signs in (5.115),
and it is called an inverse hyperbolic orbit for the “�” version.

The contributions corresponding to several passages of a ppo in the trace formula
(5.112) interfere constructively at energies fulfilling

Sppo D
I

ppo
p dq D



n C �ppo

4

�
2�„ : (5.116)

This equation strongly resembles a quantization condition, cf. (1.308), but it must
now be interpreted differently. E.g. for unstable periodic orbits the amplitudes in
(5.112) fall off exponentially with np and the leading terms will produce smooth
maxima of constructive interference at energies fulfilling (5.116). Equation (5.116)
is thus a resonance condition describing the positions of modulation peaks due to
constructive interference of phases of multiple passages of the periodic orbit.

The modulation frequency due to a periodic orbit is the inverse of the separation
of successive peaks given by (5.116). From the definitions (5.101), (5.102) and
(5.110) it follows [LL71], that S.qa; qbI E/ D W.qa; qbI t/C Et and that @S=@E D t;
where t is time a classical trajectory takes to travel from qa to qb with (conserved)
energy E. For the primitive periodic orbits this implies

d

dE
Sppo.E/ D Tppo ; (5.117)

so the separation of successive energies fulfilling (5.116) is approximately
2�„=Tppo: The modulations due to a ppo thus appear as prominent peaks in the
Fourier transformed spectra at times corresponding to the period of the orbit. The
classical periodic orbits with the shortest periods are responsible for the longest
ranged modulations in the quantum mechanical energy spectra.

Gutzwiller’s trace formula underlines the importance of the periodic orbits for
the phase space structure of a mechanical system. The periodic orbits may form
a subset of measure zero in the set of all classical trajectories, but it is a dense
subset, because any (bound) trajectory can be well approximated for a given time
by a periodic orbit of sufficiently long period. The sum over all periodic orbits in
the trace formula is extremely divergent, and its mathematically safe evaluation has
been the subject of extensive work by many authors, see e.g. [Cha92, FE97]. Terms
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due to individual primitive periodic orbits tend to diverge at points of bifurcation,
and Main [Mai97] discussed techniques for smoothly bridging such points; they are
based on connection procedures similar to the uniform approximation of WKB wave
functions near classical turning points. As a semiclassical expression Gutzwiller’s
trace formula contains just contributions of leading order in „. Only few authors
have so far addressed the question of higher order corrections [GH97]. Diffractive
corrections related to orbits “creeping” along the edge of the classically allowed
region were discussed in particular by Wirzba [Wir92, Wir93]. It may also be worth
mentioning, that allowing nonintegral Maslov indices in the trace formula to account
for finite wave length effects at reflections and focal points could be one possibility
of improving results without too much additional effort [FT96, BB97b].

After Gutzwiller derived the trace formula around 1970 [Gut97], it was all
but ignored for one and a half decades. Its first application to spectra of a
real physical system was the case of a hydrogen atom in a uniform magnetic
field [Win87a, FW89]. As a practical aid for understanding gross features of
quantum spectra on the basis of simple classical orbits it was thereafter remarkably
successful in describing such diverse phenomena as the magic numbers of shell
structure observed in alkali metal clusters [BB97a] and conductance fluctuations in
semiconductor microstructures [RU96, DS97].

5.3.4 Scaling Properties for Atoms in External Fields

One important advantage of studying atoms (or molecules) in external fields is, that
the field parameters are tunable variables, and investigation of the properties of the
atom as function of these variables provides a much richer body of information than
can be observed in the isolated specimen. Due to scaling properties, the classical
dynamics of an atom in external fields depends on some combinations of field
parameters in a trivial way. This section summarizes these scaling properties for
the case of an external electric or magnetic constant or time-dependent field, or any
superposition thereof, see also [Fri98].

(a) Classical Mechanics

We start by discussing the concept of mechanical similarity for a conservative
system ˙ with a finite number of degrees of freedom. Such a system is described
by a kinetic energy,

T D m

2

�
dr
dt

�2
; (5.118)
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and a potential energy U.r/. [The mass m can be different for the various degrees of
freedom, but this is irrelevant for the following.] The similarity transformation,

r0 D �r ; t0 D � t ;
dr0

dt0
D �

�

dr
dt
; (5.119)

with the two positive constants � and � , transforms the system ˙ into a system ˙ 0;
whose kinetic energy T 0 is related to the kinetic energy T in (5.118) by

T 0 D

�
�

�2
T : (5.120)

Suppose the potential energy in the system ˙ is given by a homogeneous
function V.r/ of degree d, i.e.

V.�r/ D �dV.r/ ; (5.121)

multiplied by a parameter F, which gives us a handle on the potential strength,
U.r/ D FV.r/: Let the potential energy U0 in the system ˙ 0 be given by the same
(homogeneous) function V , multiplied by a strength parameter F0, U0.r0/ D F0V.r0/:
Because of homogeneity (5.121), the potential energy U0 is related to the potential
energy U in ˙ by

U0.r0/ D F0

F
�dU.r/ : (5.122)

If and only if the field strengths fulfill the relation

�dF0 D

�
�

�2
F ; (5.123)

then the potential energies are related by the same multiplicative factor .�=�/2 as the
kinetic energies (5.120). The classical Lagrangian T 0 � U0 in the system ˙ 0 is then
just a multiple of the Lagrangian L D T � U in ˙ , and the equations of motion in
both systems are the same [LL71]. The coordinate space trajectory r.t/ is a solution
of the equations of motion in˙ if and only if the trajectory r0.t0/;which is related to
r.t/ by the similarity transformation (5.119), is a solution of the equations of motion
in ˙ 0. This is the property of mechanical similarity of the systems ˙ and ˙ 0 and
the condition for mechanical similarity is, that the field strengths obey (5.123). The
(conserved) energy E D 1

2
mPr.t/2 C U.r.t// of motion along the trajectory r.t/ in ˙

is related to the associated energy E0 in ˙ 0 via

E0 D

�
�

�2
E : (5.124)
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The condition (5.123) contains two parameters � and � and can always be
fulfilled for any values of the field strengths F and F0. Together with the relation
(5.124) we can, for any field strengths F and F0 and energies E and E0 uniquely
determine the constants � and � defining the similarity transformation (5.119)
connecting the trajectory r.t/ in ˙ with the trajectory r0.t/ in ˙ 0,

�D
�

F

F0
E0

E

�1=d

; � D �

r
E

E0 : (5.125)

[It shall be taken for granted throughout, that potential strengths and energies have
the same sign in ˙ 0 as in ˙ .] From (5.125) we see e.g., that trajectories at different
energies E, E0 for one and the same potential strength, F0 D F, are related by a
stretching factor � D .E0=E/1=d in coordinate space, whereas the traversal times are
stretched by the factor �

p
E=E0:

The considerations above are readily generalized to a potential which can be
written as a sum of n homogeneous terms of degree di, i D 1; : : : ; n: The potential
U in the system ˙ is now

U.r/ D
nX

iD1
FiVi.r/ I Vi.�r/ D �di Vi.r/ ; i D 1; : : : ; n ; (5.126)

and the potential U0 in the system ˙ 0 differs only through different potential
strengths,

U0.r0/ D
nX

iD1
F0

i Vi.r0/ : (5.127)

The systems˙ and˙ 0 are mechanically similar, if U0 is just U multiplied by .�=�/2

when r0 and t0 are related to r and t via (5.119). The condition (5.123) must now
be fulfilled for each of the n terms independently, and the first equation (5.125) is
replaced by the n equations,

� D
�
�
�

�2 Fi

F0
i

�1=di

D
�

E0

E

Fi

F0
i

�1=di

; i D 1; : : : ; n : (5.128)

The relation between the total energies E and E0 is again given by (5.124).
Equating the right-hand sides of (5.128) for two different terms i and j and

collecting unprimed and primed quantities on separate sides leads to the condition

jFi=Ejdj

jFj=Ejdi
D jF0

i=E0jdj

jF0
j=E0jdi

: (5.129)
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If we consider an ensemble of systems ˙ corresponding to different field strengths
Fi and energies E (excluding changes of sign), then (5.129) shows that the classical
dynamics within the ensemble is invariant within mechanical similarity if

jFj=Ejdj

jFj=Ejdi
D const: (5.130)

for each pair of labels i; j. For n > 2 these conditions are not independent. The
n C 1 parameters E, Fi .i D 1; : : : ; n/ are effectively subjected to n � 1 independent
conditions, because � and � generate a two-parameter manifold of mechanically
similar systems.

The Coulomb potential describing the forces in an atom (or molecule or ion) is
homogeneous of degree d1 D �1, and the corresponding strength parameter F1 may
be assumed to be constant for a given specimen. This fixes the scaling parameters,

� D E

E0 ; � D
�

E

E0

�3=2
; (5.131)

according to (5.124), (5.128). In the presence of n � 1 homogeneous external fields
of degree dj . j D 2; : : : ; n/ the conditions (5.130) reduce to

Fj=jEjdjC1 D const: ; j D 2; : : : n ; (5.132)

when inserting d1 D �1, F1 D const: for i D 1. The n�1 conditions for mechanical
similarity are thus, that the scaled field strengths QFj, defined by

QFj D Fj=jEjdjC1 ; (5.133)

be constant. The values of these n �1 scaled field strengths determine the properties
of the classical dynamics which are invariant to within similarity transformations
(5.119). For each set of values of the scaled field strengths there is now a one-
parameter family of mechanically similar systems and not a two-parameter family,
because the field strength F1 is kept fixed.

If j D 2 labels a homogeneous external electric field, the potential V2 is
homogeneous of degree one, and F2 is the electric field strength f . The scaled
electric field strength is

Qf D f=E2 ; (5.134)

and all systems with the same value of Qf (and the same sign of E) are mechanically
similar.

A homogeneous external magnetic field with field strength � [see (3.330)] is
studied more conveniently by directly subjecting the equations of motion for a
charged particle in such a magnetic field to the similarity transformation (5.119).
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The equations of motion in the systems ˙ and ˙ 0 are seen to be equivalent if the
respective magnetic field strengths � and � 0 are related by

� 0 D �=� : (5.135)

Comparing with (5.123) shows that this corresponds to the behaviour of a homoge-
neous potential of degree two, and the square of the magnetic field strength � plays
the role of “field strength” F. For an atom .d1 D �1, F1 D const:/ in a constant
homogeneous magnetic field of strength � , the scaled magnetic field strength Q� is
thus defined via (5.133) with Fj D �2, dj D 2, as

Q�2 D �2=jEj3; Q� D �=jEj3=2: (5.136)

The conditions for invariant classical dynamics of an atom in an external electric
or magnetic field are conventionally stated as the condition of constant scaled
energy, which is E=

p
f for the electric field and E=�2=3 for the magnetic field.

The nomenclature evolved historically [FW89], and has probably been a mistake
from the pedagogical point of view. This becomes clear when we consider an
atom in a superposition of homogeneous electric and magnetic fields. We are then
confronted with two different definitions of scaled energy, and usually the conditions
of mechanical similarity are expressed as requiring one of these scaled energies and
the ratio f 3=�4 to be constant. The more natural statement of the conditions for
mechanical similarity for an atom in a superposition of electric and magnetic fields
is surely that both scaled field strengths, Qf and Q� , be constant. This of course implies
the constance of the above mentioned scaled energies and of the ratio Qf 3= Q�4, which
is equal to f 3=�4 and is independent of energy.

In the presence of a time-dependent external field the expression (5.126) for the
potential energy of the system ˙ must be generalized, e.g. to

U.r; t/ D
nX

iD1
FiVi.r/C F0V0.r/˚.!t/ I

Vi.�r/ D �di Vi.r/ ; i D 0; 1; : : : ; n ; (5.137)

where we have added a homogeneous potential V0 with strength F0 multiplied by a
time-dependent function ˚.!t/, which is usually, but not necessarily, a harmonic
function (sine, cosine or exp .˙i!t/). The time function ˚ need not even be
periodic, but the parameter !.> 0/ is included explicitly to give us a handle on
the time scale. The corresponding potential energy in the system ˙ 0 is

U0.r0; t0/ D
nX

iD1
F0

iVi.r0/C F0
0V0.r

0/˚.!0t0/ : (5.138)
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Again we study the effect of the similarity transformation (5.119) on the kinetic
and potential energy. The systems˙ and˙ 0 are mechanically similar, if kinetic and
potential energies in˙ 0 differ from those in˙ by the same multiplicative factor. The
time function˚ is generally assumed to be bounded, so it cannot be a homogeneous
function. Hence we have no freedom to choose the parameter � connecting the times
t and t0; if U0 is to be proportional to U there is no choice but to set

� D !

!0 ; so that !0t0 D !t : (5.139)

The time scale parameter ! replaces the energy of the time-independent case as
additional parameter (beside the field strengths) determining the classical dynamics
of the system. Whereas (5.124) fixes the ratio �=� in the time-independent case,
(5.139) fixes the time stretching parameter � in the time-dependent case. This leaves
one free parameter � and the n C 1 conditions,

�di F0
i D

�
�
!0

!

�2
Fi ; i D 0; 1; : : : ; n : (5.140)

Resolving for � now yields

� D
"�

!0

!

�2 Fi

F0
i

# 1
di�2

for all i D 0; 1; : : : ; n : (5.141)

For any pair .i; j/ of labels this implies

jFi=!
2jdj�2

jFj=!2jdi�2 D jF0
i=!

02jdj�2

jF0
j=!

02jdi�2 ; (5.142)

in other words, mechanical similarity is given if

jFi=!
2jdj�2

jFj=!2jdi�2 D const: (5.143)

The potential (5.137) may contain more than one time-dependent contribution.
As long as the dependence of each contribution on the coordinates is homogeneous,
the results derived for the label i D 0 above are easily generalized to a finite number
of time-dependent terms. Note, however, that only one time scale parameter !
can be accommodated, because there can be only one time stretching factor � , see
(5.139). If the potential contains e.g. a superposition of several harmonic terms with
different frequencies, then the mutual ratios of these frequencies have to be the same
in all mechanically similar systems, so that there is effectively only one parameter
defining the time scale.
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For an atom (or ion) in a time-dependent field and n � 1 external static fields we
again assume the label i D 1 to describe the constant .F1 D const:/ Coulomb field
.d1 D �1/ of the atom, and this fixes the stretching parameter � via (5.141),

� D

 !
!0
�2=3

: (5.144)

The conditions (5.143) now suggest the following definition for the scaled field
strengths:

QFj
defD Fj=!

2
3 .djC1/ : (5.145)

With these definitions the n conditions for mechanical similarity can be expressed
as the requirement

QFj D const: j D 0; 2; 3 : : : ; n : (5.146)

For an atom described by a constant Coulomb field .i D 1/ in a superposition of one
. j D 0/ time-dependent and n � 1 . j D 2; : : : ; n/ static external fields, the classical
dynamics is determined to within mechanical similarity by the values (5.146) of
these n scaled field strengths.

The time-dependent field is very often the oscillating electric field of microwave
or laser radiation, so F0 D frad is the amplitude of the oscillating field of circular
frequency !, and d0 D 1: The corresponding scaled field strength Qfrad, which is
constant under the conditions of mechanical similarity, is

Qfrad D frad=!
4=3 (5.147)

according to (5.145). For an external static electric field of strength f , the scaled field
strength Qf is analogously given by Qf D f=!4=3. For an additional magnetic field of
strength � (with Fj corresponding to �2), the scaled field strength Q� is given by

Q�2 D �2=!2 ; Q� D �=! ; (5.148)

according to (5.145). Under the conditions of mechanical similarity, Qfrad, Qf and Q� are
constant, and so are f 3rad=�

4 and f 3=�4 as in the time-independent case.

(b) Quantum Mechanics

The quantum mechanical system corresponding to the classical system ˙ intro-
duced above is described by the Schrodinger equation,

� „2
2m
� .r; t/C U.r; t/ .r; t/ D i„ @

@t
 .r; t/ ; (5.149)
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and can be obtained by quantization via the canonical commutation relations
between the coordinates ri and the momenta pj D m drj=dt

Œri; pj� D i„ıi;j : (5.150)

When the classical dynamics of the system ˙ is related to the classical dynamics
of the system ˙ 0 via the non-canonical similarity transformation (5.119), the
coordinates transform as r0

i D �ri and the momenta as p0
j D .�=�/pj. [The latter

also holds if the momentum pj contains a term proportional to a vector potential
describing a homogeneous magnetic field, because the vector potential must be
proportional to a product of the magnetic field strength, transforming according to
(5.135), and a linear function of the coordinates.] The same quantum mechanics is
thus obtained by quantization of the system ˙ 0 via the non-canonical commutation
relations,

�
r0

i ; p
0
j

 D i„0ıi;j ; (5.151)

where „0 is an effective Planck’s constant,

„0 D �2

�
„ : (5.152)

If the field strengths Fi in ˙ are varied under the conditions of mechanical
similarity, then canonical quantization in the system ˙ leads to the same quan-
tum mechanics as non-canonical quantization in the mechanically similar “scaled
system” system ˙ 0 according to (5.151), with a variable effective Planck’s constant
(5.152).

For a system with one time-independent homogeneous potential of degree d,
U.r/ D FV.r/, the constants � and � are given by (5.125), and the effective Planck’s
constant in the scaled system ˙ 0 is

„0 D �2

�
„ D

�
F

F0

� 1
d
�

E0

E

� 1
d C 1

2

„ : (5.153)

For given energy E0 and field strength F0 in the scaled system, the semiclassical limit
can now be defined as the limit „0 ! 0; and the anticlassical or extreme quantum
limit is „0 ! 1, see also Sect. 1.6.3 in Chap. 1. Equation (5.153) determines which
combination of energy E and field strength F corresponds to the semiclassical
limit „0 ! 0. This obviously depends in the following way on the degree d of
homogeneity of the potential:

0 < d W F ! 0 or jEj ! 1 (5.154)

�2 < d < 0 W jFj ! 1 or E ! 0 (5.155)
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d D �2 W jFj ! 1 and E arbitrary (5.156)

d < �2 W jFj ! 1 or jEj ! 1 : (5.157)

When d > 0 or d < �2; the semiclassical limit for a given field strength F
corresponds to the high energy limit jEj ! 1. However, if the degree d of
homogeneity of the potential lies between zero and �2; then the semiclassical limit
of the Schrödinger equation for a given field strength corresponds to the limit of
vanishing values of the energy E. This applies in particular to all Coulomb systems,
where d D �1, and it is perhaps not surprising when remembering that the energies
of the bound states of a one-electron atom vanish in the (semiclassical) limit of large
quantum numbers. It is, however, not trivial and not widely appreciated, that large
energies, E ! 1, actually correspond to the anticlassical or extreme quantum limit
in Coulombic systems, see, e.g., Fig. 4.15 in Sect. 4.2.6.

Now consider a potential U in (5.149) consisting of n contributions, U.r/ DPn
iD1 FiVi.r/ where Vi is a (time-independent) homogeneous potential of degree di.

The equivalence of the canonical Schrödinger equation for energy E and field
strengths Fi with the non-canonical Schrödinger equation containing the modified
Planck’s constant (5.152) is maintained, as long as energy and field strengths are
varied under the conditions of mechanical similarity described above. This implies

„0 D �2

�
„ D

�
Fi

F0
i

� 1
di
�

E0

E

� 1
di

C 1
2

„ for all i : (5.158)

The conditions of the semiclassical limit correspond in each contribution i to the
limiting behaviour (5.154)–(5.157), depending on the degree di of homogeneity
of the respective term. These conditions are compatible in the case of mechanical
similarity (5.129). For example, if the label i D 1 describes the fixed Coulomb
potential in an atom, then the condition of constant scaled field strengths (5.133)
implies

Fj / jEj1Cdj : (5.159)

The semiclassical limit „0 ! 0 corresponds to E ! 0. For any further contributions
with a positive degree of homogeneity, e.g. an external electric field with dj D 1;

or an external magnetic field with dj D 2; the strengths Fj must tend to zero as
prescribed by (5.159) in the semiclassical limit. Note in particular, that a fixed
strength of the Coulomb potential and a non-vanishing external electric and/or
magnetic field are incompatible with the conditions of the semiclassical limit.

(c) Scaled-Fields Spectroscopy

The energy and the n � 1 strengths of the static external fields in which an atom is
placed have n � 1 conditions to fulfill for mechanical similarity to hold, e.g. that the
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scaled field strengths (5.133) be constant. When the field strength of the Coulombic
forces describing the atom is kept fixed, there remains one continuous parameter,
which can be varied without changing the classical dynamics, except to within a
similarity transformation (5.119). This makes it possible to study the variations
of the quantum system corresponding to different values of the effective Planck’s
constant without changing the classical dynamics. Although the energy itself or
any one of the external field strengths could be chosen as the variable parameter,
a prudent choice is

� D �

�2
1

„ D 1

„0 ; (5.160)

which has the dimensions of an inverse action and is just the inverse of the effective
Planck’s constant „0

A justification for this choice can be found by looking at Gutzwiller’s trace
formula (5.112) or variations thereof [Cha92, FE97], which typically express
the energy-level density or some other quantum mechanical property in terms
containing the actions Straj along classical trajectories,

property of qm spectrum D function

�
exp

�
i

„Straj

��
;

Straj D
Z

traj
p � dr : (5.161)

Regarding both sides of the upper line of (5.161) as functions of the variable �
defined by (5.160) leads to the following form of this general equation:

property of qm spectrum.�/ D function



exp
h
i�S0

traj

i�
; (5.162)

where we have expressed the actions Straj through the “scaled actions”

S0
traj D

Z
traj

p0 � dr0 D �2

�
Straj D „0

„ Straj : (5.163)

The scaled classical actions (5.163) depend only on the fixed energy E0, which
defines the energy at which the effective Planck’s constant „0 assumes its physical
value „, and on the n�1 values of the scaled field strengths (5.133), which determine
the classical dynamics. In the general formula (5.162) these scaled actions appear
as Fourier conjugates to the variable �. Applying a Fourier transform to (5.162) will
thus reveal structures associated with classical trajectories at values of the conjugate
variable corresponding to the scaled actions of the trajectories. An example is given
in Sect. 5.3.5 (b).
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For an atom in external static fields the scaling parameters � and � are given by
(5.131) and the natural variable (5.160) is,

� D 1

„

r
E0
E

/ 1

„pjEj : (5.164)

The definition of the natural variable � depends on which field strength we are
keeping constant, and not on which external fields (of variable strength) are present;
the constance of the strength F1 of the Coulombic .d1 D �1/ potential describing
the atom leads to the simple result (5.164), � / 1=

pjEj. For an external magnetic
field of variable strength � , this corresponds to � / ��1=3 when the scaled field
strength Q� is kept constant, cf. (5.136). For an external static electric field of variable
strength, � / 1=

pjEj corresponds to � / f �1=4 when the scaled field strength
Qf is kept fixed, cf. (5.134). In a superposition of electric and magnetic fields both
relations apply, which is consistent because f 3=�4 is constant under the conditions
of mechanical similarity.

The technique of scaled-fields spectroscopy is well established for the example
of atoms in external electric and magnetic fields and has been called “scaled-
energy spectroscopy” [MW91] and also “recurrence spectroscopy” [MM97, DS97],
because of the dominating role which periodic and recurring classical orbits play in
appropriately Fourier transformed spectra.

(d) Time-dependent Potentials

The Schrödinger equation (5.149) with the time-dependent potential (5.137)
is equivalent to a non-canonical Schrödinger equation containing the effective
Planck’s constant (5.152) with the scaled potential (5.138) as long as the frequency
parameter and the potential strengths obey the conditions (5.139) and (5.141) for
mechanical similarity. If the label i D 1 describes the fixed .F1 D F0

1/ Coulomb
potential .d1 D �1/ of an atom, the stretching parameter � is given by (5.144), and
the conditions for mechanical similarity reduce to the requirement that the scaled
field strengths (5.145) be constant.

For a concrete experiment with a one-electron atom in a time-dependent field,
the initial (unperturbed) state of the atom is described by a quantum number n0,
and n02�„ is the classical action S of the electron on the corresponding orbit. The
similarity transformation (5.119) transforms actions as

S0 D �2

�
S D


 !
!0
�1=3

S ; (5.165)

according to (5.139) and (5.144), hence n0!1=3 is the corresponding scaled quantum
number which remains constant under the conditions of mechanical similarity. The
cube of the scaled quantum number, n30! is naturally called the scaled frequency.
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Using the initial quantum number n0 as reference rather than the frequency
parameter ! leads to

Qf D fn 40 (5.166)

as an alternative definition [instead of (5.147)] for the scaled strengths of the time-
dependent or static electric fields [Koc92, Ric97]. The corresponding alternative to
(5.148) for the scaled strength of an external magnetic field is

Q� D �n 30 : (5.167)

With � and � given by (5.144) and (5.139), the effective Planck’s constant is

„0 D

 !
!0
�1=3„ ; (5.168)

and the semiclassical limit „0 ! 0 corresponds to ! ! 0: Note that a finite
time scale for the time-dependent part of the potential is incompatible with the
semiclassical limit under the conditions of mechanical similarity. For fixed field
strength of the Coulomb potential describing the atom, the semiclassical limit for
an atom in external time-dependent and/or time-independent electric and magnetic
fields corresponds to the static limit according to (5.168) and to vanishing field
strengths according to (5.145), (5.159).

5.3.5 Examples

(a) Ionization of the Hydrogen Atom in a Microwave Field

General interest in simple Hamiltonians with a periodic time dependence received
a great boost after Bayfield and Koch observed the ionization of hydrogen atoms
in a microwave field in 1974 [BK74, BG77]. Hydrogen atoms in an initial state
with principal quantum number n0 D 66 were ionized in a microwave field
of about 10 GHz. This corresponds to a photon energy of „! � 4 � 10�5eV;
so that more than 70 photons would have to be absorbed to ionize a H atom
(from the n0 D 66 level). The perturbative approach, which may be useful at
least for relatively weak intensities and which was discussed in connection with
multiphoton ionization in Sect. 5.1, is not practicable when so many photons are
absorbed. Consequently intensified efforts were undertaken to solve the time-
dependent Schrödinger equation directly for this case.
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There are experimental grounds (e.g. strong polarization of the H atom prepared
in an additional electric field) which may justify treating the problem in only one
spatial dimension. This can of course only work if the microwave field is linearly
polarized in the direction of this one spatial coordinate. The Hamiltonian is then
(in atomic units)

OH D �1
2

@2

@z2
� 1

z
C fz cos!t ; z > 0 ; (5.169)

where f is the strength of the oscillating electric field. This Hamiltonian is somewhat
similar to the Hamiltonian (5.83) of the kicked rotor. In the corresponding classical
system the periodic trajectories in the field-free case . f D 0/ are just straight-
line oscillations between the position of the nucleus .z D 0/ and a maximal
displacement which depends on the energy. The similarity to a free rotor becomes
most apparent when we perform a canonical transformation from the variables p, z
to the appropriate action-angle variables I, � . Here I D S=.2�„/ D Œ

H
p dz�=.2�„/

is the action in units of 2�„ and is the classical counterpart of the principal quantum
number, and � is the canonically conjugate angle variable, which varies from zero to
2� during a period of oscillation starting at the nucleus and ending with the return to
the nucleus [Jen84]. In the field-free case the trajectories in phase space are simply
straight lines I D const: as for the rotor. The influence of a microwave field can be
seen in Fig. 5.18 showing trajectories in phase space for a microwave frequency of
7.11 GHz and a field strength of 9.1 V/cm.

Figure 5.18 shows that most classical trajectories are quasiperiodic for actions
smaller than 65 to 70, while irregular trajectories dominate at higher actions. These
irregular trajectories, along which the action can grow to arbitrarily large values
as in the case of the kicked rotor, are interpreted as ionizing trajectories. Thus the
phase space picture Fig. 5.18 is interpreted as indicating that initial states with an
action (i.e. principal quantum number) up to about 65 remain localized in quantum
number (and hence bound) in a microwave field of the corresponding frequency
and strength, while initial states above n0 � 68 are ionized. The threshold above
which ionization is possible depends on the field strength and the frequency of the
microwave field. For increasing frequency and/or field strength ionization becomes
possible for smaller and smaller quantum numbers of the initial state. For a given
microwave frequency ! and a given initial quantum number n0 there is a critical
field strength or threshold fcr above which ionization begins. According to the
scaling properties of an atom in a time oscillating field, cf. (5.165), (5.166), we
expect this (classical) condition for ionization to relate the scaled quantum number
n0!1=3 to the scaled electric field strength fn 40 . Casati et al. [CC87] derived the
estimate fcrn 40 � 1=.50n0!1=3/ for the threshold for ionization.
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Fig. 5.18 Classical Trajectories as calculated by Jensen for the one-dimensional hydrogen atom
in a microwave field of 7.11 GHz and a field strength of 9.1 V/cm (From [Bay86])

More sophisticated calculations going beyond the one-dimensional model
(5.169) can and have been performed. Figure 5.19 shows a comparison of
experimental ionization thresholds with the results of a full three-dimensional
classical calculation. The scaled electric field strengths at which the ionization
probability reaches 10% and 90% are plotted as functions of the scaled frequency
n 30 ! and include initial quantum numbers between n0 D 32 and n0 D 90 for a
microwave frequency of 9.923 GHz [KL95]. The classical calculations are due to
Rath and Richards and include the effect of switching on and switching off the
microwave field. The classical calculations reproduce the non-trivial structure of
the experimental threshold fields well for scaled frequencies below about 0.8 atomic
units, except perhaps near simple fractions, 1/2, 1/3, etc. These discrepancies are
attributed to quantum mechanical resonance effects, because they occur at scaled
frequencies at which just two, three, etc. photons of energy ! (in atomic units) are
needed to excite the initial state with quantum number n0 to the next excited state
with quantum number n0 C 1:
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Fig. 5.19 Experimental scaled field strengths at which the probability for ionizing a hydrogen
atom in a microwave field of 9.923 GHz reaches 10% (dots) and 90% (squares) as functions of the
scaled frequency n 30 !. The dotted lines show the results of a classical calculation due to Rath and
Richards (From [KL95])

Further work on atoms in oscillating electromagnetic fields includes the study of
ionization by circularly or elliptically polarized microwaves and the use of alkali
atoms in place of hydrogen [Ric97, DZ97, BR09]. Progress continued with shorter
wavelengths and higher intensities [PK97]. Amongst the many interesting properties
exhibited by a Rydberg atom in a temporally oscillating field, one which received
particular attention is the occurrence of non-dispersing wave packets which are well
localized and follow a classical periodic orbit without spreading [BD02].

(b) Hydrogen Atom in a Uniform Magnetic Field

The hydrogen atom in a uniform magnetic field has become one of the most widely
studied if not the most widely studied example for a conservative Hamiltonian
system with chaotic classical dynamics [TN89, FW89, HR89, Gay91, RW94, Mai97,
SS98, PK14]. Its popularity is mainly due to the fact that it is a real system for
which observed spectra and the results of quantum mechanical calculations agree
down to the finest detail (see Fig. 3.34 in Sect. 3.5.2). The system corresponds very
accurately to a point particle moving in a two-dimensional potential (see (3.332) and
Fig. 3.31). For a given value Lz of the z-component of the orbital angular momentum
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this potential is (in cylindrical coordinates (3.293) and atomic units),

V.%; z/ D L2z
2%2

� 1p
%2 C z2

C 1

8
�2%2 : (5.170)

The Hamiltonian describing the quantum mechanics of the system contains the
potential (5.170) and the operator Op2=.2�/ [cf.(3.316)] where Op is the canonical
momentum. The classical velocity dr=dt is however related to the (classical) kinetic
momentum,

�� D �
dr
dt

D p C e

c
A : (5.171)

If we transform the equations of motion to a coordinate system rotating around the
direction of the magnetic field with an angular frequency !, then the velocity �0 in
the rotating frame is given by [LL71]

�0 D � C r�! ; (5.172)

where ! is the vector of length ! pointing in the direction of the magnetic field. The
canonical momentum p in the inertial frame is,

p D �� � e

c
A D �

�
� C e

2�c
r�B

�
D ��0; when ! D eB

2�c
; (5.173)

where we have used the definition A D �r�B=2 of the symmetric gauge, on which
the derivation of the potential (5.170) was based. The canonical momentum in the
inertial frame thus corresponds to the kinetic momentum in the frame of reference
which rotates around the z-axis pointing in the direction of the magnetic field with
the constant rotational frequency ! equal to half the cyclotron frequency.

According to Sect. 5.3.4 the classical dynamics of the system depends not on
the energy E and the field strength � independently, but only on the scaled field
strength Q� D � jEj�3=2 or on the scaled energy " D E��2=3 D ˙ Q��2=3: In the
bound regime (negative energies) the separable limit corresponding to a hydrogen
atom without an external field is given by " D �1, Q� D 0. The “field-free
threshold” E D 0 corresponds to " D 0, .j Q� j D 1/ and is identical to the classical
ionization threshold. Because of the finite zero-point energy of the electron’s motion
perpendicular to the field the (quantum mechanical) ionization threshold actually
lies higher (see (3.335)).

Numerical solutions of the classical equations of motion were obtained already
in the 1980’s by various authors [Rob81, RF82, HH83, DK84]. Figure 5.20 (a–d)
shows Poincaré surfaces of section for four different values of the scaled energy
and Lz D 0: The surface of section is the % p%-plane at z D 0. Similar to Fig. 5.14
we clearly see an increasing share of phase space filled with irregular trajectories
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Fig. 5.20 Poincaré surfaces of section for Lz D 0 and four different values of the scaled energy "
(a–d). The surface of section is the % p%-plane at z D 0. The bottom panel is taken from [SN93]
and shows a measure for the share of regular orbits in phase space as function of the scaled energy
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as the parameter " increases. This is demonstrated again in the bottom panel of
Fig 5.20 in which the share of regular trajectories in phase space is plotted as a
function of the scaled energy. Around " � �0:35 there is a more or less sudden
transition to dominantly irregular dynamics, but the share of regular trajectories is
not a monotonic function of ". Above � � �0:1 virtually all of phase space is filled
with irregular trajectories.

In the field-free case, all bound orbits are periodic (Kepler ellipses). Near the
field-free limit there are only three periodic orbits which exist even for arbitrarily
weak but non-vanishing fields: the straight-line orbit perpendicular to the direction
of the field (which is labelled I1 for historical reasons), the straight-line orbit parallel
to the field .I1/ and the almost circular orbit .C/ which merges into an exact
circle in the field-free limit. It is comparatively easy to investigate the stability
of these orbits by calculating their Liapunov exponents [Win87b, SN88, SN93].
The almost circular orbit is unstable for all finite values of " and its Liapunov
exponent increases monotonically with ". The straight-line orbit perpendicular to
the field is stable below "0 D �0:127268612: The larger dip in Fig. 5.20 (e) is
attributed to the confluence of an unstable orbit with the perpendicular orbit I1 at
" D �0:316186 [SN93]. Above "0 the Liapunov exponent of I1 grows proportional
to the square root of � � �0: The straight-line orbit parallel to the field, I1, is stable
up to � D �0:391300824; and then intervals of instability and stability alternate
(see Fig. 5.21). Whenever I1 becomes unstable, a new periodic orbit is born by
bifurcation. These orbits (labelled I2; I3; : : :) are initially stable but soon become
unstable at higher values of " at which further periodic orbits are born by renewed
bifurcation. As " increases the growing chaos is accompanied by a proliferation of
periodic orbits.

Fig. 5.21 Liapunov exponent of the periodic orbit I1 parallel to the direction of the magnetic
field. Whenever I1 becomes unstable a further initially stable orbit I2; I3; : : : is born by bifurcation.
The inset demonstrates schematically how such a bifurcation shows up in the Poincaré surfaces of
section
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Fig. 5.22 NNS distributions for scaled energies between �0:4 and �0:1. (The dashed and solid
lines show attempts to fit analytic formula to the distributions in the transition region between
regularity and chaos (see [FW89]))

The transition to chaos manifests itself in the statistical properties of the quantum
mechanical spectrum of the hydrogen atom in a uniform magnetic field, just as it
does for the coupled harmonic oscillators (cf. Figs. 5.16, 5.17). This was shown
almost simultaneously in 1986 in [WF86], [DG86] and [WW86]. Figure 5.22 shows
e.g. the NNS distributions for four different values of the scaled energy ". The
transition from a distribution close to a Poisson distribution (5.93) at � D �0:4
to a Wigner distribution (5.94) at � D �0:1 is apparent.
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Fig. 5.23 Spectral rigidity (5.95) for various scaled energies "

Figure 5.23 shows the spectral rigidity (5.95) for values of " between �0:4
and �0:15. The “odd curve out” at " D �0:30 clearly reveals what can also be
observed by closer inspection for other statistical measures: the transition from
Poisson statistics in the regular regime to GOE statistics in the chaotic regime is
not monotonic. This is due to non-universal properties of the dynamics which are
specific to the system under investigation. Attempts to find simple universal laws or
rules for the statistical properties of energy spectra in the transition region between
regularity and chaos were only moderately successful [PR94].

Statistical measures such as NNS distributions and the spectral rigidity describe
correlations of short and medium range in the spectrum and show a universal
behaviour in the regular or classically chaotic limits. On the other hand, long-ranged
correlations of the spectrum generally reflect specific properties of the physical
system under consideration. This is expressed quantitatively in Gutzwiller’s trace
formula (5.112) which relates the fluctuating part of the quantum mechanical level
density to the classical periodic orbits.

As discussed in Sect. 5.3.4 (c), spectra of an atom in a uniform magnetic
field of strength � are most appropriately recorded for fixed scaled field strength
(corresponding to fixed scaled energy) as functions of the natural variable � D
��1=3, which is proportional to the inverse of the effective Planck’s constant.
The Fourier transformed spectra then reveal prominent structures at values of the
conjugate variable corresponding to the scaled actions of the periodic orbits. This
is illustrated in Fig. 5.24 showing the absolute square of the Fourier transformed
spectrum in the m�z D 2C and the m�z D 2� subspaces for " D �0:2. The maxima
in the Fourier transformed spectra can uniquely be related to simple classical
periodic orbits; the corresponding orbits are shown in the right half of the figure.
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Fig. 5.24 Absolute square of the Fourier transformed spectrum as function of the variable Ng, which
is conjugate to ��1=3, in the m�z D 2C and m�z D 2� subspaces at � D �0:2. The positions of
the peaks are numerically equal to the scaled actions of the classical periodic orbits shown in the
right half of the figure (from [Fri90])

The relation between simple periodic classical orbits and modulations in quan-
tum mechanical spectra can also be extended to other observables such as e.g.
photoabsorption spectra. Figure 5.25 shows the famous photoabsorption cross
sections for barium atoms as measured by Garton and Tomkins in 1969 [GT69].
Near the field-free threshold E D 0 we notice modulation peaks separated by about
1.5 times the energy separation of the Landau states of free electrons in a magnetic
field. It was soon noticed that these modulation peaks, which are called quasi-
Landau resonances, can be connected to the classical periodic orbit perpendicular
to the field by a relation like (5.116). Later investigations of the photoabsorption
cross sections revealed whole series of modulations which can be related to classical
periodic orbits in essentially the same way as the modulations in the energy
spectra (Fig. 5.24) [HM90]. (The difference between barium and hydrogen is not
so important in the present context, where we are dealing with highly excited states
extending over large regions in coordinate space, because it only affects the potential
V.%; z/ in a very small region around the origin.) The quasi-Landau modulations are
a very instructive experimental example for how unstable periodic classical orbits
in a classically chaotic system manifest themselves in quantum mechanical spectra.
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Fig. 5.25 Photoabsorption spectra of barium atoms in a uniform magnetic field (from [GT69])

The role of periodic classical orbits in shaping the structure of the quantum
spectra of atoms in a magnetic field is continuing to be a subject of considerable
interest. Further advances were achieved in understanding the influence of the non-
Coulombic core of the potential in atoms other than hydrogen [O’M89, DM95a,
HM95] and in incorporating “ghost orbits” into the periodic orbit theory. Ghost
orbits occur close to points of bifurcation and are periodic solutions of the classical
equations of motion in complex phase space, which become real periodic orbits after
bifurcation. For an overview of related developments see [Mai97, BM99, FM05].

The problem of one electron moving in an attractive Coulomb field and a uniform
magnetic field becomes substantially more complicated when an additional electric
field is applied. One reason for studying this problem is, that the real hydrogen
atom is a two-body system, and its motion in a magnetic field effectively induces an
electric field in the Hamiltonian describing its internal motion, see Sect. 3.5.2. All
features of regular and chaotic motion and their manifestations in quantum spectra
are of course present for an atom in a superposition of electric and magnetic fields,
and the richness and diversity of effects is enormous, see, e.g. [MU97, MS98] and
references therein.
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(c) The Helium Atom

The successful description of the spectrum of the hydrogen atom on the basis
of the Bohr-Sommerfeld quantization condition (see Sect. 3.2.1) in the early days
of quantum mechanics brought forth numerous attempts to describe the energy
spectrum of the helium atom in a similar way [Bor25]. These attempts were
unsuccessful for more than sixty years, because a two-electron atom or ion is a
nonintegrable system, and the relation between classical mechanics and quantum
mechanics was not at all well understood for such systems. Atoms (or ions) with
at least two electrons are essentially different from one-electron atoms, because
they are, at any total energy, classically unstable for most initial conditions. This
is so, because one of the electrons can approach the nucleus arbitrarily closely and
so acquire an arbitrarily low energy which leaves enough energy to be transferred
to another electron for it to be excited into the continuum. In phase space, a thin
skeleton of periodic orbits and nonperiodic trapped orbits remains bound, but most
trajectories lead to ionization. Various periodic orbits of the classical helium atom
had been known early on [Bor25], but naive applications of the Bohr-Sommerfeld
quantization condition had failed to reproduce the energy eigenvalues of low-
lying states which were known accurately from experiment and from approximate
solutions of the Schrödinger equation.

A satisfactory semiclassical approximation of the energy levels in helium was
achieved in 1991 on the basis of periodic orbit theory by Ezra, Richter, Tanner
and Wintgen [ER91, WR92]. The method is based on approximating the so-called
“dynamical zeta function”, whose logarithmic derivative with respect to energy is
just the trace of the Green’s function (5.106). Individual energy levels are identified
with the zeros of the dynamical zeta function, which correspond to the poles of the
trace of the Green’s function. The dynamical zeta function can be approximated by
a product of terms associated with classical periodic orbits such that the logarithmic
derivative of this product yields the semiclassical approximation to the trace of
the Green’s function as summarized in Gutzwiller’s trace formula (5.112). If the
periodic orbits can be classified by a digital code, then the product over all orbits
can be expanded in terms of the lengths of the codes and the expansion truncated
after a certain length. This method is known as cycle expansion technique [CE89].
The zeros of the approximate dynamical zeta function obtained in this way provide
approximations to the energy levels of the system.

The analysis in [ER91] was based on the collinear model of helium, in which
both electrons are restricted to lie on different sides on a straight line through the
nucleus, see (4.375). In this model there are two spatial coordinates, namely the
separations r1; r2 of the two electrons from the nucleus, and its four-dimensional
classical phase space is a genuine subspace of the phase space of the full two-
electron problem in three dimensions. The periodic orbits within this model are
easily classified in a systematic way by registering collisions of each of the electrons
with the nucleus. All orbits of the collinear model are unstable, i.e. have positive
Liapunov exponent, but the collinear motion is seen to be stable against bending
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Table 5.1 Energies (in
atomic units) of some
.n1s; n2s/ states of the helium
atom. The quantum
mechanical energy Eqm is
compared with the
semiclassical approximation
Esc based on the cycle
expansion and with the
energies Eas obtained via
modified Bohr-Sommerfeld
quantization of the
asymmetric stretch vibration.
(From [ER91])

n1; n2 Eqm Esc Eas

1, 1 �2:904 �2:932 �3:100
2, 2 �0:778 �0:778 �0:804
2, 3 �0:590 �0:585
3, 3 �0:354 �0:353 �0:362
3, 4 �0:281 �0:282
4, 4 �0:201 �0:199 �0:205
4, 5 �0:166 �0:166
4, 6 �0:151 �0:151
5, 5 �0:129 �0:129 �0:132
5, 6 �0:110 �0:109
5, 7 �0:100 �0:101
6, 6 �0:0902 �0:0895 �0:0917

away from the straight line. The symmetric vibration of both electrons has an
infinite Liapunov exponent due to the highly singular triple collision when both
electrons meet at the nucleus simultaneously. This so-called “Wannier” mode plays
an important role for the ionization process, as discussed in Sect. 4.5.4, but its
relevance for the level spectrum well below the break-up threshold is not so clear
[Ros94]. The next simplest periodic motion of two electrons in collinear helium is
the asymmetric stretch vibration in which both electrons alternately collide with the
nucleus and are reflected at their outer turning point. In the application in [ER91]
the cycle expansion was truncated so as to include the contributions of all primitive
periodic orbits with up to six collisions of one of the electrons with the nucleus
during one period. The energies obtained in this way are compared in Table 5.1 with
the results of exact quantum mechanical calculations for some of the .n1s; n2s/ states
with similar quantum numbers n1; n2. The results show that the energies of several
low-lying states of helium can be approximated in the framework of semiclassical
periodic orbit theory and the collinear model with an accuracy of a few per cent of
the level spacing.

The simplest version of the cycle expansion includes only one periodic orbit, viz.
the asymmetric stretch vibration mentioned above, and it corresponds to a modified
Bohr-Sommerfeld quantization of this periodic orbit,

Sas.En/ D
I

as
p dq D 2�„.n C �d/ : (5.174)

The constant �d on the right-hand side plays the role of a negative quantum defect,
i.e. a quantum excess, and contains the Maslov index divided by four together with
a winding number correction accounting for the zero point motion of the (stable)
bending mode. Because the potential is homogeneous of degree �1, the energy
dependence of the action on the left-hand side of (5.174) is [cf. (5.163), (5.164)
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in Sect. 5.3.4 (c)],

Sas.E/ D Sas.�1/p�E
; (5.175)

and the quantization condition (5.174) yields a Rydberg formula,

En D � ŒSas.�1/=.2�„/�2
.n C �d/2

: (5.176)

The quantum mechanical energies of the symmetrically excited .ns; ns/ states in
helium actually follow such a Rydberg formula quite well, and the data correspond
to a value of 1.8205 for Sas.�1/=.2�„/ and a quantum excess �d D 0:0597. The
deviation of the value 1.8205 from the value two, which one would expect for two
non-interacting electrons in the field of the Z D 2 nucleus, is attributed to mutual
screening of the nucleus by the partner electron. The action of the asymmetric
stretch vibration is Sas.�1/=.2�„/ D 1:8290. Our experience with quantization
of the one-dimensional Coulomb problem in Sect. 3.2.1, (3.131), indicates that a
contribution 3 rather than 1 to the Maslov index is appropriate for reflection at an
attractive Coulomb singularity. In any case, the two reflections during one period
of the asymmetric stretch vibration lead to a half-integral contribution to �d, and
together with the winding number correction the quantum excess �d acquires a
theoretical value 0.039 modulo unity [ER91]. The resulting energies (5.175) for
the symmetrically excited states are shown in the column Eas in Table 5.1. Modified
Bohr-Sommerfeld quantization of the asymmetric stretch vibration thus gives a fair
account of the energies of the symmetrically excited states.

The interpretation that symmetrically excited states in helium are strongly
influenced by the asymmetric stretch vibration of the collinear configuration is
supported by quantum mechanical calculations. In the subspace defined by total
orbital angular momentum zero there are three independent coordinates, viz. r1, r2
and r12 D jr1 � r2j. Figure 5.26 shows the probability distribution j .r1; r2; r12/j2
of the eigenfunction with n1 D 6, n2 D 6 on the section of coordinate space defined
by r12 D r1 C r2, corresponding to the collinear configuration. The localization of
the wave function along the asymmetric stretch orbit, shown as a solid line, is quite
apparent.

The analysis of the classical dynamics of two-electron atoms and ions has
revealed some interesting and curious results. The so-called “Langmuir orbit”,
which corresponds to a maximal vibrational bending of the symmetric electron-
nucleus-electron configuration, has been shown to be stable for nuclear charge
Z D 2 [RW90b]. Further stable orbits exist in the “frozen planet” configuration
in which both electrons are on the same side of the nucleus at very different
separations, and the farther electron (“frozen planet”) moves slowly in a limited
region of coordinate space, while the nearer electron oscillates rapidly to and
from the nucleus [RW90c]. Although most classical trajectories are unstable, the
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Fig. 5.26 Probability
distribution j .r1; r2; r12/j2
of the .6s; 6s/ helium atom
eigenfunction on the section
of coordinate space defined
by r12 D r1 C r2. The solid
line labelled ‘AS’ shows the
asymmetric stretch orbit, the
dashed line is the Wannier
orbit, r1 D r2 (From [WR92])

existence of such stable orbits means, that the classical dynamics of the helium
atom is not fully ergodic.

In highly asymmetric configurations of a two-electron atom or ion, one electron
can move for a long time on a very extended Kepler orbit, while the other
electron stays near the nucleus. Even though such orbits are generally unstable,
their Liapunov exponent can be arbitrarily small, because the motion of the two
electrons is almost independent, being on individual and only slightly perturbed
Kepler ellipses for an arbitrarily long time. This phenomenon of long intervals of
regularity on trajectories which are in fact unstable is called “intermittency”. The
quantum analogue in two-electron atoms is provided by the highly excited states in
Rydberg series, where one electron is excited to very high quantum numbers, while
the other electron is in a state of low or medium quantum number. Adaptations of
periodic orbit theory were quite successful in establishing the link between classical
and quantum dynamics in these situations [RT97, BQ97, Ros98]. An extensive
review on two-electron atoms is contained in [TR00]. Several partial successes have
opened windows on special features of two-electron atoms, but a comprehensive
understanding of the structure of the Hilbert space and the energy spectrum, the
coexistence Rydberg-like series of narrow levels and broad, overlapping resonances
generating Ericson fluctuations [BR09], has not been achieved, not even qualita-
tively. It remains true, that highly doubly excited two-electron atoms below the
break-up threshold constitute one of the most fundamental still unsolved problems
of quantum mechanics.

The developments around and after 1990 reinstated classical mechanics as a
relevant theory, even in the atomic domain. It remains undisputed, that quantum
mechanics is the formalism for a correct quantitative description of atomic phenom-
ena. It is also clear that the uncertainty principle holds and that it would be wrong
to picture the electrons in an atom as point particles moving on classical trajectories
with well defined positions and momenta. Through the advances described in this
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section it has however become apparent, that the properties of a classical system, in
particular of its periodic orbits, are visible in spectra of the corresponding quantum
system, and that we can understand and sometimes quantitatively describe features
of the quantum mechanical observables on the basis of our knowledge of the
classical orbits.

5.4 Bose-Einstein Condensation in Atomic Gases

5.4.1 Quantum Statistics of Fermions and Bosons

Consider a large number of independent identical particles, each described by
the same one-body Hamiltonian with eigenstates j�i and eigenvalues "� , � D
1; 2; 3; : : :. We can construct a basis of eigenstates of the many-body system from
the products of the one-body eigenstates, which should be antisymmetrized or
symmetrized if the particles are fermions or bosons respectively. Due to the indis-
tinguishability of the particles, a many-body state depends only on the numbers n�
of particles occupying the various one-body eigenstates j�i, and we shall collect all
these numbers n1; n2; : : : ; n�; : : : in one label r. The total energy Er in the many-
body state r is,

Er D
1X
�D1

n�"� ; (5.177)

and the total number Nr of particles is,

Nr D
1X
�D1

n� : (5.178)

The standard procedure for describing such a system in the framework of
statistical mechanics is to imagine an ensemble of systems corresponding to
all possible realizations of the many body state, and the values we deduce for
observable physical quantities depend on the probability with which the various
possibilities are realized. In the grand canonical ensemble the probabilities are
determined by the temperature T and the chemical potential �, and are proportional
to exp Œ�.Er � �Nr/=.kBT/�, where kB is Boltzmann’s constant. This is generally
expressed with the help of the grand canonical partition function,

Y D
X

r

e�ˇ.Er��Nr/ ; ˇ D 1=.kBT/ ; (5.179)
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so the probability Pr for realizing an individual state r of the whole many- body
system is,

Pr D 1

Y
e�ˇ.Er��Nr/ D 1

Y
e�ˇ

P
1

�D1 n�."���/ D 1

Y

1Y
�D1

e�ˇ."���/n� : (5.180)

The full many-body partition function (5.179) can be rearranged to a product,

Y D
1Y
�D1

Y� ; Y� D
X

n

e�ˇ."���/n ; (5.181)

and each factor Y� is actually a one-state partition function for a grand canonical
ensemble of one-state systems, in which the particles can only occupy the one
single-particle quantum state j�i. For fermions, each state j�i can only be occupied
by n D 0 or n D 1 particles because of the Pauli principle, and the summation
over n is easily performed, Y� D 1 C exp Œ�ˇ."� � �/�. The probability for the
state j�i being unoccupied is P0 D 1=Y� and the probability for being occupied is
P1 D exp Œ�ˇ."� � �/�=Y� , so the average occupation number hn�i is,

hn�i D
X

nD0;1
nPn D exp Œ�ˇ."� � �/�

1C exp Œ�ˇ."� � �/�
D 1

exp Œˇ."� � �/�C 1
: (5.182)

For bosons there is no restriction on the number of particles which can occupy a
given single particle state j�i, and Y� is a geometric series which sums to Y� D
1=.1� exp Œ�ˇ."� ��/�/, provided "� > �. The average occupation number in the
state j�i is now

hn�i D
1X

nD0
nPn D �

1 � e�ˇ."���/	 1X
nD1

n e�ˇ."���/n : (5.183)

The right-hand side of (5.183) can be evaluated by writing the sum as 1=ˇ times the
derivative of

P1
nD0 exp Œ�ˇ."� � �/n� D 1=.1� exp Œ�ˇ."� � �/�/ with respect

to �, and this yields

hn�i D 1

exp Œˇ."� � �/� � 1
: (5.184)

At energies much larger than the chemical potential, "��� 	 kBT, the difference
between fermions (5.182) and bosons (5.184) disappears and the (small) occupation
probabilities approach an exponential behaviour, hn�i D exp Œ�ˇ."� � �/�, typical
for classical particles. At low temperatures, ˇ ! 1, the occupation probability
(5.182) for fermions degenerates to 1 � �."� � �/, i.e. the chemical potential
corresponds to the Fermi energy [cf. (2.102)] up to which all single-particle
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states are filled, while all higher-lying single-particle states are unoccupied. This
is the extreme case of a degenerate Fermi gas. For bosons (5.184) the chemical
potential must be smaller than the lowest single particle energy, and the occupation
probability tends to infinity when "� ! �. The condensation to a degenerate Bose
gas, i.e. Bose-Einstein condensation, is conveniently illustrated for the example of
an ideal gas.

An ideal gas can be considered to be a system of free particles of mass m moving
in a large cube of side length L. The single-particle states can be labelled by three
positive integers .�x; �y; �z/ � �, and the corresponding single-particle energies are
(cf. Problem 2.4),

"� D „2�2
2mL2

.�2x C �2y C �2z / D C

�

L

�2
; with C D „2�2

2m
: (5.185)

The average total number of particles hNi is,

hNi D
X
�x;�y;�z

hn�i � 4�

8
L3
Z 1

0

Q�2 d Q� 1

exp Œˇ.C Q�2 � �0/� � 1 ; (5.186)

where the sum over the discrete lattice �x; �y; �z has been replaced by an integral over
the vector Q� D .�x �1; �y �1; �z �1/=L in the octant, Q�i � 0, and �0 D ��"gs is the
chemical potential relative to the energy of the non-degenerate ground state, Q� D 0.1

The integral on the right-hand side of (5.186) can be evaluated by decomposing the
quotient into a geometric series, yielding,

hNi
L3

D �

2

1X
lD1

Z 1

0

Q�2 e�lˇ.CQ�2��0/d Q� D �

2

1X
lD1

elˇ�0

p
�

4.lˇC/3=2
: (5.187)

Inserting the expression for C as given in (5.185) yields

hNi
L3

D
�

mkBT

2�„2
�3=2 1X

lD1

elˇ�0

l3=2
: (5.188)

Equation (5.188) defines the temperature dependence of the chemical
potential �0. As T is decreased from some high value, �0 must increase from
some large negative value, if the total average particle number hNi, or number
density hNi=L3, is to remain constant. At a critical temperature Tc, the value of �0
reaches zero. As the temperature is reduced below Tc, �0 remains zero. The formula
(5.186) now only accounts for the particles in excited states, because its derivation

1Terms of order Q�=L are neglected in the exponent on the right-hand side of (5.186), but reference to
the energy of the non degenerate ground state, "gs D O.1=L2/ is retained for pedagogical reasons.
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relied on the condition � < "� . The critical temperature is defined by inserting
�0 D 0 in (5.188),

hNi
L3

D
�

mkBTc

2�„2
�3=2 1X

lD1

1

l3=2
: (5.189)

The sum on the right-hand side of (5.189) is just the value of the zeta function,
�.x/ D P1

lD1 l�x, for argument x D 3=2, �.3=2/ D 2:612 : : :. The critical
temperature Tc is reached when the number density % D hNi=L3 is, except for the
factor �.3=2/ D 2:612 : : : ; equal to the inverse cube of the thermal wave length

.T/ D 2�„=p2�mkBT ,

% D 2:612 : : :


.Tc/
3
: (5.190)

The thermal wave length 
.T/ is the de Broglie wave length 2�„=p of a particle
whose kinetic energy p2=.2m/ is equal to �kBT. At the critical temperature the
thermal wave length becomes so large that it is of the order of the linear dimensions
of the volume %�1 available to each particle.

As the temperature is reduced below Tc, the chemical potential �0 remains zero
and the number Nexc of particles in excited states is given by,

Nexc

L3
D
�

mkBT

2�„2
�3=2 1X

lD1

1

l3=2
D
�

T

Tc

�3=2 hNi
L3

; T � Tc : (5.191)

The number N0 of particles which has condensed into the non-degenerate ground
state is,

N0 D hNi
"
1 �

�
T

Tc

� 3
2

#
; T � Tc : (5.192)

For T ! 0 all particles condense into the ground state. This is the extreme case of
a degenerate Bose gas.

The condensation of a significant fraction of the Bose gas into its ground state has
dramatic consequences for its thermodynamical properties. The condensed particles
don’t contribute to the pressure of the gas, and they don’t participate in the transfer
of heat. Below Tc the specific heat of the gas falls off with diminishing temperature
due to the diminishing fraction of particles participating.

Atoms as a whole behave like fermions if their total number of nucleons
(neutrons and protons) and electrons is odd, and like bosons if it is even. The
standard text-book example for Bose-Einstein condensation was, for many years,
liquid 4He, which shows a phase transition to superfluidity at a temperature of
2:17ıK.
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Homogeneous Bose-Einstein condensates have been a topic of continuing
study and interest in the field of condensed matter physics for many years.
The condensation of atoms trapped in an external potential produces spatially
confined Bose-Einstein condensates which have a finite volume and a surface and
hence exhibit new and interesting features not present in the homogeneous case.
The successful preparation of such condensates of atomic gases in 1995 greatly
stimulated interest in their theoretical description. A representative introduction
to the theory of non-homogeneous Bose-Einstein condensates is contained in the
papers collected in [BE96].

5.4.2 The Effect of Interactions in Bose-Einstein Condensates

The Hamiltonian for a system of identical particles of mass m in a common external
potential V.r/, which interact via a two-body potential W.ri � rj/ is [cf. (2.53)],

OH D
NX

iD1

Op2i
2m

C
NX

iD1
V.ri/C

X
i<j

W.ri � rj/ : (5.193)

The Hartree-Fock method described in Sect. 2.3.1 treats a system of interacting
fermions on the basis of Slater determinants, so that the independent particle picture
is formally kept, but a part of the interaction between the particles is taken into
account in the form of a mean field. An analogous ansatz for bosons is to start
with a many-body wave function � consisting of a product of single-particle wave
functions,

�.r1; : : : ; rN/ D
NY

iD1
 i.ri/ : (5.194)

The right-hand side of (5.194) should in principle be symmetrized with respect to
the particle labels. In a product ansatz for the ground state of the many-boson system
we assume all particles to occupy the same single-particle state,  i.r/ D  .r/; i D
1; : : :N, so the symmetry requirement is fulfilled automatically. Minimizing the
expectation value of the Hamiltonian (5.193) with respect to variations of the single-
particle wave functions leads to an equation for . The calculations are now simpler
than for the fermion case in Sect. 2.3.1, in particular, there is no exchange potential.
Instead of the Hartree-Fock equations (2.88) we obtain a “Schrödinger equation”
with the one-body Hamiltonian,

Oh� D Op2
2m

C V.r/C Wmf.r/ ; (5.195)
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and the mean-field contribution is [cf. (2.90), (2.91)],

Wmf.r/ D
Z

dr0
NX

iD1
j i.r0/j2W.r � r0/

D
Z

dr0Nj .r0/j2W.r � r0/ : (5.196)

The resulting “Schrödinger equation” is usually formulated for the renormalized
wave function,

 N.r/ D p
N .r/ ; (5.197)

and its time-dependent version reads [Gro63],
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�
 N .r; t/

C N .r; t/
Z

j N
�
r0; t

	 j2 W
�
r � r0	 dr

0
: (5.198)

Since this equation is nonlinear in  N , it is necessary to specify the normalization
condition,

Z
j N .r; t/ j2dr D N: (5.199)

Equation (5.198) is known as the Gross-Pitaevskii equation or also as the nonlinear
Schrödinger equation. Its time-independent version reads,

�
� „2
2m
�C V .r/

�
 N .r/C  N .r/

Z
j N

�
r0	 j2 W

�
r � r0	 dr0

D � N .r/ ; (5.200)

where we have written the chemical potential � for the energy "gs of the single-
particle ground state, in accordance with the conditions for condensation described
in Sect. 5.4.1.

The two-body potential W may be expected to disturb the independent-
particle picture only weakly, if its range is short compared to the spatial
extension of the condensate wave function  N . In this case we may approximateR j N .r0/ j2W .r � r0/ dr0 by j N .r/ j2 R W .r0/ dr0 in (5.198) and (5.200). Accord-
ing to (4.19), the spatial integral over the potential W is, except for a constant,
identical to the low-energy limit of the Born approximation f B to the amplitude for
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particle-particle scattering under the influence of the two-body potential W,

Z
W
�
r0	 dr0 D � lim

k!0

4�„2
m

f B : (5.201)

[Remember that the reduced mass of relative motion of two particles of mass m
is m=2.] In the low-energy limit the scattering amplitude (4.31) reduces to the
partial wave amplitude flD0 for the s-wave, which in turn can be expressed via
the scattering length a according to (4.34), (4.59), flD0 D .1=k/ sin ılD0 C : : : D
�a C O.k/ for k ! 0. If the effect of the interaction is sufficiently weak, we may
identify f B with �a and obtain the following generally used forms [DG97] of the
time-dependent and time-independent Gross-Pitaevskii equation:
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 N .r; t/ ; (5.202)

�
� „2
2m
�C V .r/C 4�„2

m
aj N .r/ j2

�
 N .r/ D � N .r/ : (5.203)

The effect of two-body interactions on the condensate wave function is thus,
in a first approximation, controlled by the scattering length of the two-body
potential. The importance of atom-atom collisions for the understanding of Bose-
Einstein condensates rekindled interest in quantum and semiclassical analyses of
the atom-atom interaction, in particular in the regime of extremely low energies
[Jul96, MW96, CH96, TE98, EM00]. In certain cases it is actually possible to
tune the scattering length of the atom-atom interaction by varying the strength
of an external magnetic field [CC00]. This works via a near-threshold Feshbach
resonance in an inelastic channel of the atom-atom system. The energy ER of such
a Feshbach resonance relative to the elastic-channel threshold generally depends on
the strength of the magnetic field, so it can be tuned to any small positive or negative
value simply by adjusting the field strength appropriately. Tunable near-threshold
Feshbach resonances are discussed in detail in Sect. 5.6.

The condensate wave function  N can be obtained by numerical solution of the
Gross-Pitaevskii equation. This was done by by Dalfovo et al. [DP96] for the case
of a cylindrically symmetric harmonic external potential,

V.r/ D m

2
!2?.x2 C y2 C 
2z2/ : (5.204)

Calculations were performed for a perpendicular oscillator width, ˇ? Dp„=.m!?/ cf: (1.83), of 1:222 � 10�4 cm corresponding to about 23000 Bohr
radii, and the frequency ratio 
 was chosen as

p
8. The physical parameters of the

particles correspond to 87Rb atoms; the scattering length a was taken to be 100 Bohr
radii and positive, corresponding to a repulsive atom-atom potential; the number of
atoms in the condensate was assumed to be 5000. The resulting wave function along
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Fig. 5.27 Ground state wave function  N.x; 0; 0/ (in arbitrary units) for a Bose-Einstein conden-
sate of 5000 87Rb atoms in the external potential (5.204). The length labelling the abscissa is in
units of the oscillator width ˇ?. The solid line shows the solution of the Gross-Pitaevskii equation,
the dashed line is the Gaussian ground state harmonic oscillator wave function describing the
non-interacting case, and the dot-dashed line is the result of the Thomas-Fermi approximation,
 N.r/ D p

Œm=.4„2a/�Œ�� V.r/� (From [DP96])

the x-axis perpendicular to the axis of symmetry is shown in Fig. 5.27. The dashed
line shows the x-dependence of the wave function in the non-interacting case,
where it is just the Gaussian for the harmonic oscillator ground state. The solid
line shows the result of numerically solving the Gross-Pitaevskii equation (5.203).
The repulsive atom-atom interaction clearly stretches and flattens the profile of the
wave function. The dash-dotted line in Fig. 5.27 shows the result corresponding
to j N.r/j2 D Œm=.4�„2a/�Œ� � V.r/�; which is obtained simply by neglecting
the kinetic energy term �Œ„2=.2m/�� N in the Gross-Pitaevskii equation (5.203).
This so-called “Thomas-Fermi approximation” implies a large product of scattering
length and density; it describes the profile of the condensate wave function in
Fig. 5.27 quite well in the interior but poorly near the surface.

One example of differences between homogeneous and confined condensates is
provided by work [OS97, DG97] on the excitation spectrum of a trapped condensate.
Excitations of the condensate wave function are described in the framework of
the Hartree-Fock approximation as one-particle-one-hole excitations, in which one
of the particles occupies an excited single particle state rather than the ground
state  , cf. Sect. 2.3.1. A further reaching theory due to Bogoliubov is based on
the concept of quasiparticles, which is more general, because a single-quasiparticle
state involves a superposition of occupied and unoccupied particle states, see e.g.
[ED96]. Bogoliubov’s theory has a long history of successful applications to the
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description of superfluidity in condensed matter and nuclear physics. It is able to
describe collective excitations such as the phonons in a homogeneous Bose-Einstein
condensate, but as a generalization of the Hartree-Fock approximation it can also
account for excitations dominantly of a single-particle nature.

Dalfovo et al. [DG97] have recently used Bogoliubov theory to calculate the
excitation spectrum of a condensate of 10000 Rubidium atoms in a spherical exter-
nal harmonic oscillator potential of oscillator width 0:791�10�4 cm corresponding
to about 15000 Bohr radii; the (positive) scattering length is 110 Bohr radii. The
excitation spectrum obtained in this way is shown in the top half of Fig. 5.28. The
bottom half shows the spectrum obtained in the Hartree-Fock approximation, in

Fig. 5.28 Excitation spectrum of a Bose-Einstein condensate of 10000 rubidium atoms in a
spherically symmetric harmonic potential with frequency parameter !. The top half shows the
results derived using Bogoliubov theory, the bottom half is based on simple single-particle
excitations. The lengths of the lines are proportional to 2l C 1, where l is the orbital angular
momentum quantum number. � labels the chemical potential obtained from the solution of the
Gross-Pitaevskii equation for the ground state wave function, kBTc denotes the critical temperature
for non-interacting bosons in the external harmonic oscillator potential. All energies are in units of
„! D h�HO (From [DG97])
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which the quasiparticles of Bogoliubov theory reduce to single particle excitations.
The lengths of the lines in Fig. 5.28 are proportional two 2lC1, where l is the orbital
angular momentum quantum number of the respective state. Also shown in Fig. 5.28
are the chemical potential�, which follows from the solution of the Gross-Pitaevskii
equation (5.203) for the ground state of the condensate, and the critical temperature
kBTc which would apply in the case of non-interacting particles in the given external
potential. In the non-interacting case the chemical potential is equal to the energy
3
2
„! of the non-degenerate single-particle ground state, and the excitation spectrum

consists of positive integral multiples of „!.
The lowest few excitations shown in the top half of Fig. 5.28 correspond to

collective phononic excitations and cannot be accounted for in the simple Hartree-
Fock approach based on single-particle excitations. Apart from these very low
states, the Hartree-Fock approach does however reproduce the general structure of
the excitation spectrum well, even for excitation energies lower than the chemical
potential. The occurrence of single-particle excitations at low energies is attributed
to the existence of a surface region where the density is low, cf. Fig. 5.27, and hence
is a characteristic feature in which confined systems differ from homogeneous Bose
gases [DG97].

5.4.3 Realization of Bose-Einstein Condensation in Atomic
Gases

In order to experimentally realize Bose-Einstein condensation in an atomic gas, it is
necessary to accumulate a large number of atoms at very low temperature. Neutral
atoms can be trapped in an inhomogeneous magnetic field, provided they have a
substantial magnetic dipole moment, as is the case for alkali atoms. Deceleration
of moving atoms can be achieved by irradiation with laser light which is tuned to
be selectively absorbed by the faster atoms. Modern procedures are quite intricate
and subtle and involve e.g. the intelligent exploitation of the hyperfine structure of
the atomic sublevels, which are temporarily populated in order to shield the coldest
atoms from emission and absorption of photons and hence optimize their survival
rates. Progress in the development of techniques for trapping and cooling atoms was
rewarded in 1997 by the award of the Noble Prize in Physics to S. Chu, C. Cohen-
Tannoudji and W. Phillips.

A further process, viz. evaporative cooling, proved vital in achieving temper-
atures low enough at densities high enough to enable condensation. A radio-
frequency magnetic field causes a spin-flip in the faster atoms near the edge of
the sample, these are no longer trapped and evaporate, thus cooling the sample.
The radio frequency is continuously reduced, thus peeling off layer after layer
of comparatively faster atoms. The final frequency �evap is a measure for the
temperature of the atoms remaining in the sample.
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Fig. 5.29 Velocity distributions of atoms released from a magneto-optical trap after being
evaporatively cooled. The various curves correspond to different final radio frequencies �evap which
steer the evaporative cooling process and are a measure for the temperature of the sample. The
left-hand part of the figure shows the results of Anderson et al. for samples of 87Rb atoms (from
[AE95]), the right-hand part of the figure shows the results of Davis et al. for samples of sodium
atoms (from [DM95b])

The procedure sketched above was applied in 1995 by Anderson et al. [AE95]
at the Joint Institute for Labotoratory Astrophysics (JILA) in Boulder, Colorado,
and by Davis et al. [DM95b] at the Massachussetts Institute of Technology (MIT)
to cool trapped samples of alkali atoms. The velocity distribution of the atoms was
then determined by time-of-flight measurements after the confining trap potential
had been switched off. Resulting velocity distributions are shown in Fig. (5.29) for
different values of the radio frequency �evap which steers the evaporative cooling
process and determines the final temperature of the sample. The left-hand part of
the figure shows the results of Anderson et al. [AE95] who cooled a vapour of 87Rb
atoms. As �evap falls below 4.25 MHz, an increasing fraction of the sample belongs
to a sharp peak around velocity zero. This is seen as evidence of condensation of
this fraction of atoms to the lowest quantum state in the trap potential. The sample
at 4.25 MHz, where the transition begins, has a temperature of 1:7�10�7 ıK and
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contains 2 � 104 atoms at a number density of 2:6 � 1012 per cubic centimetre;
this corresponds to % D 0:3=
 .T/3, cf. (5.190). Near 4.1 MHz the sample still
contains 2000 atoms which are virtually all in the condensate. The right-hand part
of Fig. (5.29) shows the analogous results of Davis et al. [DM95b], who worked with
sodium atoms. Here the condensation of atoms sets in at a frequency of 0.7 MHz,
where the temperature of the sample is estimated to be 2 � 10�6 ı

K. Davis et al.
observed condensates of up to 5 � 105 atoms at number densities up to 1014 cm�3.

The pioneering experimental work at JILA and MIT in 1995 established the
existence of Bose-Einstein condensates of atomic gases and was rewarded with
the Nobel Prize in Physics in 2001, which was awarded in equal parts to Eric
Cornell, Wolfgang Ketterle and Carl Wieman. It is remarkable that, after the
1997 Nobel Prize mentioned above, a further Prize was awarded for such closely
related achievements only four years later. This shows that the importance of the
new developments related to cold atoms were well appreciated in the academic
community.

Many other groups have since succeeded in manufacturing Bose-Einstein con-
densates. Subsequent work concentrated on understanding the properties of this
new state of matter and focussed e.g. on the internal energy and the specific heat
of condensates, on the stability of condensates of atoms with attractive interactions,
on the collective and single-particle excitations of condensates (cf. Sect. 5.4.2), on
collisions between two condensates, and on the possibility of constructing intensive
coherent atomic beams analogous to laser beams [Ket97].

Further breakthroughs were made in the observation of Bose-Einstein conden-
sates of diatomic molecules [JB03], which are of particular interest when the
individual atoms are fermionic [RG04]. In the latter reference, Regal et al. describe
a system of cold fermionic atoms .40K/ which is subjected to an external magnetic
field in order to tune the atom-atom scattering length a via an appropriate Feshbach
resonance, as described in Sect. 5.6. When the energy of the Feshbach resonance is
marginally below the elastic threshold of the atom-atom system, the atoms pair off
in weakly bound diatomic molecules which are bosonic and form a molecular Bose-
Einstein condensate. When the energy of the Feshbach resonance is marginally
above the threshold, it no longer supports such weakly bound molecules. On this
“attractive side of the Feshbach resonance”, Regal et al. infer a condensation of
fermionic atom pairs similar to the formation of Cooper pairs in the BCS theory of
superfluids [DL05]. (See also [CS05].)

The field of cold and ultracold atoms and molecules has now become a prominent
subfield of atomic and molecular physics in general. In 2013, a new book series on
the subject was launched [MW13].
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5.5 Near-Threshold Quantization and Scattering for Deep
Shorter-Ranged Potentials

For potentials with long-ranged (attractive) Coulombic tails proportional to 1=r, the
quasicontinuum of bound states below the continuum threshold merges smoothly
into the continuum of scattering states above threshold, as described elegantly in the
framework of quantum defect theory, see Sects. 3.2–3.4.

For shorter-ranged potentials falling off faster than 1=r2 asymptotically, the
situation is very different, e.g., because there is at most a finite number of
bound states and hence no quasicontinuum below threshold. As already shown
(for vanishing angular momentum) in Sect. 3.1.2, the near-threshold bound-state
energies and wave functions in this case depend sensitively on the threshold
quantum number �D, which, for potentials falling off faster than 1=r3, is related
to the s-wave scattering length a according to (3.59). In this section we illuminate
the connection to scattering states above the continuum threshold.

5.5.1 Connecting Near-Threshold Quantization
and Near-Threshold Scattering

Near-threshold quantization, discussed in Sect. 3.1.2, involved matching the regular
solution of the radial Schrödinger equation with the full potential to a solution of
the radial Schrödinger equation (3.17),

� „2
2�

d2u

dr 2
C Vtail.r/ u.r/ D E u.r/ ; (5.205)

obeying bound-state boundary conditions. The potential in (5.205) is the attractive
reference potential Vtail.r/, which is more singular than 1=r 2 at small distances,
is a good approximation of the full potential at large distances and falls off faster
than 1=r 2 for r ! 1. The influence of the potential tail was contained in one
single quantization function (3.22), constructed at each energy E with the help of
the small-r behaviour of the asymptotically bound solution of (5.205), which is
accurately given by its WKB representation for r ! 0.

At positive energies, there are two linearly independent physically meaningful
solutions of (5.205) for each energy E, and the small-r behaviour of each solution
is determined by an amplitude and a phase, e.g. in the WKB representation of this
solution for r ! 0. One overall normalization constant is always arbitrary, so the
quantum mechanical properties of the reference potential are manifest not in one
tail function, as in subthreshold quantization, but in three tail functions at positive
energies.
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One choice of two linearly independent solutions of (5.205) is provided by the
wave functions obeying the following large-r boundary conditions [MK11]:

us.r/
r!1� sin.kr/ ; uc.r/

r!1� cos.kr/ : (5.206)

Beyond the short-range deviations of the full interaction from the reference potential
Vtail.r/, the regular solution ureg.r/ of the full problem is a superposition of the two
solutions of (5.205),

ureg.r/
r large/ cos ı0 us.r/C sin ı0 uc.r/ : (5.207)

The properties of the reference potential Vtail.r/ are contained in the amplitudes
and phases of the WKB representations of us.r/ and uc.r/ for r ! 0, where these
representation become exact. The explicit expressions for the WKB representations
contain the lower integration limit in the action integrals as point of reference. In the
presence of a classical turning point, this turning point is a natural choice, but for
the singular, attractive reference potential Vtail.r/, there is no classical turning point
at positive energy. One conspicuous point is the distance rE at which the potential
V.rE/ is equal to minus the energy E,

Vtail.rE/ D �jEj I (5.208)

it lies in the heart of the nonclassical region of Vtail.r/, see also (5.324) in Sect. 5.7.3.
With this choice, the WKB representations of the two solutions of (5.205) defined
by the boundary conditions (5.206) can be written as

us.r/
r!0� Asp

ptail.EI r/
sin

�
1

„
Z r

rE

ptail.EI r0/ dr0 � �s

�
;

uc.r/
r!0� Acp

ptail.EI r/
cos

�
1

„
Z r

rE

ptail.EI r0/ dr0 � �c

�
; (5.209)

with the local classical momentum ptail.EI r/ D p
2� ŒE � Vtail.r/�, which is real

and positive in the whole range 0 < r < 1. Equation (5.209) defines the
amplitudes As;c which are real and taken to be positive, and the phases �s;c, which
are real. These amplitudes and phases are tail functions determined entirely by
the reference potential Vtail.r/. They are functions of energy, but for simplicity in
notation this is not explicitly written in the formulae below. Note that the lower
limit rE of the integrals in (5.209) is larger than the upper limit r when r ! 0.

At distances r which are small enough for the WKB representations (5.209) of
us.r/ and uc.r/ to be valid, and at the same time large enough so that the reference
potential Vtail.r/ is a good approximation of the full interaction, the regular solution
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with the asymptotic behaviour (5.207) can be written as

ureg.r/ / 1p
ptail.EI r/

sin

�
1

„
Z r

rE

ptail.EI r0/ dr0 � �sr.E/

�
: (5.210)

The position r in (5.210) lies beyond the short-range deviations of the full interaction
from the reference potential Vtail.r/, and the inner boundary condition ureg.0/ D 0 is
carried over in terms of the phase �sr.E/. From (5.207) and (5.209) it follows, that
�sr.E/ is related to the scattering phase shift ı0 by

tan ı0 D As

Ac

sin.�s � �sr.E//

cos.�c � �sr.E//
: (5.211)

The choice of the reference point rE in (5.210) may seem unconventional, but
it allows the WKB expression to be written in terms of ptail.EI r0/ rather than
p.EI r0/ D p

2� ŒE � V.r0/�, which involves the full interaction. A more conven-
tional WKB representation for ureg.r/ is,
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�
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2

�
; (5.212)

which defines the inner reflection phase �in.E/, compare the upper line of (3.15).
For distances r beyond the short-range deviations of the full interaction from the
reference potential Vtail.r/, ptail.EI r/ and p.EI r/ are essentially equal, so the factors
in front of the sine in (5.210) and cosine (5.212) are the same. Equating the sine and
cosine parts relates �in.E/ to �sr.E/:
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p.EI r0/ dr0 : (5.213)

Since the range of integration in the second integral in the top line of (5.213) is
beyond the short-range deviations, the momentum ptail.EI r0/ can be replaced by
p.EI r0/ in this integral, which leads to the expression in the bottom line. With the
quantization condition at threshold, (3.10) in Sect. 3.1.2, the phase �sr.E/ can be
related to the threshold quantum number �D,

�sr.E/ D ��D� � �out.0/

2
� �

2
� �in.0/� �in.E/

2
(5.214)
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The difference�in.0/��in.E/ of the inner reflection phases in (5.215) is a smooth
function of energy and vanishes at E D 0. The leading near-threshold energy
dependence of the right-hand side of (5.215) comes from the difference of action
integrals in the lower line. Replacing the momenta p.0I r/ and p.EI r/ in the second
and third integrals, i.e. in those with upper limit rE, by ptail.0I r/ and ptail.EI r/
introduces an error of order E at most. This is because the difference between
p and ptail is limited to short distances and hence a smooth function of E, while
the difference of the two integrals clearly vanishes at E D 0. In the first integral,
covering the range rE to infinity, p.0I r/ can be replaced by ptail.0I r/, because r is
always beyond the range of the short-range deviations. With the abbreviation

� D 1
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Z 1

rE

ptail.0I r/ dr C 1

„
Z rE

0

Œptail.0I r/� ptail.EI r/� dr � �out.0/

2
� �

2
;

(5.215)

we can rewrite (5.215) as

�sr.E/ D ��D� C � C �fsr.E/ ; (5.216)

where fsr.E/ is a smooth function of energy which vanishes at threshold and
accounts for all residual short-range effects. The expression (5.211) thus becomes
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Œ�D � fsr.E/�� � � C �s

	
cos

�
Œ�D � fsr.E/�� � � C �c

	 : (5.217)

The influence of the reference potential Vtail.r/ on the low-energy behaviour of
the scattering phase shift ı0 is expressed through the three tail functions, As=Ac, �s

and �c. The auxiliary tail function � defined in (5.215) is needed to compensate the
effects of choosing the lower integration limit in the action integrals to be rE rather
than some energy independent value. Such a choice would, however, introduce an
unnecessary element of arbitrariness in the formulation.

Towards threshold, the solutions us.r/ and uc.r/ of (5.205), defined by their
asymptotic behaviour (5.206), approach the threshold solutions u.0/1 .r/ and u.0/0 .r/,
which were introduced in Sect. 3.1.2 and are defined by the asymptotic behaviour
(3.40),

us.r/
k!0� k u.0/1 .r/ ; uc.r/

k!0� u.0/0 .r/ : (5.218)

Consequently, the threshold limits of the tail functions can be expressed in terms
of the amplitudes D0;1 and phases �0;1 defining the WKB representations (3.41) of
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u.0/1 .r/ and u.0/0 .r/, and the threshold value of � follows from (5.215):

As

Ac

k!0� k
D1

D0

; �s
k!0�! ��

2
� �1

2
; �c

k!0�! ��0
2
; �

k!0�! ��
2

� �0

2
:

(5.219)

With fsr.E D0/ D 0, the near-threshold limit of (5.217) is seen to be

tan ı0
k!0� �k

D1

D0

2
4cos

�
�0 � �1
2

�
C

sin


�0��1
2

�

tan.�D�/

3
5 D �k

�
Na C b

tan.�D�/

�
:

(5.220)

The threshold length b and the mean scattering length Na are as already defined in
(3.46) and (3.48) in Sect. 3.1.2, so (5.220) is consistent with the expression (3.59)
for the scattering length a. Remember that a finite value for the mean scattering
length Na exists only for reference potentials Vtail.r/ falling off faster than 1=r 3 at
large distances.

Equation (5.217) transparently exposes how the energy dependence of the
scattering phase shift ı0 is influenced by the reference potential Vtail.r/. As for near-
threshold quantization discussed in Sect. 3.1.2, the threshold quantum number �D,
more precisely the remainder �D D �D � b�Dc, crucially determines the leading
energy dependence of ı0. For reference potentials Vtail.r/ falling off faster than
1=r 3 at large distances, the leading proportionality of tan ı0 to k comes from the
prefactor As=Ac in front of the quotient of sine and cosine, and the actual value of
the scattering length a depends sensitively on �D, as seen in (5.220) and in (3.59)
in Sect. 3.1.2.

At large energies, the prefactor As=Ac in (5.217) approaches unity exponentially,
as is most easily seen when analyzing the transmission and quantum reflection
through the nonclassical part of Vtail in terms of the wave functions (5.209), see
(5.344), (5.361) in Sect. 5.7.3 below. This means that the arguments of sine and
cosine in the quotient become identical and equal to ı0 itself,

ı0
k!1� Œ�D � fsr.E/� � � � C �s : (5.221)

In this semiclassical regime, the threshold quantum number �D affects the scattering
phase shift only as an additive constant. Further effects due to the short-range
deviation of the full interaction from the reference potential Vtail.r/ enter via
the correction term fsr.E/, which is a smooth function of energy, in particular at
threshold, and vanishes at E D 0:

fsr.E/ D �srE C O
�
E2
	
: (5.222)

Again, the description above is particularly useful for single-power tails
(3.63), for which the tail properties depend not on energy and potential strength
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independently, but only on the dimensionless product kˇ˛ of the wave number k
and the quantum length ˇ˛ . The point of reference in units of ˇ˛ is

rE

ˇ˛
D .kˇ˛/

�2=˛ (5.223)

according to (5.208), and the auxiliary function (5.215) is given by [MK11]

� D �
�
3

4
C �

2

�
� C 2�˛.kˇ˛/

1�2=˛ ; with � D 1

˛ � 2
and (5.224)

˛ D p
2 � ˛

˛ C 2
2F1

�
1

2
;
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2
C 1

˛
I 3
2

C 1

˛
I �1

�
I (5.225)

2F1 stands for the hypergeometric function defined by (A.72) in Appendix A.5. The
leading near-threshold behaviour of the tail functions As=Ac, �s and �c is, for any
˛ > 3 [MK11],

As

Ac

k!0� �2�
� .1 � �/
� .1C �/

kˇ˛ D k
p

Na2 C b2 ; (5.226)

�s=c
k!0�

 
�1
2

˙ � � 1
2

2

!
� C 2�˛.kˇ˛/

1�2=˛ : (5.227)

The leading near-threshold behaviour of tan ı0 is as given in (5.220), with Na and
b as given in (3.67) and Table 3.1 in Sect. 3.1.2. In the semiclassical limit of large k,
the prefactor As=Ac approaches unity exponentially, compare (5.361) in Sect. 5.7.3
below, and

�s=c
k!1� ��˛.kˇ˛/1�2=˛ ; �˛ D p

2 � ˛=2

˛ � 1
2F1

�
1

2
; 1 � 1

˛
I 2 � 1

˛
I �1

�

(5.228)

for ˛ > 2. The high-k behaviour of the phase shift is thus

ı0
k!1�

�
�D � fsr.E/C 3

4
C �

2

�
� � .�˛ C 2�˛/.kˇ˛/

1�2=˛ ; (5.229)

as already given in [FG99]. Numerical values of the dimensionless parameters ˛
and �˛ are listed in Table 5.2

For a single-power tail (3.63), the quantum length ˇ˛ can be related to an energy
Eˇ˛ ,

Eˇ˛ D „2
2�ˇ 2˛

; (5.230)
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Table 5.2 Numerical values of dimensionless parameters ˛ and �˛ as defined in (5.225) and
(5.228), respectively

˛ 3 4 5 6 7 ˛ ! 1
˛ 0:908797 0:847213 0:802904 0:769516 0:743463 0:532840

�˛ 0:769516 0:847213 0:885769 0:908797 0:924102 1

which defines a scale separating the extreme quantum region immediately near
threshold from the regime of somewhat larger energies, where the influence of the
reference potential can be described semiclassically. (See also (3.77) in Sect. 3.1.2.)
For E 
 Eˇ˛ corresponding to kˇ˛ 
 1, the near-threshold expansions (5.226),
(5.227) apply and the phase shift may be expressed via the scattering length
according to (5.220); for ˛ D 3 the near-threshold expansion of the phase
shift is expressed via the remainder �D according to (4.113). As the energy
increases beyond Eˇ˛ corresponding to kˇ˛ growing beyond unity, the semiclassical
expression (5.229) becomes increasingly accurate.

As specific examples consider single-power reference potentials (3.63) with
˛ D 6 and ˛ D 4. The auxiliary function (5.215) is given according to (5.224)
in these cases by

� D �7
8
� C 1

2
6.kˇ6/

2=3 for ˛ D 6 and (5.231)

� D �� C 1

2
4.kˇ4/

1=2 for ˛ D 4 : (5.232)

The tail functions As=Ac, �s and �c are shown for both powers in Fig. 5.30.
The scattering phase shifts that follow via (5.217) are shown for various values

of the remainder �D in Fig. 5.31. The leading linear behaviour near threshold,
which is in accordance with Wigner’s threshold law, is restricted to the extreme
quantum regime kˇ˛ 
 1 corresponding to E 
 Eˇ˛ . The scattering length a
depends sensitively on the remainder �D according to (3.59) and for large jaj,
the linear regime is restricted even further by the condition kjaj < 1. The dot-
dashed lines in Fig. 5.31 show the cases of vanishing scattering length, which are
achieved with �D D 3

4
for ˛ D 6 and �D D 1

2
for ˛ D 4. In these cases, the

versions (4.100) or (4.107) of the effective-range expansion don’t work, but the
corresponding expansions for ı0, e.g. (4.101) for potentials falling off faster than
1=r 5 at large distances, are applicable. See Sects. 4.1.7 and 4.1.8 in Chapter 4.

Since the quantum lengths ˇ˛ are very large in realistic systems, typically
hundreds or even many thousands of atomic units (Bohr radii), the truly quantum
mechanical near-threshold regime kˇ˛ 
 1 is tiny, as already observed for
near-threshold quantization in Sect. 3.1.2. In contrast to the bound regime below
threshold however, the energy spectrum above threshold is continuous and any ever
so small range of energies near threshold accommodates physically meaningful
wave functions.
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Fig. 5.30 Tail functions for a single-power reference potential (3.63) with ˛ D 6 (left-hand
panels) and ˛ D 4 (right-hand panels). The upper panels show the ratios As=Ac of the amplitudes
defined by the WKB representations (5.209) of the wave functions us.r/ and uc.r/ in the limit
r ! 0, as functions of kˇ˛ ; the lower panels show the phases �s and �c as functions of .kˇ˛/1�2=˛

(from [MK11])

The phase shifts shown in Fig. 5.31 were obtained via (5.217) without consid-
ering possible short-range corrections due to the deviation of the full interaction
from the reference potential Vtail.r/ at small distances, i.e. assuming fsr � 0. The
characteristic length scale for such short-range corrections is typically of the order
of a few atomic units (Bohr radii), associated with a characteristic energy much
larger than Eˇ˛ . In the energy range covered in Fig. 5.31, the effect of the short-range
correction term fsr in (5.217) is negligibly small in a sufficiently deep Lennard-Jones
type potential where the potential tail is well described by the single-power form
(3.63) [MK11].

Consider again the Lennard-Jones potential (3.74) with BLJ D 104, which was
studied as Example 1 in Sect. 3.1.2. The short-range correction function fsr.E/ was
derived from the exact numerically calculated phase shifts by resolving (5.217),
and �D � fsr.E/ is shown as the solid black curve in the right-hand part (E > 0)
of Fig. 5.32. The left-hand part (E < 0) of the figure repeats the plot in the
right-hand part of Fig. 3.4, where � C F6.	�ˇ6/ is plotted as function of energy
for the highest five bound states � D 19; : : : 23. Note that the energy is now
given in the units of Eˇ6 as defined in (3.77). It is related to the depth E of the
Lennard-Jones potential by Eˇ6=E D .BLJ/

�3=2=
p
2, which in the present case
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Fig. 5.31 s-wave phase shifts as given by (5.217) for a potential with a single-power tail (3.63) for
various values of the remainder �D. The additional short-range correction given through fsr.E/ is
taken to be zero. The solid lines show (from bottom to top) �D D 0; 0:01; 0:1; 0:25; 0:5; 0:9; 0:99

for ˛ D 6 and �D D 0; 0:01; 0:1; 0:25; 0:75; 0:9; 0:99 for ˛ D 4. For the lowest three values of
�D, the plots are repeated with a shift of � , which would correspond to one additional bound state
in a potential well. The dot-dashed lines show the respective phase shift for the value of �D for
which the scattering length vanishes, �D D 3

4
for ˛ D 6 and �D D 1

2
for ˛ D 4 (adapted from

[MK11])
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Fig. 5.32 For the Lennard-Jones potential (3.74) with BLJ D 104 , the left-hand part (E < 0) shows
�CF6.	�ˇ6/ as function of energy for the highest five bound states � D 19; : : : 23 (solid squares).
The right-hand part (E > 0) shows �D � fsr.E/, derived from the exact numerically calculated
phase shifts by resolving (5.217). The dashed horizontal line indicates the value �D D 23:2327 of
the threshold quantum number; the dashed green line shows the linear function �D � �srE, with
�sr D �1:16=E D �8:2 � 10�7=Eˇ6 , compare Table 3.5
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means Eˇ6 � 0:7 � 10�6E . According to the quantization rule (3.11) and the
decomposition (3.24), the black squares in the left-hand part of Fig. 5.32 lie on the
curve �D � Fsr.E/, where Fsr.E/ is the short-range correction to the quantization
function. This curve clearly merges smoothly into the function fsr.E/ accounting for
the analogous short-range correction above threshold. So the short-range correction
coefficient �sr, defined by (3.25) in the subthreshold regime and by (5.222) on the
scattering side of the threshold, is seen to be the same in both cases. The dashed
horizontal line in Fig. 5.32 indicates the value �D D 23:2327 of the threshold
quantum number and the dashed green line shows the linear function �D � �srE,
with �sr D �1:16=E D �8:2 � 10�7=Eˇ6 , compare Table 3.5.

5.5.2 Nonvanishing Angular Momentum

For nonvanishing angular momentum quantum number l, the radial Schrödinger
equation (5.205) with the reference potential Vtail.r/ becomes

� „2
2�

d2u

dr 2
C V.l/

tail.r/u.r/ D E u.r/ ; V.l/
tail.r/ D Vtail.r/C l.lC1/„2

2�r 2
: (5.233)

Since Vtail.r/ is more singular than 1=r 2 at small distances, its influence becomes
increasingly dominant for r ! 0, and the influence of the centrifugal potential in
(5.233) becomes negligible in this limit. At large distances, however, the centrifugal
term dominates over Vtail.r/, which falls off faster than 1=r 2, and this gives rise to
a centrifugal barrier separating the regime of free-particle motion at large distances
from the region of WKB validity for r ! 0. For a sufficiently deep full interaction,
there still is a region of r values where r is large enough for the full interaction to be
accurately represented by the reference potential V.0/

tail.r/ and at the same time small
enough for the WKB representations of the solutions of (5.233) to be sufficiently
accurate.

As example, Fig. 5.33 shows the tail of the potential already featured in Fig. 3.1
together with the effective potential, which includes the centrifugal potential, in
this case for angular momentum quantum number l D 8. The procedure outlined
in Sects. 3.1.2 and 5.5.1 can also be applied in the case of nonvanishing angular
momentum. In the bound-state regime, the outer classical turning point rout.E/ does
not go to infinity for E ! 0, but assumes a finite value rED0 corresponding to the
inner base point of the centrifugal barrier. With this in mind, the tail contribution
Ftail.E/ to the quantization function is still defined by (3.22) in Sect. 3.1.2, but the
local classical momentum ptail.r0/ in the action integrals is now replaced by

p.l/tail.r
0/ D

r
2�
h
E � V.l/

tail.r
0/
i
: (5.234)
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Fig. 5.33 Tail of the deep
potential already featured in
Fig. 3.1 (solid black line),
together with the effective
potential V.l/

tail.r/ as defined in
(5.233), for angular
momentum quantum number
l D 8 (solid blue line). The
dashed orange line shows the
location of the reference point
rE which is defined for
positive energies by (5.239)
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threshold behaviour of Ftail.E/was derived in [ME01] for single power tails (3.63),2
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here �.l/ is a generalization of � � �.0/ as defined in (5.224),

�.l/ D 2l C 1

˛ � 2 : (5.236)

At the upper end of the interval given in (5.235), i.e., l D 1
2
, the energy dependence

.	ˇ˛/
2lC1 is already of order E. For all higher l-values, in particular for all positive

integers, the leading energy dependence of the tail contribution to the quantization
function F.l/tail.E/ is of order E. A separation of tail effects from the influence of
short-range deviations of the full interaction from the reference potential Vtail.r/ is
still possible for l > 0. As in Figs. 3.4 and 3.6 in Sect. 3.1.2, a plot of � C F.l/tail.E�/
against E� approaches a straight-line behaviour towards threshold, from which

2Noninteger values of l are not merely of academic interest. They can describe the effects of
inverse-square potentials of other origin than the centrifugal term. In two-dimensional scattering
described in Sect. 4.2, the radial Schrödinger equation with integer angular momentum quantum
number m resembles that of the 3D case when l D jmj � 1

2
.
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the parameters �D.l/ and �sr can be extracted. For inverse-power tails (3.63), the
threshold quantum number �D.l/ for nonvanishing l is related to the threshold
quantum number �D.0/ by [ME01, FT04],

�D.l/ D �D.0/� l

˛ � 2
: (5.237)

This relation has been used by Lemeshko and B. Friedrich [LF09, LF10] to estimate
the number of ro-vibrational bound states in diatomic molecules and molecular ions.

The procedure described in Sect. 5.5.1 can easily be extended to the case of
nonvanishing angular momentum quantum number l. For l ¤ 0, the two linearly
independent solutions of (5.233) are chosen to be those behaving asymptotically as

u.l/s .r/
r!1� kr jl.kr/

r!1� sin



kr � l
�

2

�
;

u.l/c .r/
r!1� �kr yl.kr/

r!1� cos



kr � l
�

2

�
: (5.238)

The amplitudes As;c and phases �s;c are defined via the WKB representations of these
wave functions for r ! 0, as in (5.209) for the case l D 0, but the local classical
momentum ptail is replaced by p.l/tail given by (5.234). The point of reference rE is

now chosen as the classical turning point of �V.l/
tail.r/,

V.l/
tail.rE/ D Vtail.rE/C l.lC1/„2

2�.rE/2
D �E < 0 : (5.239)

The dashed orange line in Fig. 5.33 shows the location of reference point rE for each
positive energy E. At threshold, rE � r0 coincides with the inner base point of the
centrifugal barrier, which is also the limit of the outer classical turning point rout.E/
when the threshold is approached from below. The auxiliary tail function (5.215) is,
for l > 0, defined by

�.l/ D 1

„
Z r0

rE

p.l/tail.0I r/ dr C 1

„
Z rE

0

h
p.l/tail.0I r/� p.l/tail.EI r/

i
dr � �out.0/

2
� �

2
:

(5.240)

The theory described above, including nonvanishing angular momenta, has been
shown to work well in a realistic application to near-threshold bound and continuum
states of the 88Sr2 molecule in [KM11].

5.5.3 Summary

For a deep potential with an attractive tail falling off faster than 1=r 2 at large
distances, tail effects and short-range effects are most effectively identified by
defining a reference potential Vtail.r/, which describes the full interaction accurately
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at large distances and tends to �1 more rapidly than �1=r 2 at small distances.
The influence of the reference potential is contained in a few tail functions, which
are functions of energy that are determined solely by Vtail.r/. They are related
to the amplitudes and phases in the WKB representation of exact solutions of
the Schrödinger equation, with Vtail.r/, in the limit r ! 0. Since the WKB
approximation is exact for r ! 0 in this case, referring to the WKB representation
does not imply a semiclassical approximation.

The near-threshold bound-state energies and scattering phase shifts are signifi-
cantly influenced by the threshold quantum number �D, or rather by its remainder
�D D �D � b�Dc, which is a property of the full interaction and tells us how close
this is to supporting a bound state exactly at threshold. Further effects of the short-
range deviation of the full interaction from Vtail.r/ enter via a smooth function of
energy which vanishes at threshold. We called it Fsr.E/ below threshold and fsr.E/
above threshold, but both functions merge smoothly with a common gradient at
E D 0:

Fsr.E/ D �srE C O
�
E2
	

for E < 0 ; fsr.E/ D �srE C O
�
E2
	

for E > 0 :
(5.241)

The short-range correction (5.241) vanishes in the limit that the range of the
deviations of the full interaction from the reference potential Vtail.r/ is small
compared to the characteristic length scales of Vtail.r/.

The positions of the near-threshold energy levels are determined by the quanti-
zation rule (3.11), which can be written as (3.26) when the quantization function is
written as a sum of Ftail.E/ and the short-range correction Fsr.E/. The contribution
Ftail.E/ is a tail function depending only on the properties of the reference potential
Vtail.r/. The immediate near-threshold behaviour of the quantization function F.E/
and of the quantization rule (3.11) is universal for all potentials falling off faster
than 1=r 2 at large distances,

F.E/
	!0� b	

�
C O.E/ ; �D � � 	�!0� b	�

�
C O.E/ ; (5.242)

where b is the threshold length. It is a property of Vtail.r/ alone and is defined by
(3.46).

At above-threshold energies, the s-wave scattering phase shift is given by (5.217).
The ratio As=Ac, the angles �s, and �c, as well as the auxiliary function � are tail
functions depending only on the reference potential Vtail.r/.

The immediate near-threshold behaviour of the phase shift depends sensitively
on the remainder �D D �D � b�Dc. For potentials falling off faster than 1=r 3 at

large distances, we have tan ı0
k!0� �ka and the scattering length a is related to the

remainder�D by (3.59), i.e.

a D Na C b

tan.�D�/
; (5.243)
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where Na is the mean scattering length defined in (3.48). The relation (5.243) follows
from the immediate near-threshold behavior (5.219) of the tail functions occurring
in (5.217). For potentials falling off as �1=r 3 asymptotically, the near-threshold
behaviour of the tail functions yields [Mul13] the behaviour (4.113).

The semiclassical limit is approached away from threshold, both for positive and
negative energies, i.e. for large jEj. The behaviour of the scattering phase shift is
given in the high-k limit by (5.221), and the influence of the threshold quantum
number reduces to a simple additive constant in this limit.

The theory described in this section is particularly elegant for potential tails
that are well described by a single-power reference potential (3.63). In this case,
all tail functions depend only on 	ˇ˛ (below threshold) or kˇ˛ (above threshold).
The transition between the immediate near threshold quantum regime and the
semiclassical regime away from threshold occurs when 	ˇ˛ or kˇ˛ is of the order of
unity. The range of the quantum regime is tiny when compared with typical potential
depths, because the length scale of the reference potential is very large (in atomic
units) for typical atomic or molecular interactions.

5.5.4 Relation to Other Approaches

Deep potentials typically occurring in atomic and molecular physics have been
studied by many researchers over the years. Inspired by the success of quantum-
defect theory for Coulombic potentials, i.e. modified Coulomb potentials with
short-range deviations from the pure 1=r behaviour, Greene et al. [GF79, GR82]
and Giusti [Giu80] formulated an adaptation of quantum-defect theory to more
general situations, in particular to potentials falling off faster than 1=r2 at large
distances. This approach was applied to elastic and inelastic scattering by several
authors [Mie84, MJ84, Gao98, GT05, Gao10]. The description of scattering in
these references is essentially equivalent to the theory described Sects. 3.1.2, 5.5.1
and 5.5.2 in that it attempts to separate the effects due to the singular reference
potential from the short-range effects due to the deviation of the full interaction from
the reference potential at small distances. For a compact review of this line of work
see the description beginning on p. 4962 of [QJ12]. Although the applications of
this “generalized quantum-defect theory” have been very successful, the use of the
language of quantum-defect theory in connection with potentials falling off faster
than 1=r2 at large distances has been and remains unfortunate.

The term “quantum defect” was introduced for systems described by modified
Coulomb potentials to account for the shift of energy levels relative to the levels in a
pure Coulomb potential, which serves as reference potential. Towards the continuum
threshold, the quantum defects merge into a quantum defect function which (with
a factor �) corresponds to the scattering phase shift above threshold, relative to the
phase of the regular wave functions in the reference potential, the pure Coulomb
potential, see Sects. 3.2 and 3.4 in Chapter 3.
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For potentials falling off faster than 1=r2 at large distances, the reference
potentials generally in use are too singular to supply a reference spectrum of
bound states or a definite phase of scattering states, relative to which a “defect”
or additional phase shift could be defined. Other marked differences are the number
of bound states, which is infinite for Coulombic potentials and finite for potentials
falling off faster than 1=r2 at large distances, and the semiclassical limit, which is
at E ! 0 for Coulombic potentials and jEj ! 1 for potentials falling off faster
than 1=r2.

Samuel Johnson once wrote: “Language is the dress of thought” [Joh81]. For the
treatment of potentials which fall off faster than 1=r2 at large distances, the language
of quantum-defect theory is more of a disguise. Interpreting potentials that fall off
faster than 1=r2 as a generalization of Coulombic potentials tends to obscure the
fundamental differences between these two types of interaction. This is potentially
confusing and can promote misconceptions. One example is provided by the
observation made by Gao in 1999, that for single-power potential tails proportional
to �1=r6 or to �1=r3 conventional WKB quantization leads to poorer results
towards the dissociation threshold [Gao99]. Although the failure of conventional
WKB quantization at threshold for such potentials was long well known [PK83], the
observation in [Gao99] was celebrated as sensational evidence for the “breakdown”
of Bohr’s correspondence principle, according to which the behaviour of a quantized
system is expected to become increasingly (semi-)classical as the quantum number
tends to infinity. This alleged breakdown of Bohr’s correspondence principle
was spotlighted in two key media, Physical Review Focus [PR99] and Nature’s
“News” [Bal99]. Apart from the fact that the limit of infinite quantum number
cannot be reached in a system with a finite number of bound states, it was textbook
knowledge at the time, that for homogeneous potential tails proportional to 1=r˛,
the semiclassical limit is for jEj ! 1 when ˛ > 2, and this means E ! �1
in the bound-state regime, see e.g. discussion involving (5.153)–(5.156) in the
Second Edition of Theoretical Atomic Physics, published in 1998. “Large quantum
numbers” means not large � , but large �D � � , and the semiclassical limit is
approached not towards threshold but towards increasing binding energy, at least
as far as the finite depth of any realistic potential well permits. Deep potentials
falling off faster than 1=r2 at large distances thus show conformity with Bohr’s
correspondence principle and not its breakdown. Appropriate refutations of [Gao99]
were published in 2001 [EF01, BA01]. In order to avoid accidents such as the one
documented by [Gao99, Bal99, PR99], it is important to have a proper appreciation
of the differences between potentials with a Coulombic tail and those falling off
faster than 1=r2 at large distances.

A further difference to Coulombic potentials is, that realistic atomic potentials
falling off faster than 1=r2 are often not so well represented at large distance
by the leading asymptotic inverse-power term alone, at least not in an energy
range encompassing more than one or two of the most weakly bound states. The
universality of the theory for single-power reference potentials (3.63), where the
universal tail functions depending on 	ˇ˛ below and on kˇ˛ above threshold apply
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to all potentials with a given power ˛, regardless of strength, is lost when a more
sophisticated reference potential is used. The tail functions must then be calculated
independently for each specific system, and the question arises, whether it may not
be worthwhile to simply solve the radial Schrödinger equation directly to obtain
bound-state energies and scattering phase shifts.

A pragmatic approach to describe near-threshold states of deep potentials
is based on defining a (analytical) model potential Vmod.r/, which is a good
approximation of the potential tail at large distances, where it is well known,
and is nonsingular at small distances, where the exact interaction is often not
so well known. Being regular at the origin, the model potential supports a finite
number of bound states below threshold and well defined scattering states above
threshold. The lesser known short-range part of the potential can be equipped with
a small number of model parameters to be fitted in order to reproduce known
benchmarks of problem under investigation, e.g. bound-state energy levels and the
scattering length. For the bound and continuum states in a relatively narrow energy
range around threshold, the behaviour of the wave functions at short distances
is essentially independent of energy, and their behaviour at large distances can
be obtained by solving the radial Schrödinger equation. Near-threshold effects
depending on the potential tail can be described accurately in this way, because the
model potential accurately represents the exact interaction at large distances. This
approach is very flexible and easily extended to multi-channel scattering situations.
It has been followed successfully in recent years, in particular by Tiemann and
collaborators [ST00, LT02, DT06, SK08, SK12, SS12].

5.6 Near-Threshold Feshbach Resonances

5.6.1 Motivation

In a first approximation, a condensate of N indistinguishable bosonic particles
is described by a completely symmetric many-body wave function, in which
each individual boson occupies the same single-particle quantum state,  N.r/. In
a mean-field treatment of the interparticle interactions, this single-particle wave
function is determined via the Gross-Pitaevskii equation, (5.203). The two-particle
interaction between the bosons (e.g. bosonic alkali atoms) is accounted for by the
scattering length a in the term which contains j N.r/j2 and makes the equation
nonlinear. Clearly, the magnitude and the sign of the scattering length have a
dominating influence of the solution of (5.203) and on whether or not a Bose-
Einstein condensate can form at all.

As discussed on several occasions in this book, the scattering length depends
sensitively on how close the highest bound state in a potential well is to the
continuum threshold, which in an atom-atom system is the dissociation threshold,
see e.g. (4.84) in Sect. 4.1.7 and (3.61) in Sect. 3.1.2; it acquires large positive
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values for bound states very close to threshold and large negative values if the
potential just fails to support a further bound state, see e.g. Fig. 4.4 in Sect. 4.1.7.
As shown below, this general behaviour of the scattering length also holds when
the weakly or almost bound state involved originates from an inelastic channel, i.e.,
when there is a Feshbach resonance at an energy very near to the threshold of the
elastic channel. In diatomic systems, elastic and inelastic channels can have different
magnetic properties (e.g. magnetic moments of the individual atoms), so the bound
and continuum states in the elastic and in inelastic channels can acquire different
shifts in the presence of an external magnetic field. This makes it possible to tune
the position of a Feshbach resonance relative to the threshold of the elastic channel
by varying the strength of the external field, and thus offers a practical way of
manipulating and controlling Bose-Einstein condensates through the corresponding
variations of the scattering length. A comprehensive review on Feshbach resonances
as a tool to control the interaction in gases of ultracold atoms was published in 2010
by Chin et al. [CG10].

Consider the two-channel situation illustrated schematically in Fig. 5.34. In the
presence of an external magnetic field of strength B, the channel thresholds are
separated by ��B due to the difference �� in the relevant magnetic moments.
The upper channel is closed for energies near the threshold of the lower channel,
which we call “incident channel” for want of a better word. In the absence of
channel coupling, the closed channel supports a bound state at an energy E0 near
the threshold of the incident channel, and the coupling of this state to the incident-
channel wave functions appears as a Feshbach resonance in the incident channel.

Close to the threshold of the incident channel, which we take to be at E D 0,
the behaviour of the incident-channel phase shift ı is determined by the scattering

length a: ı
k!0� �ak. As the position of the Feshbach resonance is tuned to pass

the threshold of the incident channel, a pole singularity of the scattering length is
observed at a given strength B0 of the magnetic field. This is generally empirically

Fig. 5.34 Schematic
illustration of atom-atom
potentials in a two-channel
situation. The closed channel
(red curve) acquires a shift
��B relative to the lower,
the “incident” channel (blue
curve) due to different effects
of a magnetic field of
strength B. The closed
channel supports a bound
state close to the threshold of
the incident channel distance
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parametrized as [MV95, CG10]

a D abg

�
1C �B

B � B0

�
; (5.244)

where abg is the background scattering length for the incident channel in the absence
of channel coupling. It has become customary in the cold-atoms community to use
the term “magnetic Feshbach resonance” to describe such a pole in the scattering
length. This can be confusing to anyone with a broader education in scattering
theory, because Feshbach resonances are a much more general phenomenon and
not restricted to energies near a threshold.

The empirical formula (5.244) satisfactorily describes the pole of the scattering
length that occurs when a Feshbach resonance crosses the threshold of the incident
channel, but it does not reveal the physical origin of the parameters involved
nor their interdependencies. The theory described in this section aims to provide
a physically motivated parametrization of a Feshbach resonance near threshold
which transparently reveals its influence on scattering properties and on the bound-
state spectrum. The treatment is based on the extension into the continuum of the
theory of near-threshold quantization for deep shorter-ranged potentials typical for
diatomic systems, as described above in Sect. 5.5.1.

5.6.2 Threshold-Insensitive Parametrization of a Feshbach
Resonance

The influence of a single isolated Feshbach resonance on the scattering phase shift
of the incident channel was given in Sect. 1.5.2,

ı D ıbg C ıres ; tan ıres D � � =2

E � ER
; (5.245)

where ıbg is the background phase shift due to the potential in the uncoupled incident
channel and ıres is the resonant phase shift due to coupling to the bound state in the
closed channel. The parameters ER and � are given by

ER D Ec C hucjVc;i OGVi;cjuci ; � D 2�jhucjVc;ijNu.reg/
i ij2 ; (5.246)

where uc is the wave function of the bound state in the uncoupled closed channel
(called �0 in Sect. 1.5.2), Vc;i and Vi;c are the channel-coupling potentials, Nu.reg/

i .r/
is the energy-normalized regular wave function in the uncoupled incident channel
(called �reg in Sect. 1.5.2) and the operator OG is the propagator (Green’s operator) in
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the uncoupled incident channel; its kernel is the Green’s function

G.r; r0/ D �� Nu.reg/
i .r</ Nu.irr/i .r>/ : (5.247)

The pole of tan ıres defines the resonance energy, i.e. the position ER of the
resonance, which differs from the bound-state energy Ec in the uncoupled closed
channel by a index given by the matrix element containing the incident-channel
propagator. When ER is far from the incident-channel threshold and the channel
coupling is not too strong, the energy dependence of � is weak and its value at
E D ER defines the width of the resonance. This straightforward interpretation
breaks down towards the incident-channel threshold. The matrix element describing
the shift between Ec and ER goes smoothly through a constant value at threshold,
but the energy dependence of the parameter � poses a more serious problem.

The behaviour of Nu.reg/
i .r/ is, beyond the range of the incident-channel potential,

given by

Nu.reg/
i .r/ D

r
2�

�„2k sinŒk.r C ıbg=k/�
k!0�

r
2�k

�„2 .r � abg/ ; (5.248)

compare (1.223) in Sect. 1.5.2. Remember that the near-threshold behaviour of the

phase shift ıbg in the uncoupled incident channel is ıbg
k!0� �abgk. From (5.248) it

follows, that Nu.reg/
i .r/ can be written as

Nu.reg/
i .r/ D

r
2�k

�„2 Qu.reg/
i .r/ with Qu.reg/

i .r/
r!1; k!0� .r � abg/ : (5.249)

The irregular radial wave Nu.irr/i .r/ behaves, beyond the range of the incident-channel
potential, as

Nu.irr/i .r/ D
r

2�

�„2k cos
�
k.r C ıbg=k/

 k!0�
r

2�

�„2k cos
�
k.r � abg/


; (5.250)

compare (1.227) in Sect. 1.5.2, and can thus be written as

Nu.irr/i .r/ D
r

2�

�„2k Qu.irr/i .r/ with Qu.irr/i .r/
r!1; k!0�! 1 I (5.251)

the wave function Qu.irr/i .r/ converges to a k-independent function of r at threshold.

In a product of Nu.reg/
i .r/ and Nu.irr/i .r/, the near-threshold dependencies on k cancel,

so the Green’s function (5.247) and the matrix element defining the energy shift in
the first equation (5.246) tend to finite limits at threshold. On the other hand, the
parameter � as defined in (5.246) vanishes proportional to k, which makes (5.245)
less easy to interpret near threshold.
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This problem can be solved by formulating a threshold-insensitive description
of the Feshbach resonance, which is possible when the incident-channel potential
is deep in the spirit of Sects. 3.1.2, 5.5.1 and well described at large distances by
a singular reference potential Vtail.r/ [SM12]. If channel-coupling effects are of
sufficiently short range, then the regular wave function in the incident channel can
be written in the form (5.210) in a range of r-values, which are large enough so
that the wave function already contains all the effects due to the deviation of the
full interaction (including channel coupling) from the uncoupled reference potential
Vtail.r/, and at the same time small enough for the WKB representation of the
wave in the reference potential Vtail.r/ to be sufficiently accurate. As elaborated
in [SM12], the effect of the Feshbach resonance on the phase of the regular wave
under the influence of Vtail.r/ can be obtained in a way similar to the derivation
of (5.245) and (5.246) above, except that the (energy-normalized) continuum wave
functions of the incident channel are replaced by incident-channel wave functions
u.reg/

i .r/ which, in the range of r values referred to above, have the form (5.210) with
the phase �sr given by (5.216),

u.reg/
i .r/ D

r
2�

�„
1p

ptail.EI r/
sin

�
1

„
Z r

rE

ptail.EI r0/ dr0 � �sr.E/

�
: (5.252)

[Remember that, in the range of r values considered here, the upper limit r of the
integral in (5.252) is smaller than the lower limit rE.] The effect of channel coupling
on the incident-channel wave is the same as in the standard treatment leading to
(5.245) and (5.246). The regular solution acquires an additional resonant phase

�sr.E/ �! �sr.E/C arctan

 N� =2
E � ER

!
; (5.253)

and the width N� is given by

N� D 2�jhucjVc;iju.reg/
i ij2 ; (5.254)

where the wave function u.reg/
i .r/ is as defined in connection with (5.252). As

long as the range of r values, where both the bound-state wave function uc.r/
in the uncoupled closed channel and the coupling potential Vc;i are significantly
nonvanishing, is small, the matrix element in (5.254) is essentially independent
of energy in the near-threshold regime, because the regular wave function, which
behaves as (5.252) at small distances, only becomes sensitive to the threshold
at large distances. The width N� defined by (5.254) is thus threshold-insensitive.
At energies far above the incident-channel threshold, the wave function (5.252)
becomes equal to the energy-normalized regular wave function Nu.reg/

i .r/, so

�
E large�! N� : (5.255)
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With the appropriate choice of the irregular radial wave function u.irr/i .r/, to

replace Nu.irr/i .r/ in (5.247), the product of u.reg/
i and u.irr/i converges to a well-

defined function at E D 0. The matrix element defining the small shift between
the position ER of the Feshbach resonance and the energy Ec of the bound state in
the uncoupled closed channel is threshold-insensitive.

The determination of the scattering phase shift in the incident channel follows as
already described in Sect. 5.5.1 after (5.210). The result is

tan ı D As

Ac

sin
�
Œ�D � fsr.E/�� C Nıres � � C �s

	
cos

�
Œ�D � fsr.E/�� C Nıres � � C �c

	 ; (5.256)

with the threshold-insensitive resonant phase shift,

Nıres D � arctan

 N� =2
E � ER

!
: (5.257)

In (5.256), �D D �D � b�Dc is the noninteger remainder of the threshold quantum
number �D, and the functions As=Ac, �s and �c as well as the auxiliary function �
are tail functions depending only on the reference potential Vtail.r/ in the incident
channel, as defined through (5.206) and (5.209) in Sect. 5.5.1; fsr.E/ is a smooth
function of E which vanishes at threshold and accounts for residual corrections due
to the deviation of the full interaction in the uncoupled incident channel from the
reference potential Vtail.R/ at small distances.

Since the resonance is a short-range effect, it makes sense to amalgamate the
threshold-insensitive resonant phase and the uncoupled, single-channel remainder
�D to an “extended remainder”,

N�D.E/ D �D � 1

�
arctan

 N� =2
E � ER

!
: (5.258)

With the definition (5.258) of the extended remainder the formula (5.256) becomes,

tan ı D As

Ac

sin
� � N�D.E/� fsr.E/


� � � C �s

	
cos

� � N�D.E/� fsr.E/

� � � C �c

	 : (5.259)

At energies sufficiently far above the incident-channel threshold, the ratio As=Ac

tends to unity and the phases �s and �c become equal. Hence the arguments of sine
and cosine in the quotient on the right-hand side of (5.259) become the same and
equal to the phase ı on the left-hand side, but instead of (5.221) in Sect. 5.5.1 we
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now have

ı
E large� � N�D.E/� fsr.E/


� � � C �s D ıbg C ıres (5.260)

with ıbg D Œ�D � fsr.E/� � � � C �s and ıres D � arctan

 N� =2
E � ER

!
I

this is consistent with (5.245), (5.255) above.

5.6.3 Influence on the Scattering Length

We now assume, that the potential falls off faster than 1=r 3 asymptotically, so that a
well defined scattering length exists. Towards threshold, an additive decomposition
of the scattering phase shift ı into a background contribution and a resonant term,

as in (5.260), is no longer possible. The behaviour As=Ac
k!0/ k, as given in the first

equation (5.219) in Sect. 5.5.1, ensures the behaviour ı
k!0� �ak for the scattering

phase shift, and the value of the scattering length is obtained by the same steps that
led to the far right-hand side of (5.220),

tan ı
k!0� �k

�
Na C b

tan. N�D.E D 0/�/

�
D �k

�
Na C b

tan. N�D.E D 0/�/

�
:

(5.261)

The essential difference between (5.261) and (5.220) is that, in place of the threshold
quantum number �D, (5.261) contains the threshold value of the “extended threshold
quantum number”,

N�D.E/ D �D � 1

�
arctan

 N� =2
E � ER

!
; (5.262)

or, equivalently, the extended remainder (5.258). Equation (5.261) shows that, even
in the presence of a near-threshold Fesbach resonance, the phase shift ı.k/ is nailed
down to be an integer multiple of � at threshold, which precludes the existence
of a resonance feature of finite width in the scattering phase shift straddling the
threshold, as observed for the additional phase shifts in potentials with an attractive
Coulombic tail, see Fig. 3.17 in Sect. 3.3.4.

The scattering length following from (5.261) is the term in the big round brackets
on the right-hand sides,

a D Na C b

tanŒ N�D.E D 0/��
D Na C b

tan
�
�D� C arctan

� N� =.2ER/
	 : (5.263)



5.6 Near-Threshold Feshbach Resonances 511

In the absence of channel coupling, the incident-channel phase shift is the back-

ground phase shift ıbg, and its leading near-threshold behaviour is ıbg
k!0� �abgk,

which defines the background scattering length abg. It is related to the single-channel
remainder, i.e. the remainder�D in the uncoupled incident channel by (3.59),

abg D Na C b

tan.�D�/
H) �D� D arctan

�
b

abg � Na
�
: (5.264)

Inserting the expression on the far right of (5.264) for�D� in (5.263) gives

a D
"

abg C
N� =2
ER

�
Na abg � Na

b
� b

�# "
1C

N� =2
ER

�
abg � Na

b

�#�1
: (5.265)

Equation (5.265) is a universally valid formula for the scattering length a as
function of the position ER of a Feshbach resonance, which may be tuned, e.g.
as a function of the strength of an external field, from values above threshold,
ER > 0, to values below threshold ER < 0. On the right-hand side of (5.265),
abg is the background scattering length due to the potential in the uncoupled incident
channel and N� is the threshold-insensitive width (5.254). The lengths Na and b are the
mean scattering length and the threshold length of the singular reference potential
Vtail.r/; they are properties of the Vtail.r/ only and independent of the position and
width of the Feshbach resonance. For a given reference potential describing the
large-distance behaviour of the potential in the incident channel, the value of the
scattering length depends on two quantities with a clear physical interpretation: the
background scattering length abg and the ratio of the threshold-insensitive width N�
to the position ER of the Feshbach resonance relative to the threshold.

If the distance ER of the Feshbach resonance from threshold is much larger than
its width, then the scattering length a is barely affected by the channel coupling,

N�
ER

! 0 H) a ! abg : (5.266)

If the uncoupled incident channel supports a bound state exactly at threshold, then
jabgj ! 1. From (5.265) we deduce,

jabgj ! 1 H) a D Na C b
ER

N� =2 : (5.267)

In this case, the scattering length a is a linear function of ER and there is no pole.
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Fig. 5.35 For a single-power
reference potential (3.63)
with ˛ D 6, the figure shows
values of the scattering
length a given by (5.265) as
function of the background
scattering length abg (in units
of ˇ6) and the position ER of
a Feshbach resonance (in
units of half its
threshold-insensitive width,
i.e. of N� =2). Dark red areas
indicate large positive, dark
blue areas large negative
values. The white diagonal
shows the pole ERpole as given
by (5.268). Vanishing values
of a occur along the dashed
lines (From [SM12])
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For jabgj < 1, the pole of the scattering length, which is customarily called the
(magnetic) Feshbach resonance in the cold-atoms community, generally occurs for
a nonvanishing value of ER:

jaj ! 1 for ER D ERpole ; ERpole D
N�
2

.Na � abg/

b
D �

N� =2
tan.�D�/

:

(5.268)

Whether the value of ERpole is above or below threshold depends on the sign of
Na � abg, which in turn depends on whether the (single-channel) remainder �D is
smaller or larger than 1

2
. If the background scattering length abg is smaller than the

mean scattering length of the reference potential Vtail.r/, then tan.�D�/ is negative,
corresponding to 1

2
< �D < 1, and ERpole > 0; if abg > Na, then tan.�D�/ is

positive, corresponding to 0 < �D <
1
2
, and ERpole < 0.

A plot of the scattering length (5.265) as function of abg and ER=. N� =2/ is shown
in Fig. 5.35 for an inverse-power tail (3.63) with ˛ D 6. Dark red areas indicate
large positive, dark blue areas large negative values. The white diagonal shows the
position of the pole of a as given by (5.268). It crosses the vertical axis abg D 0

at ER=. N� =2/ D 1, because the two tail parameters Na and b are equal in this case,
compare (3.67) and Table 3.1 in Sect. 3.1.2.
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5.6.4 Influence on the Bound-State Spectrum

The derivation of (5.256) was based on the influence of the Feshbach resonance on
the regular incident-channel wave function (5.252), and this influence consists of
an additional resonant phase in the argument of the sine on the right-hand side, see
(5.253). The distances r where the representation (5.252) of the regular radial wave
function is valid lie in the WKB regime where the potential is deep and where the
wave functions are insensitive to the position of the threshold. The derivation can
thus be continued to the bound-state regime at negative energies, which leads to a
simple modification of the quantization rule (3.11)

�D � 1

�
arctan

 N� =2
E� � ER

!
� � D F.E�/ ; (5.269)

i.e., the threshold quantum number �D is simply replaced by the extended threshold
quantum number (5.262),

N�D.E�/ � � D F.E�/ D Ftail.E�/C Fsr.E�/ ; (5.270)

where the expression on the far right contains the decomposition (3.24) of the
quantization function F.E/ into the tail contribution Ftail.E/, as defined by (3.22)
in Sect. 3.1.2, and the short-range correction Fsr.E/, which is a smooth function of
energy and vanishes at E D 0. Since the quantization functions in (5.270) vanish for
E� D 0, the condition for the existence of a bound state exactly at threshold is now,
that the threshold value of the extended threshold quantum number N�D.E D 0/ be
an integer, i.e. that the threshold value of the extended remainder be zero:

N�D.E D 0/ D �D C 1

�
arctan

 N� =2
ER

!
D 0 : (5.271)

[Remember that the branch of the arcus-tangent is chosen such that arctan.1=x/
varies smoothly from zero to �� as x varies from �1 to 1.]

If the position ER of the Feshbach resonance lies somewhat above threshold,
then its influence on the bound-state spectrum is small. If it lies below threshold,
ER < 0, then the quantization rule (5.270) produces one additional bound state,
an intruder or perturber state in the vicinity of ER, compared to the “unperturbed”
spectrum of the uncoupled incident channel. [We keep the term “incident” channel
at subthreshold energies, even though there can be no genuine incident waves when
the channel is closed.]

The exact position of the intruder state, i.e. of the perturber, depends on
the position and width of the Feshbach “resonance” and on the unperturbed
spectrum. Near the threshold of a deep incident-channel potential, the unperturbed
spectrum is essentially determined by the singular reference potential Vtail.r/ and
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Fig. 5.36 For a deep incident-channel potential with a single-power tail (3.63) with ˛ D 6 and a
remainder �D D 0:9, the highest three bound-state energies following from (5.269) are shown as
functions of the position ER of a Feshbach resonance. The solid blue (dashed red) lines correspond
to a threshold-insensitive width N� D 100Eˇ6 ( N� D 500Eˇ6 ). The short-range correction term
Fsr.E/ is neglected. The unit of energy is Eˇ6 D „2= �2�.ˇ6/2. The straight horizontal lines show
the unperturbed bound-state energies and the straight diagonal line corresponds to Eb D ER. The
straight vertical lines indicate the respective values of ER at which the scattering length diverges
according to (5.268) (Adapted from [SM12])

the remainder�D, as discussed in Sect. 3.1.2. Figure 5.36 shows the dependence on
ER of the energies of the highest three states, as given by (5.269), in a deep potential
with an inverse-power tail (3.63) with ˛ D 6 for a value �D D 0:9 of the (single-
channel) remainder. The straight horizontal lines in Fig. 5.36 show the unperturbed
bound-state energies; the solid blue and dashed red lines show the perturbed
bound-state energies corresponding, respectively, to the values N� D 100Eˇ6 and
N� D 500Eˇ6 of the threshold-insensitive width. The short-range correction Fsr.E/

is neglected here.
Without channel coupling, the spectrum would consist of the unperturbed levels

in the incident channel (straight horizontal lines in Fig. 5.36) plus the intruder at
Eb D ER (straight diagonal line in Fig. 5.36). Channel coupling leads to avoided
crossings between the unperturbed levels and the intruder state. The value of ER

for which the least bound state is exactly at threshold defines the position ERpole of
the pole of the scattering length as given by (5.268). The straight vertical lines in
Fig. 5.36 indicate the values of ER at which this pole occurs for the respective choice
of N� . According to (5.268), the pole occurs at ER D � N� =Œ2 tan.0:9�/� � 1:54� N�
in the present case(s).

The bound state at threshold is a two-component wave function with contri-
butions from the incident channel and the closed channel. Its composition can
be understood in a physically appealing way as a consequence of level repulsion
between the Feshbach resonance at ER, which comes from the closed-channel bound
state, and a weakly bound incident-channel state just below threshold or a state just
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above threshold, which is only marginally unbound. A small value of the single-
channel remainder�D implies that the uncoupled incident channel supports a bound
state close to threshold, which can be pushed to threshold by level repulsion from
a lower-lying Feshbach resonance. A single-channel remainder �D close to unity
suggests a marginally unbound state just above threshold, which can be pushed
down to threshold from a higher-lying Feshbach resonance. (This is the situation
depicted in Fig. 5.36.) In both cases, the bound state at threshold is close to the
uncoupled incident channel wave function with a small contribution due to coupling
from the closed channel. If �D is close to 1

2
, then the uncoupled incident channel is

as far as possible from supporting a bound state at threshold. The two-channel wave
function of the bound state at threshold is then strongly influenced by the Feshbach
resonance from the closed-channel and it occurs at a value ERpole close to zero. If
�D is a little below 1

2
, then ERpole < 0; a Feshbach resonance just below threshold

is pushed up to threshold by the highest bound state of the incident channel. When
�D is a little above 1

2
, a Feshbach resonance just above threshold is pushed down

by coupling to the incident channel; ERpole > 0 in this case.
A relation connecting the scattering length as given by (5.263) with the asymp-

totic inverse penetration length 	b of a bound state very near threshold can be found,
as in the derivation of (3.61) in Sect. 3.1.2, by exploiting (5.269)–(5.271). The low-
energy expansion of the quantization function (3.22) (multiplied by �) gives [cf.
(3.24), (3.25), (3.47)]

�F.Eb/
	b!0� b	b � 1

2
.d	 b/

2 C ��srEb : (5.272)

From (5.269) we have

�D� D �F.Eb/C arctan

 N� =2
Eb � ER

!
.mod �/ I (5.273)

inserting this expression for �D� in the argument of the tangent on the far right-
hand side of (5.263) leads to

a
	b!0� 1

	b
C �eff C „2

2� b

"
��sr �

N� =2
.ER/

2 C . N� =2/2
#

C O.	b/ : (5.274)

Equation (5.274) shows that the universal leading behaviour, already formulated

as (4.84) in Sect. 4.1.7, namely a
	b!0� 1=	b C O

�
	 0b
	
, also holds when the near-

threshold bound state is generated by the coupling of the incident channel to a near-
threshold Feshbach resonance. A different result given at the end of Sect. 4.1.3 in
the Third Edition of Theoretical Atomic Physics is incorrect.
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5.6.5 Relation to the Empirical Formula (5.244)

In a typical experiment involving a Feshbach resonance whose position is tuned
passed an incident channel’s threshold, the quintessential observation is the pole of
the scattering length, which occurs when the energy ER of the Feshbach resonance
assumes the value ERpole, as given in (5.268). Expressing ER as ERpole C ER � ERpole

and exploiting (5.264) and (5.268), we can rewrite (5.263) as

a D abg � b

sin2.�D�/

N� =2
ER � ERpole

: (5.275)

In order to connect to the empirical formula (5.244), let’s assume that the energy ER

of the Feshbach resonance depends linearly on the strength B of an external
magnetic (or other) field,

ER D ERpole C��.B � B0/ ; (5.276)

where B0 is the field strength of the pole and �� is a constant with physical
dimension energy per field strength. This choice of notation is consistent with the
label ��B for the variable energy in Fig. 5.34. As function of the field strength B,
the scattering length (5.275) is

a D abg � b

sin2.�D�/

N� =2
��.B � B0/

D abg

"
1 � b=abg

sin2.�D�/

N� =2
��.B � B0/

#
;

(5.277)

so the width�B, introduced as an empirical parameter in (5.244), is explicitly given
as

�B D � b

abg

1

sin2 .�D�/

N�
2��

: (5.278)

Expressing sin2 .�D�/ in terms of abg according to (5.264) gives an expression for
�B in terms of abg and the tail parameters Na and b:

�B D �
N�

2��

1

b

� Na2 C b2

abg
� 2Na C abg

�
: (5.279)

Equations (5.278), (5.279) show that the width �B of a “magnetic Feshbach
resonance”, as observed in a typical experiment, reflects not only the strength
of the coupling between the bound state in the closed channel and the incident-
channel wave functions, which is expressed in the threshold-insensitive width N� . It
also depends sensitively on the properties of the uncoupled incident channel, as
expressed in the background phase shift abg. If the uncoupled incident channel
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supports a bound state (or if there is a virtual state) very near threshold, abg

becomes very large and the empirical formula (5.244) is no longer applicable,
as discussed in connection with (5.267) above. Another interesting situation is
abg ! 0, corresponding to little or no interaction in the absence of channel coupling.
In this case, the width �B as defined via (5.244) diverges, and a more appropriate
empirical formula would be,

a D abg C �B

B � B0
with �B � abg�B D �

N�
2��

1

b



Na2 C b2 � 2abg Na C a 2

bg

�
:

(5.280)

The width�B defined in this way has the physical dimension of a length times field
strength. In the limit of vanishing background phase shift, abg ! 0, it converges
to a finite value determined by the threshold-insensitive width N� of the Feshbach
resonance and the tail parameters Na and b.

5.7 Some Aspects of Atom Optics

When experimenting with ultra-cold atoms under extremely quantum mechanical
conditions it is helpful to be able to guide and manipulate the atomic matter waves
in much the same way as electromagnetic waves can be guided and manipulated in
optical devices. One obvious difference between atom waves and light is the rich
internal structure of an atom which allows a large variety of inelastic processes
in addition to conventional reflection and refraction. Beside this, there are several
similarities but also essential differences in the properties of matter waves and light
waves.

For stationary states of a particle of mass M moving with the energy E D
„2k2=.2M/ under the influence of a potential V.r/ D �.r/„2=.2M/, the time-
independent Schrödinger equation is,

.� � �.r/C k2/  .r/ D 0 ; (5.281)

which has essentially the same structure as the wave equation for light with a
spatially varying index of refraction proportional to

p
k2 � �.r/. Hence some results

of conventional wave optics can be transferred to the atom-wave situation. However,
typical potentials occurring in atomic systems do not necessarily correspond to the
behaviour of the index of refraction for typical optical systems, so many problems
arising in atom optics have not received the corresponding attention in the optical
community.

The time-dependent wave equations for massive particles and for light contain
an essential difference in the terms involving time derivatives. The time-dependent
Schrödinger equation (1.155) contains the first derivative with respect to time,
whereas the wave equation (2.152) for electromagnetic waves contains the second
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derivative. Whenever time evolution is important, the behaviour of the quantum
mechanical matter wave can be expected to be different from the behaviour of an
electromagnetic wave. E.g. for a plane monochromatic wave whose amplitude is
a function of k � r � !t, the frequency ! and wave vector k are connected via the
dispersion relation. For a particle wave described by the Schrödinger equation this
is given by (1.162), whereas for an electromagnetic wave the dispersion relation is

! D ck D c
p

k�k : (5.282)

As a consequence, the wave packet of electromagnetic waves in the vacuum, or in
a dielectric medium with constant index of refraction, does not show the spreading
described in Sect. 1.4.1 for matter waves.

When constructing wave guides for atoms or other atom-optical devices it is
desirable to keep the atoms away from material surfaces in order to avoid unwanted
inelastic reactions and adsorption (“sticking”). This is a non-trivial problem,
because atom-wall interactions generally feature long-ranged attractive potential
tails as described in Sect. 5.7.1. One technique of keeping atoms away from surfaces
is based on evanescent-wave mirrors, which exploit forces generated by laser light as
explained in Sect. 5.7.2. Finally, Sect. 5.7.3 describes the phenomenon of quantum
reflection, through which atoms can be reflected by the nonclassical region of the
attractive tail of an atom-surface potential before they come close to the surface.
This section gives only a brief introduction to these few aspects of the interesting
and highly topical field of atom optics. For a comprehensive introduction to the field
the reader is referred to the book by Meystre [Mey01].

5.7.1 Atom-Wall Interactions

In order to understand or construct an atom-optical device it is important to
understand the interaction of the atom waves with the surfaces defining the device.
At close distances of the order of a few atomic units, the atom-surface interaction
is strongly influenced by the forces between the individual electrons in the atom
and the electrons and ions in the surface, and it is quite complicated. Beyond this
“close” region of a few atomic units, the atom-surface interaction is well described
by a simple local potential.

Let us first consider the interaction of a neutral polarizable particle with a
perfectly conducting plane wall. Assume that the wall lies in the half-space z � 0

and that the particle is located at a distance z > 0 from the surface, which lies in
the xy-plane. The presence of the particle leads to induced charges on the surface
of the wall, and these induced charges generate an electric field which seems to
come from a mirror-image particle located at a distance z behind the surface. Since
the particle is electrically neutral, the leading contributions come from its electric
dipole moment d which is subjected to the influence of the apparent image dipole
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Fig. 5.37 Schematic illustration of a dipole in front of a conducting wall together with its image
dipole

d0 as illustrated in Fig. 5.37. The potential energy of such a system of two dipoles is
the dipole-dipole interaction [Jac75]

V D 1

D3
Œd �d0 � 3.e�d/.e�d0/� ; (5.283)

where D is the spatial separation of the two dipoles and e is the unit vector pointing
from one to the other. In the situation illustrated in Fig. 5.37, e is the unit vector
in z direction, i.e. normal to the surface of the wall, the separation D is 2z and the
dipole moments are related by d 0

? D d? and d 0
jj D �djj. (The subscript ? denotes

the component normal to the surface and the subscript jj denotes the projection of
the vector onto the xy-plane parallel to the surface.) The fact that the interaction is
between two induced dipoles leads to a further factor 1

2
on the right-hand side of

(5.283), so the electrostatic van der Waals potential between a neutral particle and
a conducting wall is,

VvdW.z/ D � 1

16z3
Œ.djj/2 C 2.d?/2� : (5.284)

When the polarizable particle is a neutral atom in a quantum mechanical
stationary eigenstate  0, (5.284) is readily adapted to

VvdW.z/ D �C3
z3
; C3 D 1

16
h 0j.Odjj/2 C 2.Od?/2j 0i I (5.285)

now Od stands for the dipole operator (2.186) of the atomic electrons,

Od D �e
ZX

iD1
ri ; (5.286)

where Z is the total number of electrons in the (neutral) atom. Note that the
components of the dipole operator enter quadratically on the right-hand side of
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(5.285), so we get non-vanishing contributions even when  0 is a parity eigenstate
with no permanent dipole moment. If the atom is in a spherical state, the expectation
value of .Odjj/2 D .Odx/

2 C .Ody/
2 is twice the expectation value .Od?/2 D .Odz/

2; so

C3 D 1

12
h 0j Od2j 0i D 1

12

X
n

h 0j Odj nih nj Odj 0i : (5.287)

The far right-hand side of (5.287) contains the sum over a complete set of
eigenstates of the atom (including continuum states) and exposes the potential
strength as a sum of contributions corresponding to dipole transitions from the initial
state to all possible states of the atom. In 1948 Casimir and Polder [CP48] pointed
out that the electrostatic formula (5.285) only applies for distances z smaller than
the wavelengths of all non-vanishing transition matrix elements contributing to the
sum,

z 
 N
0;n ; N
0;n D 
0;n

2�
D „c

jEn � E0j I (5.288)

En is the energy eigenvalue of the atomic eigenstate  n. At distances larger than
the relevant transition wavelengths of the atom, the corresponding transition time
becomes shorter than the time a light signal needs to travel between the atom and
the wall. We can no longer ignore relativistic effects (“retardation”) and radiative
corrections accounting for the modification of the electromagnetic vacuum through
the presence of the atom and the wall. These effects are discussed in detail in
[CP48, Bar74, Har90], and they depend crucially on whether the atom is in its
ground state or in a metastable state, or if there are non-vanishing dipole transition
matrix elements to lower-lying states. If the wall is not perfectly conducting, then a
more sophisticated theory is necessary to take this into account.

If the deviations from perfect conductivity are accurately described by a fixed
dielectric constant ", then the interaction between an atom in a spherical ground
state or a metastable state and the dielectric wall can be compactly written (in atomic
units) as [TS93, YD97]

V".z/ D � .˛fs/
3

2�

Z 1

0

˛d.i!/!3
Z 1

1

exp.�2!zp ˛fs/ h. p; "/dp d! ; (5.289)

where

h. p; "/ D s � p

s C p
C .1 � 2p2/

s � "p

s C "p
with s D

p
" � 1C p2 I (5.290)

˛fs � 1=c D 0:007297353 : : : is the fine-structure constant and " is the dielectric
constant of the wall; ˛d is the frequency-dependent dipole polarizability of the
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projectile atom in its eigenstate  0 see (3.355) in Sect. 3.5.3,

˛d.i!/ D
X

n

2.En � E0/
jh 0jPZ

jD1 xjj nij2
.En � E0/2 C !2

: (5.291)

For a perfectly conducting surface, a simpler formula is obtained by taking " ! 1
in (5.290) and integrating over p in (5.289),

V1.z/ D � 1

4�z3

Z 1

0

˛d.i!/Œ1C 2˛fs!z C 2.˛fs!z/2� exp.�2˛fs!z/ d!

D � 1

4�˛fsz4

Z 1

0

˛d

�
i

x

˛fsz

�
Œ1C 2x C 2x2� exp.�2x/ dx : (5.292)

For small z values, we can put z D 0 in the upper line of (5.292) and obtain the
van der Waals potential between the atom and a conducting surface,

VvdW1 .z/ D �C3.1/

z3
; C3.1/ D 1

4�

Z 1

0

˛d.i!/ d! : (5.293)

Inserting the expression (5.291) for ˛d.i!/ and using
R1
0

d!=.2C!2/ D �=.2jj/
brings us back to (5.287). For finite values of the dielectric constant ", the derivation
of the small-z behaviour of the potential is a bit more subtle, but the result is quite
simple [TS93, YB98],

VvdW
" .z/ D �C3."/

z3
; C3."/ D " � 1

"C 1
C3.1/ : (5.294)

For large z values, we can assume the argument of ˛d in the lower line of (5.292)
to be zero and perform the integral over x. This gives the highly retarded limit of the
Casimir-Polder potential between the atom and a conducting surface,

V ret1.z/ D �C4.1/

z4
; C4.1/ D 3

8�

˛d.0/

˛fs
: (5.295)

For finite values of the dielectric constant ", we have [YD97, YB98]

V ret
" .z/ D �C4."/

z4
; C4."/ D " � 1

"C 1
�."/C4.1/ ; (5.296)

where �."/ D 1
2
"C1
"�1

R1
0

h. p C 1; "/. p C 1/�4 dp is a well defined smooth function
which increases monotonically from the value 23

30
for " D 1 to unity for " ! 1 .

Explicit expressions for �."/ and a table of values are given in [YD97].
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Table 5.3 Parameters determining the “short”-range behaviour (5.293), (5.294) and the long-
range behaviour (5.295), (5.296) of the atom-surface potentials calculated by Marinescu et al.
[MD97] for hydrogen and by Yan and Babb [YB98] for metastable helium. The length L is the
distance (5.297) separating the regime of “small” distances from the regime of large distances;
�qr D ˇ3=ˇ4 is the parameter determining the relative importance of the “small”-distance regime
and the large-distance regime for quantum reflection, see (5.366) in Sect. 5.7.3. All quantities are
in atomic units.

Atom H He(21 S) He(23 S)

" 1 1 2.295 2.123 1 2.295 2.123

C3 0.25 2.6712 1.0498 0.9605 1.9009 0.7471 0.6836

C4 73.61 13091 3918 3582 5163 1545 1413

ˇ3 919 38980 15320 14017 27740 10902 9975

ˇ4 520 13820 7561 7230 8680 4748 4540

L 294 4901 3732 3729 2716 2068 2067

�qr 1.77 2.82 2.03 1.94 3.20 2.30 2.20

The atom-surface potential behaves as �C3=z3 for “small” distances [(5.293),
(5.294)] and as �C 4=z3 for large distances [(5.295), (5.296)]. The ratio

L D C4
C3

D .ˇ4/
2

ˇ3
(5.297)

defines a length scale separating the regime of “small” z values, z 
 L, from the
regime of large z values, z 	 L: In (5.297) we have introduced the parameters ˇ3
and ˇ4 which express the potential strength in the respective limit in terms of a
length, as for the homogeneous potentials (3.1) discussed in Sect. 3.1.

The expressions (5.289) and (5.292) were evaluated for the interaction of a
hydrogen atom with a conducting surface by Marinescu et al. [MD97] and for the
interaction of metastable helium 2 1S and 2 3S atoms with a conducting surface
." D 1/ and with BK-7 glass (" D 2:295, �."/ D 0:761425) and fused silica
(" D 2:123, �."/ D 0:760757) surfaces by Yan and Babb [YB98]. A list of the
potential parameters determining the “short”-range and the long-range parts of the
respective potentials is given in Table 5.3.

The lengths ˇ3 and ˇ4 are natural length scales corresponding to typical distances
where quantum effects associated with the “short”- or long-range part of the
potential are important. These distances are of the order of hundreds or thousands or
even tens of thousands of atomic units. The words “small” or “short” refer to lengths
which are small compared to these very large distances, a few tens of atomic units,
say, but larger than the close distances of a few atomic units, where more intricate
details of the atom-surface interaction involving the microscopic structure of the
atom and of the surface become important.

For the potential (5.292) between the atom and a conducting surface, we can also
make some general statements about the next-to-leading terms at large and “small”
distances. For large distances we can exploit the fact that the dipole polarizability
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(5.291) is an even function of the imaginary part of its argument, so V1.z/ as given
in the second line of (5.292) is an even function of 1=z and the next term in the
large-distance expression (5.295) must fall off at least as 1=z6,

V1.z/
z!1� �C4

z4
C O

�
1

z6

�
: (5.298)

For small distances z we can calculate a correction to the expression (5.293) via
a Taylor expansion of the integral in the first line of (5.292),

V1.z/ D � I.z/

z3
z!0� � 1

z3

�
I.0/C z

dI

dz

ˇ̌
ˇ
zD0

�
with I.0/ D C3.1/ and

I.z/ D 1

4�

Z 1

0

˛d.i!/
h
1C 2˛fs !z C 2.˛fs !z/2

i
exp .�2˛fs !z/ d! ;

dI

dz
D � 1

�

Z 1

0

˛d.i!/.˛fs !/
3 z2 exp.�2˛fs !z/ d!

D �˛fs

4�

Z 1

0

˛d

�
iy

2˛fsz

��
y

2˛fsz

�2
y exp.�y/ dy : (5.299)

The last line in (5.299) follows from the second-last line via a change of variable,
y D 2˛fs!z, ! D y=.2˛fsz/. The limit of small z corresponds to the limit of large !
and with (5.291) we have

lim
!!1˛d.i!/!

2 D
X

n

2.En � E0/jh 0j
ZX

jD1
xjj nij2 D Z : (5.300)

The fact that the sum over n in (5.300) reduces to the total number Z of electrons in
the atom is just the sum rule (2.220) formulated in Sect. 2.4.6. In the limit z ! 0,
the product of the dipole polarizability and the square of the square bracket in the
integrand in the last line of (5.299) can thus be replaced by Z,

dI

dz

ˇ̌
ˇ̌
zD0

D �Z
˛fs

4�

Z 1

0

y exp .�y/ dy D �Z˛fs

4�
: (5.301)

The leading and next-to-leading contributions to the potential between the atom and
the conducting wall at “small” distances are thus,

V1.z/
z!0� �C3.1/

z3
C Z˛fs

4�

1

z2
: (5.302)

Remember that “small” means small compared to the lengths listed in Table 5.3, but
this can still be quite large in atomic units. The second term on the right-hand side of
(5.302), i.e. the leading retardation correction to the van der Waals potential between
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an atom and a conducting surface at “small” distances, was first derived by Barton
for one-electron atoms in 1974 [Bar74]. An intriguing feature of this correction is,
that it is universal: it depends only on the number Z of electrons in the atom and not
on its eigenstate  0.

If we factor the van der Waals term out of the potential,

V.z/ D �C3
z3
v ; (5.303)

then the transition from the “small”-distance regime to the large-distance regime
is contained in the shape function v, which tends to unity for “small” distances
and behaves as .C4=C3/=z D .z=L/�1 at large distances. A simple rational
approximation which fulfills these boundary conditions is

v

 z

L

�
D 1C � z=L

1C  z=L C � .z=L/2
; (5.304)

containing two parameters  and �. For the simplest case of a ground-state hydrogen
atom in front of a conducting wall, the static dipole polarizability which determines
the coefficient of the asymptotic �1=z4 part of the potential according to (5.295) is
known, ˛d.0/ D 9=2 a.u., see Problem 3.9. Also, the expectation value of r2 which
determines the van der Waals coefficient according to (5.286), (5.287) is known
[BS77] to be h 0jr2j 0i D 3 a.u., so in this case,

C3 D
˝
 0jr2j 0

˛
12

D 0:25 a:u: ; C4 D 3˛d.0/

8�˛fs
� 73:61 a:u: (5.305)

In the rational approximation (5.304) for the shape function, the parameter must be
unity in order to reproduce the next-to-leading behaviour (5.298) at large distances,
and the parameter � must be chosen as

� D 1 � Z˛fs

4�

C4
.C3/2

(5.306)

in order to reproduce the universal next-to-leading correction at “small” distances
(5.302). For the hydrogen atom in front of a conducting wall we have Z D 1 and
the values (5.305) giving � D 0:31608 : : :. The rational approximation (5.304) thus
leads to the following atom-surface potential (in atomic units),

VH.z/ D �C3
z3

�
1C �z=L

1C z=L C �.z=L/2

�
;

C3 D 0:25 a:u: ; � D 0:31608 : : : ; L D C4=C3 � 294 a:u: (5.307)

This expression does in fact approximate the exact potential between a ground-state
hydrogen atom and a conducting wall very well as illustrated in Fig. 5.38, where it is
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Fig. 5.38 Shape function for the potential between a ground-state hydrogen atom and a conducting
wall. The solid line shows the quotient in the square bracket on the right-hand side of (5.307); the
filled diamonds show the exact numerical results calculated by Marinescu et al. [MD97]

compared to the numerical results calculated and tabulated in [MD97]. The rational
approximation (5.307) actually reproduces the numerical values to within a relative
error of 0.6% in the whole range of z values.

The large-distance behaviour of the atom-surface potential becomes more com-
plicated, when the atom is not in its ground state or a metastable state, but rather
in an excited state with non-vanishing dipole matrix elements to lower-lying states.
For more detailed discussions see [Bar74] and [Har90]. For the case of a conducting
surface, the asymptotic behaviour of the atom-surface potential is (in atomic units)
[Bar74],

V.z/
z!1� �C4

z4
C
X

n

�.E0 � En/

j N
0;nj3 � (5.308)
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�
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�
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Here C4 is as defined in (5.295), Odjj and Od? are the parallel and normal parts of
the dipole operator (5.286) and �n D 2z= N
0;n is the n-dependent ratio of the round-
trip distance from the atom to the wall and back and the transition wavelength N
0;n
connecting the initial state  0 to the respective lower-lying state  n, cf. (5.288).
The first term �C4=z4 on the right-hand side of (5.309) only represents the leading
asymptotic behaviour of the atom-surface potential at large distances if there are no
lower-lying states with non-vanishing dipole transition matrix elements. Otherwise
the sum over n contributes terms of longer range with coefficients that oscillate
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as functions of z. The theta function in the sum ensures that only lower-lying states
contribute to this term. The wavelengths of the oscillations are just half the transition
wavelengths 
0;n (without bar) to the lower-lying states. An interesting special case
arises for the metastable 2S state of the hydrogen atom[FJ05]; it is connected via a
non-vanishing dipole matrix element to the 2P state, with which it can be considered
degenerate as long as the effects of relativity and quantum electrodynamics (Lamb
shift) on the atomic structure are negligible.

The effect of further details of the structure of the atom, the surface and
the electromagnetic field in between on the interaction between an atom and a
surface have recently been receiving increasing attention. For example, Al-Amri and
Babiker [AB04] investigated the influence of replacing the empty space in front of a
conducting wall by a dielectric medium, and Shresta et al. [SH03] studied the effects
of the movement of the atom on the various corrections to the atom-wall potential.
Babb et al. [BK04] studied the joint effect of the dynamic polarizability of the atom,
finite conductivity of the wall metal and nonzero temperature of the system. A rough
estimate of where a finite surface temperature T might affect the derivation of the
atom-surface potentials above can be obtained by comparing the thermal energy
kBT with the corresponding photon energy „! D 2�„c=
 . One degree Kelvin
corresponds to roughly 3�10�6 a.u. and a wavelength of roughly 3�108 a.u. A wall
at room temperature, T � 300K, can thus be expected to substantially modify the
results derived for zero temperature at distances near 106 a.u. and larger.

5.7.2 Evanescent-Wave Mirrors

A neutral polarizable atom in an electric field acquires an induced electric dipole
moment and, if the field is non-homogeneous, it exerts a force on the induced
dipole. This is one way of understanding the polarization potential (4.119) between
an atom and a charged particle. Electromagnetic light fields can also exert forces
on polarizable atoms if they are strong enough, and this is the case for sufficiently
intense lasers. The forces which an intense light field exerts on an atom can be
understood on the basis of the simplest possible non-trivial model of the atom,
namely the “two-level atom” which has only two internal stationary eigenstates,
the ground state jgi and the excited state jei.

The Hamiltonian OHA describing the centre-of-mass motion and the internal
structure of such a two-level atom of mass M is,

OHA D Op2
2M

C „!0jei hej : (5.309)

We have written the excitation energy of the excited state in terms of the frequency
!0, so the wave functions solving the time-dependent Schrödinger equation with the
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Hamiltonian (5.309) are

jgi or jei e�i!0t (5.310)

multiplied by a wave function  .r; t/ describing the free-particle motion of the
centre of mass of the atom.

The dipole operator describing the internal dipole moment of the two-level atom
is introduced as

Od D d ed.jeihgj C jgihej/ : (5.311)

As for realistic atoms, where the expectation value of the dipole operator vanishes
in eigenstates of given parity (see Sect. 2.4.5), the expectation value of the operator
(5.311) vanishes in both states of the two-level atom, but the transition matrix
element connecting the two states is finite,

hgj Odjgi D hej Odjei D 0; hgj Odjei D hej Odjgi D d ed: (5.312)

The (real) parameter d describes the strength of the dipole transition and the unit
vector ed describes the orientation of the dipole; such a vector of orientation has to be
included explicitly, because the two-level atom has no internal spatial coordinates.

Let us now look at the effect on the atom of a light field oscillating with a
frequency !. The difference between this frequency and the resonance frequency
!0 of the two-level atom is the detuning

ı D ! � !0 : (5.313)

The light field is described classically, and the electric field at the position r of the
atom is written as

E.r/ D 	 E.r/ cos Œ!t C ˚.r/� ; (5.314)

where 	 is a vector describing the direction (polarization) of the field, E.r/ is a
slowly varying amplitude factor and ˚.r/ is a spatially varying phase which, e.g.
for a monochromatic wave with wave vector k, is simply �k � r: The interaction
energy of the dipole (5.311) with the electric field (5.314) is

OHAL D �Od �E.r/ D „˝.r/ cos .!t C ˚/.jeihgj C jgihej/ with

˝.r/ D �d .	 �ed/ E.r/=„ : (5.315)

Here˝.r/ is the Rabi frequency; when 	, E and˚ are all independent of r, the time-
dependent Schrödinger equation with the Hamiltonian OHA C OHAL has approximate
solutions in which the internal state of the atom oscillates between jgi and jei with
a frequency near ˝ .
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The influence of the dipole coupling term (5.315) on the centre-of-mass motion
of the atom depends on the internal state of the atom. Transitions between the ground
state and the excited state are forced by the external light field, but additionally
the excited state can decay via spontaneous emission with a rate given by (2.192),
(2.193) in Sect. 2.4.4,

P D 4

3

d2! 3
0

„c3
: (5.316)

The decay rate (5.316) corresponds to a width � D „P of the excited state of
the free (i.e. without external field) two-level atom, see Sect. 2.4.1. Spontaneous
emission brings a statistical element into the internal dynamics of the atom, so it is
appropriate to describe its internal state via the von Neumann equation (5.40) for
the density operator

O�int D �ggjgihgj C �gejgihej C �egjeihgj C �eejeihej : (5.317)

In this way, it is also possible to describe dissipative effects, as are exploited in “laser
cooling”. Here an atom moving upstream in a laser beam absorbs photons (and their
momentum) and spontaneously re-emits them in arbitrary directions, which leads to
a net loss of momentum.

The time evolution of the density matrix (5.317) is influenced by the saturation
parameter

s D 1

2

˝.r/2

ı2 C .P=2/2
: (5.318)

For large values of the saturation parameter, the internal state of the atom evolves
into a steady configuration in which both the ground state and the excited state
are almost equally populated. For small values of s it evolves into a steady
configuration in which the population of the ground state is significantly higher
than the population of the excited state. Detailed analysis of the equations of motion
[Ash78, CD92, Mey01, For01] reveals that the effect of the light field on the centre-
of-mass motion of the atom due to the dipole coupling term (5.315) contains a
conservative and a dissipative component, and that the conservative component is
well described by the effective potential

Vdip.r/ D „ı
2

ln

 
1C ˝.r/2=2

ı2 C .P=2/2

!
I (5.319)

the associated force �rVdip is called the dipole force.
The sign of the potential (5.319) depends on the sign of the detuning (5.313).

For blue detuning, i.e. for ! > !0, ı > 0, the potential is positive and the atom
is attracted to regions of small field intensities, it is “weak-field seeking”. For red
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detuning on the other hand, i.e. for ! < !0, ı < 0, the potential is negative and the
atom is attracted to regions of large field intensities, it is “strong-field seeking”. The
possibility of exerting mechanical forces on neutral atoms through light has paved
the way to many new fascinating experiments. One example is the trapping and
guiding of atoms in an “optical lattice”, which is a spatially periodic electric field
due to the standing waves generated by appropriately adjusted counter-propagating
lasers, see e.g. [Blo04] and references therein. In this section we focus on another
example with direct practical use, namely the evanescent wave mirror.

When light in a dielectric medium is incident on a surface to an optically less
dense outside, it undergoes total internal reflection if the angle of incidence �i is
large enough: sin.�i/ > 1=nm, where nm is the refractive index of the dielectric
medium relative to the outside. Some light does penetrate into the outside as a
decaying, “evanescent” wave characterized by a finite penetration depth. To be
precise, assume that the surface is the xy plane and the dielectric medium is the
half-space z < 0: A monochromatic plane wave is totally reflected at the surface
as sketched in Fig. 5.39. Outside the medium, i.e. for positive z values, there is an
electric field (5.314) oscillating with the frequency! and propagating parallel to the
surface. In the normal direction, the amplitude E decays with a penetration depth
1=	,

E.z/ D E0 e�	z ; 	 D k
q
.nm/

2sin2.�i/ � 1 I (5.320)

here k is the wave number outside the medium, which is connected to the
frequency ! by the dispersion relation (5.282). This translates into the following

Fig. 5.39 Total internal
reflection of a plane wave in a
medium—with refractive
index (relative to the outside)
nm—at the surface in the xy
plane
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Fig. 5.40 Schematic illustration of an evanescent-wave atomic mirror. The blue detuned laser light
incident on the vertical surface from the left generates a repulsive dipole potential (5.322) which,
together with the attractive atom-surface potential discussed in Sect. 5.7.1 produces an effective
potential with a barrier (from [CS98], courtesy of Robin Côté)

behaviour of the square of the Rabi frequency,

˝.z/2 D .˝0/
2 e�2	z ; .˝0/

2 D d2.E0/2
„2 .	 �ed/

2 : (5.321)

For small values of the saturation parameter (5.318) we can expand the logarithm in
(5.319); when the detuning (5.313) is so large that we can neglect the contribution of
the spontaneous decay rate in the denominator ı2 C .P=2/2, the potential simplifies
to

Vdip.z/ D „˝.z/2
4ı

D „.˝0/
2

4ı
e�2	z : (5.322)

By shining a laser into a prism so that it is totally reflected by one of the
prism surfaces, we can generate a repulsive or attractive dipole force for atoms
approaching the prism on the other side. If the laser is blue detuned with respect
to the relevant dipole transition in the approaching atoms .ı > 0/, then the atoms
are subject to a repulsive force due to the evanescent light wave in front of the prism
surface. The interaction of an atom with the surface also contains the attractive atom-
surface potential discussed in Sect. 5.7.1. If the repulsive dipole potential is strong
enough, the total atom-surface potential has a barrier as sketched in Fig. 5.40. If
the energy of the atom is lower than the barrier height, it is reflected at the outer
classical turning point of the barrier. Thus the dipole force of the evanescent light
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wave helps to make a mirror which reflects sufficiently cold approaching atoms with
near to 100% efficiency.

The strength of the evanescent-wave potential (5.322) depends on the intensity
.E0/2=2 of the electric field at the surface, on the strength d of the dipole transition
matrix element (5.312), and on a factor of order unity related to the polarization of
the electric field and the orientation vector ed of the dipole transition. The electric
field intensity at the surface is related to the power of the laser light and other
circumstances [For01]. For a rough estimate we can refer to Problem 5.1, from
which it follows that a laser power of 1017 W=cm2 corresponds to an energy density
of the order of an atomic unit. The inverse penetration depth 	 is necessarily less
than the wave number nmk of the incoming wave in the prism and depends on the
angle of incidence according to (5.320). Towards the critical angle, nm sin.�i/ ! 1,
	 tends to zero corresponding to infinitely large values of the penetration depth.

For practical applications it is convenient to work with atoms which approxi-
mately fulfill the requirements of the two-level model with a level separation in
the range of available laser frequencies. One popular choice is the metastable 2 3S
state of helium which is connected by a dipole matrix element to the higher-lying
2 3P2 state. The transition wavelength is 
 D 1083 nm D 20466 a.u., so !0 D
0:04207 a.u. The upper 2 3P2 state can only decay via spontaneous emission to the
lower 2 3S state and its lifetime is 98 nsD 4:05� 109 a.u., so the spontaneous decay
rate is P D 0:247 � 10�9 a.u.; this corresponds to a dipole strength d2 D 6:4 a.u.
according to (5.316). Dall et al. used evanescent light fields to guide such metastable
helium atoms through hollow optical fibres consisting of fused silica capillaries
[DH99]. This is just one example of how evanescent light fields can be used to
construct atom-optical devices.

5.7.3 Quantum Reflection

The transmission through and reflection by a potential barrier were described in
Sect. 1.4.2. For an incident particle with an energy greater than the barrier height
(i.e. the maximum of the potential), there is no classical turning point; reflection
of the particle is classically forbidden and is a purely quantum mechanical effect.
This “quantum reflection” is the above-barrier analog of below-barrier tunnelling
through the classically forbidden region in coordinate space. Quantum reflection
can also occur in the absence of a barrier in a purely attractive potential. The
only condition is, that there be a quantal region of coordinate space in which the
quantality function (1.298) is significantly non-vanishing and that to either side there
be semiclassical regions in which the WKB approximation is accurate, so that we
can construct solutions of the Schrödinger equation which can unambiguously be
classified as leftward travelling or rightward travelling. A simple example is the
sharp step potential, see (4.80) in Sect. 4.1.7. Here the quantal region reduces to the
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single point at which the potential is discontinuous, while the WKB approximation
is exact on either side of this discontinuity.

This section focusses on singular attractive potential tails Vtail.r/ which tend to
zero faster than 1=r2 at large distances r ! 1, and to �1 faster than �1=r2 for
r ! 0. At a given positive energy,

E D „2 k2

2M
> 0 ; (5.323)

semiclassical approximations are good at large distances, where the Schrödinger
equation essentially describes free-particle motion, and again at small distances
r ! 0. In between, there is a nonclassical, quantal region giving rise to quantum
reflection.

Quantum reflection by a step potential or an attractive potential tail is always
important towards threshold, E ! 0, because the reflection probability approaches
unity in this limit, see (5.335) and Fig. 5.42 below. In contrast to reflection by a
potential barrier, however, the reflection remains classically forbidden all the way
down to threshold. For a potential barrier, the classical reflection probability is unity
below the barrier and zero above, and the contribution of quantum mechanics is
merely a smoothing of the edges of this step function, see top half of Fig. 5.41. For
a potential step or a purely attractive potential tail, reflection is classically forbidden
at all energies (above threshold) and all reflection is a purely quantum mechanical
phenomenon, see bottom half of the figure.

For the singular attractive potential tail Vtail.r/ at energy E > 0, a characteristic
distance is provided by the point rE already introduced in (5.208) in Sect. 5.5.1. It
corresponds to the classical turning point of the repulsive potential �Vtail.r/, i.e. the
point where the absolute value of Vtail.r/ is equal to the total energy of the particle,

jVtail.rE/j D E : (5.324)

A typical classical action is provided the product of rE and the asymptotic momen-
tum „k, corresponding in units of „ to k rE. Thus k rE is a generalization of the
concept of the reduced classical turning point introduced after (3.18) in Sect. 3.1.2.
For the singular attractive potential Vtail.r/ falling off faster than 1=r2, the high-
energy limit k ! 1 implies k rE ! 1 and corresponds to the semiclassical limit of
the Schrödinger equation (5.205), while the threshold limit k ! 0 implies k rE ! 0

and corresponds to the anticlassical limit.
The local classical momentum ptail.EI r/ D p

2�ŒE � Vtail.r/� is real and positive
for all distances 0 < r < 1. At distances noticeably smaller than rE, ptail.EI r/ is
dominated by the contribution from Vtail.r/ and becomes independent of energy.
The quantality function (1.298) becomes insensitive to the energy and vanishes for
r ! 0, so the WKB representations of the solutions of the Schrödinger equation
with the potential Vtail.r/, (5.205), become exact in the limit r ! 0. This implies that
the solutions of (5.205) can, for any energy E, be unambiguously decomposed into
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Fig. 5.41 Schematic illustration of the qualitative behaviour of the reflection probability PR in
a one-dimensional potential. For reflection by a potential barrier of height Vb, the contribution
of quantum mechanics is merely to smooth out the step function describing the classical reflection
probability (top half). For a potential step or a purely attractive potential tail, reflection is classically
forbidden at all energies (above threshold) and all reflection is a purely quantum mechanical
phenomenon (bottom half)

incoming and outgoing radial waves at small distances. At distances much larger
than rE, the potential Vtail.r/ is only a small correction to the dominant, constant
part „k of ptail.EI r/, and the Schrödinger equation (5.205) becomes that for free-
particle motion. For r 	 rE , the wave function essentially describes free-particle
motion and can also be decomposed into incoming and outgoing waves. In between
the near-origin regime r ! 0 and the large-distance regime r 	 rE, there is the
nonclassical region of the reference potential Vtail.r/, with distances of the order of
the generalized reduced classical turning point rE, where the condition (1.297) is
not well fulfilled—at least at low energies. This nonclassical, quantal region of the
potential tail is the source of quantum reflection.
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The fact that the quantal region of Vtail is centred around rE can be shown
analytically for single-power attractive potential tails (3.63), see Problem 1.10, and
it was shown numerically in [FJ02] for retarded van der Waals potentials of the type
(5.303).

For each energy E, i.e. for each wave number k, there are two linearly indepen-
dent solutions of (5.205), and the physically relevant linear combination of these two
solutions is chosen by defining appropriate boundary conditions at small distances.
For ordinary scattering problems, this boundary condition is chosen to ensure that
the regular solution of the radial Schrödinger equation with the full interaction
matches to the solution of (5.205) at large distances. Other choices are, however,
possible. Choosing incoming boundary conditions at r ! 0,

u.r/
r!0� Tp

ptail.EI r/
exp

�
� i

„
Z r

r0

ptail.EI r0/ dr0
�
; (5.325)

corresponds to assuming that all incoming flux which is transmitted through the
nonclassical region of the potential tail to small distances is absorbed. Note that, for
sufficiently small r, the upper integration limit r is smaller than the lower integration
limit r0 limit in the integral in (5.325), so the integral itself is negative. Writing the
argument of the WKB wave function as upper limit in the action integral has the
advantage, that wave functions containing exp

�� i
„
R r � � � 	 are easily identified as

inward-travelling waves, whereas wave functions containing exp
�C i

„
R r � � � 	 are

outward-travelling waves.
Starting with the incoming boundary conditions (5.325), the Schrödinger equa-

tion (5.205) can be integrated outwards, which yields a well defined solution that
can be decomposed into incoming and outgoing radial waves at large distances,

u.r/
r!1� 1p„k

�
e�ikr C R eCikr

	
: (5.326)

Since the potential Vtail.r/ is strongly r-dependent for r ! 0, the right-hand side of
(5.325) necessarily contains the prefactor 1=

p
ptail.EI r/. The factor 1=

p„k on the
right-hand side of (5.326) is included for consistency. The transmission coefficient T
in (5.325) can be chosen such that there is no further proportionality constant in
front of the incoming wave in (5.326). The phase of T also depends on the choice
of the lower integration limit r0 in the action integral. Equation (5.326) defines
the quantum reflection amplitude R. Comparing (5.326) with (4.48) and (4.49) in
Sect. 4.1.5 shows that the reflection amplitude R can be interpreted as minus the
s-wave S-matrix,

R � �SlD0 D �e2iı0 ; (5.327)

with an s-wave scattering phase shift ı0. Incoming boundary conditions imply
absorption, so the S-matrix is no longer unitary, which is expressed through a
complex phase shift ı0.
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The immediate near-threshold behaviour of the quantum reflection amplitude can
be easily derived [FT04] on the basis of the two threshold (E D 0) solutions u.0/0 .r/

and u.0/1 .r/ of the radial Schrödinger equation (5.205), which are defined by their
asymptotic behaviour (3.40). From their small-r behaviour (3.41), it follows that the
linear combination

u.r/ D ei�0=2

D1

u.0/1 .r/ � ei�1=2

D0

u.0/0 .r/

r!0/ 1p
ptail.0I r/

exp

�
� i

„
Z r

1
ptail.0I r0/ dr0

�
(5.328)

obeys incoming boundary conditions for r ! 0. At large distances, the superposi-
tion (5.328) behaves as

u.r/
r!1� �ei�1=2

D0

C ei�0=2

D1

r ; (5.329)

which is to be compared with

1p„k

�
e�ikr C R eCikr

	 kr!0/ 1C R � ik.1 � R/ r : (5.330)

Since the ratio of the constant term and the coefficient of r must be the same in
(5.329) and (5.330), we obtain

D0

D1

ei.�0��1/=2 D ik.1 � R/

1C R
H) R

k!0� � 1 � ik e�i.�0��1/=2D1=D0

1C ik e�i.�0��1/=2D1=D0

; (5.331)

and, with the threshold length b and mean scattering length Na as defined in (3.46),
(3.48),

R
k!0� �

�
1 � 2k

D1

D0

�
sin

�
�0 � �1
2

�
C i cos

�
�0 � �1
2

���

D � Œ1 � 2i.Na � ib/k� : (5.332)

Expressing R in terms of the complex phase shift ı0 according to (5.327) reveals the
following near-threshold behaviour of ı0,

ı0
k!0� �.Na � i b/k D �a k : (5.333)

Thus the mean scattering length Na and the threshold length b, introduced in
Sect. 3.1.2 as tail parameters of a singular reference potential Vtail.r/, appear
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as the real part and minus the imaginary part of the complex scattering length
[VF05, AF06],

a D Na � i b ; (5.334)

which describes the leading near-threshold behaviour of the quantum reflection
amplitude. The mean scattering length is well defined only for potentials falling
off faster than 1=r 3 at large distances, but the threshold length b is well defined
for potentials falling off faster than 1=r 2. The leading near-threshold behaviour of
the modulus of the quantum reflection amplitude is determined by the threshold
length b,

jRj k!0� 1 � 2bk C O.k2/ D e�2bk C O.k2/ : (5.335)

Note that the probability jRj2 for quantum reflection approaches unity at threshold,
so quantum reflection always becomes dominant at sufficiently low energies.

The effective-range expansion, described for the phase shifts of ordinary scatter-
ing in Sect. 4.1.7, can be adapted for the complex phase shifts of quantum reflection,
as described in [AF06]. Equation (4.99) becomes

k cot ı0
k!0� � 1

Na � i b
C 1

2
reff k2 ;

reff D 2

Z 1

0


�
w.0/.r/

2 � �
u.0/.r/

2�
dr ; (5.336)

but the radial wave function u.0/.r/ is now defined as the solution of (5.205)
which obeys incoming boundary conditions for r ! 0 and the following boundary
conditions for large r:

u.0/.r/
r!1� 1 � r

Na � i b
: (5.337)

The wave function w.0/.r/ in (5.336) assumes the form on the right-hand side of
(5.337) in the whole range of r-values, from the origin to infinity,

w.0/.r/ D 1 � r

Na � i b
: (5.338)

The parameter reff in (5.336) is the complex effective range. As for the real effective
range in ordinary scattering, it is well defined for potentials Vtail.r/ falling off faster
than 1=r 5 at large distances.

The tail parameters of attractive single-power tails (3.63) can be related in a very
elegant way to corresponding parameters of the repulsive inverse-power potentials
(4.74) discussed in Sect. 4.1.7. To see this, observe that the repulsive inverse-
power potential (4.74) becomes the attractive inverse-power potential (3.63) by an
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appropriate transformation of the quantum length ˇ˛ . With � D 1=.˛ � 2/:

ˇ˛ ! ˇ�i��
˛ H) .ˇ˛/

˛�2

r ˛
! � .ˇ˛/

˛�2

r ˛
: (5.339)

The same transformation, ˇ˛ ! ˇ�i��
˛ , transforms the purely imaginary local

classical momentum under the repulsive inverse-power potential to a real local
classical momentum in the attractive inverse-power potential. The radial wave
function which is exactly equal to its WKB representation in the limit r ! 0 for
inverse-power tails with ˛ > 2, is transformed from the regular solution which
vanishes monotonically for r ! 0 in the repulsive case to the oscillating solution
obeying incoming boundary conditions in the attractive case. All properties which
depend on the quantum length ˇ˛ carry over from the repulsive to the attractive case
via the transformation (5.339). The scattering length, which is given by (4.78) for
the repulsive inverse-power potential (4.74), transforms according to

a D �2�
� .1 � �/
� .1C �/

ˇ˛ �! �2�
� .1 � �/

� .1C �/
ˇ˛ Œcos.��/ � i sin.��/� D Na � i b

(5.340)

to the complex scattering length a D Na � i b; the expressions following for the mean
scattering length Na and the threshold length b according to (5.340) are those already
given in (3.67) . Similarly, the complex effective range reff appearing in (5.336) is,
for attractive single-power potentials (3.63) with ˛ > 5, just e�i�� times the real
effective range reff of the corresponding repulsive inverse-power potential (3.63)
with the same quantum length ˇ˛ [AF06]. The straightforward relationship between
repulsive and attractive inverse-power potentials makes it possible to adapt the
extensive results on the near-threshold behaviour of phase shifts which were derived
in [DG65] for repulsive inverse-power potentials to the description of quantum
reflection by attractive inverse-power potentials.

In the limit of large energies, we may use a semiclassical expression for the
reflection amplitudes which was derived by Pokrovskii et al. [PS58, PU58]. We
use the reciprocity relation (1.176) to adapt the formula of [PS58, PU58] to the
reflection amplitude R (corresponding to Rr), defined via the boundary conditions
(5.325), (5.326),

R.k/� k!1� i exp

�
2i

„
Z rt

p.r/ dr

�
: (5.341)

Here rt is the complex turning point with the smallest (positive) imaginary part. For
a single-power potential (3.63) it can be written as

rt D .�1/1=˛rE D ei�=˛rE ; (5.342)
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where rE as defined by (5.324) is (5.223),

rE D ˇ˛.kˇ˛/
�2=˛ : (5.343)

Real values of the momentum p.r/ only contribute to the phase of the right-hand
side of (5.341), so jRj is unaffected by a shift of the lower integration point anywhere
along the real axis. Integrating along the path r=rE D cos.�=˛/C i� sin.�=˛/ with
� D 0 ! 1 gives the result [FJ02]

jRj k!1� exp.�B˛ krE/ D expŒ�B˛.kˇ˛/
1�2=˛� ;

B˛ D 2 sin

�
˛

�
<
(Z 1

0

r
1C

h
cos


�
˛

�
C i� sin


�
˛

�i�˛
d�

)
: (5.344)

In terms of the energy E, the particle mass � and the strength parameter C˛ of
the potential (3.63), the energy-dependent factor in the exponent is

.kˇ˛/
1�2=˛ D 1

„E
1
2� 1

˛ .C˛/
1=˛
p
2� D pasrE

„ ; (5.345)

where pas D „k is the asymptotic .r ! 1/ classical momentum. The high-energy
behaviour (5.344) of the reflectivity as function of „ is an exponential decrease
typically expected for an analytical potential which is continuously differentiable
to all orders, see [Ber82]. Numerical values of the coefficients B˛ were derived in
[FJ02] are listed in bottom row of Table 3.1 in Sect. 3.1.2.

Plots of ln jRj, as function both of kˇ˛ and of .kˇ˛/1�2=˛ , are shown in Fig. 5.42.
The linear initial fall-off of the various curves in the left-hand part of the figure is in
agreement with (5.335), and the gradients �2b=ˇ˛ reflect the respective threshold
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Fig. 5.42 Logarithmic plot of the modulus jRj of the quantum reflection amplitude for attractive
inverse-power potentials (3.63) for ˛ D 3; : : : 7 as functions of kˇ˛ (left-hand part) and of
.kˇ˛/1�2=˛ (right-hand part). The straight dashed lines in the right-hand part show the functions
�Bo .kˇ˛/

1�2=˛ with the coefficients Bo given in the bottom row of Table 3.1 (adapted from [FJ02])
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lengths b as already given in (3.67) and Table 3.1. In the right-hand part of the
figure, the fall-off at large values of .kˇ˛/1�2=˛ is in agreement with (5.344); the
straight dashed lines show �B˛.kˇ˛/1�2=˛ with the values B˛ as given in the bottom
row of Table 3.1. With increasing power ˛, the exponent B˛ .kˇ˛/

1�2=˛ describing
the high-energy behaviour of jRj approaches the exponent �2bk describing its low-
energy behaviour, see the corresponding entries in the last column of Table 3.1. Thus
the low- and high-energy behaviour of jRj merges into a single exponential form for
single-power tails (3.63) with large power ˛,

jRj ˛!1� e�2�kˇ˛=˛ : (5.346)

for all energies.
For the phase of the quantum reflection amplitude, the near-threshold behaviour

follows from (5.332),

arg.R/
k!0� � � 2kNa : (5.347)

The mean scattering length Na is only defined for potentials falling off faster than
1=r3 at large distances. For a potential proportional to �1=r3,

V.�/
3 .r/ D �C3

r3
D � „2

2�

ˇ3

r3
; (5.348)

the inward travelling wave is proportional to H.1/
1 .�/=� with � D 2

p
ˇ3=r in the

semiclassical region r ! 0, and matching to the asymptotic waves (5.330) gives

arg.R/
k!0� � � 2kˇ3 ln.kˇ3/ : (5.349)

Note that the formula (5.335) for the near-threshold behavior of jRj holds for all
potentials falling off faster than �1=r2, even for those such as (5.348), where the
phase of the reflection amplitude diverges at threshold.

Looking at the high-energy limit, the phase of the right-hand side of (5.341)
depends more sensitively on the choice of lower integration limit, which is not
specified in [PS58, PU58]. The k-dependence of the integral in the exponent is
determined by the complex classical turning point (5.342), rt D rEŒcos.�=˛/ C
i sin.�=˛/�. If we assume that the real part of the integral becomes proportional
to „k � <.rt/ D „krE cos.�=˛/ for large k, then the high-energy behaviour of the
phase of the reflection amplitude is

arg R
k!1� c � c0krE D c � c0.kˇ˛/

1�2=˛ (5.350)
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Fig. 5.43 Phase � D arg R of the quantum reflection amplitude for a homogeneous attractive
potential (3.63) as function of kˇ˛ . From top to bottom the curves show the results for ˛ = 3, 4, 5,
6 and 7 (from [FJ04])

with real constants c, c0. This conjecture is supported by numerical calculations as
demonstrated in [FJ04], see Fig. 5.43.

The energy dependence of the phase of the reflection amplitude can be related to
the time gain or delay of a wave packet during reflection as described in Sect. 1.4.3.
If the momentum distribution of the incoming wave packet is sharply peaked around
a mean momentum „k0, then the shape of the reflected wave packet is essentially
the same as for the incident wave packet. The derivative of argŒR.k/� with respect to
k, taken at k0, describes an apparent shift �r in the point of reflection,

�r D �1
2

d

dk
Œarg.R/�kDk0 : (5.351)

[Note that this is �1=2 times the shift (1.201) which corresponded to twice the
distance by which the apparent point of reflection lay behind the origin.] The time
evolution of the reflected wave packet corresponds to reflection of a free wave at
the point r D �r rather than at r D 0. For a free particle moving with the constant
velocity v0 D „k0=� this implies a time gain [cf. (1.202)]

�t D 2�r

v0
D � �

„k0

d

dk
Œarg.R/�kDk0

D �„ d

dE
Œarg.R/�ED„2k20=.2�/ : (5.352)

For a positive (negative) value of �r the reflected wave packet thus experiences a
time gain (delay) relative to a free particle (with the same asymptotic velocity v0)
travelling to r D 0 and back. Note however, that the classical particle moving under
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the accelerating influence of the attractive potential is faster than the free particle;
the quantum reflected wave packet may experience a time gain with respect to a free
particle but nevertheless be delayed relative to the classical particle moving in the
same potential (see (5.355) and Fig. 5.45 below).

Equation (5.347) implies that the near-threshold behaviour of the space shift
(5.351) and of the time shift (5.352) is

�r
k0!0� Na ; �t

k0!0� 2�

„k0
Na : (5.353)

The near-threshold behaviour of the time shift due to reflection for a wave packet
with a narrow momentum distribution is determined by the mean scattering length Na.
Near threshold, the quantum reflected wave packet evolves as for a free particle
reflected at r D Na.

For energies above the near-threshold region, analytical solutions of the
Schrödinger equation are not available (except for ˛ D 4), and the reflection
amplitudes have to be obtained numerically. Equation (5.350) implies that the space
shift (5.351) is given for large energies by

�r
k0!1� c0

2

�
1 � 2

˛

�
rE : (5.354)

The space shifts (5.351) obtained from the numerical solutions of the
Schrödinger equation are plotted in Fig. 5.44 as functions of kˇ˛ for ˛ =3, 4, 5,
6 and 7. Except for ˛ = 3 and values of kˇ3 less than about 0.15, the space shifts are
always positive: according to (5.352) this corresponds to time gains relative to the

Fig. 5.44 Space shift (5.351) for quantum reflection by the single-power potential (3.63) as
function of k0ˇ˛ . From bottom to top the curves show the results for ˛ = 3, 4, 5, 6 and 7 (from
[FJ04])
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free particle reflected at z = 0. For ˛ = 3 and energies close to threshold there are
significant time delays. Note, however, that the classical particle accelerated under
the influence of the attractive potential is faster than the free particle [with the same
asymptotic velocity v0 D „k0=��; and its time gain is

.�t/cl D 2�

Z 1

0

�
1

„k0
� 1

p.r/

�
dr D 2�

„k0
�.˛/ rE ; (5.355)

where �.˛/ depends only on ˛

�.˛/ D 1p
�
�

�
1

2
C 1

˛

�
�

�
1 � 1

˛

�
: (5.356)

Numerical values of �.˛/ are given in Table 5.4.
The time gain (5.355) corresponds to the space shift

.�r/cl D v0.�t/cl

2
D �.˛/rE I (5.357)

the classical particle which is accelerated in the potential and reflected at r D 0

eventually returns at the same time as a free particle reflected at .�r/cl. The classical
space shifts (5.357) are generally larger than the space shifts of the quantum
reflected wave, as illustrated in Fig. 5.45 for the example ˛ D 4. At high energies

Table 5.4 Numerical values of �.˛/ as defined in (5.356)

˛ 3 4 5 6 7 8 ˛ ! 1
�.˛/ 0.862370 0.847213 0.852623 0.862370 0.872491 0.881900 1

Fig. 5.45 Space shift (5.351) for quantum reflection by the single-power potential (3.63) with
˛ D 4 as function of k0ˇ4. The solid line shows the space shift of the quantum reflected wave
whereas the dot-dashed line shows the classical space shift (5.354) (from [FJ04])
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both the classical space shifts (5.357) and the quantum space shift (5.354) show
the same dependence on k0ˇ˛; i.e., proportionality to rE, but the coefficient �.˛/
in the classical case is larger than the corresponding coefficient in the quantum
case. At small energies, the classical space shift diverges as rE, see (5.343), whereas
the quantum space shift remains bounded by a positive distance of the order of
the quantum length ˇ˛ , see Figs. 5.44, 5.45. Although the quantum reflected wave
may experience a time gain relative to the free particle reflected at r D 0, it is
always delayed relative to the classical particle which is accelerated in the attractive
potential [FJ04].

5.7.3.1 Rephrasing (5.217) in Terms of the Amplitudes for Transmission
and Quantum Reflection

Equation (5.217) in Sect. 5.5.1 contains three tail functions, As=Ac, �s and �c, which
are defined by the low-r behaviour (5.209) of the solutions us.r/ and uc.r/ of the
radial Schrödinger equation (5.205); the solutions us and uc of (5.205) are defined
by their asymptotic behaviour (5.206).

As an alternative choice, the parameters of quantum reflection by the nonclassical
part the reference potential Vtail.r/ can also serve as appropriate tail functions
to describe the influence of Vtail.r/ on the scattering phase shifts [MK11a]. To
see this, consider the solution uinc.r/ of (5.205) which obeys incoming boundary
conditions (5.325) for r ! 0 and behaves as (5.326) for r ! 1. In terms of the
solutions us.r/ and us.r/, with the asymptotic behaviour (5.206) we have

uinc.r/ D � ip„k
.1 � R/us.r/C 1p„k

.1C R/uc.r/ : (5.358)

From (5.209) the small-r behaviour of this wave function is

uinc.r/
r!0� e�iI

2
p„k ptail.EI r/

�
.1� R/Ase

i�s C .1C R/Ace
i�c


(5.359)

C eCiI

2
p„k ptail.EI r/

�
.1C R/Ace�i�c � .1� R/Ase�i�s


;

with I D 1
„
R r

rE
ptail.EI r0/ dr0. Since uinc.r/ is required to obey incoming boundary

conditions for r ! 0, the content of the square bracket in the lower line of (5.359)
must vanish,

.1C R/Ace�i�c D .1 � R/Ase�i�s : (5.360)
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The quotient As=Ac of the real and positive amplitudes defined by (5.209) is thus
related to the quantum reflection amplitude R by

As

Ac
D
ˇ̌
ˇ̌1C R

1� R

ˇ̌
ˇ̌ : (5.361)

The phase of the square bracket on the right-hand side of the upper line of (5.359)
can be deduced by exploiting (5.360) to replace either .1�R/As by .1CR/Acei.�c��s/

or .1 C R/Ac by .1 � R/Asei.�s��c/. This phase represents the argument of the
transmission coefficient T as defined by (5.325), provided that the lower limit r0
in the action integral is taken as rE. With this definition of T,

arg T D �s C arg.1C R/ D �c C arg.1 � R/ : (5.362)

In terms of the amplitudes for reflection by and transmission through the nonclassi-
cal region of the reference potential Vtail.r/, (5.217) reads

tan ı0 D
ˇ̌
ˇ̌1C R

1 � R

ˇ̌
ˇ̌ sin

�
Œ�D � fsr.E/�� � � C arg T � arg.1C R/

	
cos

�
Œ�D � fsr.E/�� � � C arg T � arg.1 � R/

	 : (5.363)

5.7.3.2 Observation of Quantum Reflection

Quantum reflection is observable in collisions of ultracold atoms with surfaces. At
large distances, the projectile interacts with a plane surface via electrostatic van der
Waals forces, which are modified at very large distances due to retardation [CP48].
Such “Casimir-Polder potentials” have all the properties assumed for the reference
potential Vtail.r/ in this section. Due to translational invariance parallel to the
surface, the motion normal to the surface is decoupled from the parallel motion, and
it is governed by a one-dimensional Schrödinger equation equivalent to the s-wave
radial equation of scattering in three-dimensional space. Very low normal velocities
can be achieved with grazing incidence of very slow projectiles. Atoms which are
transmitted through the nonclassical region of the potential are accelerated towards
the surface and are likely to transfer at least some small fraction of their kinetic
energy to the surface, which leads to trapping of the atom at the surface if its total
energy falls below zero. Such “sticking” is classically expected to become dominant
at very low velocities, but early experiments with liquid helium surfaces indicated
a suppression of sticking probabilities towards threshold, which was confirmed in
quantum mechanical calculations [Bre80, BB82]. The quenched sticking probabil-
ities are due to quantum reflection in the potential tail, whereby only a fraction
of the incident atoms actually penetrates through to the deep attractive part of
the atom-surface potential [CK92, YD93]. Quantitative measurements of quantum
reflection probabilities for ultracold atoms scattering off solid surfaces have since
been performed by several groups, e.g. [Shi01, DD03, PS04], and the growing
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activity in the field of ultracold atoms and molecules has drawn particular attention
to this phenomenon [CH96, MH01, DM03, CS03, FJ04, OK05, MF07, ZM11].

As discussed in Sect. 5.7.1, the van der Waals potential for a neutral atom at a
distance z from and a plane conducting or dielectric surface is �C3=z3, but at very
large distances it becomes equal to �C4=z4 due to retardation effects [CP48]. The
quotient L D C4=C3 has the dimensions of a length and roughly defines a transition
range separating the nonretarded van der Waals regime z 
 L from the highly
retarded regime z 	 L. At very small distances of a few atomic units or so, the
atom-surface potential is rather complicated, but this “close region” is not important
when considering quantum reflection with incoming boundary conditions. Beyond
the close region, the singular, attractive atom-surface potential can be written as
Vtail.r/ D � �C3=z3

	
�.z=L/, cf. (5.303). The shape function �.x/ interpolates

between the �C3=z3 behaviour for z 
 L and the �C4=z4 behaviour for z 	 L.
In order to explain the quantum reflection probabilities that he observed in

his pioneering experiments involving metastable neon atoms and solid surfaces,
Shimizu [Shi01] modelled the atom-surface potential with a very simple shape
function,

�1.x/ D 1

1C x
H) Vtail.z/ D � „2

2�

�
z

ˇ3
C z2

.ˇ4/2

��1
: (5.364)

The lengths ˇ3 and ˇ4 are the quantum lengths for the single-power forms (3.63),
which the potential (5.364) approaches in the limits z ! 0 and z ! 1, respectively.
An alternative interpolation is guided by the exact potential for a hydrogen atom
interacting with a perfectly conducting surface, which was calculated numerically
in [MD97] and is well approximated by the rational function (5.307); the shape
function in this case is

�H.x/ D 1C � x

1C x C � x2
; � D 0:31608 : (5.365)

As shown in [FJ02], which part of the atom-wall potential dominantly influences
quantum reflection depends on the ratio � of the quantum lengths characterizing the
single-power limits at small and large distances,

� D
p
2�C3

„p
C4

D ˇ3

ˇ4
; (5.366)

see last row of Table 5.3 in Sect. 5.7.1. For � < 1, the energy dependence of jRj
is largely determined by the nonretarded van der Waals part of the potential; for
� > 1, the retarded �C4=z4 part is dominant. Thus the smaller of the two quantum
lengths is the one belonging to the dominant term. This observation may be counter-
intuitive, but it is understandable when looking at the expression for the atom-wall
potential that is given on the far right of (5.364).
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Fig. 5.46 Modulus of the quantum reflection amplitude, as observed in the scattering of
metastable neon atoms off a silicon surface [Shi01]. The figure shows ln .� ln jRj/ as function of
ln.k/ (natural logarithms) with k measured in atomic units, i.e. in units of the inverse Bohr radius.
The curves show the results obtained by numerically solving the Schrödinger equation (5.205)
with potentials (5.303) constructed with the shape functions �1 and �H. The quantum length ˇ4
associated with the strength C4 of the potential in the highly retarded limit is ˇ4 D 11 400 a.u. in all
cases. For the �C3=z3 van der Waals limit of the potential, the quantum length is ˇ3 D 11 400 a.u.
for � D 1 and ˇ3 D 114 000 a.u. for � D 10. The straight red line in the bottom left corner shows
the behaviour ln jRj 
 �2 ˇ4k expected in the low-k regime. The straight red line in the top right
corner shows the behaviour ln jRj / �p

ˇ4k expected in the high-k regime for a single-power
1=z4 potential (From [FJ02])

The transition from the leading linear behaviour (5.335) of jRj near threshold to
the high-k behaviour (5.344) can be exposed by studying ln .� ln jRj/ as a function
of ln k,

jRj D e�B kC H) ln .� ln jRj/ D ln.B/C C ln.k/ : (5.367)

A plot of ln .� ln jRj/ against ln.k/ is shown in Fig. 5.46 for the quantum reflection
of metastable neon atoms by a silicon surface, as studied by Shimizu in [Shi01]. The
dots are the experimental data and the curves are the results obtained by numerically
solving the Schrödinger equation (5.205) with potentials (5.303) constructed with
the shape functions �1 (5.364) and �H (5.365). The quantum length corresponding
to the highly retarded �C4=z4 part of the potential was ˇ4 D 11 400 a.u. in all four
cases. The value of ˇ3 was chosen to be equal to ˇ4, corresponding to � D 1, or
to be ten times larger, corresponding to � D 10. The straight red line in the bottom
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left of the figure has unit gradient, corresponding to the universal near-threshold
behaviour (5.335). The results obtained with all potentials in Fig. 5.46 approach
such behaviour in the low-k limit, and the data are consistent, albeit with a very large
scatter. Towards large k, the gradients of the curves in Fig. 5.46 decrease gradually.
The experimental points are well fitted by the two curves with � D 10, i.e. with
ˇ3 D 114 000 a.u.. They are essentially the same for both shape functions, (5.364)
and (5.365), and they are also independent of ˇ3 as long as ˇ3 is significantly larger
than ˇ4. Essentially the same result is obtained with a single-power �1=z4 potential
with the appropriate quantum length ˇ4 D 11 400 a.u. The straight red line in the top
right corner of the figure shows the large-k behaviour expected in this case according
to (5.344), with B˛k rE D B˛.kˇ4/1=2; its gradient is 1

2
. In contrast, the large-k

behaviour of the two curves with � D 1 is closer to the expectation of a �1=z3

potential, where the asymptotic gradient is 1
3
. One expects the nonretarded �1=z3

part of the potential at moderate distances to have increasing influence at higher
energies, but at the energies where this happens, the quantum reflection yields are
very small.

As already pointed out by Shimizu in [Shi01], the highly retarded part of the
neon-surface interaction is essentially responsible for quantum reflection observed
in the experiment. Also for other atom-wall systems, involving e.g. bosonic alkali
atoms, hydrogen or metastable helium, the crucial parameter ˇ3=ˇ4 is generally
significantly larger than unity [FJ02, FT04]. Quantum reflection is well described
on the basis of the highly retarded, single-power �1=z4 potential in all these cases.

Druzhinina and DeKieviet [DD03] measured the probability for quantum reflec-
tion of (ground-state) 3He atoms by a rough quartz surface, and they measured up
to energies high enough to detect significant deviations from the results expected
for the �C4=r4 potential alone. Shimizu and collaborators have also investigated
reflection from surfaces structured with roof- or wall-like ridges [SF02, OK05,
OT05]. This can significantly enhance the reflection probability and be used in the
development of atom-optical imaging devices.

A significant advance towards lower temperatures and higher reflection prob-
abilities was reported by Pasquini et al. [PS04], who collided a Bose-Einstein
condensate of sodium atoms with a silicon surface at temperatures of the order of
nano-Kelvins. Pasquini et al. observed evidence for quantum reflection probabilities
above 50% at normal incidence, i.e. without resorting to near-grazing angles to
reduce the normal component of the incident velocity. The demonstrated possibility
of achieving such high quantum reflection probabilities irrespective of angle of
incidence raises the question of whether one might base the construction of atom
wave guides or traps on the phenomenon quantum reflection alone [Jur05]. Quantum
reflection is a very universal and insensitive mechanism independent of auxiliary
requirements such as the laser fields needed to generate the repulsive potential of
an evanescent-wave mirror. It requires the atoms to be cooled to extremely low
temperatures, but the walls of the device need not be cold.

It is worth emphasizing, that all characteristic lengths, including the transition
length (5.297) are very large, typically several hundreds or thousands of atomic
units (Bohr radii) [FJ02, FT04]. Quantum reflection is generated at really large
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atom-surface distances. The same applies for the quantum reflection of ultracold
molecules, as was impressively demonstrated in a recent experiment by Zhao et
al. who scattered helium dimers off a solid diffraction grating at very low energies
corresponding to normal incident velocities near 10 cm/s, translating to a kinetic
energy near 0:6 neV (� 2 � 10�11 a.u.) in the normal direction. The very fragile
helium dimer, with a binding energy of only 4 � 10�8 a.u. and a bond length of
almost 100 a.u. (Bohr radii), is expected to fragment while being accelerated under
the influence of the attractive molecule-surface potential with a well depth near
2 � 10�4 a.u. However, a noticeable fraction of the incident dimers is spared this
fate due to quantum reflection, which occurs “tens of nanometers above the actual
surface where the : : : forces are still too feeble to break up even the fragile He2
bond” [ZM11].

5.7.3.3 Nonplanar Surfaces

For atoms scattering off an absorbing sphere, the radius of the sphere enters as a
further length in the problem. As shown in [AF07], the nonclassical region of the
potential tail moves to smaller atom-sphere separations r when the radius of the
sphere is decreased, but the transition region between nonretarded van der Waals
regime and the highly retarded regime is essentially independent of this radius
and roughly the same as for an atom in front of a plane surface. The sensitivity
of quantum reflection to the nonretarded part of the atom-surface potential thus
becomes increasingly noticeable for smaller spheres.

It is interesting to consider the threshold limits of the cross sections for elastic
scattering and for absorption of atoms interacting with an absorbing sphere. The
electrostatic van der Waals potential is proportional to 1=r6, but at very large
distances the atom-sphere potential is proportional to 1=r7 due to retardation effects
[CP48]. Towards threshold, the scattering amplitude is dominated by the s-wave
(l D 0), and the complex scattering phase shift is determined by the complex
scattering length a D Na � ib. With (4.34) in Sect. 4.1.3 and (5.333), (5.334) above,

f .�/
k!0� 1

k
ı0

k!0� �a D �Na C ib : (5.368)

The elastic scattering cross section jf .�/j2 remains finite, the square of the real
scattering length in the nonabsorbing case is simply replaced by the absolute square
of the complex scattering length in the presence of absorption,

d�el

d˝
k!0� jaj2 D Na2 C b2 ; �el

k!0� 4�.Na2 C b2/ : (5.369)
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In contrast, the absorption cross section, as given by (4.171) in Sect. 4.1.14, behaves
as follows towards threshold:

�abs
k!0� �

k2



1 � ˇ̌

e2iı0
ˇ̌2� k!0� �

k2



1 � j1 � 2kb � 2iNakj2

�
k!0� 4�b

k
:

(5.370)
This is consistent with the optical theorem (4.10), according to which

�tot D 4�

k
=Œf .� D 0/�

k!0� 4�

k
=Œ�Na C ib� I (5.371)

the total cross section �tot D �el C �abs is dominated towards threshold by the
diverging contribution of the absorption cross section (5.370).

The absorption cross section, which is related to the probability for transmission
through the nonclassical region of the potential tail, can be used to calculate the
rate for a reaction that occurs when projectile and target meet [Dic07]. Since this
involves an average over the product of �abs and the asymptotic relative velocity
„k=�, reaction rates following from absorption cross sections that diverge as in
(5.370) tend to finite limits at threshold.

The description of an atom interacting with cylinder is more difficult than for
an atom interacting with a plane wall or with a sphere. One reason is, that the
atom-cylinder interaction is much more complicated, see e.g. [KB06]. Furthermore,
due to translational invariance along the direction parallel to the cylinder axis, the
scattering problem is actually two-dimensional, and quantum mechanical scattering
theory in two dimensions is somewhat more subtle than in the one- and three-
dimensional cases, in particular near threshold, see Sect. 4.2. For an atom interacting
with a perfectly conducting cylinder, the nonclassical region of the potential tail
is not so sensitive to the radius of the cylinder. As in the case of the plane wall,
the highly retarded part of the atom-cylinder potential is important for quantum
reflection in realistic cases [FE12]. For an atom interacting with a dielectric cylinder,
however, the nonretarded part of the interaction is more likely to play a role [Fin13].

5.7.4 Quantum Reflection and Near-Threshold Quantization
in Two Spatial Dimensions

A theory in two spatial dimensions is needed to describe a system restricted
to a plane, or as in the atom-cylinder example mentioned above, for a higher-
dimensional system in which degrees of freedom beyond two decouple from the
two degrees in focus. Scattering theory in two dimensions was discussed in detail
in Sect. 4.2, with special emphasis on the case of s-waves in 2D, see Sect. 4.2.5.
This section complements the discussion of Sect. 4.2 by summarizing the features
introduced through two-dimensionality for quantum reflection and near-threshold
quantization.
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For a reference potential Vtail.r/, which is attractive and more singular than
1=r 2 at short distances and falls off faster than 1=r 2 at large distances, the radial
Schrödinger equation for s-waves in two dimensions (4.210),

�
� „2
2�

d2

dr 2
� 1

4

„2
2� r 2

C Vtail.r/

�
umD0.r/ D E umD0.r/ ; (5.372)

can be solved with incoming boundary conditions, which describes absorption in
the close region r ! 0. At large distances, the radial wave function still has the
form given in the bottom line of (4.200), but the phase shift is now complex. With
m D 0,

u.r/
r!1/ e�ikr � i e2iıeikr / e�i.krC �

4 / � e2iıei.krC �
4 / : (5.373)

The right-hand side(s) of (5.373) represent an incoming radial wave together with an
outgoing radial wave, which is generated by quantum reflection in the nonclassical
part of coordinate space. Defining the coefficient of ei.krC�=4/ as the quantum
reflection amplitude gives

R D �e2iı ; (5.374)

similar to (5.327) for s-waves in 3D.
The leading near-threshold behaviour of the complex phase shift ı is given by

a formula similar to (4.214), except that the real scattering length a is replaced by
a complex scattering length a, which is defined through the zero-energy solution
u.0/.r/ of (5.372) obeying incoming boundary conditions for r ! 0:

u.0/.r/
r!1/ �p

r ln

 r

a

�
D �p

r ln

�
r

jaj
�

C p
r i arg.a/ : (5.375)

For the complex phase shift ı we have

cot ı
k!0� 2

�

�
ln

�
ka
2

�
C �E

�
; (5.376)

which, for the quantum reflection amplitude (5.374), implies

R
k!0� �1 � i�

ln
�

ka
2

	C �E C i
�
arg.a/ � �

2

	 : (5.377)

The results (5.376) and (5.377) are derived in [AF08], where further terms up to
and including O.k2/ are also given. (Note that the quantum reflection amplitude in
[AF08] is i times the amplitude R defined above.)

For near-threshold quantization in a deep potential which is well described at
large distances by the singular reference potential Vtail.r/, the quantization rule
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�D � � D F.E/ is determined by the quantization function F.E/, and the universal
near-threshold behaviour of this quantization function for s-states in 2D is

F.E/
	!0� 1

�
arctan

0
@ arg a

ln



kjaj
2

�
C �E

1
AC O

�
	2
	
: (5.378)

The complex scattering length a is as defined in (5.375), and it is a property of the
reference potential Vtail.r/. The relation connecting the threshold quantum number
�D with the scattering length a reads

a D jaj exp

�
� arg.a/

tan.�D�/

�
; (5.379)

so, for a bound-sate energy Eb D �„2	 2b =.2�/ very close to threshold,

a
	b!0� 2 exp.��E/

	b
C O.	b/ : (5.380)

For further details, see [AF08].

Problems

5.1 Consider an atom of radius n2a0, a0 being the Bohr radius. Give an estimate for
the power in W=cm2 which a laser must have, if the electromagnetic field energy in
the volume occupied by the atom is to be roughly as big as the binding energy R=n2

(R is the Rydberg energy).

5.2

a) Consider a free particle of mass � in one spatial dimension. At time t D 0 it is
described by a minimal Gaussian wave packet of width ˇ moving with the mean
velocity v0 D „k0=� in the direction of the positive x-axis,

 .x; t D 0/ D .
p
�ˇ/�1=2 e�x2=.2ˇ2/eik0x :

Calculate the wave functions  .x; t/ in coordinate space and Q . p; t/ in momen-
tum space as well as the associated probability densities j .x; t/j2 and j Q . p; t/j2
at a later time t.

b) Calculate the density matrix % and the Wigner function %w for the pure state
described by the wave function  .x; t/ in a).
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c) Classically the free particle may be described at time t = 0 by an initial phase
space density with finite uncertainty in position and momentum,

%cl.x; pI t D 0/ D 1

˛ˇ�
e�x2=ˇ2 e�. p�p0/2=˛2 :

Use the classical trajectories p.t/ D p.0/; x.t/ D x.0/C . p=�/t and the form
(5.29) of the Liouville equation,

d

dt
%cl.x.t/; p.t/I t/ D 0 ;

to calculate the phase space density at a later time t. Compare the resulting
probability densities in position and momentum with the quantum mechanical
results.

5.3

a) Show that the coherent state (5.61) is an eigenstate of the quantum annihilation
operator with eigenvalue z�,

Ob jzi D z�j zi ;

and use this result to calculate the expectation value of the number operator Ob� Ob.
b) Use (5.73) to calculate the time average of the expectation value of the energy

. OE2 C OB2/L3=.8�/ of a monochromatic field in the coherent state jzi D ˇ̌
z0ei!t

˛
.

Compare the result with the quantity „!hzjOb� Ob C 1=2jzi following from a).
c) Calculate the Wigner function (5.41) for the ground state (5.52) of the one-

dimensional harmonic oscillator and for the first excited state,

 1.x/ D Ob� 0.x/ D .ˇ
p
�/�1=2

2x

ˇ
p
2

e�x2=.2ˇ2/ :

5.4 Verify the special form (5.65) of the Baker-Campbell-Hausdorff relation for
two operators OA and OB, which both commute with their commutator, Œ OA; Œ OA; OB�� D
Œ OB; Œ OA; OB�� D 0,

e OACOB D e OAe OBe�Œ OA; OB�=2 :

Hint: Study the derivative of the function Of .
/ D e
 OAe
 OB with respect to 
.

5.5 A photon (rest mass zero) behaves like a particle with energy E D „! and
momentum p D „!=c. Show that a free electron cannot absorb or emit a photon
without violating energy and momentum conservation.
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Fig. 5.47 Realization of
Sinai’s billiard [Sin70]. The
parameters in Problem 5.7
were chosen to correspond
roughly to the dimensions in
real billiards

5.6 Show that the stability matrix defined by (5.75) for motion following a classical
trajectory x.t/ obeys a chain rule of the form

M.t2; t0/ D M.t2; t1/M.t1; t0/ ;

and conclude that the Liapunov exponent defined by (5.77) is the same for all phase
space points on the trajectory.

Hint: Matrix norms fulfill the triangle inequality

kM1M2k � kM1k � kM2k :

5.7 Consider a square of length L. In the centre of the square there is a circular
disc of radius a. A point particle travels from the middle of one side of the square
towards the disc at an angle ˛ (see Fig. 5.47). It is reflected by the sides of the
square and the edge of the disc. Determine the direction of motion of the particle
after up to five collisions with the disc for L D 2 m, a D 5 cm and an initial angle
of ˛ D 0:3ı, 0:0003ı, 0:0000003ı, 0:0000000003ı. (Follow the trajectory only as
long as collisions with the initial side of the square and the disc alternate.) Estimate
the Liapunov exponent for the periodic orbit ˛ D 0.

5.8 Start with a number x from a randomly distributed set of numbers (Poisson
spectrum) and choose N further numbers y in the interval x < y < x C L. How big
is the probability that none of the numbers y lies in the interval .x; x C s/‹ Consider
the limit N ! 1, L ! 1 at constant level density d D N=L, and show that the
probability density P.s/ for a nearest neighbour spacing s is given by

P.s/ D d e�ds :
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Solutions to the Problems

1.1. Bound states only exist for energies

E � �„2	2
2�

< 0 ; E C V0 D „2k2
2�

> 0 ; 	2 C k2 D 2�

„2 V0 :

The solution of the radial Schrödinger equation for l D 0 is

�.r/ / sin kr for r � r0 I �.r/ / e�	r for r � r0 :

The matching condition (1.92) implies

cot kr0 D �	=k D �
r
2�V0
„2k2 � 1 : (1)

Each intersection of the left-hand side and the right-hand side of (1) (as functions
of k) yields a bound state. The right-hand side varies from �1 at k D 0 to zero at
kmax D .1=„/p2�V0. The number of branches of cot kr which intersect the right-
hand side is given by the largest number n for which .n � 1

2
/�=r0 < kmax, thus the

number of bound states is near r0
p
2�V0=.�„/. Note that there is no bound state if

.2�r20=„2/V0 < .�=2/2.
1.2.

a)

h�j�ni D p
2

�
2ˇb

ˇ2 C b2

� 3
2
�
ˇ2 � b2

ˇ2 C b2

�n
"
1
2

� 3
2

� � � .n C 1
2
/

nŠ

#1=2
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b)

h�j�ni D

na

b

� 3
2

�
s � n C 1

2

�
.s � 1/n�2 s�.nC2/ ; s D na C b

2b

c) Harmonic oscillator, b D ˇ=2:

n 0 1 2 3 4 5

j h�j�ni j2 0:5120 0:2765 0:1244 0:0523 0:0212 0:0084Pn j h�j��i j2 0:5120 0:7885 0:9129 0:9652 0:9864 0:9948

Coulomb potential, b D a=2:

n 1 2 3 4 5

j h�j�ni j2 0:7023 0:0419 0:0110 0:0045 0:0022Pn j h�j��i j2 0:7023 0:7442 0:7552 0:7597 0:7619

d) Coulomb potential, b D a (use orthonormality relations rather than formula b)
above)

n 1 2 3 4 5

j h�j�ni j2 1 0 0 0 0Pn j h�j��i j2 1 1 1 1 1

Coulomb potential, b D 2a:

n 1 2 3 4 5

j h�j�ni j2 0:7023 0:25 0:0127 0:0039 0:0017Pn j h�j��i j2 0:7023 0:9523 0:9650 0:9689 0:9706

1.3. From (1.139) and abbreviating 2r=.na/ as x, we have

h�n;ljrj�n;li D .n � l � 1/Š

4.n C 1/Š
a
Z 1

0

x2lC1ŒxL2lC1
n�l�1.x/�

2 e�x dx :

From (A.16) in Appendix A.2 we have

xL2lC1
n�l�1.x/ D 2nL2lC1

n�l�1.x/ � .n � l/L2lC1
n�l .x/� .n C l/L2lC1

n�l�2.x/ ;
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and, exploiting (A.15), we obtain

h�n;ljrj�n;li

D .n � l � 1/Š
4.n C l/Š

a

�
.2n/2

.n C l/Š

.n � l � 1/Š

C.n � l/2
.n C l C 1/Š

.n � l/Š
C .n C l/2

.n � l � 1/Š

.n � l � 2/Š

�

D a

4

�
4n2 C .n C l C 1/.n � l/C .n C l/.n � l � 1/

D a

2

�
3n2 � l.l C 1/


:

1.4.

Q .k; 0/

D 1

�3=4
p
2ˇ

Z 1

�1
exp

�
� 1

2ˇ2
Œx2 � 2x .x0 � iˇ2.k � k0//C .x0/

2�

�
dx

D 1

�3=4
p
2ˇ

Z 1

�1
exp

�
� 1

2ˇ2
Œx � .x0 � iˇ2.k � k0//�

2

�
dx

� exp

�
�i.k � k0/x0 � ˇ2

2
.k � k0/

2

�
:

The integral over x is the Gaussian integral,
R1

�1 exp
n
�Œx � : : :�2=.2ˇ2/

o
dx D

ˇ
p
2� , so

Q .k; 0/ D .ˇ=
p
�/1=2 e�i.k�k0/x0 e�.k�k0/2ˇ2=2 :

In momentum representation, the Hamiltonian for the free particle simply acts as a
multiplication by p2=.2�/ D „2k2=.2�/, so the time evolution operator (1.41) acts
by multiplying the wave function Q .k/ with exp

��i„k2t=.2�/

,

Q .k; t/ D .ˇ=
p
�/1=2 e�i.k�k0/x0 e�ik2a.t/2=2 e�.k�k0/2ˇ2=2 I

here we have introduced the abbreviation a.t/ D p„t=�. Note that the time
evolution does not affect the probability distribution in momentum space,

j Q .k; t/j2 D ˇp
�

e�ˇ2.k�k0/2 :
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Transforming back to coordinate space gives

 .x; t/ D 1p
2�

Z 1

�1
eikx Q .k; t/ dk

D
p
ˇ=2

�3=4

Z 1

�1
exp

�
�i.k � k0/x0 � ˇ2

2
.k � k0/

2 � i
a2

2
k2 C ikx

�
dk :

The integrand above can be written as

exp

(
�ˇ

2 C ia2

2

�
k � ˇ2k0 C i.x � x0/

ˇ2 C ia2

�2)
�

exp

(
ik0ˇ2.2x � k0a2/ � .x � x0/

2 � 2k0a2x0
2.ˇ2 C ia2/

)
:

The second factor is independent of the integration variable k and the integral
over the first factor is a Gaussian integral with value

p
2�=.ˇ2 C ia2/, so the time

dependent wave function in coordinate space is

 .x; t/ D .ˇ
p
�/�1=2p

1C ia2=ˇ2
exp

��.x � x0/2 � 2k0a2x0 C ik0ˇ2.2x � k0a2/

2.ˇ2 C ia2/

�
:

The structure of this wave packet is easier to appreciate if we look at the
corresponding probability density j .x; t/j2 D  �.x; t/ .x; t/,

j .x; t/j2 D 1

b.t/
p
�

exp

"
� .x � x0 � k0a2/

2

b.t/2

#
; b.t/ D ˇ

s
1C a4

ˇ4
:

Recalling the abbreviation above, a.t/2 D „t=� and k0a2 D �0t, brings us to the
result (1.168).

For a normalized Gaussian distribution

P.y/ D 1

�
p
�

e�.y�y0/
2=�2 ;

Z 1

1
P.y/ dy D 1 ;

with mean value y0 and width paramater � , the square of the uncertainty (variance,
fluctuation)�y can be written as

.�y/2 D
Z 1

1
y2P.y/ dy � .y0/

2 D 1

�
p
�

Z 1

1
.y � y0/

2 e�.y�y0/2=�2dy D �2

2
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giving�y D �=
p
2. For the uncertainty�x of the wave packet in coordinate space,

replace y by x, P.y/ by j .x; t/j2 and � by b.t/, so

�x D 1p
2

b.t/ D ˇp
2

s
1C „2t2

�2ˇ4
:

For the uncertainty in momentum space, replace y by k, P.y/ by j Q .k; t/j2 and � by
1=ˇ, so

�k D 1

ˇ
p
2
; �p D „�k D „

ˇ
p
2
:

Note that the momentum probability distribution remains unchanged during the time
evolution of the free-particle wave function, whereas the wave packet spreads in
coordinate space. This shows that the uncertainty relation (1.34) is an inequality in
general. In the present case

�x�p D „
2

s
1C „2t2

�2ˇ4
� „
2
:

Wave packets fulfilling the equality,�x�p D „=2, are called minimum uncertainty
wave packets. The initial Gaussian wave packet (1.167) is such a minimum
uncertainty wave packet.
1.5. One way is to show that

Z 1

0

��
E C „2

2�

d2

dr2

�
G0.r; r

0/
�

f .r/ dr D f .r0/ (1)

for sufficiently well behaved square integrable trial functions f . For r ¤ r0
the integrand vanishes, because „2

2�
d2

dr2
G0.r; r0/ always equals �EG0.r; r0/. Thus

showing (1) reduces to showing that

lim
"!0

Z r0C"

r0�"

��
k2 C d2

dr2

�
sin.kr</ cos.kr>/

�
f .r/ dr D �k f .r0/ : (2)

The contribution proportional to k2 on the left-hand side of (2) vanishes in the limit
" ! 0. For the remaining contribution we integrate by parts twice and obtain (for
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finite and positive ")

l:h:s: D
��

d

dr
sin.kr</ cos.kr>/

�
f .r/

�r0C"

r0�"
(3)

�
�

sin.kr</ cos.kr>/
df

dr

�r0C"

r0�"
C
Z r0C"

r0�"
sin.kr</ cos.kr>/

d2f

dr2
dr :

The latter two terms in (3) vanish in the limit " ! 0 and the remaining term yields

l:h:s D f�k sinŒk.r0 C "/� sinŒk.r0 � "/�gf .r0 C "/

�fk cosŒk.r0 � "/� cosŒk.r0 C "/�gf .r0 � "/ ;

which clearly becomes equal to the right-hand side of (2) in the limit " ! 0.
1.6. In this Hilbert space the state vectors are two-component vectors

�a1
a2

	
, and the

eigenstates of OH0 are  .0/1 D �
1

0

	
and  .2/0 D �

0

1

	
with (unperturbed) eigenvalues "1

and "2 respectively.

a) In lowest non-vanishing order perturbation theory (1.253) yields

 1 D  
.0/
1 C  

.1/
1 D  

.0/
1 C w

"1 � "2
 
.0/
2 ;

 2 D  
.0/
2 C  

.1/
2 D  

.0/
2 C w

"2 � "1
 
.0/
1 ;

and (1.255) yields

E1 D E.0/1 C E.2/1 D "1 C w2

"1 � "2
;

E2 D E.0/2 C E.2/2 D "2 � w2

"1 � "2
:

b) To diagonalize OH in this case we first solve the secular equation (cf. (1.259),
(1.279))

det

�
"1 � E w

w "2 � E

�
D ."1 � E/."2 � E/� w2 D 0 ;

yielding the exact eigenvalues

E˙ D "1 C "2

2
˙
r

w2 C

"1 � "2

2

�2
:
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The corresponding eigenstates
�a1

a2

	
follow from solving the simultaneous equa-

tions

.E � "1/a1 D wa2 ; .E � "2/a2 D wa1 ;

for the respective eigenvalue. The eigenstates can be characterized by the ratios

a1
a2

D "1 � "2

2w
˙ w

jwj

r
1C


"1 � "2
2w

�2
;

and a1, a2 are of course only defined to within a common arbitrary factor. The
perturbative results are good for j"1 � "2j 	 jwj, but they give poor results for
j"1 � "2j 
 jwj.

1.7.

a) For energy E the classical turning points b and a D �b are given by b Dp
2E=.�!2/. From (1.308) we have



n C ��

4

�
�„ D

Z b

�b
�!

p
b2 � x2 dx D �!

�

2
b2 D �E

!
;

which yields En D .n C ��=4/„! in agreement with the exact result, when the
Maslov index �� is taken to be two, corresponding to a phase loss of �=2 of the
WKB wave at each turning point.

b) The classical turning points are a D 0 and b D L independent of E. With
p D p

2�E we have
R b

a p dx D p
2�EL, and the quantization condition (1.308)

yields the exact quantum mechanical result En D .�„/2.nC1/2=.2�L2/, n D
0; 1; 2; : : :, provided the Maslov index �� is taken to be four, corresponding to a
phase loss of � at each turning point.

c) For x > L we have jp.x/j D „	 D p
2�.V0 � E/ D const:, and the WKB wave

function,

 WKB.x/ D Np„	 e�	.x�L/ ; x > L ; (1)

exactly solves the Schrödinger equation. For x < L we have p.x/ D „k Dp
2�E D const:0, and the (real) WKB wave function

 WKB.x/ D 2p„k
cos

�
k.L � x/� �

2

�
; x < L ; (2)

is an exact solution of the Schrödinger equation in this region as well. Matching
these (exact) wave functions and their derivatives at x D L fixes the two constants



568 Solutions to the Problems

N and � in (1) and (2),

� D 2 arctan.	=k/ ; N D 2
p
	k=.	2 C k2/ : (3)

The exact wave function constructed in this way coincides with the WKB wave
function, except at the classical turning point L, where the WKB wave function
is not defined.
For the particle in the well bounded by two steps, the WKB wave functions
represent exact solutions of the Schrödinger equation in the regions x < 0, 0 <
x < L and x > L. The (exact) wave functions decay as expŒ�	jxj� for x < 0 and
as ˙ expŒ�	.x � L/� for x > L; the “C” and “�” signs refer to solutions which
are symmetric or antisymmetric with respect to reflection at x D L=2. Matching
the WKB wave functions at each turning point is the same as matching the exact
solutions; it leads to two expressions for the wave function in the classically
allowed region, and the condition that these be equal is,

cos

�
kx � �

2

�
D ˙ cos

�
k.L � x/� �

2

�
; 0 < x < L ; (4)

which is fulfilled if and only if kL D � C n� , i.e. „kL D �„.n C ��=4/ with
�� D 2�=.�=2/. This is just the quantization condition (1.308), (1.309) with the
phase loss � at each turning point as given by (3). With the Maslov index corre-
sponding to the correct reflection phase(s) � the quantization condition (1.308)
gives the exact energy eigenvalues. When matched with the correct phase � and
amplitude factor N (3), the WKB wave function in the regions x < 0, 0 < x < L
and x > L is equal to the corresponding continuous exact wave function with
continuous derivative.
[Note that the quantization condition for the ground state .n D 0/ is tan.kL=2/ D
	=k D p

2�V0=.„2k2/ � 1 and always has a solution, no matter how small L and
V0 are. This is in contrast to the potential step in the radial Schrödinger equation
of three-dimensional space (see Problems 1.1 and 1.8).]

1.8. For the kinetic energy OT D � „2
2�

d2

dx2
we have

D
 j OTj 

E
D �p

�b
	�1 „2

2�

Z 1

�1

�
d

dx
e�x2=.2b2/

�2
dx

D �p
�b
	�1 „2

2�

1

b4

Z 1

�1
x2 e�x2=b2 dx D „2

4�b2
;

which tends to zero as 1=b2 when b ! 1.
For any potential V.x/ the expectation value

h jVj i D �p
�b
	�1 Z 1

�1
V.x/ ; e�x2=b2 dx
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approaches 1=.
p
�b/ times the constant

R1
�1 V.x/ dx as b ! 1. If this constant

is negative, then the more slowly vanishing negative contribution of the potential
energy will outweigh the more rapidly vanishing positive contribution of the kinetic
energy for sufficiently large b, giving in sum a negative energy expectation value,
which in turn must be larger than the lowest energy eigenvalue due to (1.272).

The same reasoning cannot be applied in three dimensions, because there the

normalized Gaussian is
�p
�b
	�3=2

e�x2=.2b2/ and the potential energy expectation
value vanishes as b�3 for large b. Indeed, from Problem 1.1 we see that the attractive
spherical square well has no bound state if V0 is too small. In two dimensions the
Gaussian trial function does not lead to conclusive results, but an alternative choice
of trial functions can be used to prove the existence of at least one bound state in a
dominantly attractive potential (see e.g. Perez, Malta and Coutinho, Am. J. Phys. 58
(1990) 519).
1.9. For energies E D �jEj sufficiently close to threshold the outer classical turning
point b.E/ is given by

E D �Cl

b2
; b .E/ D

s
Cl

jEj > r0 ; Cl D C � „2
2�

�
l C 1

2

�2
: (1)

From (1.308) we have



n C ��

4

�
�„ D

Z b

a
p.r/ dr D

Z r0

a
p.r/ dr C

Z b

r0

p.r/ dr : (2)

As E approaches zero the first term on the far right of (2) tends to a constant, but the
second term grows beyond all bounds:

Z b.E/

r0

p.r/ dr D
Z b

r0

s
2�

�
Cl

r2
� jEj

�
dr D

p
2�Cl

b

Z b

r0

p
b2 � r2

r
dr

D
p
2�Cl

b

"p
b2 � r2 � b ln

 
b C p

b2 � r2

r

!#b

r0

(3)

D p
2�Cl

2
64ln

0
B@b C

q
b2 � r20

r0

1
CA �

s
1 � r20

b2

3
75

b!1! p
2�Cl ln b C const:
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For E ! 0, which implies b ! 1 and n ! 1, we have

b / exp

�
.n C ��=4/�„p

2�Cl

�
or E D �Cl

b2
D �c1 e�c2.l/n

with c2.l/ D 2�„p
2�Cl

D 2�„q
2�C � .l C 1=2/2„2

: (4)

The magnitudes of the energies are determined by the constant c1 which depends
on the constants entering in (2) and (3). These in turn depend crucially on the
parameter r0 and the nature of the potential inside r0. An infinite sequence of
bound states exists as long as Cl D C � .l C 1=2/2„2=.2�/ is positive. The ratio
En=EnC1 of successive binding energies is expŒc2.l/�. If Cl � 0 there is at most
a finite number of bound states. Although these statements were derived using
the WKB approximation including the Langer modification, they agree with the
exact quantum mechanical results (see Morse and Feshbach, Methods of Theoretical
Physics Part II, (McGraw-Hill, New York, 1953) p. 1665), Sect. 3.1.5.
1.10. The quantality function is,

Q.r/ D 5˛2.ˇ˛/
2˛�4

16r2˛C2 Œk2 C .ˇ˛/
˛�2=r˛�

3
� ˛.˛ C 1/.ˇ˛/

˛�2

4r˛C2Œk2 C .ˇ˛/
˛�2=r˛�

2

and maxima of jQ.r/j occur when

k2 D F˛
.ˇ˛/

˛�2

r˛
;

where

F˛ D 5

4
� 9

2˛ C 4
˙ 9˛

4˛ C 8

s
1 � 20

27

�
˛ C 2

˛ C 1

�
: (1)

The positions of these maxima are

rmax D ŒF˛�
1=˛rE ;

with rE as given by (1.324). For ˛ > 4, the function Q.r/ has a zero at r D
1
4
Œ1 � 5=.˛ C 1/�1=4 rE; there is a larger maximum of jQ.r/j above [corresponding

to the plus sign in (1)] and a smaller one below [corresponding to the minus sign
in (1)] this zero. For ˛ D 3, 4, only the plus sign in (1) yields a positive value for
F˛. For the plus sign in (1), the values of ŒF˛�1=˛ are:

˛ 3 4 5 6 7 8 9 10

ŒF˛�1=˛ 0.8952 1 1.0370 1.0511 1.0560 1.0569 1.0560 1.0543
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The fact that the maximum of jQ.r/j lies close to the point rE defined by
jV.rE/j D E has also been demonstrated for more general attractive potential tails,
e.g. those of the Casimir-van der Waals type which behave as �1=r3 for small and
as �1=r4 for large distances [FJ02]. This can, however, not be a general theorem.
Sharp or smooth step potentials, for which jV.r/j never exceeds a given depth (or
height) V0 of the step, provide a counter-example, because rE cannot be defined for
E > V0.
1.11.

Œ Op2; r� D �„2Œ�; r� D �„2
�
@2

@r2
C 2

r

@

@r
; r

�
:

The first identity follows immediately once we realize that

@2

@r2
r� � r

@2�

@r2
D 2

@�

@r
;

and that

2

r

@

@r
r� � 2@�

@r
D 2

r
� for all �.r/ :

Second identity:

ŒOp2; r2� D ŒOp2; r�r C rŒOp2; r�

D �2„2
�
@

@r
r C 1C r

@

@r
C 1

�
D �2„2

�
2r
@

@r
C 3

�
:

2.1. Using the properties (1.350), (1.352) we obtain,

. O� �A/. O� �B/ D . O�xAx C O�yAy C O�zAz/. O�xBx C O�yBy C O�zBz/

D O�2x AxBx C O�2y AyBy C O�2z AzBz

CO�x O�yAxBy C O�y O�zAyBz C O�z O�xAzBx

CO�y O�xAyBx C O�z O�yAzBy C O�x O�zAxBz

D A�B C i O�x.AyBz � AzBy/

Ci O�y.AzBx � AxBz/C i O�z.AxBy � AyBx/

D A�B C i O� �.A � B/ :

For A D r and B D Op we have

. O� �r/. O� � Op/ D r � Op C i O� �.r � Op/ D „
i

r
@

@r
C i O� � OL :
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For A D B D r we have

. O� �r/ . O� �r/ D r2;

hence

. O� � Op/ D 1

r2
. O� �r/. O� �r/. O� � Op/

D 1

r2
. O� �r/

�„
i

r
@

@r
C i O� � OL

�
:

2.2. The unperturbed eigenfunctions of the hydrogen atom .Z D 1/ or a hydrogenic
ion .Z > 1/ for fixed quantum numbers n and l and arbitrary quantum numbers
j and m are degenerate with respect to the unperturbed Hamiltonian (2.13). All
three relativistic corrections are diagonal in j and m, so we choose the unperturbed
eigenfunctions as

˚n;j;m;l � �n;l.r/

r
Yj;m;l ; (1)

where �n;l.r/ are the radial eigenfunctions (1.139) (with Bohr radius (2.15)) and
Yj;m;l are the generalized spherical harmonics (1.358).

For the spin-orbit term we obtain for l > 0:

h˚n;j;m;lj 1
r3

OL � OSj˚n;j;m;li D
Z 1

0

Œ�n;l.r/�
2

r3
dr � „2

2
F. j; l/ ;

where F.j; l/ is the factor from (1.362) which is equal to l for j D l C 1=2 and equal
to �.l C 1/ for j D l � 1=2. Using the substitution x D 2r=.naZ/, the energy shift in
first-order perturbation theory is thus

�ELS

D Ze2

2m2
0c
2

4.n � l � 1/Š
n4a3Z.n C l/Š

Z 1

0

x2l�1�L2lC1
n�l�1.x/

2
e�x dx

„
2

F.j; l/ : (2)

The only non-vanishing case up to n D 2 is that of the quantum numbers n D 2,
l D 1, for which the Laguerre polynomials are unity and the integral in (2) can be
easily calculated. A more general formula can be obtained using the expectation
value of 1=r3 as given by Bethe and Salpeter [BS77]:

�ELS D Z4e2

2m2
0c
2

1

a30n
3.l C 1/

�
l C 1

2

	
l

„2
2

F.j; l/

D 1

4
m0c

2.Z˛fs/
4 F.j; l/

.l C 1/
�
l C 1

2

	
l
; (3)
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where we have inserted a0=Z D „2=.Zm0e2/ for aZ , and ˛fs D e2=.„c/� 1=137 is
the fine structure constant. For l D 1 the factor F.j; l/ is unity for j D 3=2 and �2
for j D 1=2.

The Darwin term contributes only for l D 0 implying j D 1=2, and we have

h˚n;j;m;lD0j OHDj˚n;j;m;lD0i D �„2Ze2

2m2
0c
2

j˚n;j;m;lD0.r D 0/j2

D h2Z4e2

2m0c2
1

.na0/
3

D 1

2n3
m0c

2.Z˛/4 ; (4)

where we have again written a0=Z for aZ.
Combining the formula (3) for l ¤ 0 and the formula (4) for l D 0 we have

h˚n;j;m;lj OHLS C OHDj˚n;j;m;li

D 1

4n3
m0c

2.Z˛/4
( �
.l C 1/

�
l C 1

2

	�1
for j D l C 1=2

���l C 1
2

	
l
�1

for j D l � 1=2 : (5)

The kinetic energy correction can be written as

� Op2 Op2
8m3

0c
2

D � 1

2m0c2

�
OHZ C Ze2

r

��
OHZ C Ze2

r

�
;

where OHZ is the unperturbed Hamiltonian (2.13). Hence

h˚n;j;m;lj OHkej˚n;j;m;li D 1

2m0c2
h˚n;j;m;lj

�
OHZ C Ze2

r

�2
j˚n;j;m;li

D � 1

2m0c2
� (6)

"�RZ

n2

�2
� 2RZ

n2
h˚n;j;m;ljZe2

r
j˚n;j;m;li C h˚n;j;m;ljZ2e4

r2
j˚n;j;m;li

#
:

The expectation value of the potential energy �Ze2=r in the unperturbed eigenstates
is just twice the total unperturbed energy �RZ=n2 by the virial theorem. For the last
term in the big square bracket in (6) we need to calculate an integral as in (2) above,
but with x2l instead of x2�l in the integrand. This is easy to do directly for n � 2. A
more general formula can be derived using the expression for the expectation value
of 1=r2 as given by Bethe and Salpeter [BS77]:

h˚n;j;m;lj 1
r2

j˚n;j;m;li D 1

n3.l C 1
2
/a2Z

D Z2

n3.l C 1
2
/a20

: (7)
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Combining (6) and (7) gives

h˚n;j;m;lj OHkej˚n;j;m;li D m0c2

2
.Z˛/4

"
3

4n4
� 1

n3
�
l C 1

2

	
#
: (8)

Note that the sum (5) + (8) of the relativistic corrections in first-order perturbation
theory agrees with the leading terms of the expansion of the exact eigenvalues
according to (2.36).
2.3. The wave function .r/ is the normalized 1s eigenfunction of the single-particle
hydrogenic Hamiltonian corresponding to a charge number Z0, defined such that the
Bohr radius „2=.Z0�e2/ coincides with ˇ,

„2
Z0�e2

D ˇ ; Z0e2 D „2
�ˇ

: (1)

The two-electron wave function � is essentially the symmetric product  .r1/ .r2/
of the spatial one-electron wave functions; the antisymmetric spin-parts give trivial
factors unity in all matrix elements.

The expectation value of the one-body part of the Hamiltonian is given according
to (2.73), and the one-electron matrix elements can be calculated in a straightfor-
ward way. It is more elegant to exploit the virial theorem by which the expectation
value of the one-electron kinetic energy in  is just minus the one-electron total
energy �RZ0 D �.Z0/2R of the hydrogenic Hamiltonian corresponding to charge
number Z0. Similarly, the expectation value of the one-electron potential energy
�Z0e2=r is twice the total energy and hence the expectation value of �Ze2=r is
�2ZZ0R. Summing the contributions for the two electrons we obtain the following
result for the expectation value of the one-body terms in the Hamiltonian OH:

h� j
X
iD1;2

� Op2i
2�

� Ze2

ri

�
j� i D Œ2.Z0/2 � 4ZZ0�R : (2)

For the expectation value of the interaction term we exploit the hint and obtain

h� j e2

jr1 � r2j j� i D 4�e2

�2ˇ6
�

X
l;m

Z
dr1

Z
dr2 e�2r1=ˇe�2r2=ˇ

rl
<

.2l C 1/rlC1
>

Y�
l;m.˝1/Yl;m.˝2/ (3)

D e 2

2ˇ

Z 1

0

dx1

Z 1

0

dx2
x 21 x 22
x>

e�.x1Cx2/ ;
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where we have used the substitutions xi D 2ri=ˇ, and x> is the larger of x1, x2. The
integral can be evaluated with elementary means,

Z 1

0

dx1x
2
1 e�x1

�
1

x1

Z x1

0

x 22 e�x2dx2 C
Z 1

x1

x2 e�x2dx2

�
D 5

4
;

and hence

h� j e2

jr1 � r2j j� i D 5

4

e2

2ˇ
D 5

4
Z0R : (4)

Thus the total energy expectation value is

hEi D
D
� j OHj�

E
D
�
2.Z0/2 � 4ZZ0 C 5

4
Z0
�
R :

The minimum of hEi corresponding to d hEi =dZ0 D 0 occurs at

Z0 D Z � 5

16
corresponding to ˇ D „2

�e2.Z � 5=16/
; (5)

and the minimum energy is

hEimin D
�

�2Z2 C 5

4
Z � 25

128

�
R :

For charge numbers up to Z D 10 we obtain the following energies (in atomic units,
2R) which compare quite favourably with the results of Hartree-Fock calculations
as listed in Table 2.1 in Sect. 2.3.2:

Z 1 2 3 4 5

hEimin �0:473 �2:848 �7:223 �13:598 �21:973
Z 6 7 8 9 10

hEimin �32:348 �44:723 �59:098 �75:473 �93:848

For the H� ion (Z D 1), the energy �0:473 a.u. lies, as does the (restricted)
Hartree-Fock energy �0:4879 : : : a.u. listed in Table 2.1, above the energy �0:5 a.u.
of a hydrogen atom plus a free electron at at rest. Chandrasekhar [Cha44] showed
that introducing correlations via the simple ansatz

 .r1; r2/ D u.r1; r2/

r1 r2
; u.r1; r2/ / e�˛r1�ˇr2 e�˛r2�ˇr1
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already leads to a variational minimum energy of �0:513303 a.u. The radial wave
function u.r1; r2/ lies within the space defined by the s-wave model, cf. Sect. 4.5.3,
and the full wave function  .r1; r2/ contains no dependence at all on the angular
variables. The calculation in [Cha44] shows than radial correlations alone already
account for a large part of the binding energy of the H� ion, see also [ME00].

For part b) of the problem we need the 1s wave function of Problem 2.3 a) and
the 2p one-electron wave functions  p;m:

 s.r/ D �1.r/

r
Y0;0.˝/ ;  p;m.r/ D �2.r/

r
YlD1;m.˝/ : (6)

Note that both one-electron wave functions correspond to the Bohr radius ˇ defined
by (1). The two-electron singlet and triplet wave functions in LS coupling are

�s D 1p
2
Œ s.r1/ p;m.r2/C  s.r2/ p;m.r1/��.S D 0/ ;

�t D 1p
2
Œ s.r1/ p;m.r2/�  s.r2/ p;m.r1/��.S D 1/ : (7)

The symbol � stands for the antisymmetric .S D 0/ or symmetric .S D 1/ spin
part of the two-electron wave function. The subscript m in (7) labels the azimuthal
quantum number of the one-electron p-orbital and is at the same time the quantum
number of the z-component of the total orbital angular momentum.

The expectation value of the one-body part of OH can be calculated as in part
a) above, except that the total one-body energy of the hydrogenic Hamiltonian
corresponding to charge number Z0 now is �Z02R=4 in the second single-particle
state. Thus equation (2) above is modified to

h� j
X
iD1;2

� Op2i
2�

� Ze2

ri

�
j� i D

�
5

4
.Z0/2 � 5

2
ZZ0

�
R ; (8)

and this holds for both singlet and triplet states (7).
The difference between singlet and triplet states shows up in the expectation

value of the interaction term. For example for the singlet state we have

h sj e2

jr1 � r2j j�si

D 1

2

�
h s.r1/ p;m.r2/j e2

jr1 � r2j j s.r1/ p;m.r2/i

Ch p;m.r1/ s.r2/j e2

jr1 � r2j j p;m.r1/ s.r2/i (9)
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Ch s.r1/ p;m.r2/j e2

jr1 � r2j j p;m.r1/ s.r2/i

Ch p;m.r1/ s.r2/j e2

jr1 � r2j j s.r1/ p;m.r2/i
�

D Ed C Eex ;

where we have introduced the abbreviations

Ed D h s.r1/ p;m.r2/j e2

jr1 � r2j j s.r1/ p;m.r2/i

D h p;m.r1/ s.r2/j e2

jr1 � r2j j p;m.r1/ s.r2/i ; (10)

Eex D h s.r1/ p;m.r2/j e2

jr1 � r2j j p;m.r1/ s.r2/i

D h p;m.r1/ s.r2/j e2

jr1 � r2j j s.r1/ p;m.r2/i :

For the triplet state (9) is replaced by

h�tj e2

jr1 � r2j j�ti D Ed � Eex : (11)

The task now is to calculate the direct and exchange parts of the interaction energy
as defined by (10).

For the direct part we have

Ed D
X
l0;m0

e2

2l0 C 1
�

Z
dr1

Z
dr2

Œ�1.r1/�2.r2/�
2

r 21 r 22
jY1;m.˝2/j2 rl0

<

rl0C1
>

Y�
l0 ;m0.˝1/Yl0 ;m0.˝2/ (12)

D e2
Z 1

0

dr1

Z 1

0

dr2
Œ�1.r1/�2.r2/�

2

r>
:

The last line in (12) follows from the fact that the integral over the angles˝1 reduces
the sum over l0 and m0 to the single term l0 D 0. Inserting the explicit forms of the
radial wave functions,

�1.r/ D 2r

ˇ3=2
e�r=ˇ ; �2.r/ D r2

2
p
6ˇ5=2

e�r=.2ˇ/ ; (13)
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and implementing the substitutions xi D ri=ˇ leads to

Ed D e2

6ˇ

Z 1

0

dx1

Z 1

0

dx2
x 21 x42
x>

e�2x1 e�x2 D e2

6ˇ

118

81
D 118

243
Z0R :

For the exchange part we have

Eex D
X
l0;m0

e2

2l0 C 1

Z
dr1

Z
dr2

��
1 .r1/�

�
2 .r2/�2.r1/�1.r2/

r 21 r 22
�

Y�
1;m.˝2/Y1;m.˝1/

rl0
<

rl0C1
>

Y�
l0;m0.˝1/Yl0;m0.˝2/ (14)

D e2

3

Z 1

0

dr1

Z 1

0

dr2 �1.r1/�2.r2/�2.r1/�1.r2/
r<
r2>
:

The last line in (14) follows from the fact that the integral over the angles ˝1 and
˝2 reduces the sum over l0 and m0 to the single term corresponding to l0 D 1 and
m0 D m. Note that the result does not depend on the azimuthal quantum number m of
the trial functions (7). Inserting the explicit forms of the radial wave functions (13)
and implementing the substitutions xi D 3ri=.2ˇ/ leads to

Eex D e2

18ˇ

�
2

3

�7 Z 1

0

dx1

Z 1

0

dx2
x 31 x 32 x<

x 2>
e�x1 e�x2

D e2

18ˇ

�
2

3

�7
21

4
D 224

6561
Z0R :

2.4. The wave functions obeying the correct boundary conditions, namely
 .x; y; z/ D 0 if x D 0, y D 0 or z D 0, or if x D L, y D L or z D L, are
 / sin.kxx/ sin.kyy/ sin.kzz/,

kz D �

L
nz ; ky D �

L
ny ; kz D �

L
nz ; ni D 1; 2; : : : i � x; y; z :

Note that only positive k’s count. Changing the sign of one of the wave numbers
merely multiplies the total wave function by �1. The energy eigenvalues are

Enx;ny;nz D „2�2
2�L2

.n2x C n2y C n2z / :

The number of states with energy up to EF corresponds to the number of cubes of
side length �=L which fit into the octant kx > 0, ky > 0, kz > 0 of the sphere of
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radius kF, and hence the number of states including spin is

N D 2 � 1

8
� 4

3
�k3F

�
L

�

�3
D V

3�2
k3F ;

in agreement with (2.103).
2.5. The eigenfunctions  .x/ obeying the correct boundary condition  .0/ D
 .L/ D 0 are

 n.x/ D
r
2

L
sin knx ; kn D n�

L
; n D 1; 2; : : : I

the factor
p
2=L ensures normalization to unity. The number �k of eigenstates per

unit wave number k is the reciprocal of the separation of k-values and is equal to
L=� . With E D „2k2=.2�/ the number �E of eigenstates per unit energy is

�E D �k

�
dE

dk

��1
D L

2�

r
2�

„2E :

2.6. Using Œ OA2; OB� D OAŒ OA; OB�C Œ OA; OB� OA and remembering (1.33) we have

h OH; Ob�
i

D 1p
2„!

�
!

2

�Op2; x � i!2

2

�
x2; Op

�
D „! Ob� ;

h OH; Ob
i

D 1p
2„!

�
!

2

�Op2; xC i!2

2

�
x2; Op

�
D �„! Ob : (1)

Hence

OH

Ob� n

�
D
�

n C 3

2

�
„!


Ob� n

�
; OH


Ob n

�
D
�

n � 1

2

�
„!


Ob n

�
; (2)

showing that Ob� n is, within a factor,  nC1 and that Ob n is, within a factor,  n�1.
Each  n is an eigenstates of Ob� Ob D


 OH � 1
2
„!
�
= .„!/ with eigenvalue n. Let

Ob n D cn n�1. Then

h njOb� Obj ni D n D jcnj2 h n�1j n�1i D jcnj2 :

Except, possibly, for a phase, cn must be equal to
p

n, and this also holds for n D 0.
If Ob� n D dn nC1, then

h nC1jOb�j ni D dn D h njObj nC1i� D c�
nC1 ;

hence dn must be equal to
p

n C 1 (except, possibly, for a phase).
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2.7. Since the transition matrix element in (2.192) does not depend on spin, we
ignore the spin degrees of freedom and take the initial state to be

�i D �2 .r/

r
YlD1;m .˝/ ; �2 .r/ D r2

2
p
6a5=2

e�r=.2a/ ; (1)

where a is the Bohr radius. The only final state to which �i can decay is

�f D �1 .r/

r
Y0;0 .˝/ ; �1 .r/ D 2r

a3=2
e�r=a : (2)

If we express the vector r in spherical components as in (2.204), (2.206), then

jrfij2 D jh�fjrj�iij2 D
1X

�D�1
jh�fjr.�/j�iij2

D
�Z 1

0

�1.r/�2.r/r dr

�2
� .CG/2 ; (3)

with the Clebsch-Gordan coefficient

.CG/ D h00j1;�m; 1;mi D ˙ 1p
3
:

The last line can be obtained e.g. by exploiting (A.11), (A.12) in Appendix A.1.
The total decay probability per unit time is given by (2.192), (2.193) in

Appendix A.1 and is

Pi D 4

3

e2!3

„c3
jrfij2 D 4

9

e2!3

„c3

�
1p
6a4

Z 1

0

r4 e�3r=.2a/dr

�2

D 4

9

e2!3

„c3
a2

6

�
2

3

�10�Z 1

0

x4 e�xdx

�2
D 4

9

e2!3

„c3
96a2

�
2

3

�10

D 4

9
96

�
2

3

�10
.˛fs/

3

4
!

�„!
R
�2

D 6:268 � 108 s�1 ;

and so the lifetime of the state is � D 1=Pi D 1:595 � 10�9 seconds. Note that the
decay probability does not depend on the m quantum number of the initial state, so
averaging over the three degenerate initial p-states states doesn’t affect the result.
2.8. In this case we have

�
i

„
h OHA; ri

i
D Opi C �

2mnuc

X
k¤l

ŒOpk � Opl; ri� :
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Using
h OA OB; OC

i
D OA

h OB; OC
i

C
h OA; OC

i OB and remembering (1.33) we have

ŒOpk � Opl; ri� D „
i
.Opkıl;i C Oplık;i/ ;

and so

�
i

„
h OHA;ri

i
D Opi C �

mnuc

X
k¤i

Opk : (1)

In obtaining (2.189) we inserted
P

N
iD1�

i
„
h OHA; ri

i
for

P
N
iD1 Opi, whereas (1)

shows that

NX
iD1

�
i

„
h OHA;ri

i
D

NX
iD1

Opi C .N � 1/ �

mnuc

NX
iD1

Opi ;

i.e. we should have inserted

mnuc

mnuc C .N � 1/�

NX
iD1

�
i

„
h OHA;ri

i
for

NX
iD1

Opi :

Formula (2.189) is modified in that the right-hand side acquires an additional
factor m 2

nuc=Œmnuc C .N � 1/��2. In formula (2.220) the right-hand side acquires an
additional factor mnuc=Œmnuc C .N � 1/��.
3.1. The contributions of the two integrals in (3.135) in the region r > r0 cancel,
provided the (common) outer classical turning point lies beyond r0, which is the case
for sufficiently large n, i.e. sufficiently close to the threshold E D 0. The energy E
can be neglected in the remaining finite integrals, giving

��n;` D
Z r0

aV

s
2

aZ r
� .l C 1=2/2

r2
dr �

Z r0

aC

s
2

ar
� .l C 1=2/2

r2
dr (1)

in the limit n ! 1. In (1), a D „2=.�e2/ is the Bohr radius (corresponding to
charge number unity), aZ D a=Z is the Bohr radius corresponding to charge number
Z, aV is the inner classical turning point of the full potential given by

aV D .l C 1=2/2

2

a

Z
(2)

and aC is the inner classical turning point of the pure Coulomb potential,

aC D .l C 1=2/2

2
a : (3)
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We have made use of the Langer modification and replaced l.l C 1/ by
�
l C 1

2

	2
.

For sufficiently small l-values analytic integration of (1) gives

��n;l
n!1D .2l C 1/ Œ
Z � arctan
Z � .
 � arctan
/� ; (4)

with the l-dependent parameters


 D
s

2r0

a.l C 1=2/2
� 1 ; 
Z D

s
2r0

aZ.l C 1=2/2
� 1 D

s
2Zr0

a.l C 1=2/2
� 1 :

(5)

If lC 1
2
>
p
2r0=a, then the inner turning point in the pure Coulomb potential lies

beyond r0 and the terms containing 
 in (4) don’t contribute. If lC 1
2
>
p
2Zr0=a,

then the inner turning point in the full potential also lies beyond r0 and the (semi-
classical) quantum defect vanishes.

Taking r0 D a=3 and Z D 19 as a rough model for potassium yields the following
quantum defects according to (4): 1.667 for l D 0, 0:970 for l D 1, 0:352 for l D 2,
0:005 for l D 3 and zero for higher l-values. (Compare Fig. 3.9.)
3.2. The sign of an oscillator strength fnf;ni (or mean oscillator strength Nfnf;ni ) is
determined by the sign of the transition energy „! D "f � "i (see Sect. 2.4.6).
Oscillator strengths are negative for emission, "f < "i; and positive for absorption,
"f > "i; from a given initial state ˚i. The inequalities in energy can be replaced by
inequalities in the principal quantum number n, because " depends monotonically
on n. For transitions in which the orbital angular momentum quantum number l
increases by unity, the upper equation (3.155) says that the sum of all mean oscillator
strengths is positive, i.e. the sum of all (positive) oscillator strengths corresponding
to an increase of the n must outweigh the sum of all (negative) oscillator strengths
corresponding to a decrease of n. Conversely, the sum of all oscillator strengths
for transitions in which l decreases by unity is negative according to the lower
equation (3.155), and hence the oscillator strengths in which n decreases dominate.

According to Table 1.4 the three radial wave functions relevant for the concrete
example are

�2p.r/ D r2

2
p
6a5=2

e�r=.2a/ ; �3d.r/ D 4

81
p
30

r3

a7=2
e�r=.3a/ ;

�3s.r/ D r

9
p
3a3=2

�
6 � 4

r

a
C 4

9

r2

a2

�
e�r=.3a/ ;
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and the corresponding radial integrals are

Z 1

0

�3s.r/ r �2p.r/ dr D 1

54
p
2

Z 1

0


 r

a

�4 �
6 � 4

r

a
C 4

9

r2

a2

�
e�5r=.6a/ dr

D 4a

9
p
2

�
6

5

�6
;

Z 1

0

�3d.r/ r �2p.r/ dr D 1

243
p
5

Z 1

0


 r

a

�6
e�5r=.6a/ dr D 21134

56
p
5

a :

With „! D �
1
4

� 1
9

	R D 5
72

„2=.�a2/ we have

Nf3s;2p D 5

108

1

3a2

�Z 1

0

�3s.r/ r �2p.r/ dr

�2
D 21334

511
D 0:0136 ;

Nf3d;2p D 5

108

2

3a2

�Z 1

0

�3d.r/ r �2p.r/ dr

�2
D 22134

512
D 0:6958 :

Transitions from the 2p state to d-states must have non-negative oscillator
strengths, because the n D 1 shell only contains s-states. According to the upper
equation (3.155) the sum of all these oscillator strengths is 10/9. As shown above,
the transition to the 3d state already exhausts more than 60 % of the sum.
3.3. Part a) of the problem is essentially the same as Problem 1.6b) in Chap. 1.
Writing h�02jV2;3j�03i as W2;3, the energy eigenvalues are

E˙ D E02 C E03
2

˙
s

W 2
2;3 C

�
E02 � E03

2

�2
; (1)

and the (normalized) eigenstates can be expressed as

a2 D 1p
2

r
1C ˛p

1C ˛2
; a3 D 1p

2

r
1 � ˛p

1C ˛2
;

b2 D 1p
2

r
1 � ˛p

1C ˛2
; b3 D � 1p

2

r
1C ˛p

1C ˛2
: (2)

We have assumed phases chosen such that W2;3 � 0 and used the abbreviation

˛ D E02 � E03
2W2;3

: (3)

In the spirit of the Golden Rule, the decay width due to decay to the energy
normalized regular wave function �reg in the open channel 1 is (cf. (1.232), (2.144))

�˙ D 2�
ˇ̌˝
 ˙ jVj�reg

˛ˇ̌2
:
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Inserting the wave function  C given by the (real) coefficients a2, a3 in (2) we
obtain

�C D 2�ja2h�02jV2;1j�regi C a3h�03jV3;1j�regij2

D �.W 2
2;1 C W 2

3;1/C �

E02�E03
2

�
W 2
2;1 � W 2

3;1

	C 2W2;1W3;1W2;3q�
E02�E03

2

	2 C W 2
2;3

; (4)

where we have written Wi;1 for h�0ijVi;1j�regi, i D 2; 3. The same calculation for the
second solution  � gives

�� D �.W 2
2;1 C W 2

3;1/� �

E02�E03
2

�
W 2
2;1 � W 2

3;1

	C 2W2;1W3;1W2;3q
.E02�E03/

2

2
C W 2

2;3

: (5)

Equations (4), (5) have the same structure as equation (3.213), which was obtained
via the exact solution of the Schrödinger equation in the space spanned by the whole
continuum channel 1 and the two isolated bound states in the channels 2 and 3.
Also equation (1) above has the same structure as equation (3.208). The perturbative
treatment in this problem misses the Green’s function corrections to the resonance
energies, cf. (3.203), and to the direct coupling matrix element, cf. (3.204).
3.4. The structure of the oscillator strength function becomes clearer if we write

dfEi

dE
D 2�

„ !d 21 � Q ; Q D


1C d2

d1

W2;1

E�"2 C d3
d1

W3;1

E�"3
�2

1C
�
�W 2

2;1

E�"2 C �W 2
3;1

E�"3

�2 : (1)

The quotient Q can formally be written as a Beutler-Fano function,

Q D .q C "/2

1C "2
; (2)

with the energy dependent parameter q and the “reduced energy” " given by

q D
d2
d1

W2;1 .E � "3/C d3
d1

W3;1 .E � "2/

�W 2
2;1 .E � "3/C �W 2

3;1 .E � "2/
;

" D
 
�W 2

2;1

E � "2
C �W 2

3;1

E � "3

!�1
: (3)

The reduced energy " has a pole at the energy

EP D W 2
2;1"3 C W 2

3;1"2

W 2
2;1 C W 2

3;1

; (4)
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which lies between "2 and "3. The reduced energy varies from " D �1 at E D �1
to " D C1 at E D EP, and again from " D �1 at E D EP to " D C1 at
E D C1. Near "2 the reduced energy " is approximately .E � "2/=.�W 2

2;1/, near
"3 it is approximately .E � "3/=.�W 2

3;1/. Thus we expect two Beutler-Fano type
resonances whose low-energy or high-energy tails are contracted into the region
above or below EP respectively. If the widths 2�W 2

2;1 and 2�W 2
3;1 are sufficiently

small, then the parameter q in (3) is roughly constant over the width of a resonance
and we can assign shape parameters

q2 D d2=d1
�W2;1

; q3 D d3=d1
�W3;1

(5)

to the resonances around "2 and "3 respectively. The zeros of dfEi=dE lie at " D �q2,
" D �q3 and the maxima at " D 1=q2 an " D 1=q3. For small magnitudes of
d2=d1, d3=d1 (compared with the magnitudes of W2;1 and W3;1) we expect window
resonances, for large magnitudes we expect pronounced peaks (cf. Fig. 3.13).

The above considerations assume weak energy dependence of the parameter q
in (3) over the width of a resonance. The zeros Z˙ of dfEi=dE are given exactly as
the zeros of the quadratic form

.E � "2/.E � "3/C d2
d1

W2;1.E � "3/C d3
d1

W3;1.E � "2/

and are

Z˙ D "2 C "3

2
� 1

2

�
d2
d1

W2;1 C d3
d1

W3;1

�

˙1

2

s�
"2 � "3 �

�
d2
d1

W2;1 � d3
d1

W3;1

��2
C 4

d2d3
d 21

W2;1W3;1 : (6)

Note that W2;1d2=d1 and W3;1d3=d1 have the dimensions of an energy. If the
magnitudes of these numbers are small compared to j"2 � "3j, then we can neglect
the term proportional to d2d3=d21 under the square root in (6) and obtain the two
zeros

Z D "2 � d2
d1

W2;1 and Z D "3 � d3
d1

W3;1 : (7)

This result agress with the result following from zeros of the reduced energy
" � .E � "2/=.�W 2

2;1/ at �q2 or of " � .E � "3/=.�W 2
3;1/ at �q3 as obtained above.

If W2;1d2=d1 and W3;1d3=d1 have large magnitudes compared to j"2 � "3j, then we
can neglect the epsilons under the square root in (6) and obtain one zero near the
average energy ."2 C "3/=2 and one zero shifted by �Œ.d2=d1/W2;1 C .d3=d1/W3;1�.
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3.5. It is more accurate to first read off the quantum defects �n and then to
calculate the energies via En=R D �1=.n � �n/

2. Results for � D 0:01R are
(approximately):

n 3 4 5 6 7 8 9 10

�En=R 0:1126 0:0647 0:0445 0:0349 0:0267 0:0199 0:0154 0:0122

�n 0:02 0:07 0:26 0:72 0:88 0:92 0:93 0:94

Results for � D 0:001R are (approximately):

n 3 4 5 6 7 8 9 10

�En=R 0:1111 0:0628 0:0415 0:0386 0:0277 0:0204 0:0156 0.0123

�n 0 0:01 0:09 0:91 0:99 0:995 1:0 1.0

For � ! 0 the perturber only affects the n D 5 state at E D �0:04 R. For
small but finite � there is one energy just below and one just above �0:04 R. For
vanishing � this energy becomes degenerate. Explicitly we have

n 3 4 5 6 7 8 9 10

�En=R 0:1111 0:0625 0:04 0:04 0:0277 0:0204 0:0156 0.0123

�n 0 0 0 1 1 1 1 1

3.6. The quantum defects (modulo unity) of the bound states in Fig. 3.19 can be read
off to be: –0.07, 0.04, 0.21, 0.48, 0.68, 0.76, 0.80 and 0.83. The first dot with an
energy near �0:25R must correspond to an effective quantum number near 2, so we
know where to start counting. The effective quantum numbers of the first eight states
are thus 2.07, 2.96, 3.79, 4.52, 5.32, 6.24, 7.20 and 8.17, and the corresponding
binding energies .�E/ are (in Rydbergs): 0.233, 0.114, 0.070, 0.049, 0.035, 0.026,
0.019 and 0.015.

The energy of the perturber is the point of maximum gradient of �.E/ which
lies near E D �0:05R. The width can be estimated according to (1.236) as 2=�
divided by this maximum gradient which has a numerical value of at least 14:3=R.
The background quantum defect is the amount by which the value of �.E/ differs
from 1/2 at the energy of the perturber. In the present example the parameters ER D
�0:052R, � D 0:035R and a background quantum defect of �0.06, inserted in the
formula (3.222), give quantum defects which differ by less than 0.02 from the values
in Fig. 3.19 (except for the lowest and the highest energy when the difference is 0.04
and 0.03 respectively). The energy of the perturber relative to the series limit of the
second channel ("2 D 0 in Fig. 3.19) is E � I2 D ER � 0:125R D �0:177R, which
corresponds to an effective quantum number (in channel 2) �2 D pR=.I2 � E/ D
2:38. At the energy of the perturber �2 C �2 should be an integer, so �2 is 0.62
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(modulo unity). From the width formula (3.256) we derive R 2
1;2 D �� 32 � =4R D

0:371.
Summary: jR1;2j D 0:61, �1 D �0:062, �2 D 0:62.

3.7. Near a perturber the quantum defects lie on a curve (3.222)

�n D �0 � 1

�
arctan

� =2

E � ER
: (1)

The closest approach of two adjacent levels n and n C 1 can be expected when the
state n is on the low-energy tail and the state n C 1 is on the high energy tail of the
arcus-tangent curve. Appropriate expansions of the arcus-tangent yield

2�.�n � �0/ D � �

En � ER
; 2�.�nC1 � �0 � 1/ D � �

EnC1 � ER
: (2)

It is convenient to introduce the parameter ˛ describing the ratio of the distance of
EnC1 from ER to the separation of En and EnC1:

EnC1 � ER D ˛.EnC1 � En/ ; En � ER D .˛ � 1/.EnC1 � En/ : (3)

From the energy formula in the (perturbed) Rydberg series we have

1

En
� 1

EnC1
D � 1

R
h
2n.�nC1 � 1 � �n/C �2

n � .�nC1 � 1/2
i
: (4)

We neglect the small (compared with n) quantities �2
n and .�nC1 � 1/2 on the right-

hand side of (4) and replace the difference �nC1 � 1 � �n according to (2), (3):

.EnC1 � En/
2

EnC1En
D n�

�R
�
1

˛
C 1

1 � ˛

�
: (5)

We replace the product EnEnC1 by R2=.n�/4, where n� is an effective quantum
number corresponding to an energy between En and EnC1. This gives:

.EnC1 � En/
2

4R2=.n�/6
D � .n�/3

�R
1

4

�
1

˛
C 1

1 � ˛

�
; (6)

where we have neglected the difference between the quantum number n in (5) and
the effective quantum number n�. The left-hand side of (6) is just the square of
the energy difference relative to the unperturbed energy difference 2R=.n�/3. The
expression in the big brackets on the right-hand side has its minimum at ˛ D 0:5

and the minimum value is four, hence the minimum of the energy difference relative

to the unperturbed energy difference is
q
� .n�/3=.�R/. (See also [FW85].)
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3.8. Since z is the � D 0 spherical component of the vector r we must have m0 D m.
The triangle condition and parity demand l0 D l ˙ 1. Hence the only non-vanishing
matrix elements are between

 0;0 D e�r=.2a/

a3=22
p
2�



1 � r

2a

�
and  1;0 D r e�r=.2a/

2
p
6a5=2

Y1;0.�/ :

When calculating the matrix element of eEzz between these states we can exploit
the fact that z is

p
4�=3r times the (real) function Y1;0 and that the angle integral

over Y 2
1;0 gives unity. Thus

h 0;0 jeEzzj 1;0i D eEz

12a4

Z 1

0



1 � r

2a

�
r2 e�r=ar2dr

D eEza

12

Z 1

0

�
x4 � 1

2
x5
�

e�xdx D �3eEza :

The matrix W of the perturbing operator is thus

W D
�

0 �3eEza
�3eEza 0

�
:

Its eigenvalues follow from the secular equation (cf. (1.259)), which in this case
reads E2 D .3eEza/2, yielding

E˙ D ˙3eEza :

The corresponding (normalized) eigenstates are

 C D 1p
2
. 0;0 �  1;0/ ;  � D 1p

2
. 0;0 C  1;0/ :

(See Fig. 3.24).
3.9. Remembering that Œ OA OB; OC� D OAŒ OB; OC� C Œ OA; OC� OB and exploiting (1.33) and
Problem 1.11 gives

Œ OH0; Ob� D �a„2
�

�
@

@z



a C r

2

�
C z

2

�
@

@r
C 1

r

��
:

Remembering that @=@z D .z=r/@=@r we can verify the identity by straight-forward
differentiation.



Solutions to the Problems 589

Now

jh mjzj 0ij2
Em � E0

D �

„2
h 0jzj mih mjŒ OH0; Ob�j 0i

Em � E0

D �

„2 h 0jzj mih mjObj 0i :

Summing over all m gives .�=„2/h 0jzObj 0i via the completeness relation, so the
expression for the dipole polarizability becomes

˛d D 2�e2

„2
D
 0jzObj 0

E
D 2�e2

„2
h
a2
˝
 0jz2j 0

˛C a

2

˝
 0jz2rj 0

˛i

D 2�e2

„2
�

a4 C 5

4
a4
�

D 9

2
a3 :

3.10.

As.r/ D AL.r/C 1

2

0
@ y

x
0

1
ABz D AL.r/C r


xy

2
Bz

�
: (1)

From

Op s D „
i
r



e� ie
„c f L

�
D �e

c
rf e� ie

„c f L C e� ie
„c f „

i
r L

we deduce



Op C e

c
.AL C rf /

�
e� ie

„c f L D e� ie
„c f



Op C e

c
AL

�
 L : (2)

Applying the big bracket on the left-hand side a second time yields an expression
similar to the right-hand side of (2), but with .Op C .e=c/AL/ L taking the place of
 L. Thus



Op C e

c
.AL C rf /

�2
e� ie

„c f L D e� ie
„c f



Op C e

c
AL

�2
 L

D e� ie
„c f 2�E L ; (3)

where the lower line follows from the Schrödinger equation for  L. Except for the
factor 2�, equation (3) is just the Schrödinger equation for  s D e� ie

„c f L with the
vector potential As D AL C rf :
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In the symmetric gauge the Hamiltonian is (cf. (3.316)):

OHs D Op2
2�

C ! OLz C �

2
!2.x2 C y2/ ; (4)

where ! D eBz=.2�c/ D !c=2 is half the cyclotron frequency. The azimuthal
quantum number m is a good quantum number, and the motion of the electron
parallel to the z-axis is that of a free particle. The motion perpendicular to the
z-axis is that of a two-dimensional harmonic oscillator. A discussion of the two-
dimensional harmonic oscillator (which is frequently neglected in the shadow of
detailed treatments of the one- and the three-dimensional case) can be found e.g.
in: J.D. Talman, Nuclear Physics vol. A141 (1970) p. 273. In polar coordinates
.� D p

x2 C y2, tan� D y=x) the eigenfunctions of the two-dimensional oscillator
are

�N;m.�; �/ D eim��N;m.�/ :

�N;m are the radial eigenfunctions

 N;m.�/ D �
b
p
�
	�1� NŠ

.N C jmj/Š
�1=2
�

b

�jmj
Ljmj

N

�
�2

b2

�
e��2=.2b2/ ;

where b D p„.�!/ is the oscillator width and Ljmj
N stands for the Laguerre

polynomials. The corresponding eigenvalues of the two-dimensional oscillator part
of the Hamiltonian are .2N C jmj C 1/„!:

The full wave functions are thus characterized by the good quantum numbers N
and m for the motion perpendicular to the field and by the wave number kz for the
free motion parallel to the field:

�kz;N;m D eikzzeim� N;m.�/ : (5)

The total energy eigenvalues, including „2k2z .2�/ from the motion parallel to the
field and m„! from the normal Zeeman term ! OLz, are:

Ekz;N;m D „2k2z
2�

C .2N C jmj C m C 1/„! ; (6)

with �1 < kz < 1, m D 0;˙1;˙2; : : : and N D 0; 1; 2; : : :.
In the Landau gauge the Hamiltonian is

OHL D �

2
!2c

�
y � Opx

�!c

�2
C Op2y
2�

C Op2z
2�

: (7)
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The electron moves freely in the z-direction. Its momentum in x-direction is also
a good quantum number, and the value of the x-momentum fixes the centre of the
harmonic oscillator motion in y-direction. Note that the oscillator frequency for this
one-dimensional vibratory motion now is the full cyclotron frequency !c.

The eigenfunctions in the Landau gauge are characterized by the wave numbers
kx and kz for the good momenta in x- and z-directions and by the oscillator quantum
number n for the one-dimensional oscillator motion in y-direction:

˚kx ;kz;n D eikxxeikzz n.y/ ; (8)

where  n.y/ are the eigenstates of the one-dimensional harmonic oscillator (cf.
Sect. 5.2.2). The corresponding energy eigenvalues are

Ekx;kz;n D „2k2z
2�

C
�

n C 1

2

�
„!c : (9)

In both the symmetric gauge and the Landau gauge the energy contains a
continuous term „2k2z .2�/ for the free motion of the electron parallel to the field, as
well as a discrete part consisting of odd multiples of 1

2
„!c.D „!/ for the so-called

Landau states describing the motion perpendicular to the field. All eigenvalues are
highly degenerate. For given values of kz and n in the Landau gauge, all values
of kx yield the same total energy, the corresponding wave functions differ by the
reference point y0 D „kx=�!c around which the oscillatory motion is centered. For
given values of kz and Eosc D .2Nmax C 1/„! in the symmetric gauge, all wave
functions (5) with m D 1, N D Nmax � 1, m D 2, N D Nmax � 2, : : : m D Nmax,
N D 0, as well as all eigenfunctions with N D Nmax, m � 0 belong to the same
energy (6).

From parts a) and b) we know that eigenstates in the different gauges are
related by

 s.r/ D exp

�
� i

„�!xy

�
 L.r/ D e

�ixy
b2  L.r/ ; (10)

where b D p„.�!/ is the oscillator width associated with half the cyclotron
frequency. Because of the degeneracies, (10) doesn’t imply a one-to-one relation
between the eigenstates (5) and (8). If, for example, we wish to relate the eigenstate

�0;0;0 D 1

b
p
�

e�.x2Cy2/=.2b2/ (11)

in the symmetric gauge to eigenstates of the same total energy E D „! D 1
2
„!c

in the Landau gauge, we must allow superpositions of eigenstates ˚kx;kzD0;nD0 with
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various wave numbers kx i.e.

�0;0;0 D e
�ixy

b2

Z 1

�1
a.kx/e

ikxx

 p
2p
�b

!1=2
exp

"
� 1

b2

�
y � „kx

2�!

�2#
dkx ;

with an appropriate amplitude a.kx/. (Note that the oscillator width in the Landau
gauge is bc D b

p
2.) The choice

a.kx/ D
p

b

.2�/3=4
e�b2k2x=4

does indeed produce the wave function (11).
3.11. Using the hint we obtain the approximate expression

 B D 1

2m0c
O� �



Op C e

c
A
�
;

which we insert into the upper equation to obtain

1

2m0

h
O� �



Op C e

c
A
�i h

O� �



Op C e

c
A
�i
 A D .E C e˚ � m0c

2/ A :

With the help of the identity in Problem 2.1 we obtain

�
1

2m0



Op C e

c
A
�2 C e

2m0c
i O� �.Op�A C A� Op/� e˚

�
 A D .E � m0c

2/ A :

The term .Op�A C A�Op/ does not vanish, because Op does not commute with A.r/. An
operator @

@x Ay actually means @Ay

@x CAy
@
@x by virtue of the product rule, so .Op�ACA�

Op/ D .„=i/r�A D .„=i/B and the corresponding contribution to the Hamiltonian is

e„
2m0c

O� �B D e

m0c
OS�B :

This is the spin contribution to the Hamiltonian (3.320). Note that the factor 2 in
front of the the spin in (3.320) follows without further assumption from the Dirac
equation.
4.1. Integrating the left-hand side of the asserted identity by parts we obtain, for the
left-hand side,

�a

ia
eia.1�x/.1C x/f .x/

ˇ̌
ˇ1
�1

C lim
a!1

a

ia

Z 1

�1
eia.1�x/ d

dx
Œ.1C x/f .x/�dx :
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The first term above is independent of a and equals 2if (1) as required for the identity.
The second term vanishes in the limit a ! 1 because of the increasing frequency
of the oscillating factor in the integrand.

Inserting the asymptotic form (4.3) for the wave function into the definition (4.4)
of the current density gives

j
r!1D „k

�
ez C jinterf C jout ; (1)

where jout is the current density (4.5), and

jinterf D „k

2�

�
eikzf �.�; �/

e�ikr

r
.er C ez/C e�ikzf .�; �/

e�ikr

r
.er C ez/

�

D „k

2�r

�
f .�; �/ eikr.1�cos �/.er C ez/C f �.�; �/ e�ikr.1�cos �/.er C ez/


:

Introducing x D cos � and writing jr for the radial component of jinterf, i.e. jr D
jinterf � r=r; we have

Iinterf D
I

jinterf � ds D r2
Z 1

�1
dx
Z 2�

0

d� jr

D „kr

2�

�Z 1

�1
dx eikr.1�x/.1C x/

Z 2�

0

f .�; �/ d�

C
Z 1

�1
dx e�ikr.1�x/.1C x/

Z 2�

0

f �.�; �/ d�

�
:

In the limit kr ! 1 the first integral on the right-hand side contributes .i„=�/ �
2�f .� D 0/, because of the identity a). Note that f .�; �/ is independent of � at
� D 0: The corresponding identity for �kr ! �1 shows us that the second integral
gives a contribution �.i„=�/ � 2�f �.� D 0/: Thus

Iinterf D � „
�
4� =f .� D 0/ for r ! 1 : (2)

The optical theorem follows from the observation that, since the first term in (1)
doesn’t contribute to the net flux on symmetry grounds, the sum of the fluxes Iout

from (4.9) and Iinterf from (2) above must vanish according to (4.8).
4.2. For r0 
 r we have

jr � r0j D r

r
1 � 2 r �r0

r
� r � r �r0

r
C O

 
r02

r

!
;
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and so the exponential can be approximated by

eikjr�r0j D eikre�ikr 	r0

�
1C O

�
kr0 r0

r

��
:

Furthermore we have

1

jr � r0j D 1

r
q
1 � 2 r	r0

r2
C �

r0

r

	2 � 1

r

�
1C O

�
r0

r

��
;

showing that the corrections to the leading term in the expression for G are smaller
by a factor of the order r0=r.
4.3. In a cube of length L periodic boundary conditions are fulfilled for wave vectors

k D
0
@ kx

ky

kz

1
A ; with kx D 2�

L
nx ; ky D 2�

L
ny ; kz D 2�

L
nz ;

nz D 0 ;˙1;˙2; : : : ; ny D 0;˙1;˙2; : : : ; nz D 0;˙1;˙2; : : : :

In k-space there is one normalizable state for each cube of volume .2�=L/3, hence
the density of states is .L=2�/3. In order to obtain the density of states with respect
the modulus k of the wave vector, we write the volume element in k-space as�Vk D
4�k2�k; giving

�N

�Vk
D
�

L

2�

�3
D �N

4�k2�k
:

Hence we have

�k D �N

�k
D 4�k2

L3

8�3
D k2L3

2�2
:

For the density of states with respect to the energy E D „2k2=.2�/ we obtain

�N

�E
D �k

�
dE

dk

��1
D L3�k

2�2„2 :

States normalized to unity carry an amplitude factor 1=L3=2. When working with
bound states of unit amplitude, the density of states must absorb the factor 1=L3 so
that products such as occur in the Golden Rule remain independent of the choice of
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amplitude. Thus the density of states for plane waves with unit amplitude is

�E D �k

2�2„2 D �3=2

„3
p
2E

2�2
:

If we now visualize the scattering process as a transition from incoming plane
waves  i (travelling in the direction of the z-axis) to final plane waves  f (travelling
in the direction d˝), then the transition probability per unit time is, according to the
Golden Rule,

dP.�; �/ D 2�

„ jh fj OTj iij2�E � d˝

4�
D k�

4�2„3 jh fj OTj iij2 d˝ :

The perturbing operator causing the transition is called OT . If we relate the matrix
element of the transition operator OT to the scattering amplitude f .�; �/ as suggested
by (4.18), then we obtain

dP.�; �/

d˝
D j f .�; �/j2 „k

�
:

By dividing the transition rate per unit time for scattering into the solid angle d˝
by the incoming current density, we return to the original definition (4.6) for the
differential scattering cross section.
4.4. The integrated cross section can be written as a sum of contributions �l, which
originate from the partial waves l and vary between zero (for ıl D n�) and
maximum values of 4�.2l C 1/=k2 .for ılD

�
nC 1

2

	
�),

� D
1X

lD0
�l ; �l D 4�

k2
.2l C 1/ sin2 ıl : (1)

For a given partial wave l we have

tan ıl
k!1D � sin.kr0 � l�=2/

cos.kr0 � l�=2/
D � tan.kr0 � l�=2/ ;

and hence

ıl D
�

n C l

2

�
� � kr0 ; for k ! 1 :

The oscillatory asymptotic .kr0 ! 1/ behaviour of jl.kr0/, nl.kr0/ turns to a
monotonic decrease of jl=nl to zero as the argument kr0 goes to zero (cf. (A.49)
in Appendix A.4). An estimate of where this turnover takes place can be obtained
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by looking at the wave number kl, where the classical radial kinetic energy at r0,

E � l.l C 1/„2
2�r 20

� „2
2�

 
k2 �

�
l C 1

2

	2
r 20

!
;

vanishes, and this happens at

klr0 D l C 1

2
: (2)

Note that we have utilized the Langer modification replacing l .l C 1/ by .l C 1=2/2.
For large values of l we have (see e.g. Ch. 9.3 in [AS70] quoted in the Appendix)

jl.kr0/

nl.kr0/
l!1D 1

2

�
e kr0
2l C 1

�2lC1
: (3)

For a given energy, i.e. for a given wave number k, partial waves up to lmax � kr0
contribute significantly to the cross section, contributions from higher partial waves
fall off rapidly according to (3). An approximate value for the total cross section is

� � 4�

k2

lmaxX
lD0

.2l C 1/ sin2
�

kr0 � 1

2
�

�

D 4�

k2

"
lmaxX
lD1

l

�
sin2

�
kr0 � 1

2
�

�
C sin2

�
kr0 � l � 1

2
�

��

C .lmax C 1/ sin2
�

kr0 � lmax

2
�

��

� 4�

k2

lmaxX
lD0

l D 4�

k2
lmax.lmax C 1/

2
� 4�

k2
.kr0/

2

2
D 2�r20 :

For scattering by a finite potential of depth (or height) V0 D „2k20=.2�/ and range
r0, the phase shifts will fall off rapidly for values of l above k0r0, so the upper limit
to the sum over contributing partial waves no longer depends on k. An approximate
upper bound for � is

�max � 4�

k2
X

0�l<k0r0

.2l C 1/ � 4�

k2
� .k0r0/2 D 4�

k20r
2
0

k2
:

At high energies E ! 1 we expect the integrated scattering cross section to
decrease at least as fast as 1=E.
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4.5. The work dW done in going from r to r � dr is

dW D F �dr D e˛d

r3

�
er

r3
� 3 r

r2
er2

r3

�
� dr D �2e2˛d

r5
dr ;

where we have assumed the differential displacement to be in the radial direction,
dr D .r=r/ dr. The work done in coming from infinity to a finite position r is

W D �2e2˛d

Z r

1
1

r05 dr0 D e2˛d

2r4
:

4.6. In the special case m D �1=2 (1.358) becomes

YlC 1
2 ;m;l

D 1p
2l C 1

�p
l Yl;�1.�; �/p
l C 1Yl;0.�/

�
;

Yl� 1
2 ;m;l

D 1p
2l C 1

��p
l C 1 Yl;�1.�; �/p

l Yl;0.�/

�
:

These relations can be inverted,

�
Yl;�1.�; �/

0

�
D
r

l

2l C 1
YlC 1

2 ;m;l
�
r

l C 1

2l C 1
Yl� 1

2 ;m;l
;

�
0

Yl;0.�/

�
D
r

l C 1

2l C 1
YlC 1

2 ;m;l
C
r

l

2l C 1
Yl� 1

2 ;m;l
: (1)

Expanding the spatial part of the plane wave according to (4.30) and using the
upper equation (1) yields

eikz�� D p
4�

1X
lD0

p
2l C 1 iljl.kr/

�
0

Yl;0.�/

�

D p
4�

1X
lD0

iljl.kr/

p

l C 1YlC 1
2 ;m;l

C p
lYl� 1

2 ;m;l

�
:

We can use (1) and decompose the outgoing spherical wave into components with
good j, m and l,

�
g0.�; �/

f 0.�/

�
D

1X
lD0

p
4�

2l C 1

h�
f 0
l C lg0

l

	p
l C 1YlC 1

2 ;m;l

C �
f 0
l � .l C 1/g0

l

p
lYl� 1

2 ;m;l

i
:
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If we now collect the radial parts of the incoming plane wave and the outgoing
spherical wave for given values of l and j, we obtain expressions which look like the
big square bracket in the upper line of (4.32), except that the coefficient fl in (4.32)
is now replaced by different linear combinations of f 0

l and g0
l, namely f 0

l C lg0
l for

j D lC1=2 and f 0
l � .lC1/g0

l for j D 1�1=2. The same steps which led from (4.32)
to (4.34) now give

f 0
l C lg0

l D 2l C 1

2ik

h
exp



2iı.lC1=2/l

�
� 1

i
;

f 0
l � .l C 1/g0

l D 2l C 1

2ik

h
exp



2iı.l�1=2/l

�
� 1

i
:

Resolving for the partial wave amplitudes f 0
l and g0

l yields

f 0
l D l C 1

2ik

h
exp



2iı.lC1=2/l

�
� 1

i
C l

2ik

h
exp



2iı.l�1=2/l

�
� 1

i
;

g0
l D 1

2ik

h
exp



2iı.lC1=2/l

�
� exp



2iı.l�1=2/l

�i
:

4.7.

Px D
�

A�
B�
�

�
��
0 1

1 0

��
A
B

��
D
�

A�
B�
�

�
�

B
A

�

D A�B C B�A D 2RŒA�B� ;

Py D
�

A�
B�
�

�
��
0 �i
i 0

��
A
B

��
D �i

�
A�
B�
�

�
�

B
�A

�

D 1

i
.A�B � B�A/ D 2=ŒA�B� ;

Pz D
�

A�
B�
�

�
��
1 0

0 �1
��

A
B

��
D
�

A�
B�
�

�
�

A
�B

�
D jAj2 � jBj2 :

O�P D Px O�x C Py O�y C Pz O�z D
�

Pz

Px C iPy

Px � iPy

�Pz

�

D
� jAj2 � jBj2
2 Œ< .A�B/C i= .A�B/�

2 Œ< .A�B/�i= .A�B/�
jBj2 � jAj2

�

D
� jAj2 � jBj2

2A�B
2AB�

jBj2 � jAj2
�
:
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Operating on the spinor j�i D
�

A
B

�
with O�P and recalling that jAj2 C jBj2 is

unity yields

O�P

�
A
B

�
D
�
.jAj2 � jBj2/A C 2AjBj2
2jAj2B C .jBj2 � jAj2/B

�
D
�
.jAj2 C jBj2/A
.jAj2 C jBj2/B

�
D
�

A
B

�
:

4.8. In order to describe triplet scattering, we must work with solutions of the
Schrödinger equation which are antisymmetric with respect to the interchange of
the spatial coordinates r1 and r2 of the two electrons, i.e. the wave functions must
have negative parity with respect to the reflection of the relative distance coordinate
r D r1 � r2 at the origin, r ! �r. Such solutions are readily constructed from the
wave functions (4.143),

 t .r/ D  C .r/ �  C .�r/ : (1)

For all spatial directions excluding � D 0 and � D � the asymptotic form of the
wave function (1) is

 t .r/ D eiŒkzC ln k.r�z/� � e�iŒkz� ln k.rCz/�

C ŒfC .�/ � fC .� � �/�
eiŒkr� ln 2kr�

r
: (2)

The differential scattering cross section is as usual defined as the outgoing particle
flux divided by the incoming current density which is given by the eCiŒkz:::� term
in (2):

d� t
M

d˝
D jfC .�/ � fC .� � �/j2 : (3)

Noting that sin ..� � �/=2/ D cos.�=2/ and that ln sin2.�=2/ � ln cos2.�=2/ D
ln tan2.�=2/ we use the expression (4.144) for the Coulomb scattering amplitude to
obtain

d� t
M

d˝
D 2

4k2

ˇ̌
ˇ̌
ˇ
e�i ln sin2.�=2/

sin2.�=2/
� e�i ln cos2.�=2/

cos2.�=2/

ˇ̌
ˇ̌
ˇ
2

D 2

4k2

"
1

sin4.�=2/
C 1

cos2.�=2/
� e�i ln tan2.�=2/ C e�i ln tan2.�=2/

sin2.�=2/ cos2.�=2/

#

D 2

4k2

�
1

sin4.�=2/
C 1

cos4.�=2/
� 2 cosŒ ln tan2.�=2/�

sin2.�=2/ cos2.�=2/

�
: (4)
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Only odd angular momentum quantum numbers l contribute to the partial waves
expansion, because the even partial waves have positive parity and drop out in the
superposition (1).

In singlet scattering the spatial wave function must be symmetric and the
difference (1) is replaced by a sum. The corresponding formula for the differential
scattering cross section becomes

d� s
M

d˝
D jfC .�/C fC .� � �/j2

D n2

4k2

"
1

sin4 .�=2/
C 1

cos4 .�=2/
C 2

cos
�
 ln tan2 .�=2/


sin2 .�=2/ cos2 .�=2/

#
: (5)

In the scattering of unpolarized electrons (with no measurement of spin in the
final states) we observe a mean of the singlet and triplet cross sections, weighted
with the respective multiplicity 2S C1 which is unity for S D 0 and three for S D 1:

d�M

d˝
D 1

4

�
d� s

M

d˝
C 3

d� t
M

d˝

�

D n2

4k2

"
1

sin4 .�=2/
C 1

cos4 .�=2/
� cos

�
 ln tan2 .�=2/


sin2 .�=2/ cos2 .�=2/

#
:

4.9. G.x; x0/ and the delta function in the defining equation depend only on the

difference x � x0 defD � of the two coordinates, and for fixed x0 we can replace the
derivatives with respect to the components of x by the derivatives with respect to the
corresponding components of �. Thus we have to show that the function

G .�/ D �
�

K

2�

�� iH.1/
� .K j�j/
4j�j� (1)

fulfills the equation

.K2 C�n/G.�/ D ı.�/ : (2)

Since G depends only on � D j�j; the n-dimensional gradient is

rG .�/ D �

�

dG

d�
;
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and the corresponding Laplacian applied to G is

�nG.�/ D r �
�

�

�

dG

d�

�
D

nX
iD1

@

@�i

�
�i

�

dG

d�

�

D
nX

iD1

�
1

�

@G

@�
C �i

@

@�i

�
1

�

dG

d�

��
D n

�

dG

d�
C

nX
iD1

�i
d

d�

�
1

�

dG

d�

�
@�

@�i

D n

�

dG

d�
C

nX
iD1

�i

�
� 1

�2
dG

d�
C 1

�

d2G

d�2

�
�i

�

D n

�

dG

d�
C

nX
iD1

�2i
�

�
� 1

�2
dG

d�
C 1

�

d2G

d�2

�
D d2G

d�2
C n � 1

�

dG

d�
:

Now G is equal to a constant (namely �.i=4/.K=2�/�) times H.1/
� .K�/=�� , and

writing 2� C 1 for n � 1 we have

�n
H.1/
� .K�/

��
D d2

d�2

 
H.1/
� .K�/

��

!
C 2� C 1

�

d

d�

 
H.1/
� .K�/

��

!

D 1

��

 
d2H.1/

� .K�/

d�2
C 1

�

dH.1/
� .K�/

d�
� �2

�2
H.1/
� .K�/

!
: (3)

Bessels differential equation for H.1/
� .K�/ tells us that

d2H.1/
� .K�/

d.K�/2
C 1

K�

dH.1/
� .K�/

d.K�/
� �2

K2�2
H.1/
� .K�/ D �H.1/

� .K�/ ;

and so (3) amounts to

�n
H.1/
� .K�/

��
D �K2H.1/

� .K�/

��
;

showing that .K2 C �n/G.�/ must vanish as long as � is not the singular point,
� ¤ 0.

To complete the proof that G.�/ fulfills (2) we show that

Z
V

f .�/.K2 C�n/G.�/ d� D f .0/ (4)

for a small n-dimensional volume V enclosing the singular point � D 0. Equation (4)
should hold for any appropriately well behaved trial function f .
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Since we are now operating in a small volume around � D 0 we may use the
leading term in the appropriate expansion for H.1/

� .K�/ and obtain

G.�/
�!0D � � .�/

4��C1�2�
: (5)

As the radius of the small volume decreases, its volume will decrease as the n D
.2� C 2/th power in the radius, and the surface of the volume will decrease as the
.2� C 1/th power of the radius. The integral over f K2G vanishes in the limit of
vanishing volume V as long as f remains bounded in the vicinity of � D 0. The
remaining contribution to the integral on the left-hand side of (4) can be rewritten
using Green’s theorem,

Z
V

f .�/�nG.�/ d� D
Z

V
G.�/�nf .�/ d� C

I
S.V/

Œf .rG/ � G .rf /� � do : (6)

In the limit of vanishing volume V and vanishing surface S.V/ of the volume, the
volume integral on the right-hand side of (6) and the second term in the surface
integral vanish as long as rf and �f remain bounded in the vicinity of � D 0. The
only non-vanishing contribution on the right-hand side of (6) is thus

I
S.V/

f rG � do
S.V/!0D f .0/

�
�� .�/

2��C1

�I
S.V/

1

�2�C1
�

�
� do : (7)

For a small sphere of radius � D j�j the surface integral on the right-hand side
of (7) is just 1=�2�C1 times the surface of the sphere, which is 2�n=2�n�1=� .n=2/
according to Problem 4.10. Recalling that n D 2�C2 this amounts to 2��C1=� .�C
1/, so that the right-hand side of (7) reduces to f .0/.
4.10. As a product of n one-dimensional integrals we have

In D �p
�
	n
: (1)

Transforming to a radial integral yields

In D
Z 1

0

e�R2Sn.R/ dR ; (2)

where Sn.R/ D Sn.1/Rn�1 is the surface of a sphere of radius R in n dimensions;
Sn.1/ is the surface of the unit sphere. Equation (2) can be integrated,

In D Sn.1/

Z 1

0

Rn�1 e�R2dR D Sn.1/
� .n=2/

2
;
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and equating this result to the right-hand side of (1) gives

S.1/ D 2�n=2

� .n=2/
; S.R/ D 2�n=2

� .n=2/
Rn�1 : (3)

The volume of the n-dimensional sphere is obtained by integrating the surface (3):

Vn.R/ D
Z R

0

Sn.r/ dr D 2�n=2

� .n=2/

Z R

0

rn�1 dr D �n=2

� . n
2

C 1/
Rn :

4.11. In ordinary spherical coordinates the six-dimensional volume element is

d� D r 21 dr1r
2
2 dr2d˝1d˝2 D r 21 dr1r

2
2 dr2 sin �1d�1d�1 sin �2d�2d�2 : (1)

Transformation to hyperspherical coordinates only affects the coordinates r1 and r2.
The corresponding differential dr1dr2 transforms as

dr1dr2 D
ˇ̌
ˇ̌ @r1
@˛

@r1
@R

@r2
@˛

@r2
@R

ˇ̌
ˇ̌ dR d˛

D
ˇ̌
ˇ̌ R cos˛ sin ˛
�R sin˛ cos˛

ˇ̌
ˇ̌ dR d˛ D R dR d˛ :

Inserting this result into (1) and remembering that r 21 D R2sin2˛, r 22 D R2cos2˛
gives

d� D R5dR sin2˛ cos2˛ d˛ d˝1 d˝2 D R5 dR d˝h

with ˝h D sin2˛ cos2˛ d˛ d˝1 d˝2 :

Integrating over the hyperspherical solid angle gives

Z
d˝h D

Z �=2

0

sin2˛ cos2˛ d˛
Z �

0

sin �1 d�1

Z 2�

0

d�1

Z �

0

sin �2 d�2

Z 2�

0

d�2

D .4�/2
Z �=2

0

sin2˛ cos2˛ d˛ D .4�/2
�

16
D �3 :

4.12. It is convenient to work in atomic units, where energies are given in units of
2 Rydbergs � 27:21 eV and wave numbers are in units of the inverse Bohr radius
� 1:89 � 108cm�1. ki is a vector pointing in the direction of the momentum of the
incoming electron (the z-axis), and its length follows from Einc D k2i =2: ki D 3:32.
In the asymmetric coplanar geometry we have

T1 D k21
2

D Einc � 0:5 � T2 D 4:90 ; k1 D 3:13 :
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Length and direction of the momentum transfer vector q can be derived by applying
elementary geometry to the triangle formed by the vectors k1, ki and q; �1 is the
angle between k1 and ki.

By the cosine rule

q2 D k21 C k2i � 2k1ki cos �1 ; q D

8̂
<̂
ˆ̂:
0:32 for �1 D 4ı

0:61 for �1 D 10ı

0:92 for �1 D 16ı
:

The angle �q through which q is turned from the direction of �ki (i.e., from the
negative z-axis) is given by the sine rule:

sin �q D k1
q

sin �1 ; �q D
8<
:
43ı for �1 D 4ı
63ı for �1 D 10ı
70ı for �1 D 16ı

:

In symmetric geometry

T1 C T2 D Einc � 0:5 D 5:01 ; T1 D T2 D 2:51 ; k1 D k2 D 2:24 :

The length of the momentum transfer vector depends on �1 D �2 and is given as
above by the cosine rule

q2 D k21 C k2i � 2k1ki cos �1 ; q D
8<
:
1:18 for �1 D 10ı
2:35 for �1 D 45ı
3:66 for �1 D 80ı

:

The angle �q is again given by the sine rule:

sin �q D k1
q

sin �1 ; �q D
8<
:
19ı for �1 D 10ı
42ı for �1 D 45ı
37ı for �1 D 80ı

:

Note that �q reaches a maximum when k1 is orthogonal to q. In the right-angled
triangle formed by k1, ki and q we then see that sin

�
�qmax

	 D k1=ki.
5.1. The power P of a laser in Watt per cm2 can be expressed as the energy density
� (in Joule per cm3) times the speed of light c (in cm per second). The total energy
in the volume occupied by the atom is simply the product of the energy density
(assumed to be constant) times the volume,

E D 4�

3
.n2a0/

3� D 4�

3
.n2a0/

3P

c
;
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and the ratio Q of E to the binding energy is

Q D 4�

3
.n2a0/

3 P

c

n2

R D 8�

3

.n2a0/
4

˛fs„c2
P ;

where ˛fs � 1=137 is the fine structure constant. For a ratio Q � 1 we have

P � 3

8�

˛fs„c2

n8a40
� 1017

n8
W

cm2
:

5.2. The initial wave packet is the same as in Problem 1.4 in Chap. 1 for the
special case x0 D 0, so the time-dependent wave function Q .p; t/ in momentum
representation .p � „k/ is,

Q .p; t/ D
�

ˇp
�„
�1=2

exp

�
� i

„
p2

2�
t � ˇ2

2„2 .p � „k0/
2

�
: (1)

The corresponding wave function in coordinate representation is

 .x; t/ D
�p

�ˇ

�
1C i„t

�ˇ2

���1=2
e�ˇ2k20=2 exp

2
4� .x � ik0ˇ2/

2

2ˇ2


1C i„t

�ˇ2

�
3
5 : (2)

The probability density in coordinate space is

j .x; t/j2 D 1p
�B

exp

"
� 1

B2

�
x � „k0

�
t

�2#
; B D ˇ

s
1C „2t2

�2ˇ4
: (3)

The probability density in momentum space does not depend on time,

j Q .p; t/j2 D ˇp
�„ e�.p�„k0/

2ˇ2=„2 : (4)

The expression for the density matrix is a little simpler in momentum represen-
tation:

Q�.p; p0I t/ D ˇp
�„ exp

"
� i

„
p2 � p02

2�
t

#
�

exp

�
� ˇ2

2„2 Œ.p � „k0/
2 C .p0 � „k0/

2
�

�
: (5)
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Introducing sum and difference variables, P D .p C p0/=2, q D p � p0, and
reorganising the exponents in (5) gives

Q�



P C q

2
;P � q

2
I t
�

D ˇp
�„ e�ˇ2k20 exp

"
� ˇ2

4„2
�

q � 2
i„t

�ˇ2

�2#
�

exp

�
�B2

„2 P2 C 2ˇ2

„ Pk0

�
;

where B is as defined in (3).
The Wigner function is given by the lower line of (5.41), adapted to the one-

dimensional situation:

�w .X;PI t/ D 1

2�„
Z 1

�1
eiXq=„ Q�



P C q

2
;P � q

2
I t
�

dq

D 1

�„ e�.X�Pt=�/2=ˇ2 e�.P�„k0/
2ˇ2=„2 : (6)

Equation (6) already looks very much like classical evolution in phase space.
Indeed, the evolution of the classical phase space density in part c) can be formulated
by exploiting the fact that �cl is constant along the classical trajectories, because
d�cl=dt D 0. The trajectory going through the point .x; p/ at time t started at the
point .x � pt=�; p/ at time zero, hence

�cl.x; pI t/ D �cl

�
x � p

�
t; pI 0

�
D 1

˛ˇ�
e�.x�pt=�/2=ˇ2 e�.p�p0/

2=˛2 : (7)

This is quantitatively equal to the quantum mechanical result (6), if we choose
the width ˛ describing the initial (and time-independent) spread in momentum
according to ˛ D „=ˇ.
5.3. Applying Ob according to (5.59) we have

Objzi D e�zz�=2

1X
nD0

.z�/np
nŠ

p
njn � 1i D e�zz�=2

1X
nD1

.z�/np
.n � 1/Š

jn � 1i

D z�e�zz�=2

1X
nD0

.z�/np
nŠ

jni D z�jzi :

The conjugate equation is hzjOb� D hzjz and hence

hzjOb� Objzi D hzjzz�jzi D jzj2 : (1)
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We use (5.73) to express the electric and magnetic field strengths in terms of the
momentum operator Op and obtain

L3

8�
hzj OE2 C OB2jzi D hzj Op2

2
C Op2
2

jzi D hzjOp2jzi : (2)

The expectation value of Op2 is related to the uncertainty �p (which is equal to
„=.p2ˇ/ in the present case) and the expectation value of Op according to (1.35):

�2
p D „2

2ˇ2
D hOp2i � hOpi2 ; hzjOp2jzi D „2

2ˇ2
C hzjOpjzi2 : (3)

From (5.68) we expect that the expectation value of Op in the coherent state jzi is Pz

as given in the lower line of (5.69). This is in fact the case and can be verified by
calculating the expectation value in momentum representation,

hzjOpjzi D
Z 1

�1
p j Q z.p/j2dz :

Note that the absolute square of the momentum wave function above can be derived
directly from the Wigner function (see (5.43))

j Q z.p/j2 D
Z 1

�1
�w.x; p/ dx D ˇp

�„ e�.p�Pz/
2ˇ2=„2 :

Since jzj does not depend on time and =.z/ D jzj sin!.t�t0/ for an appropriately
chosen t0, we have

hzjOp2jzi D „2
2ˇ2

C 2„2
ˇ2

jzj2sin2!.t � t0/ :

Time averaging the sin2 term gives a factor 1/2 so

hzjOp2jzi D „2
ˇ2

�
1

2
C jzj2

�
: (4)

Now „2=ˇ2 D „! and jzj2 is the expectation value of Ob� Ob according to the result of
part a). Equation (4) merely expresses the fact that the energy of the field is given

by the harmonic oscillator Hamiltonian „!

Ob� Ob C 1=2

�
.

The harmonic oscillator ground state is just the coherent state jz D 0i, and,
according to (5.68), its Wigner function is

�w .X;P/ D 1

�„ e�X2=ˇ2 e�P2ˇ2=„2 :
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The density matrix for the first excited state is

�.x; x0/ D 2xx0
p
�ˇ3

e�Œx2C.x0/
2
�=.2ˇ2/ :

Introducing sum and difference coordinates, X D .xCx0/=2, s D x�x0, this amounts
to

�



X C s

2
;X � s

2

�
D 1p

�ˇ3

�
2X2 � s2

2

�
e�X2=ˇ2e�s2=.4ˇ2/ :

The Wigner function is

�w.X;P/ D 1

2�„
Z 1

�1
e�iPs=„�



X C s

2
;X � s

2

�
ds

D 1

�„
�
2

ˇ2
X2 C 2ˇ2

„2 P2 � 1
�

e�X2=ˇ2e�P2ˇ2=„2 :

5.4. Following the hint we calculate

dOf
d


D OA e
 OA e
 OB C e
 OA OB e
 OB D . OA C OB/ e
 OA e
 OB C Œe
 OA; OB� e
 OB : (1)

Now

Œe
 OA; OB� D
1X

nD0


n

nŠ
Œ OAn; OB� ; (2)

and it is easy to show by induction that

Œ OAn; OB� D n OAn�1Œ OA; OB� ; (3)

(remember that Œ OA; OB� commutes with both OA and OB). Inserting (3) into (2) gives

Œe
 OA; OB� D Œ OA; OB�
1X

nD1


n

.n � 1/Š
OAn�1 D 
Œ OA; OB� e
 OA :

Thus (1) becomes

dOf
d


D f OA C OB C 
Œ OA; OB�gOf .
/ : (4)

The differential equation (4) is obviously also fulfilled by the operator function

Of1 D e
 OAC
 OBC.
2=2/Œ OA; OB� :
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Since Of .
/ and Of1.
/ go through the same point, namely unity (i.e. unit operator)
at 
 D 0, they must be identical solutions of the differential equation (4). Equating
the values of Of .
/ and Of1.
/ at 
 D 1 yields the required special form of the Baker-
Campbell-Hausdorff relation.
5.5. Let Ei be the energy and pi the momentum of a free electron. The relativistic
energy momentum relation is

Ei D c
q

m 2
0 c2 C p 2i :

After absorbing a photon of energy „! and momentum „!=c, the final energy Ef

and momentum pf of the electron obey

Ef D c
q

m 2
0 c2 C p 2f :

Obviously the energy difference is

Ef � Ei D „! D c
q

m 2
0 c2 C p 2f � c

q
m 2
0 c2 C p 2i :

Since the maximum final momentum of the electron is pi C „!=c,

Ef � Ei � c
q

m 2
0 c2 C .pi C „!=c/2 � c

q
m 2
0 c2 C p 2i

D c
q

m 2
0 c2 C p 2i

0
@
s
1C 2pi„!=c C .„!=c/2

m 2
0 c2 C p 2i

� 1
1
A

< c
pi„!=cq
m 2
0 c2 C p 2i

:

The right-hand side of the last inequality is always smaller than „! showing that
even a maximal transfer of momentum is insufficient to produce the required energy
gain for the electron.

The corresponding calculation swapping the roles of initial and final states
shows that a free electron cannot emit a single photon. Note however, that the
inelastic scattering of photons, which can be pictured as simultaneous absorption
and emission of a photon, is kinematically allowed (Compton effect).
5.6. Assume t0 � t1 � t2 and consider the propagation of an infinitesimal deviation
�x.t0/ from a given trajectory. According to (5.75) the corresponding deviations
�x.t1/ at time t1 and�x.t2/ at time t2 are

�x.t1/ D M.t1; t0/�x.t0/ ;

�x.t2/ D M.t2; t1/�x.t1/ D M.t2; t1/M.t1; t0/�x.t0/ : (1)
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On the other hand, the defining equation for M.t2; t0/ is

�x.t2/ D M.t2; t0/�x.t0/ :

Since (1) holds for all infinitesimal �x.t0/, the matrix M.t2; t0/ must be equal to
M.t2; t1/M.t1; t0/:

If t0 and t1 define two different starting points on a given trajectory, then the
Liapunov exponent defined by (5.77) is


0 D lim
t!1

ln jjM.t; t0/jj
t � t0

; 
1 D lim
t!1

ln jjM.t; t1/jj
t � t1

;

depending on which starting point we choose. According to the chain rule however,


0 D lim
t!1

ln jjM.t; t1/M.t1; t0/jj
t � t0

� lim
t!1

ln jjM.t; t1/jj
t � t0

C lim
t!1

ln jjM.t1; t0/jj
t � t0

; (2)

the lower line following from the inequality in the hint. The second term on the
right-hand side in the lower line in (2) vanishes. The first term can be rewritten as

lim
t!1

ln jjM.t; t1/jj
t � t0

D lim
t!1 ln jjM.t; t1/jj

�
1

t � t1
� t1 � t0
.t � t1/.t � t0/

�

D lim
t!1

ln jjM.t; t1/jj
t � t1

;

which is just the definition of 
1. We have thus shown: 
0 � 
1.
From M.t; t1/ D M.t; t0/ŒM.t1; t0/��1 we have,


1 D lim
t!1

ln jjM.t; t0/ŒM.t1; t0/��1jj
t � t1

� lim
t!1

ln jjM.t; t0/jj
t � t1

C lim
t!1

ln jjŒM.t1; t0/��1jj
t � t1

; (3)

The second term on the right-hand side in the lower line in (3) vanishes, and the first
term is equal to 
0 by reasoning analogous to that following (2). Thus we have also
shown: 
1 � 
0.

Hence we conclude that the Liapunov exponent is the same for all phase space
points along a given trajectory.
5.7. Let yn be the vertical distance above the centre of the disc and xn the horizontal
distance from the centre of the disc to the point where the particle hits the disc the
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nth time. Since all points .xn; yn/ lie on the circle of radius a we have

x 2n C y 2n D a2 : (1)

Let Yn be the vertical height above the middle at which the particle leaves the side
of the square before the nth collision, and let Tn be the tangent of the angle to the
horizontal at which it leaves the side of the square.

Initially we have T1 D tan˛, Y1 D 0. The coordinates of the first collision can
be determined from (1) together with

T1 D y1 � Y1
l � x1

; (2)

yielding

x1 D
T1Y1 C T 2

1 l C
q
.a2 � Y 2

1 /.1C T21 /C T 2
1 .Y

2
1 � l2/ � 2lT1Y1

1C T 2
1

;

y1 D Y1 C T1.l � x1/ ; (3)

where we have written a small l for L=2. After hitting the disc the particle is reflected
at an angle to the horizontal given by

˛2 D ˛ C 2ˇ ; tanˇ D y1
x1
; (4)

and it returns to the side of the square at Y2 D y1 C .l � x1/ tan˛2. Subsequently it
travels to the disc (at an angle ˛2) which it hits at (x2, y2). (See figure.)

A general recurrence formula for the coordinates of the nth collision with the
disc can be derived from (1) together with the generalization

Tn D tan ˛n D yn � Yn

l � xn
(5)

of (2). The result is

xn D TnYn C T 2
n l Cp

.a2 � Y 2
n /.1C T 2

n /C T 2
n .Y

2
n � l2/ � 2lTnYn

1C T 2
n

;

yn D Yn C Tn.l � xn/ : (6)

For the next iteration

˛nC1 D ˛n C 2 arctan

�
yn

xn

�
and YnC1 D yn C .l � xn/ tan˛nC1 :
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Inserting the lengths l D 100 cm (L D 2m), a D 5 cm given in the text, we obtain
the following coordinates .xn; yn/ (in cm) for successive collisions with the disc:

˛ D 0:3ı
xn 4:975

yn 0:4975

˛ D 0:0003ı
xn 5:0 5:0 3:983

yn 4:974 � 10�4 3:880 � 10�2 3:023

˛ D 0:0000003ı
xn 5:0 5:0 5:0 4:995

yn 4:974 � 10�7 3:880 � 10�5 3:007 � 10�3 2:330 � 10�1

˛ D 0:0000000003ı
xn 5:0 5:0 5:0 5:0 5:0

yn 4:974 � 10�10 3:880 � 10�8 3:007 � 10�6 2:330 � 10�4 1:806 � 10�2

The vertical deviations yn at collision with the disc provide a suitable measure
for the deviation of a trajectory from the periodic straight-line trajectory ˛ D 0.
Plotting these deviations on a logarithmic scale reveals the following dependence of
yn on the collision number n:

yn D const: � 101:9n D const: � e4:4n :
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Thus the Liapunov exponent of the trajectory defined by ˛ D 0 is 4.4 in
dimensionless units where the collision number defines the time scale. The period
of the orbit at (constant) velocity v of the particle is 2.l � a/=v and the Liapunov
exponent in physical units .s�1/ is 
 D 4:4�v=Œ2.l �a/�. Note that the initial angle
has to be accurate to roughly one ten-millionth of a degree if the particle is to hit the
disc at least five times.
5.8. The probability W.s/ that none of the N numbers y lie in the interval (x, x C s)
is Œ.L � s/=L�N . For N ! 1 we have

W.s/ D lim
N!1



1 � s

L

�N D lim
N!1

�
1 � ds

N

�N

D e�ds : (1)

At the same time, the probability defined in (1) gives us the probability for the
spacing to the next number being at least the distance s, i.e. W is the sum (integral)
over all probabilities (probability densities) for nearest neighbour spacings P.s0/
larger or equal to s:

W.s/ D
Z 1

s
P.s0/ ds0 ; P.s/ D �dW

ds
D d e�ds :
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Appendix
Special Mathematical Functions

For completeness this appendix briefly lists without further discussion the defini-
tions and some important properties of the special functions occurring in the book.
More detailed treatments can be found in the relevant literature. The “Handbook of
Mathematical Functions” [AS70], the “Tables” by Grad-shteyn and Rhyzik [GR80]
and the compilation by Magnus, Oberhettinger and Soni [MO66] are particularly
useful. Apart from these comprehensive works it is worth mentioning Appendix
B in “Quantum Mechanics I” by Messiah [Mes70], which describes a selection of
especially frequently used functions.

A.1 Legendre Polynomials, Spherical Harmonics

The lth Legendre Polynomial Pl.x/ is a polynomial of degree l in x,

Pl.x/ D 1

2llŠ

dl

dxl
.x2 � 1/l; l D 0; 1; : : : : (A.1)

It has l zeros in the interval between �1 and C1; for even (odd) l, Pl.x/ is an even
(odd) function of x. The Legendre polynomials fulfill the orthogonality relation

Z 1

�1
Pl.x/Pl 0.x/ dx D 2

2lC1 ı l;l 0 : (A.2)

The associated Legendre functions Pl;m.x/, jxj � 1, are products of .1 � x2/m=2

with polynomials of degree l � m.m D 0; : : : ; l/,

Pl;m.x/ D .1 � x2/m=2
dm

dxm
Pl.x/ : (A.3)
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The spherical harmonics Yl;m.�; �/ are products of exp .im�/ with polynomials
of degree m in sin � and of degree l � m in cos � , where the �-dependence is given
by the associated Legendre functions (A.3) as functions of x D cos � . For m � 0,
0 � � � � we have

Yl;m.�; �/ D .�1/m
�
.2l C 1/

4�

.l � m/Š

.l C m/Š

�1=2
Pl;m.cos �/ eim� (A.4)

D .�1/m
�
.2l C 1/

4�

.l � m/Š

.l C m/Š

�1=2
sinm�

dm

d.cos �/m
Pl.cos �/ eim� :

The spherical harmonics for negative azimuthal quantum numbers are obtained via

Yl;�m.�; �/ D .�1/m.Yl;m.�; �//
�: (A.5)

A reflection of the displacement vector

x D r sin � cos� ; y D r sin � sin� ; z D r cos �

at the origin (cf. (1.68)) is achieved by replacing the polar angle � by � � � and the
azimuthal angle � by �C�. This does not affect sin � , but cos � changes to � cos � .
In the expression (A.4) for Yl;m spatial reflection introduces a factor .�1/l�m from
the polynomial in cos � and a factor .�1/m from the exponential function in �.
Altogether we obtain

Yl;m.� � �; � C �/ D .�1/l Yl;m.�; �/ : (A.6)

The integral over a product of two spherical harmonics is given by the orthonor-
mality relation (1.59),

Z
Y�

l;m.˝/Yl0;m0.˝/ d˝ D ıl;l0 ım;m0 : (A.7)

The completeness relation is

1X
lD0

lX
mD�l

Yl;m.˝/Y
�
l;m.˝

0/ D ı.˝ �˝ 0/ D ı.cos � � cos � 0/ ı.� � �0/ : (A.8)

For a given l-value we have,

lX
mD�l

Yl;m.˝/Y
�
l;m.˝

0/ D 2l C 1

4�
Pl.cos �/ ; (A.9)
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where � is the angle between the two directions defined by ˝ and ˝ 0. For two
vectors r and r0 with jr0j < jrj we have

1

jr � r0j D
1X

lD0

jr0jl

jrjlC1Pl.cos �/ ; (A.10)

where � is the angle between r and r0.
The integral over three spherical harmonics is a prototype example for the

Wigner-Eckart theorem, which says that the dependence of the matrix elements of
(spherical) tensor operators in angular momentum eigenstates on the component
index of the operator and the azimuthal quantum numbers of bra and ket is given
by appropriate Clebsch-Gordan coefficients (see Sect. 1.7.1). For the spherical
harmonics YL;M as an example for a spherical tensor of rank L we have

Z
Y�

l;m.˝/YL;M.˝/Yl0;m0.˝/ d˝

D ˝
l;mjL;M; l0;m0˛ � .2l0 C 1/.2L C 1/

4�.2l C 1/

�1=2 ˝
l; 0jL; 0; l0; 0˛ : (A.11)

The special Clebsch-Gordan coefficient hl; 0jL; 0; l0; 0i is given by [Edm60]

˝
l; 0jL; 0; l0; 0˛ D p

2l C 1.�1/.l�L�l0/=2

�
�
.J � 2l/Š.J � 2L/Š.J � 2l0/Š

.J C 1/Š

�1=2

� .J=2/Š

.J=2� l/Š.J=2� L/Š.J=2� l0/Š
: (A.12)

The sum J D l C L C l0 of the three angular momentum quantum numbers must be
even. The Clebsch-Gordan coefficient (A.12) vanishes for odd J.

Explicit expressions for the spherical harmonics up to l D 3 are given in
Sect. 1.2.1 in Table 1.1. For further details see books on angular momentum in
quantum mechanics, e.g. [Edm60, Lin84].

A.2 Laguerre Polynomials

The generalized Laguerre polynomials L˛� .x/, � D 0; 1; : : : are polynomials of
degree � in x. They are given by

L˛� .x/ D ex

�Šx˛
d�

dx�
.e�xx�C˛/ D

�X
�D0

.�1/�
�
� C ˛

� � �

�
x�

�Š
(A.13)
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and have � zeros in the range 0 < x < 1. The ordinary Laguerre polynomials L�.x/
correspond to the special case ˛ D 0. In general ˛ is an arbitrary real number greater
than �1. The binomial coefficient in (A.13) is defined as follows for non-integral
arguments:

�
z
y

�
D � .z C 1/

� .y C 1/� .z � y C 1/
: (A.14)

Here � is the gamma function, see Sect. A.3.
The orthogonality relation for the generalized Laguerre polynomials reads

Z 1

0

e�xx˛L˛�.x/L
˛
� .x/ dx D � .� C ˛ C 1/

�Š
ı�;� : (A.15)

The following recursion relation is very useful, because it enables the numerically
efficient evaluation of the Laguerre polynomials for a given index ˛:

.� C 1/L˛�C1.x/� .2� C ˛ C 1 � x/L˛� .x/C .� C ˛/L˛��1.x/ D 0 ;

� D 1; 2; : : : :(A.16)

Note: The Laguerre polynomials defined by (A.13) correspond to the definitions in
[AS70, GR80, MO66]. The Laguerre polynomials in [Mes70] contain an additional
factor � .� C ˛ C 1/.

A.3 Gamma Function

The gamma function � .z/ is defined by

� .zC1/ D
Z 1

0

tze�tdt (A.17)

and has the property

� .z C 1/ D z� .z/ : (A.18)

For positive integers z D n we have � .nC1/ D nŠ. For half-integral z we can derive
� .z/ recursively from the value � .1=2/ D p

� via (A.18).
For small z we have

1

� .z/
D z

� .z C 1/
D z C �Ez2 C O.z3/ ; (A.19)



A.3 Gamma Function 619

where �E D 0:5772156649 : : : is Euler’s constant,

�E D �d�

dz

ˇ̌
ˇ̌
zD1

� 0:577256649 : : : (A.20)

The argument z may be complex, and

� .z�/ D Œ� .z/�� : (A.21)

Useful product formulae are,

� .iy/� .�iy/ D j� .iy/j2 D �

y sinh.�y/
; (A.22)

� .1C iy/� .1 � iy/ D j� .1C iy/j2 D �y

sinh.�y/
; (A.23)

�

�
1

2
C iy

�
�

�
1

2
� iy

�
D
ˇ̌
ˇ̌�
�
1

2
C iy

�ˇ̌
ˇ̌2 D �

cosh.�y/
; (A.24)

�

�
1

4
C iy

�
�

�
3

4
� iy

�
D �

p
2

cosh.�y/C i sinh.�y/
: (A.25)

From (A.23) it follows that j� .1 C iyj D p
�y= sinh.�y/. By induction we can

conclude,

j� .1C l C iy/j D
 

lY
nD1

jn C iyj
!r

�y

sinh.�y/
jyj!1� p

2� e� �
2 jyjjyjlC1=2 :

(A.26)

The right-hand sides of the formulae (A.22)–(A.25) also apply if y is not real, e.g.
for y D ix,

� .x/� .�x/ D � �

x sin.�x/
; (A.27)

� .1C x/� .1 � x/ D �x

sin.�x/
; (A.28)

�

�
1

2
C x

�
�

�
1

2
� x

�
D �

cos.�x/
; (A.29)

�

�
1

4
� x

�
�

�
3

4
C x

�
D �

p
2

cos.�x/ � sin.�x/
: (A.30)
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For large arguments we have Stirling’s formula,

� .z/
z!1� e�zzz�1=2p2�

�
1C 1

12z
C 1

288z2
C O

�
1

z3

��
: (A.31)

A.4 Bessel Functions

In many special cases describing realistic situations, the radial Schrödinger equation
has analytical solutions in the form of Bessel functions, which makes these
special functions particularly important. An excellent review of the definitions
and properties of Bessel functions is contained in Olver’s chapter [Olv70] in the
“Handbook of Mathemetical Functions”. Although the title of that chapter is “Bessel
Functions of Integer Order”, most results apply also for noninteger and even for
complex orders.

The defining differential equation for (ordinary) Bessel functions of order � is:

z2
d2C�
dz2

C z
dC�
dz

� .�2 � z2/C� D 0 : (A.32)

The connection to the radial Schrödinger equation is achieved via the transformation
u.z/ D p

z C�.z/, which leads to the following differential equation for u.z/,

� d2u

dz2
C �2 � 1

4

z2
u D u : (A.33)

Multiplying (A.33) by „2=2� and writing kr for z yields the radial Schrödinger
equations (4.22) and (4.192) in the free-particle case V.r/ � 0, with

�2 � 1

4
D l.lC1/ ) �2 D



l C 1

2

�2
in 3D (4.22) ; �2 D m2 in 2D (4.192) :

(A.34)

Equation (A.33) has two linearly independent solutions, which can be defined by
their boundary conditions for z ! 0 or for z ! 1. The (ordinary) “Bessel function
of the first kind” J�.z/ has a series expansion

J�.z/ D

 z

2

� � 1X
kD0

�� 1
4
z2
	k

kŠ � .� C k C 1/
(A.35)
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and obeys the following boundary conditions,

J�.z/
z!0� .z=2/�

� .� C 1/

�
1 � .z=2/2

� C 1
C O

�
 z

2

�4��
; (A.36)

r
�

2
z J�.z/

jzj!1� sin

 
z �

�
� � 1

2

	
�

2

!
C O

�
1

jzj
�
: (A.37)

When the order � is an integer, � D n,

J�n.z/ D .�1/n Jn.z/ : (A.38)

When � is not an integer, J�.z/ and J��.z/ are linearly independent.
The ordinary Bessel function with maximal phase difference to J�.z/ for large z

is the “Bessel function of the second kind” Y�.z/, which is defined for noninteger
order � by

Y�.z/ D J�.z/ cos.��/� J��.z/
sin.��/

; (A.39)

and for integer order n by Yn.z/
defD lim�!n Y�.z/. The large-z behaviour of Y�.z/ is

r
�

2
z Y�.z/

jzj!1� � cos

 
z �

�
� � 1

2

	
�

2

!
C O

�
1

jzj
�
: (A.40)

The low-argument behaviour of Y�.z/ can be derived for noninteger order � from
(A.36) and (A.39):

Y�.z/
z!0� �


 z

2

��� � .1C �/

��

�
1 � .z=2/2

1 � � C O

�
 z

2

�4��

C cot.��/
.z=2/�

� .1C �/

�
1 � .z=2/2

1C �
C O

�
 z

2

�4��
: (A.41)

For integer order, � D n, the expansion of Yn.z/ in z involves logarithmic terms. For
� D 0 we have

Y0.z/
z!0� 2

�

h
ln

 z

2

�
C �E

i
J0.z/C 2

�


 z

2

�2 C O

�
 z

2

�4�
: (A.42)

The square bracket in (A.42) contains Euler’s constant �E as defined in (A.20) above.
For �D n � 1, the leading term in the expansion of Yn.z/ is � 1

�
.n�1/Š.z=2/�n, in

agreement with the leading term in (A.41); each further term contains an additional
factor .z=2/2, as long as the combined exponent of z=2 remains smaller than n. At



622 Special Mathematical Functions

order .z=2/n the expansion contains a logarithmic contribution 2
�

ln
�
1
2
z
	

Jn.z/ (see
(9.1.11) in [Olv70]). Similar to (A.38) for the Jn, we have

Y�n.z/ D .�1/n Yn.z/ (A.43)

for integer order n.
The Bessel functions of the first and second kind, which are real-valued for

real argument z, can be combined with complex coefficients to define the Bessel
functions of the third kind or “Hankel functions”:

H.1/
� .z/ D J�.z/C i Y�.z/ ; H.2/

� .z/ D J�.z/ � i Y�.z/ : (A.44)

Their large-z behaviour follows from (A.37), (A.40),

r
�

2
z H.1/

� .z/
jzj!1� ei.z� 1

2 �� �
4 / ;

r
�

2
z H.2/

� .z/
jzj!1� e�i.z� 1

2 �� �
4 / :

(A.45)

Their small-z behaviour follows, for noninteger � from (A.36) and (A.41),

H.1/
� .z/ D �H.2/

� .z/ D � i

�

� .�/�
1
2
z
	� ; z ! 0 ; <� > 0 ; (A.46)

and this leading term is also valid for integer � > 0.
For free-particle motion in 3D, the order of the Bessel functions solving the radial

Schrödinger equation is half integer, � D lC 1
2
. The corresponding spherical Bessel

functions are denoted by lower-case letters and are defined as,

jl.z/ D
r
�

2z
JlC 1

2
.z/ ; yl.z/ D

r
�

2z
YlC 1

2
.z/ ; (A.47)

h.1/l .z/ D
r
�

2z
H.1/

lC 1
2

.z/ ; h.2/l .z/ D
r
�

2z
H.2/

lC 1
2

.z/ : (A.48)

For small z we have, according to (A.36),

jl.z/
z!0D zl

.2l C 1/ŠŠ
; (A.49)

and asymptotically according to (A.37)

zjl.z/
jzj!1D sin



z � l

�

2

�
: (A.50)
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From (A.40) we have,

zyl.z/
jzj!1D � cos



z � l

�

2

�
: (A.51)

In place of the functions yl.z/, some authors (e.g. [Mes70]) work with the spherical

Neumann functions, nl.z/
defD �yl.z/, which tend to C cos.z � l�

2
/ for large z.

For the derivatives of the spherical Bessel functions we have the simple formula

d

dz
jl.z/ D jl�1.z/� l C 1

z
jl.z/ ; l � 1 : (A.52)

The real regular and irregular radial free-particle wave functions are the solutions
of (A.33) with z D kr, i.e. kr jl.kr/ and �kr yl.kr/, as given in (4.25) in Sec. 4.1.3.
The corresponding “spherical Hankel functions” give the linear combinations
corresponding to incoming or outgoing spherical waves,

kr h.1/l .kr/
kr!1� �i ei.kr�l �2 / ; kr h.2/l .kr/

kr!1� i e�i.kr�l �2 / : (A.53)

According to (9.1.53) in [Olv70], the differential equation

� d2u

dz2
C
�

l.lC1/
z2

� 1

z˛

�
u.z/ D 0 (A.54)

is solved by functions of the form

u.z/ D p
z C�.l/

�
2

˛ � 2 z1�˛=2
�
; with �.l/ D 2lC1

˛ � 2 : (A.55)

If we interpret the dimensionless argument z as r=ˇ, (A.54) is just the radial wave
equation (4.65) at threshold in the partial wave l for the single-power potential V˛.r/,
as defined in (4.63), with C˛ < 0. The solutions (A.55) are of the form given in
(4.66), (4.67) in Sec. 4.1.7.

The modified Bessel functions are solutions of the differential equation

z2
d2Z�
dz2

C z
dZ�
dz

� .�2 C z2/Z� D 0 : (A.56)

As for the ordinary Bessel functions, the connection to the radial Schrödinger
equation is achieved via the transformation u.z/ D p

zZ�.z/, which leads to the
following differential equation for u.z/,

� d2u

dz2
C �2 � 1

4

z2
u D �u : (A.57)
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Multiplying (A.57) by „2=.2�/ and writing 	r for z again yields the radial
Schrödinger equations (4.22) and (4.192), in the free-particle case V.r/ � 0, but
now for negative energy E D �„2	2=.2�/ < 0. The order parameter � is again
related the angular momentum quantum numbers in 3D and in 2D by (A.34).

The modified Bessel function I�.z/ of order � solves (A.56) and is related to the
ordinary Bessel function of the first kind by,

i� I�.z/ D J�.iz/ ; .�� < arg z � �=2/ : (A.58)

Its behaviour for small jzj is, as for J� ,

I�.z/
z!0D . 1

2
z/�

� .� C 1/
; .� ¤ �1; �2; �3; : : :/ : (A.59)

For jzj ! 1 the asymptotic form of I� is

I�.z/
jzj!1D ez

p
2�z

; .j arg.z/j < �=2/ : (A.60)

For non-integral values of � the modified Bessel functions I�.z/ and I��.z/
defined by (A.58), (A.35) are linearly independent, and there is a linear combination

K�.z/ D �

2

I��.z/� I�.z/

sin .��/
; (A.61)

which vanishes asymptotically,

K�.z/
jzj!1D

r
�

2z
e�z ; .j arg zj < 3�=2/ : (A.62)

For integer order n, Kn.z/
defD lim�!n K�.z/.

For the modified Bessel function KlC1=2 of half-integral order l C 1=2 there is a
series expansion

KlC1=2.z/ D
r
�

2z
e�z

lX
kD0

.l C k/Š

kŠ.l � k/Š
.2z/�k : (A.63)

The derivative of KlC1=2 can be expressed in terms of KlC1=2 and Kl�1=2,

d

dz
KlC1=2.z/ D � l C 1

2

z
KlC1=2.z/ � Kl�1=2.z/ : (A.64)
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The Airy functions are essentially Bessel functions of order 1=3,

Ai.z/ D 1

3

p
z
�
I�1=3.�/ � I1=3.�/

 D 1

�

r
z

3
K1=3.�/ ;

Bi.z/ D
r

z

3

�
I�1=3.�/C I1=3.�/


; where � D 2

3
z3=2 : (A.65)

For large jzj,

2
p
� Ai.z/

jzj!1� z�1=4 e�� ; .j arg.z/j < �/ ;
p
� Ai.�z/

jzj!1� z�1=4 cos

�
� � �

4

�
;

�
j arg.z/j < 2�

3

�
: (A.66)

The Airy functions are solutions of the differential equation

d2w

dz2
� z w.z/ D 0 : (A.67)

For a linear potential V.x/ with a negative gradient,

V.x/ D .x � xctp/V 0 ; �V 0 D „2
2�

� > 0 ; (A.68)

the wave function  .x/ D Ai
�
�1=3.xctp � x/

	
is a solution of the Schrödinger

equation (1.284).

A.5 Confluent Hypergeometric Functions, Coulomb
Functions, Whittaker’s Function

The confluent hypergeometric function, also called “degenerate hypergeometric
function”, is defined according to Chapter 13 in [AS70] and Section 9.2 in [GR80]
as

F.a; bI z/ D
1X

nD0

� .a C n/

� .a/

� .b/

� .b C n/

zn

nŠ
: (A.69)

It is a solution of the equation

z
d2C
dz2

C .b � z/
dC
dz

D aC.z/ : (A.70)

Alternative notations for F.a; bI z/ are: 1F1.a; bI z/, M.a; bI z/, ˚.a; bI z/.
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A linearly independent solution of (A.70), sometimes also called confluent
hypergeometric function, is

U.a; bI z/ D � .1� b/

� .a � b C 1/
F.a; bI z/C � .b � 1/

� .a/
z1�b F.a � b C 1; 2� bI z/ :

(A.71)

An alternative notation for U.a; bI z/ is �.a; bI z/.
The Gaussian hypergeometric series, also called the hypergeometric function, is

defined by

2F1.a; bI c; z/ D
1X

nD0

� .a C n/

� .a/

� .b C n/

� .b/

� .c/

� .c C n/

zn

nŠ
: (A.72)

The confluent hypergeometric functions (A.69), (A.71) are important in the
context of Coulomb potentials, because they occur as components in solutions
of relevant Schrödinger equations, see, e.g. (4.141) in Sect. 4.1.12 and (4.227) in
Sec. 4.2.6. An important special case is the radial Schrödinger equation for motion
in a pure Coulomb potential at energy E D „2k2=.2�/, characterized by the
Sommerfeld parameter  [(1.119) in Sect. 1.3.2],

�
� d2

d�2
C l.lC1/

�2
C 2 

�

�
ul.�/ D ul.�/ : (A.73)

Two linearly independent solutions are the regular Coulomb function Fl.�; /,

Fl.; �/ D 2l e� �
2 

j� .lC1Ci/j
.2lC1/Š e�i��lC1 F.lC1�i; 2lC2I 2i�/ ; (A.74)

and the irregular Coulomb function Gl.�; /,

Gl.; �/ D iFl.; �/C e
�
2 

j� .lC1Ci/j
� .lC1Ci/

e�i.��l �2 /.2i�/lC1U.lC1�i; 2lC2I 2i�/ :

(A.75)

The small-� behaviour of the regular Coulomb function is, for fixed  [AS70],

Fl.; �/
�!0� 2l e� �

2 
j� .lC1Ci/j
.2lC1/Š �lC1 : (A.76)

For jj ! 1, which corresponds to approaching the threshold according to (1.119),
we have via (A.25)

j� .l C 1C i/j jj!1D p
2�e� 1

2 �jjjjlC1=2: (A.77)
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In order to obtain a formula for the regular Coulomb function of small argument
� D kr close to threshold we combine (A.76) and (A.77) to

Fl.; kr/
k!0; r!0D

r
�

2jj
.2krjj/lC1
.2l C 1/Š

e� 1
2 �.Cjj/: (A.78)

Expoiting the �-independence of the Wronskian [AS70],

@Fl

@�
Gl.; �/� @Gl

@�
Fl.; �/ D 1 ; (A.79)

we can derive the small-� behaviour of the irregular Coulomb function for fixed ,

Gl.; �/
�!0� e

�
2  .2l/Š

2l j� .lC1Ci/j �
�l : (A.80)

The large-� behaviour of the Coulomb functions is,

Fl.; z/
z!1D sin



z �  ln 2z � l

�

2
C �l

�
;

Gl.; z/
z!1D cos



z �  ln 2z � l

�

2
C �l

�
: (A.81)

The constants �l are the Coulomb phases,

�l D arg� .l C 1C i/: (A.82)

Whittaker’s equation,

d2C
dz2

�
"

m2 � 1
4

z2
� 


z

#
C.z/ D 1

4
C.z/ ; (A.83)

acquires the form of the radial Schrödinger equation for an attractive pure Coulomb

potential at negative energy E D �„2	2=.2�/ if we write
�
l C 1

2

	2
for m2 and

replace z by 2� � 2	r and 
 by � D jj � 1=.aC	/, aC being the Bohr radius:

�
� d2

d�2
C l.lC1/

�2
� 2 jj

�

�
ul.�/ D �ul.�/ : (A.84)

Two solutions of (A.84) are

Mjj; lC 1
2
.2�/ D .2�/lC1 e��F .l C 1 � jj; 2l C 2I 2�/ ; (A.85)

Mjj;�l� 1
2
.2�/ D .2�/�l e��F .�l � jj;�2lI 2�/ : (A.86)
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The linear combination of (A.85) and (A.86) which vanishes for large � is
Whittaker’s function,

Wjj; lC 1
2
.2�/ D � .�2l � 1/

� .�l � jj/Mjj; lC 1
2
.2�/C � .2l C 1/

� .l C 1 � jj/Mjj;�l� 1
2
.2�/ ;

(A.87)

Wjj; lC 1
2
.2�/

�!1� e��.2�/jj
�
1C O

�
1

�

��
: (A.88)

At least one gamma function in (A.87) is ill-defined for integer l, but the expression
for Wjj; lC 1

2
.2�/ is well defined when taking the limit as l approaches its integer

value. For integer nonnegative l, Wjj; lC 1
2
.2�/ vanishes as � ! 0 when jj is an

integer larger than l; in this case Wjj; lC 1
2
.2�/ is a regular normalizable solution

of (A.84).
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347
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Complex scattering length, 536, 537, 548

in 2D, 550, 551
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184, 200, 335, 379, 380, 393, 475,
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interaction, 123–125, 223–231
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226, 234–236, 375, 508

Convergent close-coupling (CCC) method,
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Coordinate representation, 8, 9, 14, 94, 95,
290, 418, 419, 421, 422, 424, 445,
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Core, 125, 190, 215, 220, 472
Core electrons, 214, 216, 218, 219
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Correlations, 113, 123–125, 131, 263, 275,

385, 390, 392, 443, 445, 470, 575,
576
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627
Coulomb gauge, 137, 138
Coulomb parameter, 25, 26, 327, 362, 363,

385
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239–241, 245, 247, 253, 357, 358,
363–366, 372, 375
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Cylindrical coordinates, 255, 269, 270, 466
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Darwin term, 103, 104, 154, 573
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Definition for the position of the resonance, 52
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Degenerate eigenvalue, 5, 58
Degenerate Fermi gas, 479
Degenerate multiplets, 148
Density matrix, 354, 355, 357, 367, 368, 419,
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Density of final states, 135, 136, 148, 358
Density operator, 354–356, 418–420, 528
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Detuning, 54, 527–530
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Diagonalization of the Hamiltonian, 123
Diamagnetic term, 269, 270
Differential cross section, 318, 325, 326, 328,

330, 336, 347–349, 352, 356, 358,
361, 368, 371, 382, 384, 386–388,
391, 397

for inelastic scattering, 358, 368
Differential scattering cross section, 295, 336,
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in 2D, 336

Dipole approximation, 142, 144, 151, 409,
427

Dipole-dipole interaction, 302, 519
Dipole force, 528, 530
Dipole polarizability, 256, 257, 282, 318, 396,

520, 522–524, 589
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Dirac-Fock method, 122, 123, 125
Dirac’s Hamiltonian, 97, 122
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Dispersion relation, 36, 37, 518, 529
Dissociation threshold, 163, 167, 178, 183,

404, 503, 504
Distorted wave Born approximation (DWBA),

329–332, 351, 386
Distorted waves, 330, 362, 367
Double scattering experiments, 356
Downhill equation, 261, 262
DWBA. See Distorted wave Born

approximation (DWBA)
Dynamical zeta function, 473

E
Effective Hamiltonian, 119, 333, 335
Effective length, 173
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470
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316, 317, 333, 334, 340, 357, 498,
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455, 457, 459, 461–464, 472, 518,
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145–147, 255, 277, 280, 283, 404,
405, 409, 412, 427, 465, 526, 551
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33, 34
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Energy shell, 436–438
Ensemble, 173, 354, 441, 444, 454, 477, 478
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Equivalent integral equation, 289, 290, 330
Euler’s constant, 313, 619, 621
Evanescent wave, 518, 526–531, 547
Even parity, 150, 273
Excess-photon ionization, 406, 415, 416
Exchange potential, 120, 121, 217, 219, 335,

481
Exothermic reaction, 371
Expectation value, 6, 7, 9, 11, 13, 45, 61–63,
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524, 527, 552, 568, 569, 573–576,
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Exponential divergence, 434
Extended remainder, 509, 510, 513
Extended threshold quantum number, 510, 513
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F
Fermi energy, 126, 127, 478
Fermi momentum, 126
Fermions, 107, 108, 155, 477–481, 488
Fermi sphere, 126
Fermi wave number, 126
Feshbach bound state, 513–515
Feshbach resonance, 46, 49–55, 136, 146, 223,

224, 228, 229, 232, 236, 241, 248,
249, 371, 373, 374, 404, 483, 488,
504–517

near threashold, 504–517
threshold-insensitive, 508

Feshbach’s projection formalism, 333, 374
Field gauge, 277, 413
Field ionization, 258, 261, 262, 264
Fine-structure, 101, 104, 199, 200, 486

constant, 100, 122, 148, 520, 573, 605
splitting, 101, 102, 198, 199

Floquet states, 278, 413–415
Forbidden transitions, 39, 150, 151, 213,

531–533
Four-component spinors, 97, 98
Fourier transform, 36, 361, 412, 447, 460
Fourier transformed spectrum, 450, 461, 470,

471
Free Green’s function, 89
Free-particle Green’s function, 290, 395

in 2D, 338
Free wave equation, 23, 137
Frequency-dependent, 277
Frequency-dependent polarizability, 279, 280,

520
Functional, 61, 62, 130–131

G
Gamma function, 25, 327, 618–620, 628
Gauge, 137, 138, 142, 255, 265, 269, 275–277,

280, 283, 409, 412–414, 591
Gauge transformation, 137
Gauge-transformed wave function, 283
Gaussian orthogonal ensemble (GOE),

441–444, 470
statistics, 470

Gaussian unitary ensemble (GUE), 441, 442
Gaussian wave packet, 36, 39, 424, 426, 551,

565
Gell-Mann-Goldberger decomposition, 331,

351
Generalized eigenvalue problem, 217
Generalized Laguerre polynomials, 16, 28,

617, 618
Generalized oscillator strengths, 361

Generalized spherical harmonics, 86, 87, 89,
349, 572

Generator, 13
Generic behaviour, 445
Ghost orbits, 472
GOE. See Gaussian orthogonal ensemble

(GOE)
Golden Rule, 132–136, 141, 143, 144, 148,

228, 229, 231, 281, 395, 404, 583,
594, 595

Good quantum number, 11, 14, 113, 116, 122,
123, 151, 198, 219, 268, 271, 363,
364, 440, 442, 590, 591

Grand canonical ensemble, 477, 478
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330, 338, 359, 375–377, 385, 395,
397, 410, 445, 447, 448, 473, 507,
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Green’s operator, 229, 290, 506
Gross-Pitaevskii equation, 482–486, 504
Ground state, 10, 62–64, 111, 113, 116,

122, 124, 130, 131, 146, 197, 200,
219, 257, 258, 282, 316, 333, 414,
422, 424, 479–482, 484–486, 520,
524–526, 528, 547, 552, 568, 607

energy, 10, 63, 64, 124, 125, 131
Group, 13, 107, 113, 353, 389, 428, 488, 544
Group velocity, 37, 42, 44
Gutzwiller’s trace formula, 449, 450, 460, 470,

473
Gyromagnetic ratio, 265, 266, 268

H
Hamiltonian, 8–11, 13, 25, 31, 45–47, 49, 56,

58, 60–62, 64, 85, 86, 89, 93–97,
99, 103–106, 108, 110, 112–114,
119, 121–123, 132, 134, 136, 137,
140–144, 154, 155, 194, 195, 198,
215–217, 227, 255–257, 259, 262,
265, 266, 270, 274–278, 281–283,
333, 335, 364, 375, 379, 380, 382,
386, 409, 410, 413, 414, 418, 420,
422, 423, 428, 431, 439–441, 443,
445, 462, 463, 465, 466, 472, 477,
481, 526, 527, 563, 572–574, 576,
590, 592, 607

Hamiltonian function, 417, 418, 433, 434, 436,
437, 440, 443, 446

Hankel functions, 338, 377, 398, 622, 623
Hard-sphere phase shifts, 299
Hard-sphere scattering, 298, 299, 301, 310
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Hartree-Fock equations, 119, 121, 122, 125,
481

Hartree-Fock method, 118–125, 213, 481
Heisenberg representation, 9, 141, 427
Helium atom, 115, 125, 154, 473–477, 531
Helmholtz equation, 397
Hermitian conjugate operator, 4
Hermitian operator, 4–6, 8, 63
Higher-harmonic generation, 415
Hilbert space, 3, 5, 6, 31, 61–63, 84, 89, 109,

121, 123, 271, 278, 476, 566
H2+ molecular ion, 183
Hohenberg-Kohn Theorem, 130, 131
Homogeneous equation, 50, 359, 376, 385
Homogeneous potential, 66, 69, 79, 348, 455,

458, 459, 503, 522
Hund’s first rule, 117
Hund’s second rule, 116, 117
Hydrogen atom

in a magnetic field, 270, 274, 276, 451,
465–472

in a microwave field, 270, 273, 462–465
Hydrogenic ion, 95–96
Hydrogen, negative ion, 374
Hylleraas-Undheim theorem, 63
Hyperangle, 379–381
Hyperbolic periodic orbits, 450
Hyperfine interaction, 114
Hyperfine structure, 104, 486
Hyperradius, 379, 380
Hyperspherical coordinates, 379, 603

I
Impact parameter, 323, 324
Incoming boundary conditions, 534–536, 543,

550
Inner classical turning point, 172
Integrable limit, 435, 437
Integrable system, 437, 440
Integral of motion, 436, 437
Integrated action, 71, 77, 78
Integrated cross section, 295, 328, 358, 373,

374, 595
Integrated scattering cross section, 336

in 2D, 336
Intermittency, 476
Internal energy, 48, 219, 371, 386, 488
Internal Hamiltonian, 94, 95, 276, 375, 379,

380, 382
Internal states, 214, 217–219, 302, 357, 361,

363, 364, 367, 374, 376, 378, 527,
528

Internal variables, 195, 214, 216, 217, 275

Internal wave functions, 217, 220, 375, 376,
380

Intruder state, 513, 514
Invariant under symmetry transformation, 13,

441
Inverse-cube potential tail, 313, 314
Inverse hyperbolic periodic orbits, 450
Inverse penetration depth, 307
Inverse power-law potentials, 74–80
Inverse-power potential, 175, 304, 305,

536–538
tail, 175, 302, 303, 311–313, 500, 512, 514,

537
Inverse-square potentials, 74, 75, 188, 200,

370, 499
Inverted multiplets, 116
Ionizing trajectories, 463
Irregular Coulomb function, 626
Irregular solutions, 25, 26, 51, 220, 236, 241,

246, 293, 344
Iso-electronic sequence, 96, 124, 125

J
jj coupling, 117

K
Keldysch approximation, 411, 412
Keldysch-Faisal-Reiss theory, 412
Ket, 3, 4, 217, 257, 267, 379, 380, 384–386,

410, 617
Kinetic energy, 8, 65, 70, 104, 105, 119, 122,

126, 127, 131, 137, 154, 156, 189,
216, 261, 275, 339, 371, 378, 379,
381, 382, 386, 399, 406, 407, 413,
421, 436, 439, 451, 452, 480, 484,
568, 573, 574, 596

Kinetic momentum, 277, 466
K-matrix, 364

L
Lagrangian, 446, 448, 452, 458
Laguerre polynomials, 28, 124

generalized, 28
Lamb shift, 102, 198–200
Landau channels, 271, 272
Landau gauge, 283, 590, 591
Landau states, 269, 271, 272, 471, 591
Landé factor, 268
Langer modification, 70, 73, 74, 76, 78, 90,

202, 570, 582
Large components, 98, 100, 102, 103, 283
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Legendre polynomials, 218, 295, 321, 326,
334, 615–617

Lennard-Jones potential, 162, 163, 180–182,
186, 315, 496, 497

LeRoy-Bernstein function, 178, 179
Level density, 161, 193, 442, 447–449, 553
Levinson’s theorem, 314–317, 320
Liapunov exponent, 433, 434, 439, 450, 468,

473, 474, 476, 553, 610, 613
Lifetime, 136, 145, 146, 155, 220, 257, 258,

261, 262, 281, 531, 580
Linear operators, 4, 84

in spin space, 84
Liouville equation, 418, 419, 421, 426, 552
Liouville’s theorem, 433
Lippmann-Schwinger equation, 290, 295–297,

303, 337–338, 359, 360, 376, 379,
389

in 2D, 337
l-mixing, 273
Local classical momentum, 65, 75, 76, 166,

490, 498, 500, 532, 537
Local de Broglie wave length, 67
Local potential, 120, 130, 159, 318–320, 518
Long wave limit, 69
LS coupling, 151, 266, 576
Lu-Fano plot, 242–245

M
Magnetic dipole transitions, 151
Magnetic Feshbach resonance, 506, 512, 516
Magnetic field, 136, 139, 265–276, 282, 283,

454, 455, 457–459, 462, 465–472,
483, 486, 505, 607

Magnetic field strength parameter, 270
Magnetic moment, 265, 266
Maslov index, 71–74, 77, 201, 202, 449, 474,

475, 567, 568
nonintegral Maslov index, 451

Mass polarization term, 105, 144, 156
Matching conditions, 19, 20, 23, 26, 27, 561
Matching radius, 19, 23, 314
Matrix norm, 433, 533
Matrix of operator, 6
Mean field, 111, 481, 482, 504
Mean level density, 442
Mean mode number, 441, 442
Mean oscillator strengths, 209–212, 280, 582
Mean scattering length, 173, 174, 186, 493,

502, 511, 512, 535–537, 539, 541
Mean single-particle potential, 111, 214
Mechanical similarity, 66, 451, 452, 454–457,

459, 461, 462

Minimum uncertainty wave packets, 565
Mixed spin state, 354–357
Mixed state, 351, 354–356, 367, 419
Mode label, 138
Mode number, 441–443
Modified Bessel functions, 20, 302–304, 623,

624
Modified Coulomb potential, 200–214, 234,

329–332, 351, 502
Modified effective range, 312
Modified effective range expansion, 311, 312
Modified quantum-defect function, 232
Momentum representation, 36, 89, 418–422,

563, 607
Momentum transfer, 291, 298, 328, 338, 362,

388, 399, 604
Monodromy matrix, 449
Motional Stark effect, 275
Mott formula, 397
Multichannel quantum defect theory (MQDT)

parameters, 253, 282
Multi-configurational Dirac-Fock method, 123
Multi-configurational Hartree-Fock method,

123
Multipole expansion, 218
Multipole matrix elements, 218
Multipole moments, 218

N
Natural line width, 146
Natural oscillator width, 422, 426
Natural variable, 461, 470
n-dimensional sphere, 398, 603
Nearest neighbour spacings, 553, 613
Nearest neighbour spacings (NNS)

distributions, 442–445, 469, 470
Near-threshold level density, 161, 163, 187,

191–194
Near-threshold quantization, 493

rule, 161, 187, 191–194
in 2D, 550

Negative parity, 15–17, 276, 599
Neumann functions spherical, 623
Nonclassical light, 428
Non-coplanar symmetric geometry, 388
Non-degenerate eigenvalue, 58
Non-Hermitian Hamiltonian, 333
Nonintegral Maslov indices, 451
Nonlinear Schrödinger equation, 482
Nonlocal potential, 120
Non-separable, 271
Norm, 2, 15, 29, 32, 43, 57, 60, 211, 433, 434,

553
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Normalizable wave function, 305
Normalization in energy, 226
Normal Zeeman effect, 265, 266
Nuclear spin, 104, 114

O
Observables, 4–8, 11, 23, 45, 46, 66, 137,

221–223, 253, 280, 324, 355, 364,
366, 370, 471, 544

Odd parity, 116, 117
One-body operator, 109, 110, 119, 120
One-channel quantum defect theory, 208
One-dimensional harmonic oscillator, 89, 422,

591
One-particle-one-hole excitation, 110, 118,

119, 484
Open channels, 48, 49, 51–55, 219–221,

223, 225, 226, 228–232, 234–236,
239–242, 245–248, 253, 254, 281,
357, 358, 583

Optical lattice, 529
Optical potential, 332–335
Optical theorem, 298, 341, 549, 593

in 2D, 337, 341
Orbital angular momentum quantum numbers,

99, 102, 151, 397
Ordinary Bessel function, 30, 302, 303, 340,

620, 621, 623, 624
Ordinary Laguerre polynomials, 16
Orthogonality relation, 88, 615, 618
Orthogonal transformations, 441
Orthogonal wave functions, 441
Ortho-helium, 115, 116
Orthonormal basis, 5
Orthonormality relation, 3, 12, 562
Oscillator strengths, 151–153, 209–213, 223,

229–231, 233, 236–238, 251–253,
280, 281, 361, 362, 582–584

Oscillator width, 16, 88, 422, 426, 483–485,
591, 592

Outer classical turning point, 166, 184, 185,
498, 500

Outer reflection phase, 167, 170, 171, 174,
175, 177, 178, 182, 186

Overlap, 57, 63, 88, 109, 215–217, 228, 249,
250, 273, 476

Overlap matrix, 62, 63, 215
Overlapping resonances, 228

P
Parabolic coordinates, 258, 259
Parabolic quantum numbers, 260, 261, 263

Para-helium, 115, 116
Paramagnetic interaction, 268
Parity, 13–18, 28, 116, 117, 150, 151, 183,

188, 194, 198, 218, 219, 256, 257,
271, 273, 276, 374, 520, 527, 588,
599, 600

Parity of a many-body wave function, 116
Partial wave amplitude, 321, 331, 350, 352,

372, 396, 483, 598
Partial waves, 291–292, 294, 295, 297,

299–301, 303, 311, 313, 314,
316–318, 320, 321, 326, 327, 331,
332, 334, 338, 340, 342, 344, 350,
352, 363, 364, 366, 368, 371, 372,
392, 396, 483, 595, 596, 598, 600

Partial-wave scattering amplitude, 294, 297,
300, 313, 314

in 2D, 340
Partial waves expansion, 291–295, 332, 338,

340, 363, 366, 368, 392
in 2D, 338

Partition function, 477, 478
Paschen-Back effect, 268–270
Path integral, 446
Pauli principle, 106–111, 114, 116, 117, 197,

213, 318–320, 478
Pauli spin matrices, 84, 85, 97, 154, 353, 397
Periodically kicked rotor, 434–436, 439
Periodic table, 113
Perturbation theory for degenerate states, 267
Perturbed Rydberg series, 232

of Feshbach resonances, 248
Perturbed Rydberg series of autoionizing,

251–253
Perturber state, 513
Peterkop theorem, 383
Phase shift, 23–25, 50, 52–56, 167, 205,

207–209, 220, 225, 226, 228,
230–233, 235, 236, 238–242,
244–247, 261, 292, 294, 296–300,
304, 310, 312–322, 325, 326, 331,
332, 334, 338, 340–344, 349, 351,
364, 365, 371, 372, 395, 491–497,
501–507, 509–511, 516, 517,
534–537, 543, 550, 596

background, 50, 53, 55, 56, 220, 228, 235,
241, 506, 516, 517

Phase shifted reactance matrix, 242, 244
Phase space, 71, 126, 131, 358, 368, 378, 392,

417–422, 425, 426, 428, 433–438,
440, 441, 448, 450, 463, 466–468,
472, 473, 552, 606, 610

Phase space factor, 358, 368, 378
Phase velocity, 35, 37
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Photoabsorption, 147, 153, 206, 207,
209–213, 221–223, 229, 231, 233,
236, 239, 251, 276, 281, 362,
471, 472

cross sections, 207, 212, 221, 222, 229,
231, 233, 251, 281

spectrum, 206, 239, 276
Photoionization, 147–149, 153, 209–213, 221,

253, 254, 262–264, 405, 431
cross section, 148, 153, 213

Planck’s constant, 7, 66, 458–462, 470
Poincaré surface of section, 438
Point of vanishing width in perturbed Rydberg

series of Feshbach resonances, 250
Poisson bracket, 417, 419
Poisson equation, 126
Poisson spectrum, 440, 441, 444
Poisson statistics, 470
Poisson summation formula, 320
Polarization degree of, 355
Polarization vector, 138, 139, 141, 145,

354–356, 397
Pole of scattering length, 506, 514, 516
Ponderomotive energy, 408, 412, 413
Ponderomotive force, 413
Position and momentum operators, 7, 8,

427
Position of resonance, 505
Position variables, 8
Positive parity, 13, 198, 600
Positron, 387, 388, 393
OP-space, 333, 334

Post-diagonalization, 64
Potential barrier, 39, 46, 54, 262, 316, 369,

511, 531–533
Potential energy, 8, 10, 11, 14, 29, 65, 75, 85,

96, 130, 131, 137, 213, 216, 218,
258, 259, 277, 390, 393, 394, 421,
437, 452, 455, 456, 519, 569, 573,
574

Potential resonances, 317
Pre-diagonalized states, 58, 59
Principal quantum number, 17, 18, 28, 29, 31,

100, 102, 111, 112, 203, 211, 257,
260, 269, 270, 273, 274, 280, 372,
462, 463, 582

Probabilities, 3, 6, 39, 134, 137, 144, 148, 151,
153, 156, 354, 355, 390, 391, 393,
404, 408–415, 419, 426, 457, 477,
478, 544, 545, 613

Probaility density, 2, 33, 35, 36, 45, 66, 84,
417, 420, 429, 430, 442, 553, 564,
605

Projection operator, 5, 108, 333, 354, 355

Propagator, 229, 245, 445, 446, 448, 506, 507
semiclassical, 446

Pseudomomentum, 275, 276
Pseudo-resonant perturbation, 233, 238, 244,

281
Pseudoseparation of variables, 275
Pseudostates, 335, 372
Pure state, 351, 355, 356, 418–420, 551

Q
OQ-space, 333–335, 357, 358

q-reversals, 252, 253
Quadratic Stark effect, 256–258, 279
Quadratic Zeeman effect, 270, 272
Quantality function, 67, 75, 78–80, 91, 165,

202, 261, 531, 532, 570
Quantization function, 163, 164, 166, 167, 171,

173, 176, 178–182, 185–187, 501,
513, 515

Quantization function for s-states in 2D, 551
Quantization of the electromagnetic field,

137
Quantization rule, 163, 167, 178, 181, 513,

550
Bohr-Sommerfeld, 72, 89, 473–475
conventional WKB, 69, 72–74, 161, 162,

503
Quantum annihilation operator, 552
Quantum creation operator, 423
Quantum defect function, 204–206, 208, 209,

231, 232, 235, 502
Quantum defects, 200–209, 231–254, 272,

280, 281, 332, 367, 474, 489, 502,
503, 582, 586, 587

Quantum defect theory (QDT), 208, 231,
233–254, 272, 367, 489, 502, 503

Quantum defect theory (QDT) equation, 209,
231, 232, 248

Quantum fluctuations, 428
Quantum length, 76, 175, 183, 187, 302, 305,

494, 537, 543, 545–547
Quantum reflection, 39, 175, 176, 493, 522,

533–536, 538–551
amplitude, 534–536, 544, 546
of helium dimer, 548
in 2D, 550

Quasi-continuum, 208
Quasi-energies, 278, 413, 415
Quasi-energy method, 278
Quasi-energy states, 278, 413
Quasi-Landau modulations, 471
Quasiparticles, 484, 486
Quasiperiodic motion, 435
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R
Rabi frequency, 527, 530
Radial Born approximation, 297, 298
Radial Dirac equation, 100, 123
Radial eigenfunctions

in a Coulomb potential, 29, 30, 88
for the harmonic oscillator, 17, 88

Radial free-particle Green’s function, 296
Radial Lippmann-Schwinger equation,

295–297, 303
Radial potentials, 48, 260, 297, 351, 363
Radial Schrödinger equation, 14–16, 18, 21,

22, 24–26, 29, 33, 87, 100, 123,
162, 164, 168, 188, 200, 205, 292,
293, 295–298, 300–302, 304–309,
311, 313, 315, 316, 318, 319, 331,
339, 340, 342, 343, 349, 351, 357,
489, 499, 504, 534, 535, 543, 561,
568, 620, 626, 627

in 2D, 339, 340
Radial wave function, 14–17, 23, 29, 32, 72,

87, 88, 95, 96, 100, 121, 148, 149,
208, 211, 219, 221, 234, 292, 294,
296–300, 303, 307, 308, 312, 314,
315, 321, 322, 332, 334, 339, 340,
342, 364–366, 509, 536, 550, 577,
578, 582

in 2D, 339
Radiation gauge, 142, 277, 409
Radiative corrections, 125
Rainbow scattering, 324
Random matrices, 440–442, 445
Reactance matrix, 242, 244, 253, 364, 365, 367
Reaction rates, 549
(e,2e) reactions, 375, 382, 386, 399
Reciprocity relations, 435, 618
Recurrence spectroscopy, 461
Recursion relation, 435, 618
Reduced action, 448
Reduced classical turning point, 165, 171, 175,

177, 178, 532, 533
Reduced energy, 222, 237, 239, 249, 584,

585
Reduced mass, 94, 95, 105, 183, 274, 275, 287,

318, 385, 397, 483
Reduced matrix element, 150, 267
Reduced monodromy matrix, 449
Reduced operator, 47, 62
Reference potential, 25, 164–167, 171,

173–177, 179–187, 489–493, 495,
496, 498–503, 508, 509, 511–513,
533, 535, 543, 544, 550, 551

Reflection amplitude, 38, 44, 45, 54, 534–540,
544, 546, 550

Reflection phase, 68–72, 74, 90, 162, 164, 167,
170, 171, 174–178, 182, 186, 191,
322, 491, 492, 568

for centrifugal potential, 70
Regular Coulomb function, 626
Regularity, 438, 444, 469, 470, 476
Regular multiplets, 116
Regular solution, 22–27, 50, 51, 76, 164, 171,

172, 220, 236, 240, 241, 246, 293,
300, 303, 305, 309, 340–344, 351,
490, 508, 534, 537

Relative distance coordinate, 93, 105, 599
Relative momentum, 94
Relativistic correction, 102–105, 122, 125,

154, 572, 574
Relativistic energy momentum relation, 97
Remainder, 173, 493, 495, 497, 501, 514
Renormalization, 140
Renormalized wave functions, 234
Representation, 7–9, 14, 36, 82, 89, 94, 95, 98,

127, 141, 144, 164–168, 170, 172,
185, 212, 227, 242, 244, 290, 308,
320, 339, 354, 406, 418–422, 424,
427, 428, 432, 445, 447, 489–492,
496, 498, 500, 501, 508, 513, 532,
537, 563, 605, 607

Repulsive Coulomb potential, 74, 397
Residual antisymmetrizer, 214, 215
Residual two-body interaction, 111
Resonance, 45–56, 136, 146, 197, 199,

219–224, 226–239, 241–244,
247–253, 257, 261–263, 272, 273,
281, 317, 371–374, 404, 406, 415,
439, 440, 450, 464, 471, 476, 483,
488, 504–517, 527, 584, 585

condition, 450
energy, 507
position, 227, 228, 237, 248, 249, 372, 507,

511, 513
width, 507, 511, 513

Resonance widths in perturbed Rydberg series
of Feshbach resonances, 249

Resonant dipole interaction, 302
Resonant phase shift, 506
Rest energy, 99, 101, 102
Restricted Hartree-Fock method, 124
Retardation, 75, 122, 312, 520, 523, 544, 545,

548
effects, 312

Revival, 431, 432
Ritz variational method, 61, 118
R matrix method, 253, 254, 364, 389, 390
Rounded step, 370, 371
Runge-Lenz vector, 429
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Russell-Saunders coupling, 116
Rutherford differential cross section, 361
Rutherford scattering in 2D, 345, 347, 348
Rutherford scattering in 3D, 347
Rydberg atoms, 160, 206, 280, 432, 465
Rydberg energy, 28, 29, 95, 96, 200, 203, 269,

551
Rydberg formula, 161, 201, 203, 206, 207, 475
Rydberg series

of autoionizing resonances, 233–238, 247,
250–252

of bound states 228, 248, 250, 272, 281,
282

of Feshbach resonances, 249

S
Saturation parameter, 528, 530
Scalar potential, 137, 255, 283
Scalar product, 2–4, 32, 57–60, 82, 84, 88,

145, 149, 278, 292
of two spinors, 84

Scaled action, 460, 470, 471
Scaled energy, 79, 80, 455, 466–470
Scaled-energy spectroscopy, 455, 466
Scaled field strength, 454, 455, 457, 459–461,

465, 470
Scaled frequency, 461, 464, 465
Scaled quantum number, 461, 463
Scaling, 66, 75, 96, 451–463
Scattering amplitude, 288–291, 294, 295, 297,

298, 300, 301, 313, 314, 320, 321,
326, 328, 331, 332, 336, 340, 341,
350–352, 358, 360, 362, 366, 371,
383, 395, 397, 446, 483, 548, 595,
599

in 2D, 340, 341
Scattering cross section

inelastic, 368, 371, 372
integrated, 289, 295, 297, 301, 336, 395,

596
radial, 14–16, 18, 22, 24–26, 29, 33, 87,

100, 123, 162, 164, 168, 188, 200,
205, 292, 293, 295–298, 300–302,
304–308, 311, 313, 315, 316, 318,
319, 331, 339, 340, 342, 343, 349,
351, 357, 489, 499, 504, 534, 535,
543

reduced, 46, 87
stationary, 10, 132, 255, 283, 289, 349, 396
time-dependent, 10, 11, 14, 32, 34, 38, 39,

45, 46, 56, 86, 96, 133, 136, 277,
278, 287, 409–411, 413, 439, 462,
517, 526, 527

time-independent, 10, 11, 14, 32, 35, 38,
39, 56, 64, 86, 87, 136, 287, 288,
439

total elastic, 289
Scattering cross sections in 2D, 341, 345
Scattering length, 164, 171–174, 178, 181,

182, 186, 187, 300, 301, 303–307,
310–314, 342, 344, 404, 483, 485,
488, 489, 493, 495, 497, 501,
502, 504–506, 510–512, 514–516,
535–537, 539, 541, 548, 550, 551

in partial wave l, 300, 303, 304
in 2D, 342, 344, 551

Scattering matrix, 297, 354
Scattering phase shift, 291–314, 322, 326, 338,

340–344, 491–493, 495, 501, 502,
504, 506, 509, 510, 534, 543, 548

in 2D, 340–342, 344
Scattering plane, 335, 336
Schrödinger equation, 9–11, 14–18, 21, 22,

24–26, 29, 33–35, 38, 39, 45, 46, 56,
67–71, 74–76, 78, 79, 86, 87, 89,
94, 96, 97, 100, 102–104, 122, 123,
131–133, 136, 161, 162, 164, 165,
168, 169, 171, 174, 188, 189, 192,
200, 206, 253, 255, 258–260, 266,
269–272, 278–280, 283, 287–293,
295–298, 300–309, 311, 315, 316,
318, 319, 327, 329, 331, 333–335,
339, 340, 342, 343, 346, 349, 351,
357, 359, 360, 364, 366, 370, 376,
383–385, 396, 410, 411, 413, 418,
419, 429, 439, 457, 459, 461, 462,
473, 481, 482, 489, 499, 501, 504,
517, 518, 526, 527, 531–535, 541,
543, 544, 546, 550

Schrödinger representation, 141, 427
Seaton’s theorem, 206–209, 332
Secular equation, 58, 63, 566, 588
Selection rules, 82, 86, 116, 149–151
Self-consistency, 121, 123
Self-energies, 121
Semiclassical

approximation, 64–74, 77, 167, 201–204,
208, 320, 322, 324–326, 446, 448,
473, 474, 501, 532

limit, 66, 67, 69, 70, 72, 74, 78, 161, 165,
171, 174, 176, 178, 192, 458, 459,
462, 494, 502, 503, 532

Semiclassical limit of outer reflection phase,
174

Shape function, 545
Shape parameter, 222, 223, 231, 237, 251–253,

585
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Shape parameter—in Beutler-Fano function,
249

Shape resonances, 56, 317
Sharp-step potential, 305, 310, 311
Sherman function, 353, 356
Shift, 23, 112, 246, 313, 321, 365, 491, 502,

535, 548, 572
Short-ranged potential, 22, 24, 54, 75, 77, 78,

159–200, 404, 489–504, 506
Short-wave limit, 69
Similarity transformation, 452–454, 456, 458,

460, 461
Sinai’s billiard, 553
Single-channel remainder, 509, 511, 512, 514,

515
Single-particle density, 120, 128, 130, 131
Single-particle orbital angular momentum,

121
Single-particle orbital angular momentum

quantum numbers, 114
Single-power potential tail, 174, 178, 180,

182–184, 187, 493, 497, 503, 514,
536, 537, 539

Singlet states, 115, 117, 197, 576
Slater determinant, 106–111, 118, 119,

121–124, 130, 481
Slater-type orbitals, 124
Small components, 98, 103, 283
S-matrix, 297–298, 365–367, 534
Sommerfeld parameter, 25, 327, 346, 362,

626
Space shift, 39–45, 541–543
Spatial shift, 298, 314, 315
Spectator modes, 143
Spectral rigidity, 443, 444, 470
Spectrum, 4, 17, 31, 56, 75, 95, 101, 104, 112,

113, 125, 132, 134, 139, 147, 148,
159, 160, 167, 189, 202, 203, 206,
212, 214, 233, 239, 253, 254, 257,
261, 263, 264, 272–274, 276, 283,
372, 400, 428, 441–445, 447, 460,
469–471, 473, 474, 476, 484–486,
495, 503, 506, 513–515, 553

Speed of light, 97, 122, 137, 604
in atomic units, 100

Spherical Bessel function, 24, 27, 72, 293, 294,
368, 392, 622, 623

Spherical Bessel functions of the second kind,
24

Spherical billiard, 72–74
Spherical components, 149, 150, 209, 210,

257, 267, 580, 588
Spherical coordinates, 11, 14, 379, 603
Spherical Hankel functions, 623

Spherical harmonics, 12, 16, 17, 86, 87, 99,
149, 150, 195, 196, 349, 350, 352,
572, 615–617

Spherical Neumann functions, 623
Spin-flip amplitude, 349, 351, 352
Spin-orbit coupling, 85–87, 104, 105, 113,

114, 116, 219, 265, 268, 271, 348,
351

Spinors, 83, 84, 86, 97–99, 353
Spontaneous emission, 137, 145–146, 528, 531
Spreading of a wave packet, 37, 422, 428
Squeezed states, 426, 428
Squeezed states of light, 428
Stability matrix, 433, 533
Standard mapping, 435
Standard representation, 97
Stark effect linear, 257, 258

quadratic, 258
Stark saddle, 258, 259, 262
Static exchange potential, 335
Static (dc) polarizability, 256
Stationary phase approximation, 332, 448, 449
Statistical expectation value, 354, 355
Stirling’s formula, 620
Strong coupling, 244
Strong-field seeking atoms, 529
Sturm-Liouville basis, 124
Subshells, 112, 113, 116, 121
Subthreshold effective range, 173, 174
Summing over final states, 148, 209, 368
Sum rule, 151–153, 156, 210, 212, 213, 280,

523
Superelastic scattering, 371
s-wave model, 390, 391, 394, 576
s-waves in 2D, 344
Symmetric gauge, 265, 269, 275, 282, 283,

466, 590, 591
Symmetry group, 13
Symplectic, 433, 449

T
Tail functions, 490, 492, 501, 502
Tail parameters, 174, 175, 512
Tail parameters of a potential, 174–176, 181,

186, 512, 516, 517, 535, 536
Tail potential, 164
Temkin-Poet model, 390
Temperature, 477–480, 485–488, 526, 547
Thermal wave length, 480
Thomas-Fermi approximation, 484
Thomas-Fermi equation, 127, 129, 131
Thomas-Fermi function, 127–129
Thomas-Fermi model, 125–131
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Thomas-Reiche-Kuhn sum rule, 153, 213
Threshold, 31–33, 43, 153, 161–167, 169, 170,

299–307, 404, 463, 464, 466, 471,
474, 476, 483, 488

Threshold-insensitive resonant phase shift,
509

Threshold-insensitive width of Feshbach
resonance, 508, 511, 512, 514, 516,
517

Threshold length, 173, 186, 188, 193, 493,
501, 511, 535–537

Threshold quantum number, 163, 164, 167,
171–173, 181, 182, 186, 188, 191,
193, 313, 314, 404, 491, 493, 497,
498, 500–502, 509, 510, 513, 551

in 2D, 551
Threshold value of outer reflection phyase,

170
Time delay, 39–45, 54, 136, 431, 542
Time-dependent perturbation theory, 132, 135,

136, 256, 291, 358, 410
Time-dependent Schrödinger equation, 10, 45,

96, 133, 277, 278, 390, 409–411,
413, 419, 462, 526, 527

Time evolution, 9, 36, 37, 41, 45, 89, 132, 418,
425–428, 430, 431, 439, 440, 445,
447, 518, 528

operator, 9, 132, 425, 439, 445, 447
Time gain, 42, 540–543
Time-independent Dirac equation, 98
Time-independent perturbation theory,

56–60
Time-independent Schrödinger equation, 10,

11, 14, 32, 35, 38, 39, 45, 46, 56, 64,
86, 87, 136, 287, 439, 517

Time ordering, 9
Time-reversal invariance, 227
T-Matrix, 291
Topological phase, 324
Torus, 437, 438
Total absorption cross section, 334
Total angular momentum, 83, 86, 87, 99, 100,

102, 114, 117, 122, 150, 151, 198,
211, 218, 219, 255, 265, 266, 318,
349, 352, 357, 363, 364, 367

Total angular momentum quantum number, 87,
99, 100, 117, 219, 349, 363

Total cross section, 358, 549, 596
Total inelastic cross section, 358
Total ionization cross section, 389, 390, 392,

394
Totally symmetric wave functions, 106, 107
Total momentum, 94

Total orbital angular momentum, 116, 122,
198, 219, 265, 268, 364, 576

quantum, 114
quantum number, 266, 372

Total spin, 113, 116, 122, 151, 219, 265, 266,
268, 364, 372, 383, 397

quantum number, 114, 266, 268
Trace formula, 449–451, 473
Trajectory, 64, 71, 320, 321, 323–327, 393,

403, 415–439, 445, 446, 448–450,
452, 453, 460, 463, 464, 466, 468,
473, 475, 476, 552, 553, 606, 609,
610, 612, 613

Transition amplitude, 134, 358, 360, 362, 368,
371

Transition operator, 223, 291, 358, 360, 595
Transition probability per unit time, 134, 136,

595
Transmission coefficient, 534
Transmission through a centrifugal barrier,

369
Transverse gauge, 137
Triangle condition, 82, 86, 588
Triple differential cross section, 382–384,

386–388
Triplet states, 115, 576, 577
Tunnelling, 45, 68, 69, 531
Two-channel quantum defect theory, 241, 244
Two-component spinors, 86, 98, 99, 351, 353,

696
Two-electron excitation, 219, 233
Two-level atom, 526–528
Two-particle-two-hole excitation, 110
Txsail parameters, 516

U
Unbound states, 10, 18–45, 515
Uncertainty relation, 33, 136, 422, 426, 428,

565
Uncoupled representation, 82
Uniform approximation, 451
Unitarity limit, 297
Unitarity of S-matrix, 297
Unitary operator, 12
Unitary transformation, 58, 353, 441
Unit operator, 5, 106, 216, 376, 447, 609
Unrestricted Hartree-Fock procedure, 121
Unstable (classical) dynamics, 433, 468, 473,

475, 476
Uphill equation, 260, 261
Uphill potential, 260
Uphill quantum number, 262, 263
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V
van der Waals

interaction, 312
length, 302
potential, 302, 519, 521, 545, 546

Vanishing width (of resonance), 227, 229, 250,
252, 253

van Vleck determinant, 446
Variation after diagonalization, 64
Vector operator, 7, 85, 149–151, 267, 318
Vector potential, 136, 137, 139, 141, 142, 255,

256, 265, 282, 283, 409, 427, 458,
589

Very-long-ranged potentials, 78, 159–162, 164
Virtual state, 307, 310, 311, 517
Volkov states, 409–413
von Neumann equation, 419, 421, 426, 528

W
Wannier exponent, 392, 394
Wannier’s threshold law, 392, 394
Wave function, 1–10, 12, 15–17, 19, 95,

96, 100, 106, 107, 159, 161, 164,
166, 167, 287, 290–300, 410, 412,
418, 419, 422, 424, 439, 447, 475,
481–485, 489

Wave lengths, 25, 29, 67, 68, 142, 277, 405,
412, 415, 419, 451, 480

Wave number, 22, 26, 27, 32, 35–37, 40, 124,
126, 141, 151, 306–310, 316–318,
327, 328, 358, 362, 368, 371, 385,
391, 494, 529, 531, 534, 578, 579,
590–592, 596, 603

Wave packet, 33–37, 39–45, 54, 136, 390, 403,
415–432, 465, 518, 540, 541, 551,
564, 565, 605

Wave vector, 138, 141, 145, 291, 328, 330,
361, 377, 378, 382, 384, 388, 395,
412, 518, 527, 594

Weak coupling, 243
Weak-field seeking atoms, 528
Wentzel, Kramers and Brillouin (WKB), 64

approximation, 64, 65, 67–69, 74–76, 90,
162, 164, 166, 180, 189, 531, 532,
570

method, 64
Whittaker functions, 21, 205, 253
Whittaker’s equation, 627
Whittaler’s function, 628
Width of a Feshbach resonance, 249
Width of resonance, 52, 53, 55, 221, 222, 243,

507
Wiggling, 411
Wigner distribution, 443, 469
Wigner-Eckart theorem, 150, 151, 267, 617
Wigner function, 419–421, 425–428, 551, 552,

606–608
Wigner representation, 420, 421
Wigner representation of the von Neumann

equation, 421
Wigner’s threshold law, 171, 300, 369, 370,

495
Wigner’s threshold law for inelastic scattering

cross sections, 368
Winding number, 449, 474, 475
Window resonance, 223

Z
Zero-field threshold, 272, 273, 276
Zeta function, 473, 480
Z-parity, 271, 273
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