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Preface 

This book provides a one-semester overview of decision analysis for advanced 
undergraduate and master's degree students. My inspiration to write it has come 
from many sources, but perhaps most important was a desire to give students access 
to up-to-date information on modern decision-analysis techniques at a level that 
could be easily understood by those without a strong mathematical background. At 
some points in the book, the student should be familiar with basic statistical concepts 
normally covered in an undergraduate applied statistics course. In particular, some 
familiarity with probability and probability distributions would be helpful in 
Chapters 7 through 12. Chapter 10 provides a decision-analysis view of data analy-
sis, including regression, and familiarity with such statistical procedures would be 
an advantage when covering this topic. Algebra is used liberally throughout the 
book. Calculus concepts are used in a few instances as an explanatory tool. Be as-
sured, however, that the material can be thoroughly understood, and the problems 
can be worked, without any knowledge of calculus. 

I subscribe to the notion that the objective of decision analysis is to help a deci-
sion maker think hard about the specific problem at hand, including the overall struc-
ture of the problem as well as his or her preferences and beliefs. Decision analysis 
provides both an overall paradigm and a set of tools with which a decision maker can 
construct and analyze a model of a decision situation. Above all else, I want students 
to understand that the purpose of studying decision-analysis techniques is to be able 
to represent real-world problems using models that can be analyzed to gain insight 
and understanding. It is through that insight and understanding — the hoped-for 
result of the modeling process — that decisions can be improved. 

xix 
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New in the Second Edition 

The past five years have seen changes in decision analysis, and I have tried to cap-
ture the most important advancements in this second edition of Making Hard 
Decisions. The greatest change is the inclusion of material from Ralph Keeney's 
Value-Focused Thinking (Cambridge, MA: Harvard University Press, 1992). 
Keeney stresses the primacy of the decision-maker's values in the decision-making 
process. Values provide the very motivation for decision making in the first place. 
Although it sounds trite and oversimplified, "When in doubt, think about what your 
values are!" is very good advice for anyone who faces a difficult decision or who has 
the vague uneasy feeling that things could be better. 

Because values play a vital role in so many aspects of decision making, incorpo-
rating value-focused thinking required rethinking many parts of the book. The most 
radical restructuring is in the first section. Readers will find important new sections in 
Chapter 3 on structuring objectives, modeling multiple objectives using decision trees 
and influence diagrams, and developing measurement scales. A simple example 
demonstrating how objectives can be modeled with an additive value function is in-
cluded in Chapter 4. An important element of value-focused thinking is that it can 
provide guidance in the creation of new alternatives, and this material is incorporated 
in Chapter 6. Finally, the incorporation of value-focused thinking early in the book 
had implications for the presentation of multiattribute utility in Chapters 15 and 16. 

In addition to the incorporation of value-focused thinking, references to software 
have been updated throughout the book. Although software changes so rapidly that 
the material in the book may be dated by the time it appears in print, I have included 
up-to-date material on a few of the most useful decision-analysis programs available 
for personal computers: DPL for both influence diagrams and decision trees, DATA 
for decision trees, Logical Decisions for modeling multiple objectives, BestFit for 
using data, @RISK and Crystal Ball for Monte Carlo simulation. 

The important changes and new features in the second edition of Making Hard 
Decisions are 

• Chapters 3 and 4 have been completely rewritten to incorporate value-focused 
thinking, including discussions of principles, techniques, and examples. 

• Chapter 6 on creativity has been refocused to adopt a social-psychology perspec- 
tive. Also, it incorporates creativity techniques from value-focused thinking. 

• New sections on the use of expert judgment are included in Chapter 8. 
• New material on regression analysis has been added to Chapter 10. 
• Chapter 11 has been rewritten to focus on the use of simulation software (@RISK 

and Crystal Ball). 
• Chapter 15 has been restructured to highlight the additive utility model. 
• The BC Hydro example included in Chapter 16 demonstrates the use of multiat- 

tribute utility models. 
• Updated references to software are included throughout. 
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Influence-diagram graphics have been changed throughout to conform with DPL 
software. 

Guidelines for Students 

The book covers most of the concepts that I consider important for a basic under-
standing of decision analysis. Although I have tried to write an elementary introduc-
tion to decision analysis, this does not mean that the material is itself elementary. In 
fact, the more I teach decision analysis, the more I realize that the technical level of 
the math is low, while the level of the analysis is high. Students must be willing to 
think clearly and analytically about the problems and issues that arise in decision sit-
uations. Good decision analysis requires clear thinking; sloppy thinking results in 
worthless analysis. 

Of course, some topics are more demanding than others. The more difficult sec-
tions are labeled as "optional." My faith in students and readers compels me to say 
that anyone who can handle the "nonoptional" material can, with a bit more effort 
and thought, also handle the optional material. Thus the label is perhaps best thought 
of as a warning regarding the upcoming topic. On the other hand, if you do decide to 
skip the optional material, no harm will be done. 

In general, I believe that really serious learning happens when problems are tack-
led on one's own. I have included a wide variety of exercises, questions, problems, 
and case studies. The exercises are relatively easy drills of the material. The ques-
tions and problems often require thinking beyond the material in the text. Some con-
cepts are presented and dealt with only in the problems. Do not shy away from the 
problems! You can learn a lot by working through them. 

Many case studies are included in Making Hard Decisions. A few of the many 
successful applications of decision analysis show up as case studies in the book. In 
addition, many issues are explored in the case studies in the context of current events. 
For example, the AIDS case at the end of Chapter 7 demonstrates how probability 
techniques can be used to interpret the results of medical tests. In addition to the real-
world cases, the book contains many hypothetical cases and examples, as well as fic-
tional historical accounts, which I have tried to make as realistic as possible. 

Some cases and problems are realistic in the sense that not every bit of informa-
tion is given. In these cases, appropriate assumptions are required. On one hand, this 
may cause some frustration. On the other hand, incomplete information is typical in 
the real world. Being able to work with problems that are "messy" in this way is an 
important skill. 

Finally, many of the cases and problems involve controversial issues. For exam-
ple, the material on AIDS (Chapter 7) or medical ethics (Chapter 15) may evoke 
strong emotional responses from some readers. In writing a book like this, there are 
two choices. We can avoid the hard social problems that might offend some readers. 
Or we can face these problems that need careful thought and discussion. I have taken 
the second approach because I believe these issues require our attention. Moreover, 
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even though decision analysis does not provide the answers to these problems, it 
does provide a useful framework for thinking about the difficult decisions that we as 
a society must make. 

Computers and Decision Analysis 

Computers play a large role in decision analysis. As a result, sections in several chap-
ters discuss current software available for the construction and analysis of decision 
models on personal computers. 

One of the most intriguing software developments in decision analysis is the 
publication of DPL. This remarkable product integrates both influence diagrams and 
decision trees. Created initially for consulting use by Applied Decision Analysis, 
Inc., DPL has also enjoyed considerable success as a vehicle for teaching decision 
analysis. To facilitate the use of DPL in courses, a student edition of DPL is available 
at a discount when bundled with Making Hard Decisions. 

In addition to dedicated decision-analysis software, much of the discussion in the 
text revolves around the use of electronic spreadsheets, such as Lotus 1-2-3 or 
Microsoft Excel. Spreadsheets provide a very flexible modeling environment for an-
alyzing decision situations, and many students and decision makers may have access 
to spreadsheets rather than special-purpose software. One of the most useful skills 
that an analytically-minded decision maker could have these days is expertise in the 
use of a spreadsheet. 

Do not take this business about computers wrong, though. Decision-analysis 
concepts and techniques can indeed be learned, understood, and used quite effec-
tively without ever touching a computer. In some cases, though, such as simulation 
or sensitivity analysis, working with a computer more readily demonstrates the in-
sights that can be obtained from the analysis. 

A Word to Instructors 

Many instructors will want to supplement Making Hard Decisions with their own 
material. In fact, a few topics that I cover in my own courses are not included here. 
But, in the process of writing the book and obtaining comments from colleagues, it 
has become apparent that decision-making courses take on many different forms. 
Some instructors prefer to emphasize behavioral aspects, while others prefer analyt-
ical tools. Other dimensions have to do with competition, negotiation, and group de-
cision making. Making Hard Decisions does not aim to cover everything for every-
one. Instead, I have tried to cover the central concepts and tools of modern decision 
analysis with adequate references (and occasionally cases or problems) so that in-
structors can introduce their own special material where appropriate. For example, in 
Chapters 8 and 14 we discuss judgmental aspects of probability assessment and de-
cision making, and an instructor can introduce more behavioral material at these 
points. Likewise, Chapter 15 delves into the additive utility function for decision 
making. Some instructors may wish to present goal programming or the analytic hi-
erarchy process here. 
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In restructuring the book to incorporate value-focused thinking, it became clear 
that my colleagues were of several minds as to the best way to organize and present 
this topic. Some preferred to have all of the multiple-objective material put in the 
same place (Chapters 15 and 16), whereas other preferred to integrate the material 
throughout the text. Ultimately (after using value-focused thinking to help me de-
cide), I chose the latter, especially stressing the role of values in structuring decision 
models. In particular, students must read about structuring values at the beginning of 
Chapter 3 before going on to structuring influence diagrams or decision trees. The 
reason is simply that it makes sense to understand what one wants before trying to 
structure the decision. From my own teaching experience, introducing the notion of 
objectives early works well for students. In Gordon Hazen's words, "Once I ask the 
students about their objectives in a particular problem, I can't get them to shut up!" 

At the same time, I attempted to organize the remaining material in Chapters 3 
and 4 so that the instructor who wants to avoid the more technical aspects of value-
focused thinking may do so. For example, material on creating attribute scales is left 
until the end of Chapter 3, and a multiobjective example is in its own section in 
Chapter 4. A reader can readily skip these sections and return to them later if the in-
structor wishes to cover all of the multiobjective material at once. 

Keeping up with Changes 

The world changes quickly, and decision analysis is changing with it. The good news 
is that the Internet, and especially the World Wide Web (WWW), can help us keep 
abreast of new developments. 

For students and instructors, I encourage you to visit the WWW site of the Decision 
Analysis Section of the Institute For Operations Research and Management Science 
(INFORMS). The current address is http://www.fuqua.duke.edu/faculty/daweb/ 
This organization provides a focus for decision analysts worldwide and many others 
with interests in all aspects of decision making. And on the Society's web page you will 
find links to many related sites. 

While you are keeping up with changes, I hope that you will help me do the 
same. I encourage you to provide feedback on the second edition of Making Hard 
Decisions by sending email to Clemen@mail.duke.edu. You may also send regular 
mail to Robert Clemen, Fuqua School of Business, Duke University, Durham, NC 
27708. Please let me know of (hopefully the few) mistakes or typos that you may 
find in the book, innovative ways to teach decision analysis, new case studies, or in-
teresting applications of decision analysis. 
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Introduction to 
Decision Analysis 

ave you ever had a difficult decision to make? If so, did you wish for a straightforward way to keep all 
of the different issues clear? Did you end up making the decision based on your intuition or on a 

"hunch" that seemed correct? At one time or another, all of us have wished that a 
hard decision was easy to make. The sad fact is that hard decisions are just that — 
hard. As individuals we run into such difficult decisions frequently. Business 
executives and governmental policy makers struggle with hard problems all the 
time. For example, consider the following problem faced by the Oregon Department 
of Agriculture (ODA) in 1985. 

GYPSY   MOTHS  AND  THE   ODA 

In the winter of 1985, the ODA grappled with the problem of gypsy moth infestation 
in Lane County in western Oregon. Forest industry representatives argued strongly 
for an aggressive eradication campaign using potent chemical insecticides. The 
ODA instead proposed a plan that involved spraying most of the affected area with 
ВТ (Bacillus thuringiensis), a bacterial insecticide known to be (1) target-specific 
(that is, it does little damage to organisms other than moths), (2) ecologically safe, 
and (3) reasonably effective. As well as using ВТ, the ODA proposed spraying three 
smaller areas near the city of Eugene with the chemical spray Orthene. Although 
Orthene was registered as an acceptable insecticide for home garden use, there was 
some doubt as to its ultimate ecological effects as well as its danger to humans. 
Forestry officials argued that the chemical insecticide was more potent than ВТ and 
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was necessary to ensure eradication in the most heavily infested areas. Environ-
mentalists argued that the potential danger from the chemical spray was too great to 
warrant its use. Some individuals argued that spraying would not help because the 
infestation already was so advanced that no program would be successful. Others ar-
gued that an aggressive spray program could solve the problem once and for all, but 
only if done immediately. Clearly, in making its final decision the ODA would have 
to deal with many issues. 

The ODA has an extremely complex problem on its hands. Before deciding ex-
actly what course of action to take, the agency needs to consider many issues, in-
cluding the values of different constituent groups and the uncertainties involving the 
effectiveness and risks of the pesticides under consideration. The ODA must con-
sider these issues carefully and in a balanced way — but how? There is no escaping 
the problem: This hard decision requires hard thinking. 

Decision analysis provides structure and guidance for thinking systematically 
about hard decisions. With decision analysis, a decision maker can take action with 
confidence gained through a clear understanding of the problem. Along with a con-
ceptual framework for thinking about hard problems, decision analysis provides an-
alytical tools that can make the required hard thinking easier. 

Why Are Decisions Hard? 

What makes decisions hard? Certainly different problems may involve different and 
often special difficulties. For example, the ODA's problem requires it to think about 
the interests of various groups as well as to consider only limited information on the 
possible effects of the sprays. Although every decision may have its own special 
problems, there are four basic sources of difficulty. A decision-analysis approach can 
help a decision maker with all four. 

First, a decision can be hard simply because of its complexity. In the case of the 
gypsy moths, the ODA must consider many different individual issues: the uncer-
tainty surrounding the different sprays, the values held by different community 
groups, the different possible courses of action, the economic impact of any pest-
control program, and so on. Simply keeping all of the issues in mind at one time is 
nearly impossible. Decision analysis provides effective methods for organizing a 
complex problem into a structure that can be analyzed. In particular, elements of a de-
cision's structure include the possible courses of action, the possible outcomes that 
could result, the likelihood of those outcomes, and eventual consequences (e.g., costs 
and benefits) to be derived from the different outcomes. Structuring tools that we will 
consider include decision trees and influence diagrams as well as procedures for ana-
lyzing these structures to find solutions and for answering "what if" questions. 

Second, a decision can be difficult because of the inherent uncertainty in the situa-
tion. In the gypsy moth case, the major uncertainties are the effectiveness of the differ-
ent sprays in reducing the moth population and their potential for detrimental ecologi-
cal and health effects. In some decisions the main issue is uncertainty. For example, 
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imagine a firm trying to decide whether to introduce a new product. The size of the 
market, the market price, eventual competition, and manufacturing and distribution 
costs all may be uncertain to some extent, and all have some impact on the firm's even-
tual payoff. Yet the decision must be made without knowing for sure what these uncer-
tain values will be. A decision-analysis approach can help in identifying important 
sources of uncertainty and representing that uncertainty in a systematic and useful way. 

Third, a decision maker may be interested in working toward multiple objec-
tives, but progress in one direction may impede progress in others. In such a case, a 
decision maker must trade off benefits in one area against costs in another. In the 
gypsy moth example, important trade-offs must be made: Are the potential economic 
benefits to be gained from spraying Orthene worth the potential ecological damage 
and health risk? In investment decisions a trade-off that we usually must make is be-
tween expected return and riskiness. Decision analysis again provides both a frame-
work and specific tools for dealing with multiple objectives. 

Fourth, and finally, a problem may be difficult if different perspectives lead to 
different conclusions. Or, even from a single perspective, slight changes in certain 
inputs may lead to different choices. This source of difficulty is particularly pertinent 
when more than one person is involved in making the decision. Different individuals 
may look at the problem from different perspectives, or they may disagree on the un-
certainty or value of the various outcomes. The use of the decision-analysis frame-
work and tools can help sort through and resolve these differences whether the deci-
sion maker is an individual or a group of stakeholders with diverse opinions. 

Why Study Decision Analysis? 

The obvious reason for studying decision analysis is that carefully applying its tech-
niques can lead to better decisions. But what is a good decision? A simple answer 
might be that it is the one that gives the best outcome. This answer, however, con-
fuses the idea of a lucky outcome with a good decision. Suppose that you are inter-
ested in investing an inheritance. After carefully considering all the options available 
and consulting with investment specialists and financial planners, you decide to in-
vest in stocks. If you purchased a portfolio of stocks in 1982, the investment most 
likely turned out to be a good one, because stock values increased dramatically dur-
ing the 1980s. On the other hand, if your stock purchase had been in early 1929, the 
stock market crash and the following depression would have decreased the value of 
your portfolio drastically. 

Was the investment decision a good one? It certainly could have been if it was made 
after careful consideration of the available information and thorough deliberation about 
the goals and possible outcomes. Was the outcome a good one? For the 1929 investor, 
the answer is no. This example illustrates the difference between a good decision and a 
lucky outcome: You can make a good decision but still have an unlucky outcome. Of 
course, you may prefer to have lucky outcomes rather than make good decisions! 
Although decision analysis cannot improve your luck, it can help you to understand 
better the problems you face and thus make better decisions. That understanding must 
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include the structure of the problem as well as the uncertainty and trade-offs inherent in 
the alternatives and outcomes. You may then improve your chances of enjoying a better 
outcome; more important, you will be less likely to experience unpleasant surprises in 
the form of unlucky outcomes that were either unforeseen or not fully understood. In 
other words, you will be making a decision with your eyes open. 

The preceding discussion suggests that decision analysis allows people to make 
effective decisions more consistently. This idea itself warrants discussion. Decision 
analysis is intended to help people deal with difficult decisions. It is a "prescriptive 
approach designed for normally intelligent people who want to think hard and sys-
tematically about some important real problems" (Keeney and Raiffa 1976, p. vii). 

This prescriptive view is the most appropriate way to think about decision analy-
sis. It gets across the idea that although we are not perfect decision makers, we can 
do better through more structure and guidance. We will see that decision analysis is 
not an idealized theory designed for superrational and omniscient beings. Nor does it 
describe how people actually make decisions. In fact, ample experimental evidence 
from psychology shows that people generally do not process information and make 
decisions in ways that are consistent with the decision-analysis approach. (If they 
did, then there would be no need for decision analysis; why spend a lot of time 
studying decision analysis if it suggests that you do what you already do?) Instead, 
using some fundamental principles, and informed by what we know about human 
frailties in judgment and decision making, decision analysis offers guidance to nor-
mal people working on hard decisions. 

Although decision analysis provides structure and guidance for systematic thinking 
in difficult situations, it does not claim to recommend an alternative that must be blindly 
accepted. Indeed, after the hard thinking that decision analysis fosters, there should be 
no need for blind acceptance; the decision maker should understand the situation thor-
oughly. Instead of providing solutions, decision analysis is perhaps best thought of as 
simply an information source, providing insight about the situation, uncertainty, objec-
tives, and trade-offs, and possibly yielding a recommended course of action. Thus, de-
cision analysis does not usurp the decision maker's job. According to another author, 

[t]he basic presumption of decision analysis is not at all to replace the decision 
maker's intuition, to relieve him or her of the obligations in facing the problem, or to 
be, worst of all, a competitor to the decision maker's personal style of analysis, but to 
complement, augment, and generally work alongside the decision maker in 
exemplifying the nature of the problem. Ultimately, it is of most value if the decision 
maker has actually learned something about the problem and his or her own decision-
making attitude through the exercise (Bunn 1984, p. 8). 

We have been discussing decision analysis as if it were always used to help an in-
dividual make a decision. Indeed, this is what it is designed for, but its techniques 
have many other uses. For example, one might use decision-analysis methods to solve 
complicated inference problems (that is, answering questions such as "What conclu-
sions can be drawn from the available evidence?"). Structuring a decision problem 
may be useful for understanding its precise nature, for generating alternative courses 
of action, and for identifying important objectives and trade-offs. Understanding 
trade-offs can be crucial for making progress in negotiation settings. Finally, decision 
analysis can be used to justify why a previously chosen action was appropriate. 
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Subjective Judgments and Decision Making 

Personal judgments about uncertainty and values are important inputs for decision 
analysis. It will become clear through this text that discovering and developing these 
judgments involves thinking hard and systematically about important aspects of a 
decision. 

Managers and policy makers frequently complain that analytical procedures 
from management science and operations research ignore subjective judgments. 
Such procedures often purport to generate "optimal" actions on the basis of purely 
objective inputs. But the decision-analysis approach allows the inclusion of subjec-
tive judgments. In fact, decision analysis requires personal judgments; they are im-
portant ingredients for making good decisions. 

At the same time, it is important to realize that human beings are imperfect in-
formation processors. Personal insights about uncertainty and preferences can be 
both limited and misleading, even while the individual making the judgments may 
demonstrate an amazing overconfidence. An awareness of human cognitive limita-
tions is critical in developing the necessary judgmental inputs, and a decision maker 
who ignores these problems can magnify rather than adjust for human frailties. 
Much current psychological research has a d irect bearing on the practice of deci-
sion-analysis techniques. In the chapters that follow, many of the results from this 
research will be discussed and related to decision-analysis techniques. The spirit of 
the discussion is that understanding the problems people face and carefully apply-
ing decision-analysis techniques can lead to better judgments and improved deci-
sions. 

The Decision-Analysis Process 

Figure 1.1 shows a flowchart for the decision-analysis process. The first step is for the 
decision maker to identify the decision situation and to understand his or her objec-
tives in that situation. Although we usually do not have trouble finding decisions to 
make or problems to solve, we do sometimes have trouble identifying the exact prob-
lem, and thus we sometimes treat the wrong problem. Such a mistake has been called 
an "error of the third kind." Careful identification of the decision at hand is always 
important. For example, perhaps a surface problem hides the real issue. For example, 
in the gypsy moth case, is the decision which insecticide to use to control the insects, 
or is it how to mollify a vocal and ecologically minded minority? 

Understanding one's objectives in a decision situation is also an important first 
step and involves some introspection. What is important? What are the objectives? 
Minimizing cost? Maximizing profit or market share? What about minimizing 
risks? Does risk mean the chance of a monetary loss, or does it refer to conditions 
potentially damaging to health and the environment? Getting a clear understanding 
of the crucial objectives in a decision situation must be done before much more can 
be accomplished. In the next step, knowledge of objectives can help in identifying 
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Figure 1.1 
A decision-analysis 
process flowchart. 

alternatives, and beyond that the objectives indicate how outcomes must be mea-
sured and what kinds of uncertainties should be considered in the analysis. 

Many authors argue that the first thing to do is to identify the problem and then to 
figure out the appropriate objectives to be used in addressing the problem. But Keeney 
(1992) argues the opposite; it is far better, he claims, to spend a lot of effort under-
standing one's central values and objectives, and then looking for ways — decision op-
portunities — to achieve those objectives. The debate notwithstanding, the fact is that 
decisions come in many forms. Sometimes we are lucky enough to shape our decision-
making future in the way Keeney suggests, and other times we find ourselves in diffi- 
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cult situations that we may not have anticipated. In either case, establishing the precise 
nature of the decision situation (which we will later call the decision context) goes 
hand in hand with identifying and understanding one's objectives in that situation. 

With the decision situation and pertinent objectives established, we turn to the dis-
covery and creation of alternatives. Often a careful examination and analysis of objec-
tives can reveal alternatives that were not obvious at the outset. This is an important 
benefit of a decision-analysis approach. In addition, research in the area of creativity has 
led to a number of techniques that can improve the chance of finding new alternatives. 

The next two steps, which might be called "modeling and solution," form the heart 
of most textbooks on decision analysis, including this one. Much of this book will 
focus on decomposing problems to understand their structures and measure uncer-
tainty and value; indeed, decomposition is the key to decision analysis. The approach 
is to "divide and conquer." The first level of decomposition calls for structuring the 
problem in smaller and more manageable pieces. Subsequent decomposition by the de-
cision maker may entail careful consideration of elements of uncertainty in different 
parts of the problem or careful thought about different aspects of the objectives. 

The idea of modeling is critical in decision analysis, as it is in most quantitative 
or analytical approaches to problems. As indicated in Figure 1.1, we will use models 
in several ways. We will use influence diagrams or decision trees to create a repre-
sentation or model of the decision problem. Probability will be used to build models 
of the uncertainty inherent in the problem. Hierarchical and network models will be 
used to understand the relationships among multiple objectives, and we will assess 
utility functions in order to model the way in which decision makers value different 
outcomes and trade off competing objectives. These models are mathematical and 
graphical in nature, allowing one to find insights that may not be apparent on the sur-
face. Of course, a key advantage from a decision-making perspective is that the 
mathematical representation of a decision can be subjected to analysis, which can in-
dicate a "preferred" alternative. 

Decision analysis is typically an iterative process. Once a model has been built, 
sensitivity analysis is performed. Such analysis answers "what if" questions: "If we 
make a slight change in one or more aspects of the model, does the optimal decision 
change?" If so, the decision is said to be sensitive to these small changes, and the de-
cision maker may wish to reconsider more carefully those aspects to which the deci-
sion is sensitive. Virtually any part of a decision is fair game for sensitivity analysis. 
The arrows in Figure 1.1 show that the decision maker may return even to the iden-
tification of the problem. It may be necessary to refine the definition of objectives or 
include objectives that were not previously included in the model. New alternatives 
may be identified, the model structure may change, and the models of uncertainty 
and preferences may need to be refined. The term decision-analysis cycle best de-
scribes the overall process, which may go through several iterations before a satis-
factory solution is found. 

In this iterative process, the decision maker's perception of the problem changes, 
beliefs about the likelihood of various uncertain eventualities may develop and 
change, and preferences for outcomes not previously considered may mature as 
more time is spent in reflection. Decision analysis not only provides a structured 
way to think about decisions, but also more fundamentally provides a structure 
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within which a decision maker can develop beliefs and feelings, those subjective 
judgments that are critical for a good solution. 

Requisite Decision Models 

Phillips (1982, 1984) has introduced the term requisite decision modeling. This mar-
velous term captures the essence of the modeling process in decision analysis. In 
Phillips's words, "a model can be considered requisite only when no new intuitions 
emerge about the problem" (1984, p. 37), or when it contains everything that is essen-
tial for solving the problem. That is, a model is requisite when the decision maker's 
thoughts about the problem, beliefs regarding uncertainty, and preferences are fully de-
veloped. For example, consider a first-time mutual-fund investor who finds high, overall 
long-term returns appealing. Imagine, though, that in the process of researching the 
funds the investor begins to understand and become wary of highly volatile stocks and 
mutual funds. For this investor, a decision model that selected a fund by maximizing 
the average return in the long run would not be requisite. A requisite model would have 
to incorporate a trade-off between long-term returns and volatility. 

A careful decision maker may cycle through the process shown in Figure 1.1 
several times as the analysis is refined. Sensitivity analysis at appropriate times can 
help the decision maker choose the next modeling steps to take in developing a req-
uisite model. Successful decision analysts artistically use sensitivity analysis to man-
age the iterative development of a decision model. An important goal of this book is 
that you begin to acquire this artistic ability through familiarity and practice with the 
concepts and tools of decision analysis. 

Where Is Decision Analysis Used? 

Decision analysis is widely used in business and government decision making. 
Perusing the literature reveals applications that include managing research-and-
development programs, negotiating for oil and gas leases, forecasting sales for new 
products, understanding the world oil market, deciding whether to launch a new 
product or new venture, and developing ways to respond to environmental risks, to 
name a few. And some of the largest firms make use of decision analysis, including 
General Motors, Chevron, and Eli Lilly. A particularly important arena for decision-
analysis applications has been in public utilities, especially electric power genera-
tion. In part this is because the problems utilities face (e.g., site selection, power-
generation methods, waste cleanup and storage, pollution control) are particularly 
appropriate for treatment with decision-analysis techniques; they involve long time 
frames and hence a high degree of uncertainty. In addition, multiple objectives must 
be considered when a decision affects many different stakeholder groups. 

In the literature, many of the reported applications relate to public-policy prob-
lems and relatively few to commercial decisions, partly because public-policy 
problems are of interest to such a wide audience. It is perhaps more closely related 
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to the fact that commercial applications often are proprietary; a good decision 
analysis can create a competitive advantage for a firm, which may not appreciate 
having its advantage revealed in the open literature. Important public-policy appli-
cations have included regulation in the energy (especially nuclear) industry and 
standard setting in a variety of different situations ranging from regulations for air 
and water pollution to standards for safety features on new cars. 

Another important area of application for decision analysis has been in medicine. 
Decision analysis has helped doctors make specific diagnoses and individuals to un-
derstand the risks of different treatments. Institutional-level studies have been done 
such as studying the optimal inventory or usage of blood in a blood bank or the deci-
sion of a firm regarding different kinds of medical insurance to provide its employees. 
On a grander scale, studies have examined policies such as widespread testing for var-
ious forms of cancer or the impact on society of different treatment recommendations. 

This discussion is by no means exhaustive; the intent is only to give you a feel 
for the breadth of possible applications of decision analysis and a glimpse at some of 
the things that have been done. Many other applications are described in cases and 
examples throughout the book; by the time you have finished, you should have a 
good understanding of how decision analysis can be (and is) used in many different 
arenas. And if you feel the need for more, articles by Ulvila and Brown (1982) and 
Corner and Kirkwood (1991) describe many different applications. 

Where Are We Going from Here? 

This book is divided into three main sections. The first is titled "Modeling Decisions," 
and it introduces influence diagrams and decision trees as methods for building models 
of decision problems. The process is sometimes called structuring because it specifies 
the elements of the decision and how the elements are interrelated (Chapters 2 and 3). 
We also introduce ways to organize a decision maker's values into hierarchies and net-
works; doing so is useful when multiple objectives must be considered. We will find 
out how to analyze our decision models (Chapter 4) and how to conduct sensitivity 
analysis (Chapter 5). In Chapter 6 we discuss creativity and decision making. 

The second section is "Modeling Uncertainty." Here we delve into the use of 
probability for modeling uncertainty in decision problems. First we review basic 
probability concepts (Chapter 7). Because subjective judgments play a central role in 
decision analysis, subjective assessments of uncertainty are the topic of Chapter 8. 
Other ways to use probability include theoretical probability models (Chapter 9), 
data-based models (Chapter 10), and simulation (Chapter 11). Chapter 12 closes the 
section with a discussion of information and how to value it in the context of a prob-
ability model of uncertainty within a decision problem. 

"Modeling Preferences" is the final section. Here we turn to the development of a 
mathematical representation of a decision maker's preferences, including the identifica-
tion of desirable objectives and trade-offs between conflicting objectives. A fundamen-
tal issue that we often must confront is how to trade off riskiness and expected value. 
Typically, if we want to increase our chances at a better outcome, we must accept a 
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simultaneous risk of loss. Chapters 13 and 14 delve into the problem of modeling a de-
cision maker's attitude toward risk. Chapters 15 and 16 complete the section with a 
treatment of other conflicting objectives. In these chapters we will complete the discus-
sion of multiple objectives begun in Section 1, showing how to construct a mathemati-
cal model that reflects subjective judgments of relative importance among competing 
objectives. 

By the end of the book, you will have learned all of the basic techniques and con-
cepts that are central to the practice of modern decision analysis. This does not mean 
that your hard decisions will suddenly become easy! But with the decision-analysis 
framework, and with tools for modeling decisions, uncertainty, and preferences, you 
will be able to approach your hard decisions systematically. The understanding and 
insight gained from such an approach will give you confidence in your actions and 
allow for better decisions in difficult situations. That is what the book is about—an 
approach that will help you to make hard decisions. 

SUMMARY The purpose of decision analysis is to help a decision maker think systematically 
about complex problems and to improve the quality of the resulting decisions. In this 
regard, it is important to distinguish between a good decision and a lucky outcome. 
A good decision is one that is made on the basis of a thorough understanding of the 
problem and careful thought regarding the important issues. Outcomes, on the other 
hand, may be lucky or unlucky, regardless of decision quality. 

In general, decision analysis consists of a framework and a tool kit for dealing 
with difficult decisions. The incorporation of subjective judgments is an important 
aspect of decision analysis, and to a great extent mature judgments develop as the 
decision maker reflects on the decision at hand and develops a working model of the 
problem. The overall strategy is to decompose a complicated problem into smaller 
chunks that can be more readily analyzed and understood. These smaller pieces then 
can be brought together to create an overall representation of the decision situation. 
Finally, the decision-analysis cycle provides the framework within which a decision 
maker can construct a requisite decision model, one that contains the essential ele-
ments of the problem and from which the decision maker can take action. 

Q U E S T I O N S    AND   PROBLEMS 

1.1 Give an example of a good decision that you made in the face of some uncertainty. Was 
the outcome lucky or unlucky? Can you give an example of a poorly made decision 
whose outcome was lucky? 

1.2 Explain how modeling is used in decision analysis. What is meant by the term "requi 
site decision model"? 

1.3 What role do subjective judgments play in decision analysis? 
1.4 At a dinner party, an acquaintance asks whether you have read anything interesting 

lately, and you mention that you have begun to read a text on decision analysis. Your 
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friend asks what decision analysis is and why anyone would want to read a book about it, 
let alone write one! How would you answer? 

1.5 Your friend in Question 1.4, upon hearing your answer, is delighted! "This is marvelous," 
she exclaims. "I have this very difficult choice to make at work. I'll tell you the facts, and 
you can tell me what I should do!" Explain to her why you cannot do the analysis for her. 

1.6 Give an example in which a decision was complicated because of difficult preference 
trade-offs. Give one that was complicated by uncertainty. 

1.7 In the gypsy moth example, what are some of the issues that you would consider in mak 
ing this decision? What are the alternative courses of action? What issues involve uncer 
tainty, and how could you get information to help resolve that uncertainty? What are the 
values held by opposing groups? How might your decision trade off these values? 

1.8 Can you think of some different alternatives that the ODA might consider for control 
ling the gypsy moths? 

1.9 Describe a decision that you have had to make recently that was difficult. What were 
the major issues? What were your alternatives? Did you have to deal with uncertainty? 
Were there important trade-offs to make? 

 

1.10 "Socially responsible investing" first became fashionable in the 1980s. Such investing 
involves consideration of the kinds of businesses that a firm engages in and selection of 
investments that are as consistent as possible with the investor's sense of ethical and 
moral business activity. What trade-offs must the socially responsible investor make? 
How are these trade-offs more complicated than those that we normally consider in 
making investment decisions? 

1.11 Many decisions are simple, preprogrammed, or already solved. For example, retailers do 
not have to think long to decide how to deal with a new customer. Some operations- 
research models provide "ready-made" decisions, such as finding an optimal inventory 
level using an order-quantity formula or determining an optimal production mix using lin 
ear programming. Contrast these decisions with unstructured or strategic decisions, such 
as choosing a career or locating a nuclear power plant. What kinds of decisions are appro 
priate for a decision-analysis approach? Comment on the statement, "Decision making is 
what you do when you don't know what to do." (For more discussion, see Howard 1980.) 

1.12 The argument was made that beliefs and preferences can change as we explore and 
learn. This even holds for learning about decision analysis! For example, what was your 
impression of this book before reading the first chapter? Have your beliefs about the 
value of decision analysis changed? How might this affect your decision about reading 
more of the book? 

C A S E     S T U D I E S  

DR.  JOYCELYN   ELDERS  AND  THE  WAR  ON   DRUGS 

After the Nancy Reagan slogan, "Just Say No," and 12 years of Republican adminis-
tration efforts to fight illegal drug use and trafficking, on December 7, 1993, then 
Surgeon General Dr. Joycelyn Elders made a startling statement. In response to a re-
porter's question, she indicated that, based on the experiences of other countries, the 
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crime rate in the United States might actually decrease if drugs were legalized. She 
conceded that she did not know all of the ramifications and suggested that perhaps 
some studies should be done. 

The nation and especially the Clinton administration were shocked to hear this 
statement. What heresy after all the efforts to control illegal drugs! Of course, the White 
House immediately went on the defensive, making sure that everyone understood that 
President Clinton was not in favor of legalizing drugs. And Dr. Elders had to clarify her 
statement; it was her personal opinion, not a statement of administration policy. 

Questions 

1 What decision situation did Dr. Elders identify? What specific values would be 
implied by choosing to study the legalization of drugs? 

2 From a decision-making perspective, which makes more sense: Nancy Reagan's 
"Just Say No" policy or Elders's suggestion that the issue of legalization be stud 
ied? Why? 

3 Consider Elders's decision to suggest studying the legalization of drugs. Was her 
decision to respond to the reporter the way she did a good decision with a bad out 
come? Or was it a bad decision in the first place? 

4 Why was Elders's suggestion a political hot potato for Clinton's administration? 
What, if any, are the implications for decision analysis in political situations? 

LLOYD BENTSEN FOR VICE PRESIDENT? 

In the summer of 1988, Michael Dukakis was the Democratic Party's presidential 
nominee. The son of Greek immigrants, his political career had flourished as gover-
nor of Massachusetts, where he had demonstrated excellent administrative and fiscal 
skills. He chose Lloyd Bentsen, U.S. Senator from Texas, as his running mate. In an 
analysis of Dukakis's choice, E. J. Dionne of The New York Times (July 13, 1988) 
made the following points: 

1 The main job of the vice presidential nominee is to carry his or her home state. 
Could Bentsen carry Texas? The Republican presidential nominee was George 
Bush, whose own adopted state was Texas. Many people thought that Texas 
would be very difficult for Dukakis to win, even with Bentsen's help. If Dukakis 
could win Texas's 29 electoral votes, however, the gamble would pay off dramat 
ically, depriving Bush of one of the largest states that he might have taken for 
granted. 

2 Bentsen was a conservative Democrat. Jesse Jackson had run a strong race and 
had assembled a strong following of liberal voters. Would the Jackson supporters 
be disappointed in Dukakis's choice? Or would they ultimately come back to the 
fold and be faithful to the Democratic Party? 
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3 Bentsen's ties with big business were unusual for a Democratic nominee. Would 
Democratic voters accept him? The other side of this gamble was that Bentsen 
was one of the best fund raisers around and might be able to eliminate or even re 
verse the Republicans' traditional financial advantage. Even if some of the more 
liberal voters were disenchanted, Bentsen could appeal to a more business- 
oriented constituency. 

4 The safer choice for a running mate would have been Senator John Glenn from 
Ohio. The polls suggested that with Glenn as his running mate, Dukakis would 
have no trouble winning Ohio and its 23 electoral votes. 

Questions 

1 Why is choosing a running mate a hard decision? 
2 What objectives do you think a presidential nominee should consider in making 

the choice? 
3 What elements of risk are involved? 
4 The title of Dionne's article was "Bentsen: Bold Choice or Risky Gamble?" In 

what sense was Dukakis's decision a "bold choice," and in what sense was it a 
"risky gamble"? 

DU PONT AND CHLOROFLUOROCARBONS 

Chlorofluorocarbons (CFCs) are chemicals used as refrigerants in air conditioners 
and other cooling appliances, propellants in aerosol sprays, and in a variety of other 
applications. Scientific evidence has been accumulating for some time that CFCs re-
leased into the atmosphere can destroy ozone molecules in the ozone layer 15 miles 
above the earth's surface. This layer shields the earth from dangerous ultraviolet ra-
diation. A large hole in the ozone layer above Antarctica has been found and attrib-
uted to CFCs, and a 1988 report by 100 scientists concluded that the ozone shield 
above the mid-Northern Hemisphere had shrunk by as much as 3% since 1969. 
Moreover, depletion of the ozone layer appears to be irreversible. Further destruc-
tion of the ozone layer could lead to crop failures, damage to marine ecology, and 
possibly dramatic changes in global weather patterns. 

Environmentalists estimate that approximately 30% of the CFCs released into 
the atmosphere come from aerosols. In 1978, the U.S. government banned their use 
as aerosol propellants, but many foreign governments still permit them. 

Some $2.5 billion of CFCs are sold each year, and Du Pont Chemical Corporation 
is responsible for 25% of that amount. In early 1988, Du Pont announced that the 
company would gradually phase out its production of CFCs and that replacements 
would be developed. Already Du Pont claims to have a CFC substitute for automobile 
air conditioners, although the new substance is more expensive. 
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Questions 

Imagine that you are a Du Pont executive charged with making the decision regard-
ing continued production of CFCs. 
1 What issues would you take into account? 
2 What major sources of uncertainty do you face? 
3 What corporate objectives would be important for you to consider? Do you think 

that Du Pont's corporate objectives and the way the company views the problem 
might have evolved since the mid-1970s when CFCs were just beginning to be 
come an issue? 

Sources: "A Gaping Hole in the Sky," Newsweek, July 11, 1988, pp. 21-23, A. M. Louis (1988) "Du 
Pont to Ban Products that Harm Ozone," San Francisco Chronicle, March 25, p. 1. 

R E F E R E N C E S  

The decision-analysis view is distinctly prescriptive. That is, decision analysis is interested 
in helping people make better decisions; in contrast, a descriptive view of decision making 
focuses on how people actually make decisions. Keeney and Raiffa (1976) explain the pre-
scriptive view as well as anyone. For an excellent summary of the descriptive approach, see 
Hogarth (1987). Bell, Raiffa, and Tversky (1988) provide many readings on these topics. 

A fundamental element of the prescriptive approach is discerning and accepting the 
difference between a good decision and a lucky outcome. This issue has been discussed 
by many authors, both academics and practitioners. An excellent recent reference is 
Vlek et al. (1984). 

Many other books and articles describe the decision-analysis process, and each 
seems to have its own twist. This chapter has drawn heavily from Ron Howard's 
thoughts; his 1988 article summarizes his approach. Other books worth consulting in-
clude Behn and Vaupel (1982), Bunn (1984), Holloway (1979), Keeney (1992), Lindley 
(1985), Raiffa (1968), Samson (1988), and von Winterfeldt and Edwards (1986). 

Phillips's (1982, 1984) idea of a requisite decision model is a fundamental concept 
that we will use throughout the text. For a related view, see Watson and Buede (1987). 
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York: Basic Books. 
Bell, D., H. Raiffa, and A. Tversky (1988) Decision Making: Descriptive, Normative, 
and Prescriptive Interactions. Cambridge, MA: Cambridge University Press. 
Bunn, D. (1984) Applied Decision Analysis. New York: McGraw-Hill. 
Corner, J. L., and C. W. Kirkwood (1991) "Decision Analysis Applications in the 
Operations Research Literature, 1970-1989." Operations Research, 39, 206-219. 
Hogarth, R. (1987) Judgement and Choice, 2nd ed. New York: Wiley. 
Holloway, C. A. (1979) Decision Making under Uncertainty: Models and Choices. 
Englewood Cliffs, NJ: Prentice-Hall. 
Howard, R. A. (1980) "An Assessment of Decision Analysis." Operations Research, 28, 
4-27. 
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E P I L O G U E  What did the ODA decide? Its directors decided to use only BT on all 227,000 acres, 
which were sprayed on three separate occasions in late spring and early summer 1985. At 
the time, this was the largest gypsy moth-control program ever attempted in Oregon. In 
1986, 190,000 acres were sprayed, also with BT. Most of the areas sprayed the second 
year had not been treated the first year because ODA had found later that the gypsy moth 
infestation was more widespread than first thought. In the summer of 1986, gypsy moth 
traps throughout the area indicated that the population was almost completely controlled. 
In the spring of 1987, the ODA used BT to spray only 7500 acres in 10 isolated pockets 
of gypsy moth populations on the fringes of the previously sprayed areas. By 1988, the 
spray program was reduced to a few isolated areas near Eugene, and officials agreed that 
the gypsy moth population was under control. 
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Modeling Decisions 

his first section is about modeling decisions. Chapter 2 presents a short discussion on the 
elements of a decision. Through a series of simple 
examples, the basic elements are illustrated: values and 
objectives, decisions to be made, upcoming uncertain 
events, and consequences. The focus is on i dentifying 
the basic elements. This skill is necessary for modeling 
decisions as described in Chapters 3, 4, and 5. 

In Chapter 3, we learn how to create graphical struc-
tures for decision models. First we consider values and 
objectives, discussing in depth how multiple objectives 
can be organized in hierarchies and networks that can 
provide insight and help to generate creative alterna-
tives. We also develop both influence diagrams and de-
cision trees as graphical modeling tools for representing 
the basic structure of decisions. An influence diagram is 
particularly useful for developing the structure of a 
complex decision problem because it allows many as-
pects of a problem to be displayed in a compact and in-
tuitive form. A decision-tree representation provides an 
alternative picture of a decision in which more of the de-
tails can be displayed. Both graphical techniques can be 
used to represent single-objective decisions, but we 
show how they can be used in multiple-objective situa-
tions as well. We end Chapter 3 with a discussion of 
measurement, presenting concepts  and techniques 
which can be used to ensure that we can adequately 
measure achievement of our objectives, whether those 
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objectives are straightforward (e.g., maximizing dollars 
or saving time) or more difficult to quantify (e.g., mini-
mizing environmental damage). 

Chapters 4 and 5 present the basic tools available to 
the decision maker for analyzing a decision model. 
Chapter 4 shows how to solve decision trees and influ-
ence diagrams. The basic concept presented is expected 
value. When we are concerned with monetary out-
comes, we call this expected monetary value and abbre-
viate it as EMV. In analyzing a decision, EMV is calcu-
lated for each of the available alternatives. In many 
decision situations it is reasonable to choose the alter-
native with the highest EMV. In addition to the EMV 
criterion, Chapter 4 also looks briefly at the idea of risk 
analysis and the uses of a stochastic-dominance crite-
rion for making decisions. Finally, we show how ex-
pected value and risk analysis can be used in multiple-
objective decisions. 

In Chapter 5 we learn how to use sensitivity-analy-
sis tools in concert with EMV calculations in the itera-
tive decision-structuring and analysis process. After an 
initial basic model is built, sensitivity analysis can tell 
which of the input variables really matter in the deci-
sion and deserve more attention in the model. Thus, 
with Chapter 5 we bring the discussion of modeling de-
cisions full circle, showing how structuring and analy-
sis are intertwined in the decision-analysis process. 

Finally, Chapter 6 delves into issues relating to cre-
ativity and decision making. One of the critical aspects of 
constructing a model of a decision is the determination of 
viable alternatives. When searching for alternative ac-
tions in a decision situation, though, we are subject to a 
variety of creative blocks that hamper our search for new 
and different possibilities. Chapter 6 describes these 
blocks to creativity, discusses creativity from a psycho-
logical perspective, and shows how a careful understand-
ing of one's objectives can aid the search for creative al-
ternatives. Several creativity-enhancing techniques are 
described. 
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Elements of 
Decision Problems 

iven a complicated problem, how should one begin? A critical first step is to identify the elements of 
the situation. We will classify the various elements into (1) values and objectives, (2) decisions to make, 

(3) uncertain events, and (4) consequences. In this chapter, we will discuss briefly 
these four basic elements and illustrate them in a series of examples. 

Values and Objectives 

Imagine a farmer whose trees are laden with fruit that is nearly ripe. Even without an 
obvious problem to solve or decision to make, we can consider the fanner's objec-
tives. Certainly one objective is to harvest the fruit successfully. This may be impor-
tant because the fruit can then be sold, providing money to keep the farm operating 
and a profit that can be spent for the welfare of the family. The farmer may have 
other underlying objectives as well, such as maximizing the use of organic farming 
methods. 

Before we can even talk about making decisions, we have to understand values 
and objectives. "Values" is an overused term that can be somewhat ambiguous; here 
we use it in a general sense to refer to things that matter to you. For example, you 
may want to learn how to sail and take a trip around the world. Or you may have an 
objective of learning how to speak Japanese. A scientist may be interested in resolv-
ing a specific scientific question. An investor may want to make a lot of money or 
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gain a controlling interest in a company. A manager, like our farmer with the or-
chard, may want to earn a profit. 

An objective is a specific thing that you want to achieve. All of the examples in 
the previous paragraph refer to specific objectives. As you can tell from the exam-
ples, some objectives are related. The farmer may want to earn a profit because it 
will provide the means to purchase food for the family or to take a trip. The scientist 
may want to find an answer to an important question in order to gain prestige in the 
scientific community; that prestige may in turn lead to a higher salary and more re-
search support at a better university. 

An individual's objectives taken together make up his or her values. They define 
what is important to that person in making a decision. We can make an even broader 
statement: A person's values are the reason for making decisions in the first place! If 
we did not care about anything, there would not be a reason to make decisions at all, 
because we would not care how things turned out. Moreover, we would not be able 
to choose from among different alternatives. Without objectives, it would not be 
possible to tell which alternative would be the best choice. 

Making Money: A Special Objective 

In modern western society, most adults work for a living, and if you ask them why, 
they will all include in their answers something about the importance of making 
money. It would appear that making money is an important objective, but a few sim-
ple questions (Why is money important? What would you do if you had a million 
dollars?) quickly reveal that money is important because it helps us do things that we 
want to do. For many people, money is important because it allows us to eat, afford 
housing and clothing, travel, engage in activities with friends, and generally live 
comfortably. Many people spend money on insurance because they have an objec-
tive of avoiding risks. For very few individuals is money important in and of itself. 
Unlike King Midas, most of us do not want to earn money simply to have it; money 
is important because it provides the means by which we can work toward more basic 
objectives. 

Money's role as a trading mechanism in our economy puts it in a special role. 
Although it is typically not one of our basic objectives, it can serve as a proxy objec-
tive in many situations. For example, imagine a young couple who wants to take a 
vacation. They will probably have to save money for some period of time before 
achieving this goal, and they will face many choices regarding just how to go about 
saving their money. In many of these decisions, the main concern will be how much 
money they will have when they are ready to take their holiday. If they are consider-
ing investing their money in a mutual fund, say, they will have to balance the volatil-
ity of the fund's value against the amount they can expect to earn over the long run, 
because most investment decisions require a trade-off between risk and return. 

For corporations, money is often a primary objective, and achievement of the ob-
jective is measured in terms of increase in the shareholders' wealth through divi- 
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dends and increased company value. The shareholders themselves can, of course, 
use their wealth for their own welfare however they want. Because the shareholders 
have the opportunity to trade their wealth to achieve specific objectives, the com-
pany need not be concerned with those objectives but can focus on making its share-
holders as wealthy as possible. 

Although making money is indeed a special objective, it is important to realize 
that many situations require a trade-off between making money and some other ob-
jective. In many cases, one can price out the value of different objectives. When 
you purchase a car, how much more would you pay to have air conditioning? How 
much more to get the color of your choice? These questions may be difficult to an-
swer, but we all make related decisions all the time as we decide whether a product 
or service is worth the price that is asked. In other cases, though, it may not be rea-
sonable to convert everything to dollars. For example, consider the ethical prob-
lems faced by a hospital that performs organ transplants. Wealthy individuals can 
pay more for their operations, and often are willing to do so in order to move up in 
the queue. The additional money may permit the hospital to purchase new equip-
ment or perform more transplants for needy individuals. But moving the wealthy 
patient up in the queue will delay surgery for other patients, perhaps with fatal con-
sequences. What if the other patients include young children? Pricing out the lives 
and risks to the other patients seems like a cold-hearted way to make this decision; 
in this case, the hospital will probably be better off thinking in terms of its funda-
mental objectives and how to accomplish them with or without the wealthy pa-
tient's fee. 

Values and the Current Decision Context 

Suppose you have carefully thought about all of your objectives. Among other things 
you want to do what you can to reduce homelessness in your community, learn to 
identify birds, send your children to college, and retire at age 55. Having spent the 
morning figuring out your objectives, you have become hungry and are ready for a 
good meal. Your decision is where to go for lunch, and it is obvious that the large-
scale, overall objectives that you have spent all morning thinking about will not be 
much help. 

You can still think hard about your objectives, though, as you consider your de-
cision. It is just that different objectives are appropriate for this particular decision. 
Do you want a lot to eat or a little? Do you want to save money? Are you interested 
in a particular type of ethnic food, or would you like to try a new restaurant? If you 
are going out with friends, what about their preferences? What about a picnic instead 
of a restaurant meal? 

Each specific decision situation calls for specific objectives. We call the setting 
in which the decision occurs the decision context. In one case, a decision context 
might be deciding where to go for lunch, in which case the appropriate objectives in-
volve satisfying hunger, spending time with friends, and so on. In another case, the 
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context might be what to choose for a career, which would call for consideration of 
more global objectives. What do you want to accomplish in your life? 

Values and decision context go hand in hand. On one hand, it is worthwhile to 
think about your objectives in advance to be prepared for decisions when they arise 
or so that you can identify new decision opportunities that you might not have 
thought about before. On the other hand, every decision situation involves a specific 
context, and that context determines what objectives need to be considered. The idea 
of a requisite model comes into play here. A requisite decision model includes all of 
the objectives that matter, and only those that matter, in the decision context at hand. 
Without all of the appropriate objectives considered, you will be left with the gnaw-
ing concern that "something is missing" (which would be true), and considering su-
perfluous or inappropriate objectives can distract you from the truly important is-
sues. When the decision context is specified and appropriate objectives aligned with 
the context, the decision maker knows what the situation is and exactly why he or 
she cares about making a decision in that situation. 

Finding realistic examples in which individuals or companies use their objec-
tives in decision making is easy. In the following example, the Boeing Company 
found itself needing to acquire a new supercomputer. 

BOEING'S  SUPERCOMPUTER 

As a large-scale manufacturer of sophisticated aircraft, Boeing needs computing 
power for tasks ranging from accounting and word processing to computer-aided de-
sign, inventory control and tracking, and manufacturing support. When the company's 
engineering department needed to expand its high-power computing capacity by pur-
chasing a supercomputer, the managers faced a huge task of assembling and evaluating 
massive amounts of information. There were systems requirements and legal issues to 
consider, as well as price and a variety of management issues. (Source: D. Barnhart, 
(1993) "Decision Analysis Software Helps Boeing Select Supercomputer." OR/MS 
Today, April, 62—63.) 

Boeing's decision context is acquiring supercomputing capacity for its engineer-
ing needs. Even though the company undoubtedly has global objectives related to 
aircraft production, maximizing shareholder wealth, and providing good working 
conditions for its employees, in the current decision context the appropriate objec-
tives are specific to the company's computing requirements. 

Organizing all of Boeing's objectives in this decision context is complex because 
of the many different computer users involved and their needs. With careful thought, 
though, management was able to specify five main objectives: minimize costs, max-
imize performance, satisfy user needs, satisfy organizational needs, and satisfy man-
agement issues. Each of these main objectives can be further broken down into dif-
ferent aspects, as shown in Figure 2.1. 
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Figure 2.1 
Objectives for Boeing's 

supercomputer. 

Decisions to Make 

With the decision context understood and values well in hand, the decision maker 
can begin to identify specific elements of a decision. Consider our farmer whose 
fruit crop will need to be harvested soon. If the weather report forecasts mild 
weather, the farmer has nothing to worry about, but if the forecast is for freezing 
weather, it might be appropriate to spend some money on protective measures that 
will save the crop. In such a situation, the farmer has a decision to make, and that de-
cision is whether or not to take protective action. This is a decision that must be 
made with the available information. 

Many situations have as the central issue a decision that must be made right 
away. There would always be at least two alternatives; if there were no alternatives, 
then it would not be a matter of making a decision! In the case of the farmer, the al-
ternatives are to take protective action or to leave matters as they are. Of course, 
there may be a wide variety of alternatives. For example, the farmer may have sev-
eral strategies for saving the crop, and it may be possible to implement one or more. 

Another possibility may be to wait and obtain more information. For instance, if 
the noon weather report suggests the possibility of freezing weather depending on 
exactly where a weather system travels, then it may be reasonable to wait and listen 
to the evening report to get better information. Such a strategy, however, may entail 
a cost. The farmer may have to pay his hired help overtime if the decision to protect 
the crop is made late in the evening. Some measures may take time to set up; if the 
farmer waits, there may not be enough time to implement some of these procedures. 

Other possible alternatives are taking out insurance or hedging. For example, the 
farmer might be willing to pay the harvesting crew a small amount to be available at 
night if quick action is needed. Insurance policies also may be available to protect 
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against crop loss (although these typically are not available at the last minute). Any 
of these alternatives might give the farmer more flexibility but would probably cost 
something up front. 

Identifying the immediate decision to make is a critical step in understanding a 
difficult decision situation. Moreover, no model of the decision situation can be built 
without knowing exactly what the decision problem at hand is. In identifying the cen-
tral decision, it is important also to think about possible alternatives. Some decisions 
will have specific alternatives (protect the crop or not), while others may involve 
choosing a specific value out of a range of possible values (deciding on an amount to 
bid for a company you want to acquire). Other than the obvious alternative courses of 
action, a decision maker should always consider the possibilities of doing nothing, of 
waiting to obtain more information, or of somehow hedging against possible losses. 

Sequential Decisions 

In many cases, there simply is no single decision to make, but several sequential de-
cisions. The orchard example will demonstrate this. Suppose that several weeks of 
the growing season remain. Each day the farmer will get a new weather forecast, and 
each time there is a forecast of adverse weather, it will be necessary to decide once 
again whether to protect the crop. 

The example shows clearly that the farmer has a number of decisions to make, and 
the decisions are ordered sequentially. If the harvest is tomorrow, then the decision is 
fairly easy, but if several days or weeks remain, then the farmer really has to think about 
the upcoming decisions. For example, it might be worthwhile to adopt a policy whereby 
the amount spent on protection is less than the value of the crop. One good way to do 
this would be not to protect during the early part of the growing season; instead, wait 
until the harvest is closer, and then protect whenever the weather forecast warrants such 
action. In other words, "If we're going to lose the crop, let's lose it early." 

It is important to recognize that in many situations one decision leads eventually 
to another in a sequence. The orchard example is a special case because the decisions 
are almost identical from one day to the next: Take protective action or not. In many 
cases, however, the decisions are radically different. For example, a manufacturer 
considering a new product might first decide whether or not to introduce it. If the de-
cision is to go ahead, the next decision might be whether to produce it or subcontract 
the production. Once the production decision is made, there may be marketing deci-
sions about distribution, promotion, and pricing. 

When a d ecision situation is complicated by sequential decisions, a decision 
maker will want to consider them when making the immediate decision. Furthermore, 
a future decision may depend on exactly what happened before. For this reason, we 
refer to these kinds of problems as dynamic decision situations. In identifying ele-
ments of a decision situation, we want to know not only what specific decisions are to 
be made, but the sequence in which they will arise. Figure 2.2 shows graphically a se-
quence of decisions, represented by squares, mapped along a time line. 
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Figure 2.2 
Sequential decisions. 

A decision maker needs 
to consider decisions to 
be made now and later. 

Uncertain Events 

In Chapter 1 we saw that decision problems can be complicated because of uncertainty 
about what the future holds. Many important decisions have to be made without know-
ing exactly what will happen in the future or exactly what the ultimate outcome will be 
from a decision made today. A classic example is that of investing in the stock market. 
An investor may be in a position to buy some stock, but in which company? Some 
share prices will go up and others down, but it is difficult to tell exactly what will hap-
pen. Moreover, the market as a whole may move up or down, depending on economic 
forces. The best the investor can do is think very carefully about the chances associated 
with each different security's prices as well as the market as a whole. 

The possible things that can happen in the resolution of an uncertain event are called 
outcomes. In the orchard example above, the key uncertain event is the weather, with 
outcomes of crop damage or no crop damage. With some uncertain events, such as with 
the orchard, there are only a few possible outcomes. In other cases, such as the stock 
market, the outcome is a value within some range. That is, next year's price of the secu-
rity bought today for $50 per share may be anywhere between, say, $0 and $100. (It cer-
tainly could never be worth less than zero, but the upper limit is not so well defined: 
Different individuals might consider different upper limits for the same stock.) The 
point is that the outcome of the uncertain event that we call "next year's stock price" 
comes from a range of possible values and may fall anywhere within that range. 

Many different uncertain events might be considered in a decision situation, but 
only some are relevant. How can you tell which ones are relevant? The answer is 
straightforward; the outcome of the event must have some impact on at least one of 
your objectives. That is, it should matter to you what actually comes to pass. 
Although this seems like common sense, in a complex decision situation it can be 
all too easy to concentrate on uncertain events that we can get information about 
rather than those that really have an impact in terms of our objectives. One of the 
best examples comes from risk analysis of nuclear power plants; engineers can make 
judgments about the chance that a power-plant accident will release radioactive ma-
terial into the atmosphere, but what may really matter is how local residents react to 
siting the plant in their neighborhood and to subsequent accidents if they occur. 

Of course, a decision situation often involves more than one uncertain event. The 
larger the number of uncertain but relevant events in a given situation, the more 
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complicated the decision. Moreover, some uncertain events may depend on others. 
For example, the price of the specific stock purchased may be more likely to go up if 
the economy as a whole continues to grow or if the overall stock market increases in 
value. Thus there may be interdependencies among the uncertain events that a deci-
sion maker must consider. 

How do uncertain events relate to the decisions in Figure 2.2? They must be dove-
tailed with the time sequence of the decisions to be made; it is important to know at 
each decision exactly what information is available and what remains unknown. At 
the current time ("Now" on the time line), all of the uncertain events are just that; 
their outcomes are unknown, although the decision maker can look into the future and 
specify which uncertainties will be resolved prior to each upcoming decision. For ex-
ample, in the dynamic orchard decision, on any given day the farmer knows what the 
weather has been in the past but not what the weather will be in the future. 

Sometimes an uncertain event that is resolved before a decision provides infor-
mation relevant for future decisions. Consider the stock market problem. If the in-
vestor is considering investing in a company that is involved in a lawsuit, one alter-
native might be to wait until the lawsuit is resolved. Note that the sequence of 
decisions is (1) wait or buy now, and (2) if waiting, then buy or do not buy after the 
lawsuit. The decision to buy or not may depend crucially on the outcome of the law-
suit that occurs between the two decisions. 

What if there are many uncertain events that occur between decisions? There may 
be a natural order to the uncertain events, or there may not. If there is, then specifying 
that order during modeling of the decision problem may help the decision maker. But 
the order of events between decisions is not nearly as crucial as the dovetailing of de-
cisions and events to clarify what events are unknown and what information is avail-
able for each decision in the process. It is the time sequence of the decisions that mat-
ters, along with the information available at each decision. In Figure 2.3, uncertain 
events, represented by circles, are dovetailed with a sequence of decisions. An arrow 
from a group of uncertain events to a decision indicates that the outcomes of those 
events are known at the time the decision is made. Of course, the decision maker is 
like the proverbial elephant and never forgets what has happened. For upcoming de-
cisions, he or she should be able to recall (possibly with the aid of notes and docu-
ments) everything that happened (decisions and event outcomes) up to that point. 

Figure 2.3 
Dovetailing uncertain 
events and sequential 

decisions. 
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Consequences 

After the last decision has been made and the last uncertain event has been resolved, the 
decision maker's fate is finally determined. It may be a matter of profit or loss as in the 
case of the farmer. It may be a matter of increase in value of the investor's portfolio. In 
some cases the final consequence may be a "net value" figure that accounts for both 
cash outflows and inflows during the time sequence of the decisions. This might happen 
in the case of the manufacturer deciding about a new product; certain costs must be in-
curred (development, raw materials, advertising) before any revenue is obtained. 

If the decision context requires consideration of multiple objectives, the conse-
quence is what happens with respect to each of the objectives. For example, consider 
the consequence of a general's decision to storm a hill. The consequence might be 
good because the army succeeds in taking the hill (a specific objective), but it may 
be bad at the same time if many lives are lost. 

In our graphical scheme, we must think about the consequence at the end of the 
time line after all decisions are made and all uncertain events are resolved. For ex-
ample, the consequence for the farmer after deciding whether to protect and then ex-
periencing the weather might be a profit of $15,000, a loss of $3400, or some other 
dollar amount. For the general it might be "gain the hill, 10 men killed, 20 wounded" 
or "don't gain the hill, two men killed, five wounded." Thus, the end of the time line 
is when the decision maker finds out the results. Looking forward from the current 
time and current decision, the end of the time line is called the planning horizon. 
Figure 2.4 shows how the consequence fits into our graphical scheme. 

What is an appropriate planning horizon? For the farmer, the answer is relatively 
easy; the appropriate planning horizon is at the time of the harvest. But for the gen-
eral, this question is not so simple. Is the appropriate horizon the end of the next day 
when he will know whether his men were able to take the hill? Or is it at the end of 
the war? Or is it sometime in between — say, the end of next month? For the investor, 
how far ahead should the planning horizon be? A week? A month? Several years? 
For individuals planning for retirement, the planning horizon may be years in the fu-
ture. For speculators making trades on the floor of a commodity exchange, the plan-
ning horizon may be only minutes into the future. 

Figure 2.4 
Including the 
consequence. 
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Thus, one of the fundamental issues with which a decision maker must come to 
grips is how far into the future to look. It is always possible to look farther ahead; 
there will always be more decisions to make, and earlier decisions may have some 
effect on the availability of later alternatives. Even death is not an obvious planning 
horizon because the decision maker may be concerned with effects on future gener-
ations; environmental policy decisions provide perfect examples. At some point the 
decision maker has to stop and say, "My planning horizon is there. It's not worth-
while for me to think beyond that point in time." For the purpose of constructing a 
requisite model, the idea is to choose a planning horizon such that the events and de-
cisions that would follow after are not essential parts of the immediate decision 
problem. To put it another way, choose a planning horizon that is consistent with 
your decision context and the relevant objectives. 

Once the dimensions of the consequences and the planning horizon have been de-
termined, the next step is to figure out how to value the consequences. As mentioned, 
in many cases it will be possible to work in terms of monetary values. That is, the only 
relevant objective in the decision context is to make money, so all that matters at the 
end is profit, cost, or total wealth. Or it may be possible to price out nonmonetary ob-
jectives as discussed above. For example, a manager might be considering whether to 
build and run a day care center for the benefit of the employees. One objective might 
be to enhance the goodwill between the company and the workforce. Enhanced good-
will would in turn have certain effects on the operations of the company, including re-
duced absenteeism, improved ability to recruit, and a better image in the community. 
Some of these, such as the reduced absenteeism and improved recruiting, could easily 
be translated into dollars. The image may be more difficult to translate, but the man-
ager might assess its value subjectively by estimating how much money it would cost 
in terms of public relations work to improve the firm's image by the same amount. 

In some cases, however, it will be difficult to determine exactly how the different 
objectives should be traded off. In the hospital case discussed earlier, how should the 
administrator trade off the risks to patients who would be displaced in the queue ver-
sus the fee paid by a wealthy patient? How many lives should the general be willing 
to sacrifice in order to gain the hill? How much damage to the environment are we 
willing to accept in order to increase the U.S. supply of domestic oil? How much in 
the way of health risks are we willing to accept in order to have blemish-free fruits 
and vegetables? Many decisions, especially governmental policy decisions, are com-
plicated by trade-offs like these. Even personal decisions, such as taking a job or pur-
chasing a home, require a decision maker to think hard about the trade-offs involved. 

The Time Value of Money: A Special Kind of Trade-Off 

One of the most common consequences in personal and business decisions is a 
stream of cash flows. For example, an investor may spend money on a project (an 
initial cash outflow) in order to obtain revenue in the future (cash inflows) over a pe-
riod of years. In such a case, there is a special kind of trade-off: spending dollars 
today to obtain dollars tomorrow. If a dollar today were worth the same as a dollar 
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next year, there would be no problem. However, this is not the case. A dollar today 
can be invested in a savings account or other interest-bearing security; at the end of 
a year, one dollar invested now would be worth one dollar plus the interest paid. 

Trade-offs between current and future dollars (and between future dollars at dif-
ferent points in time) refer to the fact that the value of a dollar depends on when it is 
available to the decision maker. Because of this, we often refer to the "time value of 
money." Fortunately, there is a straightforward way to collapse a stream of cash 
flows into a single number. This number is called the present value, or value in pre-
sent dollars, of the stream of cash flows. 

Suppose, for example, you have $100 in your pocket. If you put that money into 
a savings account that earns 10% per year, paid annually, then you would have 
$100 x 1.1 = $110 at the end of the year. At the end of two years, the balance in the 
account would be $110 plus another 10%, or $110x1.1 = $121. In fact, you can see 
that the amount you have is just the original $100 multiplied by 1.1 twice: 
$121 = $100 x 1.1 x 1.1 = $100 x l.l2. If you keep the money in the account for 
five years, say, then the interest compounds for five years. The account balance would 
be $100 x l.l5 = $161.05. 

We are going to use this idea of interest rates to work backward. Suppose, for ex-
ample, that someone promises that you can have $110 next year. What is this worth 
to you right now? If you have available some sort of investment like a savings ac-
count that pays 10% per year, then you would have to invest $100 in order to get 
$110 next year. Thus, the present value of the $110 that arrives next year is just 
$110/1.1 = $100. Similarly, the present value of $121 dollars promised at the end 
of two years is $121/(l.l2) = $100. 

In general, we will talk about the present value of an amount x that will be re-
ceived at the end of n time periods. Of course, we must know the appropriate inter-
est rate. Let r denote the interest rate per time period in decimal form; that is, if the 
interest rate is 10%, then r = 0.10. With this notation, the formula for calculating 
present value (PV) is 

 
The denominator in this formula is a number greater than 1. Thus, dividing x by 
(1 + r)n will give a present value that is less than x. For this reason, we often say 
that we "discount" x back to the present. You can see that if you had the discounted 
amount now and could invest it at the interest rate r, then after n time periods (days, 
months, years, and so on) the value of the investment would be the discounted 
amount times (1 + r)n, which is simply x. 

Keeping the interest rate consistent with the time periods is important. For exam-
ple, a savings account may pay 10% "compounded monthly." Thus, a year is really 12 
time periods, and so n = 12. The monthly interest rate is 10%/12, or 0.8333%. Thus, 
the value of $100 deposited in the account and left for a year would be 
$100 x (1.00833)12 = $110.47. Notice that compounding helps because the interest 
itself earns interest during each time period. Thus, if you have a choice among sav-
ings accounts that have the same interest rate, the one that compounds more fre-
quently will end up having a higher eventual payoff. 
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We can now talk about the present value of a stream of cash flows. Suppose that 
a friend is involved in a business deal and offers to let you in on it. For $425 paid to 
him now, he says, you can have $110.00 next year, $121.00 the following year, 
$133.10 the third year, and $146.41 at the end of Year 4. This is a great deal, he says, 
because your payments will total $510.51. 

What is the present value of the stream of payments? (You probably can guess al-
ready!) Let us suppose you put your money into a savings account at 10%, com-
pounded annually. Then we would calculate the present value of the stream of cash 
flows as the sum of the present values of the individual cash flows: 

 
Thus, the deal is not so great. You would be paying $425 for a stream of cash flows that 
has a present value of only $400. The net present value (NPV) of the cash flows is the 
present value of the cash flows ($400) minus the cost of the deal ($425), or -$25; you 
would be better off keeping your $425 and investing it in the savings account. 

The formula for calculating NPV for a stream of cash flows x0,..., xn over n 
periods at interest rate r is 

 

[Recall that raising any number to the zero power is equal to 1, and so (1.1)0 = 1.] 
Clearly, we could deal with any stream of cash flows. There could be one big inflow and 
then a bunch of outflows (such as with a loan), or there could be a large outflow (buying a 
machine), then some inflows (revenue), another outflow (maintenance costs), and so on. 
When NPV is calculated, it reveals the value of the stream of cash flows. A negative NPV 
for a project indicates that the money would be better invested to earn interest rate r. 

We began our discussion by talking about trade-offs. You can see how calculat-
ing present values establishes trade-offs between dollars at one point in time and dol-
lars at another. That is, you would be indifferent between receiving $1 now or 
$1(1 + r) at the end of the next time period. More generally, $1 now is worth 
$1(1 + r)n at the end of n time periods. NPV works by using these trade-off rates to 
discount all the cash flows back to the present. 

In general, we can have both outflows (negative numbers) and inflows. In the example, 
we could include the cash outflow of $425 as a negative number in calculating NPV: 
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Knowing the interest rate is the key in using present-value analysis. What is the ap-
propriate interest rate? In general, it is the interest rate that you could get for investing 
your money in the next best opportunity. Often we use the interest rate from a savings 
account, a certificate of deposit, or short-term (money market) securities. For a corpo-
ration, the appropriate interest rate to use might be the interest rate they would have to 
pay in order to raise money by issuing bonds. Often the interest rate is called the hur-
dle rate, indicating that an acceptable investment must earn more than this rate. 

We have talked about the elements of decision problems: objectives, decisions to 
make, uncertain events, and consequences. The discussion of the time value of 
money showed how a consequence that is a stream of cash flows can be valued 
through the trade-offs implicit in interest rates. Now it is time to put all of this to-
gether and try it out in an example. Imagine the problems that an oil company might 
face in putting together a plan for dealing with a major oil spill. Here are managers 
in the fictitious "Larkin Oil" struggling with this situation. 

LARKIN   O I L  
Pat Mills was restless. The Oil Spill Contingency Plan Committee was supposed to 
come up with a concrete proposal for the top management of Larkin Oil, Inc. The 
committee had lots of time; the CEO had asked for recommendations within three 
months. This was their first meeting. 

Over the past hour, Sandy Wilton and Marty Kelso had argued about exactly 
what level of resources should be committed to planning for a major oil spill in the 
company's main shipping terminal bay. 

"Look," said Sandy, "We've been over this so many times. When, and if, an oil 
spill actually occurs, we will have to move fast to clean up the oil. To do that, we 
have to have equipment ready to go." 

"But having equipment on standby like that means tying up a lot of capital," Chris 
Brown replied. As a member of the financial staff, Chris was sensitive to committing 
capital for equipment that would be idle all the time and might actually have to be re-
placed before it was ever used. "We'd be better off keeping extensive records, maybe 
just a long list of equipment that would be useful in a major cleanup. We need to know 
where it is, what it's capable of, what its condition is, and how to transport it." 

"Come to think of it, our list will also have to include information on transporta-
tion equipment and strategies," Leslie Taylor added. 

Pat finally stirred. "You know what bothers me? We're talking about these alter-
natives, and the fact that we need to do thus and so in order to accomplish such and 
such. We're getting the cart before the horse. We just don't have our hands on the 
problem yet. I say we go back to basics. First, how could an oil spill happen?" 

"Easy," said Sandy. "Most likely something would happen at the pipeline termi-
nal. Something goes wrong with a coupling, or someone just doesn't pay attention 
while loading oil on the ship. The other possibility is that a tanker's hull fails for 
some reason, probably from running aground because of weather." 

"Weather may not be the problem," suggested Leslie. "What about incompe-
tence? What if the pilot gets drunk?" 
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Marty Kelso always was able to imagine the unusual scenarios. "And what about 
the possibility of sabotage? What if a terrorist decides to wreak environmental 
havoc?" 

"OK," said Pat, "In terms of the actual cleanup, the more likely terminal spill 
would require a different kind of response than the less likely event of a hull failure. 
In planning for a terminal accident, we need to think about having some equipment 
at the terminal. Given the higher probability of such an accident, we should probably 
spend some money on cleanup equipment that would be right there and available." 

"I suppose so," conceded Chris. "At least we would be spending our money on 
the right kind of thing." 

"You know, there's another problem that we're not really thinking about," Leslie 
offered. "An oil spill at the terminal can be easily contained with relatively little en-
vironmental damage. On the other hand, if we ever have a hull failure, we have to act 
fast. If we don't, and mind you, we may not be able to because of the weather, Larkin 
Oil will have a terrible time trying to clean up the public relations as well as the 
beaches. And think about the difference in the PR problem if the spill is due to in-
competence on the part of a pilot rather than weather or sabotage." 

"Even if we act fast, a huge spill could still be nearly impossible to contain," Pat 
pointed out. "So what's the upshot? Sounds to me like we need someone who could 
make a decision immediately about how to respond. We need to recover as much oil as 
possible, minimize environmental damage, and manage the public relations problem." 

"And do this all efficiently," growled Chris Brown. "We still have to do it without 
having tied up all of the company's assets for years waiting for something to happen." 

The committee at Larkin Oil has a huge problem on its hands. The effects of its 
work now and the policy that is eventually implemented for coping with future acci-
dents will substantially affect the company resources and possibly the environment. 
We cannot solve the problem entirely, but we can apply the principles discussed so 
far in the chapter. Let us look at the basic elements of the decision situation. 

First, what is the committee's decision context, and what are Larkin's objectives? 
The context is making recommendations regarding plans for possible future oil spills, 
and the immediate decision is what policy to adopt for dealing with oil spills. Exactly 
what alternatives are available is not clear. The company's objectives are well stated 
by Pat Mills and Chris Brown at the end of the example: (1) recover as much oil as 
possible, (2) minimize environmental damage, (3) minimize damage to Larkin's pub-
lic image, and (4) minimize cost. Recovering as much oil as possible is perhaps best 
viewed as a means to minimize environmental damage as well as the impact on 
Larkin's image. It also appears that a fundamental issue is how much of the com-
pany's resources should be committed to standby status waiting for an accident to 
occur. In general, the more resources committed, the faster the company could re-
spond and the less damage would be done. Having these objectives out on the table 
immediately and understanding the inherent trade-offs will help the committee orga-
nize their efforts as they explore potential policy recommendations. 

Is this a sequential decision problem? Based on Pat's last statement, the imme-
diate decision must anticipate future decisions about responses to specific accident 
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situations. Thus, in figuring out an appropriate policy to adopt now, they must think 
about possible appropriate future decisions and what resources must be available at 
the time so that the appropriate action can be taken. 

The scenario is essentially about uncertain events. Of course, the main uncertain 
event is whether an oil spill will ever occur. From Chris Brown's point of view, an 
important issue might be how long the cleanup equipment sits idle, requiring peri-
odic maintenance, until an accident occurs. Also important are events such as the 
kind of spill, the location, the weather, the cause, and the extent of the damage. At 
the present time, imagining the first accident, all of these are unknowns, but if and 
when a decision must be made, some information will be available (location, current 
weather, cause), while other factors — weather conditions for the cleanup, extent of 
the eventual damage, and total cleanup cost — probably will not be known. 

What is an appropriate planning horizon for Larkin? No indication is given in the 
case, but the committee members may want to consider this. How far into the future 
should they look? How long will their policy recommendations be active? They may 
wish to specify that at some future date (say three years from the present) another 
committee be charged with reviewing and updating the policy in light of scientific 
and technological advances. 

The problem also involves fundamental issues about how the different conse-
quences are valued. As indicated, the fundamental trade-off is whether to save 
money by committing fewer resources or to provide better protection against future 
possible accidents. In other words, just how much is insurance against damage worth 
to Larkin Oil? In talking about consequences, the committee can imagine some pos-
sible ones and the overall "cost" (in generic terms) to the company: (1) committing 
substantial resources and never needing them; (2) committing a lot of resources and 
using them effectively to contain a major spill; (3) committing few resources and 
never needing them (the best possible outcome); and (4) committing few resources 
and not being able to clean up a spill effectively (the worst possible outcome). 

Just considering the dollars spent, there is a time-value-of-money problem that 
Chris Brown eventually will want the committee to address. To some extent, dollars 
can be spent for protection now instead of later on. Alternative financing schemes 
can be considered to pay for the equipment required. Different strategies for acquir-
ing and maintaining equipment may have different streams of cash flows. 
Calculating the present value of these different strategies for providing protection 
may be an important aspect of the decision. 

Finally, the committee members also need to think about exactly how to allocate 
resources in terms of the other objectives stated by Pat Mills. They need to recover 
oil, minimize environmental damage, and handle public relations problems. Of 
course, recovering oil and minimizing environmental damage are linked to some ex-
tent. Overall, though, the more resources committed to one of these objectives, the 
less available they are to satisfy the others. The committee may want to specify some 
guidelines for resource allocation in its recommendations, but for the most part this 
allocation will be made at the time of future decisions that are in turn made in re-
sponse to specific accidents. 

Can we put all of this together? Figure 2.5 shows the sequence of decisions and un-
certain events. This is only a rough picture, intended to capture the elements discussed 
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Figure 2.5 
A graphical represen-
tation of Larkin Oil's 

situation. 

here, a first step toward the development of a requisite decision model. Different deci-
sion makers most likely would have different representations of the situation, although 
most would probably agree on the essential elements of the values, decisions, uncer-
tain events, and consequences. 

SUMMARY Hard decisions often have many different aspects. The basic elements of decision sit-
uations include values and objectives, decisions to be made, uncertain events, and 
consequences. This chapter discussed identification of the immediate decision at 
hand as well as subsequent decisions. We found that uncertain future events must be 
dovetailed with the sequence of decisions, showing exactly what is known before 
each decision is made and what uncertainties still remain. We discussed valuing con-
sequences in some depth, emphasizing the specification of a planning horizon and 
the identification of relevant trade-offs. The discussion about the time value of 
money showed how interest rates imply a special kind of trade-off between cash 
flows at different points in time. Finally, the Larkin Oil example served to illustrate 
the identification of the basic elements of a major (and messy) decision problem. 

Q U E S T I O N S    AND   P R O B L E M S  

2.1     Suppose you are in the market for a new car, the primary use for which would be com-
muting to work, shopping, running errands, and visiting friends. a   What are your 
objectives in this situation? What are some different alternatives? b   Suppose you 
broaden the decision context. Instead of deciding on a car for commuting purposes, you 
are interested in having transportation for getting around your community. In this new 
decision context, how would you describe your objectives? What are some alternatives 
that you might not have considered in the narrower decision context? 
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c    How might you broaden the decision context further? (There are many ways to do 
this!) In this broader context, what new objectives must you consider? What new al-
ternatives are available? 

d   Does your planning horizon change when you broaden the decision context in ques-
tion b? Question c? 

2.2 Explain in your own words why it is important in some situations to consider future deci 
sions as well as the immediate decision at hand. Can you give an example from your own 
experience of an occasion in which you had to make a decision while explicitly anticipat 
ing a subsequent decision? How did the immediate decision affect the subsequent one? 

2.3 Sometimes broadening the decision context can change the planning horizon. For exam 
ple, many companies face specific technical problems. Framed in a narrow decision 
context, the question is how to solve the specific problem, and a reasonable solution 
may be to hire a consultant. On the other hand, if the decision context is broadened to 
include solving related problems as well as the current one, the company might want to 
develop in-house expertise by hiring one or more permanent employees or training an 
existing employee in the required skills. What is the planning horizon in each case, and 
why does it change with the broader context? What objectives must be considered in the 
broader context that can be ignored in the narrower one? 

2.4 Explain in your own words why it is important to keep track of what information is 
known and what events are still uncertain for each decision. 

2.5 What alternatives other than specific protection strategies might Larkin Oil consider 
(for example, insurance)? 

2.6 Imagine the difficulties of an employer whose decision context is choosing a new em 
ployee from a set of applicants whom he will interview. What do you think the em 
ployer's objectives should be? Identify the employer's specific decisions to make and 
uncertainties, and describe the relevant uncertain events. How does the problem change 
if the employer has to decide whether to make an offer on the spot after each interview? 

2.7 Identify the basic elements of a real-estate investor's decision situation. What are the in 
vestor's objectives? Is the situation dynamic (that is, are there sequential decisions)? 
What are some of the uncertainties that the investor faces? What are the crucial trade 
offs? What role does the time value of money play for this investor? 

2.8 Describe a decision problem that you have faced recently (or with which you are cur 
rently struggling). Describe the decision context and your objectives. What were the 
specific decisions that you faced, and what were the relevant uncertainties? Describe the 
possible consequences. 

2.9 Calculate the net present value of a business deal that costs $2500 today and will return 
$1500 at the end of this year and $1700 at the end of the following year. Use an interest 
rate of 13%. 

 

2.10 Find the net present value of a project that has cash flows of - $ 12,000 in Year 1, 
+$5000 in Years 2 and 3, -$2000 in Year 4, and +$6000 in Years 5 and 6. Use an inter 
est rate of 12%. Find the interest rate that gives a net present value of zero. 

2.11 A friend asks you for a loan of $1000 and offers to pay you back at the rate of $90 per 
month for 12 months. 
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a Using an annual interest rate of 10%, find the net present value (to you) of loaning 
your friend the money. Repeat, using an interest rate of 20%. 

b Find an interest rate that gives a net present value of 0. The interest rate for which 
NPV = 0 is often called the internal rate of return. 

2.12 Terry Martinez is considering taking out a loan to purchase a desk. The furniture store 
manager rarely finances purchases, but will for Terry "as a special favor." The rate will 
be 10% per year, and because the desk costs $600, the interest will come to $60 for a 
one-year loan. Thus, the total price is $660, and Terry can pay it off in 12 installments 
of $55 each. 
a   Use the interest rate of 10% per year to calculate the net present value of the loan. 

(Remember to convert to a monthly interest rate.) Based on this interest rate, should 
Terry accept the terms of the loan? b   Look at this problem from the store manager's 

perspective. Using the interest rate of 
10%, what is the net present value of the loan to the manager? c   What is the net 

present value of the loan to the manager if an interest rate of 18% is 
used? What does this imply for the real rate of interest that Terry is being charged 
for the loan? 

This kind of financing arrangement was widely practiced at one time, and you can see 
why from your answers to (c). By law, lenders in the United States now must clearly 
state the actual annual percentage rate in the loan contract. 

2.13 Lynn Rasmussen is deciding what sports car to purchase. In reflecting about the situa 
tion, it becomes obvious that after a few years Lynn may elect to trade in the sports car 
for a new one, although the circumstances that might lead to this choice are uncertain. 
Should trading in the car count as an uncertain event or a future decision? What are the 
implications for building a requisite model of the current car-purchase decision if trad 
ing in the car is treated as an uncertain event? As a decision? 

C A S E     S T U D I E S  

THE  VALUE  OF  PATIENCE 

Robin Briggs, a wealthy private investor, had been approached by Union Finance 
Company on t he previous day. It seemed that Union Finance was interested in 
loaning money to one of its larger clients, but the client's demands were such that 
Union could not manage the whole thing. Specifically, the client wanted to obtain 
a loan for $385,000, offering to repay Union Finance $100,000 per year over seven 
years. 

Union Finance made Briggs the following proposition. Since it was bringing 
Briggs business, its directors argued, they felt that it was only fair for Briggs to put 
up a proportionately larger share of the money. If Briggs would put up 60% of the 
money ($231,000), then Union would put up the remaining 40% ($154,000). They 
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would split the payments evenly, each getting $50,000 at the end of each year for the 
next seven years. 

Questions 

1 Union Finance can usually earn 18% on its money. Using this interest rate, what is 
the net present value of the client's offer to Union? 

2 Robin Briggs does not have access to the same investments as Union. In fact, the 
best available alternative is to invest in a security earning 10% over the next seven 
years. Using this interest rate, what is Briggs's net present value of the offer made 
by Union? Should Briggs accept the offer? 

3 What is the net present value of the deal to Union if Briggs participates as proposed? 
4 The title of this case study is "The Value of Patience." Which of these two in 

vestors is more patient? Why? How is this difference exploited by them in coming 
to an agreement? 

EARLY   BIRD,   I N C .  

The directors of Early Bird, Inc., were considering whether to begin a sales promo-
tion for their line of specialty coffees earlier than originally planned. "I think we 
should go ahead with the price cuts," Tracy Brandon said. "After all, it couldn't hurt! 
At the very worst, we'll sell some coffee cheap for a little longer than we had 
planned, and on the other side we could beat New Morning to the punch." 

"That's really the question, isn't it?" replied Jack Santorini. "If New Morning re-
ally is planning their own promotion, and we start our promotion now, we would 
beat them to the punch. On the other hand, we might provoke a price war. And you 
know what a price war with that company means. We spend a lot of money fighting 
with each other. There's no real winner. We both just end up with less profit." 

Janice Wheeler, the finance VP for Early Bird, piped up, "The consumer wins in 
a price war. They get to buy things cheaper for a while. We ought to be able to make 
something out of that." 

Ira Press, CEO for Early Bird, looked at the VP thoughtfully. "You've shown 
good horse sense in situations like these, Janice. How do you see it?" 

Janice hesitated. She didn't like being put on the spot like this. "You all know 
what the projections are for the six-week promotion as planned. The marketing 
group tells us to expect sales of 10 million dollars. The objective is to gain at least 
two percentage points of market share, but our actual gain could be anywhere from 
nothing to three points. Profits during the promotion are expected to be down by 10 
percent, but after the promotion ends, our increased market share should result in 
more sales and more profits." 
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Tracy broke in. "That's assuming New Morning doesn't come back with their 
own promotion in reaction to ours. And you know what our report is from Pete. He 
says that he figures New Morning is up to something." 

"Yes, Pete did say that. But you have to remember that Pete works for our adver-
tising agent. His incentive is to sell advertising. And if he thinks he can talk us into 
spending more money, he will. Furthermore, you know, he isn't always right. Last 
time he told us that New Morning was going to start a major campaign, he had the 
dates right, but it was for a different product line altogether." 

Ira wouldn't let Janice off the hook. "But Janice, if New Morning does react to 
our promotion, would we be better off starting it early?" 

Janice thought for a bit. If she were working at New Morning and saw an unex-
pected promotion begin, how would she react? Would she want to cut prices to 
match the competition? Would she try to stick with the original plans? Finally she 
said, "Look, we have to believe that New Morning also has some horse sense. They 
would not want to get involved in a price war if they could avoid it. At the same time, 
they aren't going to let us walk away with the market. I think that if we move early, 
there's about a 30 percent chance that they will react immediately, and we'll be in a 
price war before we know it." 

"We don't have to react to their reaction, you know," replied Ira. 
"You mean," asked Jack, "we have another meeting like this to decide what to do 

if they do react?" 
"Right." 
"So," Janice said, "I guess our immediate options are to start our promotion early 

or to start it later as planned. If we start it now, we risk a strong reaction from New 
Morning. If they do react, then we can decide at that point whether we want to cut 
our prices further." 

Jack spoke up. "But if New Morning reacts strongly and we don't, we would 
probably end up just spending our money for nothing. We would gain no market 
share at all. We might even lose some market share. If we were to cut prices further, 
it might hurt profits, but at least we would be able to preserve what market share 
gains we had made before New Morning's initial reaction." 

At this point, several people began to argue among themselves. Sensing that no 
resolution was immediately forthcoming, Ira adjourned the meeting, asking everyone 
to sleep on the problem and to call him with any suggestions or insights they had. 

Questions 

1 Based on the information in the case, what are Early Bird's objectives in this situ 
ation? Are there any other objectives that you think they should consider? 

2 Given your answer to the previous question, what do you think Early Bird's plan 
ning horizon should be? 

3 Identify the basic elements (values, decisions, uncertain events, consequences) of 
Early Bird's decision problem. 

4 Construct a diagram like Figure 2.5 showing these elements. 
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R E F E R E N C E S  
Identifying the elements of decision situations is implicit in a decision-analysis ap-
proach, although most textbooks do not explicitly discuss this initial step in decision 
modeling. The references listed at the end of Chapter 1 are all appropriate for discussions 
of values, objectives, decisions, uncertain events, and consequences. 

The idea of understanding one's values as a prerequisite for good decision making 
is Ralph Keeney's thesis in his book Value-Focused Thinking (1992). A good summary is 
Keeney (1994). In the conventional approach, espoused by most authors on decision 
analysis, one finds oneself in a situation that demands a decision, identifies available al-
ternatives, evaluates those alternatives, and chooses the best of those alternatives. 
Keeney argues persuasively that keeping one's values clearly in mind provides the ability 
to proactively find new decision opportunities and creative alternatives. Of course, the 
first step, and sometimes a difficult one, is understanding one's values, which we will 
explore in depth in Chapter 3. 

Dynamic decision situations can be very complicated, and many articles and books 
have been written on the topic. A basic-level textbook that includes dynamic decision 
analysis is Buchanan (1982). DeGroot (1970) covers many dynamic decision problems at 
a somewhat more sophisticated level. Murphy et al. (1985) discuss the orchardist's 
dynamic decision problem in detail. 

The time value of money is a standard topic in finance courses, and more complete 
discussions of net present value, internal rate of return (the implied interest rate in a se-
quence of cash flows), and related topics can be found in most basic financial manage-
ment textbooks. Two good ones are Brigham (1985) and Schall and Haley (1986). 

Brigham, E. F. (1985) Financial Management: Theory and Practice, 4th ed. Hinsdale, 
IL: Dryden. 
Buchanan, J. T. (1982) Discrete and Dynamic Decision Analysis. New York: Wiley. 
DeGroot, M. H. (1970) Optimal Statistical Decisions. New York: McGraw-Hill. 
Keeney, R. L. (1992) Value-Focused Thinking. Cambridge, MA: Harvard University 
Press. 
Keeney, R. L. (1994) "Creativity in Decision Making with Value-Focused Thinking." 
Sloan Management Review, Summer, 33-41. 
Murphy, A. H., R. W. Katz, R. L. Winkler, and W.-R. Hsu (1985) "Repetitive Decision 
Making and the Value of Forecasts in the Cost-Loss Ratio Situation: A Dynamic 
Model." Monthly Weather Review, 113, 801-813. 

Schall, L. D., and C. W. Haley (1986) Introduction to Financial Management, 4th ed. 
New York: McGraw-Hill. 

E P I L O G U E  On March 24, 1989, the Exxon Valdez tanker ran aground on a reef in Prince William 
Sound after leaving the Valdez, Alaska, pipeline terminal. Over 11 million gallons of 
oil spilled into Prince William Sound, the largest spill in the United States. In the after-
math, it was revealed that Aleyeska, the consortium of oil companies responsible for 
constructing and managing the pipeline, had instituted an oil spill contingency plan that 
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was inadequate to the task of cleaning up a spill of such magnitude. As a result of the in-
adequate plan and the adverse weather immediately after the spill, little oil was recov-
ered. Hundreds of miles of environmentally delicate shoreline were contaminated. Major 
fisheries were damaged, leading to specific economic harm to individuals who relied on 
fishing for a livelihood. In addition, the spill proved an embarrassment for all of the 
major oil companies and sparked new interest in environmental issues, especially up-
coming leases for offshore oil drilling. Even though the risk of a major oil spill was very 
small, in retrospect one might conclude that the oil companies would have been better off 
with a much more carefully thought out contingency plan and more resources invested in 
it. {Source: "Dead Otters and Silent Ducks," Newsweek, April 24, 1989, p. 70.) 
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Structuring Decisions 

aving identified the elements of a decision problem, how should one begin the modeling process? 
Creating a decision model requires three fundamental steps. First is identifying and structuring the 

values and objectives. Structuring values requires identifying those issues that 
matter to the decision maker, as discussed in Chapter 2. Simply listing objectives, 
however, is not enough; we also must separate the values into fundamental 
objectives and means objectives, and we must specify ways to measure 
accomplishment of the objectives. 

The second step is structuring the elements of the decision situation into a logi-
cal framework. To do this we have two tools: influence diagrams and decision trees. 
These two approaches have different advantages for modeling difficult decisions. 
Both approaches are valuable and, in fact, complement one another nicely. Used in 
conjunction with a carefully developed value structure, we have a complete model of 
the decision that shows all of the decision elements: relevant objectives, decisions to 
make, uncertainties, and consequences. 

The final step is the refinement and precise definition of all of the elements of the 
decision model. For example, we must be absolutely clear on the precise decisions 
that are to be made and the available alternatives, exactly what the uncertain events 
are, and how to measure the consequences in terms of the objectives that have been 
specified. Although many consequences are easily measured on a natural scale (for 
example, NPV can be measured in dollars), nonquantitative objectives such as in-
creasing health or minimizing environmental impact are more problematic. We will 
discuss ways to create formal scales to measure achievement of such objectives. 

41 
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Structuring Values 

Our first step is to structure values. In Chapter 2 we discussed the notion of objec-
tives. In many cases, a single objective drives the decision; a manager might want to 
maximize profits next year, say, or an investor might want to maximize the financial 
return of an investment portfolio. Often, though, there are multiple objectives that 
conflict; for example, the manager might want to maximize profits but at the same 
time minimize the chance of losing money. The investor might want to maximize the 
portfolio's return but minimize the volatility of the portfolio's value. 

If a decision involves a single objective, that objective is often easily identified. 
Careful thought may be required, however, to define the objective in just the right 
way. For example, you might want to calculate NPV over three years, using a partic-
ular interest rate. The discussion of value structuring that follows can help in the iden-
tification and clarification of the objective in a single-objective decision situation. 

Even though many pages in this book are devoted to the analysis of single-
objective decisions, for many decisions the real problem lies in balancing multiple 
conflicting objectives. The first step in dealing with such a situation is to understand 
just what the objectives are. Specifying objectives is not always a simple matter, as 
we will see in the following example. 

Suppose you are an employer with an opening for a summer intern in your mar-
keting department. Under the supervision of a senior employee, the intern would as-
sist in the development of a market survey relating to a line of your company's con-
sumer products. 

HIRING  A  SUMMER  INTERN 

Many businesses hire students for short-term assignments. Such jobs often are called 
internships, and the employee — or intern — gets a chance to see what a particular 
kind of job and a specific company are like. Likewise, the company gets to try out a 
new employee without making a long-term commitment. 

In this example, the fictional PeachTree Consumer Products has an opening for a 
summer intern. Working under the supervision of a senior employee in the marketing 
group, the intern would focus primarily on the development of a market survey for 
certain of the company's products. The problem is how to find an appropriate indi-
vidual to fill this slot. Where should the company go to locate good candidates, 
which ones should be interviewed, and on the basis of what criteria should a particu-
lar candidate be chosen? 

Imagine that you are the manager charged with finding an appropriate intern for 
PeachTree. Your first step is to create a long list of all the things that matter to you in 
this decision context. What objectives would you want to accomplish in filling this 
position? Certainly you would want the market survey to be done well. You might 
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want to use the summer as a trial period for the intern, with an eye toward a perma-
nent job for the individual if the internship worked out. You might want to establish 
or cement a relationship with a college or university placement service. Table 3.1 
shows a list of objectives (in no special order) that an employer might write down. 

How would you go about generating a list like Table 3.1? Keeney (1994) gives 
some ideas. For example, think about some possible alternatives and ask what is 
good or bad about them. Or think about what you would like if you could have any-
thing. Table 3.2 gives eight suggestions for generating your list of objectives. 

Table 3.1 
Objectives for hiring 

summer intern. 
Maximize quality of market survey. 
Sell more consumer products. 
Build market share. 
Identify new market niches for company's products. 
Minimize cost of survey design. 
Try out prospective permanent employee. 
Establish relationship with local college. 
Provide assistance for senior employee. 
Free up an employee to be trained for new assignment 
Learn updated techniques from intern: 

Self 
Supervisor 
Market research department 
Entire company 

Expose intern to real-world business experience. 
Maximize profit. 
Improve company's working environment by bringing in new and youthful energy. 
Provide financial assistance for college student 

 

Table 3.2 
Techniques for identi-

fying objectives. 

 

1. Develop a wish list. What do you want? What do you value? What should you want? 
2. Identify alternatives. What is a perfect alternative, a terrible alternative, some 

reasonable alternative? What is good or bad about each? « 
3. Consider problems and shortcomings. What is wrong or right with your organi 

zation? What needs fixing? 
4. Predict consequences. What has occurred that was good or bad? What might 

occur that you care about? 
5. Identify goals, constraints, and guidelines* What are your aspirations? What lim 

itations are placed on you? 
6. Consider different perspectives. What would your competitor or your con 

stituency be concerned about? At some time in the future, what would concern you? 
7. Determine strategic objectives* What are your ultimate objectives? What are your 

values that are absolutely fundamental? 
8. Determine generic objectives. What objectives do you have for your customers, 

your employees, your shareholders, yourself? What environmental, social, eco 
nomic, or health and safety objectives are important? 

Source: Keeney, R. L. (1994) "Creativity in Decision Making with Value-Focused Thinking," Sloan 
Management Review, Summer, 33-41. 
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Once you have a list of objectives, what do you do? Structuring the objectives 
means organizing them so that they describe in detail what you want to achieve and 
can be incorporated in an appropriate way into your decision model. We start by sep-
arating the list into items that pertain to different kinds of objectives. In the summer-
intern example, objectives can be sorted into several categories: 

• Business performance (sell more products, maximize profit, increase market 
share, identify market niches) 

• Improve the work environment (bring in new energy, assist senior employee) 
• Improve the quality and efficiency of marketing activities (maximize survey 

quality, minimize survey cost) 
• Personnel and corporate development (learn updated techniques, free up em 

ployee for new assignment, try out prospective employee) 
• Community service (financial aid, expose intern to real world, relationship with 

local college) 

Of course, there are other ways to organize these objectives; the idea is to create cat-
egories that reflect the company's overall objectives. 

Before continuing with the value structuring, we must make sure that the objec-
tives are appropriate for the decision context. Recall that the decision context is hir-
ing a summer intern for the marketing department. This is a relatively narrow con-
text for which some of the listed objectives are not especially relevant. For example, 
selling more consumer products and maximizing profit, although indeed important 
objectives, are too broad to be essential in the current decision context. Although hir-
ing the best individual should have a positive impact on overall company perfor-
mance, more crucial in the specific context of hiring the best intern are the objectives 
of enhancing marketing activities, personnel development, community service, and 
enhancing the work environment. These are the areas that hiring an intern may di-
rectly affect. 

Fundamental and Means Objectives 

With a set of objectives that is consistent with the decision context, the next step is to 
separate means from fundamental objectives. This is a critical step, because here we 
indicate those objectives that are important because they help achieve other objec-
tives and those that are important simply because they reflect what we really want to 
accomplish. For example, working fewer hours may appear to be an important ob-
jective, but it may be important only because it would allow an individual to spend 
more time with his or her family or to pursue other activities that represent funda-
mental interests, things that are important simply because they are important. Thus, 
"minimize hours worked" is a means objective, whereas "maximize time with fam-
ily" is a fundamental objective. 
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Fundamental objectives are organized into hierarchies. The upper levels in a hi-
erarchy represent more general objectives, and the lower levels explain or describe 
important elements of the more general levels. For example, in the context of defin-
ing vehicle regulations, a higher-level fundamental objective might be "Maximize 
Safety," below which one might find "Minimize Loss of Life," "Minimize Serious 
Injuries," and "Minimize Minor Injuries." The three lower-level objectives are fun-
damental objectives that explain what is meant by the higher-level objective 
"Maximize Safety." The three lower-level objectives are also fundamental; each one 
describes a specific aspect of safety, and as such each one is inherently important. 
This hierarchy could be expanded by including another level. For example, we might 
include the objectives "Minimize Loss of Child Lives" and "Minimize Loss of Adult 
Lives" as aspects of the loss-of-life objective and similarly distinguish between seri-
ous injuries to children and adults. Figure 3.1 displays the hierarchy. 

Means objectives, on the other hand, are organized into networks. In the vehicle-
safety example, some means objectives might be "Minimize Accidents" and 
"Maximize Use of Vehicle-Safety Features." Both of these are important because 
they help to maximize safety. Beyond these two means objectives might be other 
means objectives such as "Maximize Driving Quality," "Maintain Vehicles 
Properly," and "Maximize Purchase of Safety Features on Vehicles." Figure 3.2 
shows a means-objectives network that includes still more means objectives. A key 
difference between this network and the fundamental-objectives hierarchy in Figure 
3.1 is that means objectives can be connected to several objectives, indicating that 
they help accomplish these objectives. For example, "Have Reasonable Traffic 
Laws" affects both "Maximize Driving Quality" and "Maintain Vehicles Properly." 

Structuring the fundamental-objectives hierarchy is crucial for developing a 
multiple-objective decision model. As we will see, the lowest-level fundamental ob-
jectives will be the basis on which various consequences will be measured. 
Distinguishing means and fundamental objectives is important at this stage of the 
game primarily so that the decision maker is certain that the appropriate objectives— 
fundamental, not means—are specified in the decision model. But the means network 
has other uses as well. We will see in the last portion of the chapter that an easily mea-
sured means objective can sometimes substitute for a fundamental objective that is 

Figure 
3.1 

A fundamental-
objectives hierarchy. 

Source: Keeney 
(1992, p. 70). 
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Figure 3.2 
A means-objectives 

network. 
Source: Keeney, 

(1992, p. 70). 

more difficult to measure. And in Chapter 6 we will see how the means-objectives 
network provides an important basis for generating creative new alternatives. 

How do we first separate means and fundamental objectives and then construct 
the fundamental-objectives hierarchy and the means-objectives network? A number 
of guiding questions are used to accomplish these tasks. 

The first question to ask regarding any objective is, "Why Is That Important?" 
Known as the WITI test, this question does two things: distinguishes between means 
and fundamental objectives and reveals connections among the objectives. If the an-
swer to the question is, "This objective is important because it helps accomplish X," 
then you know that the original objective is a means objective and that it has an im-
pact on X. Moreover, a decision maker can continue by asking, "Why is X impor-
tant?" By continuing to ask why the next objective is important, we can trace out the 
connections from one means objective to the next until we arrive at an objective for 
which the answer is, "This objective is important just because it is important. It is 
one of the fundamental reasons why I care about this decision." In this case, we have 
identified a fundamental objective. 

As an example, look again at Figure 3.2. We might ask, for example, "Why is it 
important to maintain vehicles properly?" The answer is that doing so helps to mini-
mize accidents and maximize the use of vehicle-safety features. Asking why mini-
mizing accidents is important reveals that it helps maximize safety. The same is true 
if we ask why maximizing use of safety features is important. Finally, why is safety 
important? Maximizing safety is fundamentally important; it is what we care about 
in the context of establishing regulations regarding vehicle use. The answers to the 
questions trace out the connections among these four objectives and appropriately 
identify "Maximize Safety" as a fundamental objective. 

The WITI test is useful for moving from means objectives to fundamental objec-
tives. What about going the other way? The obvious question to ask is, "How can this 
objective be achieved?" For example, in the vehicle-regulation context we would ask, 
"How can we maximize safety?" The answer might give any of the upstream means 
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objectives that appear in Figure 3.2. Sequentially asking "How can this objective be 
achieved?" can help to identify means objectives and establish links among them. 

What about constructing the fundamental-objectives hierarchy? Starting at the 
top of the hierarchy, the question to ask is, "What do you mean by that?" In our ve-
hicle example, we would ask, "What does maximize safety mean?" The answer is 
that we mean minimizing lives lost, serious injuries, and minor injuries. In turn we 
could ask, "What do you mean by minimizing lives lost?" The answer might be min-
imizing child lives lost and adult lives lost; that is, it might be useful in this decision 
context to consider safety issues for children and adults separately, perhaps because 
different kinds of regulations would apply to these two groups. 

Finally, we can work upward in the fundamental-objectives hierarchy, starting at 
a lower-level objective. Ask the question, "Of what more general objective is this an 
aspect?" For example, if we have identified saving adult lives as a fundamental ob-
jective — it is a fundamental reason we care about vehicle regulations — then 
we might ask, "Is there a more general objective of which saving adult lives is an 
aspect?" The answer would be the more general objective of saving lives, and 
asking the question again with respect to saving lives would lead us to the overall 
fundamental objective of maximizing safety. 

Figure 3.3 summarizes these four techniques for organizing means and fundamen-
tal objectives. It is important to realize that one might ask these questions in any order, 
mixing up the sequence, jumping from the means network to the fundamental-objec-
tives hierarchy and back again. Be creative and relaxed in thinking about your values! 

Let us look again at PeachTree's summer-intern decision. Figure 3.4 shows both 
a fundamental-objectives hierarchy and a means network with appropriate connec-
tions between them. The means objectives are shown in italics. Note that some ob-
jectives have been added, especially criteria for the intern, such as ability to work 
with the senior employee, ability to demonstrate new techniques to the staff, and a 
high level of energy. In the decision context, choosing the best intern for the summer 

Figure 3.3 
How to construct 
mean-objectives 

networks and 
fundamental-objectives 

hierarchies. 

 

 Fundamental 
Objectives 

Means 
Objectives 

To Move: 
Ask: Downward in the Hierarchy: 

"What do you mean by that?" 

Away from Fundamental Objectives: 

"How could you achieve this?" 

To Move: 

Ask: 

Upward in the Hierarchy: 
"Of what more general objective is 

this an aspect?" 

Toward Fundamental Objectives: 
"Why is that important?" (WITI) 
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Figure 3.4 
Fundamental and 

means objectives for 
PeachTree's summer-

intern decision. 

position, these criteria help define what "best" means in terms that relate directly to 
the company's fundamental objectives. 

Insights can be gleaned from Figure 3.4. First, the means objectives give some 
guidance about what kind of intern to hire; up-to-date technical skills, good "people 
skills" for working with the senior employee, an ability (and willingness) to demon-
strate new techniques for the firm, and a high energy level. In addition, establishing 
a link with the local college is a very important step. Although this is a means objec-
tive and hence not important in and of itself, it has an impact on many other objec-
tives, both means and fundamental. 

The fundamental-objectives hierarchy and the means-objectives network can 
provide a lot of insight even at this initial level. The fundamental objectives tell you 
why you care about the decision situation and what criteria you should be looking at 
in evaluating options. For the summer-intern situation, the company cares about the 
four main-level fundamental objectives, and the lower-level objectives provide more 
detail. Having sorted out the means objectives, we can rest assured that we will be 
able to evaluate candidates (and perhaps even develop a strategy for finding good 
candidates) whose qualties are consistent with the company's concerns. Finally, as 
we mentioned above, the means network can suggest creative new alternatives. For 
example, a great strategy would be to become acquainted with professors or career 
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counselors at the local college and to explain to them exactly what the company is 
looking for in a summer intern. 

Getting the Decision Context Right 

Recall that the context for PeachTree's decision has been to hire the best intern. 
What would happen if we were to broaden the context? Suppose we were to set the 
context as enhancing the company's marketing activities. First, we would want to 
consider far more options than just hiring an intern. The broader context also sug-
gests looking for permanent new hires or training current employees in new meth-
ods. One of the results would be that the means objectives might change; some of 
the means objectives might broaden from optimizing characteristics of the intern to 
optimizing characteristics of the marketing group as a whole. "Maximize Intern's 
Energy Level" might become "maximize marketing group's energy level," which 
might suggest means objectives such as hiring new high-energy employees or send-
ing employees to a workshop or retreat. You can see that as we broaden the decision 
context, the objectives change in character somewhat. The more the context is 
broadened, the greater the change. If we were to go all the way to a strategic — 
broadest possible — context of "maximize profit" or "build market share," for 
example, then many of the fundamental objectives in Figure 3.4 would become 
means objectives, and alternatives affecting all parts of the company would have to 
be considered. 

At this point you may be wondering how you know when you have identified the 
appropriate decision context and its corresponding fundamental-objectives hierarchy 
and means network. As in Chapter 2, we can invoke the notion of a requisite model 
to ensure that all appropriate but no superfluous objectives have been included, 
given the decision context. The real question, though, is the decision context itself. 
How do you know how broad or narrow to make the context? This question is ab-
solutely fundamental, and unfortunately there is no simple answer. As a decision 
maker, you must choose a context that fits three criteria. The first is straightforward; 
ask whether the context you have set really captures the situation at hand. Are you 
addressing the right problem? For example, searching for a job of the same type as 
your present one but with a different company is the wrong decision context if your 
real problem is that you do not enjoy the kind of work required in that job; you 
should broaden the context to consider different kinds of jobs, careers, or lifestyles. 
On the other hand, if you really love what you do but are dissatisfied with your cur-
rent job for reasons related to that particular position or your firm (low salary, poor 
working conditions, conflicts with fellow workers, and so on), then looking for an-
other similar job with another firm is just the right context. 

The second criterion might be called decision ownership. Within organizations 
especially, the broader the decision context, the higher up the organizational ladder 
are the authority to make the decision and the responsibility for its consequences. Do 
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you have the authority to make decisions within the specified context (or will you be 
reporting the results of your analysis to someone with that authority)? If you conclude 
that you do not have this authority, then look for a narrower context that matches the 
authority you do have. 

Feasibility is the final issue; in the specified context, will you be able to do the 
necessary study and analysis in the time allotted with available resources? Broader 
contexts often require more careful thought and more extensive analysis; addressing 
a broad decision context with inadequate time and resources can easily lead to dis-
satisfaction with the decision process (even though good consequences may result 
from lucky outcomes). It would be better in such a situation to narrow the context in 
some way until the task is manageable. 

Like most aspects of decision analysis, setting the context and structuring objec-
tives may not be a once-and-for-all matter. After initially specifying objectives, you 
may find yourself refining the context and modifying the objectives. Refining the 
context several times and iterating through the corresponding sets of objectives are 
not signs of poor decision making; instead, they indicate that the decision situation is 
being taken seriously, and that many different possibilities and perspectives are 
being considered. 

Structuring Decisions: Influence Diagrams 

With the fundamental objectives specified, structured, and sorted out from the means 
objectives, we can turn now to the process of structuring the various decision ele-
ments — decisions and alternatives, uncertain events and outcomes, and conse-
quences. We begin with influence diagrams, which can provide simple graphical rep-
resentations of decision situations. Different decision elements show up in the 
influence diagram as different shapes. These shapes are then linked with arrows in 
specific ways to show the relationships among the elements. 

In an influence diagram, rectangles represent decisions, and ovals represent 
chance events. A rectangle with rounded corners is used to represent a mathematical 
calculation or a constant value; these rounded rectangles will have a variety of uses, 
but the most important is to represent consequences. The three shapes are generally 
referred to as nodes: decision nodes, chance nodes, and consequence or calculation 
nodes. Nodes are put together in a graph, connected by arrows, or arcs. We call a 
node at the beginning of an arc a predecessor and a node at the end of an arc a suc-
cessor. 

Consider a venture capitalist's situation in deciding whether to invest in a new 
business. For the moment, let us assume that the capitalist has only one objective in 
this context — to make money (not an unreasonable objective for a person in this 
line of work). The entrepreneur seeking the investment has impeccable qualifications 
and has generally done an excellent job of identifying the market, assembling a 
skilled management and production team, and constructing a suitable business plan. 
In fact, 



STRUCTURING DECISIONS: INFLUENCE DIAGRAMS        51 

it is clear that the entrepreneur will be able to obtain financial backing from some 
source whether the venture capitalist decides to invest or not. The only problem is 
that the proposed project is extremely risky — more so than most new ventures. Thus, 
the venture capitalist must decide whether to invest in this highly risky undertaking. 
If she invests, she may be able to get in on the ground floor of a very successful busi-
ness. On the other hand, the operation may fail altogether. Clearly, the dilemma is 
whether the chance of getting in on the ground floor of something big is worth the 
risk of losing the investment entirely. If she does not invest in this project, she may 
leave her capital in the stock market or invest in other less risky ventures. Her in-
vestment situation appears as an influence diagram in Figure 3.5. 

Note that both "Invest?" and "Venture Succeeds or Fails" are predecessors of the 
consequence "Return on Investment." The implication is that the consequence de-
pends on both the decision and the chance event. In general, consequences depend 
on what happens or what is decided in the nodes that are predecessors of the conse-
quence node. Moreover, as soon as the decision is made and the uncertain event is 
resolved, the consequence is determined; there is no uncertainty about the conse-
quence at this point, and so the use of the rounded rectangle is appropriate. Note also 
that no arc points from the chance node to the decision node. The absence of an arc 
indicates that when the decision is made, the venture capitalist does not know 
whether the project will succeed. She may have some feeling for the chance of suc-
cess, and this information would be included in the influence diagram as probabili-
ties of possible levels of success or failure. Thus, the influence diagram as drawn 
captures the decision maker's current state of knowledge about the situation. 

Also note that no arc points from the decision to the uncertain event. The absence 
of this arrow has an important and subtle meaning. The uncertainty node is about the 
success of the venture. The absence of the arc from "Invest?" to "Venture Succeeds 
or Fails" means that the venture's chances for success are not affected by the capital-
ist's decision. In other words, the capitalist need not concern herself with her impact 
on the venture. 

It is possible to imagine situations in which the capitalist may consider differ-
ent levels of investment as well as managerial involvement. For example, she 
may be willing to invest $100,000 and leave the entrepreneur alone. But if she in-
vests $500,000, she may wish to be more active in running the company. If she 
believes her involvement would improve the company's chance of success, then it 
would be appropriate to include an arrow from the decision node to the chance 

Figure 3.5 
Influence diagram of 

venture capitalist's 
decision. 
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node; her investment decision — the level of investment and the concomitant 
level of involvement — would be relevant for determining the company's chance 
of success. In our simple and stylized example, however, we are assuming that 
her choice simply is whether to invest and that she has no impact on the 
company's chance of success. 

Influence Diagrams and the Fundamental-Objectives 
Hierarchy 

Suppose the venture capitalist actually has multiple objectives. For example, she 
might wish to focus on a particular industry, such as personal computers, obtaining 
satisfaction by participating in the growth of this industry. Thus, in addition to the 
objective of making money, she would have an objective of investing in the per-
sonal-computer industry. 

Figure 3.6 shows a simple two-level objectives hierarchy and the corresponding 
influence diagram for the venture capitalist's decision. You can see in this figure how 
the objectives hierarchy is reflected in the pattern of consequence nodes in the influ-
ence diagram; two consequence nodes labeled "Invest in Computer Industry" and 
"Return on Investment" represent the lower-level objectives and in turn are con-
nected to the "Overall Satisfaction" consequence node. This structure indicates that 
in some situations the venture capitalist may have to make a serious trade-off be-
tween these two objectives, especially when comparing a computer-oriented busi- 

Figure 3.6 
The venture 

capitalist's decision 
with two objectives. 
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Figure 3.7 
Multiple objectives in 

selecting a bomb-
detection system. 

ness startup with a noncomputer business that has more potential to make money. As 
before, the rounded rectangles for "Computer Industry" and "Return on Investment" 
are appropriate; after the decision is made and the venture's level of success is deter-
mined, these consequences are known. The rounded rectangle for "Overall 
Satisfaction" indicates that once the two individual consequences are known, then 
the overall consequence can be determined. 

Figure 3.7 shows the influence diagram for another multiple-objective decision. In 
this situation, the Federal Aviation Administration (FAA) must choose from among a 
number of bomb-detection systems for commercial air carriers (Ulvila and Brown, 
1982). In making the choice, the agency must try to accomplish several objectives. 
First, it would like the chosen system to be as effective as possible at detecting various 
types of explosives. The second objective is to implement the system as quickly as 
possible. The third is to maximize passenger acceptance, and the fourth is to minimize 
cost. To make the decision and solve the influence diagram, the FAA would have to 
score each candidate system on how well it accomplishes each objective. The mea-
surements of time and cost would naturally be made in terms of days and dollars, re-
spectively. Measuring detection effectiveness and passenger acceptance might require 
experiments or surveys and the development of an appropriate measuring device. The 
"Overall Performance" node would contain a formula that aggregates the individual 
scores, incorporating the appropriate trade-offs among the four objectives. Assessing 
the trade-off rates and constructing the formula to calculate the overall score is demon-
strated in an example in Chapter 4 and is discussed thoroughly in Chapters 15 and 16. 

Using Arcs to Represent Relationships 

The rules for using arcs to represent relationships among the nodes are shown in 
Figure 3.8. In general, an arc can represent either relevance or sequence. The context 
of the arrow indicates the meaning. For example, an arrow pointing into a chance 
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Figure 3.8 
Representing influence 

with arrows. Arrows 
into chance and 

consequence nodes 
represent relevance, 

and arrows into 
decision nodes repre-

sent sequence. 

node designates relevance, indicating that the predecessor is relevant for assessing 
the chances associated with the uncertain event. In Figure 3.8 the arrow from Event 
A to Event C means that the chances (probabilities) associated with C may be differ-
ent for different outcomes of A. Likewise, an arrow pointing from a decision node to 
a chance node means that the specific chosen decision alternative is relevant for as-
sessing the chances associated with the succeeding uncertain event. For instance, the 
chance that a person will become a millionaire depends to some extent on the choice 
of a career. In Figure 3.8 the choice taken in Decision B is relevant for assessing the 
chances associated with Event C's possible outcomes. 

Relevance arcs can also point into consequence or calculation nodes, indicating 
that the consequence or calculation depends on the specific outcome of the predeces-
sor node. In Figure 3.8, consequence F depends on both Decision D and Event E. 
Relevance arcs in Figure 3.6 point into the "Computer Industry Growth" and 
"Return on Investment" nodes; the decision made and the success of the venture are 
relevant for determining these two consequences. Likewise, relevance arcs point 
from the two individual consequence nodes into the "Overall Satisfaction" node. 

When the decision maker has a choice to make, that choice would normally be 
made on the basis of information available at the time. What information is avail-
able? Everything that happens before the decision is made. Arrows that point to 
decisions represent information available at the time of the decision and hence 
represent sequence. Such an arrow indicates that the decision is made knowing 
the outcome of the predecessor node. An arrow from a chance node to a decision 
means that, from the decision maker's point of view, all uncertainty associated 
with a chance event is resolved and the outcome known when the decision is 
made. Thus, information is available to the decision maker regarding the event's 
outcome. This is the case with Event H and Decision I in Figure 3.8; the decision 
maker is waiting to learn the outcome of H before making Decision I. An arrow 
from one decision to another decision simply means that the first decision is made 
before the second, such as Decisions G and I in Figure 3.8. Thus, the sequential 
ordering of decisions is shown in an influence diagram by the path of arcs 
through the decision nodes. 
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The nature of the arc — relevance or sequence — can be ascertained by the 
context of the arc within the diagram. To reduce the confusion of overabundant 
notation, all arcs have the same appearance in this book. For our purposes, the rule 
for determining the nature of the arcs is simple; an arc pointing to a decision 
represents sequence, and all others represent relevance. 

Properly constructed influence diagrams have no cycles; regardless of the start-
ing point, there is no path following the arrows that leads back to the starting point. 
For example, if there is an arrow from A to B, there is no path, however tortuous, that 
leads back to A from B. Imagine an insect traveling from node to node in the influ-
ence diagram, always following the direction of the arrows. In a diagram without cy-
cles, once the insect leaves a particular node, it has no way to get back to that node. 

Some Basic Influence Diagrams 

In this section, several basic influence diagrams are described. Understanding ex-
actly how these diagrams work will provide a basis for understanding more complex 
diagrams. 

The Basic Risky Decision 

This is the most elementary decision under uncertainty that a person can face. The 
venture-capital example above is a basic risky decision; there is one decision to 
make and one uncertain event. 

Many decision situations can be reduced to a basic risky decision. For example, 
imagine that you have $2000 to invest, with the objective of earning as high a return 
on your investment as possible. Two opportunities exist, investing in a friend's busi-
ness or keeping the money in a savings account with a fixed interest rate. If you in-
vest in the business, your return depends on the success of the business, which you 
figure could be wildly successful, earning you $3000 beyond your initial investment 
(and hence leaving you with a total of $5000), or a total flop, in which case you will 
lose all your money and have nothing. On the other hand, if you put the money into 
a savings account, you will earn $200 in interest (leaving you with a total of $2200) 
regardless of your friend's business. 

The influence diagram for this problem is shown in Figure 3.9. This figure also 
graphically shows details underlying the decision, chance, and consequence nodes. 
The decision node includes the choice of investing in either the business or the sav-
ings account. The chance node represents the uncertainty associated with the busi-
ness and shows the two possible outcomes. The consequence node includes informa-
tion on the dollar return for different decisions (business investment versus savings) 
and the outcome of the chance event. This table shows clearly that if you invest in 
the business, your return depends on what the business does. However, if you put 
your money into savings, your return is the same regardless of what happens with 
the business. 
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Figure 3.9 
Basic risky decision 

with displayed 
choices, outcomes, 
and consequences. 

You can see that the essential question in the basic risky decision is whether the 
potential gain in the risky choice (the business investment) is worth the risk that 
must be taken. The decision maker must, of course, make the choice by comparing 
the risky and riskless alternatives. Variations of the basic risky choice exist. For ex-
ample, instead of having just two possible outcomes for the chance event, the 
model could include a range of possible returns, a much more realistic scenario. 
The structure of the influence diagram for this range-of-risk dilemma, though, 
would look just the same as the influence diagram in Figure 3.9; the difference lies 
in the details of the chance event, which are not shown explicitly in the structure of 
the diagram. 

Imperfect Information 

Another basic kind of influence diagram reflects the possibility of obtaining imper-
fect information about some uncertain event that will affect the eventual payoff. This 
might be a forecast, an estimate or diagnosis from an acknowledged expert, or infor-
mation from a computer model. In the investment example, you might subscribe to a 
service that publishes investment advice, although such services can never predict 
market conditions perfectly. 

Imagine a manufacturing-plant manager who faces a string of defective prod-
ucts and must decide what action to take. The manager's fundamental objectives 
are to solve this problem with as little cost as possible and to avoid letting the pro-
duction schedule slip. A maintenance engineer has been dispatched to do a prelim-
inary inspection on Machine 3, which is suspected to be the source of the problem. 
The preliminary check will provide some indication as to whether Machine 3 truly 
is the culprit, but only a thorough and expensive series of tests — not possible at the 
moment — will reveal the truth. The manager has two alternatives. First, a replace-
ment for Machine 3 is available and could be brought in at a certain cost. If 
Machine 3 is the problem, then work can proceed and the production schedule will 
not fall behind. If Machine 3 is not the source of the defects, the problem will still 
exist, and the workers will have to change to another product while the problem is 
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tracked down. Second, the workers could be changed immediately to the other 
product. This action would certainly cause the production schedule for the current 
product to fall behind but would avoid the risk (and cost) of unnecessarily replac-
ing Machine 3. 

Without the engineer's report, this problem would be another basic risky decision; 
the manager would have to decide whether to take the chance of replacing Machine 3 
based on personal knowledge regarding the chance that Machine 3 is the source of the 
defective products. However, the manager is able to wait for the engineer's prelimi-
nary report before taking action. Figure 3.10 shows an influence diagram for the man-
ager's decision problem, with the preliminary report shown as an example of imper-
fect information. The diagram shows that the consequences depend on the choice 
made (replace Machine 3 or change products) and whether Machine 3 actually turns 
out to be defective. There is no arrow from "Engineer's Report" to the consequence 
nodes because the report does not have a direct effect on the consequence. 

The arrow from "Engineer's Report" to "Manager's Decision" is a sequence arc; 
the manager will hear from the engineer before deciding. Thus, the engineer's pre-
liminary report is information available at the time of the decision, and this influence 
diagram represents the situation while the manager is waiting to hear from the engi-
neer. Analyzing the influence diagram will tell the manager how to interpret this in-
formation; the appropriate action will depend not only on the engineer's report but 
also on the extent to which the manager believes the engineer to be correct. The 
manager's assessment of the engineer's accuracy is reflected in the chances associ-
ated with the "Engineer's Report" node. Note that a relevance arc points from 
"Machine 3 OK?" to "Engineer's Report," indicating that Machine 3's state is rele-
vant for assessing the chances associated with the engineer's report. For example, if 
the manager believes the engineer is very good at diagnosing the situation, then 
when Machine 3 really is OK, the chances should be near 100% that the engineer 
will say so. Likewise, if Machine 3 is causing the defective products, the engineer 
should be very likely to indicate 3 is the problem. On the other hand, if the manager 
does not think the engineer is very good at diagnosing the problem—because of lack 

Figure 3.10 
Influence diagram for 
manufacturing-plant 
manager's imperfect 

information. 
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of familiarity with this particular piece of equipment, say — then there might be a 
substantial chance that the engineer makes a mistake. 

Weather forecasting provides another example of imperfect information. 
Suppose you live in Miami. A hurricane near the Bahama Islands threatens to cause 
severe damage; as a result, the authorities recommend that everyone evacuate. 
Although evacuation is costly, you would be safe. On the other hand, staying is risky. 
You could be injured or even killed if the storm comes ashore within 10 miles of 
your home. If the hurricane's path changes, however, you would be safe without 
having incurred the cost of evacuating. Clearly, two fundamental objectives are to 
maximize your safety and to minimize your costs. 

Undoubtedly, you would pay close attention to the weather forecasters who 
would predict the course of the storm. These weather forecasters are not perfect pre-
dictors, however. They can provide some information about the storm, but they may 
not perfectly predict its path because not everything is known about hurricanes. 

Figure 3.11 shows the influence diagram for the evacuation decision. The rele-
vance arc from "Hurricane Path" to "Forecast" means that the actual weather situa-
tion is relevant for assessing the uncertainty associated with the forecast. If the hur-
ricane is actually going to hit Miami, then the forecaster (we hope) is more likely to 
predict a hit rather than a miss. Conversely, if the hurricane really will miss Miami, 
the forecaster should be likely to predict a miss. In either case, though, the forecast 
may be incorrect because the course of a hurricane is not fully predictable. In this sit-
uation, although the forecast actually precedes the hurricane's landfall, it is relatively 
straightforward to think about the forecaster's tendency to make a mistake condi-
tioned on what direction the hurricane goes. (The modeling choice is up to you, 
though! If you would feel more confident in assessing the chance of the hurricane 
hitting Miami by conditioning on the forecast — that is, have the arrow pointing the 
other way — then by all means do so!) 

The consequence node in Figure 3.11 encompasses both objectives of minimiz-
ing cost and maximizing safety. An alternative representation might explicitly in-
clude both consequences as separate nodes as in Figure 3.10. Moreover, these two 

Figure 3.11 
Influence diagram for 

the evacuation 
decision. 
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objectives are somewhat vaguely defined, as they might be in an initial specification 
of the decision. A more complete specification would define these objectives care-
fully, giving levels of cost (probably in dollars) and a scale for the level of danger. In 
addition, uncertainty about the possible outcomes — ranging from no injury to 
death — could be included in the influence diagram. You will get a chance in 
Problem 3.14 to modify and improve on Figure 3.11. 

As with the manufacturing example, the influence diagram in Figure 3.11 is a 
snapshot of your situation as you wait to hear from the forecaster. The sequence arc 
from "Forecast" to the decision node indicates that the decision is made knowing the 
imperfect weather forecast. You might imagine yourself waiting for the 6 p.m. 
weather report on the television, and as you wait, you consider what the forecaster 
might say and what you would do in each case. The sequence of events, then, is that 
the decision maker hears the forecast, decides what to do, and then the hurricane ei-
ther hits Miami or misses. As with the manufacturing example, analyzing this model 
will result in a strategy that recommends a particular decision for each of the possi-
ble statements the forecaster might make. 

Sequential Decisions 

The hurricane-evacuation decision above can be thought of as part of a larger pic-
ture. Suppose you are waiting anxiously for the forecast as the hurricane is bearing 
down. Do you wait for the forecast or leave immediately? If you wait for the fore-
cast, what you decide to do may depend on that forecast. In this situation, you face a 
sequential decision situation as diagrammed in Figure 3.12. 

The order of the events is implied by the arcs. Because there is no arc from 
"Forecast" to "Wait for Forecast" but there is one to "Evacuate," it is clear that the 
sequence is first to decide whether to wait or leave immediately. If you wait, the fore-
cast is revealed, and finally you decide, based on the forecast, whether to evacuate. 

In an influence diagram sequential decisions are strung together via sequence 
arcs, in much the same way that we did in Chapter 2. (In fact, now you can see 
that the figures in Chapter 2 use essentially the same graphics as influence dia-
grams!) For another example, let us take the farmer's decision from Chapter 2 

Figure 3.12 
A sequential version of 

the evacuation 
decision. 
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about protecting his trees against adverse weather. Recall that the farmer's deci-
sion replayed itself each day; based on the next day's weather forecast, should the 
fruit crop be protected? Let us assume that the farmer's fundamental objective is 
to maximize the NPV of the investment, including the costs of protection. Figure 
3.13 shows that the influence diagram essentially is a series of imperfect-infor-
mation diagrams strung together. Between decisions (to protect or not) the farmer 
observes the weather and obtains the forecast for the next day. The arcs from one 
decision to the next show the time sequence. 

The arrows among the weather and forecast nodes from day to day indicate that 
the observed weather and the forecast both have an effect. That is, yesterday's 
weather is relevant for assessing the chance of adverse weather today. Not shown ex-
plicitly in the influence diagram are arcs from forecast and weather nodes before the 
previous day. Of course, the decision maker observed the weather and the forecasts 
for each prior day. These arcs are not included in the influence diagram but are im-
plied by the arcs that connect the decision nodes into a time sequence. The missing 
arcs are sometimes called no-forgetting arcs to indicate that the decision maker 
would not forget the outcomes of those previous events. Unless the no-forgetting 
arcs are critical in understanding the situation, it is best to exclude them because they 
tend to complicate the diagram. 

Finally, although we indicated that the farmer has a single objective, that of max-
imizing NPV, Figure 3.13 represents the decision as a multiple-objective one, the ob-
jectives being to maximize the cash inflow (and hence minimize outflows or costs) 
each day. The individual cash flows, of course, are used to calculate the farmer's 
NPV. As indicated in Chapter 2, the interest rate defines the trade-off between earlier 
and later cash flows. 

Figure 3.13 
Influence diagram for 

farmer's sequential 
decision problem. 
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Intermediate Calculations 

In some cases it is convenient to include an additional node that simply aggregates 
results from certain predecessor nodes. Suppose, for example, that a firm is consid-
ering introducing a new product. The firm's fundamental objective is the profit level 
of the enterprise, and so we label the consequence node "Profit." At a very basic 
level, both cost and revenue may be uncertain, and so a first version of the influence 
diagram might look like the one shown in Figure 3.14. 

On reflection, the firm's chief executive officer (CEO) realizes that substantial 
uncertainty exists for both variable and fixed costs. On the revenue side, there is un-
certainty about the number of units sold, and a pricing decision will have to be made. 
These considerations lead the CEO to consider a somewhat more complicated influ-
ence diagram, which is shown in Figure 3.15. 

Figure 3.15 is a perfectly adequate influence diagram. Another representation is 
shown in Figure 3.16. Intermediate nodes have been included in Figure 3.16 to calcu-
late cost on one hand and revenue on the other; we will call these calculation nodes, 
because they calculate cost and revenue given the predecessors. (In many discussions 
of influence diagrams, the term deterministic node is used to denote a node that repre-
sents an intermediate calculation or a constant, and in graphical representation in the 
influence diagram such a node is shown as a circle with a double outline. The use of 
the rounded rectangle, the same as the consequence node, is consistent with the repre- 

 

Figure 3.14 
Simple influence 
diagram for new 

product decision. 

Figure 3.15 
New product decision 
with additional detail 

 

 



62        CHAPTER 3 STRUCTURING DECISIONS 

sentation in the computer program DPL and the discussion of these nodes in its docu-
mentation.) 

Calculation nodes behave just like consequence nodes; given the inputs from the 
predecessor nodes, the value of a calculation node can be found immediately. No un-
certainty exists after the conditioning variables — decisions, chance events, or other 
calculation nodes — are known. Of course, there is no uncertainty only in a condi-
tional sense; the decision maker can look forward in time and know what the calcu-
lation node will be for any possible combination of the conditioning variables. 
Before the conditioning variables are known, though, the value that the node will 
eventually have is uncertain. 

In general, calculation nodes are useful for emphasizing the structure of an influ-
ence diagram. Whenever a node has a lot of predecessors, it may be appropriate to 
include one or more intermediate calculations to define the relationships among the 
predecessors more precisely. In Figure 3.16, the calculation of cost and revenue is 
represented explicitly, as is the calculation of profit from cost and revenue. The pric-
ing decision is clearly related to the revenue side, uncertainty about fixed and vari-
able costs are clearly on the cost side, and uncertainty about sales is related to both. 

Another example is shown in Figure 3.17. In this situation, a firm is considering 
building a new manufacturing plant that may create some incremental pollution. The 
profitability of the plant depends on many things, of course, but highlighted in 
Figure 3.17 are the impacts of other pollution sources. The calculation node 
"Regional Pollution Level" uses information on the number of cars and local indus-
try growth to determine a pollution-level index. The pollution level in turn has an 
impact on the chances that the new plant will be licensed and that new regulations 
(either more or less strict) will be imposed. 

With the basic understanding of influence diagrams provided above, you should 
be able to look at any influence diagram (including any that you find in this book) 
and understand what it means. Understanding an influence diagram is an important 
decision-analysis skill. On the other hand, actually creating an influence diagram 
from scratch is considerably more difficult and takes much practice. The following 
optional section gives an example of the construction process for an influence dia- 

Figure 3.16 
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Figure 3.17 
Using a calculation 
node to determine 

pollution level. 

gram and discusses some common mistakes. If you wish to become proficient in 
constructing influence diagrams, the next section is highly recommended. Working 
through the reading and exercises, however, is just one possibility; in fact, practice 
with an influence-diagram program (like DPL, which is discussed later in this chap-
ter) is the best way to develop skill in constructing influence diagrams. 

Constructing an Influence Diagram (Optional) 

There is no set strategy for creating an influence diagram. Because the task is to struc-
ture a decision that may be complicated, the best approach may be to put together a 
simple version of the diagram first and add details as necessary until the diagram cap-
tures all of the relevant aspects of the problem. In this section, we will demonstrate 
the construction of an influence diagram for the classic toxic-chemical problem. 

TOXIC   CHEMICALS  AND  THE   EPA 

The Environmental Protection Agency (EPA) often must decide whether to permit the 
use of an economically beneficial chemical that may be carcinogenic (cancer-causing). 
Furthermore, the decision often must be made without perfect information about either 
the long-term benefits or health hazards. Alternative courses of action are to permit the 
use of the chemical, restrict its use, or to ban it altogether. Tests can be run to learn 
something about the carcinogenic potential of the material, and survey data can give an 
indication of the extent to which people are exposed when they do use the chemical. 
These pieces of information are both important in making the decision. For example, if 
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the chemical is only mildly toxic and the exposure rate is minimal, then restricted use 
may be reasonable. On the other hand, if the chemical is only mildly toxic but the ex-
posure rate is high, then banning its use may be imperative. 

The first step should be to identify the decision context and the objectives. In this 
case, the context is choosing an allowed level of use, and the fundamental objectives 
are to maximize the economic benefits from the chemicals and at the same time to 
minimize the risk of cancer. These two objectives feed into an overall consequence 
node ("Net Value") that aggregates "Economic Value" and "Cancer Cost" as shown 
in Figure 3.18. 

Now let us think about what affects "Economic Value" and "Cancer Cost" other 
than the usage decision. Both the uncertain carcinogenic character of the chemical 
and the exposure rate have an effect on the cancer cost that could occur, thus yield-
ing the diagram shown in Figure 3.19. Because "Carcinogenic Potential" and 
"Exposure Rate" jointly determine the level of risk that is inherent in the chemical, 
their effects are aggregated in an intermediate calculation node labeled "Cancer 
Risk." Different values of the predecessor nodes will determine the overall level of 
"Cancer Risk." 

Note that no arrow runs from "Usage Decision" to "Exposure Rate," even 
though such an arrow might appear to make sense. "Exposure Rate" refers to the ex-
tent of contact when the chemical is actually used and would be measured in terms 
of an amount of contact per unit of time (e.g., grams of dust inhaled per hour). The 
rate is unknown, and the usage decision does not influence our beliefs concerning 
the likelihood of various possible rates when the chemical is used. 

The influence diagram remains incomplete, however, because we have not incor-
porated the test for carcinogenicity or the survey on exposure. Presumably, results 

Figure 3.18 
Beginning the toxic-
chemical influence 

diagram. 

Figure 3.19 
Intermediate influence 
diagram for the toxic-

chemical decision. 
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from both the test (called a bioassay) and the survey would be available to EPA at the 
time the usage decision is made. Furthermore, it should be clear that the actual de-
grees of carcinogenic potential and exposure will influence the test and survey re-
sults, and thus "Carcinogenic Potential" and "Exposure Rate" are connected to 
"Test" and "Survey," respectively, in Figure 3.20. Note that "Test" and "Survey" 
each represent imperfect information; each one provides some information regard-
ing carcinogenicity or exposure. These two nodes are connected to the decision 
node. These are sequence arcs, indicating that the information is available when the 
decision is made. This completes the influence diagram. 

This example demonstrates the usefulness of influence diagrams for structur-
ing decisions. The toxic-chemicals problem is relatively complex, and yet its in-
fluence diagram is compact and, more important, understandable. Of course, the 
more complicated the problem, the larger the influence diagram. Nevertheless, in-
fluence diagrams are useful for creating easily understood overviews of decision 
situations. 

Some Common Mistakes 

First, an easily made mistake in understanding and constructing influence diagrams 
is to interpret them as flowcharts, which depict the sequential nature of a particular 
process where each node represents an event or activity. For example, Figure 1.1 is a 
flowchart of a decision-analysis system, displaying the different things a decision 
analyst does at each stage of the process. 

Even though they look a little like flowcharts, influence diagrams are very differ-
ent. An influence diagram is a snapshot of the decision situation at a particular time, 
one that must account for all the decision elements that play a part in the immediate 
decision. Putting a chance node in an influence diagram means that although the deci-
sion maker is not sure exactly what will happen, he or she has some idea of how likely 
the different possible outcomes are. For example, in the toxic-chemical problem, the 
carcinogenic potential of the chemical is unknown, and in fact will never be known 
for sure. That uncertainty, however, can be modeled using probabilities for different 

 

Figure 3.20 
Complete influence 

diagram for the toxic - 
chemical decision. 
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levels of carcinogenic potential. Likewise, at the time the influence diagram is cre-
ated, the results of the test are not known. The uncertainty surrounding the test results 
also can be modeled using probabilities. The informational arrow from "Test" to 
"Usage Decision," however, means that the decision maker will learn the results of 
the test before the decision must be made. 

The metaphor of a picture of the decision that accounts for all of the decision el-
ements also encompasses the possibility of upcoming decisions that must be con-
sidered. For example, a legislator deciding how to vote on a given issue may con-
sider upcoming votes. The outcome of the current issue might affect the legislator's 
future voting decisions. Thus, at the time of the immediate decision, the decision 
maker foresees future decisions and models those decisions with the knowledge on 
hand. 

A second common mistake, one related to the perception of an influence diagram 
as a flowchart, is building influence diagrams with many chance nodes having ar-
rows pointing to the primary decision node. The intention usually is to represent the 
uncertainty in the decision environment. The problem is that the arrows into the de-
cision node are sequence arcs and indicate that the decision maker is waiting to learn 
the outcome of these uncertain events, which may not be the case. The solution is to 
think carefully when constructing the influence diagram. Recall that only sequence 
arcs are used to point to a decision node. Thus, an arrow into a decision node means 
that the decision maker will have a specific bit of information when making the de-
cision; something will be known for sure, with no residual uncertainty. Before draw-
ing an arrow into a decision node, ask whether the decision maker is waiting for the 
event to occur and will learn the information before the decision is made. If so, the 
arrow is appropriate. If not, don't draw the arrow! 

So how should you include information that the decision maker has about the un-
certainty in the decision situation? The answer is simple. Recall that the influence di-
agram is a snapshot of the decision maker's understanding of the decision situation 
at a particular point in time. When you create a chance node and connect it appropri-
ately in the diagram, you are explicitly representing the decision maker's uncertainty 
about that event and showing how that uncertainty relates to other elements of the 
decision situation. 

A third mistake is the inclusion of cycles (circular paths among the nodes). As in-
dicated previously, a properly constructed influence diagram contains no cycles. 
Cycles are occasionally included in an attempt to denote feedback among the chance 
and decision nodes. Although this might be appropriate in the case of a flowchart, it 
is inappropriate in an influence diagram. Again, think about the diagram as a picture 
of the decision that accounts for all of the decision elements at an instant in time. 
There is no opportunity for feedback at a single point in time, and hence there can be 
no cycles. 

Influence diagrams provide a graphical representation of a decision's structure, a 
snapshot of the decision environment at one point in time. All of the details (alterna-
tives, outcomes, consequences) are present in tables that are contained in the nodes, 
but usually this information is suppressed in favor of a representation that shows off 
the decision's structure. 
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Multiple Representations and Requisite Models 

Even though your influence diagram may be technically correct in the sense that it 
contains no mistakes, how do you know whether it is the "correct" one for your de-
cision situation? This question presupposes that a unique correct diagram exists, but 
for most decision situations, there are many ways in which an influence diagram can 
appropriately represent a decision. Consider the decision modeled in Figures 3.14, 
3.15, and 3.16; these figures represent three possible approaches. With respect to un-
certainty in a decision problem, several sources of uncertainty may underlie a single 
chance node. For example, in Figure 3.16, units sold may be uncertain because the 
CEO is uncertain about the timing and degree of competitive reactions, the nature of 
consumer tastes, the size of the potential market, the effectiveness of advertising, 
and so on. In many cases, and certainly for a f irst-pass representation, the simpler 
model may be more appropriate. In other cases, more detail may be necessary to 
capture all of the essential elements of a s ituation. In the farmer's problem, for 
example, a faithful representation of the situation may require consideration of the 
sequence of decisions rather than looking at each decision as being independent and 
separate from the others. Thus, different individuals may create different influence 
diagrams for the same decision problem, depending on how they view the problem. 
The real issue is determining whether a diagram is appropriate. Does it capture and 
accurately reflect the elements of the decision problem that the decision maker 
thinks are important? 

How can you tell whether your influence diagram is an appropriate one? The rep-
resentation that is the most appropriate is the one that is requisite for the decision 
maker along the lines of our discussion in Chapter 1. That is, a requisite model con-
tains everything that the decision maker considers important in making the decision. 
Identifying all of the essential elements may be a matter of working through the 
problem several times, refining the model on each pass. The only way to get to a req-
uisite decision model is to continue working on the decision until all of the important 
concerns are fully incorporated. Sensitivity analysis (Chapter 5) will be a great help 
in determining which elements are important. 

Structuring Decisions: Decision Trees 

Influence diagrams are excellent for displaying a decision's basic structure, but they 
hide many of the details. To display more of the details, we can use a decision tree. 
As with influence diagrams, squares represent decisions to be made, while circles 
represent chance events. The branches emanating from a square correspond to the 
choices available to the decision maker, and the branches from a circle represent the 
possible outcomes of a chance event. The third decision element, the consequence, is 
specified at the ends of the branches. 

Again consider the venture-capital decision (Figure 3.5). Figure 3.21 shows the 
decision tree for this problem. The decision tree flows from left to right, and so the 
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Figure 3.21 
Decision-tree 

representation of 
venture-capital 

decision. 

immediate decision is represented by the square at the left side. The two branches 
represent the two alternatives, invest or not. If the venture capitalist invests in the 
project, the next issue is whether the venture succeeds or fails. If the venture suc-
ceeds, the capitalist earns a large return. However, if the venture fails, then the 
amount invested in the project will be lost. If the capitalist decides not to invest in 
this particular risky project, then she would earn a more typical return on another 
less risky project. These outcomes are shown at the ends of the branches at the right. 

The interpretation of decision trees requires explanation. First, the options repre-
sented by branches from a decision node must be such that the decision maker can 
choose only one option. For example, in the venture-capital decision, the decision 
maker can either invest or not, but not both. In some instances, combination strate-
gies are possible. If the capitalist were considering two separate projects (A and B), 
for instance, it may be possible to invest in Firm A, Firm B, both, or neither. In this 
case, each of the four separate alternatives would be modeled explicitly, yielding 
four branches from the decision node. 

Second, each chance node must have branches that correspond to a set of mutually 
exclusive and collectively exhaustive outcomes. Mutually exclusive means that only one 
of the outcomes can happen. In the venture-capital decision, the project can either suc-
ceed or fail, but not both. Collectively exhaustive means that no other possibilities exist; 
one of the specified outcomes has to occur. Putting these two specifications together 
means that when the uncertainty is resolved, one and only one of the outcomes occurs. 

Third, a decision tree represents all of the possible paths that the decision maker 
might follow through time, including all possible decision alternatives and outcomes 
of chance events. Three such paths exist for the venture capitalist, corresponding to 
the three branches at the right-hand side of the tree. In a complicated decision situa-
tion with many sequential decisions or sources of uncertainty, the number of poten-
tial paths may be very large. 

Finally, it is sometimes useful to think of the nodes as occurring in a time se-
quence. Beginning on the left side of the tree, the first thing to happen is typically a 
decision, followed by other decisions or chance events in chronological order. In the 
venture-capital problem, the capitalist decides first whether to invest, and the second 
step is whether the project succeeds or fails. 

As with influence diagrams, the dovetailing of decisions and chance events is 
critical. Placing a chance event before a decision means that the decision is made 
conditional on the specific chance outcome having occurred. Conversely, if a chance 
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node is to the right of a decision node, the decision must be made in anticipation of 
the chance event. The sequence of decisions is shown in a decision tree by order in 
the tree from left to right. If chance events have a logical time sequence between de-
cisions, they may be appropriately ordered. If no natural sequence exists, then the 
order in which they appear in the decision tree is not critical, although the order used 
does suggest the conditioning sequence for modeling uncertainty. For example, it 
may be easier to think about the chances of a stock price increasing given that the 
Dow Jones average increases rather than the other way around. 

Decision Trees and the Objectives Hierarchy 

Including multiple objectives in a decision tree is straightforward; at the end of each 
branch, simply list all of the relevant consequences. An easy way to do this system-
atically is with a consequence matrix such as Figure 3.22, which shows the FAA's 
bomb-detection decision in decision-tree form. Each column of the matrix represents 
a fundamental objective, and each row represents an alternative, in this case a candi-
date detection system. Evaluating the alternatives requires "filling in the boxes" in 
the matrix; each alternative must be measured on every objective. Thus every detec-
tion system must be evaluated in terms of detection effectiveness, implementation 
time, passenger acceptance, and cost. 

Figure 3.23 shows a decision-tree representation of the hurricane example. The 
initial "Forecast" branch at the left indicates that the evacuation decision would be 
made conditional on the forecast made — recall the imperfect-information decision 
situation shown in the influence diagram in Figure 3.11. This figure demonstrates that 
consequences must be considered for every possible endpoint at the right side of the 
decision tree, regardless of whether those endpoints represent a decision alternative or 
an uncertain outcome. In addition, Figure 3.23 shows clearly the nature of the risk 
that the decision to stay entails, and that the decision maker must make a fundamental 
trade-off between the sure safety of evacuating and the cost of doing so. Finally, the 
extent of the risk may depend strongly on what the forecast turns out to be! 

Figure 3.22 
Decision-tree 

representation of 
FAA's multiple-
objective bomb-

detection decision. 
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Figure 3.23 
Decision-tree 

representation of 
evacuation decision. 

Some Basic Decision Trees 

In this section we will look at some basic decision-tree forms. Many correspond to 
the basic influence diagrams discussed above. 

The Basic Risky Decision 

Just as the venture-capital decision was the prototypical basic risky decision in our 
discussion of influence diagrams, so it is here as well. The capitalist's dilemma is 
whether the potential for large gains in the proposed project is worth the additional 
risk. If she judges that it is not, then she should not invest in the project. 

Figure 3.24 shows the decision-tree representation of the investment decision given 
earlier in influence-diagram form in Figure 3.9. In the decision tree you can see how the 
sequence of events unfolds. Beginning at the left side of the tree, the choice is made 
whether to invest in the business or savings. If the business is chosen, then the outcome 
of the chance event (wild success or a flop) occurs, and the consequence — the final cash 
position — is determined. As before, the essential question is whether the chance of 
wild success and ending up with $5000 i s worth the risk of losing everything, 
especially in comparison to the savings account that results in a bank balance of $2200 
for sure. 

For another example, consider a politician's decision. The politician's funda-
mental objectives are to have a career that provides leadership for the country and 
representation for her constituency, and she can do so to varying degrees by serving 
in congress. The politician might have the options of (1) running for reelection to her 

Figure 3.24 
The investor's basic 

risky decision. 
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U.S. House of Representatives seat, in which case reelection is virtually assured, or 
(2) running for a Senate seat. If the choice is to pursue the Senate seat, there is a 
chance of losing, in which case she could return to her old job as a lawyer (the worst 
possible outcome). On the other hand, winning the Senate race would be the best 
possible outcome in terms of her objective of providing leadership and representa-
tion. Figure 3.25 diagrams the decision. The dilemma in the basic risky decision 
arises because the riskless alternative results in an outcome that, in terms of desir-
ability, falls between the outcomes for the risky alternatives. (If this were not the 
case, there would be no problem deciding!) The decision maker's task is to figure out 
whether the chance of "winning" in the risky alternative is great enough relative to 
the chance of "losing" to make the risky alternative more valuable than the riskless 
alternative. The more valuable the riskless alternative, the greater the chance of win-
ning must be for the risky alternative to be preferred. 

A variation of the basic risky decision might be called the double-risk decision 
dilemma. Here the problem is deciding between two risky prospects. On one hand, 
you are "damned if you do and damned if you don't" in the sense that you could lose 
either way. On the other hand, you could win either way. For example, the political 
candidate may face the decision represented by the decision tree in Figure 3.26, in 
which she may enter either of two races with the possibility of losing either one. 

In our discussion of the basic risky decision and influence diagrams, we briefly 
mentioned the range-of-risk dilemma, in which the outcome of the chance event can 
take on any value within a range of possible values. For example, imagine an individ-
ual who has sued for damages of $450,000 because of an injury. The insurance com-
pany has offered to settle for $100,000. The plaintiff must decide whether to accept the 
settlement or go to court; the decision tree is shown as Figure 3.27. The crescent shape 

Figure 3.25 
The politician's basic 

risky decision. 

Figure 3.26 
Double-risk decision 

dilemma.  
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Figure 3.27 
A range-of-risk 

decision dilemma. 

indicates that the uncertain event — the court award — may result in any value 
between the extremes of zero and $450,000, the amount claimed in the lawsuit. 

Imperfect Information 

Representing imperfect information with decision trees is a matter of showing that 
the decision maker is waiting for information prior to making a decision. For exam-
ple, the evacuation decision problem is shown in Figure 3.28. Here is a decision tree 
that begins with a chance event, the forecast. The chronological sequence is clear; 
the forecast arrives, then the evacuation decision is made, and finally the hurricane 
either hits or misses Miami. 

Sequential Decisions 

As we did in the discussion of influence diagrams, we can modify the imperfect-infor-
mation decision tree to reflect a sequential decision situation in which the first choice is 
whether to wait for the forecast or evacuate now. Figure 3.29 shows this decision tree. 

At this point, you can imagine that representing a sequential decision problem 
with a decision tree may be very difficult if there are many decisions and chance 
events because the number of branches can increase dramatically under such condi-
tions. Although full-blown decision trees work poorly for this kind of problem, it is 
possible to use a schematic approach to depict the tree. 

Figure 3.28 
Evacuation decision 

represented by 
decision tree. 
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Figure 3.29 
Sequential version of 

evacuation decision in 
decision-tree form. 

Figure 3.30 shows a schematic version of the farmer's sequential decision prob-
lem. This is the decision-tree version of Figure 3.13. Even though each decision and 
chance event has only two branches, we are using the crescent shape to avoid having 
the tree explode into a bushy mess. With only the six nodes shown, there would be 
26, or 64, branches. 

We can string together the crescent shapes sequentially in Figure 3.30 because, 
regardless of the outcome or decision at any point, the same events and decisions 
follow in the rest of the tree. This ability is useful in many kinds of situations. For 
example, Figure 3.31 shows a decision in which the immediate decision is whether 
to invest in an entrepreneurial venture to market a new product or invest in the stock 

Figure 3.30 
Schematic version of 
farmer's sequential 

decision: decision-tree 
form. 

Figure 3.31 
An investment decision 

in schematic form. 
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market. Each alternative leads to its own set of decisions and chance events, and 
each set can be represented in schematic form. 

Decision Trees and Influence Diagrams Compared 

It is time to step back and compare decision trees with influence diagrams. The dis-
cussion and examples have shown that, on the surface at least, decision trees display 
considerably more information than do influence diagrams. It should also be obvi-
ous, however, that decision trees get "messy" much faster than do influence dia-
grams as decision problems become more complicated. One of the most complicated 
decision trees we constructed was for the sequential decision in Figure 3.31, and it 
really does not show all of the intricate details contained in the influence-diagram 
version of the same problem. The level of complexity of the representation is not a 
small issue. When it comes time to present the results of a decision analysis to upper-
level managers, their understanding of the graphical presentation is crucial. 
Influence diagrams are superior in this regard; they are especially easy for people to 
understand regardless of mathematical training. 

Should you use decision trees or influence diagrams? Both are worthwhile, and 
they complement each other well. Influence diagrams are particularly valuable for 
the structuring phase of problem solving and for representing large problems. 
Decision trees display the details of a problem. The ultimate decision made should 
not depend on the representation, because influence diagrams and decision trees are 
isomorphic, any properly built influence diagram can be converted into a decision 
tree, and vice versa, although the conversion may not be easy. One strategy is to start 
by using an influence diagram to help understand the major elements of the situation 
and then convert to a decision tree to fill in details. 

Influence diagrams and decision trees provide two approaches for modeling a de-
cision. Because the two approaches have different advantages, one may be more ap-
propriate than the other, depending on the modeling requirements of the particular sit-
uation. For example, if it is important to communicate the overall structure of a model 
to other people, an influence diagram may be more appropriate. Careful reflection and 
sensitivity analysis on specific probability and value inputs may work better in the 
context of a decision tree. Using both approaches together may prove useful; the goal, 
after all, is to make sure that the model accurately represents the decision situation. 
Because the two approaches have different strengths, they should be viewed as com-
plementary techniques rather than as competitors in the decision-modeling process. 

Decision Details: Defining Elements of the Decision 

With the overall structure of the decision understood, the next step is to make sure 
that all elements of the decision model are clearly defined. Beginning efforts to 
structure decisions usually include some rather loose specifications. For example, 
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when the EPA considers regulating the use of a potentially cancer-causing substance, 
it would have a fundamental objective of minimizing the social cost of the cancers. 
(See, for example, Figure 3.20 and the related discussion.) But how will cancer cost 
be measured? In incremental lives lost? Incremental cases of cancer, both treatable 
and fatal? In making its decision, the EPA would also consider the rate at which peo-
ple are exposed to the toxin while the chemical is in use. What are possible levels of 
exposure? How will we measure exposure? Are we talking about the number of peo-
ple exposed to the chemical per day or per hour? Does exposure consist of breathing 
dust particles, ingesting some critical quantity, or skin contact? Are we concerned 
about contact over a period of time? Exactly how will we know if an individual has 
had a high or low level of exposure? The decision maker must give unequivocal an-
swers to these questions before the decision model can be used to resolve the EPA's 
real-world policy problem. 

Much of the difficulty in decision making arises when different people have dif-
ferent ideas regarding some aspect of the decision. The solution is to refine the con-
ceptualizations of events and variables associated with the decision enough so that it 
can be made. How do we know when we have refined enough? The clarity test 
(Howard, 1988) provides a simple and understandable answer. Imagine a clairvoyant 
who has access to all future information: newspapers, instrument readings, technical 
reports, and so on. Would the clairvoyant be able to determine unequivocally what 
the outcome would be for any event in the influence diagram? No interpretation or 
judgment should be required of the clairvoyant. Another approach is to imagine that, 
in the future, perfect information will be available regarding all aspects of the deci-
sion. Would it be possible to tell exactly what happened at every node, again with no 
interpretation or judgment? The decision model passes the clarity test when these 
questions are answered affirmatively. At this point, the problem should be specified 
clearly enough so that the various people involved in the decision are thinking about 
the decision elements in exactly the same way. There should be no misunderstand-
ings regarding the definitions of the basic decision elements. 

The clarity test is aptly named. It requires absolutely clear definitions of the events 
and variables. In the case of the EPA considering toxic substances, saying that the ex-
posure rate can be either high or low fails the clarity test; what does "high" mean in this 
case? On the other hand, suppose exposure is defined as high if the average skin con-
tact per person-day of use exceeds an average of 10 milligrams of material per second 
over 10 consecutive minutes. This definition passes the clarity test. An accurate test 
could indicate precisely whether the level of exposure exceeded the threshold. 

Although Howard originally defined the clarity test in terms of only chance 
nodes, it can be applied to all elements of the decision model. Once the problem is 
structured and the decision tree or influence diagram built, consider each node. Is the 
definition of each chance event clear enough so that an outside observer would know 
exactly what happened? Are the decision alternatives clear enough so that someone 
else would know exactly what each one entails? Are consequences clearly defined 
and measurable? All of the action with regard to the clarity test takes place within the 
tables in an influence diagram, along the individual branches of a decision tree, or in 
the tree's consequence matrix. These are the places where the critical decision details 
are specified. Only after every element of the decision model passes the clarity test is 
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it appropriate to consider solving the influence diagram or decision tree, which is the 
topic of Chapter 4. 

The next two sections explore some specific aspects of decision details that must 
be included in a decision model. In the first section we look at how chances can be 
specified by means of probabilities and, when money is an objective, how cash flows 
can be included in a decision tree. These are rather straightforward matters in many 
of the decisions we make. However, when we have multiple fundamental objectives, 
defining ways to measure achievement of each objective can be difficult; it is easy to 
measure costs, savings, or cash flows in dollars or pounds sterling, but how does one 
measure damage to an ecosystem? Developing such measurement scales is an im-
portant aspect of attaining clarity in a decision model and is the topic of the second 
section. 

More Decision Details: Cash Flows and Probabilities 

Many decision situations, especially business decisions, involve some chance 
events, one or more decisions to make, and a fundamental objective that can be mea-
sured in monetary terms (maximize profit, minimize cost, and so on). In these situa-
tions, once the decisions and chance events are defined clearly enough to pass the 
clarity test, the last step is to specify the final details: specific chances associated 
with the uncertain events and the cash flows that may occur at different times. What 
are the chances that a particular outcome will occur? What does it cost to take a 
given action? Are there specific cash flows that occur at different times, depending 
on an alternative chosen or an event's outcome? 

Specifying the chances for the different outcomes at a chance event requires us 
to use probabilities. Although probability is the topic of Section 2 of the book, we 
will use probability in Chapters 4 and 5 as we develop some basic analytical tech-
niques. For now, in order to specify probabilities for outcomes, you need to keep in 
mind only a few basic rules. First, probabilities must fall between 0 and 1 (or equiv-
alently between 0% and 100%). There is no such thing as a 110% chance that some 
event will occur. Second, recall that the outcomes associated with a chance event 
must be such that they are mutually exclusive and collectively exhaustive; only one 
outcome can occur (you can only go down one path), but one of the set must occur 
(you must go down some path). The implication is that the probability assigned to 
any given chance outcome (branch) must be between 0 and 1, and for any given 
chance node, the probabilities for its outcomes must add up to 1. 

Indicating cash flows at particular points in the decision model is straightforward. 
For each decision alternative or chance outcome, indicate the associated cash flow, ei-
ther as part of the information in the corresponding influence-diagram node or on the 
appropriate branch in the decision tree. For example, in the toxic-chemical example, 
there are certainly economic costs associated with different possible regulatory actions. 
In the new-product decision (Figure 3.16), different cash inflows are associated with 
different quantities sold, and different outflows are associated with different costs. All of 
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Figure 3.32 
A research-and-

development decision. 

these cash flows must be combined (possibly using net present value if the timing of the 
cash flows is substantially different) at the end of each branch in order to show exactly 
what the overall consequence is for a specific path through the decision model. 

Figure 3.32 shows a decision tree with cash flows and probabilities fully speci-
fied. This is a research-and-development decision. The decision maker is a company 
that must decide whether to spend $2 million to continue with a particular research 
project. The success of the project (as measured by obtaining a patent) is not assured, 
and at this point the decision maker judges only a 70% chance of getting the patent. 
If the patent is awarded, the company can either license the patent for an estimated 
$25 million or invest an additional $10 million to create a production and marketing 
system to sell the product directly. If the company chooses the latter, it faces uncer-
tainty of demand and associated profit from sales. 

You can see in Figure 3.32 that the probabilities at each chance node add up to 1. 
Also, the dollar values at the ends of the branches are the net values. For example, 
if the company continues development, obtains a patent, decides to sell the product 
directly, and enjoys a high level of demand, the net amount is $43 million 
= (—2) + (—10) + 55 million. Also, note that cash flows can occur anywhere in the 
tree, either as the result of a specific choice made or because of a particular chance 
outcome. 

Defining Measurement Scales for Fundamental Objectives 

Many of our examples so far (and many more to come!) have revolved around 
relatively simple situations in which the decision maker has only one easily mea-
sured fundamental objective, such as maximizing profit, as measured in dollars. 
But the world is not always so accommodating. We often have multiple objec-
tives, and some of those objectives are not easily measured on a single, natural 
numerical scale. What sort of measure should we use when we have fundamental 
objectives like maximizing our level of physical fitness, enhancing a company's 
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work environment, or improving the quality of a theatrical production? The answer, 
not surprisingly, relates back to the ideas embodied in the clarity test; we must find 
unambiguous ways to measure achievement of the fundamental objectives. 

Before going on to the nuts and bolts of developing unambiguous scales, let us re-
view briefly why the measurement of fundamental objectives is crucial in the decision 
process. The fundamental objectives represent the reasons why the decision maker 
cares about the decision and, more importantly, how the available alternatives should 
be evaluated. If a fundamental objective is to build market share, then it makes sense 
explicitly to estimate how much market share will change as part of the consequence 
of choosing a particular alternative. The change in market share could turn out to be 
good or bad depending on the choices made (e.g., bringing a new product to the mar-
ket) and the outcome of uncertain events (such as whether a competitor launches an 
extensive promotional campaign). The fact that market share is something which the 
decision maker cares about, though, indicates that it must be measured. 

It is impossible to overemphasize the importance of tying evaluation directly to the 
fundamental objectives. Too often decisions are based on the wrong measurements be-
cause inadequate thought is given to the fundamental objectives in the first place, or 
certain measurements are easy to make or are made out of habit, or the experts making 
the measurements have different objectives than the decision maker. An example is 
trying to persuade the public that high-tech endeavors like nuclear power plants or ge-
netically engineered plants for agricultural use are not risky because few fatalities are 
expected; the fact is that the public appears to care about many other aspects of these 
activities as well as potential fatalities! (For example, lay people are very concerned 
with technological innovations that may have unknown long-term side effects, and 
they are also concerned with having little personal control over the risks that they may 
face because of such innovations.) In complex decision situations there may be many 
objectives that must be considered. The fundamental-objectives hierarchy indicates 
explicitly what must be accounted for in evaluating potential consequences. 

The fundamental-objectives hierarchy starts at the top with an overall objective, 
and lower levels in the heirarchy describe important aspects of the more general ob-
jectives. Ideally, each of the lowest-level fundamental objectives in the hierarchy 
would be measured. Thus, one would start at the top and trace down as far as possible 
through the hierarchy. Reconsider the summer-intern example, in which PeachTree 
Consumer Products is looking for a summer employee to help with the development 
of a market survey. Figure 3.4 shows the fundamental-objectives hierarchy (as well as 
the means network). Starting at the top of this hierarchy ("Choose Best Intern"), we 
would go through "Maximize Quality and Efficiency of Work" and arrive at 
"Maximize Survey Quality" and "Minimize Survey Cost." Both of the latter require 
measurements to know how well they are achieved as a result of hiring any particular 
individual. Similarly, the other branches of the hierarchy lead to fundamental objec-
tives that must be considered. Each of these objectives will be measured on a suitable 
scale, and that scale is called the objective's attribute scale or simply attribute. 

As mentioned, many objectives have natural attribute scales: hours, dollars, per-
centage of market. Table 3.3 shows some common objectives with natural attributes. 
In the intern decision, "Minimize Survey Cost" would be easily measured in terms of 
dollars. How much must the company spend to complete the survey? In the context 
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Table 3.3 
Some common 

objectives and their 
natural attributes. 

of the decision situation, the relevant components of cost are salary, fringe benefits, 
and payroll taxes. Additional costs to complete the survey may arise if the project re-
mains unfinished when the intern returns to school or if a substantial part of the proj-
ect must be reworked. (Both of the latter may be important uncertain elements of the 
decision situation.) Still, for all possible combinations of alternative chosen and un-
certain outcomes, it would be possible, with a suitable definition of cost, to determine 
how much money the company would spend to complete the survey. 

While "Minimize Survey Cost" has a natural attribute scale, "Maximize Survey 
Quality" certainly does not. How can we measure achievement toward this objective? 
When there is no natural scale, two other possibilities exist. One is to use a different 
scale as a proxy. Of course, the proxy should be closely related to the original objective. 
For example, we might take a cue from the means-objectives network in Figure 3.4; if 
we could measure the intern's abilities in survey design and analysis, that might serve 
as a reasonable proxy for survey quality. One possibility would be to use the intern's 
grade point average in market research and statistics courses. Another possibility would 
be to ask one of the intern's instructors to provide a rating of the intern's abilities. (Of 
course, this latter suggestion gives the instructor the same problem that we had in the 
first place: how to measure the student's ability when there is no natural scale!) 

The second possibility is to construct an attribute scale for measuring achieve-
ment of the objective. In the case of survey quality, we might be able to think of a 
number of levels in general terms. The best level might be described as follows: 

Best survey quality: State-of-the-art survey. No apparent crucial issues left un-
addressed. Has characteristics of the best survey projects presented at profes-
sional conferences. 

On the other hand, the worst level might be: 

Worst survey quality: Many issues left unanswered in designing survey. 
Members of the staff are aware of advances in survey design that could have 
been incorporated but were not. Not a presentable project. 

We could identify and describe fully a number of meaningful levels that relate to sur-
vey quality. Table 3.4 shows five possible levels in order from best to worst. You can 
see that the detailed descriptions define what is meant by quality of the survey and 

 



80        CHAPTER 3 STRUCTURING DECISIONS 

Table 3.4 
A constructed scale for 

survey quality. 
RANK: 

Best. State-of-the-art survey. No apparent substantive issues left unaetdressed. Has char-
acteristics of the best survey projects presented at professional conferences. 
Better. Excellent survey but not perfect. Methodological techniques were appropriate 
for the project and similar to previous projects, but in some cases more up-to-date tech-
niques are available. One substantive issue that could have been handled better. Similar 
to most of the survey projects presented at professional conferences. 
Satisfactory. Satisfactory survey. Methodological techniques were appropriate, but su-
perior methods exist and should have been used. Two or three unresolved substantive 
issues. Project could be presented at a professional conference but has characteristics 
that would make it less appealing than most presentations. 
Worse. Although the survey results will be useful temporarily, a follow-up study must 
be done to refine the methodology and address substantive issues that were ignored. 
Occasionally similar projects are presented at conferences, but they are poorly received. 
Worst. Unsatisfactory. Survey must be repeated to obtain useful results. Members of the 
staff are aware of advances in survey design that could have been incorporated but were 
not. Many substantive issues left unanswered. Not a presentable project. 

how to determine whether the survey was well done. According to these defined lev-
els, quality is judged by the extent to which the statistical and methodological tech-
niques were up to date, whether any of the company still has unresolved questions 
about its consumer products, and a judgmental comparison with similar survey pro-
jects presented at professional meetings. 

Constructing scales can range from straightforward to complex. The key to con-
structing a good scale is to identify meaningful levels, including best, worst, and inter-
mediate, and then describe those levels in a way that fully reflects the objective under 
consideration. The descriptions of the levels must be elaborate enough to facilitate the 
measurement of the consequences. In thinking about possible results of specific 
choices made and particular uncertain outcomes, it should be easy to use the con-
structed attribute scale to specify the corresponding consequences. 

The scale in Table 3.4 actually shows two complementary ways to describe a 
level. First is in terms of specific aspects of survey quality, in this case the method-
ology and the extent to which the survey successfully addressed the company's con-
cerns about its line of products. The second way is to use a comparison approach; in 
this case, we compare the survey project overall with other survey projects that have 
been presented at professional meetings. There is nothing inherently important about 
the survey's presentability at a conference, but making the comparison can help to 
measure the level of quality relative to other publicly accessible projects. 

Note also from Table 3.4 that we could have extended the fundamental-objec-
tives hierarchy to include "Methodology" and "Address Company's Issues" as 
branches under the "Maximize Survey Quality" branch, as shown in Figure 3.33. 
How much detail is included in the hierarchy is a matter of choice, and here the 
principle of a requisite model comes into play. As long as the scale for "Maximize 
Survey Quality" can adequately capture the company's concerns regarding this 



DEFINING MEASUREMENT SCALES FOR FUNDAMENTAL OBJECTIVES        81 

Figure 
3.33 

An expanded 
fundamental-objectives 

hierarchy for the 
summer-intern 

example. 

Table 3.5 
A constructed attribute 

scale for biological 
impact. RANK: 

Best   • Complete loss of 1,0 square mile of land that is entirely in agricultural use or is 
entirely urbanized; no loss of any "native" biological communities. 

♦ Complete loss of 1.0 square mile of primarily (75%) agricultural habitat with 
loss of 25% of second-growth forest; no measurable loss of wetlands or endan 
gered-species habitat. 

♦ Complete loss of 1.0 square mile of land that is 50% farmed and 50% disturbed 
in some other way (e.g., logged or new second growth); no measurable loss of 
wetlands or endangered-species habitat. 

♦ Complete loss of 1.0 square mile of recently disturbed (for example, logged, 
plowed) habitat plus disturbance to surrounding previously disturbed habitat 
within 1.0 mile of site border; or 15% loss of wetlands or endangered-speeies 
habitat. 

♦ Complete loss of 1.0 square mile of land that is 50% farmed (or otherwise dis 
turbed) and 50% mature second-growth forest or other undisturbed community; 
15% loss of wetlands or endangered-species habitat. 

♦ Complete loss of 1.0 square mile of land that is primarily (75%) undisturbed ma 
ture "desert" community; 15% loss of wetlands or endangered-species habitat. 

♦ Complete loss of 1.0 square mile of mature second-growth (but not virgin) for 
est community; or 50% loss of big game and upland game birds; or 50% loss of 
wetlands and endangered-species habitat. 

♦ Complete loss of 1.0 square mile of mature community or 90% loss of produc 
tive wetlands and endangered-species habitat. 

Worst ♦ Complete loss of 1.0 square mile of mature virgin forest and/or wetlands and/or 
endangered-species habitat. 

Source: Adapted from Keeney (1992, p. 105). 
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Table 3.6 
A constructed 

attribute scale for 
public attitudes. 

RANK: 

Best    Support. No groups are opposed to the facility, and at least one group has organized 
support for the facility. 

• Neutrality, All groups are indifferent or uninterested. 
• Controversy. One or more groups have organized opposition, although no 

groups have action-oriented opposition (for example, letterwriting, protests, 
lawsuits). Other groups may either be neutral or support the facility. 

• Action-oriented opposition. Exactly one group has action-oriented opposition. 
The other groups have organized support, indifference, or organized opposition. 

Worst. Strong action-oriented opposition. Two or more groups have action-oriented 
opposition. 

Source: Adapted from Keeney (1992, p. 102). 

objective, then there is no need to use more detailed objectives in measuring qual-
ity. If, on the other hand, there are many different aspects of quality that are likely 
to vary separately depending on choices and chance outcomes, then it may be 
worthwhile to create a more detailed model of the objective by extending the hi-
erarchy and developing attribute scales for the subobjectives. 

Developing the ability to construct meaningful attribute scales requires practice. 
In addition, it is helpful to see examples of scales that have been used in various sit-
uations. We have already seen one such scale in Table 3.4 relating to the summer-in-
term example. Tables 3.5 and 3.6 show two other constructed attribute scales for bi-
ological impacts and public attitudes, respectively, both in the context of selecting a 
site for a nuclear power generator. 

Using Computers for Structuring Decisions 

Decision analysis has benefited tremendously from innovations in computers and 
computer software. Introductions to relevant personal-computer software are in-
cluded throughout this book. The rapid pace of software development, however, 
means that even newer programs, not mentioned here, may be available. To get up-
to-date information on decision-analysis software, look for recent software reviews 
in publications like OR/MS Today, the official monthly publication of INFORMS, 
the Institute for Operations Research and Management Science. 

Although many of the advances in decision-analysis software have had to do 
with high-speed calculations that allow elaborate analysis of large and complex de-
cisions, the rise of graphical computer interfaces has permitted the development of 
important computer tools for structuring decision problems. We have already men-
tioned the program DPL, which incorporates both influence diagrams and decision 
trees. A variety of decision-tree programs are also available. In addition, a number of 
programs are available to help with value structuring. In this section we will take a 
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quick look at the structuring features of Logical Decisions (a multiple-objective de-
cision program), DPL, and DATA (a decision-tree program). Sources for software 
described here and in later chapters are listed at the end of Chapter 17. 

Logical Decisions 

With Logical Decisions, a decision maker can structure a decision situation that in-
volves multiple objectives. The starting point in this program is to create a fundamental-
objectives hierarchy. Figure 3.34 shows the screen from a Logical Decisions session in 
which the hierarchy from the generic safety problem (Figure 3.1) is being created. 

None of the existing decision-analysis programs are perfectly consistent with 
this textbook in the terminology that they use. Logical Decisions is no exception; 
you can see in Figure 3.34 that the word "Goal" is used to refer to what we call fun-
damental objectives, and that "Measure" refers to an attribute. The good news is that 
Logical Decisions permits the user to change these labels. Figure 3.35 shows the 
fundamental-objectives hierarchy, in Logical Decisions format, for the intern prob-
lem (Figure 3.4). You can see that the labels have been modified so that the terms 
"Objective" and "Attribute" appear in the figure. 

Logical Decisions does not provide any facility for creating a means-objectives net-
work. It does, however, permit the user to specify attribute scales, identify alternatives, 
and to indicate how each alternative is evaluated on each attribute. This is done in a ma-
trix, shown in Figure 3.36 for the FAA bomb-detection problem (Figure 3.23), that is 
essentially the same as the consequence matrix discussed above for decision trees. 

Figure 3.34 
Fundamental-

objectives hierarchy 
for safety decision in 

logical decisions 
program. 
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Figure 3.35 
Fundamental 

objectives for intern 
decision in logical 

decisions. 
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Figure 3.36 
Consequence matrix 

for FAA bomb-
detection decision in 

logical decisions. 

DPL (Decision Programming Language) 

DPL is a unique program for decision analysis. At the time this is being written, it is the 
only program available that incorporates both decision trees and influence diagrams. 
Decisions can be structured in both influence-diagram and decision-tree form. In addi-
tion, DPL sports a powerful analytical engine and numerous features for analyzing de-
cision models in a variety of ways. Several of these techniques will be discussed later 
in the book. Here we examine the decision-structuring environment that DPL provides. 

Figure 3.37 shows DPL's influence-diagram representation of the toxic-chemi-
cals decision (Figure 3.20), and Figure 3.38 displays the default decision tree that 
DPL creates from the influence diagram. Several features are apparent. For example, 
in both views of the decision, DPL provides a number of drawing tools for creating 
and structuring the decision as required; these tools are represented by the various 
icons in the toolbar. In addition, commands for adding, deleting, and modifying the 
structure reside within the menus. Second, you can see in the decision-tree represen-
tation that, in creating a default decision tree in schematic form, DPL assumes that 
the influence diagram represents a symmetric decision; that is, the same sequence of 
decisions and chance nodes occur regardless of the path taken. 

In DPL, data regarding the specific alternatives and outcomes are entered via the 
influence diagram. In the decision-tree view, though, the decision maker specifies 
the structure of the decision more fully, specifying the sequence of the decisions and 
chance events. In particular, although sequence arcs can be included in the influence 
diagram, DPL uses these only to order the nodes in the default decision tree; it is up 
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Figure 3.37 
Toxic-chemical 

influence diagram in 
DPL 

Figure 3.38 
Toxic-chemical 

decision tree in DPL. 
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to the user to verify that the default sequence is correct or to modify the sequence as 
needed. In addition, the user can modify the default tree to create an asymmetric tree. 
Modeling asymmetry explicitly in the decision tree is straightforward with DPL's 
tools and commands. Moreover, DPL has the ability to represent decision trees in a 
compact way, including schematic representation where appropriate or including the 
same subtree at several different places in the decision structure. For example, 
Figure 3.39 shows the influence diagram for the hurricane-evacuation decision 
(Figure 3.12), and Figure 3.40 displays the corresponding decision tree as modified 
by the user to reflect the asymmetry in the decision. 

Including cash flows and probabilities as described above is straightforward. 
DPL calls cash flows "gets" and "pays" because the decision maker may either get 
an incremental amount (of money or whatever the relevant attribute is) or pay some 
amount. In the analysis, the "gets" and "pays" are collapsed into net values at the 
ends of the branches. 

DPL's treatment of arcs in an influence diagram is somewhat more elaborate than 
our discussion has been, but the two approaches are not inconsistent. DPL distin-
guishes between four different kinds of arcs, reflecting different kinds of relevance 
or dependence on the predecessor node. For example, the values (cash flows, or 
"gets" and "pays") associated with alternatives or chance outcomes can depend on 
the outcome of a predecessor node. Likewise, the probabilities associated with a 
chance node's outcomes can depend on a predecessor's outcome. The four different 

 

Figure 3.39 
DPL's influence 
diagram for the 

hurricane problem. 
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Figure 3.40 
DPL's decision tree 

for the hurricane 
problem. 

kinds of arcs represent relevance of predecessors on values, probabilities, both, or 
neither. The sequence arcs into decision nodes that we have defined, for example, 
can be represented by a DPL arc that represents neither value nor probability depen-
dence. On the other hand, the modeler can use a different arc to specify that cash 
flows in a decision node differ depending on the predecessor's outcome; in this case, 
the arc into the decision node is something of a combination of sequence and rele-
vance arcs. Having this flexibility for specifying different kinds of dependence is 
one of the features that makes DPL a powerful and efficient structuring tool. 

This quick introduction to DPL barely scratches the surface of its structuring ca-
pabilities. In fact, the influence-diagram and decision-tree screens constitute the 
"front end" of a powerful language that DPL uses to represent decisions in a formal 
way. The language itself has considerable flexibility in how decisions can be repre-
sented. Other features include the ability to model multiple objectives and to inter-
face with electronic spreadsheets. 

DATA 

This program provides an environment for constructing and analyzing decision 
trees. The graphical representation is fully consistent with our development in this 
textbook, with the exception that the tree includes triangles at the right-hand end of 
each branch. [You may have noticed that DPL does the same to represent the conse-
quence. The use of the triangle as a termination goes back to Howard Raiffa's origi-
nal Decision Analysis textbook (1968).] Figure 3.41 shows DATA'S version of the 
R&D problem (Figure 3.32). DATA makes it easy to create and edit a decision tree, 
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Figure 3.41 
Research-and- 

development decision 
in DATA. 

including adding and deleting nodes and branches and modifying information. In 
Figure 3.41, you can see probabilities attached to the branches. Cash flows are easily 
defined for variables that correspond to the various nodes but are not displayed in the 
tree itself. 

All of the programs that we have mentioned here, as well as many others, are 
useful for modeling decisions. Although we have emphasized the structuring aspects 
of these programs, all of them have analytical capabilities. We will look at these an-
alytical features in Chapters 4 and 5. 

SUMMARY This chapter has discussed the general process of structuring decision problems. It is 
impossible to overemphasize the importance of the structuring step, because it is 
here that one really understands the problem and all of its different aspects. We 
began with the process of structuring values, emphasizing the importance of identi-
fying underlying fundamental objectives and separating those from means objec-
tives. Fundamental objectives, structured in a hierarchy, are those things that the de-
cision maker wants to accomplish, and means objectives, structured in a network, 
describe ways to accomplish the fundamental objectives. 

With objectives specified, we can begin to structure a decision's specific elements. 
A decision maker may use both influence diagrams and decision trees as tools in the 
process of modeling decisions. Influence diagrams provide compact representations of 
decision problems while suppressing many of the details, and thus they are ideal for 
obtaining overviews, especially for complex problems. Influence diagrams are espe-
cially appropriate for communicating decision structure because they are easily under-
stood by individuals with little technical background. On the other hand, decision trees 
display all of the minute details. Being able to see the details can be an advantage, but 
in complex decisions trees may be too large and "bushy" to be of much use in com-
municating with others. 

The clarity test is used to ensure that the problem is defined well enough so that 
everyone can agree on the definitions of the basic decision elements, and we also 
discussed the specification of probabilities and cash flows at different points in the 
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problem. We also discussed the notion of attribute scales for measuring the extent to 
which fundamental objectives are accomplished, and we showed how scales can be 
constructed to measure achievement of those objectives that do not have natural 
measures. Finally, we introduced three decision-analysis programs for personal 
computers that are useful for structuring decisions. 

E X E R C I S E S  

3.1 Describe in your own words the difference between a means objective and a fundamen 
tal objective. Why do we focus on coming up with attribute scales that measure accom 
plishment of fundamental objectives, but not means objectives? What good does it do to 
know what your means objectives are? 

3.2 What are your fundamental objectives in the context of renting an apartment while at 
tending college? What are your means objectives? Create a fundamental-objectives hier 
archy and a means-objectives network. 

3.3 In the context of renting an apartment (Exercise 3.2), some of the objectives may have 
natural attribute scales. Examples are minimizing rent ($) or minimizing the distance to 
campus (kilometers or city blocks). But other attributes, such as ambiance, amount of 
light, or neighbors, have no natural scales. Construct an attribute scale with at least five 
different levels, ranked from best to worst, for some aspect of an apartment that is im 
portant to you but has no natural scale. 

3.4 Before making an unsecured loan to an individual a bank orders a report on the appli 
cant's credit history. To justify making the loan, the bank must find the applicant's credit 
record to be satisfactory. Describe the bank's decision. What are the bank's objectives? 
What risk does the bank face? What role does the credit report play? Draw an influence 
diagram of this situation. (Hint: Your influence diagram should include chance nodes for 
a credit report and for eventual default.) Finally, be sure to specify everything (decisions, 
chance events, objectives) in your model clearly enough to pass the clarity test. 

3.5 When a movie producer decides whether to produce a major motion picture, the main 
question is how much revenue the movie will generate. Draw a decision tree of this situ 
ation, assuming that there is only one fundamental objective, to maximize revenue. What 
must be included in revenue to be sure that the clarity test is passed? 

3.6 You have met an acquaintance for lunch, and he is worried about an upcoming meeting 
with his boss and some executives from his firm's headquarters. He has to outline the 
costs and benefits of some alternative investment strategies. He knows about both deci 
sion trees and influence diagrams but cannot decide which presentation to use. In your 
own words, explain to him the advantages and disadvantages of each. 

3.7 Reframe your answer to Exercise 3.6 in terms of objectives and alternatives. That is, 
what are appropriate fundamental objectives to consider in the context of choosing how 
to present the investment information? How do decision trees and influence diagrams 
compare in terms of these objectives? 

3.8 Draw the politician's decision in Figure 3.25 as an influence diagram. Include the tables 
showing decision alternatives, chance-event outcomes, and consequences. 
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3.9 A dapper young decision maker has just purchased a new suit for $200. On the way out the 
door, the decision maker considers taking an umbrella. With the umbrella on hand, the suit 
will be protected in the event of rain. Without the umbrella, the suit will be ruined if it rains. 
On the other hand, if it does not rain, carrying the umbrella is an unnecessary inconvenience. 
a   Draw a decision tree of this situation. 
b   Draw an influence diagram of the situation. 
c    Before deciding, the decision maker considers listening to the weather forecast on 

the radio. Draw an influence diagram that takes into account the weather forecast. 
3.10 When patients suffered from hemorrhagic fever, M*A*S*H doctors replaced lost sodium 

by administering a saline solution intravenously. However, headquarters (HQ) sent a treat 
ment change disallowing the saline solution. With a patient in shock and near death from a 
disastrously low sodium level, B. J. Hunnicut wanted to administer a low-sodium-concen 
tration saline solution as a last-ditch attempt to save the patient. Colonel Potter looked at 
B. J. and Hawkeye and summed up the situation. "O.K., let's get this straight. If we go by 
the new directive from HQ and don't administer saline to replace the sodium, our boy will 
die for sure. If we try B. J.'s idea, then he may survive, and we'll know how to treat the next 
two patients who are getting worse. If we try it and he doesn't make it, we're in trouble with 
HQ and may get court-martialed. I say we have no choice. Let's try it." (Source: "Mr. and 
Mrs. Who." Written by Ronny Graham, directed by Burt Metcalfe, 1980.) 

Structure the doctors' decision. What are their objectives? What risks do they face? Draw 
a decision tree for their decision. 

3.11 Here is an example that provides a comparison between influence diagrams and decision 
trees. 
a Suppose you are planning a party, and your objective is to have an enjoyable party for 

all the guests. An outdoor barbecue would be the best, but only if the sun shines; rain 
would make the barbecue terrible. On the other hand, you could plan an indoor party. 
This would be a good party, not as nice as an outdoor barbecue in the sunshine but 
better than a barbecue in the rain. Of course, it is always possible to forego the party 
altogether! Construct an influence diagram and a decision tree for this problem. 

b You will, naturally, consult the weather forecast, which will tell you that the weather 
will be either "sunny" or "rainy." The forecast is not perfect, however. If the forecast 
is "sunny," then sunshine is more likely than rain, but there still is a small chance that 
it will rain. A forecast of "rainy" implies that rain is likely, but the sun may still shine. 
Now draw an influence diagram for the decision, including the weather forecast. 
(There should be four nodes in your diagram, including one for the forecast, which 
will be available at the time you decide what kind of party to have, and one for the ac-
tual weather. Which direction should the arrow point between these two nodes? 
Why?) Now draw a decision tree for this problem. Recall that the events and deci-
sions in a decision tree should be in chronological order. 

3.12 The clarity test is an important issue in Exercise 3.11. The weather obviously can be 
somewhere between full sunshine and rain. Should you include an outcome like 
"cloudy"? Would it affect your satisfaction with an outdoor barbecue? How will you de 
fine rain? The National Weather Service uses the following definition: Rain has occurred 
if "measurable precipitation" (more than 0.004 inch) has occurred at the official rain 
gauge. Would this definition be suitable for your purposes? Define a set of weather out 
comes that is appropriate relative to your objective of having an enjoyable party. 

3.13 Draw the machine-replacement decision (Figure 3.10) as a decision tree. 
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Q U E S T I O N S    AND   P R O B L E M S  

3.14 Modify the influence diagram in Figure 3.11 (the hurricane-forecast example) so that it 
contains nodes for each of the two objectives (maximize safety and minimize cost). Cost 
has a natural attribute scale, but how can you define safety? Construct an attribute scale that 
you could use to measure the degree of danger you might encounter during a hurricane. 

3.15 Decision analysis can be used on itself! What do you want to accomplish in studying de 
cision analysis? Why is decision analysis important to you? In short, what are your fun 
damental objectives in studying decision analysis? What are appropriate means objec 
tives? Is your course designed in a way that is consistent with your objectives? If not, 
how could the course be modified to achieve your objectives? 

3.16 In the spring of 1987 Gary Hart, the leading Democratic presidential candidate, told the 
news media that he was more than willing to have his private life scrutinized carefully. A 
few weeks later, the Miami Herald reported that a woman, Donna Rice, had been seen en 
tering his Washington townhouse on a Friday evening but not leaving until Saturday 
evening. The result was a typical political scandal, with Hart contending that Rice had left 
Friday evening by a back door that the reporter on the scene was not watching. The result 
was that Hart's credibility as a candidate was severely damaged, thus reducing his chance 
of winning both the Democratic nomination and the election. The decision he had to make 
was whether to continue the campaign or to drop out. Compounding the issue was a heavy 
debt burden that was left over from his unsuccessful 1984 presidential bid. 
Using both an influence diagram and a decision tree, structure Hart's decision. What is 
the main source of uncertainty that he faces? Are there conflicting objectives, and if so, 
what are they? What do you think he should have done? (He decided to drop out of the 
race. However, he eventually reentered, only to drop out again because of poor showings 
in the primary elections.) 

3.17 When an amateur astronomer considers purchasing or building a telescope to view deep- 
sky objects (galaxies, clusters, nebulae, etc.), the three primary considerations are mini 
mizing cost, having a stable mounting device, and maximizing the aperture (diameter of 
the main lens or mirror). The aperture is crucial because a larger aperture gathers more 
light. With more light, more detail can be seen in the image, and what the astronomer 
wants to do is to see the image as clearly as possible. As an example, many small tele 
scopes have lens or mirrors up to 8 inches in diameter. Larger amateur telescopes use 
concave mirrors ranging from 10 to 16 inches in diameter. Some amateurs grind their 
own mirrors as large as 40 inches. 
Saving money is important, of course, because the less spent on the telescope, the more 
can be spent on accessories (eyepieces, star charts, computer-based astronomy programs, 
warm clothing, flashlights, and so on) to make viewing as easy and comfortable as possi-
ble. Money might also be spent on an observatory to house a large telescope or on trips 
away from the city (to avoid the light pollution of city skies and thus to see images more 
clearly). 
Finally, a third issue is the way the telescope is mounted. First, the mount should be very 
stable, keeping the telescope perfectly still. Any vibrations will show up dramatically in 
the highly magnified image, thus reducing the quality of the image and the detail that can 
be seen. The mount should also allow for easy and smooth movement of the telescope to 
view any part of the sky. Finally, if the astronomer wants to use the telescope to take pho- 
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tographs of the sky (astrophotos), it is important that the mount includes some sort of 
tracking device to keep the telescope pointing at the same point in the sky as the earth ro-
tates beneath it. 
Based on this description, what are the amateur astronomer's fundamental objectives in 
choosing a telescope? What are the means objectives? Structure these objectives into a 
fundamental-objectives hierarchy and a means-objectives network. (Hint: If you feel the 
need for more information, look in your library for recent issues of Astronomy magazine 
or Sky and Telescope, two publications for amateur astronomers.) 

3.18 Consider the following situations that involve multiple objectives: 
a Suppose you want to go out for dinner. What are your fundamental objectives? Create 

a fundamental-objectives hierarchy. 
b Suppose you are trying to decide where to go for a trip over spring break. What are 

your fundamental objectives? What are your means objectives? 
c You are about to become a parent (surprise!), and you have to choose a name for your 

child. What are important objectives to consider in choosing a name? 
d Think of any other situation where choices involve multiple objectives. Create a fun-

damental-objectives hierarchy and a means-objectives network. 

3.19 Thinking about fundamental objectives and means objectives is relatively easy when the 
decision context is narrow (buying a telescope, renting an apartment, choosing a restaurant 
for dinner). But when you start thinking about your strategic objectives—objectives in the 
context of what you choose to do with your life or your career—the process becomes more 
difficult. Spend some time thinking about your fundamental strategic objectives. What do 
you want to accomplish in your life or in your career? Why are these objectives important? 
Try to create a fundamental-objectives hierarchy and a means-objectives network for your 
self. 
If you succeed in this problem, you will have achieved a deeper level of self-knowledge 
than most people have, regardless of whether they use decision analysis. That knowledge 
can be of great help to you in making important decisions, but you should revisit your 
fundamental objectives from time to time; they might change! 

3.20 Occasionally a decision is sensitive to the way it is structured. The following problem 
shows that leaving out an important part of the problem can affect the way we view the 
situation. 
a Imagine that a close friend has been diagnosed with heart disease. The physician rec-

ommends bypass surgery. The surgery should solve the problem. When asked about 
the risks, the physician replies that a few individuals die during the operation, but 
most recover and the surgery is a complete success. Thus, your friend can (most 
likely) anticipate a longer and healthier life after the surgery. Without surgery, your 
friend will have a shorter and gradually deteriorating life. Assuming that your 
friend's objective is to maximize the quality of her life, diagram this decision with 
both an influence diagram and a decision tree. 

b Suppose now that your friend obtains a second opinion. The second physician sug-
gests that there is a third possible outcome: Complications from surgery can develop 
which will require long and painful treatment. If this happens, the eventual outcome 
can be either a full recovery, partial recovery (restricted to a wheelchair until death), 
or death within a few months. How does this change the decision tree and influence 
diagram that you created in part a? Draw the decision tree and influence diagram that 
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represent the situation after hearing from both physicians. Given this new structure, 
does surgery look more or less positive than it did in part a? [For more discussion of 
this problem, see von Winterfeldt and Edwards (1986, pp. 8-14).] 

c    Construct an attribute scale for the patient's quality of life. Be sure to include levels 
that relate to all of the possible outcomes from surgery. 

3.21 Create an influence diagram and a decision tree for the difficult decision problem that 
you described in Problem 1.9. What are your objectives? Construct attribute scales if 
necessary. Be sure that all aspects of your decision model pass the clarity test. 

3.22 To be, or not to be, that is the question: 
Whether 'tis nobler in the mind to suffer 
The slings and arrows of outrageous fortune 
Or to take arms against a sea of troubles, 
And by opposing end them. To die — to sleep — 
No more; and by a sleep to say we end 
The heartache, and the thousand natural shocks 
That flesh is heir to. 'Tis a consummation 
Devoutly to be wished. To die — to sleep. 
To sleep — perchance to dream: ay, there's the rub! 
For in that sleep of death what dreams may come 
When we have shuffled off this mortal coil, 
Must give us pause. There's the respect 
That makes calamity of so long life. 
For who would bear the whips and scorns of time, 
the oppressor's wrong, the proud man's contumely, 
The pangs of despised love, the law's delay, 
The insolence of office, and the spurns 
That patient merit of the unworthy takes, 
When he himself might his quietus make 
With a bare bodkin? Who would these fardels bear, 
To grunt and sweat under a weary life, 
But that the dread of something after death — 
The undiscovered country, from whose bourn 
No traveller returns — puzzles the will, 
And makes us rather bear those ills we have 
Than fly to others that we know not of? 

— Hamlet, Act III, Scene 1 

Describe Hamlet's decision. What are his choices? What risk does he perceive? 
Construct a decision tree for Hamlet. 

3.23    On July 3, 1988, the USS Vincennes was engaged in combat in the Persian Gulf. On the 
radar screen a blip appeared that signified an incoming aircraft. After repeatedly asking 
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the aircraft to identify itself with no success, it appeared that the aircraft might be a hos-
tile Iranian F-14 attacking the Vincennes. Captain Will Rogers had little time to make his 
decision. Should he issue the command to launch a missile and destroy the plane? Or 
should he wait for positive identification? If he waited too long and the plane was indeed 
hostile, then it might be impossible to avert the attack and danger to his crew. 
Captain Rogers issued the command, and the aircraft was destroyed. It was reported to be 
an Iranian Airbus airliner carrying 290 people. There were no survivors. 
What are Captain Rogers's fundamental objectives? What risks does he face? Draw a de-
cision tree representing his decision. 

3.24 Reconsider the research-and-development decision in Figure 3.32. If you decide to con 
tinue the project, you will have to come up with the $2 million this year (Year 1). Then 
there will be a year of waiting (Year 2) before you know if the patent is granted. If you 
decide to license the technology, you would receive the $25 million distributed as $5 mil 
lion per year beginning in Year 3. On the other hand, if you decide to sell the product di 
rectly, you will have to invest $5 million in each of Years 3 and 4 (to make up the total in 
vestment of $10 million). Your net proceeds from selling the product, then, would be 
evenly distributed over Years 5 through 9. 
Assuming an interest rate of 15%, calculate the NPV at the end of each branch of the de-
cision tree. 

3.25 When you purchase a car, you may consider buying a brand-new car or a used one. A fun 
damental trade-off in this case is whether you pay repair bills (uncertain at the time you 
buy the car) or make loan payments that are certain. 
Consider two cars, a new one that costs $15,000 and a used one with 75,000 miles for 
$5500. Let us assume that your current car's value and available cash amount to $5500, 
so you could purchase the used car outright or make a down payment of $5500 on the 
new car. Your credit union is willing to give you a five-year, 10% loan on the $9500 dif-
ference if you buy the new car; this loan will require monthly payments of $201.85 per 
month for five years. Maintenance costs are expected to be $100 for the first year and 
$300 per year for the second and third years. 
After taking the used car to your mechanic for an evaluation, you learn the following. 
First, the car needs some minor repairs within the next few months, including a new bat-
tery, work on the suspension and steering mechanism, and replacement of the belt that 
drives the water pump. Your mechanic has estimated that these repairs will cost $150.00. 
Considering the amount you drive, the tires will last another year but will have to be re-
placed next year for about $200. Beyond that, the mechanic warns you that the cooling 
system (radiator and hoses) may need to be repaired or replaced this year or next and that 
the brake system may need work. These and other repairs that an older car may require 
could lead you to pay anywhere from $500 to $2500 in each of the next three years. If 
you are lucky, the repair bills will be low or will come later. But you could end up paying 
a lot of money when you least expect it. 
Draw a decision tree for this problem. To simplify it, look at the situation on a yearly basis 
for three years. If you buy the new car, you can anticipate cash outflows of 12 X $201.85 
= $2422.20 plus maintenance costs. For the used car, some of the repair costs are known 
(immediate repairs this year, tires next year), but we must model the uncertainty associ-
ated with the rest. In addition to the known repairs, assume that in each year there is a 20% 
chance that these uncertain repairs will be $500, a 20% chance they will be $2500, and a 
60% chance they will be $1500. (Hint: You need 3 chance nodes: one for each year!) 
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To even the comparison of the two cars, we must also consider their values after three 
years. If you buy the new car, it will be worth approximately $8000, and you will still 
owe $4374. Thus, its net salvage value will be $3626. On the other hand, you would own 
the used car free and clear (assuming you can keep up with the repair bills!), and it would 
be worth approximately $2000. 
Include all of the probabilities and cash flows (outflows until the last branch, then an in-
flow to represent the car's salvage value) in your decision tree. Calculate the net values at 
the ends of the branches. 

C A S E     S T U D I E S  

COLD  FUSION 

On March 23, 1989, Stanley Pons and Martin Fleischmann announced in a press 
conference at the University of Utah that they had succeeded in creating a small-
scale nuclear fusion reaction in a simple apparatus at room temperature. They called 
the process "cold fusion." Although many details were missing from their descrip-
tion of the experiment, their claim inspired thoughts of a cheap and limitless energy 
supply, the raw material for which would be ocean water. The entire structure of the 
world economy potentially would change. 

For a variety of reasons, Pons and Fleischmann were reluctant to reveal all of the 
details of their experiment. If their process really were producing energy from a fusion 
reaction, and any commercial potential existed, then they could become quite wealthy. 
The state of Utah also considered the economic possibilities and even went so far as to 
approve $5 million to support cold-fusion research. Congressman Wayne Owens from 
Utah introduced a bill in the U.S. House of Representatives requesting $100 million to 
develop a national cold-fusion research center at the University of Utah campus. 

But were the results correct? Experimentalists around the world attempted to 
replicate Pons and Fleischmann's results. Some reported success, while many others 
did not. A team at Texas A&M claimed to have detected neutrons, the telltale sign of 
fusion. Other teams detected excess heat as had Pons and Fleischmann. Many exper-
iments failed to confirm a fusion reaction, however, and several physicists claimed 
that the Utah pair simply had made mistakes in their measurements. 

Questions 

1 Consider the problem that a member of the U.S. Congress would have in deciding 
whether to vote for Congressman Owens's bill. What alternatives are available? What 
are the key uncertainties? What objectives might the Congress member consider? 
Structure the decision problem using an influence diagram and a decision tree. 

2 A key part of the experimental apparatus was a core of palladium, a rare metal. 
Consider a speculator who is thinking of investing in palladium in response to the 
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announcement. Structure the investor's decision. How does it compare to the deci-
sion in Question 1 ? 

Sources: "Fusion in a Bottle: Miracle or Mistake," Business Week, May 8, 1989, pp. 100-110; "The Race 
for Fusion," Newsweek, May 8, 1989, pp. 49-54. 

PRESCRIBED  FIRE 

Using fire in forest management sounds contradictory. Prescribed fire, however, is an 
important tool for foresters, and a recent article describes how decision analysis is used 
to decide when, where, and what to burn. In one example, a number of areas in the 
Tahoe National Forest in California had been logged and were being prepared for re-
planting. Preparation included prescribed burning, and two possible treatments were 
available: burning the slash as it lay on the ground, or "yarding of unmerchantable ma-
terial" (YUM) prior to burning. The latter treatment involves using heavy equipment to 
pile the slash. YUM reduces the difficulty of controlling the burn but costs an addi-
tional $100 per acre. In deciding between the two treatments, two uncertainties were 
considered critical. The first was how the fire would behave under each scenario. For 
example, the fire could be fully successful, problems could arise which could be con-
trolled eventually, or the fire could escape, entailing considerable losses. Second, if 
problems developed, they could result in high, low, or medium costs. 

Questions 

1 What do you think the U.S. Forest Service's objectives should be in this decision? 
In the article, only one objective was considered, minimizing cost (including costs 
associated with an escaped fire and the damage it might do). Do you think this is a 
reasonable criterion for the Forest Service to use? Why or why not? 

2 Develop an influence diagram and a decision tree for this situation. What roles do 
the two diagrams play in helping to understand and communicate the structure of 
this decision? 

Source: D. Cohan, S. Haas, D. Radloff, and R. Yancik (1984) "Using Fire in Forest Management: 
Decision Making under Uncertainty." Interfaces, 14, 8-19. 

THE  SS  KUNIANG 

In the early 1980s, New England Electric System (NEES), was deciding how 
much to bid for the salvage rights to a grounded ship, the SS Kuniang. If the bid 
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were successful, the ship could be repaired and fitted out to haul coal for its power-
generation stations. The value of doing so, however, depended on the outcome of a 
Coast Guard judgment about the salvage value of the ship. The Coast Guard's judg-
ment involved an obscure law regarding domestic shipping in coastal waters. If the 
judgment indicated a low salvage value, then NEES would be able to use the ship for 
its shipping needs. If the judgment were high, the ship would be considered ineligi-
ble for domestic shipping use unless a considerable amount of money was spent in 
fitting her with fancy equipment. The Coast Guard's judgment would not be known 
until after the winning bid was chosen, so there was considerable risk associated 
with actually buying the ship as a result of submitting the winning bid. If the bid 
failed, the alternatives included purchasing a new ship for $18 million or a tug barge 
combination for $15 million. One of the major issues was that the higher the bid, the 
more likely that NEES would win. NEES judged that a bid of $3 million would def-
initely not win, whereas a bid of $10 million definitely would win. Any bid in be-
tween was possible. 

Questions 

1 Draw an influence diagram and a decision tree for NEES's decision. 
2 What roles do the two diagrams play in helping to understand and communicate the 

structure of this decision? Do you think one representation is more appropriate than 
the other? Why? 

Source: David E. Bell, (1984) "Bidding for the SS Kuniang." Interfaces, 14, 17-23. 

R E F E R E N C E S  

Decision structuring as a topic of discussion and research is relatively new. Traditionally 
the focus has been on modeling uncertainty and preferences and solution procedures for 
specific kinds of problems. Recent discussions of structuring include von Winterfeldt and 
Edwards (1986, Chapter 2), Humphreys and Wisudha (1987), and Keller and Ho (1989). 

The process of identifying and structuring one's objectives comes from Keeney's 
(1992) Value-Focused Thinking. Although the idea of specifying one's objectives clearly 
as part of the decision process has been accepted for years, Keeney has made this part of 
decision structuring very explicit. Value-focused thinking captures the ultimate in com-
mon sense; if you know what you want to accomplish, you will be able to make choices 
that help you accomplish those things. Thus, Keeney advocates focusing on values and 
objectives first, before considering your alternatives. For a more compact description of 
value-focused thinking, see Keeney (1994). 

Relatively speaking, influence diagrams are brand-new on the decision-analysis cir-
cuit. Developed by Strategic Decisions Group as a consulting aid in the late seventies, 
they first appeared in the decision-analysis literature in Howard and Matheson (1984). 
Bodily (1985) presents an overview of influence diagrams. For more technical details, 
consult Shachter (1986, 1988) and Oliver and Smith (1989). 

The idea of representing a decision with a network has spawned a variety of different 
approaches beyond influence diagrams. Two in particular are valuation networks 
(Shenoy, 1992) and sequential decision diagrams (Covaliu and Oliver, 1995). A recent 



REFERENCES        99 

overview of influence diagrams and related network representations of decisions can be 
found in Matzkevich and Abramson (1995). 

Decision trees, on the other hand, have been part of the decision-analysis tool kit 
since the discipline's inception. The textbooks by Hollo way (1979) and Raiffa (1968) 
provide extensive modeling using decision trees. This chapter's discussion of basic deci-
sion trees draws heavily from Behn and Vaupel's (1982) typology of decisions. 

The clarity test is another consulting aid invented by Ron Howard and his associates. 
It is discussed in Howard (1988). 
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E P I L O G U E  Toxic Chemicals The trade-off between economic value and cancer cost can be very 
complicated and lead to difficult decisions, especially when a widely used substance is 
found to be carcinogenic. Imposing an immediate ban can have extensive economic 
consequences. Asbestos is an excellent example of the problem. This material has been 
in use since Roman times and was used extensively after World War II. However, pio-
neering research by Dr. Irving Selikoff of the Mt. Sinai School of Medicine showed that 
breathing asbestos particles can cause lung cancer. This caused the EPA to list it as a haz-
ardous air pollutant in 1972. In 1978, the EPA imposed further restrictions and banned 
spray-on asbestos insulation. Finally, in the summer of 1989 the EPA announced a plan 
that would result in an almost total ban of the substance by the year 1996. (Sources: 
"U.S. Orders Virtual Ban on Asbestos." Los Angeles Times, July 7, 1989; "Asbestos 
Widely Used Until Researcher's Warning," The Associated Press, July 7,1989.) 

Cold Fusion At a conference in Santa Fe, New Mexico, at the end of May 1989, 
Pons and Fleischmann's results were discussed by scientists from around the world. 
After many careful attempts by the best experimentalists in the world, no consensus 
was reached. Many researchers reported observing excess heat, while others observed 
neutrons. Many had observed nothing. With no agreement, research continued. 

Over the next year, many labs attempted to replicate Pons and Fleischmann's ex-
periments. The most thorough attempts were made at Caltech and MIT, and both 
failed to find evidence for a fusion reaction. In what appeared to be the death blow, 
exactly one year later the journal Nature published an article reporting work by 
Michael Salamon of the University of Utah. Using the electrolytic cells of Pons and 
Fleischmann, and observing them for several weeks, still no evidence of fusion was 
observed. In the same issue, Nature editor David Lindley wrote an editorial that es-
sentially was an epitaph for cold fusion. In addition, two books by scientist John 
Huizenga (Cold Fusion: The Scientific Fiasco of the Century. Rochester, NY: 
University of Rochester Press, 1992) and journalist Gary Taubes (Bad Science: The 
Short Life and Weird Times of Cold Fusion. New York: Random House, 1993) have 
attempted to close the door definitively on cold fusion. 

Surprisingly, though, the controversy continues. Although the top-level scientific 
journals no longer publish their articles, cold-fusion experimenters from around the 
world continue to hold conferences to report their results, and evidence is growing 
that some unusual and poorly understood phenomenon is occurring and can be re-
produced in carefully controlled laboratory conditions. EPRI (the Electric Power 
Research Institute) has provided funding for cold-fusion research for several years. 
In its May/June 1994 cover story, Technology Review summarized the collected evi-
dence relating to cold fusion and possible explanations — none consistent with con-
ventional physical theory — of the phenomenon. Undoubtedly, research will 
continue for some time. Eventually the experimental effects will be confirmed and 
explained, or the entire enterprise will be debunked for good! (Sources: David 
Lindley (1990) "The Embarrassment of Cold Fusion." Nature, 344, 375-376; 
Robert Pool (1989) "Cold Fusion: End of Act I." Science, 244; 1039-1040; 
Edmund Storms (1994) "Warming Up to Cold Fusion." Technology Review, 
May/June, 20-29.) 



CHAPTER 4 

Making Choices 

n this chapter, we will learn how to use the details in a structured problem to find a preferred alternative. 
"Using the details" typically means analysis: making calculations, creating graphs, and examining the 

results so as to gain insight into the decision. We will see that the kinds of calculations 
we make are essentially the same in solving decision trees and influence diagrams. 
We also introduce risk profiles and dominance considerations, ways to make decisions 
without doing all those calculations. 

We begin by studying the analysis of decision models that involve only one ob-
jective or attribute. Although most of the examples we give use money as the at-
tribute, it could be anything that can be measured as discussed in Chapter 3. After 
discussing calculation of expected values and the use of risk profiles for single-
attribute decisions, we turn to decisions with multiple attributes and present some 
simple analytical approaches. The chapter concludes with a discussion of software 
for doing decision-analysis calculations on personal computers. 

Our main example for this chapter is from the famous Texaco-Pennzoil court case. 

TEXACO  VERSUS   PENNZOIL 

In early 1984, Pennzoil and Getty Oil agreed to the terms of a merger. But before 
any formal documents could be signed, Texaco offered Getty a substantially better 
price, and Gordon Getty, who controlled most of the Getty stock, reneged on the 
Pennzoil deal and sold to Texaco. Naturally, Pennzoil felt as if it had been dealt 
with unfairly and immediately filed a lawsuit against Texaco alleging that Texaco 
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had interfered illegally in the Pennzoil-Getty negotiations. Pennzoil won the case; in 
late 1985, it was awarded $11.1 billion, the largest judgment ever in the United 
States at that time. A Texas appeals court reduced the judgment by $2 billion, but in-
terest and penalties drove the total back up to $10.3 billion. James Kinnear, Texaco's 
chief executive officer, had said that Texaco would file for bankruptcy if Pennzoil 
obtained court permission to secure the judgment by filing liens against Texaco's as-
sets. Furthermore, Kinnear had promised to fight the case all the way to the U.S. 
Supreme Court if necessary, arguing in part that Pennzoil had not followed Security 
and Exchange Commission regulations in its negotiations with Getty. In April 1987, 
just before Pennzoil began to file the liens, Texaco offered to pay Pennzoil $2 billion 
to settle the entire case. Hugh Liedtke, chairman of Pennzoil, indicated that his advi-
sors were telling him that a settlement between $3 and $5 billion would be fair. 

What do you think Liedtke (pronounced "lid-key") should do? Should he accept 
the offer of $2 billion, or should he refuse and make a firm counteroffer? If he re-
fuses the sure $2 billion, then he faces a risky situation. Texaco might agree to pay 
$5 billion, a reasonable amount in Liedtke's mind. If he counteroffered $5 billion as 
a settlement amount, perhaps Texaco would counter with $3 billion or simply pursue 
further appeals. Figure 4.1 is a decision tree that shows a simplified version of 
Liedtke's problem. 

The decision tree in Figure 4.1 is simplified in a number of ways. First, we as-
sume that Liedtke has only one fundamental objective: maximizing the amount of 
the settlement. No other objectives need be considered. Also, Liedtke has a more 
varied set of decision alternatives than those shown. He could counteroffer a variety 
of possible values in the initial decision, and in the second decision, he could counter-
offer some amount between $3 and $5 billion. Likewise, Texaco's counteroffer, if it 
makes one, need not be exactly $3 billion. The outcome of the final court decision 

Figure 4.1 
Hugh Liedtke's 

decision in the Texaco- 
Pennzoil affair. 
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could be anything between zero and the current judgment of $10.3 billion. Finally, 
we have not included in our model of the decision anything regarding Texaco's op-
tion of filing for bankruptcy. 

Why all of the simplifications? A straightforward answer (which just happens to 
have some validity) is that for our purposes in this chapter we need a relatively sim-
ple decision tree to work with. But this is just a pedagogical reason. If we were to try 
to analyze Liedtke's problem in all of its glory, how much detail should be included? 
As you now realize, all of the relevant information should be included, and the 
model should be constructed in a way that makes it easy to analyze. Does our repre-
sentation accomplish this? Let us consider the following points. 

1 Liedtke s objective. Certainly maximizing the amount of the settlement is a valid 
objective. The question is whether other objectives, such as minimizing attorney 
fees or improving Pennzoil's public image, might also be important. Although 
Liedtke may have other objectives, the fact that the settlement can range all the 
way from zero to $10.3 billion suggests that this objective will swamp any other 
concerns. 

2 Liedtke's initial counteroffer. The counteroffer of $5 billion could be replaced by 
an offer for another amount, and then the decision tree reanalyzed. Different 
amounts may change the chance of Texaco accepting the counteroffer. At any 
rate, other possible counteroffers are easily dealt with. 

3 Liedtke's second counteroffer. Other possible offers could be built into the tree, 
leading to a Texaco decision to accept, reject, or counter. The reason for leaving 
these out reflects an impression from the media accounts (especially Fortune, 
May 11, 1987, pp. 50-58) that Kinnear and Liedtke were extremely tough nego 
tiators and that further negotiations were highly unlikely. 

4 Texaco's counteroffer. The $3 billion counteroffer could be replaced by a fan rep 
resenting a range of possible counteroffers. It would be necessary to find a 
"break-even" point, above which Liedtke would accept the offer and below 
which he would refuse. Another approach would be to replace the $3 billion 
value with other values, recomputing the tree each time. Thus, we have a variety 
of ways to deal with this issue. 

5 The final court decision. We could include more branches, representing addi 
tional possible outcomes, or we could replace the three branches with a fan rep 
resenting a range of possible outcomes. For a first-cut approximation, the possi 
ble outcomes we have chosen do a reasonably good job of capturing the 
uncertainty inherent in the court outcome. 

6 Texaco's bankruptcy option. A detail left out of the case is that Texaco's net worth 
is much more than the $10.3 billion judgment. Thus, even if Texaco does file for 
bankruptcy, Pennzoil probably would still be able to collect. In reality, negotia 
tions can continue even if Texaco has filed for bankruptcy; the purpose of filing is 
to protect the company from creditors seizing assets while the company proposes 
a financial reorganization plan. In fact, this is exactly what Texaco needs to do in 
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order to figure out a way to deal with Pennzoil's claims. In terms of Liedtke's op-
tions, however, whether Texaco files for bankruptcy appears to have no impact. 

The purpose of this digression has been to explore the extent to which our struc-
ture for Liedtke's problem is requisite in the sense of Chapter 1. The points above 
suggest that the main issues in the problem have been represented in the problem. 
While it may be necessary to rework the analysis with slightly different numbers or 
structure later, the structure in Figure 4.1 should be adequate for a first analysis. The 
objective is to develop a representation of the problem that captures the essential fea-
tures of the problem so that the ensuing analysis will provide the decision maker 
with insight and understanding. 

One small detail remains before we can solve the decision tree. We need to 
specify the chances associated with Texaco's possible reactions to the $5 billion 
counteroffer, and we also need to assess the chances of the various court awards. 
The probabilities that we assign to the outcome branches in the tree should reflect 
Liedtke's beliefs about the uncertain events that he faces. For this reason, any 
numbers that we include to represent these beliefs should be based on what 
Liedtke has to say about the matter or on information from individuals whose 
judgments in this matter he would trust. For our purposes, imagine overhearing a 
conversation between Liedtke and his advisors. Here are some of the issues they 
might raise: 

• Given the tough negotiating stance of the two executives, it could be an even 
chance (50%) that Texaco will refuse to negotiate further. If Texaco does not 
refuse, then what? What are the chances that Texaco would accept a $5 billion 
counteroffer? How likely is this outcome compared to the $3 billion counter 
offer from Texaco? Liedtke and his advisors might figure that a counteroffer of 
$3 billion from Texaco is about twice as likely as Texaco accepting the $5 bil 
lion. Thus, because there is already a 50% chance of refusal, there must be a 
33% chance of a Texaco counteroffer and a 17% chance of Texaco accepting $5 
billion. 

• What are the probabilities associated with the final court decision? In the Fortune 
article cited above, Liedtke is said to admit that Texaco could win its case, leav 
ing Pennzoil with nothing but lawyer bills. Thus, there is a significant possibility 
that the outcome would be zero. Given the strength of Pennzoil's case so far, 
there is also a good chance that the court will uphold the judgment as it stands. 
Finally, the possibility exists that the judgment could be reduced somewhat (to 
$5 billion in our model). Let us assume that Liedtke and his advisors agree that 
there is a 20% chance that the court will award the entire $10.3 billion and a 
slightly larger, or 30%, chance that the award will be zero. Thus, there must be a 
50% chance of an award of $5 billion. 

Figure 4.2 shows the decision tree with these chances included. The chances 
have been written in terms of probabilities rather than percentages. 
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Figure 4.2 
Hugh Liedtke 's 

decision tree with 
chances (probabilities) 

included. 

Decision Trees and Expected Monetary Value 

One way to choose among risky alternatives is to pick the alternative with the highest 
expected value (EV). When the decision's consequences involve only money, we can 
calculate the expected monetary value (EMV). Finding EMVs when using decision 
trees is called "folding back the tree" for reasons that will become obvious. (The 
procedure is called "rolling back" in some texts.) We start at the endpoints of the 
branches on the far right-hand side and move to the left, (1) calculating expected val-
ues (to be defined momentarily) when we encounter a chance node, or (2) choosing 
the branch with the highest value or expected value when we encounter a decision 
node. These instructions sound rather cryptic. It is much easier to understand the 
procedure through a few examples. We will start with a simple example, the double-
risk dilemma shown in Figure 4.3. 

Recall that a double-risk dilemma is a matter of choosing between two risky al-
ternatives. The situation is one in which you have a ticket that will let you participate 
in a game of chance (a lottery) that will pay off $10 with a 45% chance, and nothing 
with a 55% chance. Your friend has a ticket to a different lottery that has a 20% 
chance of paying $25 and an 80% chance of paying nothing. Your friend has offered 
to let you have his ticket if you will give him your ticket plus one dollar. Should you 
agree to the trade and play to win $25, or should you keep your ticket and have a bet-
ter chance of winning $10? 

Figure 4.3 displays your decision situation. In particular, notice that the dollar 
consequences at the ends of the branches are the net values as discussed in Chapter 
3. Thus, if you trade tickets and win, you will have gained a net amount of $24, hav-
ing paid one dollar to your friend. 
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Figure 4.3 
A double-risk 

dilemma. 

To solve the decision tree using EMV, begin by calculating the expected value of 
keeping the ticket and playing for $10. This expected value is simply the weighted 
average of the possible outcomes of the lottery, the weights being the chances with 
which the outcomes occur. The calculations are 

EMV(Keep Ticket) = 0.45(10) + 0.55(0) 
= $4.5 

One interpretation of this EMV is that playing this lottery many times would yield 
on average of approximately $4.50 per game. Calculating EMV for trading tickets 
gives 

EMV(Trade Ticket) = 0.20(24) + 0.80(-l) 
= $4 

Now we can replace the chance nodes in the decision tree with their expected values, 
as shown in Figure 4.4. Finally, choosing between trading and keeping the ticket 
amounts to choosing the branch with the highest expected value. The double slash 
through the "Trade Ticket" branch indicates that this branch would not be chosen. 

This simple example is only a warm-up exercise. Now let us see how the solu-
tion procedure works when we have a more complicated decision problem. Consider 
Hugh Liedtke's situation as diagrammed in Figure 4.2. Our strategy, as indicated, 
will be to work from the right-hand side of the tree. First, we will calculate the ex-
pected value of the final court decision. The second step will be to decide whether it 
is better for Liedtke to accept a $3 billion counteroffer from Texaco or to refuse and 
take a chance on the final court decision. We will do this by comparing the expected 
value of the judgment with the sure $3 billion. The third step will be to calculate the 

Figure 4.4 
Replacing chance 
nodes with EMVs. 
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expected value of making the $5 billion counteroffer, and finally we will compare 
this expected value with the sure $2 billion that Texaco is offering now. 

The expected value of the court decision is the weighted average of the possible 
outcomes: 

EMV(Court Decision) = [P(Award = 10.3) x 10.3] + [P(Award = 5) x 5] 
+ [P(Award - 0) x 0] = [0.2 x 10.3] 

+ [0.5 x 5] + [0.3 x 0] = 4.56 

We replace both uncertainty nodes representing the court decision with this expected 
value, as in Figure 4.5. Now, comparing the two alternatives of accepting and refus-
ing Texaco's $3 billion counteroffer, it is obvious that the expected value of $4.56 
billion is greater than the certain value of $3 billion, and hence the slash through the 
"Accept $3 Billion" branch. 

To continue folding back the decision tree, we replace the decision node with the 
preferred alternative. The decision tree as it stands after this replacement is shown in 
Figure 4.6. The third step is to calculate the expected value of the alternative 
"Counteroffer $5 Billion." This expected value is 

EMV (Counteroffer $5 Billion) = [P(Texaco Accepts) x 5] 
+ [P(Texaco Refuses) x 4.56] 
+ [P(Texaco Counteroffers) x 4.56] 

= [0.17 x 5] + [0.50 x 4.56] + [0.33 x 4.56] 
= 4.63 

Replacing the chance node with its expected value results in the decision tree shown 
in Figure 4.7. Comparing the values of the two branches, it is clear that the expected 
value of $4.63 billion is preferred to the $2 billion offer from Texaco. According to 

Figure 4.5 
Hugh Liedtke 's 

decision tree after 
calculating expected 

value of court decision. 
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Figure 4.6 
Hugh Liedtke 's 

decision tree after 
decision node replaced 
with expected value of 
preferred alternative. 

Figure 4.7 
Hugh Liedtke's 

decision tree after 
original tree 

completely folded 
back. 

this solution, which implies that decisions should be made by comparing expected 
values, Liedtke should turn down Texaco's offer but counteroffer a settlement of $5 
billion. If Texaco turns down the $5 billion and makes another counteroffer of $3 bil-
lion, Liedtke should refuse the $3 billion and take his chances in court. 

We went through this decision in gory detail so that you could see clearly the 
steps involved. In fact, in solving a decision tree, we usually do not redraw the tree 
at each step, but simply indicate on the original tree what the expected values are at 
each of the chance nodes and which alternative is preferred at each decision node. 
The solved decision tree for Liedtke would look like the tree shown in Figure 4.8, 
which shows all of the details of the solution. Expected values for the chance nodes 
are placed above the nodes. The 4.56 above the decision node indicates that if 
Liedtke gets to this decision point, he should refuse Texaco's offer and take his 
chances in court for an expected value of $4.56 billion. The decision tree also shows 
that his best current choice is to make the $5 billion counteroffer with an expected 
payoff of $4.63 billion. 

The decision tree shows clearly what Liedtke should do if Texaco counteroffers 
$3 billion: He should refuse. This is the idea of a contingent strategy. If a particular 
course of events occurs (Texaco's counteroffer), then there is a specific course of 
action to take (refuse the counteroffer). Moreover, in deciding whether to accept 
Texaco's current $2 billion offer, Liedtke must know what he will do in the event 
that Texaco returns with a counteroffer of $3 billion. This is why the decision tree is 
solved backward. In order to make a good decision at the current time, we have to 
know what the appropriate contingent strategies are in the future. 
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Figure 4.8 
Hugh Liedtke's solved 

decision tree. 

Solving Influence Diagrams: Overview 

Solving decision trees is straightforward, and EMVs for small trees can be calculated 
by hand relatively easily. The procedure for solving an influence diagram, though, is 
somewhat more complicated. Fortunately, computer programs are available to do the 
calculations. In this short section we give an overview of the issues involved in solving 
an influence diagram. For interested readers, the following optional section goes 
through a complete solution of the influence diagram of the Texaco-Pennzoil decision. 

While influence diagrams appear on the surface to be rather simple, much of the 
complexity is hidden. Our first step is to take a close look at how an influence dia-
gram translates information into an internal representation. An influence diagram 
"thinks" about a decision in terms of a symmetric expansion of the decision tree 
from one node to the next. 

For example, suppose we have the basic decision tree shown in Figure 4.9, 
which represents the "umbrella problem" (see Exercise 3.9). The issue is whether or 

Figure 4.9 
Umbrella problem. 
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not to take your umbrella. If you do not take the umbrella, and it rains, your good 
clothes (and probably your day) are ruined, and the consequence is zero (units of 
satisfaction). However, if you do not take the umbrella and the sun shines, this is 
the best of all possible consequences with a value of 100. If you decide to take 
your umbrella, your clothes will not get spoiled. However, it is a bit of a nuisance 
to carry the umbrella around all day. Your consequence is 80, between the other 
two values. 

If we were to represent this problem with an influence diagram, it would look 
like the diagram in Figure 4.10. Note that it does not matter whether the sun shines 
or not if you take the umbrella. If we were to reconstruct exactly how the influence 
diagram "thinks" about the umbrella problem in terms of a decision tree, the repre-
sentation would be that shown in Figure 4.11. Note that the uncertainty node on the 
"Take Umbrella" branch is an unnecessary node. The payoff is the same regardless 
of the weather. In a decision-tree model, we can take advantage of this fact by not 
even drawing the unnecessary node. Influence diagrams, however, use the symmet-
ric decision tree, even though this may require unnecessary nodes (and hence unnec-
essary calculations). 

With an understanding of the influence diagram's internal representation, we can 
talk about how to solve an influence diagram. The procedure essentially solves the 
symmetric decision tree, although the terminology is somewhat different. Nodes are 
reduced; reduction amounts to calculating expected values for chance nodes and 
choosing the largest expected value at decision nodes, just as we did with the deci-
sion tree. Moreover, also parallel with the decision-tree procedure, as nodes are re-
duced, they are removed from the diagram. Thus, solving the influence diagram in 
Figure 4.10 would require first reducing the "Weather" node (calculating the ex-
pected values) and then reducing the "Take Umbrella?" node by choosing the largest 
expected value. 

Figure 4.10 
Influence diagram of 

the umbrella problem. 
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Figure 4.11 
How the influence dia-

gram "thinks " about 
the umbrella problem. 

Solving Influence Diagrams: The Details (Optional) 

Consider the Texaco-Pennzoil case in influence-diagram form, as shown in Figure 
4.12. This diagram shows the tables of alternatives, outcomes (with probabilities), 
and consequences that are contained in the nodes. The consequence table in this case 
is too complicated to put into Figure 4.12. We will work with it later in great detail, 
but if you want to see it now, it is displayed in Table 4.1. 

Figure 4.12 needs explanation. The initial decision is whether to accept Texaco's 
offer of $2 billion. Within this decision node a table shows that the available alterna-
tives are to accept the offer or make a counteroffer. Likewise, under the "Pennzoil 
Reaction" node is a table that lists "Accept 3" and "Refuse" as alternatives. The 
chance node "Texaco Reaction" contains a table showing the probabilities of Texaco 
accepting a counteroffer of $5 billion, making an offer of $3 billion, or refusing to 

Figure 4.12 
Influence diagram for 

Liedtke's decision. 
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Table 4.1 
Consequence table 
for the influence 
diagram of Liedtke's 
decision. 

 

 Texaco Pennzoil Final Court Settlement 
Accept Reaction Reaction Decision Amount 
$2 Billion? ($ Billion) ($ Billion) ($ Billion) ($ Billion) 
Accept 2 Accept 5 Accept 3 10.3 2.0 

   5 2.0 
   0 2.0 
  Refuse 10.3 2.0 
   5 2.0 
   0 2.0 
 Offer 3 Accept 3 10.3 2.0 
   5 2.0 
   0 2.0 
  Refuse 10.3 2,0 
   5 2.0 
   0 2.0 
 Refuse Accept 3 10.3 2.0 
   5 2.0 
   0 2.0 
  Refuse 10.3 2.0 
   5 2.0 
   0 2.0 
Offer 5 Accept 5 Accept 3 10.3 5.0 
   5 5.0 
   0 5.0 
  Refuse 10.3 5.0 
   5 5,0 
   0 5.0 
 Offer 3 Accept 3 10.3 3.0 
   5 3.0 
   0 3.0 
  Refuse 10.3 10.3 
   5 5.0 
   0 0.0 
 Refuse Accept 3 10.3 10.3 
   5 5.0 
   0 0.0 
  Refuse 10.3 10.3 
   5 5.0 
   0 0.0 
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negotiate. Finally, the "Final Court Decision" node has a table with its outcomes and 
associated probabilities. 

The thoughtful reader should have an immediate reaction to this. After all, 
whether Texaco reacts depends on whether Liedtke makes his $5 billion counterof-
fer in the first place! Shouldn't there be an arrow from the decision node "Accept $2 
Billion" to the "Texaco Reaction" node? The answer is yes, there could be such an 
arrow, but it is unnecessary and would only complicate matters. The reason is that, 
as with the umbrella example above, the influence diagram "thinks" in terms of a 
symmetric expansion of the decision tree. Figure 4.13 shows a portion of the tree 
that deals with Liedtke's initial decision and Texaco's reaction. An arrow in Figure 
4.12 from "Accept $2 Billion" to "Texaco Reaction" would indicate that the deci-
sion made (accepting or rejecting the $2 billion) would affect the chances associ-
ated with Texaco's reaction to a counteroffer. But the uncertainty about Texaco's re-
sponse to a $5 billion counteroffer does not depend on whether Liedtke accepts the 
$2 billion. Essentially, the influence diagram is equivalent to a decision tree that is 
symmetric. 

For similar reasons, there are no arrows between "Final Court Decision" and the 
other three nodes. If some combination of decisions comes to pass so that Pennzoil 
and Texaco agree to a settlement, it does not matter what the court decision would 
be. The influence diagram implicitly includes the "Final Court Decision" node with 
the agreed-upon settlement regardless of the "phantom" court outcome. 

How is all of this finally resolved in the influence-diagram representation? 
Everything is handled in the consequence node. This node contains a table that 
gives Liedtke's settlement for every possible combination of decisions and out-
comes. That table (Table 4.1) shows that the settlement is $2 billion if Liedtke ac-
cepts the current offer, regardless of the other outcomes. It also shows that if 
Liedtke counteroffers $5 billion and Texaco accepts, then the settlement is $5 bil-
lion regardless of the court decision or Pennzoil's reaction (neither of which have 
any impact if Texaco accepts the $5 billion). The table also shows the details of the 

 

Figure 4.13 
How the influence 
diagram "thinks" 
about the Texaco- 

Pennzoil case. 
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court outcomes if either Texaco refuses to negotiate after Liedtke's counteroffer or 
if Liedtke refuses a Texaco counteroffer. And so on. The table shows exactly what 
the payoff is to Pennzoil under all possible combinations. The column headings in 
Table 4.1 represent nodes that are predecessors of the value node. In this case, both 
decision nodes and both chance nodes are included because all are predecessors of 
the value node.We can now discuss how the algorithm for solving an influence dia-
gram proceeds. Take the Texaco-Pennzoil diagram as drawn in Figure 4.12. As 
mentioned above, our strategy will be to reduce nodes one at a time. The order of 
reduction is reminiscent of our solution in the case of the decision tree. The first 
node reduced is "Final Court Decision," resulting in the diagram in Figure 4.14. In 
this first step, expected values are calculated using the "Final Court Decision" prob-
abilities, which yields Table 4.2. All combinations of decisions and possible out-
comes of Texaco's reaction are shown. For example, if Liedtke counteroffers $5 bil-
lion and Texaco refuses to negotiate, the expected value of $4.56 billion is listed 
regardless of the decision in the "Pennzoil Reaction" node (because that decision is 
meaningless if Texaco initially refuses to negotiate). If Liedtke accepts the $2 bil-
lion offer, the expected value is listed as $2 billion, regardless of other outcomes. 
(Of course, there is nothing uncertain about this outcome; the value that we know 
will happen is the expected value.) If Liedtke offers 5, Texaco offers 3, and finally 
Liedtke refuses to continue negotiating, then the expected value is given as 4.56. 
And so on. 

The next step is to reduce the "Pennzoil Reaction" node. The resulting influence 
diagram is shown in Figure 4.15. Now the table in the consequence node (Table 4.3) 
reflects the decision that Liedtke should choose the alternative with the highest ex-
pected value (refuse to negotiate) if Texaco makes the counteroffer of $3 billion. 
Thus, the table now says that, if Liedtke offers $5 billion and Texaco either refuses to 
negotiate or counters with $3 billion, the expected value is $4.56 billion. If Texaco 
accepts the $5 billion counteroffer, the expected value is $5 billion, and if Liedtke 
accepts the current offer, the expected value is $2 billion. (Again, there is nothing 
uncertain about these values; the expected value in these cases is just the value that 
we know will occur.) 

Figure 4.14 
First step in solving 

the influence diagram. 
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The third step is to reduce the "Texaco Reaction" node, as shown in Figure 4.16. 
As with the first step, this involves taking the table of consequences (now expected 
values) within the "Settlement Amount" node and calculating expected values again. 
The resulting table has only two entries (Table 4.4). The expected value of Liedtke 
accepting $2 billion is just $2 billion, and the expected value of countering with $5 
billion is $4.63 billion. 

The fourth and final step is simply to figure out which decision is optimal in the 
"Accept $2 Billion?" node and to record the result. This final step is shown in Figure 
4.17. The table associated with the decision node indicates that Liedtke's optimal 
choice is to counteroffer $5 billion. The payoff table now contains only one value, 
$4.63 billion, the expected value of the optimal decision. 

Reviewing the procedure, you should be able to see that it followed basically the 
same steps that we followed in folding back the decision tree. 

Table 4.2 
Table for Liedtke's de-

cision after reducing 
the "Final Court 
Decision" node. 

 

Accept Texaco Pennzoil Expected Value 
$2 Billion? Reaction Reaction ($ Billion) 
Accept 2 Accept 5 Accept 3 2 

  Refuse 2 
 Offer 3 Accept 3 2 
  Refuse 2 
 Refuse Accept 3 2 
  Refuse 2 
Offer 5 Accept 5 Accept 3 

   Refuse 5 
 Offer 3 Accept 3 3 
  Refuse 4.56 
 Refuse Accept 3 4.56 
  Refuse 4.56 

 

Figure 4.15 
Second step in solving 
the influence diagram. 
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Table 4.3 
Table for Liedtke's de-

cision after reducing 
"Final Court Decision" 

and "Pennzoil 
Reaction" nodes. 

 

Accept $2 
Billion? 

Texaco 
Reaction 

Expected 
Value ($ 
Billion) 

Accept 2 Accept 5 2.00 

 Offer 3 2.00 
 Refuse 2.00 
Offer 5 Accept 5 5.00 

 Offer 3 4.56 
 Refuse 4.56 

 

Table 4.4 
Table for Liedtke's de-

cision after reducing 
"Final Court Decision," 

"Pennzoil Reaction," 
and "Texaco Reaction" 

nodes. 

 

Accept $2 
Billion? 

Expected Value 
($ Billion) 

Accept 2 2.00 

Offer 5 4.63 

Figure 4.16 
Third step in solving 

the influence diagram. 

Figure 4.17 
Final step in solving 

the influence diagram. 
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Solving Influence Diagrams: An Algorithm (Optional) 

The example above should provide some insight into how influence diagrams are 
solved. Fortunately, you will not typically have to solve influence diagrams by hand; 
computer programs are available to accomplish this. It is worthwhile, however, to 
spend a few moments describing the procedure that is used to solve influence dia-
grams. A set procedure for solving a problem is called an algorithm. You have al-
ready learned the algorithm for solving a decision tree (the folding-back procedure). 
Now let us look at an algorithm for solving influence diagrams. 

1 First, we simply clean up the influence diagram to make sure it is ready for solu 
tion. Check to make sure the influence diagram has only one consequence node 
(or a series of consequence nodes that feed into one "super" consequence node) 
and that there are no cycles. If your diagram does not pass this test, you must fix 
it before it can be solved. In addition, if any nodes other than the consequence 
node have arrows into them but not out of them, they can be eliminated. Such 
nodes are called barren nodes and have no effect on the decision that would be 
made. Replace any intermediate-calculation nodes with chance nodes. (This in 
cludes any consequence nodes that feed into a "super" consequence node repre 
senting a higher-level objective in the objectives hierarchy.) For each possible 
combination of the predecessor node outcomes, such a node has only one out 
come that happens with probability 1. 

2 Next, look for any chance nodes that (a) directly precede the consequence node 
and (b) do not directly precede any other node. Any such chance node found 
should be reduced by calculating expected values. The consequence node then 
inherits the predecessors of the reduced nodes. (That is, any arrows that went into 
the node you just reduced should be redrawn to go into the consequence node.) 

This step is just like calculating expected values for chance nodes at the far 
right-hand side of a decision tree. You can see how this step was implemented in 
the Texaco-Pennzoil example. In the original diagram, Figure 4.12, the "Final 
Court Decision" node is the only chance node that directly precedes the conse-
quence node and does not precede any decision node. Thus it is reduced by the 
expected-value procedure, resulting in Table 4.2. The consequence node does not 
inherit any new direct predecessors as a result of this step because "Final Court 
Decision" has no direct predecessors. 

3 Next, look for a decision node that (a) directly precedes the consequence node 
and (b) has as predecessors all of the other direct predecessors of the conse 
quence node. If you do not find any such decision node, go directly to Step 5. If 
you find such a decision node, you can reduce it by choosing the optimum value. 
When decision nodes are reduced, the consequence node does not inherit any 
new predecessors. This step may create some barren nodes, which can be elimi 
nated from the diagram. 

This step is like folding a decision tree back through a decision node at the 
far right-hand side of the tree. In the Texaco-Pennzoil problem, this step was 
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implemented when we reduced "Pennzoil Reaction." In Figure 4.14, this node 
satisfies the criteria for reduction because it directly precedes the consequence 
node, and the other nodes that directly precede the consequence node also pre-
cede "Pennzoil Reaction." In reducing this node, we choose the option for 
"Pennzoil Reaction" that gives the highest expected value, and as a result we 
obtain Table 4.3. No barren nodes are created in this step. 

4 Return to Step 2 and continue until the influence diagram is completely solved 
(all nodes reduced). This is just like working through a decision tree until all of 
the nodes have been processed from right to left. 

5 You arrived at this step after reducing all possible chance nodes (if any) and then 
not finding any decision nodes to reduce. How could this happen? Consider the 
influence diagram of the hurricane problem in Figure 3.12. None of the chance 
nodes satisfy the criteria for reduction, and the decision node also cannot be re 
duced. In this case, one of the arrows between chance nodes must be reversed. 
This is a procedure that requires probability manipulations through the use of 
Bayes' theorem (Chapter 7). We will not go into the details of the calculations 
here because most of the simple influence diagrams that you might be tempted to 
solve by hand will not require arrow reversals. 

Finding an arrow to reverse is a delicate process. First, find the correct chance 
node. The criteria are that (a) it directly precedes the consequence node and (b) it 
does not directly precede any decision node. Call the selected node A. Now look 
at the arrows out of node A. Find an arrow from A to chance node B (call it A→ 
B) such that there is no other way to get from A to B by following arrows. The 
arrow A → B can be reversed using Bayes' theorem. Afterward, both nodes in-
herit each other's direct predecessors and keep their own direct predecessors. 

After reversing an arrow, return to Step 2 and continue until the influence di-
agram is solved. (More arrows may need to be reversed before a node can be re-
duced, but that only means that you may come back to Step 5 one or more times 
in succession.) 

This description of the influence-diagram solution algorithm is based on the 
complete (and highly technical) description given in Shachter (1986). The intent is 
not to present a "cookbook" for solving an influence diagram because, as indicated, 
virtually all but the simplest influence diagrams will be solved by computer. The de-
scription of the algorithm, however, is meant to show the parallels between the influ-
ence-diagram and decision-tree solution procedures. 

Risk Profiles 

The idea of expected value is appealing, and comparing two alternatives on the basis 
of their EMVs is straightforward. For example, Liedtke's expected values are $2 bil-
lion and $4.63 billion for his two immediate alternatives. But you might have noticed 
that these two numbers are not exactly perfect indicators of what might happen. In 
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particular, suppose that Liedtke decides to counteroffer $5 billion: He might end up 
with $10.3 billion, $5 billion, or nothing, given our simplification of the situation. 
Moreover, the interpretation of EMV as the average amount that would be obtained 
by "playing the game" a large number of times is not appropriate here. The "game" in 
this case amounts to suing Texaco — not a game that Pennzoil will play many times! 

That Liedtke could come away from his dealings with Texaco with nothing indi-
cates that choosing to counteroffer is a somewhat risky alternative. In later chapters 
we will look at the idea of risk in more detail. For now, however, we can intuitively 
grasp the relative riskiness of alternatives by studying their risk profiles. 

A risk profile is a graph that shows the chances associated with possible conse-
quences. Each risk profile is associated with a strategy, a particular immediate alter-
native, as well as specific alternatives in future decisions. For example, the risk profile 
for the "Accept $2 B illion" alternative is shown in Figure 4.18. There is a 100% 
chance that Liedtke will end up with $2 billion. The risk profile for the strategy 
"Counteroffer $5 Billion; Refuse Texaco Counteroffer" is somewhat more compli-
cated and is shown in Figure 4.19. There is a 58.5% chance that the eventual settle-
ment is $5 billion, a 16.6% chance of $10.3 billion, and a 24.9% chance of nothing. 
These numbers are easily calculated. For example, take the $5 billion amount. This 
can happen in three different ways. There is a 17% chance that it happens because 
Texaco accepts. There is a 25% chance that it happens because Texaco refuses and the 
judge awards $5 billion. (That is, there is a 50% chance that Texaco refuses times a 
50% chance that the award is $5 billion.) Finally, the chances are 16.5% that the set-
tlement is $5 billion because Texaco counteroffers $3 billion, Liedtke refuses and 
goes to court, and the judge awards $5 billion. That is, 16.5% equals 33% times 50%. 
Adding up, we get the chance of $5 billion = 17% + 25% + 16.5% = 58.5%. 

In constructing a risk profile, we collapse a decision tree by multiplying out the 
probabilities on sequential chance branches. At a decision node, only one branch is 
taken; in the case of "Counteroffer $5 Billion; Refuse Texaco Counteroffer," we use 
only the indicated alternative for the second decision, and so this decision node need 
not be included in the collapsing process. You can think about the process as one in 
which nodes are gradually removed from the tree in much the same sense as we did 

Figure 4.18 
Risk profile for the 

"Accept $2 Billion " 
alternative. 
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Figure 4.19 
Risk profile for the 

"Counteroffer $5 
Billion; Refuse Texaco 
Counteroffer" strategy. 

with the folding-back procedure, except that in this case we keep track of the possible 
outcomes and their probabilities. Figures 4.20,4.21, and 4.22 show the progression of 
collapsing the decision tree in order to construct the risk profile for the "Counteroffer 
5 Billion; Refuse Texaco Counteroffer" strategy. 

By looking at the risk profiles, the decision maker can tell a lot about the riski-
ness of the alternatives. In some cases a decision maker can choose among alterna-
tives on the basis of their risk profiles. Comparing Figures 4.18 and 4.19, it is clear 
that the worst possible consequence for "Counteroffer $5 Billion; Refuse Texaco 
Counteroffer" is less than the value for "Accept $2 billion." On the other hand, the 
largest amount ($10.3 billion) is much better than $2 billion. Hugh Liedtke has to de-
cide whether the risk of perhaps coming away empty-handed is worth the possibility 
of getting more than $2 billion. This is clearly a case of a basic risky decision, as we 
can see from the collapsed decision tree in Figure 4.22. 

Risk profiles can be calculated for strategies that might not have appeared as opti- 

Figure 4.20 
First step in collapsing 

the decision tree to 
make risk profile for 

"Counteroffer $5 
Billion; Refuse Texaco 
Counteroffer" strategy. 
The decision node has 
been removed to leave 
only the outcomes as-

sociated with the 
"Refuse" branch. 
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Figure 4.21 
Second step in collaps-
ing the decision tree to 

make a risk profile. 
The three chance 

nodes have been col-
lapsed into one chance 

node. The probabili-
ties on the branches 

are the product of the 
probabilities from se-
quential branches in 

Figure 4.20. 
 

Figure 4.22 
Third step in 

collapsing the decision 
tree to make a risk 

profile. 
The seven branches 

from the chance node 
in Figure 4.21 have 
been combined into 

three branches. 

mal in an expected-value analysis. For example, Figure 4.23 shows the risk profile for 
"Counteroffer $5 Billion; Accept $3 Billion," which we ruled out on the basis of EMV. 
Comparing Figures 4.23 and 4.19 indicates that this strategy yields a smaller chance of 
getting nothing, but also less chance of a $10.3 billion judgment. Compensating for 
this is the greater chance of getting something in the middle: $3 or $5 billion. 

Although risk profiles can in principle be used as an alternative to EMV to check 
every possible strategy, for complex decisions it can be tedious to study many risk 
profiles. Thus, a compromise is to look at strategies only for the first one or two de-
cisions, on the assumption that future decisions would be made using a decision rule 
such as maximizing expected value, which is itself a kind of strategy. (This is the ap-
proach used by many decision-analysis computer programs, DPL included.) Thus, in 
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Figure 4.23 
Risk profile for the 

"Counteroffer $5 
Billion; Accept 
$3 Billion " 
strategy. 

the Texaco-Pennzoil example, one might compare only the "Accept $2 Billion" and 
"Counteroffer $5 Billion; Refuse Texaco Counteroffer" strategies. 

Cumulative Risk Profiles 

We also can present the risk profile in cumulative form. Figure 4.24 shows the cumu-
lative risk profile for "Counteroffer 5 Billion; Refuse Texaco Counteroffer." In this for-
mat, the vertical axis is the chance that the payoff is less than or equal to the corre-
sponding value on the horizontal axis. This is only a matter of translating the 
information contained in the risk profile in Figure 4.19. There is no chance that the set-
tlement will be less than zero. At zero, the chance jumps up to 24.9%, because there is 
a substantial chance that the court award will be zero. The graph continues at 24.9% 
across to $5 billion. (For example, there is a 24.9% chance that the settlement is less 
than or equal to $3.5 billion; that is, there is the 24.9% chance that the settlement is 
zero, and that is less than $3.5 billion.) At $5 billion, the line jumps up to 83.4% (which 
is 24.9% + 58.5%), because there is an 83.4% chance that the settlement is less than or 
equal to $5 billion. Finally, at $10.3 billion, the cumulative graph jumps up to 100%: 
The chance is 100% that the settlement is less than or equal to $10.3 billion. 

Figure 4.24 
Cumulative risk profile 

for "Counteroffer $5 
Billion; Refuse Texaco 

Counteroffer." 
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Thus, you can see that creating a cumulative risk profile is just a matter of adding 
up, or accumulating, the chances of the individual payoffs. For any specific value 
along the horizontal axis, we can read off the chance that the payoff will be less than 
or equal to that specific value. Cumulative risk profiles will be very helpful in the 
next section in our discussion of dominance. 

Dominance: An Alternative to EMV 

Comparing expected values of different risky prospects is useful, but in many cases 
EMV inadequately captures the nature of the risks that must be compared. With risk 
profiles, however, we can make a more comprehensive comparison of the risks. But 
how can we choose one risk profile over another? Unfortunately, there is no clear an-
swer that can be used in all situations. By using the idea of dominance, though, we 
can identify those profiles (and their associated strategies) that can be ignored. Such 
strategies are said to be dominated, because we can show logically, according to 
some rules relating to cumulative risk profiles, that there are better risks (strategies) 
available. 

Suppose we modify Liedtke's decision as shown in Figure 4.2 so that $2.5 billion 
is the minimum amount that he believes he could get in a court award. This decision 
is diagrammed in Figure 4.25. Now what should he do? It is rather obvious. Because 
he believes that he could do no worse than $2.5 billion if he makes a counteroffer, he 
should clearly shun Texaco's offer of 2 billion. This kind of dominance is called de-
terministic dominance, signifying that the dominating alternative pays off at least as 
much as the one that is dominated. 

We can show deterministic dominance in terms of the cumulative risk profiles 
displayed in Figure 4.26. The cumulative risk profile for "Accept $2 Billion" goes 
from zero to 100% at $2 billion, because the settlement for this alternative is bound 
to be $2 billion. The risk profile for "Counteroffer $5 Billion; Refuse Texaco 

 

Figure 4.25 
Hugh Liedtke's 

decision tree, 
assuming $2.5 billion 

is minimum court 
award. 
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Figure 4.26 
Cumulative risk pro-

files for alternatives in 
Figure 4.25. 

Counteroffer" starts at $2.5 billion but does not reach 100% until $10.3 billion. 
Deterministic dominance can be detected in the risk profiles by comparing the value 
where one cumulative risk profile reaches 100% with the value where another risk 
profile begins. If there is a value x such that the chance of the payoff being less than 
or equal to x is 100% in alternative B, and the chance of the payoff being less than x 
is 0% in Alternative A, then A deterministically dominates B. Graphically, continue 
the vertical line where alternative A first leaves 0% (the vertical line at $2.5 billion 
for "Counteroffer 5 Billion"). If that vertical line corresponds to 100% for the other 
cumulative risk profile, then A dominates B. Thus, even if the minimum court award 
had been $2 billion instead of $2.5 billion, "Counteroffer $5 Billion" still would 
have dominated "Accept $2 Billion." 

The following example shows a similar kind of dominance. Suppose that Liedtke 
is choosing between two different law firms to represent Pennzoil. He considers both 
law firms to be about the same in terms of their abilities to deal with the case, but one 
charges less in the event that the case goes to court. The full decision tree for this 
problem appears in Figure 4.27. Which choice is preferred? Again, it's rather obvi-
ous; the settlement amounts for choosing Firm A are the same as the corresponding 
amounts for choosing Firm B, except that Pennzoil gets more with Firm A if the case 
results in a damage award in the final court decision. Choosing Firm A is like choos-
ing Firm B and possibly getting a bonus as well. Firm A is said to display stochastic 
dominance over Firm B. Many texts also use the term probabilistic dominance to in-
dicate the same thing. (Strictly speaking, this is first-order stochastic dominance. 
Higher-order stochastic dominance comes into play when we consider preferences 
regarding risk.) 

The cumulative risk profiles corresponding to Firms A and B (and assuming that 
Liedtke refuses a Texaco counteroffer) are displayed in Figure 4.28. The two cumu-
lative risk profiles almost coincide; the only difference is that Firm As profile is 
slightly to the right of Firm B's at $5 and $10 billion, which represents the possibil-
ity of Pennzoil having to pay less in fees. Stochastic dominance is represented in the 
cumulative risk profiles by the fact that the two profiles do not cross and that there is 
some space between them. That is, if two cumulative risk profiles are such that no part 
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Figure 4.27 A 
decision tree com-

paring two law firms. 
Firm A charges less 

than Firm B if 
Pennzoil is awarded 

damages in court. 
 

Figure 4.28 
Cumulative risk 

profiles for two law 
firms in Figure 4.27. 
Firm A stochastically 

dominates Firm B. 

of Profile A lies to the left of B, and at least some part of it lies to the right of B, then 
the strategy corresponding to Profile A stochastically dominates the strategy for 
Profile B. 

The next example demonstrates stochastic dominance in a slightly different 
form. Instead of the consequences, the pattern of the probability numbers makes the 
preferred alternative apparent. Suppose Liedtke's choice is between two law firms 
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that he considers to be of different abilities. The decision tree is shown in Figure 
4.29. Carefully examine the probabilities in the branches for the final court decision. 
Which law firm is preferred? This is a somewhat more subtle situation than the pre-
ceding. The essence of the problem is that for Firm C, the larger outcome values 
have higher probabilities. The settlement with Firm C is not bound to be at least as 
great or greater than that with Firm D, but with Firm C the settlement is more likely 
to be greater. Think of Firm C as being a better gamble if the situation comes down 
to a court decision. Situations like this are characterized by two alternatives that 
offer the same possible consequences, but the dominating alternative is more likely 
to bring a better consequence. 

Figure 4.30 shows the cumulative risk profiles for the two law firms in this ex-
ample. As in the last example, the two profiles nearly coincide, although space is 
found between the two profiles because of the different probabilities associated with 
the court award. Because Firm C either coincides with or lies to the right of Firm D, 
we can conclude that Firm C stochastically dominates Firm D. 

Stochastic dominance can show up in a decision problem in several ways. One 
way is in terms of the consequences (as in Figure 4.27), and another is in terms of the 
probabilities (as in Figure 4.29). Sometimes stochastic dominance may emerge as a 
mixture of the two; both slightly better payoffs and slightly better probabilities may 
lead to one alternative dominating another. 

Figure 4.29 
Decision tree compar-

ing two law firms. 
Firm C has a better 

chance of winning a 
damage award in court 

than does Firm D. 
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Figure 4.30 
Cumulative risk pro-
files for law firms in 
Figure 4.29. Firm C 

stochastically 
dominates Firm D. 

What is the relationship between stochastic dominance and expected value? It 
turns out that if one alternative dominates another, then the dominating alternative 
must have the higher expected value. This is a property of dominant alternatives that 
can be proven mathematically. To get a feeling for why it is true, think about the cu-
mulative risk profiles, and imagine the EMV for a dominated Alternative B. If 
Alternative A dominates B, then its cumulative risk profile must lie at least partly to 
the right of the profile for B. Because of this, the EMV for A must also lie to the right 
of, and hence be greater than, the EMV for B. 

Although this discussion of dominance has been fairly brief, one should not con-
clude that dominance is not important. Indeed, screening alternatives on the basis of 
dominance begins implicitly in the structuring phase of decision analysis, and, as al-
ternatives are considered, they usually are at least informally compared to other al-
ternatives. Screening alternatives formally on the basis of dominance is an important 
decision-analysis tool. If an alternative can be eliminated early in the selection 
process on that basis, considerable cost can be saved in large-scale problems. For ex-
ample, suppose that the decision is where to build a new electric power plant. 
Analysis of proposed alternatives can be exceedingly expensive. If a potential site 
can be eliminated in an early phase of the analysis on the grounds that another dom-
inates it, then that site need not undergo full analysis. 

Making Decisions with Multiple Objectives 

So far we have learned how to analyze a single-objective decision; in the Texaco-
Pennzoil example, we have focused on Liedtke's objective of maximizing the set-
tlement amount. How would we deal with a decision that involves multiple objec-
tives? In this section, we learn how to extend the concepts of expected value and 
risk profiles to multiple-objective situations. In contrast to the grandiose Texaco-
Pennzoil example, consider the following down-to-earth example of a young per-
son deciding which of two summer jobs to take. 
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THE  SUMMER JOB 

Sam Chu was in a quandary. With two job offers in hand, the choice he should make 
was far from obvious. The first alternative was a job as an assistant at a local small 
business; the job would pay minimum wage ($5.25 per hour), require 25 to 35 hours 
per week, and the hours would be primarily during the week, leaving the weekends 
free. The job would last for three months, but the exact amount of work, and hence 
the amount Sam could earn, was uncertain. On the other hand, the free weekends 
could be spent with friends. 

The second alternative was to work as a member of a trail-maintenance crew for a 
conservation organization. This job would require 10 weeks of hard work, 40 hours 
per week at $6.50 per hour, in a national forest in a neighboring state. The job would 
involve extensive camping and backpacking. Members of the maintenance crew 
would come from a large geographic area and spend the entire 10 weeks together, in-
cluding weekends. Although Sam had no doubt about the earnings this job would pro-
vide, the real uncertainty was what the staff and other members of the crew would be 
like. Would new friendships develop? The nature of the crew and the leaders could 
make for 10 weeks of a wonderful time, 10 weeks of misery, or anything in between. 

From the description, it appears that Sam has two objectives in this context: 
earning money and having fun this summer. Both are reasonable, and the two jobs 
clearly differ in these two dimensions; they offer different possibilities for the 
amount of money earned and the quality of summer fun. 

The amount of money to be earned has a natural scale (dollars), and like most of 
us Sam prefers more money to less. The objective of having fun has no natural scale, 
though. Thus, a first step is to create such a scale. After considering the possibilities, 
Sam has created the scale in Table 4.5 to represent different levels of summer fun in 
the context of choosing a summer job. Although living in town and living in a forest 
camp pose two very different scenarios, the scale has been constructed in such a way 
that it can be applied to either job (as well as to any other prospect that might arise). 
The levels are numbered so that the higher numbers are more preferred. 

Table 4.5 
A constructed scale for 

summer fun. 
5     (Best) A large, congenial group. Many new friendships made. Work is enjoyable, 

and time passes quickly. 
4 A small but congenial group of friends. The work is interesting, and time off work 

is spent with a few friends in enjoyable pursuits. 
3 No new friends are made. Leisure hours are spent with a few friends doing typical 

activities. Pay is viewed as fair for the work done. 
2 Work is difficult. Coworkers complain about the low pay and poor conditions. On 

some weekends it is possible to spend time with a few friends, but other weekends 
are boring. 

1     (Worst) Work is extremely difficult, and working conditions are poor. Time off work 
is generally boring because outside activities are limited or no friends are available. 
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With the constructed scale for summer fun, we can represent Sam's decision with 
the influence diagram and decision tree shown in Figures 4.31 and 4.32, respectively. 
The influence diagram shows the uncertainty about fun and amount of work, and that 
these have an impact on their corresponding consequences. The tree reflects Sam's 
belief that summer fun with the in-town job will amount to Level 3 in the con-
structed scale, but there is considerable uncertainty about how much fun the forest 
job will be. This uncertainty has been translated into probabilities based on Sam's 
uncertainty; how to make such judgments is the topic of Chapter 8. Likewise, the de-
cision tree reflects uncertainty about the amount of work available at the in-town job. 

Figure 
4.31 

Influence diagram 
for summer-job 
example. 

Figure 
4.32 

Decision tree for 
summer-job example. 
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Analysis: One Objective at a Time 

One way to approach the analysis of a multiple-objective decision is to calculate the 
expected value or create the risk profile for each individual objective. In the summer-
job example, it is easy enough to do these things for salary. For the forest job, in 
which there is no uncertainty about salary, the expected value is $2600, and the risk 
profile is a single bar at $2600, as in Figure 4.33. For the in-town job, the expected 
salary is 

E(Salary) = 0.35($2730.00) + 0.50($2320.50) + 0.15 ($2047.50) = 
$2422.88 

The risk profile for salary at the in-town job is also shown in Figure 4.33. 

Figure 4.33 
Risk profiles for salary 

in the summer-job 
example. 

Subjective Ratings for Constructed Attribute Scales 

For the summer-fun constructed attribute scale, risk profiles can be created and 
compared (Figure 4.34), but expected-value calculations are not meaningful be-
cause no meaningful numerical measurements are attached to the specific levels in 
the scale. The levels are indeed ordered, but the ordering is limited in what it 
means. The labels do not mean, for example, that going from Level 2 to Level 3 
would give Sam the same increase in satisfaction as going from Level 4 to Level 5. 
Thus, before we can do any meaningful analysis, Sam must rate the different levels 
in the scale, indicating how much each level is worth (to Sam) relative to the other 
levels. This is a subjective judgment on Sam's part. Different people with different 
preferences would be expected to give different ratings for the possible levels of 
summer fun. 
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Figure 4.34 
Risk profiles for 

summer fun in the 
summer-job example. 

To make the necessary ratings, we begin by setting the endpoints of the scale. Let 
the best possible level (Level 5 in the summer-job example) have a value of 100 and 
the worst possible level (Level 1) a value of 0. Now all Sam must do is indicate how 
the intermediate levels rate on this scale from 0 to 100 points. For example, Level 4 
might be worth 90 points, Level 3, 60 points, and Level 2, 25 points. Sam's assess-
ments indicate that going from Level 3 to Level 4, with an increase of 30 points, is 
three times as good as going from Level 4 to Level 5 with an increase of only 10 
points. Note that there is no inherent reason for the values of the levels to be evenly 
spaced; in fact, it might be surprising to find perfectly even spacing. 

This same procedure can be used to create meaningful measurements for any 
constructed scale. The best level is assigned 100 points, the worst 0 points, and the 
decision maker must then assign rating points between 0 and 100 to the intermediate 
levels. A scale like this assigns more points to the preferred consequences, and the 
rating points for intermediate levels should reflect the decision maker's relative pref-
erences for those levels. 

With Sam's assessments, we can now calculate and compare the expected values for 
the amount of fun in the two jobs. For the in-town job, this is trivial because there is no 
uncertainty; the expected value is 60 points. For the forest job, the expected value is 

E(Fun Points) = 0.10(100) + 0.25(90) + 0.40(60) + 0.20(25) + 0.05(0) 
= 61.5 

With individual expected values and risk profiles, alternatives can be compared. In 
doing so, we can hope for a clear winner, an alternative that dominates all other alterna-
tives on all attributes. Unfortunately, comparing the forest and in-town jobs does not 
produce a clear winner. The forest job appears to be better on salary, having no risk and 
a higher expected value. Considering summer fun, the news is mixed. The in-town job 
has less risk but a lower expected value. It is obvious that going from one job to the 
other involves trading risks. Would Sam prefer a slightly higher salary for sure and take 
a risk on how much fun the summer will be? Or would the in-town job be better, play-
ing it safe with the amount of fun and taking a risk on how much money will be earned? 
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Assessing Trade-Off Weights 

The summer-job decision requires Sam to make an explicit trade-off between the ob-
jectives of maximizing fun and maximizing salary. How can Sam make this trade-
off? Although this seems like a formidable task, a simple thought experiment is pos-
sible that will help Sam to understand the relative value of salary and fun. 

In order to make the comparison between salary and fun, it is helpful to mea-
sure these two on similar scales, and the most convenient arrangement is to put 
salary on the same 0 to 100 scale that we used for summer fun. As before, the best 
($2730) and worst (2047.50) take values of 100 and 0, respectively. To get the val-
ues for the intermediate salaries ($2320.50 and $2600), a simple approach is to 
calculate them proportionately. Thus, we find that $2320.50 is 40% of the way 
from $2047.50 to $2730, and so it gets a value of 40 on the converted scale. (That 
is, [$2320.50 - $2047.50] / [$2730 - $2047.50] = 0.40.) Likewise, $2600 is 81% 
of the way from $2047.50 to $2730, and so it gets a value of 81. (In Chapter 15, we will 
call this approach proportional scoring.) With the ratings for salary and summer fun, we 
now can create a new consequence matrix, giving the decision tree in Figure 4.35. 

Now the trade-off question can be addressed in a straightforward way. The ques-
tion is how Sam would trade points on the salary scale for points on the fun scale. To 
do this we introduce the idea of weights. What we want to do is assign weights to 
salary and fun to reflect their relative importance to Sam. Call the weights ks and 
kf, where the subscripts s and/stand for salary and fun, respectively. We will use the 
weights to calculate a weighted average of the two ratings for any given conse-
quence in order to get an overall score. For example, suppose that ks = 0.70 and 

Figure 4.35 
Decision tree with 

ratings for 
consequences. 
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kf = 0.30, reflecting a judgment that salary is a little more than twice as important 
as fun. The overall score (U) for the forest job with fun at Level 3 would be 

U(Salary: 81, Fun: 60) = 0.70(81) + 0.30(60) 
= 74.7 

It is up to Sam to make an appropriate judgment about the relative importance of 
the two attributes. Although details on making this judgment are in Chapter 15, one 
important issue in making this judgment bears discussion here. Sam must take into 
consideration the ranges of the two attributes. Strictly speaking, the two weights 
should reflect the relative value of going from best to worst on each scale. That is, if 
Sam thinks that improving salary from $2047.50 to $2730 is three times as important 
as improving fun from Level 1 to Level 5, this judgment would imply weights 
ks =0.75 and kf =0.25. 

Paying attention to the ranges of the attributes in assigning weights is crucial. 
Too often we are tempted to assign weights on the basis of vague claims that 
Attribute A (or its underlying objective) is worth three times as much as Attribute B. 
Suppose you are buying a car, though. If you are looking at cars that all cost about 
the same amount but their features differ widely, why should price play a role in your 
decision? It should have a low weight in the overall score. In the Texaco-Pennzoil 
case, we argued that we could legitimately consider only the objective of maximiz-
ing the settlement amount because its range was so wide; any other objectives would 
be overwhelmed by the importance of moving from worst to best on this one. In an 
overall score, the weight for settlement amount would be near 1, and the weight for 
any other attribute would be near zero. 

Suppose that, after carefully considering the possible salary and summer-fun 
outcomes, Sam has come up with weights of 0.6 for salary and 0.4 for fun, reflecting 
a judgment that the range of possible salaries is 1.5 times as important as the range 
of possible summer-fun ratings. With these weights, we can collapse the conse-
quence matrix in Figure 4.35 to get Figure 4.36. For example, if Sam chooses the 
forest job and the level of fun turns out to be Level 4, the overall score is 
0.6(81) + 0.4(90) = 84.6. The other endpoint values in Figure 4.36 can be found in 
the same way. 

In these last two sections we have discussed some straightforward ways to make 
subjective ratings and trade-off assessments. These topics are treated more com-
pletely in Chapters 13, 15, and 16. For now you can rest assured that the techniques 
described here are fully compatible with those described in later chapters. 

Analysis: Expected Values and Risk Profiles 
for Two Objectives 

The decision tree in Figure 4.36 is now ready for analysis.The first thing we can do 
is fold back the tree to calculate expected values. Using the overall scores from 
Figure 4.36, the expected values are: 
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Figure 4.36 
Decision tree with 
overall scores for 

summer-job example. 
Weights used are ks = 

0.60 and kf =0.40. 
For example, 

consider the forest job 
that has an outcome of 

Level 4 on the fun 
scale. The rating for 
salary is 81, and the 
rating for fun is 90. 

Thus, the overall score 
is 0.60(81)+ 0.40(90) 

= 84.6. 

E(Score for Forest Job) = 0.10(88.6) + 0.25(84.6) 
+ 0.40(72.6) + 0.20(58.6) + 0.05(48.6) = 

73.2 
E(Score for In-Town Job) = 0.35(84) + 0.50(48) + 0.15(24) 

= 57 

Can we also create risk profiles for the two alternatives? We can; the risk profiles 
would represent the uncertainty associated with the overall weighted score Sam will 
get from either job. To the extent that this weighted score is meaningful to Sam as a 
measure of overall satisfaction, the risk profiles will represent the uncertainty associ-
ated with Sam's overall satisfaction. Figures 4.37 and 4.38 show the risk profiles and 
cumulative risk profiles for the two jobs. Figure 4.38 shows that, given the ratings 
and the trade-off between fun and salary, the forest job stochastically dominates the 
in-town job in terms of the overall score. Thus, the decision may be clear for Sam at 
this point; given Sam's assessed probabilities, ratings, and the trade-off, the forest 
job is a better risk. (Before making the commitment, though, Sam may want to do 
some sensitivity analysis, the topic of Chapter 5; small changes in some of those sub-
jective judgments might result in a less clear choice between the two.) 

Two final caveats are in order regarding the risk profiles of the overall score. First, 
it is important to understand that the overall score is something of an artificial out-
come; it is an amalgamation in this case of two rating scales. As indicated above, 
Figures 4.37 and 4.38 only makes sense to the extent that Sam is willing to interpret 
them as representing the uncertainty in the overall satisfaction from the two jobs. 
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Second, the stochastic dominance displayed by the forest job in Figure 4.38 is a 
relatively weak result; it relies heavily on Sam's assessed trade-off between the two 
attributes. A stronger result — one in which Sam could have confidence that the forest 
job is preferred regardless of his trade-off — requires that the forest job 
stochastically dominate the in-town job on each individual attribute. (Technically, 
however, even individual stochastic dominance is not quite enough; the risk profiles 
for the attributes must be combined into a single two-dimensional risk profile, or 
bivariate probability distribution, for each attribute. Then these two-dimensional risk 
profiles must be compared in much the same way we did with the single-attribute risk 
profiles. The good news is that as long as amount of work and amount of fun are 
independent (no arrow between these two chance nodes in the influence diagram in 
Figure 4.31), then finding that the same job stochastically dominates the other on each 
attribute guarantees that the same relationship holds in terms of the technically 
correct two-dimensional risk profile. Indepence and stochastic dominance for 
multiple attributes will be discussed in Chapter 7.) 

Figure 4.37 
Risk profiles for 

summer jobs. 
 

 

 

 

 

 
Figure 4.38 

Cumulative risk pro-
files for summer jobs. 

The forest job stochas-
tically dominates the 

in-town job. 
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Computer Programs for Decision Analysis 

In this section we continue the discussion from Chapter 3 of personal-computer soft-
ware for decision analysis, demonstrating how DPL and DATA perform the analysis 
described in this chapter. These programs do more than calculate expected values 
and create risk profiles, of course. In later chapters we will see how they perform 
sensitivity analysis and incorporate utility functions. 

DPL 

Figures 4.39 and 4.40 show the DPL influence diagram and decision tree, respec-
tively, for the Texaco-Pennzoil case. Figure 4.39 is essentially the same as Figure 
4.12. Figure 4.40, though, differs slightly from Figure 4.1. Notice that the "Final 
Court Decision" node and branches only appear once, at the end of the "Refuse" 
branch of the "Texaco Reaction" node. The "Final Court Decision" node is marked 
with an "a." A chance node with no branches but also marked with an "a" appears at 
the end of the "Refuse" branch of the "Pennzoil Reaction" node, indicating that 
from this point the structure of the tree is the same — identical nodes, branches, 
cash flows, and probabilities — as from the first "a." This shorthand approach for 
displaying similar subtrees can greatly simplify the presentation of complex 
decisions. 

Figure 4.39 
DPUs influence 

diagram for Texaco-
Pennzoil decision. 
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Figure 4.40 
DPL's decision tree for 

Texaco-Pennzoil. 

With the problem fully structured, choosing the "Decision Analysis" command 
from the "Run" menu generates two new windows. First, the DPL Decision Policy 
window (Figure 4.41) displays the folded-back decision tree with expected values 
calculated and the optimal strategy shown with heavy lines. Second, DPL creates the 
optimal strategy's risk profile and displays it in the DPL Distributions window 
(Figure 4.42). An optional setting permits display of the risk profile in both regular 
and cumulative formats. 

DATA 

The "Roll Back" command on the "Analysis" menu in DATA does exactly what it 
suggests: It solves the decision tree. Figure 4.43 shows the folded-back decision tree 
for the summer-job decision as displayed by DATA. As in DPL, the optimal policy is 
highlighted, in this case taking the forest job. This analysis has taken into account the 
two attributes, summer fun and salary; DATA has a facility for identifying up to four 
different "payoffs" (consequences), any one of which can be calculated according to 
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Figure 4.41 
DPL's solved decision 

tree for Texaco- 
Pennzoil decision. 

Figure 4.42 
Risk profile for optimal 
Texaco-Pennzoil strat-

egy in DPL 

a formula using defined variables whose values depend on the path taken. In this ren-
dition of the problem, variables "Fun_Score" and "Salary_Score" have been defined 
and used to calculate the weighted "Overall" consequence. (DPL also allows the de-
cision maker to specify and use variables to calculate probabilities and payoffs. The 
ability to define and use variables in representing a decision problem makes a pro-
gram flexible and easy to use in complex decision situations.) 
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Figure 4.44 shows the cumulative risk profile for the forest job. This graph is cre-
ated by choosing the "Probability Distribution" command from DATA's "Analysis" 
menu. As with DPL, the risk profile can be displayed in cumulative or regular format. 

Figure 4.43 
Folded-back summer-

job decision tree in 
DATA. 

 

 

 

 

 

 

Figure 4.44 
Risk profile for forest 

job in DATA. 
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Electronic Spreadsheets 

No discussion of decision-analysis software would be complete without a discussion 
of electronic spreadsheets such as Microsoft Excel. Many decision problems revolve 
around accounting information. A spreadsheet environment is ideal for working with 
accounting data and building financial models for the possible outcomes and conse-
quences in a decision situation. In this way, an analyst may use a spreadsheet to cre-
ate subsidiary models to provide some of the inputs to a decision tree or influence di-
agram. In fact, both DPL and DATA have provisions for linking with Excel. Thus, it 
is possible to create financial models in Excel and access appropriate figures on the 
worksheet directly from DPL or DATA. Moreover, the links can be dynamic; 
changes made in the spreadsheet can be immediately reflected in the decision-tree or 
influence-diagram model. 

Linking a spreadsheet with a specialized decision-analysis program is one of 
many ways to use electronic spreadsheets in decision analysis, and in future chapters 
we will see other uses. In addition to these specific uses, though, it is important to 
emphasize the usefulness and flexibility of electronic spreadsheets. Constructing de-
cision models, calculating cash flows and expected values, collapsing decision trees 
to create risk profiles, performing sensitivity analysis, and more can all be done in a 
spreadsheet. Spreadsheet expertise pays off in many areas other than decision analy-
sis; these programs can be used to do virtually anything that requires calculations. Of 
course, gaining the necessary expertise takes time and patience. Virtually all man-
agers now have personal computers on their desks with the ability to run sophisti-
cated spreadsheet programs, which suggests that aspiring managers would be well 
advised to become proficient in the use of this flexible tool. 

SUMMARY This chapter has demonstrated a variety of ways to use quantitative tools to make 
choices in uncertain situations. We first looked at the solution process for decision trees 
using expected value [or expected monetary value (EMV) when consequences are dol-
lars]. This is the most straight-forward way to analyze a decision model; the algorithm 
for solving a decision tree is easy to apply, and expected values are easy to calculate. 

We also explored the process of solving influence diagrams using expected val-
ues. To understand the solution process for influence diagrams, we had to look at 
their internal structures. In a sense, we had to fill in certain gaps left from Chapter 3 
about how influence diagrams work. The solution procedure works out easily once 
we understand how the problem's numerical details are represented internally. The 
procedure for reducing nodes involves calculating expected values in a way that par-
allels the solution of a decision tree. 

Risk profiles can be used to compare the riskiness of strategies and give compre-
hensive views of risks faced by a decision maker. Thus, risk profiles provide addi-
tional information to the decision maker trying to gain insight into the decision situ-
ation and the available alternatives. We also showed how cumulative risk profiles 
can be used to identify dominated alternatives. 

The chapter ended with a discussion of how current decision-analysis computer 
programs perform the analysis described in the chapter. We also discussed the elec- 



EXERCISES      141 

tronic spreadsheet as a flexible modeling tool for decision makers. The use of these 
tools can greatly enhance a decision maker's ability to model and analyze a wide va-
riety of decision situations. 

E X E R C I S E S  

4.1 Is it possible to solve a decision-tree version of a problem and an equivalent influence- 
diagram version and come up with different answers? If so, explain. If not, why not? 

4.2 Explain in your own words what it means when one alternative stochastically dominates 
another. 

4.3 The analysis of the Texaco-Pennzoil example shows that the EMV of counteroffering with 
$5 billion far exceeds $2 billion. Why might Liedtke want to accept the $2 billion anyway? 
If you were Liedtke, what is the smallest offer from Texaco that you would accept? 

4.4 Solve the decision tree in Figure 4.45. 

Figure 4.45 
Generic decision tree 

for Exercise 4.4. 

4.5 Draw and solve the influence diagram that corresponds to the decision tree in Figure 4.45. 
4.6 Solve the decision tree in Figure 4.46. What principle discussed in Chapter 4 is illustrated 

by this decision tree? 

Figure 4.46 
Generic decision tree 

for Exercise 4.6. 
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4.7    Which alternative is preferred in Figure 4.47? Do you have to do any calculations? 
Explain. 

 

4.8     Solve the decision tree in Figure 4.48. 

Figure 4.48 
Generic decision tree 

for Exercise 4.8. 

4.9    Create risk profiles and cumulative risk profiles for all possible strategies in Figure 4.48. 
Is one strategy stochastically dominant? Explain. 

4.10 Draw and solve the influence diagram that corresponds to the decision tree in Figure 4.48. 

4.11 Explain why deterministic dominance is a special case of stochastic dominance. 

4.12 Explain in your own words why it is important to consider the ranges of the conse 
quences in determining a trade-off weight. 

4.13 Solve the influence diagram for the umbrella problem shown in Figure 4.10. 

Q U E S T I O N S    AND   P R O B L E M S  

4.14 A real-estate investor has the opportunity to purchase an apartment complex. The apart-
ment complex costs $400,000 and is expected to generate net revenue (net after all oper-
ating and finance costs) of $6000 per month. Of course, the revenue could vary because 
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the occupancy rate is uncertain. Considering the uncertainty, the revenue could vary from 
a low of -$1000 to a high of $10,000 per month. Assume that the investor's objective is 
to maximize the value of the investment at the end of 10 years. 
a Do you think the investor should buy the apartment complex or invest the $400,000 

in a 10-year certificate of deposit earning 9.5%? Why? 
b The city council is currently considering an application to rezone a nearby empty par-

cel of land. The owner of that land wants to build a small electronics-assembly plant. 
The proposed plant does not really conflict with the city's overall land use plan, but it 
may have a substantial long-term negative effect on the value of the nearby residen-
tial district in which the apartment complex is located. Because the city council cur-
rently is divided on the issue and will not make a decision until next month, the real-
estate investor is thinking about waiting until the city council makes its decision. 
If the investor waits, what could happen? What are the trade-offs that the in-
vestor has to make in deciding whether to wait or to purchase the complex now? 

c Suppose the investor could pay the seller $1000 in earnest money now, specifying in 
the purchase agreement that if the council's decision is to approve the rezoning, the 
investor can forfeit the $1000 and forego the purchase. Draw and solve a decision 
tree showing the investor's three options. Examine the alternatives for dominance. If 
you were the investor, which alternative would you choose? Why? 

4.15 A stock market investor has $500 to spend and is considering purchasing an option con 
tract on 1000 shares of Apricot Computer. The shares themselves are currently selling for 
$28.50 per share. Apricot is involved in a lawsuit, the outcome of which will be known 
within a month. If the outcome is in Apricot's favor, analysts expect Apricot's stock price 
to increase by $5 per share. If the outcome is unfavorable, then the price is expected to 
drop by $2.75 per share. The option costs $500, and owning the option would allow the 
investor to purchase 1000 shares of Apricot stock for $30 per share. Thus, if the investor 
buys the option and Apricot prevails in the lawsuit, the investor would make an immedi 
ate profit. Aside from purchasing the option, the investor could (1) do nothing and earn 
about 8% on his money, or (2) purchase $500 worth of Apricot shares. 
a Construct cumulative risk profiles for the three alternatives, assuming Apricot has a 

25% chance of winning the lawsuit. Can you draw any conclusions? 
b If the investor believes that Apricot stands a 25% chance of winning the lawsuit, 

should he purchase the option? What if he believes the chance is only 10%? How 
large does the probability have to be for the option to be worthwhile? 

4.16 Johnson Marketing is interested in producing and selling an innovative new food processor. 
The decision they face is the typical "make or buy" decision often faced by manufacturers. 
On one hand, Johnson could produce the processor itself, subcontracting different sub- 
assemblies, such as the motor or the housing. Cost estimates in this case are as follows: 

 

Alternative: Make Food Processor 
Cost Per Unit ($) Chance (%) 
35.00 25 
42.50 25 
45.00 37 
49.00 13 
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The company also could have the entire machine made by a subcontractor. The subcon-
tractor, however, faces similar uncertainties regarding the costs and has provided 
Johnson Marketing with the following schedule of costs and chances: 

 

Alternative: Buy Food Processor 
Cost Per Unit ($) Chance (%) 
37.00 10 
43.00 40 
46,00 30 
50.00 20 

If Johnson Marketing wants to minimize its expected cost of production in this case, 
should it make or buy? Construct cumulative risk profiles to support your recommenda-
tion. (Hint: Use care when interpreting the graph!) 

4.17 Analyze the difficult decision situation that you identified in Problem 1.9. and structured 
in Problem 3.21. Be sure to examine alternatives for dominance. Does your analysis sug 
gest any new alternatives? 

4.18 Stacy Ennis eats lunch at a local restaurant two or three times a week. In selecting a restau 
rant on a typical workday, Stacy uses three criteria. First is to minimize the amount of travel 
time, which means that close-by restaurants are preferred on this attribute. The next objec 
tive is to minimize cost, and Stacy can make a judgment of the average lunch cost at most 
of the restaurants that would be considered. Finally, variety comes into play. On any given 
day, Stacy would like to go someplace different from where she has been in the past week. 

Today is Monday, her first day back from a two-week vacation, and Stacy is consid-
ering the following six restaurants: 

 

 Distance (Walking Time) Average Price ($) 
Sam's Pizza 10 3.50 
Sy's Sandwiches 9 2.85 
Bubba's Italian Barbecue 7 6.50 
Blue China Cafe 2 5,00 
The Eating Place 2 7.50 
The Excel-Soaring Restaurant 5 9.00 

a If Stacy considers distance, price, and variety to be equally important (given the 
range of alternatives available), where should she go today for lunch? (Hints: Don't 
forget to convert both distance and price to similar scales, such as a scale from 0 to 
100. Also, recall that Stacy has just returned from vacation; what does this imply for 
how the restaurants compare on the variety objective?) 

b   Given your answer to part a, where should Stacy go on Thursday? 
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C A S E     S T U D I E S  

GPC'S  NEW  PRODUCT  DECISION 

The executives of the General Products Company (GPC) have to decide which of 
three products to introduce, A, B, or C. Product C is essentially a risk-free proposi-
tion, from which the company will obtain a net profit of $1 million. Product B is con-
siderably more risky. Sales may be high, with resulting net profit of $8 million, 
medium with net profit of $4 million, or low, in which case the company just breaks 
even. The probabilities for these outcomes are 

P(Sales High for B) = 0.38 
P(Sales Medium for B) = 0.12 
P(Sales Low for B) = 0.50 

Product A poses something of a difficulty; a problem with the production system 
has not yet been solved. The engineering division has indicated its confidence in 
solving the problem, but there is a slight (5%) chance that devising a workable solu-
tion may take a long time. In this event, there will be a delay in introducing the prod-
uct and that delay will result in lower sales and profits. Another issue is the price for 
Product A The options are to introduce it at either high or low price; the price would 
not be set until just before the product is to be introduced. Both of these issues have 
an impact on the ultimate net profit. 

Finally, once the product is introduced, sales can be either high or low. If the 
company decides to set a low price, then low sales are just as likely as high sales. If 
the company sets a high price, the likelihood of low sales depends on whether the 
product was delayed by the production problem. If there was no delay and the com-
pany sets a high price, the probability is 0.4 that sales will be high. However, if there 
fs a delay and the price is set high, the probability is only 0.3 that sales will be high. 
The following table shows the possible net profit figures (in millions) for Product A: 

 

  High Sales Low Sales 
 Price ($ Million) ($ Million) 
Time delay High 5.0 (0.5) 
 Low 3.5 1.0 
No delay High 8.0 0.0 
 Low 4.5 1.5 

Questions 
1       Draw an influence diagram for GPC's problem. Specify the possible outcomes and the 

probability distributions for each chance node. Specify the possible alternatives 
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for each decision node. Write out the complete table for the consequence node. (If 
possible, use a computer program for creating influence diagrams.) 

2 Draw a complete decision tree for GPC. Solve the decision tree. What should GPC 
do? (If possible, do this problem using a computer program for creating and solv 
ing decision trees.) 

3 Create cumulative risk profiles for each of the three products. Plot all three profiles 
on one graph. Can you draw any conclusions? 

4 One of the executives of GPC is considerably less optimistic about Product B and 
assesses the probability of medium sales as 0.3 and the probability of low sales as 
0.4. Based on expected value, what decision would this executive make? Should 
this executive argue about the probabilities? Why or why not? (Hint: Don't forget 
that probabilities have to add up to 1!) 

5 Comment on the specification of chance outcomes and decision alternatives. Would 
this specification pass the clarity test? If not, what changes in the problem must be 
made in order to pass the clarity test? 

SOUTHERN   ELECTRONICS,   PART   I 

Steve Sheffler is president, CEO, and majority stockholder of Southern Electronics, a 
small firm in the town of Silicon Mountain. Steve faces a major decision: Two firms, Big 
Red Business Machines and Banana Computer, are bidding for Southern Electronics. 

Steve founded Southern 15 years ago, and the company has been extremely suc-
cessful in developing progressive computer components. Steve is ready to sell the 
company (as long as the price is right!) so that he can pursue other interests. Last 
month, Big Red offered Steve $5 million and 100,000 shares of Big Red stock (cur-
rently trading at $50 per share and not expected to change substantially in the fu-
ture). Until yesterday, Big Red's offer sounded good to Steve, and he had planned on 
accepting it this week. But a lawyer from Banana Computer called last week and in-
dicated that Banana was interested in acquiring Southern Electronics. In discussions 
this past week, Steve has learned that Banana is developing a new computer, code-
named EYF, that, if successful, will revolutionize the industry. Southern Electronics 
could play an important role in the development of the machine. 

In their discussions, several important points have surfaced. First, Banana has 
said that it believes the probability that the EYF will succeed is 0.6, and that if it 
does, the value of Banana's stock will increase from the current value of $30 per 
share. Although the future price is uncertain, Banana judges that, conditional on the 
EYF's success, the expected price of the stock is $50 per share. If the EYF is not suc-
cessful, the price will probably decrease slightly. Banana judges that if the EYF fails, 
Banana's share price will be between $20 and $30, with an expected price of $25. 

Yesterday Steve discussed this information with his financial analyst, who is an 
expert regarding the electronics industry and whose counsel Steve trusts completely. 
The analyst pointed out that Banana has an incentive to be very optimistic about the 
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EYF project. "Being realistic, though," said the analyst, "the probability that the 
EYF succeeds is only 0.4, and if it does succeed, the expected price of the stock 
would be only $40 per share. On the other hand, I agree with Banana's assessment 
for the share price if the EYF fails." 

Negotiations today have proceeded to the point where Banana has made a final 
offer to Steve of $5 million and 150,000 shares of Banana stock. The company's rep-
resentative has stated quite clearly that Banana cannot pay any more than this in a 
straight transaction. Furthermore, the representative claims, it is not clear why Steve 
will not accept the offer because it appears to them to be more valuable than the Big 
Red offer. 

Questions 

1 In terms of expected value, what is the least that Steve should accept from Banana? 
(This amount is called his reservation price.) 

2 Steve obviously has two choices, to accept the Big Red offer or to accept the 
Banana offer. Draw an influence diagram representing Steve's decision. (If possi 
ble, do this problem using a computer program for structuring influence diagrams.) 

3 Draw and solve a complete decision tree representing Steve's decision. (If possible, 
do this problem using a computer program for creating and solving decision trees.) 

4 Why is it that Steve cannot accept the Banana offer as it stands? 

SOUTHERN   ELECTRONICS,   PART  II 

Steve is well aware of the difference between his probabilities and Banana's, and he 
realizes that because of this difference, it may be possible to design a contract that 
benefits both parties. In particular, he is thinking about put options for the stock. A 
put option gives the owner of the option the right to sell an asset at a specific price. 
(For example, if you own a put option on 100 shares of General Motors (GM) with 
an exercise price of $75, you could sell 100 shares of GM for $75 per share before 
the expiration date of the option. This would be useful if the stock price fell below 
$75.) Steve reasons that if he could get Banana to include a put option on the stock 
with an exercise price of $30, then he would be protected if the EYF failed. 

Steve proposes the following deal: He will sell Southern Electronics to Banana 
for $530,000 plus 280,000 shares of Banana stock and a put option that will allow 
him to sell the 280,000 shares back to Banana for $30 per share any time within the 
next year (during which time it will become known whether the EYF succeeds or 
fails). 

Questions 

1       Calculate Steve's expected value for this deal. Ignore tax effects and the time value 
of money. 
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2      The cost to Banana of their original offer was simply 
$5,000,000 + 150,000($30) = $9,500,000 

Show that the expected cost to Banana of Steve's proposed deal is less than $9.5 
million, and hence in Banana's favor. Again, ignore tax effects and the time value 
of money. 

STRENLAR 

Fred Wallace scratched his head. By this time tomorrow he had to have an answer 
for Joan Sharkey, his former boss at Plastics International (PI). The decision was dif-
ficult to make. It involved how he would spend the next 10 years of his life. 

Four years ago, when Fred was working at PI, he had come up with an idea for a 
revolutionary new polymer. A little study — combined with intuition, hunches, and 
educated guesses — had convinced him that the new material would be extremely 
strong for its weight. Although it would undoubtedly cost more than conventional 
materials, Fred discovered that a variety of potential uses existed in the aerospace, 
automobile manufacturing, robotics, and sporting goods industries. 

When he explained his idea to his supervisors at PI, they had patiently told him 
that they were not interested in pursuing risky new projects. His appeared to be even 
riskier than most because, at the time, many of the details had not been fully worked 
out. Furthermore, they pointed out that efficient production would require the devel-
opment of a new manufacturing process. Sure, if that process proved successful, the 
new polymer could be a big hit. But without that process the company simply could 
not provide the resources Fred would need to develop his idea into a marketable 
product. 

Fred did not give up. He began to work at home on his idea, consuming most of 
his evenings and weekends. His intuition and guesses had proven correct, and after 
some time he had worked out a small-scale manufacturing process. With this 
process, he had been able to turn out small batches of his miracle polymer, which he 
dubbed Strenlar. At this point he quietly began to assemble some capital. He invested 
$100,000 of his own, managed to borrow another $200,000, and quit his job at PI to 
devote his time to Strenlar. 

That was 15 months ago. In the intervening time he had made substantial 
progress. The product was refined, and several customers eagerly awaited the first 
production run. A few problems remained to be solved in the manufacturing process, 
but Fred was 80% sure that these bugs could be worked out satisfactorily. He was 
eager to start making profits himself; his capital was running dangerously low. When 
he became anxious, he tried to soothe his fears by recalling his estimate of the pro-
ject's potential. His best guess was that sales would be approximately $35 million 
over 10 years, and that he would net some $8 million after costs. 
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Two weeks ago, Joan Sharkey at PI had surprised him with a telephone call and 
had offered to take Fred to lunch. With some apprehension, Fred accepted the offer. 
He had always regretted having to leave PI, and was eager to hear how his friends 
were doing. After some pleasantries, Joan came to the point. 

"Fred, we're all impressed with your ability to develop Strenlar on your own. I 
guess we made a mistake in turning down your offer to develop it at PI. But we're in-
terested in helping you out now, and we can certainly make it worth your while. If 
you will grant PI exclusive rights to Strenlar, we'll hire you back at, say $40,000 a 
year, and we'll give you a 2.5 percent royalty on Strenlar sales. What do you say?" 

Fred didn't know whether to laugh or become angry. "Joan, my immediate reac-
tion is to throw my glass of water in your face! I went out on a limb to develop the 
product, and now you want to capitalize on my work. There's no way I'm going to 
sell out to PI at this point!" 

The meal proceeded, with Joan sweetening the offer gradually, and Fred obsti-
nately refusing. After he got back to his office, Fred felt confused. It would be nice to 
work at PI again, he thought. At least the future would be secure. But there would never 
be the potential for the high income that was possible with Strenlar. Of course, he 
thought grimly, there was still the chance that the Strenlar project could fail altogether. 

At the end of the week, Joan called him again. PI was willing to go either of two 
ways. The company could hire him for $50,000 plus a 6% royalty on Strenlar gross 
sales. Alternatively, PI could pay him a lump sum of $500,000 now plus options to 
purchase up to 70,000 shares of PI stock at the current price of $40 any time within 
the next three years. No matter which offer Fred accepted, PI would pay off Fred's 
creditors and take over the project immediately. After completing development of 
the manufacturing process, PI would have exclusive rights to Strenlar. Furthermore, 
it turned out that PI was deadly serious about this game. If Fred refused both of these 
offers, PI would file a lawsuit claiming rights to Strenlar on the grounds that Fred 
had improperly used Pi's resources in the development of the product. 

Consultation with his attorney just made him feel worse. After reviewing Fred's 
old contract with PI, the attorney told him that there was a 60% chance that he would 
win the case. If he won the case, PI would have to pay his court costs. If he lost, his 
legal fees would amount to about $20,000. 

Fred's accountant helped him estimate the value of the stock options. First, the exer-
cise date seemed to pose no problem; unless the remaining bugs could not be worked out, 
Strenlar should be on the market within 18 months. If PI were to acquire the Strenlar pro-
ject and the project succeeded, PI's stock would go up to approximately $52. On the 
other hand, if the project failed, the stock price probably would fall slightly to $39. 

As Fred thought about all of the problems he faced, he was quite disturbed. On 
one hand, he yearned for the comradery he had enjoyed at PI four years ago. He also 
realized that he might not be cut out to be an entrepreneur. He reacted unpleasantly 
to the risk he currently faced. His physician had warned him that he may be devel-
oping hypertension and had tried to persuade him to relax more. Fred knew that his 
health was important to him, but he had to believe that he would be able to weather 
the tension of getting Strenlar onto the market. He could always relax later, right? He 
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sighed as he picked up a pencil and pad of paper to see if he could figure out what he 
should tell Joan Sharkey. 

Question 

1 Do a c omplete analysis of Fred's decision. Your analysis should include at least 
structuring the problem with an influence diagram, drawing and solving a decision 
tree, creating risk profiles, and checking for stochastic dominance. What do you 
think Fred should do? Why? (Hint: This case will require you to make certain as-
sumptions in order to do a complete analysis. State clearly any assumptions you 
make, and be careful that the assumptions you make are both reasonable and con-
sistent with the information given in the case. You may want to analyze your deci-
sion model under different sets of assumptions. Do not forget to consider issues 
such as the time value of money, riskiness of the alternatives, and so on.) 

JOB  OFFERS 

Robin Pinelli is considering three job offers. In trying to decide which to accept, 
Robin has concluded that three objectives are important in this decision. First, of 
course, is to maximize disposable income — the amount left after paying for housing, 
utilities, taxes, and other necessities. Second, Robin likes cold weather and enjoys 
winter sports. The third objective relates to the quality of the community. Being sin-
gle, Robin would like to live in a city with a lot of activities and a large population of 
single professionals. 

Developing attributes for these three objectives turns out to be relatively 
straightforward. Disposable income can be measured directly by calculating 
monthly take-home pay minus average monthly rent (being careful to include utili-
ties) for an appropriate apartment. The second attribute is annual snowfall. For the 
third attribute, Robin has located a magazine survey of large cities that scores those 
cities as places for single professionals to live. Although the survey is not perfect 
from Robin's point of view, it does capture the main elements of her concern about 
the quality of the singles community and available activities. Also, all three of the 
cities under consideration are included in the survey. 

Here are descriptions of the three job offers: 

1 MPR Manufacturing in Flagstaff, Arizona. Disposable income estimate: $1600 per 
month. Snowfall range: 125 to 320 cm per year. Magazine score: 50 (out of 100). 

2 Madison Publishing in St. Paul, Minnesota. Disposable income estimate: $1300 
to $1500 per month. (This uncertainty here is because Robin knows there is a 
wide variety in apartment rental prices and will not know what is appropriate and 
available until spending some time in the city.) Snowfall range: 100 to 400 cm 
per year. Magazine score: 75. 

3 Pandemonium Pizza in San Francisco, California. Disposable income estimate: 
$1200 per month. Snowfall range: negligible. Magazine score: 95. 
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Robin has created the decision tree in Figure 4.49 to represent the situation. The 
uncertainty about snowfall and disposable income are represented by the chance 
nodes as Robin has included them in the tree. The ratings in the consequence matrix 
are such that the worst consequence has a rating of zero points and the best has 100. 

Questions 

1 Verify that the ratings in the consequence matrix are proportional scores (that is, 
that they were calculated the same way we calculated the ratings for salary in the 
summer-fun example in the chapter). 

2 Comment on Robin's choice of annual snowfall as a measure for the cold- 
weather-winter-sports attribute. Is this a good measure? Why or why not? 

3 After considering the situation, Robin concludes that the quality of the city is most 
important, the amount of snowfall is next, and the third is income. (Income is im 
portant, but the variation between $1200 and $1600 is not enough to make much 
difference to Robin.) Furthermore, Robin concludes that the weight for the maga 
zine rating in the consequence matrix should be 1.5 times the weight for the snow 
fall rating and three times as much as the weight for the income rating. Use this in 
formation to calculate the weights for the three attributes and to calculate overall 
scores for all of the end branches in the decision tree. 

4 Analyze the decision tree using expected values. Calculate expected values for the 
three measures as well as for the overall score. 

5 Do a risk-profile analysis of the three cities. Create risk profiles for each of the 
three attributes as well as for the overall score. Does any additional insight arise 
from this analysis? 

6 What do you think Robin should do? Why? 
 

Figure 4.49 
Robin Pinelli 's 

decision tree. 
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SS   KUNIANG,   PART  II 

This case asks you to find the optimal amount for NEES to bid for the SS Kuniang 
(page 97). Before doing so, though, you need additional details. Regarding the 
Coast Guard's (CG) salvage judgment, NEES believes that the following probabil-
ities are an appropriate representation of its uncertainty about the salvage-value 
judgment: 

P(CG judgment = $9 million) = 0.185 
P(CG judgment = $4 million) = 0.630 
P(CG judgment = $1.5 million) =0.185 

The obscure-but-relevant law required that NEES pay an amount (including both 
the winning bid and refitting cost) at least 1.5 times the salvage value for the ship in 
order to use it for domestic shipping. For example, if NEES bid $3.5 million and 
won, followed by a CG judgment of $4 million, then NEES would have to invest at 
least $2.5 million more: $3.5 + $2.5 = $6 = $4 x 1.5. Thus, assuming NEES sub-
mits the winning bid, the total investment amount required is either the bid or 1.5 
times the CG judgment, whichever is greater. 

As for the probability of submitting the highest bid, recall that winning is a func-
tion of the size of the bid; a bid of $3 million is sure to lose, and a bid of $10 million 
is sure to win. For this problem, we can model the probability of winning (P) as a lin-
ear function of the bid:   P = (Bid- $3 million)/($7 million). 

Finally, NEES's values of $18 million for the new ship and $15 million for the 
tug-barge alternatives are adjusted to reflect differences in age, maintenance, operat-
ing costs, and so on. The two alternatives provide equivalent hauling capacity. Thus, 
at $15 million, the tug-barge combination appears to be the better choice. 

Questions 

1 Reasonable bids may fall anywhere between $3 and $10 million. Some bids, 
though, have greater expected values and some less. Describe a strategy you can 
use to find the optimal bid, assuming that NEES's objective is to minimize the cost 
of acquiring additional shipping capacity. (Hint: This question just asks you to de 
scribe an approach to finding the optimal bid.) 

2 Use your structure of the problem (or one supplied by the instructor), along with 
the details supplied above, to find the optimal bid. 

R E F E R E N C E S  

The solution of decision trees as presented in this chapter is commonly found in text-
books on decision analysis, management science, and statistics. The decision-analysis 
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texts listed at the end of Chapter 1 can provide more guidance in the solution of decision 
trees if needed. In contrast, the material presented here on the solution of influence dia-
grams is relatively new. For additional basic instruction in the construction and analysis 
of decisions using influence diagrams, the user's manual for DPL and other influence-
diagram programs can be helpful. 

The solution algorithm presented here is based on Shachter (1986). The fact that this 
algorithm deals with a decision problem in a way which corresponds to solving a sym-
metric decision tree means that the practical upper limit for the size of an influence dia-
gram that can be solved using the algorithm is relatively small. Recent work has explored 
a variety of ways to exploit asymmetry in decision models and to solve influence dia-
grams and related representations more efficiently (Call and Miller 1990; Covaliu and 
Oliver (1995); Smith et al. 1993; Shenoy 1993). 

An early and quite readable article on risk profiles is that by Hertz (1964). We have 
developed them as a way to examine the riskiness of alternatives in a heuristic way and 
also as a basis for examining alternatives in terms of deterministic and stochastic domi-
nance. Stochastic dominance itself is an important topic in probability. Bunn (1984) 
gives a good introduction to stochastic dominance. Whitmore and Findlay (1978) and 
Levy (1992) provide thorough reviews of stochastic dominance. 

Our discussion of assigning rating points and trade-off rates is necessarily brief in 
Chapter 4. These topics are covered in depth in Chapters 13 to 16. In the meantime, in-
terested readers can get more information from Keeney (1992) and Keeney and Raiffa 
(1976). 
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E P I L O G U E  What happened with Texaco and Pennzoil? You may recall that in April of 1987 Texaco 
offered a $2 billion settlement. Hugh Liedtke turned down the offer. Within days of that 
decision, and only one day before Pennzoil began to file liens on Texaco's assets, Texaco 
filed for protection from creditors under Chapter 11 of the federal bankruptcy code, ful-
filling its earlier promise. In the summer of 1987, Pennzoil submitted a financial reorga-
nization plan on Texaco's behalf. Under their proposal, Pennzoil would receive approxi-
mately $4.1 billion, and the Texaco shareholders would be able to vote on the plan. 
Finally, just before Christmas 1987, the two companies agreed on a $3 billion settlement 
as part of Texaco's financial reorganization. 



CHAPTER 5 

Sensitivity Analysis 

he idea of sensitivity analysis is central to the structuring and solving of decision models using 
decision-analysis techniques. In this chapter we will discuss sensitivity-analysis issues, think about how 

sensitivity analysis relates to the overall decision-modeling strategy, and introduce a 
variety of graphical sensitivity-analysis techniques. 

The main example for this chapter is a hypothetical one in which the owner of a 
small airline considers expanding his fleet. 

EAGLE  AIRLINES 

Dick Carothers, president of Eagle Airlines, had been considering expanding his op-
eration, and now the opportunity was available. An acquaintance had put him in con-
tact with the president of a small airline in the Midwest that was selling an airplane. 
Many aspects of the situation needed to be thought about, however, and Carothers 
was having a hard time sorting them out. 

Eagle Airlines owned and operated three twin-engine aircraft. With this equip-
ment, Eagle provided both charter flights and scheduled commuter service among 
several communities in the eastern United States. Scheduled flights constituted ap-
proximately 50% of Eagle's flights, averaging only 90 minutes of flying time and a 
distance of some 300 miles. The remaining 50% of flights were chartered. The mix-
ture of charter flights and short scheduled flights had proved profitable, and 
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Carothers felt that he had found a niche for his company. He was aching to increase 
the level of service, especially in the area of charter flights, but this was impossible 
without more aircraft. 

A Piper Seneca was for sale at a price of $95,000, and Carothers figured that he 
could buy it for between $85,000 and $90,000. This twin-engine airplane had been 
maintained according to FA A regulations. In particular, the engines were almost 
new, with only 150 hours of operation since a major overhaul. Furthermore, having 
been used by another small commercial charter service, the Seneca contained all of 
the navigation and communication equipment that Eagle required. There were seats 
for five passengers and the pilot, plus room for baggage. Typical airspeed was ap-
proximately 175 nautical miles per hour (knots), or 200 statute miles per hour (mph). 
Operating cost was approximately $245 per hour, including fuel, maintenance, and 
pilot salary. Annual fixed costs included insurance ($20,000) and finance charges. 
Carothers figured that he would have to borrow some 40% of the money required, 
and he knew that the interest rate would be two percentage points above the prime 
rate (currently 9.5% but subject to change). Based on his experience at Eagle, 
Carothers knew that he could arrange charters for $300 to $350 per hour or charge a 
rate of approximately $100 per person per hour on scheduled flights. He could ex-
pect on average that the scheduled flights would be half full. He hoped to be able to 
fly the plane for up to 1000 hours per year, but realized that 800 might be more real-
istic. In the past his business had been approximately 50% charter flights, but he 
wanted to increase that percentage if possible. 

The owner of the Seneca has told Carothers that he would either sell the airplane 
outright or sell Carothers an option to purchase it within a year at a specified price. 
(The current owner would continue to operate the plane during the year.) Although 
the two had not agreed on a price for the option, the discussions had led Carothers to 
believe that the option would cost between $2500 and $4000. Of course, he could al-
ways invest his cash in the money market and expect to earn about 8%. 

As Carothers pondered this information, he realized that many of the numbers he 
was using were estimates. Furthermore, some were within his control (for example, 
the amount financed and prices charged) while others, such as the cost of insurance 
or the operating cost, were not. How much difference did these numbers make? 
What about the option? Was it worth considering? Last, but not least, did he really 
want to expand the fleet? Or was there something else that he should consider? 

Sensitivity Analysis: A Modeling Approach 

Sensitivity analysis answers the question, "What makes a difference in this deci-
sion?" Returning to the idea of requisite decision models discussed in Chapter 1, you 
may recall that such a model is one whose form and content are just sufficient to 
solve a particular problem. That is, the issues that are addressed in a requisite deci-
sion model are the ones that matter, and those issues left out are the ones that do not 
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matter. Determining what matters and what does not requires incorporating sensitiv-
ity analysis throughout the modeling process. 

No "optimal" sensitivity-analysis procedure exists for decision analysis. To a 
great extent, model building is an art. Because sensitivity analysis is an integral part 
of the modeling process, its use as part of the process also is an art. Thus, in this 
chapter we will discuss the philosophy of model building and how sensitivity analy-
sis helps with model development. Several sensitivity-analysis tools are available, 
and we will see how they work in the context of the Eagle Airlines example. 

Problem Identification and Structure 

The flowchart of the decision-analysis process in Figure 1.1 shows that sensitivity 
analysis can lead the decision maker to reconsider the very nature of the problem. 
The question that we ask in performing sensitivity analysis at this level is, "Are we 
solving the right problem?" The answer does not require quantitative analysis, but it 
does demand careful thought and introspection about the appropriate decision con-
text. Why is this an important sensitivity-analysis concern? The answer is quite sim-
ple: Answering a different question, addressing a different problem, or satisfying dif-
ferent objectives can lead to a very different decision. 

Solving the wrong problem sometimes is called an "error of the third kind." The 
terminology contrasts this kind of a mistake with Type I and Type II errors in statis-
tics, where incorrect conclusions are drawn regarding a particular question. An error 
of the third kind, or Type III error, implies that the wrong question was asked; in 
terms of decision analysis, the implication is that an inappropriate decision context 
was used, and hence the wrong problem was solved. 

Examples of Type III errors abound; we all can think of times when a symptom 
was treated instead of a cause. Consider lung disease. Researchers and physicians 
have developed expensive medical treatments for lung disease, the objective appar-
ently being to reduce the suffering of lung-disease patients. If the fundamental ob-
jective is to reduce suffering from lung disease in general, however, these treatments 
are not as effective as antismoking campaigns. We can, in fact, broaden the context 
further. Is the objective really to reduce patient suffering? Or is it to reduce discom-
fort in general, including patient suffering as well as the discomfort of nonsmokers 
exposed to second-hand smoke? Considering the broader problem suggests an en-
tirely different range of options. 

For another example, think about a farmer who considers using expensive sprays 
in the context of deciding how to control pests and disease in an orchard. To a great 
extent, the presence of pests and disease in orchards result from the practice of 
monoculture — that is, growing a lot of one crop rather than a little each of many 
crops. A monoculture does not promote a balanced ecological system in which dis-
eases and pests are kept under control naturally. Viewed from this broader perspec-
tive, the farmer might want to consider new agricultural practices rather than relying 
exclusively on sprays. Admittedly a long-term project, this requires the development 
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of efficient methods for growing, harvesting, and distributing crops that are grown 
on a smaller scale. 

How can one avoid a Type III error? The best solution is simply to keep asking 
whether the problem on the surface is the real problem. Is the decision context prop-
erly specified? What exactly is the "unscratched itch" that the decision maker feels? 
In the case of Eagle Airlines, Carothers appears to be eager to expand operations by 
acquiring more aircraft. Could he "scratch his itch" by expanding in a different di-
rection? In particular, even though he, like many pilots, may be dedicated to the idea 
of flying for a living, it might be wise to consider the possibility of helping his cus-
tomers to communicate more effectively at long distance. To some extent, efficient 
communication channels such as those provided by computer links and facsimile 
service, coupled with an air cargo network, can greatly reduce the need for travel. 
Pursuing ideas such as these might satisfy Carothers's urge to expand while provid-
ing a more diversified base of operations. So the real question may be how to satisfy 
Carothers's desires for expansion rather than simply how to acquire more airplanes. 

We also can talk about sensitivity analysis in the context of problem structuring. 
Problem 3.12 gave an example in a medical context in which a decision might be sen-
sitive to the structure. In this situation, the issue is the inclusion of a more complete de-
scription of outcomes; coronary bypass surgery can lead to complications that require 
long and painful treatment. Inclusion of this outcome in a decision tree might make 
surgery appear considerably less appealing. Von Winterfeldt and Edwards (1986) de-
scribe a problem involving the setting of standards for pollution from oil wells in the 
North Sea. This could have been structured as a standard regulatory problem: Different 
possible standards and enforcement policies made up the alternatives, and the objec-
tive was to minimize pollution while maintaining efficient oil production. The prob-
lem, however, was perhaps more appropriately structured as a competitive situation in 
which the players were the regulatory agency, the industry, and the potential victims of 
pollution. This is an example of how a decision situation might be represented in a va-
riety of different ways. Sensitivity analysis can aid the resolution of the problem of 
multiple representations by helping to identify the appropriate perspective on the prob-
lem as well as by identifying the specific issues that matter to the decision maker. 

Is problem structuring an issue in the Eagle Airlines case? In this case, the alter-
natives are to purchase the airplane, the option, or neither. Although Carothers might 
consider a variety of fundamental objectives, such as company growth or increased 
influence in the community, in the context of deciding whether to purchase the 
Seneca, it seems reasonable for him to focus on one objective: maximize profit. 
Carothers could assess the probabilities associated with the various unknown quan-
tities such as operating costs, amount of business, and so on. Thus, it appears that a 
straightforward decision tree or influence diagram may do the trick. 

Figure 5.1 shows an initial influence diagram for Eagle Airlines. Note that the dia-
gram consists entirely of decision nodes and rounded rectangles. "Profit" is obviously 
the consequence node, and "Finance Cost," "Total Cost," and "Revenue" are interme-
diate-calculation nodes. All of the other rounded rectangles ("Interest Rate," "Price," 
"Insurance," "Operating Cost," "Hours Flown," "Capacity of Scheduled Flights," 
"Proportion of Chartered Flights") represent inputs to the calculations, and for now we 
represent these inputs as being constant. (Thus, in Figure 5.1 you can see the three dif- 
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Figure 5.1 
Influence diagram 

representing the Eagle 
Airlines decision. 

ferent roles — constants, intermediate calculations, and consequences — that 
rounded rectangles can play. Although these different roles may seem confusing, the 
basic idea is the same in each case; for any variable represented by a rounded 
rectangle, as soon as you know what its inputs are, you can calculate the value of the 
variable. In the case of the constants, there are no inputs, and so there is no calculation 
to do!) 

Table 5.1 provides a description of the input and decision variables. This table 
also includes estimates (base values) and reasonable upper and lower bounds. The 
upper and lower bounds represent Carothers's ideas about how high and how low 
each of these variables might be. He might specify upper and lower bounds as ab-
solute extremes, beyond which he is absolutely sure that the variable cannot fall. 
Another approach would be to specify the bounds such that he would be "very sur-
prised" (a l-in-10 chance, say) that the variable would fall outside the bounds. 

The "Base Value" column in Table 5.1 indicates Carothers's initial guess regard-
ing the 10 input variables. We can use these to make an estimate of annual profit (ig-
noring taxes for simplicity). The annual profit would be the total annual revenue 
minus the total annual cost: 

Total Revenue = Revenue from Charters + Revenue from Scheduled Flights 
= (Charter Proportion × Hours Flown × Charter Price) + [(1 — 

Charter Proportion) × Hours Flown × Ticket Price × Number of 
Passenger Seats × Capacity of Scheduled Flights] 

= (0.5 × 800 × $325) + (0.5 × 800 × $100 × 5 × 0.5) 
= $230,000 Total Cost = (Hours Flown X Operating Cost) + 

Insurance + Finance Cost 
= (Hours Flown × Operating Cost) + Insurance + 

(Price × Proportion Financed × Interest Rate) 
= (800 × $245) + $20,000 + ($87,500 × 0.4 × 11.5%) 
= $220,025 
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Table 
5.1 

Input variables and 
ranges of possible val-
ues for Eagle Airlines 

aircraft-purchase 
decision. 

 

 Base Lower Upper 
Variable Value Bound Bound 
Hours Flown 800 500 1000 
Charter Price/Hour $325 $300 $350 
Ticket Price/Hour $100 $95 $108 
Capacity of Scheduled Flights 50% 40% 60% 
Proportion of Chartered Flights 0.50 0.45 0.70 
Operating Cost/Hour $245 $230 $260 
Insurance $20,000 $18,000 $25,000 
Proportion Financed 0.40 0.30 0.50 
Interest Rate 11,5% 10.5% 13% 
Purchase Price $87,500 $85,000 $90,000 

Thus, using the base values, Carothers's annual profit is estimated to be 
$230,000 - $220,025 = $9975. This represents a return of approximately 19% on 
his investment of $52,500 (60% of the purchase price). 

One-Way Sensitivity Analysis 

The sensitivity-analysis question in the Eagle airlines case is, what variables really 
make a difference in terms of the decision at hand? For example, do different possi-
ble interest rates really matter? Does it matter that we can set the ticket price? If 
Hours Flown changes by some amount, how much impact is there on Profit? We can 
begin to address questions like these with one-way sensitivity analysis. 

Let us consider Hours Flown. From Table 5.1, we see that Carothers is not at all 
sure what Hours Flown might turn out to be, and that it can vary from 500 to 1000 
hours. What does this imply for Profit? The simplest way to answer this question is 
with a one-way sensitivity graph as in Figure 5.2. The upward-sloping line in Figure 
5.2 shows profit as Hours Flown varies from 500 to 1000; to create this line, we have 
substituted different values for Hours Flown into the calculations detailed above. 
The horizontal line represents the amount of money ($4200) that Carothers could 
earn from the money market. The point where these lines cross is the threshold at 
which the two alternatives each yield the same profit ($4200), which occurs when 
Hours Flown equals 664. The heavy line indicates the maximum profit Carothers 
could obtain at different values of Hours Flown, and the different segments of this 
line is associated with different strategies (buy the Seneca versus invest in the money 
market). The fact that Carothers believes that Hours Flown could be above or below 
664 suggests that this is a crucial variable and that he may need to think more care-
fully about the uncertainty associated with it. 
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Figure 5.2 
One-way sensitivity 

analysis of hours 
flown. 

Tornado Diagrams 

A tornado diagram allows us to compare one-way sensitivity analysis for many 
input variables at once. Suppose we take each input variable in Table 5.1 and "wig-
gle" that variable between its high and low values to determine how much change is 
induced in Profit. Figure 5.3 graphically shows how annual profit varies as the input 
variables are independently wiggled between the high and low values. For instance, 
with everything else held at the base value, setting Capacity of Scheduled Flights at 
0.4 instead of 0.5 implies a loss of $10,025. That is, plug all the base values into the 
revenue equation above, except use 0.4 for Capacity of Scheduled Flights: 

Total Revenue = Revenue from Charters + Revenue from Scheduled Flights = 
(Charter Proportion × Hours Flown × Charter Price) . + [(1 — 
Charter Proportion) × Hours Flown × Ticket Price × Number of 
Passenger Seats × Capacity on Scheduled Flights] = (0.5 × 800 × 
$325) + (0.5 × 800 × $100 × 5 × 0.4) = $210,000 

Nothing in the cost equation changes, and so cost still is estimated as $220,025. 
The estimated loss is just the difference between cost and revenue: $210,000 -
$220,025 = - $10,025. This is plotted on the graph as the left end of the bar labeled 
Capacity of Scheduled Flights. On the other hand, setting Capacity of Scheduled 
Flights at the high end of its range, 0.6, leads to a profit of $29,975. (Again, plug all 
of the same values into the revenue equation, but use 0.6 for capacity.) Thus, the 
right end of the capacity bar is at $29,975. 

We follow this same procedure for each input variable. The length of the bar for 
any given variable represents the extent to which annual profit is sensitive to this 
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Figure 5.3 
Tornado diagram for 

the Eagle Airlines case. 
The bars represent the 

range for the annual 
profit when the speci-
fied quantity is varied 

from one end of its 
range to the other, keep-
ing all other variables at 

their base values. 

variable. The graph is laid out so that the most sensitive variable — the one with 
the longest bar — is at the top, and the least sensitive is at the bottom. With the 
bars arranged in this order, it is easy to see why the graph is called a t ornado 
diagram. 

The vertical line at $4200 represents what Carothers could make on his invest-
ment if he left his $52,500 in the money market account earning 8%. If he does not 
think he can earn more than $4200, he should not purchase the Seneca. 

Interesting insights can be gleaned from Figure 5.3. For example, Carothers's 
uncertainty regarding Capacity of Scheduled Flights is extremely important. On the 
other hand, the annual profit is very insensitive to Aircraft Price. What can we do 
with information like this? The tornado diagram tells us which variables we need to 
consider more closely and which ones we can leave at their base values. In this case, 
annual profit is insensitive to Proportion Financed, Interest Rate, and Aircraft Price, 
so in further analyzing this decision we simply can leave these variables at their base 
values. And yet Capacity of Scheduled Flights, Operating Cost, Hours Flown, and 
Charter Price all have substantial effects on the annual profit; the bars for these four 
variables cross the critical $4200 line. Proportion of Chartered Flights, Ticket Price, 
and Insurance each have a substantial effect on the profit, but the bars for all of these 
variables lie entirely above the $4200 line. In a first pass, these variables might be 
left at their base values, and the analyst might perform another sensitivity analysis at 
a later stage. 

Dominance Considerations 

In our discussion of making decisions in Chapter 4, we learned that alternatives can 
be screened on the basis of deterministic and stochastic dominance, and inferior al-
ternatives can be eliminated. Identifying dominant alternatives can be viewed as a 
version of sensitivity analysis for use early in an analysis. In sensitivity-analysis 
terms, analyzing alternatives for dominance amounts to asking whether there is any 
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way that one alternative could end up being better than a second. If not, then the first 
alternative is dominated by the second and can be ignored. 

In the case of Eagle Airlines, an immediate question is whether purchasing the 
option is a dominated alternative. Why would Carothers want to buy the option? 
There are two possibilities. First, it would allow him to lock in a favorable price on a 
suitable aircraft while he tried to gather more information. Having constructed a tor-
nado diagram for the problem, we can explore the potential value of purchasing the 
option by considering the amount of information that we might obtain and the po-
tential impact of this information. A second typical motivation for purchasing an op-
tion is to wait and see whether the economic climate for the venture becomes more 
favorable. In this case, if the commuter/charter air-travel market deteriorates, then 
Carothers has only lost the cost of the option. (Some individuals also purchase op-
tions to lock in a price while they raise the required funds. Carothers, however, ap-
pears to have the required capital and credit.) 

It is conceivable that Carothers could obtain more accurate estimates of certain 
input variables. Considering the tornado diagram, he would most like to obtain in-
formation about the more critical variables. Some information regarding market 
variables (Capacity of Scheduled Flights, Hours Flown, and Charter Ratio) might be 
obtainable through consumer-intentions surveys, but it would be far from perfect as 
well as costly. The best way to obtain such information would be to purchase or lease 
an aircraft for a year and try it — but then he might as well buy the Seneca! 

What about Operating Cost and Insurance? The main source of uncertainty for 
Operating Cost is fuel cost, and this is tied to the price of oil, which can fluctuate 
dramatically. Increases in Insurance are tied to changes in risk as viewed by the in-
surance companies. Rates have risen dramatically over the years, and stability is not 
expected. The upshot of this discussion is that good information regarding many of 
the input variables probably is not available. As a result, if Carothers is interested in 
acquiring the option in order to have the chance to gather information, he might dis-
cover that he is unable to find what he needs. 

What about the second motivation, waiting to see whether the climate improves? 
The question here is whether any uncertainty will be resolved during the term of the 
option, and whether or not the result would be favorable to Eagle Airlines. In gen-
eral, considerable uncertainty regarding all of the market variables will remain re-
gardless of how long Carothers waits. Market conditions can fluctuate, oil prices can 
jump around, and insurance rates can change. On the other hand, if some event is an-
ticipated, such as settlement of a major lawsuit or the creation of new regulations, 
then the option could protect Carothers until this uncertainty is resolved. (Notice 
that, even in this case, the option provides Carothers with an opportunity to collect 
information — all he must do is wait until the uncertain situation is resolved.) But 
Carothers does not appear to be awaiting the resolution of some major uncertainty. 
Thus, if his motivation for purchasing the option is to wait to see whether the climate 
improves, it is not clear whether he would be less uncertain about the economic cli-
mate when the option expires. 

What are the implications of this discussion? It is fairly clear that, unless an in-
expensive information-gathering strategy presents itself, purchasing the option prob- 
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ably is a dominated alternative. For the purposes of the following analysis, we will 
assume that Carothers has concluded that no such information-gathering strategy ex-
ists, and that purchasing the option is unattractive. Thus, we can reduce his alterna-
tives to (1) buying the airplane outright and (2) investing in the money market. 

Two-Way Sensitivity Analysis 

The tornado-diagram analysis provides considerable insights, although these are lim-
ited to what happens when only one variable changes at a time. Suppose we wanted to 
explore the impact of several variables at one time? This is a difficult problem, but a 
graphical technique is available for studying the interaction of two variables. 

Suppose, for example, that we want to consider the joint impact of changes in the 
two most critical variables, Operating Cost and Capacity of Scheduled Flights. 
Imagine a rectangular space (Figure 5.4) that represents all of the possible values 
that these two variables could take. Now, let us find those values of Operating Cost 
and Capacity for which the annual profit would be less than $4200. If this is to be the 
case, then we must have total revenues minus total costs less than $4200 or total rev-
enues less than total costs plus $4200: 

(Charter Proportion × Hours Flown × Charter Price) + [(1 - Charter Proportion) 
× Hours Flown × Ticket Price × Number of Seats 
× Capacity of Scheduled Flights] < (Hours Flown 

× Operating Cost) + Insurance 
+ (Price × Percent Financed × Interest Rate) + 4200 Inserting the base 

values for all but the two variables of interest, we obtain 

Figure 5.4 
Two-way sensitivity 

graph for Eagle 
Airlines. The Line AB 

represents the points 
for which profit would 

be $4200. 
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(0.5 × 800 × 325) + [0.5 × 800 × 100 × 5 × Capacity] < (800 × 
Operating Cost) + 20,000 + (87,500 × 0.4 × 0.115) + 4200 

which reduces to 

130,000 + (200,000 × Capacity) < (800 × Operating Cost) + 28,225 Now 

solve this inequality for Capacity in terms of Operating Costs to get Capacity 

< 0.004 × Operating Cost - 0.509 

This inequality defines the region in which purchasing the airplane would lead to 
a profit of less than $4200. When the " <" sign is replaced with an equality, we have 
the points for which profit equals $4200, or the line of points where the venture just 
breaks even relative to investing in the money market. To plot this line, notice that 
we only need two points. The simplest way to come up with these is to plug in the 
extreme values for Operating Cost and calculate the corresponding values for 
Capacity. Doing this gives the break-even points A (Capacity = 0.411 when 
Operating Cost = 230) and В (Capacity = 0.531 when Operating Cost = 260). 
These points define Line AB in Figure 5.4. The area below the line (Capacity 
< 0.004 × Operating Cost — 0.509) represents the region when the profit would be 
less than $4200. The area above the line represents the region in which the profit 
would be greater than $4200. 

What insight can Carothers gain from Figure 5.4? The point labeled "Base Values" 
shows that when we plug in the base values for the capacity and operating-cost variables, 
we get an estimated profit that is greater than $4200, and so the project looks promising. 
But Carothers might be wondering how likely it is that the two variables might work to-
gether to lead to a profit of less than $4200. For example, suppose that Operating Cost 
was slightly more than the base value, say $248, and that Capacity was just slightly less 
than the base value, say 48%. Taken individually, these two values do not seem to cause 
a problem. That is, substituting either one into the profit calculations, while keeping the 
other at its base value, leads to profit that is still greater than $4200. When we consider 
these two values jointly (Point С in Figure 5.4), however, they lead to a situation in 
which it would have been better not to buy the airplane. If Carothers thinks that the two 
variables might be likely to fall in the "Profit < $4200" region, then he may wish to 
forego the purchase. But such a situation would indicate that he really needs to model his 
uncertainty about these variables using probability methods. In the next section we will 
see how two-way sensitivity analysis can be used in conjunction with probabilities. 

Sensitivity to Probabilities 

The next step in our analysis will be to model the uncertainty surrounding the criti-
cal variables identified by our analysis of the tornado diagram. The four critical 
variables were (1) Capacity of Scheduled Flights, (2) Operating Cost, (3) Hours 
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Flown, and (4) Charter Price. We only need to think about uncertainty for the first 
three, because charter price is a decision variable set by Carothers. For the purposes 
of the example here, let us assume that, in an initial attempt to model the uncer-
tainty, Carothers chooses two values for each variable, one representing an opti-
mistic and one a pessimistic scenario. The influence diagram is shown in Figure 5.5 
and shows changes in the model based on the sensitivity analysis so far. Operating 
Cost, Hours Flown, and Capacity of Scheduled Flights have been changed to 
chance nodes. The remaining input variables (Interest Rate, Proportion Financed, 
Price, Insurance, Charter Price, Ticket Price, and Proportion of Chartered Flights) 
have been left at their base values and hence continue to be represented by rounded 
rectangles (constants). The decision tree in Figure 5.6 shows the pessimistic and 
optimistic values for the three uncertain variables. 

Now that we have simplified the problem somewhat, we can include considera-
tions regarding the interdependence of the remaining chance variables. In Figures 
5.5 and 5.6, the probability distribution for Hours Flown is judged to depend on the 
Capacity of Scheduled Flights: If Capacity is low, then this may actually result in 
some flights being canceled and thus fewer total hours. Thus, a relevance arc leads 
from "Capacity of Scheduled Flights" to "Hours Flown" in the influence diagram, 
and in the decision tree the value for r = P(Low Hours | Low Capacity) may not be 
the same as the value for s = P(Low Hours | High Capacity). In fact, our argument 
suggests that r will be greater than s. On the other hand, Operating Cost is judged to 
be independent of the other variables. 

The next thing to do is to assess some values for probabilities p, q, r, and s. Let us 
suppose that Carothers is comfortable with an assessment that p = 0.5, or that 

Figure 5.5 
Influence diagram of 

Eagle Airlines 
decision. Note that 

only three variables 
are considered to be 

uncertain, and that 
Hours Flown and 

Capacity are consid-
ered to be probabilisti-

cally dependent. 
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Figure 5.6 
Decision tree for Eagle 

Airlines with 
uncertainty for three 

variables. Profit is cal-
culated with all other 
variables held at their 

base values. 

Operating Cost is just as likely to be high ($253) as low ($237). Furthermore, sup-
pose that Carothers feels that a reasonable way to represent the dependence between 
Hours and Capacity is to let s be 80% of r. That is, if Capacity is high (55%), then the 
probability that Hours = 650 is only 80% of the probability that Hours = 650 when 
Capacity is low. With these two specifications, we now have only two unspecified 
probabilities left to consider, q and r. Figure 5.7 shows the modified decision tree 
with p — 0.5 and s — 0.8r. 

 

Figure 5.7 
Eagle Airlines' 

decision tree with 
probabilities substi-

tuted for p and s. This 
decision tree is now 
ready for a two-way 

sensitivity analysis on 
q and r. 
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We now can create a two-way sensitivity graph for q and r. As with the two-way 
sensitivity analysis above, the graph will show regions for which the expected value 
of purchasing the Seneca is greater than investing in the money market. 

To create the graph, we first write out the expected value of purchasing the air-
plane in terms of q and r, including the specifications that p = 0.5 and s = 0.8r. 
This equation comes from solving the decision tree: 

EMV(Purchase) = 0.5{q[-9725r - 4225(1 - r)] + 
(1 - q) [6525(0.8r) + 18,275(1 - 0.8r)]} + 
0.5{q[675r + 10,175(1 - r)] + (1 - q)[16,925(0.8r) 
+ 32,675(1 - 0.8r)]} 

After algebraic reduction, this expression becomes 
EMV(Purchase) = q(3500r - 22,500) - 11,000r + 25,475 
We would want to purchase the airplane if EMV(Purchase) > 4200. Thus, we can 
solve the following inequality for q in terms of r. 
q(3500r - 22,500) - 11,000r + 25,475 > 4200 
25,475 - 4200 - 11,000r > q(22,500 - 3500r) 
This inequality reduces to 

 
Using this inequality, we can create a two-way sensitivity graph for Eagle Airlines 
(Figure 5.8). The curve separating the two regions represents the values of q and r 
for which EMV(Purchase) = $4200. It was plotted by plugging values for r between 
0 and 1 into the inequality above. For these values of q and r, Carothers should be in-
different (in terms of EMV) between buying the airplane and not. The area below the 
line contains points where q < (21,275 - ll,000r)/(22,500 - 3500r); for these 
(q, r) points, EMV(Purchase)>$4200. The graph makes sense because q and r are 
probabilities of the pessimistic scenarios — low Capacity and low number of Hours 
Flown. If Carothers thinks that the pessimistic scenarios are likely (q and r close to 
1), then he would not want to buy the airplane. 

The importance of Figure 5.8 is that Carothers may not have especially firm 
ideas of what the probabilities q and r should be. Suppose, for example, that in the 
process of coming up with the probabilities he feels that q could be between 0.4 and 
0.5 and that r could be between 0.5 and 0.65. These probabilities are represented by 
the points inside Rectangle A in Figure 5.8. All of these points fall within the 
"Purchase Seneca" region, and so the conclusion is that the Seneca should be pur-
chased. The decision is not sensitive to the assessment of the probabilities. If, on the 
other hand, Carothers thinks that reasonable values of q and r fall in Rectangle B, 
then the optimal choice is not clear. (No wonder the decision is a hard one!) In this 
situation, he could reflect on the chances associated with Capacity and Hours Flown 
and try to refine his model of the uncertainty. Decision-analysis tools for modeling 
uncertainty more carefully are discussed in Chapters 7 through 12. 
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Figure 5.8 
Two-way sensitivity 

graph for Eagle 
Airlines. 

The value of the two-way sensitivity graph is to provide guidance in determining 
how much effort is needed to model uncertainty in a decision problem. Looking at it 
another way, the graph can reveal whether the decision is sensitive to the uncertainty 
in the problem and to the modeling of that uncertainty. 

Two-Way Sensitivity Analysis for Three Alternatives (Optional) 

As we have analyzed it here, the Eagle Airlines case involves only two alternatives, 
and so the sensitivity graph has two regions. What happens when there are more than 
two alternatives? The graph may contain a region for each alternative. Let us con-
sider a stock market-investment problem. 

INVESTING   IN  THE   STOCK   MARKET 

An investor has funds available to invest in one of three choices: a high-risk stock, a 
low-risk stock, or a savings account that pays a sure $500. If he invests in the stocks, 
he must pay a brokerage fee of $200. 

His payoff for the two stocks depends in part on what happens to the market as 
a whole. If the market goes up (as measured, say, by the Standard and Poor's 500 
Index increasing 8% over the next 12 months), he can expect to earn $1700 from 
the high-risk stock and $1200 from the low-risk stock. Finally, if the stock market 
goes down (as indicated by the index decreasing by 3% or more), he will lose $800 
with the high-risk stock but still gain $100 with the low-risk stock. If the market 
stays at roughly the same level, his payoffs for the high- and low-risk stocks will be 
$300 and $400, respectively. 
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The decision tree is given in Figure 5.9, with unspecified probabilities 
t = P(market up) and v = P(market same). Of course, P(market down) = 1 — t — v 
because the probabilities must sum to 1. 

To construct the graph, we must compare the alternatives two at a time. First we 
have to realize that t + v must be less than or equal to 1. Thus, the graph (see Figure 
5.10) is a triangle rather than a rectangle because all of the points above a line from 
(t = 1, v = 0) to (t = 0, v = 1) are not feasible. To find the strategy regions, begin 
by finding the area where the savings account would be preferred to the low-risk stock, or 

EMV(Savings Account) > EMV(Low-Risk Stock) 
500 > t (1000) + v (200) - (1 - t - v) 100 

Solving for v in terms of t, we get 
 

Figure 5.9 
Decision tree for a 

stock market investor. 

Figure 5.10 
Beginning the analysis 

of the stock market 
problem. Note that 
t + v must be less 

than or equal to 1, and 
so the only feasible 

points are within the 
large triangular region. 
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Figure 5.10 shows the regions for the savings account and the low-risk stock divided 
by Line AB. 

Now let us find the regions for the high- and low-risk stocks. Begin by setting up 
the inequality 

EMV(Low-Risk Stock) > EMV(High-Risk Stock) t (1000) + v 
(200) - (1 - t - v) 100 > t (1500) + v (100) - (1 - t - v) 1000 

This reduces to 
 

Using this inequality, we can add another line to our graph (Figure 5.11). Now Line 
CDE separates the graph into regions in which EMV(Low-Risk Stock) is greater or 
less than EMV(High-Risk Stock). 

From Figure 5.11 we can tell what the optimal strategy is in all but one portion of 
the graph. For example, in ADEG, we know that the high-risk stock is preferred to 
the low-risk stock and that the low-risk stock is preferred to the savings account. 
Thus, the high-risk stock would be preferred overall. Likewise, in HFBDC the sav-
ings account would be preferred, and in DBE the low-risk stock would be preferred. 
But in CDA, all we know is that the low-risk stock is worse than the other two, but 
we do not know whether to choose the savings account or the high-risk stock. 

If the decision maker is sure that the probabilities t and v do not fall into the re-
gion CDA, then the sensitivity analysis could stop here. If some question remains (or 
even if we feel compelled to finish the job), then we can complete the graph by com-
paring EMV(Savings Account) with EMV(High-Risk Stock): 

 

Figure 5.11 
Second stage in 

analysis of the stock 
market problem. A sec-

ond inequality has 
been incorporated. The 

optimal strategy is 
clear now for all re-
gions except CDA. 
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Figure 5.12 
Completed two-way 
sensitivity graph for 

the stock market 
problem. Line ID has 

split region CDA. 

EMV(Savings Account) > EMV(High-Risk Stock) 
500 > t (1500) + v (100) - (1 - t - v) 1000 

This inequality reduces to 

 
Incorporating this result into the graph allows us to see that region CDA actually is 
split between the high-risk stock and the savings account as indicated by Line ID in 
Figure 5.12. 

With the analysis completed, the investor now can think about probabilities t and 
v. As in the Eagle Airlines case, it should be possible to tell whether the optimal in-
vestment decision is sensitive to these probabilities and whether additional effort 
should be spent modeling the uncertainty about the stock market. 

Sensitivity Analysis in Action 

Is sensitivity analysis ever used in the real world? Indeed it is. This fundamental ap-
proach to modeling is the source of important insights and understanding in many 
real-world problems. The following example comes from medical decision making, 
showing how sensitivity-analysis graphs can improve decisions in an area where 
hard decisions are made even harder by the stakes involved. 
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HEART  DISEASE   IN   INFANTS 

Macartney, Douglas, and Spiegelhalter used decision analysis to study alternative 
treatments of infants who suffered from a disease known as coarctation of the aorta. 
Difficult to detect, the fundamental uncertainty is whether the disease is present at all. 
Three alternative treatments exist if an infant is suspected of having the disease. The 
first is to do nothing, which may be appropriate if the disease is not present. The sec-
ond is to operate. The third alternative is to catheterize the heart in an attempt to con-
firm the diagnosis, although it does not always yield a perfect diagnosis. Moreover, 
catheterizing the heart of a sick infant is itself a dangerous undertaking and may lead 
to death. The difficulty of the problem is obvious; with all of the uncertainty and the 
risk of death from operating or catheterization, what is the appropriate treatment? 

Source: F. Macartney, J. Douglas, and D. Spiegelhalter (1984) "To Catheterise or Not to Catheterise?" 
British Heart Journal, 51, 330-338. 

In their analysis Macartney et al. created a t wo-way sensitivity graph (Figure 
5.13) showing the sensitivity of the decision to two probabilities. The two probabili-
ties are (1) the disease is present, which is along the horizontal axis, and (2) the mor-
tality rate for cardiac catheterization, which is along the vertical axis. The mortality 
rate also could be interpreted as the physician's judgment regarding the chance that 
the infant would die as a result of catheterization. 

The graph shows three regions, reflecting the three available alternatives. The lo-
cation of the three regions makes good sense. If the physician believes that the 

 

Figure 5.13 
Two-way sensitivity 

analysis for the heart 
disease treatment 

decision. 
Source: Macartney et 

al. (1984). 
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chances are low that the disease is present and that the risk of catheterizing the infant 
is high, then the appropriate response is to do nothing. On the other hand, if the risk 
of catheterization is high relative to the chance that the disease is present, then oper-
ating without catheterizing is the prescribed treatment. Catheterization is recom-
mended only for situations with relatively low risk from the procedure. 

Sensitivity Analysis by Computer 

Who wants to go through all that algebra to perform a sensitivity analysis? 
Fortunately, sensitivity analysis can be done easily by computer. The decision-analy-
sis software packages described in Chapters 3 and 4 all have built-in sensitivity-
analysis routines. Although every program has its own unique approach to sensitiv-
ity analysis, many of the tools are consistent with the discussion in this chapter. In 
this section, we will look briefly at the sensitivity tools provided by DPL and DATA. 

Sensitivity Analysis with DPL 

DPL can produce one-way sensitivity graphs with the command "Value Sensitivity 
Analysis." For example, Figure 5.14 shows Eagle's profit for different values of 
Hours Flown, and the graph is partitioned into regions that represent different opti-
mal strategies. (On DPL's screen, the regions have different colors, and hence DPL 
calls this kind of graph a rainbow diagram.) 

Creating tornado diagrams is easy with DPL. On the "Run" menu, the command 
"Value Sensitivity Comparison" allows the user to build a tornado diagram one van- 

Figure 5.14 
Rainbow diagram 

from DPL The vertical 
axis, labeled "Expected 

Value," represents 
Eagle's profit. 
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Figure 
5.15 

Eagle Airline tornado 
diagram from DPL. 

able at a time, and it is the user's choice as to which variables are included in the di-
agram. Figure 5.15 shows DPL's version of the tornado diagram for Carothers's de-
cision. As you can see, DPL has the capability of automatically including the ex-
treme values of the input variables and the corresponding value for profit at the ends 
of the bars. In addition, DPL has automatically truncated the four bars that cross over 
into the region where profit falls below $4200. (In these cases, DPL has solved the 
complete decision problem and found that the optimal choice is to invest in the 
money market for a return of $4200. Creating a tornado diagram whose bars are not 
truncated as in Figure 5.3 is straightforward; delete the "Purchase Seneca" decision 
node in the influence diagram, and then create the tornado diagram, specifying Profit 
as the criterion variable.) 

The "Value Sensitivity Comparison" is designed specifically to help a decision 
maker decide which deterministic variables to model probabilistically. Thus, as long 
as you are moving from a deterministic toward a probabilistic model, this is an ap-
propriate tool. What if you have created a complex decision model with many 
chance nodes? In this case, you might like to go the other way, deciding which of the 
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chance variables could be changed to deterministic ones with minimal impact to the 
model. DPL includes a command, "Event Sensitivity Comparison," that allows the 
decision maker to examine chance variables, in the context of a tornado diagram, for 
just this purpose. 

Sensitivity Analysis with DATA 

In DATA's "Analysis" menu, the user can find a number of sensitivity-analysis com-
mands. Figure 5.16 again shows the one-way sensitivity for Hours Flown in the 
Eagle Airlines decision. DATA even calculates the threshold value of Hours Flown 
(664.118) where the two lines intersect and gives Profit ($4200) at that point. DATA 
also can construct a tornado diagram (Figure 5.17). 

DATA can also perform two- and three-way sensitivity analysis. For example, 
Figure 5.18 is the two-way sensitivity graph that we created in the probabilistic 
analysis of Eagle Airlines (see Figure 5.8). The graph identifies the appropriate strat-
egy for each region by using shading. To do a three-way sensitivity analysis, DATA 
can display an animated sequence of two-way graphs. 

This overview of sensitivity analysis by computer serves only as an introduc-
tion. This book cannot show all of the available ways to conduct such analysis, 
but you should now have a better appreciation for the available tools and tech-
niques. With practice using these tools, you should be able to avoid a lot of dreary 
algebra. 

Figure 5.16 
One-way sensitivity 

analysis on hours 
flown from DATA. 
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Figure 5.17 
Tornado diagram from 

DATA. 
 

 

 

 

 

 
Figure 5.18 

DATA's two-way 
sensitivity graph for 

probabilistic analysis 
of Eagle Airlines. 
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Sensitivity Analysis: A Built-in Irony 

There is a strange irony in sensitivity analysis and decision making. We begin by 
structuring a decision problem, part of which involves identifying several alterna-
tives. Then some alternatives are eliminated on the grounds of dominance. The re-
maining ones are difficult to choose from. Being difficult to choose from, they lead 
us to unveil our array of decision-analysis tools. But also being difficult to choose 
from, they probably are not too different in expected value; and if so, then it does not 
matter much which alternative one chooses, does it? For the analyst who wants to be 
quite sure of making the best possible choice, this realization can be terribly frustrat-
ing; almost by definition, hard decisions are sensitive to our assessments. For those 
who are interested in modeling to improve decision making, the thought is comfort-
ing; the better the model, the better the decision, but only a small degree of improve-
ment may be available from rigorous and exquisite modeling of each minute detail. 
Adequate modeling is all that is necessary. The best way to view sensitivity analysis 
is as a source of guidance in modeling a decision problem. It provides the guidance 
for each successive iteration through the decision-analysis cycle. You can see now 
how the cycle is composed of modeling steps, followed by sensitivity analysis, fol-
lowed by more modeling, and so on. The ultimate objective of this cycle of model-
ing and analysis is to arrive eventually at a requisite decision model and to analyze it 
just enough to understand clearly which alternative should be chosen. By the time 
the decision maker reaches this point, all important issues will be included in the de-
cision model, and the choice should be clear. 

SUMMARY This chapter has presented an approach and several tools for performing sensitivity 
analysis. We have considered sensitivity analysis in terms of identifying and struc-
turing problems, dominance among alternatives, and probability assessment. 
Tornado diagrams and one- and two-way sensitivity graphs were developed, and we 
discussed ways to perform sensitivity analysis using computers. The purpose of sen-
sitivity analysis in the decision-analysis cycle is to provide guidance for the devel-
opment of a requisite decision model. 

E X E R C I S E S  

5.1 What is the fundamental question that sensitivity analysis answers? 

5.2 Some friends of yours have been considering purchasing a new home. They currently live 
20 miles from town on a two-acre tract. The family consists of the mother, father, and two 
small children. The parents also are considering having more children, and they realize that 
as the children grow, they may become more involved in activities in town. As it is, most of 
the family's outings take place in town. Describe the role that sensitivity analysis could 
play in your friends' decision. What variables could be subjected to sensitivity analysis? 
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5.3 Over dinner, your father mentions that he is considering retiring from real-estate sales. 
He has found a small retail business for sale, which he is considering acquiring and run 
ning. There are so many issues to think about, however, that he has a difficult time keep 
ing them all straight. After hearing about your decision-analysis course, he asks you 
whether you have learned anything that might help him in his decision. What kinds of is 
sues are important in deciding whether to buy a retail business? Describe how he might 
use sensitivity analysis to explore the importance of these issues. 

5.4 When purchasing a home, one occasionally hears about the possibility of "renting with 
an option to buy." This arrangement can take various forms, but a common one is that the 
renter simply pays rent and may purchase the house at an agreed-upon price. Rental pay 
ments typically are not applied toward purchase. The owner is not permitted to sell the 
house to another buyer unless the renter/option holder waives the right to purchase. The 
duration of the option may or may not be specified. 

Suppose that a buyer is considering whether to purchase a house outright or rent it with 
an option to buy. Under what circumstances would renting with an option be a dominated 
alternative? Under what circumstances would it definitely not be dominated? 

5.5 What role does sensitivity analysis play in the development of a requisite decision 
model? 

5.6 Explain why the lines separating the three regions in Figure 5.12 all intersect at Point D. 

Q U E S T I O N S    AND   P R O B L E M S  

5.7 Cost-to-loss ratio problem. Consider the decision problem shown in Figure 5.19. This 
basic decision tree often is called a cost-to-loss ratio problem and is characterized as a 
decision situation in which the question is whether to take some protective action in the 
face of possible adverse circumstances. For example, the umbrella problem (Figure 4.9) 
is a cost-to-loss ratio problem. Taking the umbrella incurs a fixed cost and protects 
against possible adverse weather. A farmer may face a cost-to-loss ratio problem if there 
is a threat of freezing weather that could damage a fruit crop. Steps can be taken to pro-
tect the orchard, but they are costly. If no steps are taken, the air temperature may or may 
not become cold enough to damage the crop. 

Figure 5.19 
Cost-to-loss ratio 

problem. 
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Sensitivity analysis is easily performed for the cost-to-loss ratio problem. How large can 
the probability p become before 'Take Protective Action" becomes the optimal (mini-
mum expected cost) alternative? Given your answer, what kind of information does the 
decision maker need in order to make the decision? (Hint: This is an algebra problem. If 
that makes you uncomfortable, substitute numerical values for C, L, and p.) 

5.8 The cost-to-loss ratio problem continued. The cost-to-loss ratio problem as shown in 
Figure 5.19 may be considered a simplified version of the actual situation. The protective 
action that may be taken may not provide perfect protection. Suppose that, even with pro-
tective action, damage D will be sustained with probability q. Thus, the decision tree ap-
pears as Figure 5.20. Explain how sensitivity analysis could be used to determine whether 
it is important to include the upper chance node with probability q and damage D. 

Figure 5.20 
More general version 

of the cost-to-loss 
problem. 

5.9 An orange grower in Florida faces a dilemma. The weather forecast is for cold 
weather, and there is a 50% chance that the temperature tonight will be cold enough to 
freeze and destroy his entire crop, which is worth some $50,000. He can take two pos-
sible actions to try to alleviate his loss if the temperature drops. First, he could set 
burners in the orchard; this would cost $5000, but he could still expect to incur dam-
age of approximately $15,000 to $20,000. Second, he could set up sprinklers to spray 
the trees. If the temperature drops, the water would freeze on the fruit and provide 
some insulation. This method is cheaper ($2000), but less effective. With the sprin-
klers he could expect to incur as much as $25,000 to $30,000 of the loss with no pro-
tective action. 

Compare the grower's expected values for the three alternatives he has, considering 
the various possible loss scenarios for the burners and the sprinklers. Which alternative 
would you suggest the grower take? Why? 

5.10 An important application of sensitivity analysis occurs in problems involving multiple 
attributes. Many decision makers experience difficulty in assessing trade-off weights. A 
sensitivity analysis of the trade-off weight, though, can reveal whether a decision maker 
must make a more precise judgment. Reconsider the summer-job example described and 
analyzed in Chapter 4 (pages 129-136). In the analysis, we used trade-off weights of 
ks = 0.60 for salary and kf = 0.40 for fun (see Figure 4.36). 

Suppose Sam Chu is uncomfortable with the precise assessment that ks = 0.60. Sam 
does believe, though, that ks could range from 0.50 up to 0.75. (Recall that ks and kf 
add up to 1, so by implication, kf can range from 0.50 to 0.25, depending on the value of 
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ks.) Perform a sensitivity analysis on the expected overall score for the two jobs by 
varying ks over this range. Is the forest job preferred for all values of ks between 0.50 
and 0.75? 

5.11 A friend of yours can invest in a multiyear project. The cost is $14,000. Annual cash 
flows are estimated to be $5000 per year for six years but could vary between $2500 and 
$7000. Your friend estimates that the cost of capital (interest rate) is 11%, but it could be 
as low as 9.5% and as high as 12%. The basis of the decision to invest will be whether the 
project has a positive net present value. Construct a tornado diagram for this problem. On 
the basis of the tornado diagram, advise your friend regarding either (1) whether to invest 
or (2) what to do next in the analysis. 

5.12 Reconsider Hugh Liedtke's decision as diagrammed in Figure 4.2. Note that three strate 
gies are possible: (1) accept $2 billion, (2) counteroffer $5 billion and then accept $3 bil 
lion if Texaco counteroffers, and (3) counteroffer $5 billion and then refuse $3 billion if 
Texaco counteroffers. Suppose that Liedtke is unsure about the probabilities associated 
with the final court outcome. Let p = P(10.3) and q = P(5) so that 1 — p — q = 
P(0). Create a two-way sensitivity graph that shows optimal strategies for Liedtke for 
possible values of p and q. (Hint: What is the constraint on p + q ?) If Liedtke thinks that 
p must be at least 0.15 and q must be more than 0.35, can he make a decision without fur 
ther probability assessment? 

C A S E     S T U D I E S  

THE  STARS AND  STRIPES 

In 1987, the United States won the prestigious America's Cup sailing race, winning 
the trophy from Australia. The race normally is run every four years, but in 1988 
New Zealand invoked an obscure provision in the race charter and challenged the 
U.S. team to a match. Furthermore, New Zealand proposed to race with the largest 
boat permitted rather than a standard 12-meter craft. The new yacht, dubbed the New 
Zealand, was 133 feet long, designed and built using space-age material, and 
equipped with state-of-the-art computer equipment to monitor performance. 

Not to be outdone, the U.S. team countered by designing and building a catamaran, 
the Stars and Stripes. A conventional sailboat like the New Zealand drags a heavy keel 
through the water to maintain stability. A catamaran relies on two long, narrow hulls 
for stability and thus can be considerably lighter and faster. Furthermore, the Stars and 
Stripes was outfitted with a rigid sail designed like an airplane wing. With slots and 
flaps controlled by wires, the sail could be adjusted precisely for optimum airflow. 

New Zealand counterattacked with a lawsuit claiming that the vague deed that 
established the competition implied that the match was to be between similar boats. 
But the New York Supreme Court ruled that the race should go on and that protests 
should be filed afterward. The race began on September 7, 1988. The Stars and 
Stripes won easily, by 18 minutes in the first race and 21 minutes in the second. 
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Questions 

1 Designing world-class racing sailboats involves thousands of decisions about 
shape, size, materials, and countless other details. What are some objectives that 
might be reasonable in designing such a sailboat? 

2 What are some specific design decisions that must be made (for example, the shape 
of the sail)? 

3 How can sensitivity analysis be used to decide which design decisions are more im 
portant than others? 

DUMOND   INTERNATIONAL,   PART   I 

"So that's the simplified version of the decision tree based on what appear to be the 
critical issues," Nancy Milnor concluded. "Calculating expected values, it looks as 
though we should introduce the new product. Now, I know that we don't all agree on 
the numbers in the tree, so why don't we play around with them a little bit. I've got 
the data in the computer here. I can make any changes you want and see what effect 
they have on the expected value." 

Nancy had just completed her presentation to the board of directors of 
DuMond International, which manufactured agricultural fertilizers and pesti-
cides. The decision the board faced was whether to go ahead with a new pesticide 
product to replace an old one or whether to continue to rely on the current prod-
uct, which had been around for years and was a good seller. The problem with 
the current product was that evidence was beginning to surface which showed 
that the chemical's use could create substantial health risks, and there even was 
some talk of banning the product. The new product still required more develop-
ment, and the question was whether all of the development issues could be re-
solved in time to meet the scheduled introduction date. And once the product was 
introduced, there was always the question of how well it would be received. The 
decision tree (Figure 5.21) that Nancy had presented to the board captured these 
concerns. 

The boardroom was beginning to get warm. Nancy sat back and relaxed as she 
listened to the comments. 

"Well, I'll start," said John Dilts. "I don't have much trouble with the numbers in 
the top half of the tree. But you have the chance of banning the current product 
pinned at 30 percent. That's high. Personally, I don't think there's more than a 10 
percent chance of an out-and-out ban." 

"Yeah, and even if there were, the current product ought to be worth $300,000 at 
least," added Pete Lillovich. "With a smaller chance of a ban and a higher value, 
surely we're better off with the old product!" 

"Well, I don't know about you two," said Maria Jenkins. "I think we have a pretty 
good handle on what's going on with the current product. But I'd like to play the new 
product a little more conservatively. I know that the values at the ends of the branches 
on the top half of the tree are accounting's best guesses based on a complete analysis, 
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Figure 5.21 
DuMond's new 

product decision. 

but maybe they should all be reduced by $100,000 just to play it safe. And maybe we 
should just set the probability of high sales equal to 50 percent regardless of the delay." 

Steven Kellogg had been involved in the preliminary development of the new 
product more than anyone else. He piped up, "And the delay is actually more likely 
than no delay. I'd just reverse those probabilities so that there's a 60 percent chance 
of a delay. But I wouldn't make any changes on the lower part of the tree. I agree 
with Maria that we have a good idea about the performance of the current product 
and the prospects for a ban." 

"I don't think it matters," countered Lillovich. "The changes John and I suggest 
make the current product look better than it does in Nancy's analysis. Maria's and 
Steven's changes make the new product look worse. Either way, the effect is the same." 

Nancy had kept track of the comments and suggested changes. She sat down at 
the computer and started to enter the changes. After a few moments, she grinned and 
turned to the board. "In spite of your changes," she said, "I believe I can persuade 
you that DuMond should go with the new product." 

Question 

1       Explain why Nancy believes that DuMond should go with the new product. 

STRENLAR,   PART  II 

Question 

1 The Strenlar case study at the end of Chapter 4 (page 148) required substantial 
modeling. Use sensitivity analysis to refine your model. In particular, you might 
consider (1) the interest rate used to calculate net present value, (2) legal fees, (3) 
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the eventual price of PI's stock, (4) Strenlar's gross sales, (5) Fred's profits if 
Strenlar is successful (remembering that profits are linked to sales), (6) the proba-
bility of Strenlar being successful, and (7) the probability of winning the lawsuit. 
Do you think that Fred's decision is sensitive to any of these variables? Try wig-
gling one variable at a time away from its base value (the value given in the case) 
while holding everything else at base value. How much can you wiggle the variable 
before the decision changes? At the end of your analysis, discuss your results and 
the implications for Fred's decision model. If he were to refine his model, what re-
finements should he make? 

FACILITIES   INVESTMENT  AND   EXPANSION 

Spetzler and Zamora describe a decision analysis concerning whether a major U.S. 
corporation should make a $20 million investment in a new plant with the possibility 
of a $5 million expansion later. The product was a "brightener," and there was 
some chance that the process also could generate significant quantities of a valuable 
by-product. Unfortunately, the primary chemical reaction was difficult to control. 
The exact yields were uncertain and were subject to the amounts of impurities in the 
raw material. Other substantial uncertainties surrounded the decision, such as raw 
material costs, inflation effects, federal regulatory intervention, the development of a 
full-scale production process based on the pilot project, and so on. 

At an early stage of the analysis, the focus was on the numerous uncertain vari-
ables that could affect the value of the investment. Table 5.2 shows the effect of 18 
different variables on the project's present value. 

Question 

1       Which variables definitely should be kept in the model? What additional information 
is needed in order to decide whether any of the other variables can be eliminated? 

Source: C. S. Spetzler and R. M. Zamora (1984) "Decision Analysis of a Facilities Investment and 
Expansion Decision." In R. A. Howard and J. E. Matheson (eds.) The Principles and Applications of 
Decision Analysis. Menlo Park, CA: Strategic Decisions Group. 

JOB  OFFERS,   PART  II 

Questions 

1 Reconsider Robin Pinelli's dilemma in choosing from among three job offers (page 
150). Suppose that Robin is unwilling to give a precise probability for disposable in-
come with the Madison Publishing job. Conduct a sensitivity analysis on the ex-
pected value of the Madison Publishing job assuming that the probability of dispos- 
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     PV Range Change 
   Tested Range ($ Million) In PV 
Variable  Base Case From To From To ($ Millions) 

1 By-Product Production 36.00 0.00 80.00 -30 35 65 
  lb/ton lb/ton lb/ton    

2 Market Price of Brightener $0.27/lb $0.15/lb $0.35/lb -12 45 57 
 in 1980       

3 Raw Material Cost Growth 5,00%/yr 0.00%/yr 8.00%/yr -7 40 47 
4 Raw Material Costs $7.00/ton $2.00/ton $18,00/ton -9 35 44 
5 Impurities in Raw Material 4.00 2.00 6.00 -10 30 40 

  lb/ton lb/ton lb/ton    
6 Cost Multiplier on Investment 90.00% 70.00% 125.00% -12 25 37 
7 Brightener Price Growth 

after 1980 
4.00%/yr 2.00%/yr 6.00%/yr -5 28 33 

8 Cost Multiplier on Operations 110.00% 80.00% 150.00% 3 32 29 

 Expenses       
9 Cost Multiplier on Maintenance 100.00% 70.00% 120.00% 2 30 28 

 Expenses       
10 By-Product Price Growth $0.03/yr $0.01/yr $0.06/yr 3 30 27 

11 Water Reclamation Costs $0.03/gal $0.02/gal $0.04/gal 4 31 27 
12 By-Product Price in 1970 $0.50/lb $0.40/lb $0.60/lb 3 29 26 
13 Plant Efficiency 75.00% 50.00% 110.00% 0 26 26 
14 Brightener Production 45.00 40.00 50.00 4 30 26 
  lb/ton lb/ton lb/ton    

15 Market Price of Brightener $0.25/lb $0.15/lb $0.30/lb 4 28 24 
 in 1974       

16 Government Regulation Costs $0.02/lb $0.01/lb $0.03/lb 3 25 22 
17 Market Price of Other $0.10/lb $0.07/lb $0.12/lb 4 24 20 
 By-Products       

18 Other By-Products Produced 84.00 70.00 96.00 4 24 20 
  lb/ton lb/ton lb/ton    

Source: Spetzler and Zamora (1984). 
Table 5.2 
Results of deterministic sensitivity analysis on 18 different variables in facilities investment decision. 

able income being $1500 could range anywhere from zero to 1. Does the optimal 
choice — the job with the highest expected overall score — depend on the value of 
this probability? [Hint: Remember that probabilities must add up t o 1, so 
P(Disposable Income = $1300) must equal 1 - P(Disposable Income = $1500).] 
Suppose Robin is unable to come up with an appropriate set of trade-off weights. 
Assuming that any combination of weights is possible as long as all three are posi-
tive and add up to 1, conduct a sensitivity analysis on the weights. Create a graph 
that shows the regions for which the different job offers are optimal (have the high- 
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est expected overall score). (Hint: Given that the three weights must sum to 1, this 
problem reduces to a two-way sensitivity analysis like the stock market example on 
pages 169-172.) 

R E F E R E N C E S  

Sensitivity analysis is one of the more recent additions to the decision analyst's bag of 
tricks. As more complicated decision problems have been tackled, it has become obvious 
that sensitivity analysis plays a central role in guiding the analysis and interpreting the re-
sults. Recent overviews of sensitivity analysis can be found in Samson (1988), von 
Winterfeldt and Edwards (1986), and Watson and Buede (1987). In particular, Watson 
and Buede use real-world examples to show how sensitivity analysis is a central part of 
the decision-analysis modeling strategy. Phillips (1982) describes an application in 
which sensitivity analysis played a central part in obtaining consensus among the mem-
bers of a board of directors. 

Howard (1988) presents tornado diagrams and gives them their name. This approach 
to deterministic sensitivity analysis, along with other sensitivity-analysis tools, is dis-
cussed by McNamee and Celona (1987). Another sensitivity tool worth mentioning is the 
spiderplot (Eschenbach, 1992). The spiderplot is similar to the tornado diagram in that it 
allows simultaneous comparison of the impact of several different variables on the con-
sequence or expected value. 

Eschenbach, T. G. (1992) "Spiderplots versus Tornado Diagrams for Sensitivity 
Analysis." Interfaces, 22(6), 40-46. 
Howard, R. A. (1988) "Decision Analysis: Practice and Promise." Management Science, 
34, 679-695. 
McNamee, P., and J. Celona (1987) Decision Analysis for the Professional with 
Supertree. Redwood City, CA: Scientific Press. 
Phillips, L. D. (1982) "Requisite Decision Modelling." Journal of the Operational 
Research Society, 33, 303-312. 
Samson, D. (1988) Managerial Decision Analysis. Homewood, IL: Irwin. 
von Winterfeldt, D., and W. Edwards (1986) Decision Analysis and Behavioral Research. 
Cambridge: Cambridge University Press. 
Watson, S., and D. Buede (1987) Decision Synthesis. Cambridge: Cambridge University 
Press. 

E P I L O G U E  After the America's Cup race, New Zealand filed its lawsuit against the U.S. team, claiming 
that the deed of gift that established the race called for a "fair match." The New York Yacht 
Club, which had held the trophy from 1851 until 1983, even filed an affidavit with the court 
supporting New Zealand's contention. In April 1989, the court awarded the trophy to New 
Zealand. But in September 1989, the New York State Supreme Court issued a 4-1 decision 
that the cup should go back to the United States. (Sources: "The Cup Turneth Over," Time, 
April 10, 1989, p. 42; Raleigh News and Observer, September 20, 1989.) 
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Creativity and Decision 
Making 

The majority of businessmen are incapable of original thinking, because they are 
unable to escape from the tyranny of reason. Their imaginations are blocked. (David 
Ogilvy, Confessions of an Advertising Man) 

ow ironic that we have spent so much effort in discussing and demonstrating the systematic analysis 
of decisions only to find this quote. Decision analysis is reason exemplified, is it not? If we relentlessly 

practice the form of reason that we have learned as decision analysis, will we find 
ourselves trapped by that reason, unable to be creative? 

The emphatic answer is no. From a decision-making perspective, we need not be 
stuck with the alternatives that present themselves to us; in fact, good decision mak-
ing includes active creation of new and useful alternatives. Moreover, the very 
process of decision analysis-especially the specification of objectives-provides 
an excellent basis for developing creative new alternatives. 

Although it may seem unusual, a chapter on creativity in a decision-making text 
makes good sense. Everyone is frustrated occasionally by an inability to think cre-
atively and thus can use a hand in being more creative. Perhaps not so clear, how-
ever is the increasing need for creative and innovative solutions. In Thriving on 
Chaos Tom Peters (1988) depicts the modern business climate as one in which con-
ditions change rapidly. Modern managers must do more than simply cope with radi-
cal transformations: They must be on the attack. To be successful, a manager must 
learn to view new situations as opportunities for beneficial change rather than as 
problems to overcome somehow without rocking the boat too much. Indeed, Peters 
argues that the core paradox a manager faces is building an organization that is sta-
ble in its ability to innovate rapidly and flexibly. Solving problems creatively must 
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become part of a manager's and a firm's essence. And corporate America appears to 
take this message seriously; Bazerman (1994) reports that a majority of large U.S. 
corporations engaged in formal creativity training during the early 1980s. 

This chapter presents a short overview of creativity. The literature on creativity is 
large and growing; interested readers will have no problem locating additional mate-
rial. We frame the discussion first by defining creativity in decision making and 
looking at some of the psychological theories that have been developed to help us 
understand the creative process. What follows is a discussion of the many different 
ways in which creativity can be blocked. Finally, we discuss ways to enhance the 
creative process, especially the process of generating alternatives in a decision-mak-
ing situation. One important technique promised back in Chapter 3 is the use of the 
means-objectives network. Other techniques use fundamental objectives, and still 
others (many developed by decision analysts) can be used to break through various 
blocks to find creative new alternatives. 

What Is Creativity? 

One thing is certain regarding the definition of creativity — it is much easier to 
identify creative acts than it is to define the term itself (Barron 1965). We readily 
recognize creative acts, and we often use adjectives like novel, insightful, clever, 
unique, different, or imaginative. But coming up with a coherent and useful 
definition of the term creativity is not easy. 

Many different scholars have attempted to define creativity. All definitions in-
clude some aspect of novelty. But there is also an element of effectiveness that must 
be met. Slinging buckets of mud at customers as they arrive at a used-car lot is indeed 
a novel greeting but may not be very effective in selling cars. But offering coupons 
for a cosmetic mud pack, an evening at the local mud-wrestling arena, or a therapeu-
tic and relaxing mud bath might be very effective as well as novel. And what about 
creating a television advertisement in which the car lot's owner offers customers the 
opportunity to dunk him in a mud bath set up at the lot specifically for this purpose? 
("My name is mud, because I ordered too many cars! So come on down and make the 
name stick! Throw me into the pit! And after you do that, check out some of these 
great deals...." Well, it would be no worse than many similar ads.) 

For our purposes in this chapter, we are particularly concerned with the develop-
ment of creative alternatives in decision problems. To be sure, creativity arises in 
many different situations; a novel and elegant proof of a mathematical theorem, an 
artist's creativity in painting or music, and a storyteller's clever retelling of an old 
tale are a few examples. When we think of creativity in decision making, though, we 
will be looking for new alternatives with elements that achieve fundamental objec-
tives in ways previously unseen. Thus, a creative alternative has both elements of 
novelty and effectiveness, where effectiveness is thought of in terms of satisfying 
objectives of a decision maker, a group of individuals, or even the diverse objectives 
held by different stakeholders in a negotiation. 
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Theories of Creativity 

Why do creative thoughts seem to come more readily to some people than to others? 
Or in certain kinds of situations? Many scholars have tried to understand the creative 
process, and in this section we review some of the psychological bases of creativity. 

Perhaps the most basic approach relates creativity to Maslow's (1954) concept of 
self-actualization. For example, Davis (1986) describes self-actualization as, among 
other things, being able to perceive reality accurately and compare cultures objec-
tively, having a degree of genuine spontaneity, and being able to look at things in a 
fresh, naive, and simple way. Davis claims that these and other qualities help people, 
even those without special talent, to act creatively, and he reviews some recent psy-
chological evidence to support this proposition. Thus, Davis's position is good news 
for many of us. Self-actualization, happy lives, and creativity all seem to go hand in 
hand and to some extent can be developed by anyone. One need not have the special 
talent of an Einstein, Mozart, or Alexander the Great to reap the creative rewards that 
follow from self actualization. 

Others have attempted to delve more deeply into the process of creative thought it-
self. Psychoanalytic theories (Kris 1952, Kubie 1958, Rugg 1963) generally maintain 
that creative productivity is the result of preconscious mental activity. These theories 
suggest that our brain is processing information at a level that is not accessible to our 
conscious thoughts. Behavioristic theories (Maltzman 1960, Skinner 1972) argue that 
our behavior, including creative behavior, is simply a conglomerate of responses to en-
vironmental stimuli. Appropriate rewards (stimuli) can lead to more creative behavior. 

A cognitive approach suggests that creativity stems from a capacity for making un-
usual and new mental associations of concepts (Campbell 1960, Mednick 1962, Staats 
1968). Campbell proposes that creative thought is just one manifestation of a general 
process by which people acquire new knowledge and thereby learn about the world. 
This process includes as the first step the production of "variations," a result of mentally 
associating elements of a problem in new ways. People who are more creative are bet-
ter at generating a wider range of variations as they think about the problems they face. 
Having a broader range of life experiences and working in the right kind of environment 
can facilitate the production of variations. Finally, some people simply are better at rec-
ognizing and seizing appropriate creative solutions as they arise; the ability to come up 
with creative solutions is not very helpful if one ignores those solutions later. 

Before going on, try the following problem. Do not read further until you have 
devoted some genuine effort to finding a solution. 

CHAINS   OF  THOUGHT 

You have four three-link chain segments as shown in Figure 6.1. A jeweler has of-
fered to connect the segments to make a complete circle but to do so must open and 
then resolder some of the links. Opening and closing a link costs $50. When you 
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Figure 6.1. 
Chains of thought. 

Connect the segments 
by opening and closing 

only three links. 

point out that you have only $150, the jeweler says the job can be done for that 
amount. How can the jeweler connect the segments by opening and closing only 
three links? [Source: Adapted from Winkelgren (1974).] 

Most people see the obvious solution of opening one link on each of the four seg-
ments and connecting to the adjacent segment, but this approach requires opening 
and closing four links. The creative and efficient solution, however, opens all three 
links of one segment and uses those three to connect the remaining three segments. 
This is an example of making a new association of the elements of the problem. 
Rather than thinking about the four segments as the elements of the problem, the cre-
ative solution considers open links as one kind of element, connected segments of 
closed links as another kind of element, and associates these by specifying that an 
open link must be used to connect two segments. 

Phases of the Creative Process 

A number of authors have identified phases of the individual creative thought 
process. For example, Wallas (1926) identified preparation, incubation, illumination, 
and verification. 

1 Preparation In this first stage, the individual learns about the problem. This in-
cludes understanding the elements of the problem and how they relate to each other. 
It may include looking at the problem from different perspectives or asking other 
people what they know or think about the problem. From a decision-making point of 
view, this stage is very similar to problem structuring as delineated in Chapters 2 and 
3. Spending effort understanding fundamental objectives, decisions that must be 
made (along with the immediately available set of alternatives), uncertainties inher-
ent in the situation, and how these elements relate to each other prepares the decision 
maker for creative identification of new alternatives. 

2 Incubation   In the second stage, the prepared decision maker explores, directly 
or indirectly, a multitude of different paths toward new alternatives. We might also 
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use the terms production or generation of alternatives. The decision maker may do 
many things that seem to have a low chance of generating a new alternative, such as 
eliminating assumptions or adopting an entirely different perspective. Apparently 
frivolous activities may evoke the idea of the decision maker "playing" with the de-
cision. 

Many authors have included in this phase unconscious processing of information 
known about the decision. The literature on creativity contains several well-known 
and oft-quoted examples of this unconscious process, including Kekule's dream that 
led to the discovery of the chemical structure of the benzene ring and Poincare's dis-
covery of the fuchsian family of groups and functions in mathematics. More re-
cently, Gay Balfour of Colorado made the U.S. national news {Associated Press, 
January 24, 1992) by literally dreaming up a way to control prairie dog populations 
on ranches; he sucks them up with a giant vacuum machine created from a septic-
system cleaning truck. (He hastens to explain that sucking the critters out of their 
holes causes them no harm at all; even though they may be slightly confused, shortly 
after landing in the holding area they begin burrowing in the soft dirt sucked up with 
them!) Balfour's new technique has reportedly been quite successful in the south-
western United States. 

One explanation of unconscious incubation as a valid element of the creative 
process has been suggested by researchers in artificial intelligence. The explanation 
is based on a "blackboard" model of memory in the human brain. When the brain is 
in the process of doing other things — when a problem is incubating — parts of the 
blackboard are erased and new items put up. Every so often, the new information 
just happens to be pertinent to the original problem, and the juxtaposition of the new 
and old information suggests a creative solution; in other words, the process of com-
ing up with a new and unusual association can result simply from the way the brain 
works. An attractive feature of this theory is that it explains why incubation works 
only a small percentage of the time. Too bad it works so infrequently! 

Beyond the literature's examples and the above speculation about how the brain 
works, however, there is little hard evidence that unconscious processes are at work 
searching for creative solutions (Baron 1988). Still, it is a romantic thought, and if it 
provides an excuse for many of us to relax a little, perhaps the reduced stress and re-
focus of our attention is enough to help us be more creative when we are trying to be. 

3 Illumination   This is the instant of becoming aware of a new candidate solution 
to a problem, that flash of insight when all the pieces come together, either sponta 
neously (Aha!) or as the result of careful study and work. Wallas described illumina 
tion as a separate stage, but you can see that illumination is better characterized as 
the culmination of the incubation stage. 

4 Verification    In the final step the decision maker must verify that the candidate 
solution does in fact have merit. (How many times have you thought you had the an 
swer to a difficult problem, only to realize later — sometimes moments, sometimes 
much later — that your "dream solution" turned out to be just that: an 
impossible 
dream?) The verification stage requires the careful thinker to turn back to the hard 
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logic of the problem at hand to evaluate the quality of the candidate solution. In our 
decision-making context, this means looking very carefully at a newly invented al-
ternative in terms of whether it satisfies the constraints of the problem and how well 
it performs relative to the fundamental objectives. 

Although there are many ways to think about the creative thought process, the 
cognitive approach described above, including the stages of creativity, can help us to 
frame the following discussion. We turn now to ways in which our creativity can be 
hindered, and we follow with suggestions about how to reduce or eliminate such 
blocks and thereby increase our creativity. 

Blocks to Creativity 

With a clear understanding of the creative process, we are now in a position to dis-
cuss ways in which that process can be derailed, albeit inadvertently. This section 
describes three kinds of creativity blocks, drawing heavily from work by Adams 
(1979), Baron (1988), Bazerman (1994), Hogarth (1987), and Kleindorfer, 
Kunreuther, and Schoemaker (1993). All of these blocks interfere with the creativity 
process by hindering the generation and recognition of new and unusual solutions to 
a problem or alternatives in a decision situation. 

Framing and Perceptual Blocks 

These blocks arise because of the ways in which we tend to perceive, define, and ex-
amine the problems and decisions that we face. To get a feel for these blocks, con-
sider the following two problems. As with the earlier chain puzzle, give serious ef-
fort to solving these problems before reading on. 

THE  MONK  AND  THE  MOUNTAIN 

At dawn one day, a monk begins to walk along a path from his home to the top of a 
mountain. Never straying from the path, he takes his time, traveling at various 
speeds, stopping to rest here and there, and arrives at the top of the mountain as the 
sun sets. He meditates at the top of the mountain overnight and for the next full day. 
At dawn the following morning, he begins to make his way back down the moun-
tain along the same path, again relaxing and taking his time, and arrives home in the 
afternoon. Prove that there is a spot along the path that the monk occupies at the 
same time of day going up and coming down. [Source: Adapted from Hogarth 
(1987, p. 161).] 
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MAKING  CIGARS 

Lonesome Molly loves to smoke cigars, and she has learned to make one out of five 
cigar butts. Suppose she collects 25 butts. How many cigars can she make? [Source: 
Adapted from Bartlett (1978).] 

Did you solve either one? The monk problem is difficult to solve if you try to 
maintain the frame in which it is cast: that the same monk travels up and down on 
two different days. Change the frame, though, and imagine identical monks taking 
the uphill and downhill journeys on the same day, each one starting at dawn. Now it 
is easy to see that the monks will meet somewhere along the path at some time dur-
ing the day. At that instant, they are at the same spot in the path; hence in the original 
problem there must be a point along the path that the monk in the problem occupies 
at the same time going up and coming down. 

Lonesome Molly can obviously make at least five cigars out of the 25 butts that 
she finds. But you were right to suspect that the obvious answer is not correct! The 
answer lies in thinking not about the gross requirement of butts to make a cigar but 
to frame the problem in terms of net usage. Molly indeed requires five butts to make 
a cigar. For each one she makes (and smokes), however, she has one butt left. The 
net consumption per cigar is four butts. So if she has 25 butts to start with, she can 
make six cigars and have one butt left over: She makes five cigars out of the original 
25 butts and smokes those five cigars, which yields five butts from which she can 
make a sixth cigar. After she smokes the last one, she has one butt left (and needs to 
find only four more for her next smoke). 

Here are some specific blocks relating to framing and perception that hinder our 
creative potential: 

1 Stereotyping    Suppose you are a personnel manager, and an individual with 
long hair and no necktie applies for a job as an engineer. Imagine your reaction. 
What would you think about the person? A typical mental strategy that most people 
use is to fit observations (people, things, events, and so on) into a standard category 
or stereotype. Much of the time this strategy works well because the categories 
available are rich enough to represent most observations adequately. But when new 
phenomena present themselves, stereotyping and associated preconceived notions 
can interfere with good judgment. 

2 Tacit Assumptions   Consider the classic nine-dot puzzle. Lay out nine dots in a 
square, three dots per row (Figure 6.2), and then, without lifting your pencil, draw 
four straight lines that cross all nine dots. Try it before you read on. The epilogue to 
this chapter gives the standard solution as well as many surprising solutions that 
Adams (1979) has collected from creative readers. 
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Figure 6.2 
Nine-dot puzzle. 

Connect the dots using 
four straight lines 

without lifting your 
pencil. 

[Source: From 
Conceptual 

Blockbusting: A Guide 
to Better Ideas by 

James L. Adams. © 
1974,1976, 1979, 
1986 by James L. 
Adams. Stanford 

Alumni Association, 
Stanford, CA and 

James L. Adams.] 

 

The nine-dot puzzle is a nice example, but what does this block have to do with 
decision making? People often look at problems with tacitly imposed constraints, 
which are sometimes appropriate and sometimes not. Suppose you believe you need 
more warehouse space for your business, so you have your real-estate agent look for 
warehouses of a specific size to rent. The size, however, may be an inappropriate 
constraint. Perhaps so much space is not necessary or may be divided among several 
smaller warehouses. Perhaps some characteristic of your product would permit a 
smaller warehouse to be modified in a clever way to provide adequate storage. 

3 Inability to Understand a Problem at Different Levels   This block can be 
manifest in different ways. First is the familiar issue of isolating the precise decision 
context that requires attention. Suppose you are a national sales manager for a line of 
boots. Sales in the Rocky Mountain states are down. Knowing your regional sales 
person, you suspect that the problem is motivational. The "obvious" solution is to 
threaten or cajole the salesperson into better sales. But is the problem just what you 
think? Could it be a marketing problem — for example, competition with a 
regional 
brand that has been developed specifically for the area? What about a distribution 
problem? Perhaps it is difficult for the one warehouse in the region to supply the 
area's special needs. Perhaps customers in the region finally are getting tired of the 
same old style that has been the company's cash cow for many years. Even if the 
problem does lie with the salesperson, other possibilities exist, such as personal 
problems or personality conflicts with local business owners. 

Another manifestation is focusing too much on detail and not being able to reframe 
the decision in a broader context, a problem commonly called "not seeing the forest for 
the trees." Many decisions require attention to a large amount of detailed information. 
For example, consider the issues involved in deciding whether to attempt a takeover of 
another firm, or where to site a new manufacturing plant. The sheer volume of infor-
mation to be processed can keep the decision maker from seeing new and promising 
alternatives. 

4 Inability to See the Problem from Another Person's Perspective   Where the 
previous block relates to seeing the problem itself in different ways, this one relates to 
seeing the problem through someone else's eyes and with their values. When a deci 
sion involves multiple stakeholders, it is always important to understand the values, in- 
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terests, and objectives of other parties. Really creative solutions incorporate and satisfy 
as many competing objectives as possible, and an inability to understand others' values 
can interfere with the development of such solutions. For example, finding a meaning-
ful way to achieve peace in the Middle East requires the parties to consider the inter-
ests of both Israelis and Palestinians, as well as other nations in the region. 

Value-Based Blocks 

Blocks in this category relate to the values we hold. In many cases our values and 
objectives can interfere with our ability to seek or identify truly creative alternatives 
in a decision situation. 

1 Fear of Taking a Risk   To get a feel for this block, try the following game at a 
party with a lot of friends. Each person is assigned to be a particular kind of barnyard 
animal: cow, donkey, chicken, goat, sheep, or whatever else you designate. The more 
people, the better. After everyone has been assigned to be an animal, the organizer 
counts to three. On the count of three, each person looks directly at his or her nearest 
neighbor and makes the sound of his or her animal as loudly as possible. For obvious 
reasons, this is called the Barnyard Game (Adams 1979). Almost all participants feel 
some reluctance to play because they risk appearing silly in front of their friends. 

There is nothing inherently wrong with being afraid to take a risk. In fact, the 
idea of risk aversion is a basic concept in decision making under uncertainty; we 
have seen, for example, that the basic risky decision as described in Chapter 3 re-
quires the decision maker to determine whether the risk of a loss (relative to a sure 
thing) is justified by a possible but uncertain gain. It may be counterproductive, 
though, not to offer a creative alternative for consideration in a decision problem be-
cause you risk others thinking your idea is impossible, too "far out," or downright 
silly. What are the consequences of presenting a far-out idea that turns out to be un-
acceptable? The worst that might happen is that the idea is immediately determined 
to be infeasible. (Making far-out suggestions can have a more subtle value. 
Outsiders often have a difficult time understanding exactly what the problem is. 
Presenting far-out ideas for action is a sure way to get a clear statement of the prob-
lem, couched in an explicit and often supercilious explanation of why the idea will 
not work. Although this technique cannot be used in every situation, when it works 
the result is a better understanding of the decision situation.) 

2 Status Quo Bias   Decision making automatically means that the decision maker 
is considering at least one alternative that is different from the status quo. As indicated 
in the opening of this chapter, the ability to deal with change is becoming increasingly 
important for managers and decision makers. Studies show, however, that many peo 
ple have a built-in bias toward the status quo. The stronger that bias, the more diffi 
culty one may have coming up with creative problem solutions and alternatives. 

3 Reality versus Fantasy   An individual may place a lot of value on being realis 
tic and a low value on fantasizing. Creative people must be able to control their 
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imagination, and they need complete access to it. Many exercises are available for 
developing an enhanced imagination and the ability to fantasize. Richard de Mille's 
Put Your Mother on the Ceiling (1976) has many imagination games. Although de-
signed primarily for children, going through one of these games as an exercise in 
using fantasy can provide a remarkable experience for anyone. An excerpt from one 
of these games is reproduced in Breathing (see below). For the best effect, have a 
friend read this to you, pausing at the slash marks, while you sit quietly with your 
eyes closed. 

4 Judgment and Criticism This block arises from applying one's values too soon 
in the creative process. Rather than letting ideas flow freely, some individuals tend to 
find fault with ideas as they arise. Such fault finding can discourage the creation of 
new ideas and can prevent ideas — one's own or someone else's — from maturing 
and gathering enough detail to become usable. Making a habit of judging one's 
own thoughts inevitably sacrifices some creative potential. 

Breathing 

Let us imagine that we have a goldfish in front of us. / Have the fish swim around. / 
Have the fish swim into your mouth. / Take a deep breath and have the fish go down 
into your lungs, into your chest. / Have the fish swim around in there. / Let out your 
breath and have the fish swim out into the room again. 
Now breathe in a lot of tiny goldfish. / Have them swim around in your chest. / 
Breathe them all out again. 
Let's see what kinds of things you can breathe in and out of your chest. / Breathe in a 
lot of rose petals. / Breathe them out again, / Breathe in a lot of water. / Have it 
gurgling in your chest. / Breathe it out again. / Breathe in a lot of dry leaves. / Have 
them blowing around in your chest. / Breathe them out again. / Breathe in a lot of 
raindrops. / Have them pattering in your chest. / Breathe them out again. / Breathe in 
a lot of sand. / Have it blowing around in your chest. / Breathe it out again. / Breathe 
in a lot of little firecrackers. / Have them all popping in your chest. / Breathe out the 
smoke and bits of them that are left. / Breathe in a lot of little lions, / Have them 
roaring in your chest. / Breathe them out again. 
Breathe in some fire. / Have it burning and crackling in your chest. / Breathe it out 
again. / Breathe in some logs of wood. / Set fire to them in your chest. / Have them 
roaring as they burn up. / Breathe out the smoke and ashes.... 
Be a fish. / Be in the ocean. / Breathe the water of the ocean, in and out. / How do 
you like that? / Be a bird. /Be high in the air. / Breathe the cold air, in and out. / How 
do you like that? / Be a camel, / Be on the desert. / Breathe the hot wind of the desert, 
in and out. / How does that feel? / Be an old-fashioned steam locomotive, / Breathe 
out steam and smoke all over everything. / How is that? / Be a stone. / Don't breathe. / 
How do you like that? / Be a boy (girl). / Breathe the air of this room in and out. / 
How do you like that? 

Source: de Mille, Richard (1976). Put Your Mother on the Ceiling. New York: Viking Penguin. 
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Cultural and Environmental Blocks 

All decisions are made in some sort of social and cultural environment. The blocks 
that we describe here represent ways in which that environment may hinder the pro-
duction and recognition of creative alternatives in decision situations. 

1 Taboos This type of block has to do with what is "proper behavior" or "accept-
able" in a cultural sense; taboos may exist for no apparently good reason. The fol-
lowing problem (adapted from Adams 1979) demonstrates this block. As before, 
think about this problem before reading further. 

PING-PONG   BALL   IN   A   PIPE 

You are in a room with six other people. The room is entirely barren except for a 
steel pipe embedded solidly in the concrete floor and extending 25 centimeters above 
the floor. The upper end of the pipe is open, and a Ping-Pong ball is at the bottom of 
the pipe as in Figure 6.3. Your job is to get the Ping-Pong ball out of the pipe with-
out damaging the ball, the pipe, or the concrete. You have only the following items 
available that you can use to extricate the ball: 

10 feet of cotton string 
5 ounces of dry cereal 
A wire coat hanger 
A steel file 
A chisel 
A hammer with a wooden handle 
A monkey wrench 
A light bulb 

Often people come up with solutions like fashioning a long set of tweezers out of the 
coat hanger or smashing the hammer handle and using the splinters to retrieve the 
ball. But occasionally a few intrepid individuals cross a cultural borderline and real-
ize that the simplest way to get the ball out is to have people in the group urinate in 
the pipe! Of course, urinating in such a public situation is somewhat taboo in our 
western culture, effective though it may be for solving the problem. 

For a more realistic example, suppose one of your co-workers has a new baby and 
wishes to bring the child to work so that she can continue to nurse the child. Certain 
taboos are involved here, including nursing in public and having a child in the work-
place during "serious" work time. Should the taboos be violated? A creative alternative 
would find a way to accommodate the mother without grossly violating the taboos. 
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Figure 6.3 
Ping-Pong ball in a 

pipe. Extract the Ping- 
Pong ball from the 
steel pipe without 

damaging the concrete, 
pipe, or ball. 

2 Strength of Tradition    As we mentioned previously, individuals can resist 
change because of a bias toward the status quo. There is a cultural counterpart to this 
block; in many cases, the sociocultural environment in which a decision maker oper 
ates places a high value on maintaining tradition. Adopting change can be difficult in 
such a situation, which in turn can hinder the production of creative suggestions in 
the first place. For example, the musical Fiddler on the Roof describes the tradition- 
bound culture of Russian Jews in the early twentieth century and a father's difficulty 
in dealing with his daughters' new ways of finding husbands. 

3 Reason and Logic versus Humor, Fantasy, and Artistic Thinking   There is a 
clear block against using feelings, intuitions, and emotions in business problem 
solving. Certainly valuable insights and understanding come from analytical treat- 
ments of any given problem; indeed these skills are important in decision making, 
and a course in decision analysis offers to teach such skills. However, valuable cues 
and ideas can also arise by admitting and examining feelings, intuitions, and emo- 
tions. For example, doing so can help understand the values of others who may have 
a stake in a decision. In the example above regarding bringing a child to work, re- 
luctance to allow a child in the workplace may be due to the values of the workers 
who feel that the playfulness, fantasy, and humor that children represent should not 
displace reason and logic at work. 

In a decision-making course much of the emphasis is on the development of an-
alytical thinking. Unfortunately, little effort is put into more artistically oriented 
thinking skills such as using imagery, being playful, storytelling, or expressing and 
appreciating feelings. Such activities tend to be culturally blocked because of the 
stress placed on analysis. From the discussion in this chapter, it would appear that 
artistic thinking can play an important role in the development of creative alterna-
tives. The best possible arrangement is for an individual to be "mentally ambidex-
trous," or good at switching between analytical and artistic thinking styles. This en-
hances creative development of potential alternatives without sacrificing subsequent 
careful analysis. 
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Organizational Issues 

Without a doubt, different organizations have different characteristics or cultures, 
and organizational culture can have a strong influence on decision making. Many of 
the issues that we have already discussed can be a part of an organization's deci-
sion-making culture. For example, an organization may have a culture that in subtle 
ways promotes criticism and judging of ideas, stereotyping, or being risk-averse. 
Humor, playfulness, or artistic thinking may be frowned upon, or change may be re-
sisted in order to preserve company traditions. For all of the reasons discussed 
above, such characteristics can reduce the creative potential of individuals in the or-
ganization. 

By their very nature, organizations can impede creative thought. As Adams 
(1979, p. 143) points out, "the natural tendency of organizations to routinize, de-
crease uncertainty, increase predictability, and centralize functions and controls is 
certainly at odds with creativity." Other features of organizations also can hinder cre-
ativity. Examples include excessive formal procedures (red tape) or lack of coopera-
tion and trust among co-workers. Hierarchical organizational structures can hinder 
creativity, which in turn can be exacerbated by supervisors who tend to be autocratic. 

Teresa Amabile has studied creativity and organizations for over twenty years. 
Her work has led to a detailed model of individual creativity in the organizational 
context (Amabile, 1988). First, individual creativity requires three ingredients: ex-
pertise in the domain, skill in creative thinking, and intrinsic motivation to do the 
task well. In other words, we need someone who is good at what he or she does, who 
likes to do it just because it is interesting and fun, and who has some skill in creative 
thinking, perhaps along the lines of the creativity-enhancing techniques we discuss 
later in this chapter. 

Amabile's work shows how the organizational environment can influence indi-
vidual creativity. In particular, she warns that expecting detailed and critical evalua-
tion, being closely watched, focusing on tangible rewards, competing with other 
people, and having limited choices and resources for doing the job all can hinder 
one's creativity. When she compared high- and low-creativity scenarios in organiza-
tions, though, the results indicated that a delicate balance must be maintained. For 
example, workers need clear overall goals, but at the same time they need latitude in 
how to achieve those goals. Likewise, evaluation is good as long as it focused on the 
work itself (as opposed to the person) and provides informative and constructive 
help. Such evaluation ideally involves peers as well as supervisors. Although a focus 
on tangible rewards can be detrimental, knowing that one's successful creative ef-
forts will be recognized is important. A sense of urgency can create a challenging at-
mosphere, particularly if individuals understand the importance of the problem on 
which they are working. If the challenge is viewed as artificial, however, such as 
competing with another division in the company or having an arbitrary deadline, the 
effect can be to decrease creativity. Thus, although creativity is essentially an indi-
vidual phenomenon, managers can have a significant impact on creativity in their or-
ganizations through goal setting, evaluation, recognition and rewards, and creating 
pressure that reflects a genuine need for a creative solution. 
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Finally, even though managers can help individuals in their organizations be more 
creative, one can develop a "blind spot" because of a long-term association with a par-
ticular firm; it becomes difficult to see things in a new light simply because certain pro-
cedures have been followed or perspectives adopted for a long time. The German word 
betriebsblind for this situation literally means "company-blind." One of the important 
roles that consultants serve is bringing a new perspective to the client's situation. 

Value-Focused Thinking for Creating Alternatives 

Keeney (1992, Chapters 7 and 8) describes a number of different ways in which fun-
damental and means objectives can be used as a basis for creating new alternatives 
for decision alternatives. In this section we review some of these techniques. 

Fundamental Objectives 

The most basic techniques use the fundamental objectives directly. For example, 
take one fundamental objective and, ignoring the rest, invent a (possibly hypotheti-
cal) alternative that is as good as it could be on that one objective. Do this for each 
fundamental objective one at a time, and keep track of all of the alternatives you 
come up with. Now go back and consider pairs of objectives; what are good alterna-
tives that balance these two objectives? After doing this for various combinations of 
objectives, look at the alternatives you have listed. Could any of them be modified so 
that they would be feasible or perhaps satisfy the remaining objectives better? Can 
any of the alternatives be combined? 

A related approach is to consider all of the fundamental objectives at once and 
imagine what an alternative would look like that is perfect in all dimensions; call this 
the ideal alternative. Most likely it is impossible, but what makes it impossible? If the 
answer is constraints, perhaps some of those constraints can be removed or relaxed. 

Still another possibility is to go in the opposite direction. Find a good alternative 
and think of ways to improve it. The fact that the alternative is a good one in the first 
place can reduce the pressure of finding a better one. In searching for a better one, 
examine the alternative carefully in terms of the objectives: On which objectives 
does it perform poorly? Can it be improved in these dimensions? For example, 
Keeney (1992) describes an analysis of possible sites for a hydroelectric power 
plant. One of the potential sites was very attractive economically but had a large en-
vironmental impact, which made it substantially less desirable. On further study, 
however, the design of the facility at the site was modified to reduce the environ-
mental impact while maintaining the economic advantage. 

Means Objectives 

We mentioned back in Chapter 3 that the means objectives can provide a particularly 
fruitful hunting ground for new alternatives. The reason for this is simply that the 
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means objectives provide guidance on what to do to accomplish the fundamental ob-
jectives. In complicated problems with many fundamental objectives and many re-
lated means objectives, this approach can generate many possible courses of action. 
For example, consider the following decision situation. 

TRANSPORTATION   OF   NUCLEAR  WASTE 

One of the problems with the use of fission reactors for generating electricity is that 
the reactors generate substantial amounts of radioactive waste that can be highly 
toxic for extremely long periods of time. Thus, management of the waste is neces-
sary, and one possibility is to place it in a storage facility of some sort. Transporting 
the waste is itself hazardous, though. In describing the problem, Keeney (1992) 
notes that the decision situation includes the selection of a type of storage cask in 
which the material will be shipped, followed by the selection of a transportation 
route and a choice as to how many casks to ship at once. The uncertainties include 
whether an accident occurs, the amount of radiation released, and whether an effi-
cient evacuation plan exists when and if an accident occurs. 

Means objectives are associated with each of the decisions and uncertainties. For 
example, a means objective is to select the best possible cask, and that might include 
designing a special kind of cask out of a particular material with appropriate size and 
wall thickness specifications. Selecting a transportation route that travels through a 
sparsely populated area is a means objective to reduce potential exposure in the case 
of an accident. In selecting the number of casks to ship at once, one would want to 
balance the chance of smaller accidents with more frequent but smaller shipments 
against the chance of a larger accident with larger and less frequent shipments. 

In examining the uncertainties, obvious means objectives come to mind. For ex-
ample, an important means objectives is to reduce the chance of an accident, which 
in turn suggests strict rules for nuclear-waste transportation (slow speeds, driving 
during daylight hours, special licensing of drivers, additional maintenance of roads 
along the route, and so on). Reducing the amount of radiation released in an accident 
and increasing the chance of an efficient evacuation plan being in place suggest the 
development of special emergency teams and procedures at all points along the 
transportation route. [Source: Keeney (1992, pp. 205-207).] 

In another example, we can use a means network directly. Take the automotive-
safety example that we discussed in Chapter 3; the problem is to find ways to maxi-
mize safety of automotive travel, and according to the fundamental objectives 
(Figure 3.1), maximizing safety means minimizing minor injuries, serious injuries, 
and deaths of both adults and children. The means-objectives network is reproduced 
here as Figure 6.4. You can see that each node in the network suggests particular al-
ternatives. The objective of maximizing use of vehicle-safety features suggests that 
currently available features might be mandated, or incentives might be provided to 
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Figure 6.4 
A means-objectives 

network for improving 
automotive safety. 

Source: Keeney 
(1992, p. 70). 

manufacturers. Likewise, incentives (e.g., a reduced insurance premium) might be 
given to automobile drivers for using safety features. Farther down in the network 
we find the objective of educating the public. We already have widespread driver-
education programs for new drivers, but what about providing incentives for adult 
drivers to take periodic refresher courses? To combat drunken driving in particular, 
many states in the United States have implemented a combination of tougher traffic 
laws and public-education programs. 

You can see from these examples how useful the means objectives can be for 
identifying new alternatives. Moreover, using a means-objectives network can en-
sure that as many aspects of the decision problem as possible are covered; the deci-
sion maker can see exactly what the new alternatives help achieve and can perhaps 
further develop the alternatives to attain a level of balance among the fundamental 
and means objectives. For example, in examining a set of safety proposals, matching 
the proposals against means and fundamental objectives might reveal that safety of 
children has not been explicitly addressed or that the set of proposals currently under 
consideration do nothing to encourage proper vehicle maintenance. 

The Decision Context 

Finally, it is always possible to broaden the decision context as part of the search for 
new ideas. We mentioned this possibility back in Chapter 3 in discussing decision 
structuring. As argued above, part of the creative process requires that the decision 
maker look at a problem from as many different perspectives as possible, and con-
sidering a broader context is guaranteed to reveal a different view of a decision situ-
ation. Take the automotive-safety example, and suppose the issue is broadened from 
automotive safety to transportation safety in general. At a microlevel in a city, this 
might imply a comprehensive education program for local cyclists, pedestrians, and 
motorists. At a county or state level, one might consider incentives to reduce urban 
sprawl and increase the use of alternative transportation methods. 
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For another example, reconsider the nuclear-waste transportation problem. 
Deciding how to transport the waste may arise from a prior decision to place a stor-
age site in a designated location. But suppose we broaden the decision context to 
consider a variety of storage options. Doing so suggests possibilities like storing 
waste at the nuclear power plants themselves, which in turn suggests finding ways to 
reduce waste production or to store it more efficiently at these sites. Another possi-
bility is to store the waste in smaller but more numerous waste facilities rather than 
in fewer and larger sites. Although some of these alternatives may not be reasonable 
to pursue, broadening the decision context can help uncover new ways to address the 
decision at hand and may suggest solutions of a more general nature. 

Other Creativity Techniques 

Fluent and Flexible Thinking 

Fluency and flexibility of thinking are important in enhancing creativity. Fluency is 
the ability to come up with many new ideas quickly. Flexibility, on the other hand, 
stimulates variety among these new ideas. An individual who can write down many 
ideas quickly, regardless of what they may be, would be a fluent thinker. The flexible 
thinker might have a shorter list of ideas, but the ideas would tend to cover a broader 
range of possibilities. An individual who is both fluent and flexible can write down 
many different ideas quickly. One useful analogy compares thinking with digging 
holes. Fluent thinking is seen as the ability to dig one hole very deep and very 
quickly by taking a lot of dirt from one place. Flexible thinking, however, is more 
like the ability to dig many smaller holes in many different places. 

A common exercise that is used to demonstrate these ideas is to think of new 
uses for common red construction bricks. The goal is to come up with marketing 
ideas that a brickyard owner could pursue to get out of financial difficulties. A list 
with many uses that are variations on a common theme indicates fluency. For exam-
ple, many of the uses may be ways to use bricks to build things, or uses that take ad-
vantage of a brick's weight (for example, as a paperweight or ballast for hot-air bal-
loons). A list with a lot of variety in different attributes of the bricks indicates 
flexibility. For example, flexible thinking would use many different attributes of a 
brick: strength, weight, color, texture, hardness, shape, and so on. Understanding the 
difference between the two different kinds of thinking is the first step toward devel-
oping enhanced thinking skills in either fluency or flexibility or even both. 

Idea Checklists 

One classic technique for enhancing creativity uses checklists that cover many po-
tential sources of creative solutions to problems. Most of us use lists in a rather nat-
ural way. The yellow pages provide a simple and ubiquitous list that can provide 
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many ideas for solutions to specific problems. (Are any plumbers available on 
Sunday? Any do-it-yourself stores close by?) Mail-order and retail catalogs are ex-
amples of lists that we may use to solve a gift-giving problem. Many authors have 
written general-purpose lists for problem solving. The best known is Osborn's 
(1963) 73 Idea-Spurring Questions, reproduced below. Of course, Osborn's list can 
be extended with other descriptive verbs such as multiply, squeeze, lighten, propel, 
and flatten. 

Another creativity-enhancing technique is to write down attributes of a problem, 
list alternative options under each attribute, and then consider various combinations 
and permutations of the alternatives. This use of lists was suggested by Koberg and 
Bagnall (1974), who dubbed the technique morphological forced connections to em-
phasize the combination of morphological attributes in design problems. The tech-
nique is not limited to designing new products. In fact, an early variant of this tech-
nique was used to think about objectives in a decision situation. Dole et al. (1968 
a,b) describe an application by the National Aeronautics and Space Administration 
(NASA) for determining the scientific objectives of space-exploration missions. 
Action phrases (such as "measure tidal deformations in . . .  ") were combined with 
target features (such as "the interior of . . .  ") and target subjects (Jupiter, for exam-
ple) to create a possible scientific objective. The candidate objective then was con-
sidered to determine whether it was a valid scientific objective. If so, it was included 

Osborn's 73 Idea-Spurring Questions 

Put to other uses? New ways to use as is? Other uses if modified? 
Adapt? What else is like this? What other idea does this suggest? Does the past offer a 
parallel? What could I copy? Whom could I emulate? 
Modify? New twist? Change meaning, color, motion, sound» odor, form, shape? Other 
changes? 
Magnify? What to add? More time? Greater frequency? Stronger? Higher? Longer? 
Thicker? Extra value? Plus ingredient? Duplicate? Multiply? Exaggerate? 
Minify? What to subtract? Smaller? Condensed? Miniature? Lower? Shorter? 
Lighter? Omit? Streamline? Split up? Understate? 
Substitute? Who else instead? What else instead? Other ingredient? Other material? 
Other process? Other power? Other place? Other approach? Other tone of voice? 
Rearrange? Interchange components? Other pattern? Other layout? Other se-
quence? Transpose cause and effect? Change pace? Change schedule? 
Reverse? Transpose positive and negative? How about opposites? Turn it backward? 
Turn it upside down? Reverse roles? Change shoes? Turn tables? Turn other cheek? 
Combine? How about a blend, an alloy, an assortment, an ensemble? Combine units? 
Combine purposes? Combine appeals? Combine ideas? 

Source: From A. F. Osborn, Applied Imagination, 3rd edition. Copyright © 1963. All rights reserved. 
Adapted by permission of Allyn & Bacon. 
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in the list. For example, "Establish the structure of the interior of the sun" was an ob-
jective, but "Determine the characteristic circulation patterns in the photosphere of 
the space environment" was not. 

The value of morphological forced connections is not so much to find all possi-
ble combinations as much as to provide a framework within which all imaginable 
combinations can be screened easily to determine the most appropriate candidates. 
In the NASA example, candidate objectives were generated readily and then 
screened for validity. Another example, reported by Howard (1988), comes from an 
advertising claim by a fast food hamburger chain that, with its custom service, one 
can order 1024 different kinds of hamburgers; that is, a customer could order a 
burger with or without each of 10 possible ingredients. Not all of the possible com-
binations are reasonable, however; for example, one combination is a "burger" that 
consists only of lettuce, or only of ketchup. One is the "nullburger": nothing at all. 
Most individuals would agree that many of these unusual combinations must be 
screened out. In fact, a burger may not be a burger without the beef patty and a bun. 

A more serious example also comes from Howard (1988), who suggests the 
strategy-generation table. Figure 6.5 shows a typical strategy-generation table for an 
energy conglomerate that is considering possible expansion. Dividend payout and 
dividend-to-equity ratio also are important attributes for the conglomerate to con-
sider in strategic planning. For the most part, the table is self-explanatory. An overall 
strategy is one that has individual elements in each column. As with the hamburger, 
however, not all combinations make sense. For example, because of cash constraints 
it is not likely that the conglomerate could pursue aggressive expansion in each of its 
five existing businesses, acquire another firm, and also have a high dividend payout. 
The strategy outlined in Figure 6.5 is one that might be described by executives as a 
"service business" strategy. Other feasible strategies could be assembled using the 
strategy-generation table. The point here is that the morphological forced connec-
tions technique facilitates both generation and screening to come up with a list of 
reasonable alternatives. 

Figure 6.5 
Strategy-generation 

table. 
Source: Reprinted by 

permission of Ron 
Howard, "Decision 

Analysis: Practice and 
Promise," Management 

Science, 34, No. 6, 
June 1988, pp. 679-

695. Copyright 1988, 
The Institute of Man-

agement Sciences. 
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Brainstorming 

Brainstorming is another popular way of generating a long list of ideas quickly. To 
be effective, a brainstorming session should include at least two people, and proba-
bly no more than 8 or 10 (it can be difficult to keep up with all of the ideas generated 
by a group that is very large). The rules for a brainstorming session are simple: 

1 No evaluation of any kind is permitted. 
2 All participants should think of the wildest ideas possible. 
3 The group should be encouraged to come up with as many ideas as possible. 
4 Participants should try to build upon or modify ideas of others. 

Brainstorming works well for several reasons. The most important is probably 
the lack of any judgment, which eliminates an important block for many people. 
That so many ideas are created rapidly reassures those who have little faith in their 
own creative potential: The enthusiasm of a few individuals tends to be contagious, 
and a "one-upmanship" game usually develops as participants try to top previous 
ideas. Practitioners report that the technique tends to generate a first rash of ideas uti-
lizing common solutions. After this initial phase, participants must come up with 
new concepts. Naturally, the newer concepts are the most valuable result of the 
brainstorming exercise. 

Metaphorical Thinking 

Given our earlier discussion of fantasy and imagination, it should come as no sur-
prise that creativity can be enhanced by the use of metaphors. Much of the work on 
metaphorical thinking comes from William J. J. Gordon (1961, 1969), who founded 
Synectics, Inc., a consulting corporation that specializes in creative problem solving. 
Three kinds of metaphors can be used systematically to enhance creative potential: 
direct analogy, personal analogy, and fantasy analogy. 

Direct analogy involves thinking about how others have solved problems similar 
to the one under consideration. Often the most productive approach is to examine so-
lutions found in nature. For example, wet leaves, which pack together snugly, sug-
gested metaphorically how potato chips might be packaged. The result was Pringles 
potato chips, which are stacked and sold in a can. The inventor of Velcro was in-
spired while removing burrs from his dog's fur. Suppose the problem is to design a 
home security system. What kinds of security systems do plants and animals have? 
Many animals make a lot of noise when threatened. Perhaps a security system could 
be designed that could sense intruders and then make noise — by turning on a stereo 
or TV inside a house — to frighten away intruders. 

Personal analogy is closely related to the kinds of games that are played in de 
Mille's Put Your Mother on the Ceiling. The idea is to imagine a variety of personal 
situations that are pertinent in some way to the problem at hand. Personal analogy 
can be extremely helpful in computer programming, for example. Imagining the pre-
cise steps (and perhaps shortcuts) that would be taken to solve a problem by hand 
can help in designing a computer program to solve the same kind of problem. 
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In fantasy analogy, the group tries to come up with truly far-fetched, fantastic, 
and ideal solutions. The classic example arose when a group was trying to design an 
airtight closure for space suits that would be easily operated. Here is a transcript of 
part of the session, taken from Gordon (1961): 

G: Okay. That's over. Now what we need here is a crazy way to look at this mess. A 
real insane viewpoint. . .  a whole new room with a viewpoint! 
T: Let's imagine you could will the suit closed . . . and it would do just as you wanted 
by wishing .. . [fantasy analogy] 
G: Wishing will make it so . . .  
F: Ssh, okay. Wish fulfillment. Childhood dream ... you wish it closed, and invisible 
microbes, working for you, cross hands across the opening and pull it tight... 
B: A zipper is kind of a mechanical bug [direct analogy]. But not airtight. . .  or 
strong enough ... 
G: How do we build a psychological model of "willing-it-to-be-closed"? 
R: What are you talking about? 
B: He means that if we could conceive of how "willing-it-to-be-closed" might 
happen in an actual model—then we . . .  
R: There are two days left to produce a working model—and you guys are talking 
about childhood dreams! Let's make a list of all the ways there are of closing things. 
F: I hate lists. It goes back to my childhood and buying groceries ... 
R: F, I can understand your oblique approach when we have time, but now, with 
this deadline .. . and you still talking about wish fulfillment. 
G: All the crappy solutions in the world have been rationalized by deadlines. 
T: Trained insects? 
D: What? 
B: You mean, train insects to close and open on orders? 1-2-3 Open! Hup! 
1-2-3 Close! 
F: Have two lines of insects, one on each side of the closure—on the order to close 
they all clasp hands . . .  or fingers . . .  or claws . . . whatever they have . . . and then 
closure closes tight. .. 
G: I feel like a kind of Coast Guard insect [personal analogy]. D: 
Don't mind me. Keep talking . .. 
G: You know the story . .. worst storm of the winter—vessel on the rocks .. . can't 
use lifeboats . . . some impatient hero grabs the line in his teeth and swims o u t . . .  
B: I get you. You've got an insect running up and down the closure, manipulat-
ing the little latches .. . 
G: And I'm looking for a demon to do the closing for me. When I will it to be 
closed [fantasy analogy], Presto! It's closed! 
B: Find the insect — he'd do the closing for you! 
R: If you used a spider . . .  he could spin a thread ... and sew it up [direct analogy]. 
T: Spider makes thread . . . gives it to a flea ... Little holes in the closure ... 
flea runs in and out of the holes closing as he goes . .. 
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G: Okay. But those insects reflect a low order of power ... When the Army tests 
this thing, they'll grab each lip in a vise one inch wide and they'll pull 150 pounds 
on it. . .  Those idiot insects of yours will have to pull steel wires behind them in 
order ... They'd have to stitch with steel. Steel 
B: I can see one way of doing that. Take the example of that insect pulling a thread 
up through the holes ... You could do it mechanically ... Same insect... put holes 
in like so . . .  and twist a spring like this .. . through the holes all the way up to the 
damn closure . . . twist, twist, twist,. . . Oh, crap! It would take hours! And twist 
your damn arm off! 
G: Don't give up yet. Maybe there's another way of stitching with steel. .. 
B: Listen . . .  I have a picture of another type of stitching ... That spring of yours ... 
take two of the . . .  let's say you had a long demon that forced its way up . . .  like 
this .. . 
R: I see what he's driving at. . .  
B: If that skinny demon were a wire, I could poke it up to where, if it got a start, it 
could pull the whole thing together . . .  the springs would be pulled together closing 
the mouth ... Just push it up . . .  push — and it will pull the rubber lips together ... 
Imbed the springs in rubber ... and then you've got it stitched with steel! 

Source: Gordon (1961). 

Other Techniques 

Several other techniques are available to enhance a group's creative potential. Many 
rely on methods for improving group interaction in general. For example, Nominal 
Group Technique (NGT) (Delbecq, Van de Ven, and Gustafson 1975) begins with no 
interaction. Individuals in the group each write down as many ideas as they can on 
pieces of paper. Then each individual in turn presents one of his or her ideas. The 
group leader records these ideas on a flipchart or chalkboard. Discussion begins after 
ideas from each participant are written down. At the end, each individual writes 
down his or her ranking or rating of the ideas. These are then combined mathemati-
cally to arrive at a group decision. 

The main advantage of NGT is that the group leader manages the interaction of 
the group in such a way that certain blocks are avoided and the environment is en-
hanced. For example, discussion is not permitted until after the ideas are presented, 
thus creating a more supportive environment. 

Other techniques actually use a more adversarial approach. Devil's advocacy and 
dialectical inquiry are techniques in which individuals take sides in a debate. On the 
surface, this might appear to hamper creative thought, but when such techniques are 
used only after ideas have been generated and a healthy creative environment has 
been established, they can work well. It also helps if all participating members un-
derstand what the techniques are meant to do. The main advantage of this kind of ap-
proach is that it can help a group of individuals consider a problem from multiple 
perspectives. Being forced into an alternative viewpoint can lead to new creative 
ideas. Another advantage is that the group is less likely to overlook basic issues that 
may be hidden from certain vantage points. 
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The role of the leader in group discussion techniques is paramount. A good 
leader sets the tone of the session, and a positive tone promotes an atmosphere that 
is conducive to healthy discussion and that encourages the free flow of ideas. It is 
easy to see that a group with such a leader probably will have more success in gen-
erating creative ideas and solving problems. 

Creating Decision Opportunities 

Creativity in decision making can be much more than generating new alternatives. 
A really creative decision maker is one who creates decision opportunities. Keeney 
(1992) stresses that an individual, group, or organization which understands its val-
ues and objectives clearly is perfectly positioned to look for decision 
opportunities proactively rather than merely reacting to decision problems served 
up by life. As you may agree, life does not always generously provide decision 
situations with many attractive options, but instead often seems to pose difficult 
decision problems that must be addressed, often under trying circumstances. 

In Chapter 9 of Value-Focused Thinking, Keeney describes a wide variety of 
ways to use one's objectives to help identify new decision opportunities. The more 
obvious ones are to look at fundamental and means objectives and find ways to 
achieve them; simply choosing to look for ways to achieve ones objective is in itself 
creating an opportunity. As we discussed above, broadening a decision context can 
be worthwhile. Simply learning to say no to those who ask for time, money, or assis-
tance can create decision opportunities for those who have a difficult time turning 
down meritorious requests. And, as Keeney explains, when you just do not know 
what to do, that is the perfect occasion to create a decision opportunity in which you 
can tailor the alternatives to match your objectives. The decision maker who 
searches actively and creatively for new opportunities can look forward to many ex-
citing possibilities and a full life. 

SUMMARY Creativity is important in decision making because the available alternatives deter-
mine the boundaries of the decision. We discussed various theories of creativity, in-
cluding the phases of creative thought. We then introduced many different kinds of 
creativity blocks that hinder creative efforts. In discussing creativity-enhancing tech-
niques, we began with the use of one's objectives as a basis for developing new ideas 
and showed how means objectives in particular can provide a fertile ground for gen-
eration of new alternatives. Other creativity techniques include becoming proficient 
in both flexible and fluent thinking, list making, brainstorming, and metaphorical 
thinking. Group discussion techniques can promote creativity through appropriate 
management of interaction in the group and can also enhance the creative environ-
ment. Finally, we argued that a truly creative decision maker goes beyond the cre-
ation of alternatives all the way to the development of new decision opportunities. 
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QUESTIONS   AND   PROBLEMS 

6.1 In talking about cultural and environmental blocks, we discussed the matter of a woman 
bringing an infant into the workplace and the possible reactions of others. Consider the 
situation in which a classmate wants to bring her child to school in order to continue 
nursing. Are the taboos the same? What are the differences between the two situations? 

6.2 Choose a decision that you currently face. What are your objectives in this situation? List 
your means objectives, and for each means objective list at least one alternative that 
could help achieve that objective. 

6.3 An important objective of most academic programs is to get students to be more creative. 
How can this be done? What specific exercises can you think of that would help? What 
kinds of things can an instructor do? Any changes to the curriculum or requirements? Try 
some of the creativity-enhancing techniques that we discussed. For example, you might 
try any of the following: 
a List fundamental and means objectives that you think would be appropriate for your 

academic program. Use these objectives as a basis for generating ways to make stu 
dents more creative. ^ 

b List making, especially morphological forced connections. What are important attri-
butes to list? What are alternatives under those attributes? Can you use Osborn's list? 
Can you think of extensions to his list? 

с Brainstorming. To do this, you need to find a small group of people to brainstorm 
with. The exact size of the group is not important, but you need at least one more be-
sides yourself, and probably no more than 8 or 10 altogether. 

d Metaphorical thinking. Direct analogy is difficult here. How do other disciplines 
teach students to be creative? How do animals teach offspring to deal with new situ-
ations? Personal analogy is somewhat more straightforward. Imagine that you are the 
boss. What do you want your employee to be able to do? Imagine that you are a pro-
fessor. Would you want your students to be creative? How would you encourage it? 
Can you imagine that you are a problem that needs to be solved? How would you like 
to be solved? Try fantasy analogy. Try to imagine the most fantastic and ideal cre-
ativity training program. Describe it in detail; exercise your imagination! What kinds 
of resources would be required? How many people? How much time? What kinds of 
interactions with others? Would there be instructors and students, or just participants, 
all on the same level? Think of other questions. 

You are not required to use any of these techniques, nor are you limited to them. Your 
job is to generate some creative ideas any way you can. 

6.4 How would you design an organization so that it could, in Tom Peters's words, "thrive on 
chaos"? What characteristics would such an organization have? What kind of people 
would you try to hire? How would the role of the managers differ from the traditional 
view of what a manager does? 

6.5 In discussing the perceptual block of stereotyping, we used the example of a person with 
long hair and no necktie applying for a job as an engineer. Did you imagine this person as 
male or female? Why? Was there a block involved in your perception? Describe it. 

6.6 The point is often made that formal schooling can actually discourage young children 
from following their natural curiosity. That curiosity is an important element of creativ- 
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ity, and so it may be the case that schools indirectly and inadvertently are causing chil-
dren to become less creative than they might be. What does this imply for those of us 
who have attended school for many years? What can you suggest to today's educators as 
ways to encourage children to be curious and creative? 

6.7 Use the means-objectives network in Figure 6.4 to create a list of alternatives for im 
proving automotive safety. Try to create at least one alternative for each objective listed. 

6.8 Reconsider the summer-intern decision discussed in Chapter 3. Figure 3.4 shows the fun 
damental and means objectives. With a group of friends, use these objectives along with 
brainstorming to generate a list of at least 20 things PeachTree can do to help locate and 
hire a good summer intern. 

6.9 The lists that were discussed focused on the generation of alternatives. However, the 
same technique can be used to determine objectives in a decision situation. Write a list of 
questions that you might ask yourself when searching for a job. What do you want to ac 
complish? For example, do you want to save money? Save time? Improve your lifestyle? 
What else is important? 

 

6.10 Describe a situation in which unconscious incubation worked for you. Describe one in 
which it did not. Can you explain why it worked in the first case but not in the second? 

6.11 One of the technological problems that we face as a society is the increasing use of plas 
tics in disposable items. Landfills are becoming more and more expensive and difficult to 
maintain, and land for new ones can only be obtained at premium prices. Furthermore, 
the plastics that are dumped in the landfills may release dioxins (toxic chemical sub 
stances) into the soil. 

Of course, many different kinds of plastic exist. Spend 10 minutes writing down pos-
sible ways to recycle one-gallon plastic milk jugs. You can assume that the milk jugs are 
received rinsed out and reasonably clean, but not sterile. Look at your list. Does it reflect 
fluent thinking, flexible thinking, or both? 

C A S E     S T U D I E S  

MODULAR  OLYMPICS 

Seoul, Korea, was the site of the 1988 Summer Olympic Games. However, the Wall 
Street Journal (June 29, 1987) reported that because of political unrest in Korea, 
there was some concern about having the games there. Would it have been possible 
to change sites as late as 1987? It seems unlikely because of the expense and plan-
ning associated with putting the games on. Wouldn't it be nice to be able to disas-
semble the Olympics from one site, ship them to a new site, reassemble, and pro-
ceed? Modular Olympics. 

Question 

1 Use whatever creativity-enhancing techniques you can to help think about ways to 
modify the Olympics to make it possible to change locations more easily than is 
currently the case. 
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BURNING   GRASS-SEED   F I E L D S  

Grass-seed farmers in the Willamette Valley in western Oregon have been burning 
their fields since the 1940s. After the grass seed is harvested, the leftover straw is 
burned to remove it and to sterilize the fields. However, burning large fields of straw 
creates a lot of pollution. Another burning method is available that uses a propane 
torch to burn the stubble in a field after the straw has been removed. 

In the face of controversy over the negative effects of burning, the grass-seed in-
dustry is considering alternative ways to sterilize the fields. The propane method is 
the most promising, but it first requires removal of the straw. 

Question 

1 What can be done with the straw? Spend 10 minutes writing down all the possible 
uses you can think of for straw. If possible, form a group and have a brainstorming 
session. Or try any other creativity technique that you can think of. Does your list 
demonstrate flexibility or fluency of ideas? 

R E F E R E N C E S  

It is rather unusual for a book on decision theory to have a chapter on creativity. The 
"management science" tradition would suggest that there is a set way of attacking a spe-
cific problem and that all the decision maker must do is apply the appropriate technique. 
However, this is too simple for the complex problems that managers face these days. 
Hence, this chapter is meant to dispel the notion that analytical thinking is all that is re-
quired to solve real problems. 

Very little literature exists within management science on creativity. Keller and Ho 
(1989) review and summarize this literature. Some of Keeney and Raiffa's (1976, 
Chapter 2) discussion of the structuring of objectives is pertinent to creativity in decision 
making. As indicated in the text, Keeney (1992) devotes many pages to creativity. 
Kleindorfer, Kunreuther, and Schoemaker (1993) also discuss creativity from a manage-
ment science perspective. 

Some of the literature on creativity, like Adams (1979), comes from an engineer-
ing/design/inventing perspective. (In fact a recent creativity book by Adams (1986) con-
tains a chapter on decision analysis!) Most of the literature, however, comes from psy-
chology, as the many references at the beginning of the chapter indicate. Baron (1988), 
Bazerman (1994), and Hogarth (1987) provide good reviews of the creativity literature 
from a psychological perspective. Johnson, Parrott, and Stratton (1968) provide some in-
sights on the value of brainstorming. 

Adams, J. L. (1979) Conceptual Blockbusting: A Guide to Better Ideas, 2nd ed. Stanford, 
CA: Stanford Alumni Association. 
Adams, J. L. (1986) The Care and Feeding of Ideas. Stanford, С A: Stanford Alumni 
Association. 
Amabile, T. (1988) "A Model of Creativity and Innovation in Organizations." Research 
in Organizational Behavior, 10, 123-167. 
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E P I L O G U E  
The basic solution to the nine-dot puzzle is shown in Figure 6.6. Many people tacitly 
assume that the lines may not go beyond the square that is implied by the dots, and 
so they fail to solve the puzzle. Figure 6.7 shows how to connect nine fat dots with 
three straight lines, removing the block that the line has to go through the centers of 
the dots. 

It is possible, with enough effort to remove the necessary blocks, to connect the dots 
with one line. Some solutions include: 

• Fold the paper in a clever way so that the dots line up in a row. Then just draw 
one straight line through all nine dots. 

• Roll the paper up and tape it so that you can draw a spiral through all of the dots. 
• Cut the paper in strips and tape it together so that the dots are in one row. 
• Draw large dots, wad the paper up and stab it with a pencil. Unfold it and see if 

the pencil went through all the dots. If not, try again. "Everybody wins!" 

Figure 6.6 
The standard solution 
to the nine-dot puzzle. 
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Figure 
6.7 

An unblocked three-
line solution. 

• Fold the paper carefully so that the dots are lying one on top of the other. Now 
stab your pencil through the nine layers of paper. It helps to sharpen your pencil 
first. 

• Draw very small dots very close together in the square pattern and then draw a fat 
line through all of them at once. This one is courtesy of Becky Buechel when she 
was 10 years old. 

Source: Adams (1979). 

 



SECTION 2 

Modeling 
Uncertainty 

s we have seen, uncertainty is a critical element of 
many decisions that we face. In the next five chap-

ters we will consider a variety of ways to model uncer-
tainty in decision problems by using probability. We 
begin with a brief introduction to probability in Chapter 
7. This introduction has three objectives: to remind you 
of probability basics, to show some ways that probabil-
ity modeling can be useful in decision problems, and to 
give you a chance to polish your ability to manipulate 
probabilities. The problems and cases at the end of 
Chapter 7 are recommended especially to help you ac-
complish the last goal. 

Chapter 8 introduces the topic of subjective proba-
bility. In the introduction to this text the claim was made 
that subjective judgements are critical in a decision-
analysis approach. Most of us are comfortable making 
informal statements that reflect our uncertainty. For ex-
ample, we use terms such as "there's a chance that such-
and-such will happen." In a decision-analysis approach, 
however, there is a need for more precision. We can use 
probability to model subjective beliefs about uncer-
tainty, and chapter 8 presents techniques to do this. 
Thus, our beliefs and feelings about uncertainty can be 
translated into probability numbers that can be included 
in a decision tree or influence diagram. 

In many cases the uncertainty that we face has char-
acteristics that make it similar to certain prototypical sit-
uations. In these cases, it may be possible to represent 

A 



the uncertainty with a standard mathematical model and 
then derive probabilities on the basis of the mathemati-
cal model. Chapter 9 presents a variety of theoretical 
probability models that are useful for representing un-
certainty in many standard situations. 

Chapter 10 discusses the use of historical data as a 
basis for developing probability distributions. If data 
about uncertainty in a decision situation are available, a 
decision maker would surely want to use them. First, 
we see how to use data alone to create histograms and 
continuous distributions. Second, we discuss the use of 
data to model relationships among variables. Finally, 
we develop an approach that uses data to update a deci-
sion maker's probability beliefs via Bayes' theorem. 

It is also possible to "create data" through computer 
simulation, or by what is known as Monte Carlo simu-
lation. That is, one can construct a model of a complex 
decision situation and use a computer to simulate the 
situation many times. By tracking the outcomes, the de-
cision maker can obtain a fair idea of the probabilities 
associated with various outcomes. Monte Carlo simula-
tion techniques are discussed in Chapter 11. 

When faced with uncertainty most decision makers 
do their best to reduce it. The basic strategy that we fol-
low is to collect information. In this day and age of ex-
tensive telecommunications and computer data bases, 
information is anything but scarce, but determining 
what information is appropriate and then processing it 
can be costly. How much is information worth to you? 
Moreover, in a problem with many sources of uncer-
tainty, calculating the value of information can help to 
guide the decision analysis, thus indicating where the 
decision maker can best expend resources to reduce un-
certainty. Chapter 12 explores the value of information 
within the decision-analysis framework. 



CHAPTER 7 
Probability Basics 

ne of the central principles of decision analysis is that we can represent uncertainty of any kind 
through the appropriate use of probability. We already have been using probability in straightforward 

ways to model uncertainty in decision trees and influence diagrams. This chapter 
presents some of the basic principles for working with probability and probability 
models. Our objective is to be able to create and analyze a model that represents the 
uncertainty faced in a decision. The nature of the model created naturally depends 
on the nature of the uncertainty faced, and the analysis required depends on the 
exigencies of the decision situation. 

We have used the term chance event to refer to something about which a decision 
maker is uncertain. In turn, a chance event has more than one possible outcome. 
When we talk about probabilities, we are concerned with the chances associated 
with the different possible outcomes. For convenience, we will refer to chance 
events with boldface letters (e.g., Chance Events A and B), and to outcomes with 
lightface letters (e.g., Outcomes A1, Bj, or C). Thus Chance Event B, for example, 
might represent a particular chance node in an influence diagram or decision tree, 
and Outcomes B1, B2, and B3 would represents B's possible outcomes.* 

After reading the chapter and working the problems and cases, you should be (1) 
reasonably comfortable with probability concepts, (2) comfortable in the use of 
probability to model simple uncertain situations, (3) able to interpret probability 
statements in terms of the uncertainty that they represent, and (4) able to manipulate 
and analyze the models you create. 

*The terminology we adopt in this book is slightly unconventional. Most authors define an outcome space that includes all possible 
elemental outcomes that may occur. For example, if the uncertain event is how many orders arrive at a mail-order business in a given 
day, the outcome space is composed of the integers 0, 1, 2, 3, . . ., and each integer is a possible elemental outcome (or simply an 
outcome). An event is then defined as a set of possible outcomes. Thus, we might speak of the event that the number of orders equals 
zero or the event that more than 10 orders arrive in a day. 

In this book we use the term outcome to refer to what can occur as the result of an uncertain event. Such occurrences, which we 
represent as branches from chance nodes in decision trees, can be either events or elemental outcomes in the conventional terminol-
ogy. Thus, our usage of outcome includes the conventional event as well as outcome. Why the change? For our purposes it is not nec-
essary to distinguish between elemental outcomes and sets of outcomes. Also, we avoid the potential confusion that can arise by using 
uncertain event to refer to a process and event to refer to a result of that process. 
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A Little Probability Theory 

Probabilities must satisfy the following three requirements. 

1 Probabilities Must Lie Between 0 and 1    Every probability (p) must be posi 
tive, and between 0 and 1, inclusive (0 < p < 1). This is a sensible requirement. In 
informal terms it simply means nothing can have more than a 100% chance of oc 
curring or less than a 0% chance. 

2 Probabilities Must Add Up   Suppose two outcomes are mutually exclusive 
(only one can happen, not both). The probability that one or the other occurs is then 
the sum of the individual probabilities. Mathematically, we write F(Al or A2) = 
P(A1) + P(A2) if A1 and A2 cannot both happen. For example, consider the stock mar 
ket. Suppose there is a 30% chance that the market will go up and a 45% chance that 
it will stay the same (as measured by the Dow Jones average). It cannot do both at 
once, and so the probability that it will either go up or stay the same must be 75%. 

3 Total Probability Must Equal 1    Suppose a set of outcomes is mutually exclu 
sive and collectively exhaustive. This means that one (and only one) of the possible 
outcomes must occur. The probabilities for this set must sum to 1. Informally, if we 
have a set of outcomes such that one of them has to occur, then there is a 100% 
chance that one of them will indeed come to pass. 

We have seen this in decision trees; the branches emanating from a chance node 
must be such that one and only one of the branches occurs, and the probabilities for 
all the branches must add to 1. Consider the stock market example again. If we say 
that the market can go up, down, or stay the same, then one of these three outcomes 
must happen. The probabilities for these outcomes must sum to 1—that is, there is a 
100% chance that one of them will occur. 

Venn Diagrams 

Venn diagrams provide a graphic interpretation of probability. Figure 7.1 shows a 
simple Venn diagram in which two Outcomes, A1 and A2, are displayed. Think of the 
diagram as a whole representing a chance event (A)x and areas represent possible 
outcomes. The circle labeled A1 thus represents outcome A1. Because the areas of A1 
and A2 do not overlap, A1 and A2 cannot both occur at the same time; they are mutu-
ally exclusive. 

We can use Figure 7.1 to interpret the three requirements of probability mentioned 
above. The first requirement is that a probability must lie between 0 and 1. Certainly an 
outcome cannot be represented by a negative area. Furthermore, an outcome cannot be 
represented by an area larger than the entire rectangle. For the second requirement, we 
see that A1 and A2 are mutually exclusive because they do not overlap. Thus, the prob- 
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Figure 7.1 
A Venn diagram. 

Outcomes A1 and A2 
are mutually exclusive 

events. 

ability of A1 or A2 occurring must be just the sum of the probability of A1 plus the prob-
ability of A2. For the third requirement, label the shaded portion of the rectangle as C. 
This is what must happen if neither Al nor A2 happens. Because A1, A2, and C together 
make up the whole rectangle, then one of the three must occur. Moreover, only one of 
them can occur. The upshot is that their probabilities must sum to 1. Alternatively, 
there is a 100% chance that A1, A2, or C will occur. 

More Probability Formulas 

The following definitions and formulas will make it possible to use probabilities in a 
wide variety of decision situations. 

4 Conditional Probability Suppose that you are interested in whether a particular 
stock price will increase. You might use a probability P(Up) to represent your uncer-
tainty. If you find out that the Dow Jones industrial average rose, however, you would 
want to base your probability on this condition. Figure 7.2 represents the situation with 
a Venn diagram. Now the entire rectangle actually represents two chance events, what 
happens with the Dow Jones index and what happens with the stock price. For the 
Dow Jones event, one possible outcome is that the index goes up, represented by the 
circle. Likewise, the oval represents the possible outcome that the stock price goes up. 
Because these two outcomes can happen at once, the two areas overlap in the diago-
nally shaded area. When both outcomes occur, this is called the joint outcome or inter-
section. It also is possible for one to rise while the other does not, which is represented 
in the diagram by the nonoverlapping portions of the "Dow Jones Up" and "Stock 
Price Up" areas. And, of course, the gray area surrounding the circle and oval repre-
sents the joint outcome that neither the Dow Jones index nor the stock price goes up. 

Once we know that the Dow Jones has risen, then the entire rectangle is no 
longer appropriate. At this point, we can restrict our attention to the "Dow Jones Up" 
circle. We want to know what the probability is that the stock price will increase 
given that the Dow Jones average is up, and so we are interested in the probability 
associated with the area "Stock Price Up" in the restricted space. 

Given that we are looking at the restricted space, the conditional probability of 
"Stock Price Up given Dow Jones Up" would be represented by the proportion of 
"Dow Jones Up" in the original diagram that is the joint outcome "Stock Price Up" 
and "Dow Jones Up" (the diagonally shaded area). This intuitive approach leads to 
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Figure 7.2 
A Venn-diagram 

representation of 
conditional probability. 

the conclusion that P(Stock Price Up given Dow Jones Up) = P(Stock Price Up and 
Dow Jones Up)/P(Dow Jones Up). 

Mathematically, we write P(A | B) to represent the conditional probability of A 
given that B occurs. Read it as "Probability of A given B." The definition is 

 

Informally, we are looking only at the occasions when Outcome B occurs, and 
P(A | B) is the proportion of those times that Outcome A also occurs. The probabil-
ity P(A and B) is often called a  joint probability. 

5 Independence   The definition of probabilistic independence is as follows: 

Chance Events A (with Outcomes A1,. . . , An) and B (with Outcomes B1, . . 
. , Bm) are independent if and only if 

P(Ai |B j)=P(Ai) for all possible 

Outcomes Ai and Bj. 

In words, knowing which of B's outcomes occurred will not help you find probabil-
ities for A's outcomes. Furthermore, if Chance Events A and B are independent, then 
we can write 

 



 
From this we can see that P(Ai and Bj ) = P(Ai) P(Bj). Thus, when two events are in-
dependent, we can find the probability of a joint outcome by multiplying the proba-
bilities of the individual outcomes. 

Independence between two chance events is shown in influence diagrams by the 
absence of an arrow between chance nodes. This is fully consistent with the defini-
tions given in Chapter 3. If one event is not relevant in determining the chances as-
sociated with another event, there is no arrow between the chance nodes. An arrow 
from chance node B to chance node A would mean that the probabilities associated 
with A are conditional probabilities that depend on the outcome of B. 

As an example of independent chance events, consider the probability of the 
Dow Jones index increasing and the probability of the Dow Jones increasing, given 
that it rains tomorrow. It seems reasonable to conclude that 

P(Dow Jones Up) = P(Dow Jones Up | Rain) 

because knowing about rain does not help to assess the chance of the index going up. 
Independent chance events are not to be confused with mutually exclusive out-

comes. Two outcomes are mutually exclusive if only one can happen at a time. Clearly, 
however, independent chance events can have outcomes that happen together. For ex-
ample, it is perfectly possible for the Dow Jones to increase and for rain to occur to-
morrow. Rain and No Rain would constitute mutually exclusive outcomes; only one 
occurs at a time. 

Finally, if two chance events are probabilistically dependent, this does not imply a 
causal relationship. As an example, consider economic indicators. If a leading economic 
indicator goes up in one quarter, then it is unlikely that a recession will occur in the next 
quarter; the change in the indicator and the occurrence of a recession are dependent 
events. But this is not to say that the indicator going up causes the recession not to hap-
pen, or vice versa. In some cases there may be a causal chain linking the events, but it 
may be a very convoluted one. In general, dependence does not imply causality. 

Conditional Independence. This is an extension of the idea of independence. 
Conditional independence is best demonstrated with an influence diagram. In Figure 
7.3, Events A and B are conditionally independent given Event C. Note that C can 
be a chance event or a decision, as in Figure 7.3b. The only connection between A 
and B goes through C; there is no arrow directly from A to B, or vice versa. 
Mathematically, we would write 

Events A and B are conditionally independent given C if and only if 

P(Ai | Bj, Ck) = P(Ai | Ck), for all 

possible Outcomes Ai, Bj, and Ck. 

In words, suppose we are interested in Event A. If A and B are conditionally independent 
given C, then learning the outcome of B adds no new information regarding A if 
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Figure 7.3 

 
Conditional independence in an influence diagram. In 
these influence diagrams, A and B are conditionally in-
dependent given C. As shown, the conditioning event 
can be either (a) a chance event or (b) a decision. 

the outcome of C already is known. Alternatively, conditional independence 
means that 

P(Ai and B j | Ck) = P(Ai | Ck) P(Bj | Ck) 

Conditional independence is the same as normal (unconditional) independence ex-
cept that every probability has the same conditions to the right side of the vertical 
bar. When constructing influence diagrams, identification of conditional indepen-
dence can ease the burden of finding probabilities for the chance events. 

As an example of conditional independence, consider a situation in which you 
wonder whether or not a particular firm will introduce a new product. You are ac-
quainted with the CEO of the firm and may be able to ask about the new product. But 
one of your suppliers, who has chatted with the CEO's assistant, reports that the-
company is on the brink of announcing the new product. Your probability that the 
company will indeed introduce the product thus would change: 

P(Introduce Product | Supplier's Report) ^ P(Introduce Product) 

Thus, these two events are not independent when considered by themselves. 
Consider, however, the information from the CEO. Given that information, the sup-
plier's report might not change your probability: 

P(Introduce Product | Supplier's Report, Information from CEO) 
= P(Introduce Product | Information from CEO) 

Thus, given the information from the CEO, the supplier's report and the event of the 
product introduction are conditionally independent. 

Conditional independence is an important concept when thinking about causal 
effects and dependence. As mentioned above, dependence between two events does 
not necessarily mean that one causes the other. For example, more drownings tend to 
be associated with more ice cream consumption, but it seems unlikely that these two 
are causally related. The explanation lies in a common cause; both tend to happen 
during summer, and it might be reasonable to assume that drownings and ice cream 
consumption are conditionally independent given the season. Another example is 
that high skirt hemlines tend to occur when the stock market is advancing steadily (a 
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bull market), although no one believes that hemlines cause the stock market to ad-
vance, or vice versa. Perhaps both reflect a pervasive feeling of confidence and ad-
venture in our society. If we had an adequate index of "societal adventuresomeness," 
hemline height and stock market activity might well be conditionally independent 
given the index. 

6 Complements Let B ("Not B" or "B-bar") represent the outcome that is the 
complement of B. This means that if B does not occur, then B must occur. Because 
probabilities must add to 1 (requirement 3 above), 

 

The Venn diagram in Figure 7.4 demonstrates complements. If the area labeled B 
represents Outcome B, then everything outside of the oval must represent what hap-
pens if B does not happen. For another example, the lightly shaded area in Figure 7.2 
represents the complement of the Outcome "Dow Jones Up or Stock Price Up," the 
union of the two individual outcomes. 

7 Total Probability of an Event   A convenient way to calculate P(A) is with this 
formula: 

 

To understand this formula, examine Figure 7.5. Clearly, Outcome A is composed of 
those occasions when A and B occur and when A and B occur. Because the joint 
Outcomes "A and B" and "A and B" are mutually exclusive, the probability of A 
must be the sum of the probability of "A and B" plus the probability of "A and B." 
As an example, suppose we want to assess the probability that a stock price will 
increase. We could use its relationship with the Dow Jones index (Figure 7.2) to help 
make the assessment: 

P(Stock Price Up) = P(Stock Price Up | Dow Jones Up) × P(Dow Jones Up) + 
P(Stock Price Up | Dow Jones Not Up) × P(Dow Jones 
Not Up) 

Figure 7.4 
Venn diagram illustrat-

ing the idea of an 
outcome's 

complement. 
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Figure 7.5 
Total probability. 

Outcome A is made up 
of Outcomes "A and 
B" and "A and B¯." 

Although it may appear that we have complicated matters by requiring three proba-
bilities instead of one, it may be quite easy to think about (1) the probability of the 
stock price movement conditional on the change in the Dow Jones index and (2) the 
probabilities associated with changes in the index. 

8 Bayes' Theorem Because of the symmetry of the definition of conditional 
probability, we can write 

P(B | A) P(A) = P(A | B) P(B) 

from which we can derive 

 
This formula often is referred to as Bayes'theorem. It is extremely useful in decision 
analysis, especially when using information. We will not bother with an example 
showing its application here, but we will see numerous applications of Bayes' theo-
rem in the examples at the end of this chapter, as well as in Chapters 9, 10, and 12. 

Uncertain Quantities 

Many uncertain events have quantitative outcomes. For example, we already have 
mentioned stock prices and the level of the Dow Jones index. Another example 
would be tomorrow's maximum temperature. If an event is not quantitative in the 
first place, we might define a variable that has a quantitative outcome based on the 

 

 
Now expanding P(A) with the formula for total probability, we obtain 
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original event. For example, we might be concerned about precipitation. If we con-
sider the amount of precipitation (in centimeters) that falls tomorrow, this uncertain 
event is quantitative. Moreover, we could define an uncertain quantity X: Let X = 1 
if precipitation occurs, and X = 0 if not. 

The set of probabilities associated with all possible outcomes of an uncertain 
quantity is called its probability distribution. For example, consider the probability 
distribution for the number of raisins in an oatmeal cookie, which we could denote 
by Y. We might have P(Y = 0) = 0.02, P(Y = 1) = 0.05, P(Y = 2) = 0.20, P(Y = 3) 
= 0.40, and so on. Of course, the probabilities in a probability distribution must add 
to 1 be cause the events — numerical outcomes — are mutually exclusive. 
Uncertain quantities (often called random variables) and their probability 
distributions play a central role in decision analysis. 

In general, we will use capital letters to represent uncertain quantities. Thus, we 
will write P(X = 3) or P(Y > 0), for example, which are read as "the probability that 
the uncertain quantity X equals 3," and "the probability that the uncertain quantity Y 
is greater than 0." Occasionally we will need to use a more general form. Lowercase 
letters will denote outcomes or realizations of an uncertain quantity. An example 
would be P(X = x), where capital X denotes the uncertain quantity itself and lower-
case x represents the actual outcome. 

In general, it is helpful to distinguish between discrete and continuous uncertain 
quantities. In the next section we will describe in detail discrete uncertain quantities, 
their probability distributions, and certain characteristics of those distributions. Then 
we will turn to some continuous quantities and show how their probability distribu-
tions and their characteristics are analogous to the discrete case. 

Discrete Probability Distributions 

The discrete probability distribution case is characterized by an uncertain quantity 
that can assume a finite or countable number of possible values. We already have 
seen two examples. The first was the precipitation example; we defined a discrete 
uncertain quantity that could take only the values 0 and 1. The other example was the 
number of raisins in an oatmeal cookie. Other examples might be the number of op-
erations a computer performs in any given second or the number of games that will 
be won by the Chicago Cubs next year. Strictly speaking, future stock prices quoted 
on the New York Stock Exchange are discrete uncertain quantities because they can 
take only values that are in eighths: 105/8, 113/4, or 121/2, for example. 

When we specify a probability distribution for a discrete uncertain quantity, we 
can express the distribution in several ways. Two approaches are particularly useful. 
The first is to give the probability mass function. This function lists the probabilities 
for each possible discrete outcome. For example, suppose that you think that no 
cookie in a batch of oatmeal cookies could have more than five raisins. A possible 
probability mass function would be: 

P(Y = 0 raisins) = 0.02    
 P(Y = 3 raisins) = 0.40 P(Y = 1 raisin) = 0.05 
     P(Y = 4 
raisins) = 0.22 P(Y = 2 raisins) = 0.20     P (Y = 5 
raisins) = 0.11 
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This mass function can be displayed in graphical form (Figure 7.6). Such a graph 
often is called a histogram. 

The second way to express a probability distribution is as a cumulative distribu-
tion function (CDF). A cumulative distribution gives the probability that an uncertain 
quantity is less than or equal to a specific value: P(X ≤ x). For our example, the CDF 
is given by 

P(Y ≤ 0 raisins) = 0.02        P(Y ≤ 3 raisins) = 0.67 
P(Y ≤ 1 raisins) = 0.07        P(Y ≤ 4 raisins) = 0.89 
P(Y ≤ 2 raisins) = 0.27        P(Y ≤ 5 raisins) = 1.00 

Cumulative probabilities can be graphed; the CDF for the oatmeal cookie is graphed 
in Figure 7.7. 

Note that the graph actually covers all the points along the horizontal axis. That 
is, we can read from the graph not only P(Y ≤ 3), but also P(Y ≤ 4.67), for example. 
In fact, P(Y ≤ 4.67) = P(Y ≤ 4) = 0.89, because it is not possible for a cookie to 
have a fractional number of raisins (assuming whole raisins, of course). 

You may recognize this idea of a probability mass function and a CDF. When we 
constructed risk profiles and cumulative risk profiles in Chapter 4, we were working 
with these two representations of probability distributions. 

Figure 7.6 
A probability mass 

function displayed as a 
histogram. 

 

 

 

 

Figure 7.7 
Cumulative distribu-
tion function (CDF) 

for number of raisins 
in an oatmeal cookie. 
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Expected Value 

A discrete uncertain quantity's expected value is the probability-weighted average of 
its possible values. That is, if X can take on any value in the set {x1, x2, . . ., xn}, then 
the expected value of X  is simply the sum of x1 through xn, each weighted by the 
probability of its occurrence. Mathematically, 

 
The expected value of X also is referred to as the average or mean of X and is de-
noted by E(X) or occasionally μx (Greek mu). 

The expected value can be thought of as the "best guess" for the value of an uncer-
tain quantity or random variable. It if were possible to observe many outcomes of the 
random variable, the average of those outcomes would be very close to the expected 
value. We already have encountered expected values in calculating EMVs to solve in-
fluence diagrams and decision trees. The expected monetary value is the expected value 
of a random variable that happens to be the monetary outcome in a decision situation. 

Suppose that X is used to calculate some other quantity, say Y. Then it is possible 
to talk about the expected value of Y, or the expected value of this function of X: 

 
A particularly useful function is a linear function of X, one in which X is multiplied 
by a constant and has a constant added to it. If Y is a linear function of X, then E( Y) 
is particularly easy to find: 

 

That is, plug E(X) into the linear formula to get E(Y). Unfortunately, this does not 
hold for nonlinear functions (log, square root, and so on); in general, it applies only 
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to linear ones. That is, suppose you have some function f(X) and you want to find the 
expected value of E[f(X)]. In general, you cannot plug E(X) into the function and get 
the correct answer; E[f(X)] ≠ f[E(X)], unless f(X) is a linear function like a + bX. 

To go one step further, suppose we have several uncertain quantities, Xl,..., Xk, 
and we add them to get uncertain quantity Y. Then the expected value of Y is the sum 
of the expected values: 

 

For instance, if we know the expected amount of precipitation for each of the next 
seven days, the expected amount of precipitation for the entire week is simply the 
sum of the seven daily expected values. 

Variance and Standard Deviation 

Another useful measure of a probability distribution is the variance. The variance of 
uncertain quantity X is denoted by Var(X) or σX

2 (Greek sigma) and is calculated 
mathematically by 

 
In words, calculate the difference between the expected value and xt and square that 
difference. Do this for each possible xi. Now find the expected value of these squared 
differences. 

As with expected values, we can find variances of functions for X. In particular, 
the variance of a linear function of X is easily found: 
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For example, suppose that a firm will sell an uncertain number (X) of units of a prod-
uct. The expected value of X is 1000 units, and the variance is 400. If the price is $3 
per unit, then the revenue (Y) is equal to 3X. Because this is a linear function of X, 
E(Y) = 3E(X) = $3000, and Var(Y) = 32 Var(X) = 9(400) = 3600. 

We also can talk about the variance of a sum of independent uncertain quantities. 
That is, as long as the uncertain quantities are probabilistically independent — the 
probability distribution for one does not depend on the others — then the variance 
of the sum is the sum of the variances: 

 
So, if our firm sells two products, one for $3 and another for $5, and the variance for 
these two products is 400 and 750, respectively, then the variance of the firm's rev-
enue is Var(Y) = 32 Var(X1) + 52 Var(X2) = 9(400) + 25(750) = 22,350. 

The standard deviation of X, denoted by σx, is just the square root of the vari-
ance. Because the variance is the expected value of the squared differences, the 
standard deviation can be thought of as a "best guess" as to how far the outcome of 
X might lie from E(X). A large standard deviation and variance means that the prob-
ability distribution is quite spread out; a large difference between the outcome and 
the expected value is anticipated. For this reason, the variance and standard devia-
tion of a probability distribution are used as measures of variability. A large vari-
ance or standard deviation would indicate a s ituation in which the outcomes are 
highly variable. 

To illustrate the ideas of expected value, variance, and standard deviation, 
consider the double-risk dilemma depicted in Figure 7.8. Choices A and B both 
lead to uncertain dollar outcomes. Given Decision A, for example, there are three 
possible profit outcomes having probability mass function P(Profit = $20 | A) = 
0.24, P(Profit = $35 | A) = 0.47, and P(Profit = $50 | A) = 0.29. Likewise, for 
B we have P(Profit = -$9 | B) = 0.25, P(Profit = $0 | B) = 0.35, and P(Profit = 
$95 | B) = 0.40. Now we can calculate the expected profits conditional on choosing 
A or  B: 

E(Profit | A) = 0.24($20) + 0.47($35) + 0.29($50) = $35.75 
E(Profit | B) = 0.25(-$9) + 0.35($0) + 0.40($95) = $35.75 

These two uncertain quantities have exactly the same expected values. (Note that the 
expected profit does not have to be one of the possible outcomes!) 
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We also can calculate the variances and standard deviations (σ) for A and B: 
 

The variance and standard deviation of B are much larger than those for A. The out-
comes in B are more spread out or more variable than the outcomes for A, which are 
clustered fairly closely around the expected value. 

The example also points out the fact that variance, being a weighted sum of squared 
terms, is expressed in squared units. In this case, the variance is in "dollars squared" be-
cause the original outcomes are in dollars. Taking the square root to find the standard 
deviation brings us back to the original units, or, in this case, dollars. For this reason, the 
standard deviation is interpreted more easily as a measure of variability. 

You might have noticed that, while the variance and standard deviation can be 
used to gauge the riskiness of an option, the cumulative probabilities also can be use-
ful in this respect. For example, we have P(Profit ≤ 0 | A) = 0, but P(Profit ≤ 0 | B) = 
0.6, and B thus looks somewhat riskier than A. At the other extreme, of course, B 
looks better. Project A cannot produce a profit greater than $50: P(Profit ≤ $50 | A) = 
1.00. For B, however, P(Profit ≤ $50 | B) = 0.60. 

Covariance and Correlation for Measuring 
Dependence (Optional) 

We have discussed the notion of probabilistic dependence above and indicated that 
dependence is defined in terms of conditional distributions. In some cases, though, the 
use of conditional distributions can be difficult, and another approach to measuring 

Figure 7.8 
A choice between two 

uncertain prospects. 

 

 



UNCERTAIN QUANTITIES      233 

dependence is worthwhile. Covariance is a quantity that is closely related to the idea 
of variance. Covariance and its close relative correlation can be used to measure cer-
tain kinds of dependence. 

The covariance between two uncertain quantities X and Y is calculated mathe-
matically by 

 
Although this is a complicated formula, with a little interpretation we can get some 
insight into it. First, it really is similar to the formula for variance. There we calcu-
lated an average of squared deviations of X  from its expected value E(X). Here, in-
stead of squaring the deviations, we multiply X's deviation times Y's deviation. This 
is sometimes called a cross product because it is a product of deviations for two dif-
ferent quantities (X and Y). 

Although it may not be evident on the surface, the covariance can be either posi-
tive or negative. Suppose that large values of X tend to occur with large values of Y, 
and small with small. On the other hand, the probability that high values of X and 
low values of Y (and vice versa) occur together is low. Now consider what happens 
with the cross products in the formula. When both X and Y are high, they will both be 
above their corresponding expected values, making both deviations and their cross 
product positive. When both quantities are low, they will both be below their ex-
pected values. Both deviations will be negative, but the cross product will again be 
positive. When one is high and one is low (that is, one above its expected value and 
one below), the cross product will be negative. If large X's tend to go with large Y's, 
and small with small, then the positive cross products will get more weight (higher 
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probabilities) than negative cross products in the formula, and the overall calculation 
will yield a positive covariance. On the other hand, if large X's tend to occur with 
small Y's, and vice versa, then the negative cross products will get more weight, re-
sulting in a negative covariance. Thus, a positive covariance reflects quantities that 
tend to move in the same direction, and this is called a positive relationship. 
Likewise, a negative covariance indicates that the quantities tend to move in oppo-
site directions, which is called a negative relationship. 

A simple example will help clarify the idea of covariance and its calculation. 
Suppose an investor is considering purchasing shares in American Rivets 
Corporation (ARC). The investor already has shares of Sundance Solar Power 
(SSP). One of the things the investor would like to accomplish is to stabilize the rate 
of return of the portfolio; ideally, when the return on one stock goes down, the other 
would go up. On the other hand, a positive relationship would be bad because the re-
turns would tend to go up and down together, making the overall return on the port-
folio vary considerably. 

A simple model of the returns on the two stocks involves only two possible out-
comes for each one. ARC could have returns of 10% or —5%. SSP, on the other hand, 
could have returns of 12% or -8%. The probabilities of the possible outcomes are 

P(ARC = 10% and SSP = 12%) = 0.35 
P(ARC = 10% and SSP = -8%) = 0.10 
P(ARC = -5% and SSP = 12%) = 0.15 
P(ARC = -5% and SSP = -8%) = 0.40 

You can see that the two stocks tend to move in the same direction. There is a 75% 
chance that they are both high or both low. Likewise there is only a 25% chance that 
one is high and the other low. Thus, we might expect the covariance to be positive. 

Calculating the covariance requires first calculating the expected values for each 
stock. Considering ARC first, we can use the law of total probability: 

P(ARC = 10%) = P(ARC = 10% and SSP = 12%) 
+ P(ARC = 10% and SSP = -8%) = 0.35 

+ 0.10 = 0.45 

Thus, P(ARC = -5%) = 1 - P(ARC = 10%) = 0.55, and we can calculate 

E(ARC) = 0.45(10%) + 0.55(-5%) 
= 1.75% 

Likewise, we can calculate E(SSP): 

P(SSP = 12%) = P(ARC = 10% and SSP = 12%) 
+ P(ARC = -5% and SSP = 12%) = 0.35 

+ 0.15 = 0.50 



UNCERTAIN QUANTITIES      235 

P(SSP = -8%) = 1 - P(SSP = 12%) 
= 0.50 

E(SSP) = 0.50(12%) + 0.50(-8%) 
= 2% 

Now we can calculate the covariance between ARC and SSP: 

Cov(ARC, SSP) 
= [10% - 1.75%][12% - 2%]P(ARC = 10% and SSP = 12%) 

+ [10% - 1.75%][-8% - 2%]P(ARC = 10% and SSP = -8%) + 
[-5% - 1.75%][12% - 2%]P(ARC = -5% and SSP = 12%) + 
[-5% - 1.75%][-8% - 2%]P(ARC = -5% and SSP = -8%) 

= 8.25% × 10% × 0.35 
+ 8.25% × (-10%) × 0.10  
+ (-6.75%) × 10% × 0.15  
+ (-6.75%) × (-10%) × 0.40 

= 37.5(% squared) 

As expected, the covariance is positive. The problem, however, is that the mag-
nitude of the covariance is not very meaningful because it depends on the range of 
variation in the two quantities. Also, as with the variance, the covariance carries 
units that are meaningful. In the case of the two stock returns, the units are % 
squared. But suppose we wanted to calculate the covariance between hemline height 
and stock market return; the calculation would involve multiplying inches times per-
centage points of return, and so the units would be % inches. What in the world is a 
% inch? 

To solve these two problems, we often transform the covariance to get a standard-
ized measure of dependence. This standardized measure is called the correlation co-
efficient, and the Greek symbol ρ (rho) is used to represent it. To calculate ρ, divide 
the covariance of X and Y by the standard deviations of these two uncertain quantities: 

 
The correlation ρ has a number of useful properties. First, it ranges between +1 (per-
fect positive dependence) and -1 (perfect negative dependence). A correlation of 
zero suggests no relationship, although certain kinds of dependence are possible 
even though the correlation is zero (see Exercise 7.11). Also, ρ has no units. In the 
hemline-stock market example, we would divide the covariance (% inches) by the 
standard deviation of return (%) and the standard deviation of hemline height 
(inches), and the units would cancel each other out. An implication is that the corre-
lation is useful for comparing the strength of the relationship in one case with the 
strength of the relationship in another that involves different variables altogether. 
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To continue the example, we can calculate the correlation between the returns for 
stocks ARC and SSP. To do this calculation, we must first calculate the standard de-
viation for each of the two individual stocks. These are σARC = 7.46% and 
σSSP  = 10%. Thus, 

 
This correlation of 0.503 gives the investor an indication of the extent to which the 
returns are related. By comparing the correlations of different pairs of stocks, the in-
vestor can try to locate those with lower (or even negative) correlations in order to 
accomplish the objective of stabilizing the return of the overall portfolio. This is the 
principle of portfolio diversification. 

One final warning is in order before leaving the ideas of covariance and correla-
tion. Although these measures of dependence are widely used, they only provide in-
sight into a certain kind of dependence. That is, as long as the relationship is such 
that an increase in one variable always suggests an increase (or always a decrease) in 
the other, then the covariance and correlation will reflect this relationship. If the re-
lationship is more complex, however, such a relationship may not be adequately re-
flected in the covariance and correlation. For example as X increases up to a certain 
point, Y might be expected to increase. As X continues to increase, though, Y might 
be expected to decrease. This kind of nonmonotonic relationship may not be re-
flected by the covariance and correlation. 

Continuous Probability Distributions 

The discussion above has focused on discrete uncertain quantities. Now we turn 
briefly to continuous uncertain quantities. In this case, the uncertain quantity can 
take any value within some range. For example, the temperature tomorrow at 
O'Hare Airport in Chicago at noon is an uncertain quantity that can be anywhere be-
tween, say, -50°F and 120°F. The length of time until some anticipated event (for 
example, the next major earthquake in California) is a continuous uncertain quantity, 
as are locations in space (the precise location of the next earthquake), as well as var-
ious measurements such as height, weight, and speed (for example, the peak "ground 
acceleration" in the next major earthquake). 

With continuous uncertain quantities, it is not reasonable to speak of the proba-
bility that a specific value occurs. In fact, the probability of a particular value occur-
ring is equal to zero: P(Y = y) = 0. Intuitively, there are infinitely many possible val-
ues, and so the probability of any particular value must be infinitely small. Instead, 
we typically speak of interval probabilities: P(a ≤ Y ≤ b). The CDF for a continuous 
uncertain quantity can be constructed on the basis of such intervals. 

The easiest way to understand this process is through a simple example. Let us 
suppose we are interested in a movie star's age. For a variety of reasons, we may be 
certain that she is older than 29 and no older than 65. We can translate these into 
probability statements: P(Age ≤ 29) = 0, and P(Age ≤ 65) = 1. Now, suppose that 
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Figure 7.9 
Cumulative distribu-

tion function for movie 
star's age. 

you decide that she most likely is between 40 and 50 years old, and that P(40 < Age 
≤ 50) = 0.8. Also suppose you figure that P(Age ≤ 40) = 0.05, and P(Age > 50) = 
0.15. Naturally, if you were so inclined, you also could make several other judg-
ments. For example, you might figure that her age is just as likely to be 44 or less as 
it is to be greater than 44. This would translate into P(Age ≤ 44) = 0.50. 

We can take the probabilities from this last example, transform them, and create 
the following table of cumulative probabilities: 

P(Age ≤ 29) = 0.00 
P(Age ≤ 40) = 0.05 
P(Age ≤ 44) = 0.50 
P(Age ≤ 50) = 0.85 
P(Age ≤ 65) = 1.00 

These probabilities then can be displayed in a graph, with years along the horizontal 
axis and P(Age ≤ Years) along the vertical axis. The graph, shown in Figure 7.9, al-
lows you to select a number of years on the horizontal axis and then read off the 
probability that the movie star's age is less than or equal to that number of years. As 
with the discrete case, this graph represents the cumulative distribution function, or 
CDF. 

As before, the CDF allows us to calculate the probability for any interval. For ex-
ample, P(40 < Age ≤ 44) = P(Age ≤ 44) - P(Age ≤ 40) = 0.45. If we were to 
make more assessments, we could refine the curve in Figure 7.9, but it should always 
slope upward. If it were to slope downward, it would imply that some interval had a 
negative probability! 

Stochastic Dominance Revisited 

Chapter 4 introduced the concept of stochastic dominance as it related to cumulative 
risk profiles for discrete uncertain quantities. The same principles also, hold true in 
the continuous case. 
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Figure 7.10 
CDFs for three invest-

ment alternatives. 
Investment B stochas-

tically dominates 
Investment A. 

Figure 7.10 shows CDFs for three investment alternatives, each of which is mod-
eled as a co ntinuous uncertain quantity. Investment B stochastically dominates 
Investment A because the CDF for B lies entirely to the right of the CDF for A. On the 
other hand, Investment C neither dominates nor is dominated by the other two alter-
natives. For instance, Area E represents the portion of B's CDF that lies to the left of 
the CDF for Investment C. Because C's CDF crosses the other two, no decision can 
be made between C and B (or between C and A) on the basis of stochastic dominance. 
There is a sense in which B dominates C, however. Imagine an investor who is averse 
to risk; such an investor would gladly trade any risky prospect for its expected value. 
B is better than C for such an investor because it has less risk (the distribution is less 
spread out) and a greater expected value (the distribution is shifted to the right). 

Stochastic Dominance and Multiple Attributes (Optional) 

Now we are prepared to follow up the discussion of stochastic dominance with mul-
tiple attributes in Chapter 4. In the case of multiple attributes, one must consider the 
joint distribution for all of the attributes together. To develop this, we need to intro-
duce some notation. 

First, let F(X) denote the CDF for a variable X. That is, F(X) = P(X ≤ x). For exam-
ple, in the case of the movie star's ages, F(50) = P(Age ≤ 50). Now we can write the 
condition for stochastic dominance in terms of the F's. Considering the investments in 
Figure 7.10, B dominates A because FB(x) ≤ FA(x) for all values of x on the horizontal 
axis. This condition asserts that the CDF for B must lie to the right of the CDF for A. 

When there are more attributes, the CDF must encompass all of the attributes. For 
example, recall the summer-job example from Chapter 4, in which we discussed un-
certainty about both salary and summer fun. We would have to look at the CDF for 
both uncertain quantities. The CDF would be denoted by F(xs, xf) = P(Salary ≤ xs 
and Fun ≤ xf). An alternative B (a specific job like the in-town job) dominates alter-
native A if FB(xs, xf) ≤ FA(xs, xf) for all values of xs and xf and is strictly less for some xs 
and xf. If we could draw the picture of the graph in three-dimensional space, you 
could see that this means that the CDF for B must be entirely below the CDF for A 
and shifted toward larger values for both Salary and Fun. 
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In Chapter 4, we made the claim that if the uncertain quantities are independent, 
then stochastic dominance on each of the individual attributes implies overall sto-
chastic dominance. To see this, consider the summer-job example further. Stochastic 
dominance requires that 

FB(xs,xf) ≤ FA(xs,xf) 

for all values of xs and xf, which is the same as 
PB (Salary ≤ xs and Fun ≤ xf) ≤ PA (Salary ≤ xs and Fun ≤ xf) 

for all values of xs and xf. If Salary and Fun are independent for both alternatives A 
and B, we now know that the joint probabilities in this condition can be rewritten as 
the product of the individual (or marginal) probabilities: 

PB(Salary ≤ xs)PB(Fun ≤ xf) ≤ PA(Salary ≤ xs)PA(Fun ≤ xf) 

Now, suppose that B dominates A individually on each attribute. This means that 
PB(Salary ≤ xs) ≤ PA(Salary ≤ xs) 

and 
PB(Fun ≤ xf) ≤ PA(Fun ≤ xf) 

If this is true, it is certainly the case that the overall stochastic-dominance condition 
is met, because the product PB (Salary ≤ xs)PB(Fun ≤ xf) must be less than or equal to 
PA(Salary ≤ xs)PA(Fun ≤ xf). 

A final word of caution is in order here. The reasoning above only goes in one di-
rection. That is, if the attributes are independent and if the individual stochastic-
dominance conditions are met, then the overall stochastic-dominance condition is 
also met. That is, we have identified sufficient conditions for overall stochastic dom-
inance. However, it is possible for overall stochastic dominance to exist even though 
the uncertain quantities are not independent or do not display stochastic dominance 
in the individual attributes. In other words, in some cases, you might have to go back 
to the definition of overall stochastic dominance [FB(x1, ..., xn) ≤ FA(x1,..., xn) for 
all x1,..., xn] in order to determine whether B dominates A. 

Probability Density Functions 

The CDF for a continuous uncertain quantity corresponds closely to the CDF for the 
discrete case. Is there some representation that corresponds to the probability mass 
function? The answer is yes, and that representation is called a probability density 
function, which, if we are speaking of uncertain quantity X, would be denoted typi-
cally as f(x). The density function f(x) can be built up from the CDF. It is a function 
in which the area under the curve within a specific interval represents the probability 
that the uncertain quantity will fall in that interval. For example, the density function 
f(Age) for the movie star's age might look something like the graph in Figure 7.11. 
The total area under the curve equals 1 because the uncertain quantity must take on 
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Figure 7.11 
Probability density 
function for movie 

star's age. 

some value. The shaded area in Figure 7.11 corresponds to P(40 < Age < 50) and so 
this area must be equal to 0.80. 

Expected Value, Variance, and Standard Deviation: 
The Continuous Case 

As in the discrete case, a continuous probability distribution can have an expected 
value, variance, and standard deviation. But the definition is not as easy as it was before 
because now we do not have probabilities for specific values, only probabilities for in-
tervals. Without going into a lot of detail, these characteristics of a continuous probabil-
ity distribution are defined by using calculus. The definitions for a continuous uncertain 
quantity X correspond to the discrete case, except that the summation sign is replaced 
with an integral sign and the density function is used in place of the probabilities: 

 
where x¯   and x+ represent the lower and upper bounds for the uncertain quantity X. 
As before, the standard deviation σx is the square root of the variance. 

The interpretation of these formulas also corresponds closely to the summation in 
the discrete case. It turns out that integration is really the continuous equivalent of the 
summing operation. Consider the formula for the expected value, for example. Each 
possible value x between x¯ and x+ is multiplied by (weighted by) the height of the 
density function f(x). The integration then adds all of these xf(x) products to find E(X). 
It is as if we had carved up the density function into a very large number of quite nar-
row but equally wide intervals (Figure 7.12). The relative likelihood of X falling in 
these different intervals corresponds to the relative height of the density function in 
each interval. That is, if the density function is (on average) twice as high in one inter-
val as in another, then X is twice as likely to fall into the first interval as the second. 
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Figure 7.12 
A density function f(x) 

in narrow intervals. 
The probability that X 

falls in interval A is 
about twice as great as 
for B because f(x) is 

about twice as high in 
A as it is in B. 

As the intervals become infinitesimally narrow, the height of the interval becomes equal 
to the value f(x). In the limit, as the width of each interval approaches 0, we take each x, 
multiply by f(x), add these products (by integration), and — bingo! — we get E(X). 

Rest assured — you will not be required to perform any integration (in this book 
anyway). In general, the integration of density functions to obtain expected values and 
variances is a difficult task and beyond the technical scope of this textbook. 
Fortunately, mathematicians have studied many different kinds of probability distribu-
tions and have performed the integration for you, providing you with formulas for the 
expected values and variances. We will encounter several of these in Chapter 9. 

What about all of those formulas for the expected value and variance of Y, a 
function of X, or for linear combinations of random variables? Fortunately, all of 
those formulas carry over to the continuous case. If you know the expected value 
and variance of several uncertain quantities, you can apply the formulas given above 
regardless of whether the uncertain quantities are continuous or discrete. For exam-
ple, if Y = a + bX, then E(Y) = a + b E(X). If Y = aX1 + bX2, and X1 and X2 are in-
dependent, then Var(Y) = a2 Var(X1) + b2 Var(X2). It does not matter whether the X's 
are discrete or continuous. 

Covariance and Correlation: The Continuous Case (Optional) 

Covariance and correlation also have counterparts when the uncertain quantities are 
continuous. As with expected value and variance, the definition of covariance uses 
an integral sign instead of a summation: 

 
As before, the correlation ρXY is calculated by dividing Cov(X,Y) by σXσY • The double 
integral in the formula above replaces the double summation in the previous formula 
for the covariance of two discrete uncertain quantities. The term f{x, y) refers to the 
joint density function for uncertain quantities X and Y. This joint density function is a 
natural extension of the density function for a single variable; it can be interpreted as a 
function that indicates the relative likelihood of different (x, y) pairs occurring, and 
the probability that X and Y fall into any given region can be calculated from f(x, y). 
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Examples 

The formulas and definitions given above are the essential elements of probabil-
ity theory. With these few tools we will be able to go quite a long way in the con-
struction of uncertainty models for decision situations. The intent has been to present 
the tools and concepts so that they are easily grasped. It may be worthwhile to mem-
orize the formulas, but most important is understanding them at an intuitive level. To 
help you cement the concepts in your mind and to show the formulas in action, we 
turn now to specific examples. 

OIL  WILDCATTINC 

An oil company is considering two sites for an exploratory well. Because of budget 
constraints, only one well can be drilled. Site 1 is fairly risky, with substantial uncer-
tainty about the amount of oil that might be found. On the other hand, Site 2 is fairly 
certain to produce a low level of oil. The characteristics of the two sites are as follows: 

Site 1: Cost to Drill $100K 
 

Outcome Payoff 

Dry -100K 

Low producer 150K 
High producer 500K 

If the rock strata underlying Site 1 are characterized by what geologists call a 
"dome" structure (see Figure 7.13), the chances of finding oil are somewhat greater 
than if no dome structure exists. The probability of a dome structure is P(Dome) = 
0.6. The conditional probabilities of finding oil at Site 1 are given in Table 7.1. 

Site 2 is considerably less complicated. A well there is not expected to be a high 
producer, so the only outcomes considered are a dry hole and a low producer. The 
cost, outcomes, payoffs, and probabilities are as follows: 

Site 2: Cost to Drill $200K 
 

Outcome Payoff Probability 
Dry -200K 0.2 
Low producer 50K 0,8 
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Figure 7.13 
Rock strata forming a 

dome structure. Oil 
tends to pool at the top 
of the dome in an oil-

bearing layer if the 
layer above is 
impermeable. 

Table 7.1 
Conditional probabili-

ties of outcomes at 
site 1. 

If Dome Structure Exists 
 

Outcome P(Outcome | Dome) 
Dry 0.600 
Low 0.250 
High 0.150 

If No Dome Structure Exists 
 

Outcome P(Outcome | No Dome) 
Dry 0.850 
Low 0.125 
High 0.025  

1.000 

The decision tree is shown in Figure 7.14. The problem with it as drawn, how-
ever, is that we cannot assign probabilities immediately to the outcomes for Site 1. 
To find these probabilities, we must use the conditional probabilities and the law of 
total probability to calculate P(Dry), P(Low), and P(High): 

P(Dry) = P(Dry | Dome) P(Dome) + P(Dry | No Dome) P(No Dome)  
= 0.6(0.6) + 0.85(0.4) = 0.70 

P(Low) = P(Low | Dome) P(Dome) + P(Low | No Dome) P(No Dome)  
= 0.25(0.6) + 0.125(0.4) = 0.20 
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Figure 7.14 
Decision tree for 
oil-wildcatting 
problem. 

P(High) = P(High | Dome) P(Dome) + P(High | No Dome) P(No Dome)  
= 0.15(0.6) + 0.025(0.4) = 0.10 

Everything works out as it should. The three probabilities are for mutually exclusive 
and collectively exhaustive outcomes, and they add to 1, just as they should. Folding 
back the decision tree, we find that Site 1 has the higher EMV (expected payoff): 

EMV(Site 1) = 0.7(-100K) + 0.2(150K) + 0.1(500K)  

= 10K 

EMV(Site 2) = 0.2(-200K) + 0.8(50K) = 0 

We also can calculate the variance and standard deviation of the payoffs for each 
site: 

σ1
2 = 0.7(-100 - 10)2 + 0.2(150 - 10)2 + 0.1(500 - 10)2 = 

= 0.7(-110)2 + 0.2(140)2 + 0.1 (490)2 = 36,400K2  

σ1 = 190.79K 

σ2
2 = 0.2(-200 - 0)2 + 0.8(50 - 0)2 

= 0.2(-200)2 + 0.8(50)2 = 
=10,000K2 

σ2 = 100.00K 

If we treat these numbers as measures of variability, then it is clear that Site 1, with 
its higher variance and standard deviation, is more variable than Site 2. In this sense, 
Site 1 might be considered to be riskier than Site 2. 

Note that we could have drawn the decision tree as in Figure 7.15, with "stacked" 
probabilities. That is, we could have drawn it with a first chance node indicating 
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whether or not a dome is present, followed by chance nodes for the amount of oil. 
These chance nodes would include the conditional probabilities from Table 7.1. 

We also could have created a probability table as in Table 7.2. The probabilities 
in the cells of the table are the joint probabilities of both outcomes happening at the 
same time. Calculating the joint probabilities for the table requires the definition of 
conditional probability. For example, 

P(Low and Dome) = P(Dome) P(Low | Dome) = 
0.60(0.25) = 0.15 

The probability table is easy to construct and easy to understand. Once the probabil-
ities of the joint outcomes are calculated, the probabilities of the individual out-
comes then are found by adding across the rows or down the columns. For example, 
from Table 7.2, we can tell that P(Dry) = 0.36 + 0.34 = 0.70. (You can remember 
that these are called marginal probabilities because they are found in the margins of 
the table!) 

Suppose that the company drills at Site 1 and the well is a high producer. In light 
of this evidence, does it seem more likely that a dome structure exists? Can we fig-
ure out P(Dome | High)? This question is part of a larger problem. Figure 7.16 
shows a "probability tree" (a decision tree without decisions) that reflects the infor-
mation that we have been given in the problem. We know P(Dome) and P(No 
Dome), and we know the conditional probabilities of the amount of oil given the 
presence or absence of a dome. Thus, our probability tree has the chance node repre-
senting the presence or absence of a dome on the left and the chance node represent-
ing the amount of oil on the right. Finding P(Dome | High) is a matter of "flipping 
the tree" so that the chance node for the amount of oil is on the left and the node for 
the presence or absence of a dome is on the right, as in Figure 7.17. 

Flipping a probability tree is the same as reversing an arrow between two chance 
nodes in an influence diagram. In Figure 7.18a, the direction of the arrow represents 
the probabilities as they are given in Table 7.1. Because the arrow points to the "Oil 

Figure 7.15 
An alternative decision 

tree for the oil- 
wildcatting problem. 

 



246      CHAPTER 7 PROBABILITY BASICS 

Table 7.2 
Calculating the proba-

bilities for Site 1. 

 

 Dome No Dome  

Dry 0.36 034 0.70 

Low 0.15 0.05 0.20 
High 0.09 0.01 0.10 
 0.60 0.40 1.00 

Figure 7.16 
Probability tree for the 

uncertainty faced at 
Site 1. 

 

 

Figure 7.17 
Flipping the probabil-
ity tree in Figure 7.16. 

Production" node, the probabilities for the level of oil production are conditioned on 
whether or not there is a dome. Figure 7.18b shows the arrow reversed. Now the 
probability of a dome or no dome is conditioned on the amount of oil produced. 
Changing the direction of the arrow has the same effect as flipping the probability 
tree. 

Simply flipping the tree or turning the arrow around in the influence diagram is 
not enough. The question marks in Figure 7.17 indicate that we do not yet know 
what the probabilities are for the flipped tree. The probabilities in the new tree must 
be consistent with the probabilities in the original version. Consistency means that if 
we were to calculate P(Dome) and P(No Dome) using the probabilities in the new 
tree, we would get 0.60 and 0.40, the probabilities we started with in Figure 7.16. 
How do we ensure consistency? 
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Figure 7.18 
Reversing arrows be 
tween chance nodes in 
an influence diagram. 

 

 

We can find P(High), P(Low), and P(Dry) by using the law of total probability. 
We did these calculations above for Figure 7.14, and we found that P(High) = 0.10, 
P(Low) = 0.20, and P(Dry) = 0.70. How about finding the new conditional proba-
bilities? Bayes' theorem provides the answer. For example: 

 

Probabilities that have the same conditions must add to 1, and so P(No Dome | High) 
must be equal to 0.10. Likewise, we can calculate the conditional probabilities of a 
dome or no dome given a dry hole or a low producer. These probabilities are shown in 
Figure 7.19. 

If you did not enjoy using Bayes' theorem directly to calculate the conditional prob-
abilities required in flipping the tree, you may be pleased to learn that the probability 
table (Table 7.2) has all the information needed. Recall that the entries in the cells inside 
the table are the joint probabilities. For example, P(High and Dome) = 0.09. We need 

 

Figure 7.19 
The flipped probabil-

ity tree with new 
probabilities. 
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P(Dome | High) = P(High and Dome)/P(High), which is just 0.09/0.10 = 0.90. That 
is, we take the joint probability from inside the table and divide it by the probability of 
the outcome on the right side of the vertical bar. This probability is found in the mar-
gin of the probability table. 

Whether we use Bayes' theorem directly or the probability-table approach to flip 
the probability tree, the conditional probabilities that we obtain have an interesting in-
terpretation. Recall that we started with P(Dome) = 0.60. After finding that the well 
was a high producer, we were able to calculate P(Dome | High). This probability 
sometimes is called a posterior probability, indicating that it is the result of revising the 
original probability after gathering data. In contrast, the probability with which we 
started, in this case P(Dome) = 0.60, sometimes is called the prior probability. One 
way to think about Bayes' theorem is that it provides a mechanism to update prior 
probabilities when new information becomes available. [Source: The oil-wildcatting 
example and analysis are adapted from C.A. Holloway (1979) Decision Making under 
Uncertainty: Models and Choices, pp. 195-200. Englewood Cliffs, NJ: Prentice-Hall.] 

JOHN   HINCKLEY'S  TRIAL 

In 1982 John Hinckley was on trial, accused of having attempted to kill President 
Reagan. During Hinckley's trial, Dr. Daniel R. Weinberger told the court that when 
individuals diagnosed as schizophrenics were given computerized axial tomography 
(CAT) scans, the scans showed brain atrophy in 30% of the cases compared with 
only 2% of the scans done on normal people. Hinckley's defense attorney wanted to 
introduce as evidence Hinckley's CAT scan, which showed brain atrophy. The de-
fense argued that the presence of atrophy strengthened the case that Hinckley suf-
fered from mental illness. 

We can use Bayes' theorem easily to analyze this situation. We want to know the 
probability that Hinckley was schizophrenic given that he had brain atrophy. 
Approximately 1.5% of people in the United States suffer from schizophrenia. This 
is the base rate, which we can interpret as the prior probability of schizophrenia be-
fore we find out about the condition of an individual's brain. Thus, P(S) = 0.015, 
where S means schizophrenia. We also have P(A | S) = 0.30 (A means atrophy) and 
P(A | S) = 0 .02. We want P(S | A). Bayes' theorem provides the mathematical 
mechanism for flipping the probability from P(A | S) to P(S | A): 
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Thus, given that his brain showed such atrophy, Hinckley still has less than a l-in-5 
chance of being schizophrenic. Given the situation, this is perhaps a surprisingly low 
probability. The intuition behind this result is that there are many false-positive tests. 
If we tested 100,000 individuals, some 1500 of  them would be schizophrenic and 
98,500 would be normal (or at least not schizophrenic). Of the 1500, only 30%, or 
approximately 450, would show atrophy. Of the 98,500, 2% (some 1970) would 
show brain atrophy. If a single individual has atrophy, is he one of the 450 with 
schizophrenia or one of the 1970 without? Note that 

 
The real question is whether this is good news or bad news for Hinckley. The 

prosecution might argue that the probability of schizophrenia is too small to make 
any difference; even in light of the CAT-scan evidence, Hinckley is less than one-
fourth as likely to be schizophrenic as not. On the other hand, the defense would 
counter, 0.186 is much larger than 0.015. Thus, the CAT-scan results indicate that 
Hinckley was more than 12 times as likely to be schizophrenic than a randomly cho-
sen person on the street. 

Now, however, consider what we have done in applying Bayes' theorem. We 
have used a prior probability of 0.015, which essentially is the probability that a ran-
domly chosen person from the population is schizophrenic. But Hinckley was not 
randomly chosen. In fact, it does not seem reasonable to think of Hinckley, a man ac-
cused of attempted assassination, as the typical person on the street. 

If 0.015 is not an appropriate prior probability, what is? It may not be obvious 
what an appropriate prior probability should be, so let us consider a sensitivity-
analysis approach and see what different priors would imply. Imagine a juror who, 
before encountering the CAT-scan evidence, believes that there is only a 10% chance 
that Hinckley is schizophrenic. For most of us, this would be a fairly strong state-
ment; Hinckley is nine times as likely to be normal as schizophrenic. Now consider 
the impact of the CAT-scan evidence on this prior probability. We can calculate this 
juror's posterior probability: 

 
p(S | A) = 0.63 is a substantial probability. We can do this for a variety of values 
for the prior probability. Figure 7.20 shows the posterior probability P(S | A) 
graphed as a function of the prior probability that Hinckley was schizophrenic. 

As a result of this discussion, it is clear that a juror need not have a very strong 
prior belief for the CAT-scan evidence to have an overwhelming effect on his or her 
posterior belief of Hinckley's mental illness. Furthermore, no matter what the juror's 
prior belief, the CAT-scan result must increase the probability that Hinckley was 
schizophrenic. [Source: A. Barnett, I. Greenberg, and R. Machol (1984) "Hinckley 
and the Chemical Bath." Interfaces, 14, 48-52.] 
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Figure 7.20 Graph of 
the posterior 

probability that 
Hinckley was schizo-

phrenic plotted against 
the prior probability. 

Decision-Analysis Software and Bayes' Theorem 

As we have noted above, flipping conditional probabilities by means of Bayes' theo-
rem can seem like a co mplicated task. In fact, the rules are straightforward: 
Calculate the joint probability and divide by the appropriate marginal probability. 
The problems are being sure that the joint probability is calculated correctly and se-
lecting the appropriate marginal probability. Fortunately, if all of the probabilities 
are defined (for example, in a probability tree or table), applying Bayes' theorem is 
something that computers can do much more readily than humans! 

Many decision-analysis software packages have the ability to perform Bayes' the-
orem calculations automatically. For example, DPL will automatically flip probabili-
ties as needed in analyzing a decision model. DATA permits the user to enter proba-
bility data that must be flipped before analyzing an appropriately constructed decision 
tree. Finally, an electronic spreadsheet like Microsoft Excel can be programmed to 
flip probabilities based on a probability table like that shown in Table 7.2. 

SUMMARY The definitions and formulas at the beginning of the chapter are the building blocks 
of probability theory. Venn diagrams provide a way to visualize these probability 
"laws." We also discussed uncertain quantities, their probability distributions, and 
characteristics of those distributions such as expected value, variance, and standard 
deviation. The use of probability concepts and the manipulation of probabilities 
were demonstrated in the oil-wildcatting and Hinkley trial examples. 
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E X E R C I S E S  

7.1 Explain why probability is important in decision analysis. 

7.2 Explain in your own words what an uncertain quantity or random variable is. Why is the 
idea of an uncertain quantity important in decision analysis? 

7.3 You are given the following probability table: 

 
7.4 Use the probability table in Exercise 7.3 to find P(A or B), or the outcome where either 

A occurs or B occurs (or both). 

7.5 The Outcome A or B sometimes is called the union of A and B. The union event occurs if 
either Outcome A or Outcome B (or both) occurs. Suppose that both A and B can happen 
at the same time (that is, their areas overlap in a Venn diagram). Show that P(A or B) = 
P(A) + P(B) — P(A and B). Use a Venn diagram to explain. Why is this result consistent 
with the second requirement that probabilities add up? 

7.6 Often it is difficult to distinguish between the probability of an intersection of outcomes 
(joint probability) and the probability of a conditional outcome (conditional probability). 
Classify the following as joint probability statements or conditional probability state 
ments. [If in doubt, try to write down the probability statement; for example, P(Crash 
Landing | Out of Fuel) or P(Dow Jones Up and Stock Price Up).] 
a   Eight percent of the students in a class were left-handed and red-haired. b   
Of the left-handed students, 20% had red hair. 
c   If the Orioles lose their next game, then the Cubs have a 90% chance of winning the 

pennant. 
d Fifty-nine percent of the people with a positive test result had the disease. 
e For 78% of patients, the surgery is a success and the cancer never reappears. 
f If the surgery is a success, the cancer is unlikely to reappear. 

g Given the drought, food prices are likely to increase. 
h There is an even chance that a farmer who loses his crop will go bankrupt. 
i If the temperature is high and there is no rain, farmers probably will lose their crops. 
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j    John probably will be arrested because he is trading on insider information. k   
John probably will trade on insider information and get caught. 

7.7    Calculate the variance and standard deviation of the payoffs for Products B and C in the 
GPC case at the end of Chapter 4 (page 145). 

 

How would you describe the relationship between Outcomes A and B? 

7.10 Consider the following probabilities: 

P(X = 2) = 0.3 
P(X = 4) = 0.7 
P(Y = 10 | X = 2) = 0.9 
P(Y = 20 | X = 2) =0.1 
P(Y = 10 | X = 4) = 0.25 
P(Y = 20 | X = 4) = 0.75 

Calculate the covariance and correlation between X and Y. 

7.11 Consider the following joint probability distribution for uncertain quantities X and Y: 

P(X  = -2 and Y = 2) = 
0.2 P(X= -l and Y = 1) 
= 0.2 P(X = 0 and Y = 0) 
= 0.2 P(X =1 and Y = 1) = 
0.2 P(X = 2 and Y = 2) = 
0.2 

a   Calculate the covariance and correlation between X and Y. 
b   Calculate P(Y = 2), P(Y = 2 | X = -2), P(Y = 2| X = 2), P(Y = 2| X = 0). 
c    Calculate P(X = -2), P(X = -21 F = 2), P(X = -21F = 0). 
d   Are X and Y dependent or independent? How would you describe the relationship be-

tween X and Y? 

7.12 Write probability statements relating hemline height, stock market prices, and "adven- 
turesomeness" that correspond to the following description of these relationships: 

Another example is that high skirt hemlines tend to occur when the stock market is 
advancing steadily (a bull market), although no one believes that hemlines cause the 
stock market to advance, or vice versa. Perhaps both reflect a pervasive feeling of 
confidence and adventure in our society. If we had an adequate index 



EXERCISES     253 

of "societal adventuresomeness," hemline height and stock market activity might well 
be conditionally independent given the index. 

Even though we distinguish between continuous and discrete uncertain quantities in re-
ality everything is discrete if only because of limitations inherent in our measuring de-
vices. For example, we can only measure time or distance to a certain level of precision 
Why then, do we make the distinction between continuous and discrete uncertain quan-
tities? What value is there in using continuous uncertain quantities in a decision model? 

 
7.15 Julie Myers, a graduating senior in accounting, is preparing for an interview with a bia- 

eight accounting firm. Before the interview, she sets her chances of eventually getting an 
offer at 50%. Then, on thinking about her friends who have interviewed and gotten offers 
from this firm, she realizes that of the people who received offers, 95% had good inter 
views. On the other hand, of those who did not receive offers, 75% said they had good in 
terviews. If Julie Myers has a good interview, what are her chances of receiving an offer? 

7.16 Find the expected value, variance, and standard deviation of X in the following probabil- 
ity distributions: 

a    P(X = 1) = 0.05, P(X = 2) = 0.45, P(X = 3) = 0.30, P(X = 4) = 0 20. b   
P(X = -20) = 0.13, P(X = 0) = 0.58, P(X = 100) = 0.29. c    P(X = 0) = 
0.368, P(X = 1) = 0.632. 

7.17 If P(X = 1) = p and P(X = 0) = 1 - p, show that E(X) = p and Var(X) = p(l - p). 

 
7.19    Suppose that a company produces three different products. The sales for each product are 

independent of the sales for the others. The information for these products is given below: 
 

Product Price ($) Expected Unit Sates Variance of Unit Sales 

A 3.50 2000 1000 
B 2.00 10,000 6400 
C 1.87 8500 1150 

a   What are the expected revenue and variance of the revenue from Product A alone?  

b   What are the company's overall expected revenue and variance of its revenue?  

7.20    A company owns two different computers, which are in separate buildings and operated 
entirely separately. Based on past history, Computer 1 is expected to break down 5 0 times a year, 
with a variance of 6, and costing $200 per breakdown. Computer 2 is expected to break down 3.6 
times per year, with a variance of 7, and costing $165 per breakdown What is the company's 
expected cost for computer breakdowns and the variance of the 
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breakdown cost? What assumption must you make to find the variance? Is this a reason-
able assumption? 

7.21 A firm is negotiating with a local club to supply materials for a party. The firm's manager 
expects to sell 100 large bags of pretzels for $3 each or 300 for $2 each; these two out 
comes are judged to be equally likely. The expected number of bags sold is 200 = (100 
+ 300)/2, and expected price is $2.50 = ($3 + $2)/2. The manager then calculates ex 
pected revenue as the expected number sold times the expected price: E(Revenue) = 200 
($2.50) = $500. What is wrong with the manager's calculation? 

7.22 Flip the probability tree shown in Figure 7.21. 

7.23 Figure 7.22 shows part of an influence diagram for a chemical that is considered poten 
tially carcinogenic. How would you describe the relationship between the test results and 
the field results? 

7.24 Let CP denote carcinogenic potential, TR test results, and FR field results. Suppose that 
for Figure 7.22 we have the following probabilities: 

P(CP High) = 0.27       P(CP Low) = 0.73 

Figure 7.21 
A probability tree rep-
resenting the diagnos-

tic performance of a 
medical test. 

 

 

 

 

 

Figure 7.22  

An influence diagram 
for a potentially car-

cinogenic chemical 
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P(TR Positive | CP High) = 0.82        P(TR Positive | CP Low) = 0.21 
P(TR Negative | CP High) =0.18        P(TR Negative | CP Low) = 0.79 

P(FR Positive | CP High) = 0.95       P(FR Positive | CP Low) = 0.17 

P(FR Negative | CP High) = 0.05        P(FR Negative | CP Low) = 0.83 

Find the following: 

P(TR Positive and FR Positive | CP High) 
P(TR Positive and FR Negative | CP High) 
P(TR Negative and FR Negative | CP Low) 
P(TR Negative and FR Positive | CP Low) 

Q U E S T I O N S    AND   P R O B L E M S  

7.25 Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a stu 
dent, she was deeply concerned with issues of discrimination and social justice and also par 
ticipated in antinuclear demonstrations. Use your judgment to rank the following statements 
by their probability, using 1 for the most probable statement and 8 for the least probable: 
a Linda is a teacher in an elementary school. 
b Linda works in a bookstore and takes Yoga classes. 
c Linda is active in the feminist movement. 
d Linda is a psychiatric social worker. 
e Linda is a member of the League of Women Voters. 
f Linda is a bank teller. 
g Linda is an insurance salesperson. 
h Linda is a bank teller and is active in the feminist movement. 

Source: Amos Tversky and Daniel Kahneman (1982) "Judgments of and by Repre-
sentativeness." In D. Kahneman, P. Slovic, and A. Tversky (eds.), Judgment under 
Uncertainty: Heuristics and Biases, pp. 84-98. Cambridge: Cambridge University Press. 

7.26 The description and statements given in Problem 7.25 often elicit responses that are not 
consistent with probability requirements. If you are like most people, you ranked state 
ment h (Linda is a bank teller and is active in the feminist movement) as more probable 
than statement f (Linda is a bank teller). 
a   Explain why you ranked statements h and f as you did. 
b Statement h is actually a compound event. That is, for h to be true, Linda must be 

both a bank teller (Outcome A) and active in the feminist movement (Outcome B). 
Thus, statement h is represented by the Outcome "A and B." Use a Venn diagram to 
explain why statement h must be less probable than statement f. 

c Suppose that you have presented Problem 7.25 to a friend, who ranks statement h as 
more probable than statement f. Your friend argues as follows: "Well, it's not very 
likely that Linda is a bank teller in the first place. But if she is a bank teller, then she 
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is very likely to be active in the feminist movement. So h would appear to be more 
likely than f." How is your friend interpreting statement h? Explain why this is not an 
appropriate interpretation. 

7.27 Suppose you are a contestant on the television game show, "Let's Make a Deal." You 
must choose one of three closed doors, labeled A, B, and C, and you will receive what 
ever is behind the chosen door. Behind two of the doors is a goat, and behind the third is 
a new car. Like most people, you have no use for a goat, but the car would be very wel 
come. Suppose you choose Door A. Now the host opens Door B, revealing a goat, and of 
fers to let you switch from Door A to Door C. Do you switch? Why or why not? [Hint: 
What can you assume about the host's behavior? Would it ever be the case that the host 
would open a door to reveal the car before asking if you want to switch?] 

7.28 On the fictitious television game show, "Marginal Analysis for Everyone," the host sub 
jects contestants to unusual tests of mental skill. On one, a contestant may choose one of 
two identical envelopes labeled A and B, each of which contains an unknown amount of 
money. The host reveals, though, that one envelope contains twice as much as the other. 
After choosing A, the host suggests that the contestant might want to switch. 

"Switching is clearly advantageous," intones the host persuasively. "Suppose you have 
amount x in your Envelope A. Then B must contain either x/2 (with probability 0.5) or 
2x (also with probability 0.5). Thus, the expected value of switching is 1.25JC. In fact now 
that I think about it, I'll only let you switch if you give me a 10% cut of your winnings. 
What do you say? You'll still be ahead." 

"No deal," replies the contestant. "But I'll be happy to switch for free. In fact, I'll even 
let you choose which envelope I get. I won't even charge you anything!" 

What is wrong with the host's analysis? 

Source: This problem was suggested by Ross Shachter. 

7.29 Draw an influence diagram for the oil-wildcatting problem. Construct the necessary ta 
bles represented by the nodes, including the payoff table, and solve the influence dia 
gram. If possible, use a computer program to do this problem. 

7.30 Finding the variance and standard deviation for the payoff from Product A in the GPC 
case at the end of Chapter 4 (page 145) is somewhat complicated because a pricing deci 
sion must be made. How would you calculate the variance and standard deviation for 
Product A's payoff? (Recall the approach we used in solving decision trees. We were able 
to "prune" decision branches that were suboptimal.) 

7.31 Calculate the variance and standard deviation of the payoffs in the final court decision in 
the Texaco-Pennzoil case as diagrammed in Figure 4.2. 

7.32 In the oil-wildcatting problem, suppose that the company could collect information from 
a drilling core sample and analyze it to determine whether a dome structure exists at Site 
1. A positive result would indicate the presence of a dome, and a negative result would 
indicate the absence of a dome. The test is not perfect, however. The test is highly accu 
rate for detecting a dome; if there is a dome, then the test shows a positive result 99% of 
the time. On the other hand, if there is no dome, the probability of a negative result is 
only 0.85. Thus, P(+ | Dome) = 0.99 and P(- | No Dome) = 0.85. Use these probabili 
ties, the information given in the example, and Bayes' theorem to find the posterior prob 
abilities P(Dome | +) and P(Dome | —). If the test gives a positive result, which site 
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should be selected? Calculate expected values to support your conclusion! If the test re-
sult is negative, which site should be chosen? Again, calculate expected values. 

7.33 In Problem 7.32, calculate the probability that the test is positive and a dome structure 
exists [P(+ and Dome)]. Now calculate the probability of a positive result, a dome struc 
ture, and a dry hole [P(+ and Dome and Dry)]. Finally, calculate P(Dome |+ and Dry). 

7.34 Referring to the oil-wildcatting decision diagrammed in Figure 7.15, suppose that the de 
cision maker has not yet assessed P(Dome) for Site 1. Find the value of P(Dome) for 
which the two sites have the same EMV. If the decision maker believes that P(Dome) is 
somewhere between 0.55 and 0.65, what action should be taken? 

7.35 Again referring to Figure 7.15, suppose the decision maker has not yet assessed P(Dry) 
for Site 2 or P(Dome) for Site 1. Let P(Dry) = p and P(Dome) = q. Construct a two-way 
sensitivity analysis graph for this decision problem. 

7.36 Refer to Exercises 7.23 and 7.24. Calculate P(FR Positive) and P(FR Positive | TR 
Positive). [Hints: P(FR Positive) is a fairly simple calculation. To find P(FR_Positive | TR 
Positive), first let B = FR Positive, C = TR Positive, A == CP High, and A = CP Low. 
Now expand P(FR Positive | TR Positive) using the law of total probability in this form: 

P(B | C) = P(B | A, C) P(A | C) + P(B | A, C) P(A | C) 

Now all of the probabilities on the right-hand side can be calculated using the informa-
tion in the problem.] 

Compare P(FR Positive) and P(FR Positive | TR Positive). Would you say that the 
test results and field results are independent? Why or why not? Discuss the difference be-
tween conditional independence and regular independence. 

C A S E     S T U D I E S  

DECISION   ANALYSIS   MONTHLY 

Peter Finch looked at the numbers for the renewals of subscriptions to Decision 
Analysis Monthly magazine. For both May and June he had figures for the percent-
age of expiring subscriptions that were gift subscriptions, promotional subscriptions, 
and from previous subscribers. Furthermore, his data showed what proportion of the 
expiring subscriptions in each category had been renewed (see Table 7.3). 

Finch was confused as he considered these numbers. Robert Calloway, who had 
assembled the data, had told him that the overall proportion of renewals had dropped 
from May to June. But the figures showed clearly that the proportion renewed had 
increased in each category. How could the overall proportion possibly have gone 
down? Peter got a pencil and pad of paper to check Calloway's figures. He had to re-
port to his boss this afternoon and wanted to be able to tell him whether these figures 
represented good news or bad news. 

Question 

1       Do the data represent good news or bad news regarding renewal trends? Why? 
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Table 7.3 
Subscription data for 

Decision Analysis 
Monthly. 

 

May Subscription Data Expiring Subscriptions, % Proportion Renewed 

Gift Subscriptions 70 0.75 

Promotional Subscriptions 20 0.50 
Previous Subscribers 10 0.10 

Total 100  

June Subscription Data Expiring Subscriptions, % Proportion Renewed 

Gift Subscriptions 45 0.85 

Promotional Subscriptions 10 0.60 
Previous Subscribers 45 0.20 

Total 100  

SCREENING   FOR  COLORECTAL  CANCER 

The fecal occult blood test, widely used both in physicians' offices and at home to 
screen patients for colon and rectal cancer, examines a patient's stool sample for 
blood, a condition indicating that the cancer may be present. A recent study funded 
by the National Cancer Institute found that of 15,000 people tested on an annual 
basis, 10% were found to have blood in their stools. These 10% underwent further 
testing, including colonoscopy, the insertion of an optical-fiber tube through the rec-
tum in order to inspect the colon and rectum visually for direct indications of cancer. 
Only 2.5% of those having colonoscopy actually had cancer. Additional information 
in the study suggests that, of the patients who were tested, approximately 5 out of 
1000 tested negative (no blood in the stool) but eventually did develop cancer. 

Questions 

1 Create a probability table that shows the relationship between blood in a stool sam 
ple and colorectal cancer. Calculate P(Cancer | Blood) and P(Cancer | No Blood). 

2 The study results have led some medical researchers to agree with the American 
Cancer Society's long-standing recommendation that all U.S. residents over 50 
years of age be tested annually. On the other hand, many researchers claim the 
costs of such screening, including the cost of follow-up testing on 10% of the pop 
ulation, far exceeds its value. Assume that the test can be performed for as little as 
$10 per person, that colonoscopy costs $750 on average, and that about 60 million ] 
people in the United States are over age 50. What is the expected cost (including 
follow-up colonoscopy) of implementing a policy of screening everyone over age j 
50? What is the expected number of people who must undergo colonoscopy? What I 
is the expected number of people who must undergo colonoscopy only to find that j 
they do not have cancer after all? 
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3 Over 13 years of follow-up study, 0.6% (6 out of 1000) of those who were screened 
annually with the fecal occult blood test died from colon cancer anyway. Of those 
who were not screened, 0.9% (9 out 1000) died of colon cancer during the same 13 
years. Thus, the screening procedure saves approximately 3 lives per 1000 every 13 
years. Use this information, along with your calculations from Questions 1 and 2, 
to determine the expected cost of saving a life by implementing a policy requiring 
everyone over 50 to be screened every year. 

4 What is your conclusion? Do you think everyone over 50 should be screened? 
From your personal point of view, informed now by your calculations above, 
would the saved lives be worth the money spent and the inconvenience, worry, dis 
comfort, and potential complications of subjecting approximately 6 million people 
each year to colonoscopy even though relatively few of them actually have de 
tectable and curable cancer? 

Source: J. S. Mandel, J. H. Bond, T. R. Church, D. C. Snover, G. M. Braley, L. M. Schuman, and F. Ederer, 
(1993) "Reducing Mortality from Colorectal Cancer by Screening for Fecal Occult Blood. (Minnesota 
Colon Cancer Control Study)." New England Journal of Medicine, 328 (19), 1365-1371. 

Acquired immune deficiency syndrome (AIDS) is the most frightening disease of 
the late twentieth century. The disease attacks and disables the immune system, leav-
ing the body open to other diseases and infection. It is almost always fatal, although 
years may pass between infection and the development of the disease. As of 
December 31, 1993, there were 361,509 confirmed AIDS cases and 220,871 deaths 
due to AIDS in the United States. 

Even more frightening is the process by which the disease travels through the 
population. AIDS is caused by a virus (human T-lymphotropic virus, Type III, or 
HTLV-III, although more commonly listed as HIV). The virus is transmitted through 
blood, semen, and vaginal secretions, and may attack virtually anyone who engages 
in any of several risky behaviors. The extent of the concern about AIDS among pub-
lic health officials is reflected in the fact that the U.S. Surgeon General's office 
mailed brochures on AIDS to 107 million households in May and June 1988, the 
largest single mailing undertaken by the federal government to that time. 

When an individual becomes infected, the body produces a special antibody in 
an effort to counteract the virus. But it can be as long as 12 weeks before these anti-
bodies appear, and it may be years before any signs or symptoms of AIDS infection 
appear. During this time the individual may not be aware that he or she is infected 
and thus can spread the disease inadvertently. 

Because of the delayed reaction of the virus, there are many more infected indi-
viduals than reported AIDS cases. Epidemiologists estimate that about 1 million 
people in the United States are infected with HIV and thus are potentially infectious 
of others. Worldwide, the estimate is that over 13 million people are infected. 
Because of this and because of the way the disease is transmitted, the best way to 
avoid AIDS simply is to avoid risky behavior. Do not share drug needles. Use a latex 
condom during intercourse unless you are certain that your partner is not infected. 
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To help reduce the rate at which AIDS is spread, a number of local (and often con-
troversial) programs have sprung up to provide condoms to sexually active teenagers 
and clean needles to intravenous drug users. 

If 1 million people in the United States are HIV-infected, this amounts to an 
overall rate of approximately 0.38% in a population of 260 million people. The term 
seroprevalence refers to the incidence of HIV in the population. Seroprevalence 
rates vary dramatically depending on the particular subpopulation. For example, the 
overall seroprevalence rate for adult men in the United States is about 1%, but for 
adult women it is 0.13%. Figures 7.23 and 7.24 show seroprevalence rates for male 
and female military recruits, respectively, in each of the 50 states plus the District of 
Columbia and Puerto Rico. For higher risk groups the seroprevalence rates are much 
higher. For example, nationally about 25.5% of gay and bisexual men are infected, 
but the rate ranges from 3.9% in Providence, Rhode Island, to 47.4% in Atlanta, 
Georgia. For intravenous drug users, the seroprevalence rate is 7.5% nationwide, 
reaching as high as 40.4% in New York City. 

The best tests available for AIDS detect the antibodies rather than the virus. Two 
such tests are generally available and widely used. The first is the enzyme-linked im-
munosorbent assay (ELISA). An individual is considered to have a positive result on 
the ELISA test only if both of two separate trials yield positive results. The perfor-
mance of such a diagnostic test can be measured by the probabilities associated with 
correct diagnosis. The probability that an infected individual tests positive, 
P(ELISA+ | Infected), is called the sensitivity of the test. The probability that an un-
infected individual tests negative, P(ELISA~ | Not Infected), is called the specificity 
of the test. A negative result for an infected individual is called a false-negative, and 

Figure 7.23 
HIV seroprevalence 

among male applicants 
for military service by 

state of residence, 
United States, January 

1991 through 
December 1992. 

Source: Department 
of Defense. 
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Figure 7.24 HIV 
seroprevalence 

among female appli-
cants for military ser-

vice by state of resi-
dence, United States, 

January 1991 through 
December 1992. 

Source: Department 
of Defense. 

a positive result for someone who is not infected is called a false-positive. An ideal 
test would have 100% sensitivity and 100% specificity, giving correct diagnosis all 
the time with neither false-negatives nor false-positives. In 1990, the Centers for 
Disease Control (CDC) reported a study indicating that the sensitivity and specificity 
of the ELISA test are 0.997 and 0.985, respectively. 

The Western blot test generally is used to confirm or disconfirm a positive 
ELISA result. For some time the Western blot was considered to be a perfect test, but 
this may not be true. The Western blot is a labor-intensive test, the results of which 
require interpretation by a skilled laboratory technician. The same CDC study indi-
cated sensitivity and specificity of the Western blot to be 0.993 and 0.916, respec-
tively. Table 7.4 summarizes the performance characteristics of the two tests. 

Questions 

1 Given that the tests are not perfect, it is worthwhile to calculate the probability of 
being infected, given the various combinations of results on the tests. Calculate the 
probability of being infected given a positive ELISA test result, P(Inf | ELISA+). 
Use as your prior probability the P(Inf) = 0.0038, the estimated overall rate of in 
fection in the United States. For P(ELISA + | Inf) and P(ELISA + | Not Inf), use the 
numbers from Table 7.4. 

2 Create a graph like Figure 7.20 that shows P(Inf | ELISA+) as a function of 
P(Inf), the prior probability or seroprevalence rate. Indicate on your graph the ap 
propriate prior and posterior probabilities for female military recruits in New 
Jersey, gay men in Providence, Rhode Island, and intravenous drug users in New 
York City. 
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Table 7.4 
Performance of ELISA 
and western blot tests. 

Test Sensitivity 
P(+ | Inf) 

False-Negative 
Rate P(− | Inf) 

Specificity  
P(− |Not Inf) 

False-Positive Rate 
P(+ | Not Inf) 

 ELISA 0.997 0.003 0.985 0.015 

 Western blot 0.993 0.007 0,916 0.084 

3 Repeat Questions 1 and 2, but this time find the probability of being infected given 
a negative ELISA result, P(Inf | ELISA−). 

4 Calculate the probability of being infected given a positive ELISA test result and a 
positive Western blot, P(Inf | ELIS A+, WB+) and the probability of being infected 
given a positive ELISA and negative Western blot, P(Inf | ELISA+, WB−). [Hint: 
All of the information in the case regarding the performance of the Western blot as 
sumes a positive ELISA. The calculations required here can be done with Bayes' 
theorem, using as the prior probability P(Inf |ELISA+), the quantity calculated in 
Question 1.] 

5 Create graphs like those for Questions 2 and 3 that show P(Inf | ELISA+, WB+) 
and P(Inf | ELISA+, WB −) as functions of the prior probability P(Inf). [Hint: Note 
that this prior probability enters the calculations through P(Inf | ELISA+).] 

6 Some public health officials have called for widespread testing for HIV infection. 
Certainly there is considerable value to society in identifying HIV carriers, al 
though there are costs inherent in incorrect diagnoses. For example, suppose that 
you were forced to be tested, and both ELISA and Western blot tests gave a positive 
result. Imagine that a later tissue culture revealed no HIV exposure. Thus, for some 
time you would have been falsely labeled as an AIDS carrier. On the other hand, 
suppose that the tests had been falsely negative. Then you may have engaged in 
risky behavior under the assumption that you had no infection. Discuss the social 
trade-offs of costs and benefits that are involved in using imperfect screening tests 
for AIDS. 

Sources: This case study was prepared using several publications available from the Centers for 
Disease Control National AIDS Clearinghouse, P.O. Box 6003, Rockville, MD 20849. The key publi-
cations used were "Surgeon General's Report to the American Public on HIV Infection and AIDS" 
(1994); "Serologic Testing for HIV-1 Antibody—United States, 1988 and 1989"; Morbidity and 
Mortality Weekly Report (1990), 39, 380-383 (abstracted in Journal of the American Medical 
Association, July 11, 1990, 171-173); and "National HIV Serosurveillance Summary: Results Through 
1992," HIV/NCID/11-93/036. 

DISCRIMINATION  AND  THE  DEATH   PENALTY 

Is there a relationship between the race of convicted defendants in murder trials and 
the imposition of the death penalty on such defendants? This question has been de-
bated extensively, with one side claiming that white defendants are given the death 
sentence much less frequently than non whites. This case can help you understand 
one reason for the debate. Table 7.5 shows information regarding 326 cases. 
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Questions 

1 On the basis of Table 7.5, estimate P(Death Penalty | Defendant White) and P(Death 
Penalty | Defendant Black). What is your conclusion on the basis of these calcula 
tions? 

2 Table 7.6 shows the same data disaggregated on the basis of the race of the victim. 
Use Table 7.6 to estimate the following probabilities: 

P(Death Penalty | Defendant White, Victim White) 
P(Death Penalty | Defendant Black, Victim White) 
P(Death Penalty | Defendant White, Victim Black) 
P(Death Penalty | Defendant Black, Victim Black) 

Now what is your conclusion? 

3 Explain the apparent contradiction between your answers to Questions 1 and 2. 

Table 7.5 
Death-penalty and 

racial status for 326 
convicted murderers. 

 

Race of 
Defendant 

Death Penalty Imposed  Total Defendants 

Yes No 

White 19 141 160 

Black 17 149 166 
Total 36 290 326 

 

Table 7.6 
Death-penalty and 

racial status for 326 
convicted murderers, 

disaggregated by 
victim's race. 

 

Race of 
Victim 

Race of 
Defendant 

Death Penalty Imposed Total 
Defendants Yes 

 
 

No 

White White 19 132 151 

 Black 11 52 63 
Total  30 184 214 

Black White 0 9 9 

 Black 6 97 103 
Total  6 106 112 

Total  36 290 326 
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REFERENCES 
Probability basics appear in a wide variety of books on probability and statistics, presenting 
the material at various levels of sophistication. Good lower-level introductions can be found 
in elementary statistics textbooks such as McClave and Benson (1988), Mendenhall et al. 
(1989), Sincich (1989), and Wonnacott and Wonnacott (1984). Two excellent resources writ-
ten at higher levels are Olkin, Gleser, and Derman (1980) and Feller (1968). 

All decision-analysis textbooks seem to have at least one example about oil wildcat-
ting. True, this is the quintessential decision-analysis problem, and it includes many 
sources of uncertainty, concerns about attitudes toward risk, and opportunities for gather-
ing information. But many problems have these characteristics. Probably the real reason 
for the oil-wildcatting scenario is that, in 1960, C. J. Grayson published one of the first 
applied dissertations using decision theory, and its area of application was oil drilling. 
Decision theorists ever since have used oil drilling as an example! 
Feller, W. (1968) An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd 
ed. New York: Wiley. 
Grayson, C. J. (1960) Decisions under Uncertainty: Drilling Decisions by Oil and Gas 
Operators. Cambridge, MA: Division of Research, Harvard Business School. 
McClave, J. T., and P. G. Benson (1988) Statistics for Business and Economics, 4th ed. 
San Francisco: Dellen. 
Mendenhall, W., J. Reinmuth, and R. Beaver (1989) Statistics for Management and 
Economics, 6th ed. Boston: PWS-KENT. 
Olkin, I., L. J. Gleser, and C. Derman (1980) Probability Models and Applications. New 
York: Macmillan. 
Sincich, T. (1989) Business Statistics by Example, 3rd ed. San Francisco: Dellen. 
Wonnacott, T. H., and R. J. Wonnacott (1984) Introductory Statistics for Business and 
Economics. New York: Wiley. 

E P I L O G U E  John Hinckley Hinckley's defense attorney was not permitted to introduce the 
CAT scan of Hinckley's brain. In spite of this, the jury's verdict found Hinckley "not 
guilty by reason of insanity" on all counts, and he was committed to Saint 
Elizabeth's Hospital in Washington, D.C. The trial caused a substantial commotion 
among the public, many people viewing the insanity plea and the resulting verdict as 
a miscarriage of justice. Because of this, some lawmakers initiated efforts to tighten 
legal loopholes associated with the insanity plea. 

AIDS New diagnostic tests for AIDS are under continual development as research 
on this frightening disease continues. For example, in December 1994, the U.S. 
Food and Drug administration approved an AIDS diagnostic test that uses saliva in-
stead of blood. This test may be easier to use, and the hope is that more people will 
be willing to be tested. The ELISA and Western blot tests described in the case study 
are typical of medical diagnostic tests in general, and the analysis performed shows 
how to evaluate such tests. 



CHAPТЕR 8 

Subjective Probability 

ll of us are used to making judgments regarding uncertainty, and we make them frequently. Often our 
statements involve informal evaluations of the uncertainties that surround an event. Statements such 

as "The weather is likely to be sunny today," "I doubt that the Democrats will win 
the next presidential election," or "The risk of cancer from exposure to cigarette 
smoke is small" all involve a personal, subjective assessment of uncertainty at a 
fundamental level. As we have seen, subjective assessments of uncertainty are an 
important element of decision analysis. A basic tenet of modern decision analysis is 
that subjective judgments of uncertainty can be made in terms of probability. In this 
chapter we will explore how to make such judgments and what they imply. 

Although most people can cope with uncertainty informally, perhaps, it is not 
clear that it is worthwhile to develop a more rigorous approach to measure the un-
certainty that we feel. Just how important is it to deal with uncertainty in a careful 
and systematic way? The following vignettes demonstrate the importance of uncer-
tainty assessments in a variety of public-policy situations. 

UNCERTAINTY  AND  PUBLIC  POLICY 

Fruit Frost Farmers occasionally must decide whether to protect a crop from po-
tentially damaging frost. The decision must be made on the basis of weather fore-
casts that often are expressed in terms of probability (U.S. National Weather Service 
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is responsible for providing these forecasts). Protecting a crop can be costly, but less 
so than the potential damage. Because of such potential losses, care in assessing 
probabilities is important. 

Earthquake Prediction Geologists are beginning to develop ways to assess the 
probability of major earthquakes for specific locations. In 1988 the U.S. Geological 
Survey published a report that estimated a 0.60 probability of a major earthquake 
(7.5-8 on the Richter scale) occurring in Southern California along the southern por-
tion of the San Andreas Fault within the next 30 years. Such an earthquake could 
cause catastrophic damage in the Los Angeles metropolitan area. 

Environmental Impact Statements Federal and state regulations governing en-
vironmental impact statements typically require assessments of the risks associated 
with proposed projects. These risk assessments often are based on the probabilities 
of various hazards occurring. For example, in projects involving pesticides and her-
bicides, the chances of cancer and other health risks are assessed. 

Public Policy and Scientific Research Often scientists learn of the possible pres-
ence of conditions that may require action by the government. But action sometimes 
must be taken without absolute certainty that a condition exists. For example, scien-
tists in 1988 reported that the earth had begun to warm up because of the "green-
house effect," a condition presumably resulting from various kinds of pollution and 
the destruction of tropical forests. James Hansen of NASA expressed his beliefs in 
probabilistic terms, saying that he was 99% certain that the greenhouse effect was 
upon us. 

Medical Diagnosis Many physicians in hospital intensive-care units (ICUs) have 
access to a complex computer system known as APACHE III (Acute Physiology, 
Age, and Chronic Health Evaluation), Based on information about a patient's med-
ical history, condition, treatment, and lab results, APACHE III evaluates the patient's 
risk as a probability of dying either in the ICU or later in the hospital. 

Some of the above examples include more complicated and more formal proba-
bility assessments as well as subjective judgments. For example, the National 
Weather Service forecasts are based in part on a large-scale computer model of the 
global atmospheric system. The computer output is just one bit of information used 
by a forecaster to develop an official forecast that involves his or her subjective judg-
ment regarding the uncertainty in local weather. Some risk assessments are based on 
cancer studies performed on laboratory animals. The results of such studies must be 
extrapolated subjectively to real-world conditions to derive potential effects on hu-
mans. Because of the high stakes involved in these examples and others, it is impor-
tant for policy makers to exercise care in assessing the uncertainties they face. 

At a reduced scale, personal decisions also involve high stakes and uncertainty. 
Personal investment decisions and career decisions are two kinds of decisions that 
typically involve substantial uncertainty. Perhaps even harder to deal with are per- 
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sonal medical decisions in which the outcomes of possible treatments are not known 
in advance. If you suffer from chronic chest pain, would you undergo elective 
surgery in an attempt to eliminate the pain? Because of the risks associated with 
open heart surgery, this decision must be made under a condition of uncertainty. You 
would want to think carefully about your chances on the operating table, considering 
not only statistics regarding the operation but also what you know about your own 
health and the skills of your surgeon and the medical staff. 

Probability: A Subjective Interpretation 

Many introductory textbooks present probability in terms of long-run frequency. For 
example, if a die is thrown many times, it would land with the five on top approxi-
mately one-sixth of the time; thus, the probability of a five on a given throw of the 
die is one-sixth. In many cases, however, it does not make sense to think about prob-
abilities as long-run frequencies. For example, in assessing the probability that the 
California condor will be extinct by the year 2010 or the probability of a major nu-
clear power plant failure in the next 10 years, thinking in terms of long-run frequen-
cies or averages is not reasonable because we cannot rerun the "experiment" many 
times to find out what proportion of the times the condor becomes extinct or a power 
plant fails. We often hear references to the chance that a catastrophic nuclear holo-
caust will destroy life on the planet. Let us not even consider the idea of a long-run 
frequency in this case! 

Even when a long-run frequency interpretation might seem appropriate, there are 
times when an event has occurred, but we remain unsure of the final outcome. For 
example, consider the following: 

1 You have flipped a coin that has landed on the floor. Neither you nor anyone else 
has seen it. What is the probability that it is heads? 

2 What is the probability that Oregon beat Stanford in their 1970 football game? 
3 What is the probability that the coin that was flipped at the beginning of that 

game came up heads? 
4 What is the probability that Millard Fillmore was President in 1850? 

For most of us the answers to these questions are not obvious. In every case the ac-
tual event has taken place. But unless you know the answer, you are uncertain. 

The point of this discussion is that we can view uncertainty in a way that is dif-
ferent from the traditional long-run frequency approach. In Examples 1 and 3 above, 
there was a random event (flipping the coin), but the randomness is no longer in the 
coin. You are uncertain about the outcome because you do not know what the out-
come was; the uncertainty is in your mind. In all of the examples, the uncertainty lies 
in your own brain cells. When we think of uncertainty and probability in this way, 
we are adopting a subjective interpretation, with a probability representing an indi-
vidual's degree of belief that a particular outcome will occur. 
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Decision analysis requires numbers for probabilities, not phrases such as "com-
mon," "unusual," "toss-up," or "rare." In fact, there is considerable evidence from 
the cognitive psychologists who study such things that the same phrase has different 
connotations to different people in different contexts. For example, in one study 
(Beyth-Marom, 1982), the phrase "there is a non-negligible chance ..." was given 
specific probability interpretations by individuals that ranged from below 0.36 to 
above 0.77. Furthermore, it may be the case that we interpret such phrases differ-
ently depending on the context. The phrase "a slight chance that it will rain tomor-
row" may carry a very different probability interpretation than the phrase "a slight 
chance that the space shuttle will explode." 

The problems with using verbal representations of uncertainty can be seen in the 
following financial-accounting policy. 

ACCOUNTING  FOR  CONTINGENT  LOSSES 

When a company prepares its financial statements, in some instances it must disclose 
information about possible future losses. These losses are called contingent because 
they may or may not occur contingent on the outcome of some future event (e.g., the 
outcome of a lawsuit or a subsidiary's default on a loan that the parent company 
guaranteed.) In their Statement of Financial Accounting Standards No. 5, 
"Accounting for Contingencies," the Financial Accounting Standards Board pro-
vides guidelines for different accounting treatments of accounting losses, depending 
on whether the contingent loss is judged to be "probable," "remote," or "reasonably 
possible." In defining these verbal terms of uncertainty, "probable" is taken to mean 
that the future event is likely to occur. Likewise, "remote" means that the chance of 
the event will occur is slight. Finally, "reasonably possible" means that the chance of 
the event occurring is somewhere between slight and likely. [Source: Financial 
Accounting Standards Board (1991). Original Pronouncements: Accounting 
Standards. Vol. 1: FASB Statement of Standards. Homewood, IL: Irwin.] 

In this example, verbal terms of uncertainty are defined using other verbal terms; 
no precise guidance is provided. The wording of the standard moves us from won-
dering about the meaning of "probable" and "remote" to a concern with "likely to 
occur" and "slight." How much more straightforward the accountant's job would be 
if the standard specified the different degrees of risk in terms of quantitative judg-
ments made by a knowledgeable person! 

One of the main topics of this chapter is how to assess probabilities — the num-
bers — that are consistent with one's subjective beliefs. Of the many concepts in 
decision analysis, the idea of subjective probability is one that seems to give 
students trouble. Some are uncomfortable assessing a d egree of belief, because 
they think there must be a "correct" answer. There are no correct answers when it 
comes to sub- 
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jective judgment; different people have different degrees of belief and hence will as-
sess different probabilities. 

If you disagree with a friend about the probability that your favorite team will 
win a game, do you try to persuade your friend that your probability is better? You 
might discuss different aspects of the situation, such as which team has the home ad-
vantage, which players are injured, and so forth. But even after sharing your infor-
mation, the two of you still might disagree. Then what? You might place a bet. For 
many people, betting reflects their personal subjective probabilities. Some people 
bet on anything even if the outcome is based on some "objectively" random event 
(flipping a coin, playing cards, and so on). One of the most common bets might be 
investing — betting — in the stock market. For example, you might be willing to 
purchase a stock now if you think its value is likely to increase. 

We will begin with the assessment of probabilities. We will show how you can 
view different situations in terms of the bets you might place involving small cash 
amounts or in terms of hypothetical lotteries. Following the discussion of the assess-
ment of discrete probabilities, we will see how to deal with continuous probability 
distributions (the fan or crescent shape in the range-of-risk dilemma that was intro-
duced in Chapter 3). Special psychological phenomena are associated with probabil-
ity assessment, and we will explore the cognitive heuristics that we tend to use in 
probability assessment. The last two sections discuss procedures for decomposing 
probability assessments and what it means to be "coherent" in assessing probabilities. 

Assessing Discrete Probabilities 

There are three basic methods for assessing probabilities. The first is simply to have 
the decision maker assess the probability directly by asking, "What is your belief re-
garding the probability that event such and such will occur?" The decision maker 
may or may not be able to give an answer to a direct question like this and may place 
little confidence in the answer given. 

The second method is to ask about the bets that the decision maker would be willing 
to place. The idea is to find a specific amount to win or lose such that the decision maker 
is indifferent about which side of the bet to take. If he or she is indifferent about which 
side to bet, then the expected value of the bet must be the same regardless of which is 
taken. Given these conditions, we can then solve for the probability. 

As an example, suppose that the Los Angeles Lakers are playing the Detroit 
Pistons in the NBA finals this year. We are interested in finding the decision maker's 
probability that the Lakers will win the championship. The decision maker is willing 
to take either of the following two bets: 

Bet 1       Win $X if the Lakers win. 
Lose $Y if the Lakers lose. 

Bet 2       Lose $X if the Lakers win. 
Win $ Y if the Lakers lose. 



270      CHAPTER 8 SUBJECTIVE PROBABILITY 

Figure 8.1 
Decision-tree repre-

sentation for assessing 
subjective probability 

via the betting method. 
The assessor's problem 

is to find X and Y so 
that he or she is indif-

ferent about betting for 
or against the Lakers. 

In these bets, X and Y can be thought of as the amounts that each person puts into the 
"pot." The winner of the bet takes all of the money therein. Bets 1 and 2 are symmetric 
in the sense that they are opposite sides of the same bet. Figure 8.1 displays the deci-
sion tree that the decision maker faces. 

If the decision maker is indifferent between Bets 1 and 2, then in his or her mind 
their expected values must be equal: 

X P(Lakers Win) − Y[l - P(Lakers Win)] 

= −X P(Lakers Win) + Y[l − P(Lakers Win)] 

which implies that 
2{X P(Lakers Win) − Y[l − P(Lakers Win)]} = 0 

We can divide through by 2 and expand the left-hand side to get X 
P(Lakers Win) − Y + Y P(Lakers Win) = 0 

Collecting terms gives 
(X + Y) P(Lakers Win) − Y = 0 

which reduces to 

 
For example, a friend of yours might be willing to take either side of the following bet: 

Win $2.50 if the Lakers win. 

Lose $3.80 if the Lakers lose. 

His subjective probability that the Lakers win, as implied by his betting behavior, is 
3.80/(2.50 + 3.80) = 0.603. 

Finding the bet for which a decision maker would be willing to take either side is 
fairly straightforward. Begin by offering a bet that is highly favorable to one side or 
the other, and note which side of the bet she would take. Then offer a bet that favors 
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the opposite side, and ask which side of this new bet she would prefer. Continue of-
fering bets that first favor one side and then the other, gradually adjusting the payoffs 
on each round. By adjusting the bet appropriately, making it more or less attractive 
depending on the response to the previous bet, the indifference point can be found. 

The betting approach to assessing probabilities appears straightforward enough, 
but it does suffer from a number of problems. First, many people simply do not like 
the idea of betting (even though most investments can be framed as a bet of some 
kind). For these people, casting the judgment task as a bet can be distracting. Most 
people also dislike the prospect of losing money; they are risk-averse. Thus, the bets 
that are considered must be for small enough amounts of money that the issue of risk 
aversion does not arise, but some people may be risk-averse even for very small 
amounts. Finally, the betting approach also presumes that the individual making the 
bet cannot make any other bets on the specific event (or even related events). That is, 
the individual cannot protect himself or herself from losses by "hedging" one bet 
with another. 

To get around the problems with direct assessment or with the betting approach, 
a third approach adopts a thought-experiment strategy in which the decision maker 
compares two lotterylike games, each of which can result in a Prize (A or B). For 
convenience, set it up so that the decision maker prefers A to B. (Prize A might be a 
fully paid two-week vacation in Hawaii, and Prize В a coupon for a free beer.) We 
would ask the decision maker to compare the lottery 

Win Prize A if the Lakers win. 

Win Prize В if the Lakers lose, 

with the lottery 
Win Prize A with known probability p. 

Win Prize В with probability 1 — p. 

The decision-tree representation is shown in Figure 8.2. The second lottery is called 
the reference lottery, for which the probability mechanism must be well specified. A 
typical mechanism is drawing a colored ball from an urn in which the proportion of 
colored balls is known to be p. Another mechanism is to use a "wheel of fortune" 
with a known area that represents "win"; if the wheel were spun and the pointer 
landed in the win area, then the decision maker would win Prize A. 

Once the mechanism is understood by the decision maker, the trick is to adjust the 
probability of winning in the reference lottery until the decision maker is indifferent 
between the two lotteries. Indifference in this case means that the decision maker has 
no preference between the two lotteries, but slightly changing probability p makes 
one or the other lottery clearly preferable. If the decision maker is indifferent, then her 
subjective probability that the Lakers win must be the p that makes her indifferent. 

How do we find the p that makes the decision maker indifferent? The basic idea is 
to start with some p1 and ask which lottery she prefers. If she prefers the reference lot-
tery, then p1 must be too high; she perceives that the chance of winning in the reference 
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Figure 8.2 
Decision-tree repre-

sentation for assessing 
subjective probability 

with equivalent-lottery 
method. The assessor's 

problem is to find a 
value of p so that the 

two lotteries are 
equivalent. 

lottery is higher. In this case, choose p2 less than p1 and ask her preference again. 
Continue adjusting the probability in the reference lottery until the indifference point 
is found. It is important to begin with extremely wide brackets and to converge on 
the indifference probability slowly. Going slowly allows the decision maker plenty 
of time to think hard about the assessment, and she probably will be much happier 
with the final result than she would be if rushed. This is an important point for find-
ing your own probability assessments. Be patient, and home in on your indifference 
point gradually. 

The wheel of fortune is a particularly useful way to assess probabilities. By 
changing the setting of the wheel to represent the probability of winning in the refer-
ence lottery, it is possible to find the decision maker's indifference point quite easily. 
Furthermore, the use of the wheel avoids the bias that can occur from using only 
"even" probabilities (0.1, 0.2, 0.3, and so on). With the wheel, a probability can be 
any value between 0 and 1. Some decision-analysis programs include wheels as 
probability-assessment aids. Figures 8.3 and 8.4 show DPL's probability-assessment 
wheel in the context of the Texaco-Penzoil example from Chapter 4. 

The lottery-based approach to probability assessment is not without its own 
shortcomings. Some people have a difficult time grasping the hypothetical game that 
they are asked to envision, and as a result they have trouble making assessments. 
Others dislike the idea of a lottery or carnival-like game. These same people, though, 
do make trade-offs with their own money whenever they purchase insurance, invest 
in a small business, or purchase shares of stock in a company. In some cases it may 
be better to recast the assessment procedure in terms of risks that are similar to the 
kinds of financial risks an individual might take. 

The last step in assessing probabilities is to check for consistency. Many prob-
lems will require the decision maker to assess several interrelated probabilities. It is 
important that these probabilities be consistent among themselves; they should obey 
the probability laws introduced in Chapter 7. For example, if P(A), P(B | A), and 
P(A and B) were all assessed, then it should be the case that 

P(A)P (B | A) = P(Aand B) 

If a set of assessed probabilities is found to be inconsistent, then the decision maker 
should reconsider and modify the assessments as necessary to achieve consistency. 
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Figure 8.3 
The Texaco reaction 
chance node in DPL. 

Figure 8.4 
DPL's probability-

assessment wheel for 
the Texaco reaction 
node. The user can 

change the proportion 
of the wheel that corre-

sponds to any of the 
events. Clicking on the 

"OK" button returns 
the user to the screen in 
Figure 8.3 with appro-
priate probabilities en-
tered on the branches 

of the chance node. 
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Assessing Continuous Probabilities 

The premise of this chapter is that it always is possible to model a decision maker's un-
certainty using probabilities. How would this be done in the case of an uncertain but 
continuous quantity? We already have learned how to assess individual probabilities; 
we will apply this technique to assess several cumulative probabilities and then use 
these to plot a rough CDF. We will discuss two strategies for assessing a subjective 
CDF. 

Let us reexamine the example of the movie star's age that we introduced in 
Chapter 7 (page 235). As you recall, the problem was to derive a probability distri-
bution representing a probability assessor's uncertainty regarding a particular movie 
star's age. In that example, several probabilities were found, and these were trans-
formed into cumulative probabilities. 

A typical cumulative assessment would be to assess P(Age < a), where a is a par-
ticular value. For example, consider P(Age < 46). The outcome "Age < 46" is an 
outcome just like any other, and so a decision maker could assess the probability of 
this event by using any of the three techniques discussed above. For example, a wheel 
of fortune might be used as an assessment aid to find the probability p that would 
make the decision maker indifferent between the two lotteries shown in Figure 8.5. 

Using this technique to find a CDF amounts to assessing the cumulative proba-
bility for a number of points, plotting them, and drawing a smooth curve through the 
plotted points. Suppose the following assessments were made: 

P(Age ≤ 29) = 0.00 
P(Age ≤ 40) = 0.05 
P(Age ≤ 44) = 0.50 
P(Age ≤ 50) = 0.85 
P(Age ≤ 65) = 
1.00 

Plotting these cumulative probabilities would result in the graph that we originally 
drew in Figure 7.9, and which is reproduced here as Figure 8.6. 

Figure 8.5 
Decision-tree repre-

sentation for assessing 
P (Age ≤ 46) in movie 

star example. 

 



ASSESSING CONTINUOUS PROBABILITIES     275 

Figure 8.6 
Cumulative distribu-

tion function for movie 
star's age. 

The strategy that we have used here is to choose a few values from the hori-
zontal axis (some ages) and then to find the cumulative probabilities that corre-
spond to those ages. This is a perfectly reasonable strategy for assessing a CDF. 
Another strategy builds up the graph the other way around. That is, we pick a few 
cumulative probabilities from the vertical axis and find the corresponding ages. 
For example, suppose we pick probability 0.35. Now we want the number of years 
a0.35 such that P(Age ≤ a0.35) = 0.35. The number a0.35 is called the 0.35 fractile of 
the distribution. In general, the p fractile of a distribution for X is the value xp such 
that P(X ≤ xp) = p. We can see from Figure 8.6 that the 0.35 fractile of the 
distribution is approximately 42 years. We know from the assessments that were 
made that the 0.05 fractile is 40 years, the 0.50 fractile is 44 years, and the 0.85 
fractile is 50 years. 

How could you go about assessing a fractile? Figure 8.7 shows a decision tree 
that represents the process for assessing the 0.35 fractile. In Lottery B, or the refer-
ence lottery, the probability of winning is fixed at 0.35. The assessment task is to ad-
just the number x in Lottery A until indifference between the lotteries is achieved. 
Indifference would mean that the probability of winning in Lottery A must be 0.35. 
Hence, there must be a 0.35 chance that X is less than or equal to the assessed x. By 
definition, then, x must be the 0.35 fractile of the distribution. 

It is important to recognize the difference between Figures 8.5 and 8.7. In Figure 
8.5 we adjusted p in the reference lottery to find indifference. To assess the 0.35 frac-
tile in Figure 8.7, we fix the probability in the reference lottery at 0.35, and we adjust 
x in the upper lottery. 

The term fractile is a general one, but other similar terms are useful for refer-
ring to specific fractiles. The idea of a median may be familiar. If we can find an 
amount such that the uncertain quantity is as likely to be above as below that 
amount, then we have found the median. The median is defined as the 0.50 frac-
tile; the median for the movie star's age is 44 years. We also can speak of quar-
tiles. The first quartile is an amount such that P (X ≤ first quartile) = 0.25, or the 
0.25 fractile. In our example, the first quartile appears to be around 42 years. 
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Figure 8.7 
Decision tree for as-

sessing the 0.35 frac-
tile of a continuous 

distribution for X. The 
decision maker's task 
is to find x in Lottery 

A that results in 
indifference between 

the two lotteries. 

Likewise, the third quartile is defined as the 0.75 fractile. The third quartile of our 
example is approximately 48 years because P(Age ≤ 48) is approximately 0.75. 
The second quartile is, of course, the median. Fractiles also can be expressed as 
percentiles. For example, the 90th percentile is defined as the 0.90 fractile of a 
distribution. 

As mentioned above, we can exploit this idea of fractiles so as to assess a contin-
uous distribution. In general, the strategy will be to select specific cumulative proba-
bilities and assess the corresponding fractiles. The first step might be to find the un-
certain quantity's extreme values. How small or large could this quantity be? 
Because it often is difficult, and sometimes even misleading, to think in terms of 
probabilities of 0 or 1, we take the 0.05 and 0.95 fractiles (or the fifth and 95th per-
centiles). In our movie star example, the 0.05 fractile is a value a0.05 such that there 
is only a 5% chance that the movie star's age would be less than or equal to a0.05. 
Likewise, the 0.95 fractile is the value a0.95 such that there is a 95% chance that the 
age would be less than or equal to a0.95. Informally, we might think of these as the 
smallest and largest values that the uncertain quantity could reasonably assume. 
Anything beyond these values would be quite surprising. 

After assessing the extreme points, the median might be assessed. For example, 
Figure 8.8 shows the decision tree that corresponds to the assessment for the median 
in our example. The task would be for the decision maker to find an age a that makes 
the two lotteries equivalent. The value of a that leaves the decision maker indifferent 
is the median of the distribution and can be plotted as a point on the decision maker's 
subjective CDF. 

Next, assess the first and third quartiles. These assessments can be made using a 
lottery setup similar to that in Figure 8.7. Another way to think of the quartiles is that 
they "split" the probability intervals above and below the median. For example, the 
first quartile is a value x such that the uncertain quantity is just as likely to fall below 
x as between x and the median. 

To do this, the decision maker must find a point such that the uncertain quantity 
is equally likely to fall above or below this point. Having assessed the extreme 
points, the median, and the quartiles, we have five points on the cumulative distribu- 
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Figure 8.8 
Decision tree for 

assessing the median 
of the distribution for 
the movie star's age. 

The assessment task is 
to adjust the number 

of 
years a in Lottery A to 
achieve indifference. 

Figure 8.9 
A subjectively assessed 

CDF for pretzel 
demand. 

tion function. These points can be plotted on a graph, and a smooth curve drawn 
through the points. 

As an example, suppose you have developed a new soft pretzel that you are 
thinking about marketing through sidewalk kiosks. You are interested in assessing 
the annual demand for the pretzels as a continuous quantity. You might make the fol-
lowing assessments: 

• 0.05 fractile for demand = 5000. 
• 0.95 fractile for demand = 45,000. 
• Demand is just as likely to be above 23,000 as below or equal to 23,000. 
• There is a 0.25 chance that demand will be below 16,000. 
• There is a 0.75 chance that demand will be below 31,000. 

The last three assessments establish the median to be 23,000, the first quartile to be 
16,000, and the third quartile to be 31,000. Plotting the points, we obtain the graph in 
Figure 8.9. A smooth curve drawn through the five points represents your subjective 
cumulative probability distribution of demand for the new pretzels. 

Once we assess a continuous distribution, how can we use it? Apparently, our 
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motivation for assessing it in the first place was that we faced uncertainty in the 
form of a range-of-risk dilemma. In our example, we may be deciding whether to 
go ahead and market the pretzels. We need the probability distribution to fill out our 
decision tree, calculate expected values, and find an optimum choice. But how will 
we calculate an expected value for this subjectively assessed distribution? There are 
several possibilities, some of which we will explore in later chapters. For example, 
in the next chapter, we will see how to fit a theoretical distribution to an assessed 
one; we then can use the mathematical properties of the theoretical distribution. 
Advanced simulation and numerical integration techniques also are possible. At 
this point, however, we will content ourselves with some simple and useful approx-
imation techniques. 

The easiest way to use a continuous distribution in a decision tree or influence 
diagram is to approximate it with a discrete distribution. The basic idea is to find 
a few representative points in the distribution and then to assign those points spe-
cific probability values. A particularly simple approach, from Keefer and Bodily 
(1983), is called the extended Pearson-Tukey method. This three-point approxi-
mation uses the median and the 0.05 and 0.95 fractiles. Thus, one primary advan-
tage of this method is that we can use assessments that already have been made. 
In assigning probabilities, the median gets probability 0.63, and the 0.05 and 0.95 
fractiles each have probability 0.185. (These probabilities do not appear to admit 
any obvious interpretation. They are used because the resulting approximation is 
reasonably accurate for a wide variety of distributions.) For the pretzel-demand 
example, we can create the three-point discrete approximation as in Figure 8.10. 
The extended Pearson-Tukey method works best for approximating symmetric 
distributions. Given its simplicity, however, it a lso works surprisingly well for 
asymmetric distributions. 

A slightly more complex approximation technique is to find bracket medians. 
Suppose that we consider an interval in which an uncertain quantity could fall: 
a ≤ X ≤ b. The bracket median is a value m* between a and b such that 
P(a ≤ X ≤ m*) = P(m* ≤ X ≤ b). Figure 8.11 shows how a bracket median relates 
to the underlying CDF. The bracket median divides the probability of the original 
interval in half and is associated with a cumulative probability halfway between the 
cumulative probabilities for a and b. 

To use bracket medians, the typical approach is to break the subjective probabil-
ity distribution into several equally likely intervals and then to assess the bracket me-
dian for each interval. In practice, three, four, or five intervals are typically used; the 
more intervals used, the better the approximation. With five intervals, the assessor 
would use the extreme points and the 0.20, 0.40, 0.60, and 0.80 fractiles. These 
would correspond to cumulative probabilities as follows: 

P(X ≤ x0.0) = 0.00 
P(X ≤ x0.2) = 0.20 
P(X ≤ х0.4) = 0.40 
P(X ≤ x0.6) = 0.60 
P(X ≤ x0.8) = 0.80 
P(X ≤ x1.0) = 1.00 
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Figure 8.10 
Replacing a continu-

ous distribution with a 
three-branch discrete 
uncertainty node in a 

decision tree. 

 

Figure 8.11 
Finding the bracket me-
dian for the interval be-
tween a and b. The cu-
mulative probabilities p 

and q correspond to a 
and b, respectively. 

Bracket median m* is 
associated with a cu-
mulative probability 

that is halfway between 
p and q. 

Because these six points define five intervals, we need five bracket medians 
(m1 — m5) with the five cumulative probabilities 

P(X ≤ m1) = 0.10 
P(X ≤ m2) = 0.30 
P(X ≤ m3) = 0.50 
P(X ≤ m4) = 0.70 
P(X ≤ m5) = 0.90 

These bracket medians can be assessed either by using the general assessment tech-
nique for assessing fractiles above or by assessing the value mi so that X  is just as likely 
to be between the lower interval bound and mi as between mi and the upper bound. 

Figure 8.12 shows the determination of five bracket medians for the pretzel-
demand distribution. These bracket medians then can be used as "representative 
points" for their respective brackets. Thus, the discrete approximation to the original 
distribution would have 

 



280      CHAPTER 8 SUBJECTIVE PROBABILITY 

Figure 8.12 
Finding bracket medi-

ans for the pretzel-
demand distribution. 

P(X = m1 = 8)   = 0.20 
P(X = m2 = 18) = 0.20 
P(X = m3 = 23) = 0.20 
P(X = m4 = 29) = 0.20 
P(X = m5 = 39) = 0.20 

as shown in Figure 8.13. 
Both methods that we have described for creating a discrete approximation are 

straightforward and work reasonably well. The extended Pearson-Tukey method has 
the advantage of requiring no additional assessments. The advantages of the bracket-
median approach are its ability to approximate virtually any kind of distribution and 
the intuitive nature of the bracket-median assessments. 

Figure 8.13 
Replacing a continu-
ous distribution with 
bracket medians in a 

decision tree. 

 

 



TOM  W. 

PITFALLS: HEURISTICS AND BIASES      281 

Which method should you use? Both work well, but a general strategy exists that 
dovetails perfectly with the sensitivity-analysis approach we described in Chapter 5. 
Suppose that you have constructed a tornado diagram for a decision problem and 
have identified several variables that are candidates for probabilistic modeling. A 
simple first step would be to use the extended Pearson-Tukey method with the base 
value as the median, and the upper and lower values as the 0.95 and 0.05 fractiles, 
respectively. In many cases, this may be an adequate model of the uncertainty. If not, 
then it may be worthwhile to use bracket medians to construct a more complete 
model of the uncertainty. (Additional information on discrete approximations is 
given in the reference section at the end of the chapter.) 

Pitfalls: Heuristics and Biases 

The methods presented above make probability assessment sound easy. As you prob-
ably realize, however, thinking in terms of probabilities is not easy. It takes consid-
erable practice before one is comfortable making probability assessments. Even 
then, we tend to use rather primitive cognitive techniques to make our probability as-
sessments. Tversky and Kahneman (1974) have labeled these techniques heuristics. 
In general, heuristics can be thought of as rules of thumb for accomplishing tasks. 
For example, an inventory-control heuristic might be to keep 10% of total yearly de-
mand for any given item on hand. When placing an order for an item that sells some 
200 units per year, one then would check the stock and order enough to have 20 units 
on hand. Heuristics tend to be simple, are easy to perform, and usually do not give 
optimal answers. 

Heuristics for assessing probabilities operate in basically the same way. They are 
easy and intuitive ways to deal with uncertain situations, but they tend to result in 
probability assessments that are biased in different ways depending on the heuristic 
used. In this section we will look at the various heuristics and the biases they can cre-
ate. Before we begin, however, consider the case of Tom W. 

"Tom W. is of high intelligence, although lacking in true creativity. He has a need for 
order and clarity, and for neat and tidy systems in which every detail finds its appro-
priate place. His writing is rather dull and mechanical, occasionally enlivened by 
somewhat corny puns and by flashes of imagination of the sci-fi type. He has a 
strong drive for competence. He seems to have little feel and little sympathy for 
other people and does not enjoy interacting with others. Self-centered, he nonethe-
less has a deep moral sense." 
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The preceding personality sketch of Tom W. was written during his senior year in 
high school by a psychologist on the basis of projective tests. Tom W. is now a grad-
uate student. Please rank the following nine fields of graduate specialization in order 
of the likelihood that Tom W. is now a graduate student in each of these fields: 

a Business administration 
b Computer science 
с Engineering 
d Humanities and education 
e Law 
f Library science 
g Medicine 
h Physical and life sciences 
i Social science and social work 

Write down your rankings before you read on. [Source: Kahneman and Tversky 
(1973).] 

Representativeness 

If you are like most people, you wrote down your ranks on the basis of how similar 
the description of Tom W. is to your preconceived notions of the kinds of people in 
the nine different fields of study. Specifically, Tom W.'s description makes him ap-
pear to be a "nerd," and so most people think that he has a relatively high chance of 
being in engineering or computer science. But judging the probability of member-
ship in a group on the basis of similarity ignores important information. There are 
many more graduate students in humanities and education and in social science and 
social work than in computer science or engineering. Information relating to the in-
cidence or base rate of occurrence in the different fields is ignored, however, when 
we make probability judgments on the basis of similarity. 

Making such judgments on similarity is one example of a kind of heuristic that 
Kahneman and Tversky (1973) call representativeness. In its most fundamental form, 
the representativeness heuristic is used to judge the probability that someone or some-
thing belongs to a particular category. Using the representativeness heuristic means 
that the judgment is made by comparing the information known about the person or 
thing with the stereotypical member of the category. The closer the similarity between 
the two, the higher the judged probability of membership in the category. 

The representativeness heuristic surfaces in many different situations and can 
lead to a variety of different biases. For example, as in the Tom W. problem, people 
can be insensitive to base rates or prior probabilities. If one were to consider base 
rates carefully in the Tom W. problem, humanities and education may well be the 
most likely category. Insensitivity to sample size is another possible result of the rep-
resentativeness heuristic. Sometimes termed the law of small numbers, people (even 
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scientists!) sometimes draw conclusions from highly representative small samples 
even though small samples are subject to considerably more statistical error than are 
large samples. Other situations in which representativeness operates include relying 
on old and unreliable information to make predictions, and making equally precise 
predictions regardless of the inherent uncertainty in a situation. 

Misunderstanding of random processes is another phenomenon attributed to the 
representativeness heuristic. One of the most important aspects of this situation for 
managers relates to changes over time and misunderstanding the extent to which a 
process can be controlled. For example, Kahneman and Tversky relate their experi-
ence with a flight instructor in Israel. The instructor had been in the habit of praising 
students for good landings and scolding them for poor ones. He observed that after 
receiving praise for a good landing, a pilot's subsequent landing tended to be worse. 
Conversely, after a pilot received a scolding, his next landing tended to be better. The 
instructor concluded that scolding was effective feedback and that praise was not. In 
fact, this phenomenon is more easily explained by what is known as the statistical 
phenomenon as regression toward the mean. If performance or measurements are 
random, then extreme cases will tend to be followed by less extreme ones. Landing 
a jet is not an easy task, and the pilot must deal with many different problems and 
conditions on each landing. It is perfectly reasonable to assume that performance for 
any pilot will vary from one landing to the next. Regression toward the mean sug-
gests that a good landing probably will be followed by one that is not as good, and 
that a poor one will most likely be followed by one that is better. 

Availability 

Another heuristic that people tend to use to make probability judgments is termed 
availability. According to this heuristic, we judge the probability that an event will 
occur according to the ease with which we can retrieve similar events from mem-
ory. As with the representativeness heuristic, availability comes into play in sev-
eral ways. External events and influences, for example, can have a substantial ef-
fect on the availability of similar incidents. Seeing a traffic accident can increase 
one's estimate of the chance of being in an accident. Being present at a house fire 
can have more effect on the retrievability of fire incidents than reading about the 
fire in the newspaper. Furthermore, differential attention by the news media to dif-
ferent kinds of incidents can result in availability bias. Suppose the local newspa-
per plays up deaths resulting from homicide but plays down traffic deaths. To 
some extent, the unbalanced reporting can affect readers'judgments of the relative 
incidence of homicides and traffic fatalities, thus affecting the community's over-
all perception. 

Bias from availability arises in other ways as well. For example, some situations 
are simply easier to imagine than others. In other cases, it may be difficult to recall 
contexts in which a particular event occurs. Another situation involves illusory cor-
relation. If a pair of events is perceived as happening together frequently, this per-
ception can lead to an incorrect judgment regarding the strength of the relationship 
between the two events. 
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Anchoring and Adjusting 

This heuristic refers to the notion that in making estimates we often choose an initial 
anchor and then adjust that anchor based on our knowledge of the specific event in 
question. An excellent example is sales forecasting. Many people make such fore-
casts by considering the sales figures for the most recent period and then adjusting 
those values based on new circumstances. The problem is that the adjustment usu-
ally is insufficient. 

The anchor-and-adjust heuristic affects the assessment of probability distribu-
tions for continuous uncertain quantities more than it affects discrete assessments. 
We tend to begin by assessing an anchor, say, the mean or median. Then extreme 
points or fractiles are assessed by adjusting away from the anchor. Because of the 
tendency to underadjust, most subjectively assessed probability distributions are 
too narrow, inadequately reflecting the inherent variability in the uncertain quantity. 
One of the consequences is that we tend to be overconfident, having underestimated 
the probability of extreme outcomes, often by a substantial amount (Capen 1976). 
The technique described above for assessing a subjective CDF using the median 
and quartiles is subject to this kind of overconfidence from anchoring and adjusting. 
This is one reason why we assess the 0.05 and 0.95 fractiles instead of the 0.00 and 
1.00 fractiles. Assessing the 0.05 and 0.95 fractiles essentially admits that there is a 
remote possibility that the uncertain quantity could fall beyond these assessed 
points. Also, we assess the 0.05 and 0.95 fractiles before the median to reduce the 
tendency to anchor on a central value. 

Motivational Bias 

The cognitive biases described above relate to the ways in which we as human beings 
process information. But we also must be aware of motivational biases. Incentives 
often exist that lead people to report probabilities or forecasts that do not entirely re-
flect their true beliefs. For example, a salesperson asked for a sales forecast may be 
inclined to forecast low so that he will look good (and perhaps receive a bonus) when 
he sells more than the amount forecasted. Occasionally incentives can be quite subtle 
or even operate at a subconscious level. For example, some evidence suggests that 
weather forecasters, in assessing the probability of precipitation, persistently err on 
the high side; they tend to overstate the probability of rain. Perhaps they would rather 
people were prepared for bad weather (and were pleasantly surprised by sunshine) in-
stead of expecting good weather and being unpleasantly surprised. Even though fore-
casters generally are good probability assessors and strive for accurate forecasts, their 
assessments may indeed be slightly affected by such implicit incentives. 

Heuristics and Biases: Implications 

This discussion of heuristics and biases in probability judgments sounds quite pes-
simistic. If people really are subject to such deficiencies in assessing probabilities, is 
there any hope? There is indeed. First, some evidence suggests that individuals can 
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learn to become good at assessing probabilities. As mentioned, weather forecasters are 
good probability assessors; in general, they provide accurate probabilities. For exam-
ple, on those occasions when a forecaster says the probability of rain is 0.20, rain actu-
ally occurs very nearly 20% (or slightly less) of the time. Weather forecasters have 
three advantages; they have a lot of specialized knowledge about the weather, they 
make many forecasts, and they receive immediate feedback regarding the outcome. All 
of these appear to be important in improving probability-assessment performance. 

Second, awareness of the heuristics and biases may help individuals make better 
probability assessments. If nothing else, knowing about some of the effects, you now 
may be able to recognize them when they occur. For example, you may be able to 
recognize regression toward the mean, or you may be sensitive to availability effects 
that result from unbalanced reporting in the news media. Moreover, when you obtain 
information from other individuals, you should realize that their judgments are sub-
ject to these same problems. 

Third, the techniques we have discussed for assessing probabilities involve 
thinking about lotteries and chances in a structured way. These contexts are quite dif-
ferent from the way that most people think about uncertainty. By thinking hard about 
probabilities using these methods, it may be possible to avoid some heuristic reason-
ing and attendant biases. At the very least, thinking about lotteries provides a new 
perspective in the assessment process. 

Finally, some problems simply cannot be addressed well in the form in which 
they are presented. In many cases it is worthwhile to decompose a chance event into 
other events. The result is that more assessments must be made, although they may 
be easier. In the next section we will see how decomposition may improve the as-
sessment process. 

Decomposition and Probability Assessment 

In many cases it is possible to break a probability assessment into smaller and more 
manageable chunks. This process is known as decomposition. There are at least three 
different scenarios in which decomposition of a probability assessment may be ap-
propriate. In this section, we will discuss these different scenarios. 

In the simplest case, decomposition involves thinking about how the event of in-
terest is related to other events. A simple example might involve assessing the proba-
bility that a given stock price increases. Instead of considering only the stock itself, 
we might think about its relationship to the market as a whole. We could assess the 
probability that the market goes up (as measured by the Dow Jones average, say), and 
then assess the conditional probabilities that the stock price increase given that the 
market increases and given that the market does not increase. Finding the probability 
that the stock price increases is then a matter of using the law of total probability: 

P(Stock Price Up) = P(Stock Price Up | Market Up) P(Market Up) 
+ P(Stock Price Up | Market Not Up) P(Market Not Up) 
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The reason for performing the assessment in this way is that it may be more com-
fortable to assess the conditional probabilities and the probability about the market 
rather than to assess P(Stock Price Up) directly. In terms of an influence diagram or 
a probability tree, we are adding a chance node that is relevant to the assessment of 
the probabilities in which we are interested. Figure 8.14 shows the decomposition of 
the stock-price assessment. 

In the second scenario, it is a matter of thinking about what kinds of uncertain 
outcomes could eventually lead to the outcome in question. For example, if your car 
will not start, there are many possible reasons why it will not. The decomposition 
strategy would be to think about the chances that different possible things could go 
wrong and the chance that the car will not start given each of these specific underly-
ing problems or some combination of them. 

For a more complicated example that we can model, suppose that you are an en-
gineer in a nuclear power plant. Your boss calls you into his office and explains that 
the Nuclear Regulatory Commission has requested safety information. One item that 
the commission has requested is an assessment of the probability of an accident re-
sulting in the release of radioactive material into the environment. Your boss knows 
that you have had a course in decision analysis, and so you are given the job of as-
sessing this probability. 

How would you go about this task? Of course, one way is to sit down with a 
wheel of fortune and think about lotteries. Eventually you would be able to arrive at 
a probability assessment. Chances are that as you thought about the problem, how-
ever, you would realize that many different kinds of situations could lead to an acci-
dent. Thus, instead of trying to assess the probability directly, you might construct an 
influence diagram that includes some of the outcomes which could lead to an acci-
dent. Figure 8.15 shows the simple influence diagram that you might draw. 

Figure 8.14 
Decomposing the 

probability assessment 
for stock-price 

movement. 
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Figure 8.15 
Simple influence 

diagram for assessing 
the probability of a 

nuclear power plant 
accident. 

The intuition behind Figure 8.15 is that an accident could result from a failure of 
the cooling system or of the control system. The cooling system could either spring 
a leak itself, thus spilling radioactive material, or its pumps could fail, allowing the 
reactor core to overheat, and thus resulting in a possible accident. The control system 
also is critical. If the control system fails, it may become impossible to maintain safe 
operation of the reactor, and thus possibly result in an accident. Furthermore, the 
control system and the cooling system do not operate independently; they both de-
pend on the electrical power system within the plant. Thus, failure of the electrical 
system would make failure of both the cooling and the control systems more likely. 
(Many other relationships also are possible. An influence diagram to assess the prob-
ability of an accident in an actual nuclear power plant would be considerably more 
complicated than Figure 8.15.) 

For each of the four chance nodes in Figure 8.15, we have two possible out-
comes. Because failures of both the cooling and control systems are relevant to the 
assessment of an accident, we have four conditional probabilities to assess. Let A de-
note the outcome of an accident, L the outcome of a cooling system failure, N the 
outcome of a control system failure, and E the outcome of an electrical system fail-
ure. The four conditional probabilities we must assess for Outcome A are 
P( A | L, N), P( A | L−, N), P( A | L, N−) and P( A | L−, N−). For the cooling 
system node, probabilities P(L | E) and P(L | E−) must be assessed. Likewise, for 
the control system node P(N | E) and P(N | E−) must be assessed. Finally, P(E) must 
be assessed for the electrical system node. 

There are nine assessments in all. Again, the reason for decomposing the assess-
ment task into multiple assessments is that you may be more comfortable with the 
assessments that are required in the decomposed version. For example, you may be 
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able to conclude that P( A | L−, N−) = 0, or that if neither the cooling system nor the 
control system fails, then the probability of an accident is zero. 

Assembling the probabilities in this case again is a matter of using the law of 
total probability, although it must be used more than once. Start out by using the law 
of total probability to expand P(A): 

P(A) = P(A | L, N)P(L, N) + P(A | L−, N)P(L−, N) 
+ P(A | L, N−) P(L, N−) + P(A | L−, N−)P(L−, N− 

Now the problem is to find P(L, N), P(L−, N), P(L, N−), and P(L−, N−). Each in turn 
can be expanded using the law of total probability. For example, consider P(L, N): 

P(L, N) = P(L, N | E)P(E) + P(L, N | Ё−)Р(Ё− 

Now we must find P(L, N | E) and P(L, N | E−). From the influence diagram, the 
only connection between the cooling system (L) and the control system (N) is 
through the electrical system. Thus, cooling and control failures are conditionally in-
dependent given the state of the power system. From the definition of conditional in-
dependence in Chapter 7, we can write 

P(L, N | E) = P(L | E) P(N | E) 

and 

P(L, N | E−) = P(L | E)− P(N | E− 

Thus, by expanding out the probabilities, it is possible to build up the probability 
P(A) from the nine assessments and their complements. 

The third scenario is related to the second. In this case, however, it is not a mat-
ter of different possible underlying causes but a matter of thinking through all of 
the different events that must happen before the outcome in question occurs. For 
example, in assessing the probability of an explosion at an oil refinery, an engineer 
would have to consider the chances that perhaps some critical pipe would fail, that 
all of the different safety measures also would fail at the same time, and that no 
one would notice the problem before the explosion occurred. Thus, many different 
individual outcomes would have to occur before the explosion. In contrast, the nu-
clear power plant example involved alternative paths that could lead to a failure. 
Of course, the second and third scenarios can be combined. That is, there may be 
alternative paths to a failure, each requiring that certain individual outcomes 
occur. This kind of analysis often is called fault-tree analysis because it is possible 
to build a tree showing the relationship of prior outcomes to the outcome in ques-
tion, which often is the failure of some complicated system. 

As you may have noticed in the nuclear power plant example, the probability 
manipulations can become somewhat complicated. Fortunately, in complicated as-
sessment problems, computer programs can perform the probability manipulations 
for us. Using such a program allows us to focus on thinking hard about the assess-
ments rather than on the mathematics. 



DECOMPOSITION AND PROBABILITY ASSESSMENT     289 
 

Figure 
8.16 

Influence diagram for 
a decision analysis of 
alternative sites for a 
nuclear-waste reposi-

tory. Source: 
Merkhofer (1987b), 

p. 105. Reprinted by 
permission of Kluwer 
Academic Publishers. 
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Figure 8.17 
Influence diagram (or 

belief network) for 
forecasting crude oil 
prices. Rounded rec-

tangles are used instead 
of ovals to represent 

chance nodes. Nodes 
with bold outlines rep-
resent entire submod-

els. Source: Abramson 
and Finizza (1995). 

As with many decision-analysis techniques, there may be more than one way to de-
compose a probability assessment. The whole reason to use decomposition is to make 
the assessment process easier. The best decomposition to use is the one that is easiest to 
think about and that gives the clearest view of the uncertainty in the decision problem. 

As indicated above, decomposition in decision-analysis assessment of probabili-
ties is important for many reasons. Perhaps most important, though, is that it permits 
the development of large and complex models of uncertainty. Two examples are 
given in Figures 8.16, 8.17, and 8.18. The influence diagram in Figure 8.16 was con-
structed as part of an analysis of alternative sites for a nuclear-waste repository in the 
United States (Merkhofer 1987b). Figures 8.17 and 8.18 show parts of the influence 
diagram for a probabilistic model for forecasting crude oil prices (Abramson and 
Finizza, 1995). In Figures 8.17 and 8.18 the authors have used rounded rectangles to 
represent chance nodes. In addition, each of the nodes with bold outlines in Figure 
8.17 actually represents an entire submodel. For example, Figure 8.18 shows the 
generic structure for each of the "Politics" nodes. In all, this model of the oil market 
includes over 150 chance nodes. 
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Figure 8.18 
Details of the 

"Politics " submodels 
in Figure 8.17. 

Source: Abramson 
and Finizza (1995). 

Experts and Probability Assessment: Pulling It All Together 

Our discussion thus far has taken a conventional decision-analysis approach; the de-
cision maker makes the probability assessments that are required in the decision 
model. In practice, though, decisions are often quite complex, and the decision 
maker must rely on experts to provide information — in the form of probability as-
sessments — regarding crucial uncertainties. For example, all of the probability as-
sessments required in the influence diagrams in Figures 8.16, 8.17, and 8.18 were 
provided by experts regarding nuclear-waste technology and the world oil market, 
respectively. 

In such complex problems, expert risk assessment plays a major role in the deci-
sion-making process. As such, the process by which the expert information was ac-
quired must stand up to professional scrutiny, and thus policy makers who acquire 
and use expert information must be able to document the assessment process. In gen-
eral, this is no different than standard scientific principles of data collection; scien-
tists who run experiments or conduct surveys are expected to adhere to standards 
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that ensure the scientific validity of their data. Adherence to these standards is neces-
sary if the conclusions drawn on the basis of the data are to have any validity. 

The assessment of expert judgments must also adhere to standards. Not surpris-
ingly, though, the standards for experts are quite different from those for data col-
lection; expert judgments are not as well behaved as data collected in a laboratory. 
There are important parallels between the two situations, however. For example, the 
definition of an expert in any given situation is not always without controversy. 
Thus, the policy maker must be able to document and justify the expert-selection 
process, just as the data-collecting scientist must be able to document and justify 
the process by which specific data points were selected. Also, as we have men-
tioned, experts can be subject to numerous biases. Thus, policy makers must be able 
to show that the environment in which the judgments were made did as much as 
possible to reduce or avoid these biases. The counterpart in data collection is that 
the scientist must be able to show that measurements were taken without bias. If 
judgments from multiple experts are combined to obtain a single probability distri-
bution, then issues of relative expertise and redundancy among the experts must be 
taken into account. The corresponding situation in data collection occurs when a 
scientist combines multiple data sets or uses results from multiple studies to draw 
conclusions. 

Over the past 20 years, as the use of expert information has grown in importance, 
procedures have been developed for acquiring expert probability assessments. In 
general, the approach requires the creation of a protocol for expert assessment that 
satisfies the need for professional scrutiny. Thorough discussions of protocol devel-
opment are found in Merkhofer (1987a) and Morgan and Henrion (1990). Although 
procedures vary (for example, Morgan and Henrion describe three different ap-
proaches), every assessment protocol should include the following steps. 

1 Background   The first step is to identify those variables for which expert as 
sessment is needed. Although this sounds obvious, it is an important first step. 
Relevant scientific literature should be searched to determine the extent of scientific 
knowledge. The objectives of stakeholders should be examined to be sure that infor 
mation is being obtained about pertinent concerns. For example, if stake holders in 
an environmental-management situation care about habitat for endangered species, 
ecosystem viability, extraction of natural resources for economic purposes, recre 
ation opportunities, and saving wilderness for future generations, then information 
on all five of these issues must be acquired. Some may require expert assessment, 
while others may be better addressed by conventional scientific studies. In many 
cases, experts may be required to make issue-specific probabilistic judgments based 
on state-of-the-art (but more general) scientific knowledge. 

2 Identification and Recruitment of Experts   Identification of appropriate experts 
can range from straightforward to very difficult. Often an organization can find in-house 
expertise. In some cases, experts must be recruited externally. Recommendations by 
peers (for example, through professional associations) can help to justify the selection 
of specific experts. 
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3 Motivating Experts    Experts often are leery of the probability-assessment 
process. Typically they are scientists themselves and prefer to rely on the process of 
science to generate knowledge. Their opinions may or may not be "correct," and hence 
they hesitate to express those opinions. The fact remains, though, that a decision must 
be made with the limited information available, and the choice was made in Step 1 that 
expert opinion is the appropriate way to obtain that information. Thus, it is important 
to establish rapport with the experts and to engender their enthusiasm for the project. 

4 Structuring and Decomposition   This step might be called knowledge explo 
ration. This step identifies specific variables for which judgments are needed and ex 
plores the experts' understanding of causal and statistical relationships among the 
relevant variables. The objective is to develop a general model (expressed, for ex 
ample, as an influence diagram) that reflects the experts' thinking about the relation 
ships among the variables. The resulting model may be an elaborate decomposition 
of the original problem, showing which probability distributions must be assessed 
conditional on other variables. The model thus gives an indication of the order in 
which the probability assessments must be made. 

5 Probability-Assessment Training   Because many experts do not have specific 
training in probability assessment, it is important to explain the principles of assess 
ment, to provide information on the inherent biases in the process and ways to coun 
teract those biases, and to give the experts an opportunity to practice making proba 
bility assessments. 

6 Probability Elicitation and Verification   In this step the experts make the re 
quired probability assessments, typically under the guidance of an individual trained 
in the probability-elicitation process. The expert's assessments are checked to be sure 
they are consistent (probabilities sum to 1, conditional probabilities are consistent 
with marginal and joint probability assessments, and so on). As part of this process, an 
expert may provide detailed chains of reasoning for the assessments. Doing so can 
help to establish a clear rationale for specific aspects of the assessed distributions 
(e.g., a variable's extreme values or particular dependence relationships). At the same 
time, encouraging a thorough examination of the expert's knowledge base can help to 
counteract the biases associated with the psychological heuristics of availability, an 
choring, and representativeness. Thus, as output this step produces the required prob 
ability assessments and a documentation of the reasoning behind the assessments. 

7 Aggregation of Experts' Probability Distributions   If multiple experts have as 
sessed probability distributions, then it may be necessary to aggregate their assessed 
probability distributions into a single distribution for the use of the decision maker. 
Another reason for aggregation is that a single distribution may be needed in a proba 
bilistic model of a larger system. In general, two approaches are possible. One is to ask 
the experts themselves to generate a consensus distribution. Doing so may require con 
siderable sharing of information, clarification of individual definitions, and possibly 
compromise on the parts of individuals. Unfortunately, the necessary interactions can 
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also lead to biases in the consensus opinion. For this reason, several methods have 
been proposed to control the interaction among the individual experts. 

If the experts are unable to reach a consensus, either because of irreconcilable 
differences or because convening the group is logistically inconvenient, then one can 
aggregate their individual distributions using a mathematical formula. Simply aver-
aging the distributions is a straightforward (and intuitively appealing) aggregation 
approach, but it ignores the relative expertise among the experts as well as the extent 
to which their information is redundant or dependent. 

The seven steps described above give a feel for the process of obtaining expert 
probability assessments. In a full-blown risk assessment, this process can involve 
dozens of people and may take several months to complete. The following example 
describes a risk assessment in which expert climatologists provided probability as-
sessments regarding possible future climate changes at the site of the proposed nu-
clear-waste repository in Nevada. 

CLIMATE  CHANCE  AT  YUCCA  MOUNTAIN,   NEVADA 

The U.S. government has proposed construction of a long-term nuclear-waste repos-
itory at Yucca Mountain, about 100 miles northwest of Las Vegas, Nevada. Spent 
fuel rods from nuclear reactors around the nation would be sealed in large steel 
casks, shipped to Yucca Mountain, and stored in a large cavern carved out of solid 
rock about 300 meters below the surface. When full, the repository will be sealed, 
but the nuclear waste will remain dangerous for millennia. Thus, requirements for li-
censing the facility include showing that the repository can safely contain the ra-
dioactive material for 10,000 years. 

One of several risks that the repository faces is that the local climate is expected 
to change over time as the global climate changes. In broad-brush terms, one might 
expect that increased human activity will lead to some warming but that natural cli-
mate cycles will lead to a global cooling or even another ice age. Climatologists 
have studied general climate trends over long periods of time and have produced 
global climate-change forecasts. What does the future hold for Yucca Mountain, 
Nevada, though? One of the attractions of Yucca Mountain is the dry climate; it ex-
periences an annual average precipitation of about 15 centimeters. If the future cli-
mate changes enough, groundwater could enter the repository. How much future pre-
cipitation is likely at Yucca Mountain over the next 10,000 years? 

To address this question, the Center for Nuclear Waste Repository Analyses 
(CNWRA) undertook a project to obtain the opinions of expert climatologists. The 
seven steps described above helped to provide a framework for the project, during 
which the experts assessed subjective probability distributions for a variety of differ-
ent climatological variables (average annual rainfall, average temperature, amount of 
cloud cover, and others) at several different points in time over the next 10,000 years. 
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Although the exceptionally long forecast horizon suggests that forecasting will be 
difficult if not impossible, the experts found this to be an interesting project, and they 
were able to develop carefully thought-out rationales for different scenarios and assess 
probability distributions that reflected their reasoning. In general, the experts agreed 
that the Yucca Mountain area would warm up slightly in the short term due to atmos-
pheric buildup of greenhouse gases such as carbon dioxide and water vapor, followed 
by slight cooling as the earth enters a "mini ice age," but they disagreed regarding the 
extent and persistence of the global-warming effect. This disagreement shows up, for 
example, in Figure 8.19a, which shows the medians of the experts' CDFs for average 
temperature traced over time. Some experts think the effect of global warming will be 
short-lived, followed quickly by global cooling, while others believe it will last longer 
and be more pronounced. This disagreement is also seen in their assessed CDFs. 
Figures 8.19b and c, for example, show the experts' CDFs for change in average tem-
perature (°C) and change in average annual precipitation (mm) 3000 years in the future. 

Figure 8.19 
Some assessments of 

climate change at 
Yucca Mountain, (a) 

Medians of CDFs for 
average temperature 
over time, (b) CDFs 

for change in average 
temperature 3000 

years in future, (c) 
CDFs for change in 

average annual precip-
itation 3000 years in 

future. Source: 
DeWispelare et al. 

(1993). Expert elicita-
tion of future climate 

in the Yucca Mountain 
vicinity, Technical 

Report CNWRA 93-
016. Prepared for 

Nuclear Regulatory 
Commission. San 

Antonio, TX: 
Southwest Research 

Institute. 
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The Yucca Mountain climate forecast is just one example of a probabilistic risk 
analysis that assessed expert opinions in the form of probability distributions. Other 
examples of such analyses involve sales forecasting, research-and-development de-
cisions, analysis of health risks due to ozone, policy making regarding hazardous 
waste, power plant design analysis, and many others. Risk analyses are performed 
by both government agencies and private corporations and are becoming more im-
portant over time as decision makers, both public and private, face important deci-
sions with substantial uncertainty and imperfect information. 

Coherence and the Dutch Book (Optional) 

Subjective probabilities must obey the same postulates and laws as so-called objective 
probabilities. That is, probabilities must be between 0 and 1, probabilities for mutually 
exclusive and collectively exhaustive sets of events must add to 1, and the probability 
of any event occurring from among a set of mutually exclusive events must be the sum 
of the probabilities of the individual events. All of the other properties of probabilities 
follow from these postulates, and subjective probabilities thus also must obey all of the 
probability "laws" and formulas that we studied in Chapter 7. 

If an individual's subjectively assessed probabilities obey the probability postu-
lates, the person is said to be coherent. What benefit is there in being coherent? The 
mathematician de Finetti proved a famous theorem, the Dutch Book Theorem, which 
says that if a person is not coherent, then it is possible to set up a Dutch book against 
him or her. A Dutch book is a series of bets that guarantees your opponent will lose 
and you will win. 

For example, suppose that it is nearly the end of the NBA season, and that the 
Los Angeles Lakers and the Boston Celtics are playing in the finals. A friend of yours 
says that the probability is 0.4 that the Lakers will win and 0.5 that the Celtics will 
win. You look at this statement and point out that his probabilities only add to 0.9. Is 
there some other possible outcome? He sullenly replies that those are his probabili-
ties, and that there is nothing wrong with them. 

Let us find what is wrong. If those really are his probabilities, then he should be 
willing to agree to the following bets: 

Bet 1       He wins $40 if the Lakers lose. 
You win $60 if the Lakers win. 

Bet 2       You win $50 if the Celtics win. 
He wins $50 if the Celtics lose. 

Note that, according to his stated probabilities, his expected value for each bet is 0. In 
Bet 1 he has a 0.6 chance of winning $40 and a 0.4 chance of losing $60. His expected 
value is 0.6(40) − 0.4(60) = 0. In Bet 2, his expected value is 0.5(50) − 0.5(50) = 0. 
What can happen? If the Lakers win (and hence the Celtics lose), then he pays you 
$60 in Bet 1 and you pay him $50 in Bet 2; he has a net loss of $10. If the Lakers 
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lose and the Celtics win, you pay him $40 in Bet 1 and he pays you $50 in Bet 2. 
Again he has a net loss of $10. He is bound to pay you $10 no matter what happens! 
He wants to know how you figured this out, so we will show him. First, the bets are 
determined in the following way. Let p represent his stated probability that the Lakers 
win and q his probability that the Celtics win. To be coherent, p + q should equal 1. To 
make up the two bets with zero expected value to him, consider his sides of the bets: 

Bet 1       He wins the amount pX with probability 1 — p 
(that is, if the Lakers lose/Celtics win). You win (he loses) 

the amount (1 — p) X with probability p. 

Bet 2        You win the amount (1 — q) Y with probability q 
(that is, if the Celtics win/Lakers lose). He 

wins the amount qY with probability 1 — q. 
As before, we can think of Y and X as the total stakes that are involved in each bet. 
For example, in Bet 1 you put pX into the pot and he puts in (1 — p) X, and whoever 
wins the bet gets all of the money in the pot. It is easy to verify that his expected 
value for each bet is zero; for example, in Bet 1 his expected value is 

(1 − p)(pX) - p[(l  − p)  X]  = 0 

Now, think about the equations that give his net gain or loss. If the Lakers win, 
his net position is L: 

The two terms on the left-hand side of the equation are his loss from Bet 1 and his 
gain from Bet 2. Likewise, if the Celtics win, his position is K: 

pX − (1 − q)Y = K 

Now, here's the trick. He has supplied p and q. You have decided to set L and K 
each equal to —$10 so that he is guaranteed to pay you $10. Now it is just a matter 
of solving for X and Y to find the bets necessary to guarantee that he loses $ 10. There 
are two equations and two unknowns (X and Y). What could be easier? 

"Aha!" he exclaims, "In my linear algebra course, I learned about solving linear 
equations simultaneously. No matter what L and K are, you should be able to find an 
X and Y to defeat me. Unless . . . .  Oh, I see!" What does he see? Solve the second 
equation for X to get 

 
Now substitute this into the first equation and solve for Y. Rearranging yields 
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This equation always can be solved for Y unless the denominator [1 — (1 — q)/p] 
on the right-hand side happens to equal 0. That will occur only when p = 1 — q, or 
p + q = 1. This was exactly the condition he violated in the first place; his proba-
bilities did not sum to 1. If his probabilities had satisfied this condition, you would 
not be able to find an X and Y that would solve the two equations, and the Dutch 
book would have been impossible. 

This example points out how incoherence can be exploited. In fact, if a person's 
probabilities do not conform to the probability laws, it is always possible to do this kind 
of thing, no matter which probability law is violated. The contribution of de Finetti was 
to prove that it is only possible not to be exploited if subjective probabilities obey the 
probability postulates and laws. The practical importance of this is less that you can set 
up Dutch books against incoherent probability assessors — because no one in his or her 
right mind would agree to such a series of bets — but to provide insight into why subjec-
tive probability should work the same way as "long-run frequency" probability. 
Because no one in his or her right mind would make decisions in a way that could be ex-
ploited, coherence is a reasonable condition to guide our assessments of probabilities 
for decision-making purposes. When we assess probabilities for use in a decision tree or 
influence diagram, those probabilities should obey all the normal probability properties. 

The idea of coherence has an important implication for assessment when a deci-
sion analysis involves assessing several probabilities. Once all probabilities have 
been assessed, it is important to check for coherence. If the assessments are not co-
herent, the decision maker should be made aware of this and given the chance to ad-
just the assessments until they are coherent. 

SUMMARY Many of the decision problems that we face involve uncertain future events. We may 
have some feeling for such uncertainties, and we can build models of them using 
subjective probability-assessment techniques. The basic approach to assessing a 
probability involves either setting up a bet or comparing lotteries. We also have con-
sidered assessment methods for continuous uncertain quantities and found that it is 
straightforward to assess continuous distributions in terms of cumulative distribution 
functions. A reasonable and practical way to incorporate a continuous distribution 
into a decision tree is to use a discrete approximation. We discussed bracket medians 
and the Pearson-Tukey three-point approximation. 

Our discussion also touched on the pitfalls of probability assessment. Individuals 
tend to use cognitive heuristics to judge probabilities. Heuristics such as representa-
tiveness, availability, and anchoring and adjustment can lead to bias in probability 
assessment. Certain ideas for improving probability assessments were discussed, in-
cluding decomposition of the assessment task. We also presented a protocol-based 
approach to obtaining expert probability assessments and showed how this approach 
was used in a risk assessment of a nuclear-waste repository. 

Finally, we discussed the idea of coherence, that is, that subjective probabilities 
must obey the same probability laws which "long-run frequency" probabilities do. 
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Being coherent in probability assessment means being sure that one cannot be ex-
ploited through a Dutch book. 

E X E R C I S E S  

8.1 Explain in your own words the idea of subjective probability. 

8.2  An accounting friend of yours has gone to great lengths to construct a statistical model of 
bankruptcy. Using the model, the probability that a firm will file for bankruptcy within a 
year is calculated on the basis of financial ratios. On hearing your explanation of subjective 
probability, your friend says that subjective probability may be all right for decision analy 
sis, but his model gives objective probabilities on the basis of real data. Explain to him how 
his model is, to a great extent, based on subjective judgments. Comment also on the sub 
jective judgments that a bank officer would have to make in using your friend's model. 

8.3  Explain in your own words the difference between assessing the probability for a discrete 
event and assessing a probability distribution for a continuous unknown quantity. 

8 .4  For each of the following phrases write down the probability number that you feel is rep 
resented by the phrase. After doing so, check your answers to be sure they are consistent. 
[For example, is your answer to e less than your answer to j?] 
a "There is a better than even chance that. . . "  
b "A possibility exists that. . . "  
c ". . .  has a high likelihood of occurring." 
d "The probability is very high that. . . "  
e "It is very unlikely that. . . "  
f "There is a slight chance . . . "  
g "The chances are better than even . . . "  
h "There is no probability, no serious probability, that. . . "  
i ". . .  is probable." 
j ". . .  is unlikely." 
k "There is a good chance that. . . "  
l ". . . is quite unlikely." 
m ". . .  is improbable." 
n ". . .  has a high probability." 
o "There is a chance that. . . "  
p ". . . is very improbable." 
q ". . . is likely." 
r "Probably. . . "  

8.5 Suppose your father asked you to assess the probability that you would pass your deci 
sion-analysis course. How might you decompose this probability assessment? Draw an 
influence diagram to represent the decomposition. 



300      CHAPTER 8 SUBJECTIVE PROBABILITY 

Q U E S T I O N S    AND   PROBLEMS 

8.6 Assess your probability that the following outcomes will occur. Use the equivalent- 
lottery method as discussed in the chapter. If possible, use a wheel of fortune with an ad 
justable win area, or a computer program that simulates such a wheel. What issues did 
you account for in making each assessment? 
a It will rain tomorrow in New York City. 
b You will have been offered a job before you graduate. 
c The women's track team at your college will win the NCAA championship this year. 
d The price of crude oil will be more than $30 per barrel on January 1, 2010. 
e The Dow Jones industrial average will go up tomorrow. 
f Any other uncertain outcome that interests you. 

8.7 Consider the following two outcomes: 
a   You will get an A in your most difficult course. b   
You will get an A or a B in your easiest course. 

Can you assess the probability of these outcomes occurring? What is different about as-
sessing probabilities regarding your own performance as compared to assessing proba-
bilities for outcomes like those in Problem 8.6? 

8.8 Describe a decomposition strategy that would be useful for assessing the probabilities in 
Problem 8.7. 

8.9 Many people deal with uncertainty by assessing odds. For example, in horse racing differ 
ent horses' odds of winning are assessed. Odds of "a to b for Outcome E" means that 
P(E) = a/(a + b). Odds of "c to d against Outcome E" means that P (E−) = c/(c + d). 
For the outcomes in Problem 8.6, assess the odds for that outcome occurring. Convert 
your assessed odds to probabilities. Do they agree with the probability assessments that 
you made in Problem 8.6? 

8.10 It is said that Napoleon assessed probabilities at the Battle of Waterloo in 1815. His 
hopes for victory depended on keeping the English and Prussian armies separated. 
Believing that they had not joined forces on the morning of the fateful battle, he indicated 
his belief that he had a 90% chance of defeating the English; P(Napoleon Wins) = 0.90. 
When told later that elements of the Prussian force had joined the English, Napoleon re 
vised his opinion downward on the basis of this information, but his posterior probability 
was still 60%; P(Napoleon Wins | Prussian and English Join Forces) = 0.60. 

Suppose Napoleon were using Bayes' theorem to revise his information. To do so, 
he would have had to make some judgments about P(Prussian and English Join 
Forces | Napoleon Wins) and P(Prussian and English Join Forces | Napoleon Loses). 
In particular, he would have had to judge the ratio of these two probabilities. Based on 
the prior and posterior probabilities given above, what is that ratio? 

8.11 Should you drop your decision-analysis course? Suppose you faced the following prob 
lem: If you drop the course, the anticipated salary in your best job offer will depend on 
your current GPA: 
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Anticipated Salary | Drop = ($4000 x Current GPA) + $16,000 

If you take the course, the anticipated salary in your best job offer will depend on both 
your current GPA and your overall score (on a scale of 0 to 100) in the course: 

Anticipated Salary | Do Not Drop = 0.6($4000 x Current GPA) 
+ 0.4($170 × Course Score) + 
$16,000 

The problem is that you do not know how well you will do in the course. You can, how-
ever, assess a distribution for your score. Assuming that 90−100 is an A, 80−89 is a B, 
70−79 a C, 60−69 a D, and 0−59 an F, assess a continuous probability distribution for 
your numerical score in the course. Use that distribution to decide whether or not to drop 
the course. Figure 8.20 shows your decision tree. 

8.12 Assess these fractiles for the following uncertain quantities: 0.05 fractile, 0.25 fractile 
(first quartile), 0.50 (median), 0.75 fractile (third quartile), and 0.95 fractile. Plot your as 
sessments to create graphs of your subjective CDFs. 
a   The closing Dow Jones industrial average (DJIA) on the last Friday of the current 

month. 
b The closing DJIA on the last Friday of next year. 
c The exchange rate, in Japanese yen per dollar, at the end of next Monday. 
d The official high temperature at O'Hare International Airport tomorrow. 
e The number of fatalities from airline accidents in the United States next year. 
f    The number of casualties from nuclear power plant accidents in the United States 

over the next 10 years. 
g   The value of the next jackpot won in the California state lottery. 

8.13 For each of the following 10 items, assess the 0.05 and 0.95 fractiles. That is, choose 
upper and lower estimates such that you are 90% sure that the actual value falls between 
your estimates. Your challenge is to be neither too narrow (i.e., overconfident) nor too 
wide (underconfident). 

Figure 8.20 
Decision tree for 

Question 8.11. 
Should you drop your 

decision-analysis 
course? 
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 0.05 Fractile 
(Low) 

0.95 Fractile 
(High) 

1.   Martin Luther King's age at death   

2.   Length of the Nile River   
3.   Number of countries that are members of 
OPEC 

  

4.   Number of books in the Old Testament  _ 
5.   Diameter of the moon   
6.   Weight of an empty Boeing 747   
7.   Year of Wolfgang Amadeus Mozart's birth   
8.   Gestation period of an Asian elephant   
9.   Air distance from London to Tokyo   

10.   Depth of deepest known point in the oceans   

If you have done a good job, most of your intervals contain the actual value (given in the 
back of the book — no peeking!). If three or more of your intervals missed the actual 
value, though, you have demonstrated overconfidence. Given your results in this ques-
tion, would you adjust your assessments in Problem 8.12? [Source: Adapted from J. E. 
Russo, and P. J. H. Schoemaker (1989) Decision Traps: The Ten Barriers to Brilliant 
Decision Making and How to Overcome Them. New York: Fireside.] 

8.14 Forecasters often provide only point forecasts, which are their best guesses as to an up 
coming event. For example, an economic forecaster might predict that U.S. gross na 
tional product (GNP) will increase at a 3% annual rate over the next three months. 
Occasionally a forecaster also will provide an estimate of the degree of confidence in the 
point forecast to indicate how sure (or unsure) the forecaster is. 

In what sense can your answers to Problem 8.12 be interpreted as forecasts? What 
advantages do subjective probability distributions have over typical point forecasts? 
What disadvantages? How could a decision maker use probabilistic forecasts such as 
those in Problem 8.12? 

8.15 Choose a course that you are currently taking in which the final exam is worth 100 points. 
Treating your score on the exam as if it were a continuous uncertain quantity, assess the 
subjective probability distribution for your score. After you have finished, check your as 
sessed distribution for consistency by: 
a   choosing any two intervals you have judged to have equal probability content, and 
b determining whether you would be willing to place small even-odds bets that your 

score would fall in one of the two intervals. (The bet would be called off if the score 
fell elsewhere.) 

c After assessing the continuous distribution, construct a three-point approximation to 
this distribution with the extended Pearson-Tukey method. Use the approximation to 
estimate your expected exam score. 
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d. Now construct a five-point approximation with bracket medians. Use this approxima-
tion to estimate your expected exam score. How does your answer compare with the 
estimate from part c? 

8.16 Compare the discrete-approximation methods by doing the following: 
a Use the extended Pearson-Tukey method to create three-point discrete approxima-

tions for the continuous distributions assessed in Problem 8.12. Use the approxima-
tions to estimate the expected values of the uncertain quantities. 

b Repeat part a, but construct five-point discrete approximations using bracket medi-
ans. Compare your estimated expected values from the two methods. 

8.17 Assess the probability that the New York Mets will win the World Series (WS) next year. 
Call this probability p. Now assess the following probabilities: P(Win WS | Win 
Pennant) and P(Win Pennant). Use these to calculate q = P(Win WS) = P(Win 
WS | Win Pennant) P(Win Pennant) = P(Win WS and Win Pennant). (To play in the 
World Series, the team must first win the pennant.) 
a Does p = q? Which of the two assessments are you more confident about? Would 

you adjust your assessments to make p = q? Why or why not? 
b If you do not like the Mets, do this problem for your favorite major league baseball 

team. 
8.18  Assess the probability that you will be hospitalized for more than one day during the up 

coming year. In assessing this probability, decompose the assessment based on whether 
or not you are in an automobile accident. With this decomposition, you must assess 
P(Hospitalized | Accident), P(Hospitalized | No Accident), and P(Accident). In what 
other ways might this assessment be decomposed? 

8 .19  Choose a firm in which you are particularly interested, perhaps one where you might like 
to work. Go to the library and read about this firm, about its industry, and about the rela 
tionship of this firm and the industry to the economy as a whole. After your reading, as 
sess a subjective CDF for the firm's revenue over the next fiscal year. Discuss the assess 
ment process. In particular, what did you learn in your research that had an impact on the 
assessment? What kinds of decomposition helped you in your assessment process? 

8.20 After observing a long run of red on a roulette wheel, many gamblers believe that black 
is bound to occur. Such a belief often is called the gambler's fallacy because the roulette 
wheel has no memory. Which probability-assessment heuristic is at work in the gam 
bler's fallacy? Explain. 

8.21 Look again at Problems 7.25 and 7.26. These problems involve assessments of the relative 
likelihood of different statements. When an individual ranks "Linda is a bank teller and is 
active in the feminist movement" as more probable than the statement "Linda is a bank 
teller," which of the three probability-assessment heuristics may be at work? Explain. 

8.22 Suppose that you are a solid B student. Your grades in your courses have always been B's. 
In your statistics course, you get a D on the midterm. When your parents express concern, 
what statistical phenomenon might you invoke to persuade them not to worry about the D? 

8.23 When we assess our subjective probabilities, we are building a model of the uncertainty 
we face. If we face a range-of-risk problem, and we begin to assess a continuous distri 
bution subjectively, then clearly it is possible to perform many assessments, which would 
make the sketched CDF smoother and smoother. How do we know when to stop making 
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assessments and when to keep going? When is the model of our uncertainty adequate for 
solving the problem, and when is it inadequate? 

8.24 Most of us have a hard time assessing probabilities with a lot of precision. For instance, 
in assessing the probability of rain tomorrow, even carefully considering the lotteries and 
trying to adjust a wheel of fortune to find the indifference point, many people would 
eventually say something like this: "If you set p = 0.2, I'd take Lottery A, and if 
p = 0.3, I'd take Lottery B. My indifference point must be somewhere in between these 
two numbers, but I am not sure where." 

How could you deal with this kind of imprecision in a decision analysis? Illustrate how 
your approach would work using the umbrella problem (Figure 4.9). (Hint: The question is 
not how to get more precise assessments. Rather, given that the decision maker refuses to 
make precise assessments, and you are stuck with imprecise assessments, what kinds of de-
cision-analysis techniques could you apply to help the individual make a decision?) 

8.25 It is not necessary to have someone else set up a series of bets against you in order for in 
coherence to take its toll. It is conceivable that one could inadvertently get oneself into a 
no-win situation through inattention to certain details and the resulting incoherence, as 
this problem shows. 

Suppose that an executive of a venture-capital investment firm is trying to decide 
how to allocate his funds among three different projects, each of which requires a 
$100,000 investment. The projects are such that one of the three will definitely succeed, 
but it is not possible for more than one to succeed. Looking at each project as an invest-
ment, the anticipated payoff is good, but not wonderful. If a project succeeds, the payoff 
will be a net gain of $150,000. Of course, if the project fails, he loses all of the money in-
vested in that project. Because he feels as though he knows nothing about whether a proj-
ect will succeed or fail, he assigns a probability of 0.5 that each project will succeed, and 
he decides to invest in each project. 

a   According to his assessed probabilities, what is the expected profit for each project? 
b What are the possible outcomes of the three investments, and how much will he make 

in each case? 
c   Do you think he invested wisely? Can you explain why he is in such a predicament? 

d If you feel you know nothing about some event, is it reasonable to assess equal prob-
abilities for the outcomes? Give an example where this might be reasonable and an-
other where it might not. 

8.26 Could you ever set up a Dutch book against a bookie who places bets for a living? Work 
through the following problem and think about this question. 

Consider a baseball season when the Chicago Cubs and the New York Yankees meet 
in the World Series. A friend of yours is a Cubs fan, and you are trying to find out how 
confident he is about the Cubs' chances of winning. He tells you that he would bet on the 
Cubs at odds of 3:2 or better and on the Yankees at odds of 1:2 or better. [Odds of a:b 
for an event means the probability of the event is a/(a + b).] This means that he would 
be happy with either of the following bets: 

Bet 1       He wins $20 if the Cubs win. 
He loses $30 if the Yankees win. 

Bet 2       He loses $20 if the Cubs win. 
He wins $40 if the Yankees win. 
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a Explain why he would be happy to accept any modification of these bets as long as 
the amount he would win increases and the amount he would lose stays the same or is 
lower. Explain in terms of his expected bet value. 

b Show mathematically that 0.60 ≤ P(Cubs Win) ≤ 0.67. (Hint: If he is willing to ac-
cept either bet, what does that imply about his expected value for each bet?) 

c Would it be possible to set up a Dutch book against this individual? If your answer is yes, 
what bets would you place, and how much would you be sure to win? If your answer is 
no, explain why not. (Be careful! Make sure he is willing to accept the bets you propose.) 

d Most individuals have a hard time assessing subjective probabilities with a very high 
degree of precision. (See Problem 8.23.) Does this problem shed any light on the issue? 

8.27 Ellsberg Paradox A barrel contains a mixture of 90 red, blue, and yellow balls. Thirty 
of the balls are red, and the remaining 60 are a mixture of blue or yellow, but the propor-
tion of blue and yellow is unknown. A single ball will be taken randomly from the barrel. 
a Suppose you are offered the choice between gambles A and B: 

A: Win $ 1000 if a red ball is chosen. 
B:        Win $1000 if a blue ball is chosen. 

Would you prefer A or B? Why? b   Now suppose that you are offered a 
choice between gambles C and D: 

C:       Win $1000 if either a red or a yellow ball is chosen. D:       
Win $1000 if either a blue or a yellow ball is chosen. 

Would you prefer C or D? Why? 
c    Many people prefer A in the first choice and D in the second. Do you think this is in-

consistent? Explain. 

C A S E     S T U D I E S  

ASSESSING   CANCER   R I S K  — FROM   MOUSE  TO   MAN 

Cancer is a poorly understood and frightening disease. Its causes are essentially un-
known, and the biological process that creates cancerous cells from healthy tissue re-
mains a mystery. Given this state of ignorance, much research has been conducted 
into how external conditions relate to cancer. For example, we know that smoking 
leads to substantially higher incidence of lung cancer in humans. Cancer appears 
spontaneously, however, and its onset seems to be inherently probabilistic, as shown 
by the fact that some people smoke all their lives without developing lung cancer. 

Some commentators claim that the use of new and untested chemicals is leading 
to a cancer epidemic. As evidence they point to the increase in cancer deaths over the 
years. Indeed, cancer deaths have increased, but people generally have longer life 
spans, and more elderly people now are at risk for the disease. When cancer rates are 



306      CHAPTER 8 SUBJECTIVE PROBABILITY 

adjusted for the increased life span, cancer rates have not increased substantially. In 
fact, when data are examined this way, some cancer rates (liver, stomach, and uterine 
cancer) are less common now than they were 50 years ago (1986 data of the 
American Cancer Society). Nevertheless, the public fears cancer greatly. The 
Delaney Amendment to the Food, Drug, and Cosmetics Act of 1954 outlaws residues 
in processed foods of chemicals that poses any risk of cancer to animals or humans. 
One of the results of this fear has been an emphasis in public policy on assessing 
cancer risks from a variety of chemicals. 

Scientifically speaking, the best way to determine cancer risk to humans would 
be to expose one group of people to the chemical while keeping others away from it. 
But such experiments would not be ethical. Thus, scientists generally rely on exper-
iments performed on animals, usually mice or rats. The laboratory animals in the ex-
perimental group are exposed to high doses of the substance being tested. High 
doses are required because low doses probably would not have a statistically notice-
able effect on the relatively small experimental group. After the animals die, cancers 
are identified by autopsy. This kind of experiment is called a bioassay. Typical can-
cer bioassays involve 600 animals, require two to three years to complete, and cost 
several hundred thousand dollars. 

When bioassays are used to make cancer risk assessments, two important extrap-
olations are made. First, there is the extrapolation from high doses to low doses. 
Second, it is necessary to extrapolate from effects on test species to effects on hu-
mans. On the basis of data from laboratory experiments and these extrapolations, as-
sessments are made regarding the incidence of cancer when humans are exposed to 
the substance. 

Questions 

1 Clearly, the extrapolations that are made are based on subjective judgments. 
Because cancer is viewed as being an inherently probabilistic phenomenon, it is 
reasonable to view these judgments as probability assessments. What kinds of as 
sessments do you think are necessary to make these extrapolations? What issues 
must be taken into account? What kind of scientific evidence would help in making 
the necessary assessments? 

2 It can be argued that most cancer risk assessments are weak evidence of potential 
danger or lack thereof. To be specific, a chemical manufacturer and a regulator 
might argue different sides of the same study. The manufacturer might claim that 
the study does not conclusively show that the substance is dangerous, while the 
regulator might claim that the study does not conclusively demonstrate safety. 
Situations like this often arise, and decisions must be made with imperfect infor 
mation. What kind of strategy would you adopt for making these decisions? What 
trade-offs does your strategy involve? 

3 In the case of risk assessment, as with many fields of scientific inquiry, some ex 
periments are better than others for many reasons. For example, some experiments 
may be more carefully designed or use larger samples. In short, some sources of in 
formation are more "credible." 
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For a simple, hypothetical example, suppose that you ask three "experts" whether a 
given coin is fair. All three report that the coin is fair; for each one the best estimate 
of P(Heads) is 0.50. You learn, however, that the first expert flipped the coin 10,000 
times and observed heads on 5000 occasions. The second flipped the coin 20 times 
and observed 10 heads. The third expert did not flip the coin at all, but gave it a 
thorough physical examination, finding it to be perfectly balanced, as nearly as he 
could measure. 

How should differences in credibility of information be accounted for in assessing 
probabilities? Would you give the same weight to information from the three ex-
aminers of the coin? In the case of putting together information on cancer risk from 
multiple experiments and expert sources, how might you deal with the information 
sources' differential credibility? 

Source: D. A. Freedman and H. Zeisel (1988) "From Mouse-to-Man: The Quantitative Assessment of 
Cancer Risks." Statistical Science, 3, 3-56. Includes discussion. 

BREAST  IMPLANTS 

The controversy surrounding breast implants is a good example of scientific uncer-
tainty. Yanked from the market by the Food and Drug Administration in 1991 because 
of some evidence of dangerous side effects, breast implants received a reprieve in 1994 
when the New England Journal of Medicine published an article that found no evidence 
of danger. An editorial in the San Jose Mercury News opined regarding the controversy: 

The wisdom of letting science settle this question [regarding breast implants] will 
win the ready assent of everyone. "Scientific certainty" has such a reassuring ring to 
it. 
But the implant case is a sterling example of the limits of science. Regarding long-
term harm, science often can't provide definitive answers within the time a decision 
needs to be made. 
And many policy decisions are out of the realm of science. What level of risk is 
reasonable for a woman who's lost a breast to cancer? What about reasonable risk 
for a woman who wants a fuller figure? Who decides what's reasonable? Is cosmetic 
breast enhancement a misuse of medicine to reinforce outdated notions of female 
beauty? [Source: "Uncertain Science," San Jose Mercury News, June 17, 1994, p. 
10B.] 

Questions 

1 What kinds of information should a jury consider when deciding whether a plain-
tiff's claims of damages are reasonable? Anecdotes? The number of plaintiffs filing 
similar lawsuits? Scientific studies? What does a juror need to know in order to 
evaluate the quality of a scientific study? Do you think the average juror (or judge 
for that matter!) in the United States has the ability to critically evaluate the quality 
of scientific studies? 
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Discuss the questions asked in the last paragraph of the quote above. Do these 
questions relate to uncertainty (scientific or otherwise) or to values? Given the im-
perfect information available about breast implants, what role should the manufac-
turers play in deciding what risks are appropriate for which women? What role 
should government agencies play? What role should individual consumers play? 

THE   SPACE   SHUTTLE   CHALLENGER 

On January 28, 1986, the space shuttle Challenger lifted off from an ice-covered 
launch pad. Only 72 seconds into the flight, the shuttle exploded, killing all seven as-
tronauts aboard. The United States and the rest of the world saw the accident first-
hand as films from NASA were shown repeatedly by the television networks. 

Before long the cause of the accident became known. The shuttle's main engines 
are fueled by liquid hydrogen and oxygen stored in a large tank carried on the shut-
tle's belly. Two auxiliary rockets that use solid fuel are mounted alongside the main 
fuel tank and provide additional thrust to accelerate the shuttle away from the launch 
pad. These boosters use their fuel rapidly and are jettisoned soon after launch. 

The solid rocket boosters are manufactured in sections by Morton Thiokol, Inc. 
(MTI), in Utah. The sections are shipped individually to Kennedy Space Center 
(KSC) in Florida where they are assembled. The joints between sections of the 
rocket are sealed by a pair of large rubber O-rings, whose purpose is to contain the 
hot gases and pressure inside the rocket. In the case of the Challenger, one of the 
joint seals failed. Hot gases blew past the O-rings and eventually burned through the 
large belly tank, igniting the highly explosive fuel inside. The resulting explosion 
destroyed the spacecraft. 

Before long it also became known that the launch itself was not without contro-
versy. MTI engineers had been aware of the problems with the O-rings for some 
time, having observed eroded O-rings in the boosters used on previous flights. A spe-
cial task force was formed in 1985 to try to solve the problem, but ran into organiza-
tional problems. One memo regarding the task force began, "Help! The seal task 
force is constantly being delayed by every possible means." The problem came to a 
head when, on the evening before the launch, MTI engineers recommended not 
launching the shuttle because of the anticipated cold temperatures on the launch pad. 
After a teleconference involving officials at KSC and the Marshal Space Flight 
Center (MSFC) in Alabama, management officials at MTI reversed their engineers' 
recommendation and approved the launch. 

Questions 

1 To a great extent, the engineers were concerned about the performance of the 0-
ring under anticipated cold weather conditions. The coldest previous flight had 
been 53°F, and, knowing of the existing problems with the seals, the engineers hes-
itated to recommend a launch under colder conditions. Technically, the problem 
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was that an O-ring stiffens as it gets colder, thus requiring a longer time to seal a 
joint. The real problem, however, was that the engineers did not know much about 
the performance of the O-rings at cold temperatures. Robert K. Lund, vice presi-
dent of engineering for MTI, testified to the presidential commission investigating 
the accident, "[W]e just don't know how much further we can go below the 51 or 
53 degrees or whatever it was. So we were concerned with the unknown... . They 
[officials at MSFC] said they didn't accept that rationale" (Report of the 
Presidential Commission on the Space Shuttle Challenger Accident, p. 94). 

The MTI staff felt as if it were in the position of having to prove that the shuttle was 
unsafe to fly instead of the other way around. Roger Boisjoly, an MTI engineer, tes-
tified, "This was a meeting where the determination was to launch, and it was up to 
us to prove beyond a shadow of a doubt that it was not safe to do so. This is in total 
reverse to what the position usually is in a preflight conversation or a flight readi-
ness review. It is usually exactly opposite that" (Report, p. 93). 

NASA solicited information regarding ice on the launch pad from Rockwell 
International, the shuttle's manufacturer. Rockwell officials told NASA that the ice 
was an unknown condition. Robert Glaysher, a vice president at Rockwell, testified 
that he had specifically said to NASA, "Rockwell could not 100 percent assure that 
it is safe to fly" (Report, p. 115). In this case, the presidential commission also 
found that "NASA appeared to be requiring a contractor to prove that it was not 
safe to launch, rather than proving it was safe" (Report, p. 118). 

The issue is how to deal with unknown information. What do you think the policy 
should be regarding situations in which little or no information is available? 
Discuss the problems faced by both MTI and NASA. What incentives and pres-
sures might they have faced? 

2 Professor Richard Feynman, Nobel Laureate in physics, was a member of the com-
mission. He issued his own statement, published as an appendix to the report, taking 
NASA to task for a variety of blunders. Some of his complaints revolved around as-
sessments of the probability of failure. 

Failure of the solid rocket boosters. A study of 2900 flights of solid-fuel rockets re-
vealed 121 failures, or approximately 1 in 25. Because of improved technology and 
special care in the selection of parts and in inspection, Feynman is willing to credit a 
failure rate of better than 1 in 100 but not as good as 1 in 1000. But in a risk analysis 
prepared for the Department of Energy (DOE) that related to DOE radioactive mate-
rial aboard the shuttle, NASA officials used a figure of 1 in 100,000. Feynman writes: 

If the real probability is not so small [as 1 in 100,000], flights would show 
troubles, near failures, and possibly actual failures with a reasonable number of 
trials, and standard statistical methods could give a reasonable estimate. In fact, 
previous NASA experience had shown, on occasion, just such difficulties, near 
accidents, and accidents, all giving warning that the probability of flight failure 
was not so very small. (Report, p. F-l) 

Failure of the liquid fuel engine. In another section of his report, Feynman discussed 
disparate assessments of the probability of failure of the liquid fuel engine. His own 
calculations suggested a failure rate of approximately 1 in 500. Engineers at 
Rocketdyne, the engine manufacturer, estimated the probability to be approximately 
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1 in 10,000. NASA officials estimated 1 in 100,000. An independent consultant for 
NASA suggested that a failure rate of 1 or 2 per 100 would be a reasonable estimate. 

How is it that these probability estimates could vary so widely? How should a de-
cision maker deal with probability estimates that are so different? 

3 To arrive at their overall reliability estimates, NASA officials may have decom 
posed the assessment, estimated the reliability of many different individual compo 
nents, and then aggregated their assessments. Suppose that, because of an opti 
mistic viewpoint, each probability assessment had been slightly overoptimistic 
(that is, a low assessed probability of failure). What effect might this have on the 
overall reliability estimate? 

4 In an editorial in Space World magazine, editor Tony Reichhardt commented on the 
accident: 

One person's safety is another's paranoia. How safe is safe? What is acceptable 
risk? It's no small question, in life or in the space program. It's entirely 
understandable that astronauts would come down hard on NASA policies that 
appear to be reckless with their lives. But unless I'm misreading the testimony 
[before the commission], at the end of the teleconference that night of January 
27, most of the participating engineers believed that it was safe to go ahead and 
launch. A few argued that it was not safe enough. There was an element of risk in 
the decision, and in many others made prior to Challenger's launch, and seven 
people were killed. 
Whether this risk can be eliminated is a question of monumental importance to the 
space program. Those who have put the blame squarely on NASA launch 
managers need to think hard about the answer. If no Shuttle takes off until 
everyone at every level of responsibility is in complete agreement, then it may 
never be launched again. No single person can be absolutely sure that the whole 
system will work. On this vehicle, or on some other spacecraft next year or 30 
years from now — even if we ease the financial and scheduling pressures—
something will go wrong again. [Source: T. Reichhardt (1986) "Acceptable Risk," 
Space World, April, p. 3.] 

Comment on Reichhardt's statement. What is an acceptable risk? Does it matter 
whether we are talking about risks to the general public from cancer or risks to as-
tronauts in the space program? Would your answer change if you were an astro-
naut? A NASA official? A manufacturer of potentially carcinogenic chemicals? A 
cancer researcher? How should a p olicy maker take into account the variety of 
opinions regarding what constitutes an acceptable risk? 

Source: Information for this case was taken from many sources, but by far the most important was the 
report by the Rogers Commission (1986) Report of the Presidential Commission on the Space Shuttle 
Challenger Accident. Washington, DC: U.S. Government Printing Office. 

R E F E R E N C E S  

The subjective interpretation of probability is one of the distinguishing characteristics of 
decision theory and decision analysis. This interpretation was presented first by Savage 
(1954) and has been debated by probabilists and statisticians ever since. Winkler (1972) 
provides an excellent introduction to subjective probability and Bayesian statistics (so 



REFERENCES      311 

called because of the reliance on Bayes' theorem for inference), as well as extensive ref-
erences to the literature. 

Although we argued that verbal expressions of uncertainty are by nature less precise 
than numerical probabilities, Wallsten, Budescu, and Zwick (1993) show how to cali-
brate a set of verbal probability labels so that the meaning of each label is precisely un-
derstood. 

Spetzler and Stael von Holstein (1975) is the standard reference on probability as-
sessment. Winkler (1972) also covers this topic. Wallsten and Budescu (1983) review the 
field from a psychological perspective. 

The construction of an appropriate discrete distribution is an interesting problem that 
has occupied a number of decision-analysis researchers. Many different approaches 
exist; the extended Pearson-Tukey and bracket median approaches are two of the more 
straightforward ones that perform well. Other good ones include the extended Swanson-
Megill method, in which the distribution's median gets probability 0.4 and the 0.10 and 
0.90 fractiles get probability 0.3 each. More complicated (and more precise) methods 
create discrete distributions with mathematical characteristics that match those of the 
continuous distribution (e.g., Miller and Rice 1983, Smith 1993); such approaches are 
difficult to use "by hand" but are easily implemented in computer software. Studies that 
report on the relative performance of different discrete-approximation methods include 
Keefer and Bodily (1983), Keefer (1994), and Smith (1993). 

The literature on heuristics and biases is extensive. One reference that covers the 
topic at an introductory level is Tversky and Kahneman (1974). Hogarth (1987) provides 
a unique overview of this material in the context of decision analysis. Kahneman, Slovic, 
and Tversky (1982) have collected key research papers in the area. With respect to the 
issue of overconfidence in particular, Capen (1976) reports an experiment that demon-
strates the extent of overconfidence in subjective probability assessments and possible 
ways to cope with this phenomenon. 

Probability decomposition is a topic that has not been heavily researched, although 
there are many applications. For example, see Bunn (1984) and von Winterfeldt and 
Edwards (1986) for discussions and examples of fault trees. A recent research paper by 
Ravinder, Kleinmuntz, and Dyer (1988) discusses when decomposition is worth doing. 
Fault-tree analysis is widely used in reliability engineering and risk analysis. It is de-
scribed in Gottfried (1974), Bunn (1984), and Merkhofer (1987b). Covello and 
Merkhofer (1993) provide additional references regarding fault trees. 

As mentioned, the concept of coherence was first introduced by de Finetti (1937). 
Thinking in terms of coherence as did de Finetti contrasts with the axiomatic approach 
taken by Savage (1954). The idea of coherence has been developed considerably; exam-
ples of ways in which various decision rule or probability assessments are incoherent are 
given by Bunn (1984), French (1986), and Lindley (1985). 

Finally, a topic that arose in Problems 8.23-8.26 deserves mention. This is the mat-
ter of vagueness or ambiguity in probability assessments. Problem 8.26 is the classic 
paradox of Ellsberg (1961), essentially showing that people shy away from risky 
prospects with vague probabilities. Ongoing research is attempting to understand this 
phenomenon both descriptively and prescriptively. Einhorn and Hogarth (1985) present 
a psychological model of the process. Frisch and Baron (1988) define vagueness in 
terms of the lack of information that could have an impact on a probability assessment. 
The setup in Problem 8.25 is a simplified version of Nau's (1990) model in which a de-
cision maker places constraints on the size of the bets that would be acceptable at dif-
ferent odds levels. 
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E P I L O G U E  Stanford beat Oregon in their 1970 football contest. The score was 33-10. Jim Plunkett 
was Stanford's quarterback that season and won the Heisman trophy. 

Millard Fillmore was Zachary Taylor's vice president. Taylor died in 1850 while in 
office. Fillmore succeeded him and was president from 1850 through 1853. 



CHAPTER  9 

Theoretical Probability 
Models 

he last chapter dealt with the subjective assessment of probabilities as a method of modeling uncertainty 
in a decision problem. Using subjective probabilities often is all that is necessary, although they 

occasionally are difficult to come up with, and the nature of the uncertainty in a 
decision situation can be somewhat complicated. In these cases, we need another 
approach. 

An alternative source for probabilities is to use theoretical probability models and 
their associated distributions. We can consider the characteristics of the system from 
which the uncertain event of interest arises, and, if the characteristics correspond to 
the assumptions that give rise to a standard distribution, we may use the distribution 
to generate the probabilities. It is important to realize, however, that in this situation a 
substantial subjective judgment is being made: that the physical system can be repre-
sented adequately using the model chosen. In this sense, such probability models 
would be just as "subjective" as a directly assessed probability distribution. 

One approach is to assess a subjective probability distribution and then find a 
standard distribution that provides a close "fit" to those subjective probabilities. A 
decision maker might do this simply to make the probability and expected-value cal-
culations easier. Of course, in this case the underlying subjective judgment is that the 
theoretical distribution adequately fits the assessed judgments. 

How important are theoretical probability distributions for decision making? 
Consider the following applications of theoretical models. 
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THEORETICAL  MODELS  APPLIED 

Educational Testing Most major educational and intelligence tests generate distri-
butions of scores that can be well represented by the normal distribution, or the fa-
miliar bell-shaped curve. Many colleges and universities admit only individuals 
whose scores are above a stated criterion that corresponds to a specific percentile of 
the normal distribution of scores. 

Market Research In many market research studies, a fundamental issue is 
whether a potential customer prefers one product to another. The uncertainty in-
volved in these problems often can be modeled using the binomial or closely re-
lated distributions. 

Quality Control How many defects are acceptable in a finished product? In some 
products, the occurrence of defects, such as bubbles in glass or blemishes in cloth, 
can be modeled quite nicely with a Poisson process. Once the uncertainty is mod-
eled, alternative quality-control strategies can be analyzed for their relative costs and 
benefits. 

Predicting Election Outcomes How do the major television networks manage to 
extrapolate the results of exit polls to predict the outcome of elections? Again, the bi-
nomial distribution forms the basis for making probability statements about who 
wins an election based on a sample of results. 

Capacity Planning Do you sometimes feel that you spend too much time standing 
in lines waiting for service? Service providers are on the other side; their problem is 
how to provide adequate service when the arrival of customers is uncertain. In many 
cases, the number of customers arriving within a period of time can be modeled 
using the Poisson distribution. Moreover, this distribution can be extended to the 
placement of orders at a manufacturing facility, the breakdown of equipment, and 
other similar processes. 

Environmental Risk Analysis In modeling the level of pollutants in the environ-
ment, scientists often use the lognormal distribution, a variant of the normal distri-
bution. With uncertainty about pollutant levels modeled in this way, it is possible to 
analyze pollution-control policies so as to understand the relative effects of different 
policies. 

You might imagine that many different theoretical probability models exist and 
have been used in a wide variety of applications. We will be scratching only the sur-
face here, introducing a few of the more common distributions. For discrete proba-
bility situations, we will discuss the binomial and Poisson distributions, both of 
which are commonly encountered and easily used. Continuous distributions that will 
be discussed are the exponential, normal, and beta distributions. The references at 
the end of this chapter will direct you to sources on other distributions. 
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The Binomial Distribution 

Perhaps the easiest place to begin is with the binomial distribution. Suppose, for ex-
ample, that you were in a race for mayor of your hometown, and you wanted to find 
out how you were doing with the voters. You might take a sample, count the number 
of individuals who indicated a preference for you, and then, based on this informa-
tion, judge your chances of winning the election. In this situation, each voter inter-
viewed can be either for you or not. This is the kind of situation in which the bino-
mial distribution can play a large part. Of course, it is not limited to the analysis of 
voter preferences but also can be used in analyses of quality control where an item 
may or may not be defective, in market research, and in many other situations. 

The binomial distribution arises from a situation that has the following charac-
teristics: 

1 Dichotomous outcomes. Uncertain events occur in a sequence, each one having 
one of two possible outcomes — success/failure, heads/tails, yes/no, 
true/false, 
on/off, and so on. 

2 Constant probability. Each event, or trial has the same probability of success. 
Call that probability p. 

3 Independence. The outcome of each trial is independent of the outcomes of the other 
trials. That is, the probability of success does not depend on the preceding outcomes. 
(As we noted in Problem 8.19 ignoring this sometimes is called the gambler's fal 
lacy: Just because a roulette wheel has come up red five consecutive times does not 
mean that black is "due" to occur. Given independence from one game to the next, 
the probability of black still is 0.5, regardless of the previous outcomes.) 

Now suppose we look at a sequence of n trials; for example, four tosses of a 
loaded coin that has P(Heads) = 0.8. How many successes (heads) could there be? 
Let R denote the uncertain quantity or random variable that is the number of successes 
in the sequence of trials. Clearly, there can be no more than n successes: 0 < R < n. In 
our example, 0 < R < 4, or there will be somewhere between zero and four heads. 

What is the probability of four heads? Let H, denote the event that a head occurs 
on the ith toss. Then four heads can happen only if the following sequence occurs: 
H1, H2, H3, H4. What is P(Hl, H2, H3, H4)? 

P(R = 4 | n = 4, p = 0.8) = P(H1, H2, H3, H4) 
= P(H1) P(H2 | H1) P(H3 | H2, H1) P(H4 | H3, H2, H1) 

(by using conditional probabilities) 
= P(H1) P(H2)P(H3) P(H4) 

(by the independence property) = p4      
(by the constant probability property) = 0.84   
[P(Heads) = 0.8 for the loaded coin] = 0.41 
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What is the probability of three heads? In this case, three heads can occur in any of 
four ways: 

H1, H2, H3, T 
H1, H2, T, H4 
H1, T, H3, H4 
T, H2, H3, 
H4 

The probability for any one of these sequences is p3(1 — p). Because these four se-
quences are mutually exclusive, the probability of three heads is simply the sum of 
the individual probabilities, or P(Three Heads in Four Tosses) =. P(R = 3 | n = 4, 
p = 0.8) = 4p3(l - p)1 = 4(0.83)(0.2). 

In general, the probability of obtaining r successes in n trials is given by 
 

where the subscript B indicates that this is a binomial probability. The term with the 
factorials is called the combinatorial term. It gives the number of ways that a se-
quence of n trials can have r successes. The second term is just the probability as-
sociated with a particular sequence with r successes in n trials. The expected num-
ber of successes is simply E(R) = np. (If I have n trials, I expect proportion p of 
them to  be successes.)  The var iance of the number  o f successes i s  
Var(R) = np(1 - p). 

Binomial probabilities are not difficult to calculate using Formula (9.1), but 
you do not have to calculate them yourself. Individual probabilities [PB(r 
Successes)] and cumulative terms [PB(r or Fewer Successes)] can be found in the 
tables in Appendixes A and B at the end of this  book. For example,  
PB(R = 2 | n = 9,  p = 0.12) is found in the following way, as illustrated in Figure 
9.1. First, we find the value n = 9 along the left margin, and then the value for 
r = 2. Now read across that row until you find the column headed by p = 0.12. 
The probability you read is 0.212. Thus, PB(R = 2 | n = 9, p = 0.12) = 0.212. 

Figure 9.1 
Using the binomial table to 
find PB(R = 2 | n = 9, p = 
0.12) . 
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The tables can be used to find binomial probabilities in many different forms. For 
example, what is PB(R > 3 | n = 15, p = 0.2)? To find this probability, all that is 
necessary is to consider the complement: 

PB(R > 3 | n = 15, p = 0.2) = 1 - PB(R ≤ 3 | n = 15, p = 0.2) 
= 1 - 0.648    (from Appendix B) 
= 0.352 

You may have noticed that the values for p only go up to 0.50. What if you need to 
find a binomial probability with a p larger than 0.50? Let us try it. What is 
PB(R ≤ 5 | n = 8, p = 0.7)? To do this, we will look at the flip side of the situation. 
Getting five or fewer successes in eight trials is equivalent to getting three or more 
failures in eight trials, where P(Failure) = 1 — P(Success). Thus, we are arguing that 

PB(R ≤ 5 | n = 8, p = 0.7) = PB(R' ≥ 3 | n = 8, p = 0.3) 

where R' = n — R, or the number of failures. Now, to find PB(R '  ≥ 3 | n 
= 8, p = 0.3), use the idea of a complement: 

PB(R' > 3 | n = 8, p = 0.3) = 1 - PB(R ' ≤ 2 | n = 8, p = 0.3) 
= 1 - 0.552 = 
0.448 

An Example: Melissa Bailey It is the beginning of winter term at the College of 
Business at Eastern State. Melissa Bailey says she is eager to study, but she has plans 
for a ski trip each weekend for 12 weeks. She will go only if there is good weather. 
The probability of good weather on any weekend during the winter is approximately 
0.65. What is the probability that she will be gone for eight or more weekends? 

Are all of the requirements satisfied for the binomial distribution? Weekend 
weather is good or bad, satisfying the dichotomous outcomes property. We will as-
sume that the probabilities are the same from one weekend to the next, and more-
over it seems reasonable to assume that the weather on one weekend during the 
winter is independent of the weather of previous weekends. Given these assump-
tions, the binomial distribution is an appropriate model for the uncertainty in this 
problem. Keep in mind that we are building a model of the uncertainty. Although 
our assumptions may not be exactly true, the binomial distribution should provide a 
good approximation. 

To solve the problem, we must find PB(R ≥ 8 | n = 12, p — 0.65). Of course, it 
is always possible to calculate this probability directly using the formula; however, 
let us see how to use the tables. The first problem is that the tables only give proba-
bilities for p less than or equal to 0.50. To obtain the probability we want, we look at 
the problem in terms of bad weather rather than good. Being gone 8 or more week-
ends (good weather) out of 12 is the same as staying home on 4 or fewer weekends 
(bad weather). Find PB(R' ≤ 4 | n = 12, p = 0.35). Using Appendix B, this is 
0.583. Thus, there is more than a 50% chance that Melissa will be home on four or 
fewer weekends and gone on eight or more weekends. 
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Another Example: Soft Pretzels Having just completed your degree in business, 
you are eager to try your skills as an entrepreneur by marketing a new pretzel that you 
have developed. You estimate that you should be able to sell them at a competitive 
price of 50 cents each. The potential market is estimated to be 100,000 pretzels per 
year. Unfortunately, because of a competing product, you know you will not be able 
to sell that many. After careful research and thought, you conclude that the following 
model of the situation captures the relevant aspects of the problem: Your new pretzel 
might be a hit, in which case it will capture 30% of the market in the first year. On the 
other hand, it may be a flop, in which case the market share will be only 10%. You 
judge these outcomes to be equally likely. 

Being naturally cautious, you decide that it is worthwhile to bake a few pretzels 
and test market them. You bake 20, and in a taste test against the competing product, 
5 out of 20 people preferred your pretzel. Given these new data, what do you think 
the chances are that your new pretzel is a hit? The following analysis is one way that 
you might analyze the situation. 

The question we are asking is this: What is P(New Pretzel a Hit | 5 of 20 
Preferred New Pretzel)? How can we get a handle on this probability? A problem 
like this that involves finding a probability given some new evidence almost cer-
tainly requires an application of Bayes' theorem. Let us use some notation to make 
our life simpler. Let "Hit" and "Flop" denote the outcomes that the new pretzel is a 
hit or a flop, respectively. Let R be the number of tasters (out of 20) who preferred 
the new pretzel. Now we can write down Bayes' theorem using this notation: 

P(New Pretzel a Hit | 5 of 20 Preferred New Pretzel) 
= P(Hit \R = 5) 

P(R = 5 | Hit) P(Hit) 
=

    P(R = 5 | Hit) P(Hit) + P(R = 5 | Flop) P(Flop) 

Next we must fill in the appropriate probabilities on the right-hand side of the 
Bayes' theorem equation. The probabilities P(Hit) and P(Flop) are easy. Based on 
the judgment (stated above) that these two outcomes are considered to be equally 
likely, we can say that P(Hit) = P(Flop) = 0.50. 

What about P(R = 5 | Hit) and P(R = 5 | Flop)? These are a bit trickier. 
Consider P(R — 5 | Hit). This is the binomial probability that 5 out of 20 people 
prefer your pretzel, given that 30% (p = 0.3) of the entire population of pretzel cus-
tomers would prefer yours. That is, if your pretzel is a hit, you will capture 30% of 
the market. How does this idea of 30% across the entire population relate to the 
chance of 5 out of a sample of 20 preferring your pretzel? Provided that we can view 
the 20 people in our sample as "randomly selected," we can apply the binomial dis-
tribution. ("Randomly selected" means that each member of the population had the 
same chance of being chosen. That is, each taster has the same chance of preferring 
your pretzel, thus satisfying the independence and constant probabilities for the bi-
nomial distribution.) We have p = 0.30 (Hit) and n = 20 (the sample size), and so 
P(R = 5 | Hit) = PB(R = 5 | n = 20, p = 0.30). We can use Formula (9.1) or the 
table to find PB(R = 5 | n = 20, p = 0.30) = 0.179. 
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The same argument can be made regarding P(R = 5 | Flop). Now the condition is that the pretzels are a flop. 
This means that only 10% of the population prefer your pretzel over the other. Thus, we have p = 0.10 
in this case. This gives us P(R = 5 | Flop) = PB(R = 5 | n = 20, p = 0.10). From the table, this 
probability is 0.032. 
We now have everything we need to do the calculations that are required by Bayes' theorem: 
P(New Pretzel a Hit | 5 of 20 Preferred New Pretzel) = P(Hit | R = 5) 

 
Thus, this evidence (5 out of 20 people preferring your pretzel) is good news. Your 
posterior probability that your pretzel will be a hit is almost 85%. Of course, we did 
the analysis on the basis of prior probabilities being P(Hit) = P(Flop) = 0.50. If you 
had assessed different prior probabilities, your answer would be different, although in 
any case your probability that the pretzel is a hit increases with the evidence. 

The Poisson Distribution 

While the binomial distribution is particularly good for representing successes in 
several trials, the Poisson distribution is good for representing occurrences of a par-
ticular event over time or space. Suppose, for example, that you are interested in the 
number of customers who arrive at a bank in one hour. Clearly this is an uncertain 
quantity; there could be none, one, two, three, and so on. The Poisson distribution 
also may be appropriate for modeling the uncertainty surrounding the number of ma-
chine breakdowns in a factory over some period of time. Other Poisson applications 
include modeling the uncertain number of blemishes in a bolt of fabric or the num-
ber of chocolate chips in a chocolate chip cookie. The Poisson distribution requires 
the following: 

1 Events can happen at any of a large number of places within the unit of measure 
ment (hour, square yard, and so on), and preferably along a continuum. 

2 At any specific point, the probability of an event is small. This simply means that 
the events do not happen too frequently. For example, we would be interested in 
a steady flow of customers to a bank, not a run on the bank. 

3 Events happen independently of other events. In other words, the probability of 
an event at any one point is the same regardless of the time (or location) of other 
events. 
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4   The average number of events over a unit of measure (time or space) is constant 
no matter how far or how long the process has gone on. 

Let X represent the uncertain number of events in a unit of time or space. Under the 
conditions given above, the probability that X = k events is given by 

  

where the subscript P indicates this is a Poisson probability, e is the constant 2.718 . . .  
(the base of the natural logarithms), and m is a parameter that characterizes the distri-
bution. In particular, m turns out to be both the expected number of events and the vari-
ance of the number of events. In symbols, E(X) = m and Var(X) = m. 

It is easy to calculate Poisson probabilities using Formula (9.2) and a good cal-
culator. For example, 

 

Again, however, tables (Appendixes C and D) are available that give both individual 
Poisson probabilities as well as cumulative probabilities (the probability of k or fewer 
events) for different values of m. Using these tables is much like using the binomial ta-
bles. Find the value for m across the top and the value for k along the left side. Figure 
9.2 illustrates the use of the Poisson table in Appendix C to confirm our answer above. 

An Example: Blemishes in Fabric As a simple example, suppose that you are in-
terested in estimating the number of blemishes in 200 yards of cloth. Based on ear-
lier experience with the cloth manufacturer, you estimate that a blemish occurs (on 
average) every 27 yards. At a rate of 1 blemish per 27 yards, this amounts to an ap-
proximate 7.4 blemishes in the 200 yards of cloth. 

Is the Poisson distribution appropriate? Condition 1 is satisfied — we are 
looking at a continuous 200 yards of fabric. Condition 2 also is satisfied; apparently 
there are 

Figure 9.2 
Using the Poisson 
table to find Pp(X = 
2 | m = 1.5). 
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only a few blemishes in the 200 yards. Conditions 3 and 4 both should be satisfied 
unless blemishes are created by some machine malfunction that results in many 
blemishes occurring together. Thus, the Poison distribution appears to provide an ap-
propriate model of the uncertainty in this problem. 

The expected value of 7.4 suggests that we could use a Poisson distribution with 
m = 7.4. Probabilities can be calculated using Formula (9.2). For example, the 
probability of nine blemishes to the cloth is 

 
= 0.112 

We also can confirm this answer by looking in Appendix C, although information 
from Appendix D may be more useful. For example, the probability of 4 or fewer 
blemishes is PP(X ≤ 4 | m = 7.4) = 0.140. We also can find the probability of 
more than 10 blemishes: PP(X > 10 | m = 7.4) = 1 ─ PP(X ≤ 10 | m = 7.4) = 
1.000 - 0.871 = 0.129. Although it is theoretically possible for there to be a very 
large number of blemishes, we can see that the probability of more than 18 is ex-
tremely low. In fact, it is less than 0.0005 (the probabilities in Appendixes C and D 
are rounded to three decimal places). 

Soft Pretzels, Continued Let us continue with the problem of the soft pretzels. 
You introduced the pretzels, and they are doing quite well. You have been distribut-
ing the product through several stores as well as through one street vendor. This ven-
dor has been able to sell an average of 20 pretzels per hour. He had tried a different 
location earlier but had to move; sales there were only some 8 pretzels per hour, 
which was not enough to support his business. Now you are ready to try a second 
vendor in an altogether different location. The new location could be a "good" one, 
meaning an average of 20 pretzels per hour, "bad" with an average of only 10 per 
hour, or "dismal" with an average of 6 per hour. You have carefully assessed the 
probabilities of good, bad, or dismal using the assessment techniques from 
Chapter 8. Your judgment is that the new location is likely (probability 0.7) to be a 
good one. On the other hand, it could be (probability 0.2) a bad location, and it is just 
possible (probability 0.1) that the sales rate will be dismal. 

After having the new stand open for a week, or long enough to establish a pres-
ence in the neighborhood, you decide to run a test. In 30 minutes you sell 7 pretzels. 
Now what are your probabilities regarding the quality of your new location? That is, 
what are P(Good | X = 7), P(Bad | X = 7), and P(Dismal | X = 7)? 

As in the binomial case, we are interested in finding posterior probabilities given 
some new evidence. We will use Bayes' theorem to solve the problem: 

 
We have our prior probabilities, P(Good) = 0.7, P(Bad) = 0.2, and P(Dismal) = 0.1. 

What about the probabilities P(X = 7 | Good), P(X = 7 | Bad) and P(X = 7 | Dismal)? 
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First, note that we are talking about a 30-minute period. Thus, the expected number of 
sales is either 10,5, or 3 per half hour, depending on whether the location is good, bad, 
or dismal. If the conditions for the Poisson distribution hold, then P(X = 1 | Good) is 
the Poisson probability of 7 occurrences when m = 10, Pp(X = 7 | m = 10). From 
Appendix C, this probability is 0.090. Likewise, P(X = 7 | Bad) is the Poisson prob-
ability of 7 occurrences when m = 5, or 0.104. Finally, P(X = 7 | Dismal) is 0.022. 
Now we can plug these values into Bayes' theorem: 

P(Good | X = 7) 

 

Likewise, we can calculate P(Bad | X = 7) = 0.242, and P(Dismal | X = 7) 
= 0.025. The posterior probabilities P(Good | X = 7) and P(Bad | X = 7) are not 
much different from the corresponding prior probabilities, so you might conclude 
that this information did not tell you much. On the basis of the information, however, 
the probability of the new location being dismal is now quite small. 

The Exponential Distribution 

The Poisson and binomial distributions are examples of discrete probability distri-
butions because the outcome can take on only specific "discrete" values. What about 
continuous uncertain quantities? For example, tomorrow's high temperature could 
be any value between, say, 0° and 100°F. The per-barrel price of crude oil at the end 
of the year 2000 might be anywhere between $10 and $100. As discussed in Chapter 
7, it is more natural in these cases to speak of the probability that the uncertain quan-
tity falls within some interval. In the weather example we might look at historical 
weather patterns and determine that on 50% of days during May in Columbus, Ohio, 
the daily high temperature has been 70° or lower. On the basis of this, we could as-
sess P(High Temperature in Columbus on May 28th ≤ 60°) = 0.50. 

In this section, we will look briefly at the exponential distribution for a continu-
ous random variable. In fact, the exponential distribution is closely related to the 
Poisson. If in the Poisson we were considering the number of arrivals within a spec-
ified period of time, then the uncertain time between arrivals (T) has an exponential 
distribution. The two go hand in hand; if the four conditions listed for the Poisson 
hold, then the time (or space) between events follows an exponential distribution. 

For the binomial and Poisson distributions above, we were able to express in 
Formulas (9.1) and (9.2) the probability of a specific value for the random variable. 
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The corresponding expression for a continuous random variable is the density function. 
This function shows the relative likelihood for the different values that the uncertain 
quantity can take. For the exponential, the density function is 

 
(93) 

where m is the same average rate that we used in the Poisson and t represents the 
possible values for the uncertain quantity T. An exponential density function with 
m = 2 is illustrated in Figure 9.3. Recall from Chapter 7 that areas under the density 
function correspond to probabilities. Thus, the area from 0 to a in Figure 9.3 repre-
sents PE(T ≤ a | m = 2), where the subscript E indicates that this is a probability 
from an exponential distribution. 

The exponential distribution turns out to be an easy distribution to work with. 
Probabilities are calculated by using the following formulas: 

PE(T ≤ a | m) = 1 - e─am PE(T > a | m) = 1 - 
P(T ≤ a | m) = e─am 

PE(b < T ≤ a | m) = P(T ≤ a | m) - P(T ≤ b | m) = c─bm - e─am For 

example, we can calculate that PE(T > 15 Min | m = 2 Arrivals per Hr) = PE(T > 0.25 

Hr | m = 2 Arrivals per Hr) 
= e─0.25(2) 

= 0.607 

Moreover, we can check this particular probability by using the Poisson table! The 
outcome "The time until the next arrival is greater than 15 minutes" is equivalent to 
the outcome "There are no arrivals in the next 15 minutes." Thus, 

PE(T > 15 Min | m = 2 Arrivals per Hr) 
= PP(X = 0 Arrivals in 15 Min | m — 2 Arrivals per Hr) 
= Pp(X = 0 Arrivals in 15 Min | m = 0.5 Arrivals per 15 Min) 
= 0.607 

from Appendix C. 

Figure 9.3 
Exponential density 

function with param-
eter m = 2. The 

shaded area represents 
PE(T ≤ a | m = 2). 
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The expected value of an exponential random variable is E(T) = 1/m, and the 
variance is Var(T) = 1/m2. Remember, these are units of time. For example, if 
m = 6 events per hour, then the expected time until the next event is 1/6 of an hour, 
or 10 minutes. 

Soft Pretzels, Again The problem at hand is whether a pretzel can be prepared dur-
ing the time between customers. If it takes 3.5 minutes to cook a pretzel, what is the 
probability that the next customer will arrive after it is finished, P(T > 3.5 Min)? 

This is a difficult calculation because we do not know exactly what the rate m 
would be for an exponential distribution. But we can expand P(T > 3.5 Min) by 
using the total probability formula: 

P(T > 3.5 Min) = PE(T > 3.5 Min | m = 20/Hr) P(m = 20) 
+ PE(T > 3.5 Min | m = 10/Hr) P(m = 10) + 
PE(T > 3.5 Min | m = 6/Hr) P(m = 6) 

= PE(T > 0.0583 Hr | m = 20/Hr) P(m = 20) + 
PE(T > 0.0583 Hr | m = 10/Hr) P(m = 10) + 
PE(T > 0.0583 Hr | m = 6/Hr) P(m = 6) 

= e─0.583(20) P(m = 20) + e─0.0583(10) P(m = 10) 
+ e─0.0583(6) P(m = 6) 

= 0.3114 P(m = 20) + 0.5580 P(m = 10) + 0.7047 P(m = 6) 

Now we can substitute in the posterior probabilities that we calculated above, 
P(Good | X = 7) = 0.733, P(Bad | X = 7) = 0.242, and P(Dismal | X = 7) = 0.025: 

P(T > 3.5 Min) = 0.3114(0.733) + 0.5580(0.242) + 0.7047(0.025) = 
0.3809 

Thus, the probability is 0.3809 that the time between arrivals is greater than 3.5 min-
utes. Put another way, because P(T < 3.5 min) = 1 - 0.3809 = 0.6191, we can see 
that the majority of customers will arrive before the next pretzel pops out of the 
oven. 

The Normal Distribution 

Another particularly useful continuous distribution is the normal distribution, which is 
the familiar bell-shaped curve. The normal distribution is particularly good for model-
ing situations in which the uncertain quantity is subject to many different sources of 
uncertainty or error. For example, in measuring something, errors may be introduced 
by a wide range of environmental conditions, equipment malfunctions, human error, 
and so on. Many measured biological phenomena (height, weight, length) often follow 
a bell-shaped curve that can be represented well with a normal distribution. 
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We will let Y represent an uncertain quantity that follows a normal distribution. If 
this is the case, the density function for Y is 

 

where μ and σ are parameters of the distribution and y represents the possible val-
ues that yean take. In fact, it turns out that E(Y) = μ and Var(Y) = σ2. Figure 9.4 
illustrates a normal density function. As with the exponential, the area under the den-
sity function represents the probability that the random variable falls into the corre-
sponding interval. For example, the shaded area in Figure 9.4 represents 
PN(a ≤ Y ≤ b | μ, σ). Strictly speaking, a normal random variable can take values 
anywhere between plus and minus infinity. But the probabilities associated with val-
ues more than three or four standard deviations from the mean are negligible, so we 
often use the normal to represent values that have a restricted range (for example, 
weight or height, which can only be positive) as long as the extreme points are sev-
eral standard deviations from the mean. 

In the case of the normal distribution, there are no simple formulas for finding 
probabilities as there are for the exponential. A simple rule of thumb exists for the 
normal, however. The probability is approximately 0.68 that a normal random vari-
able is within one standard deviation of the mean μ, and the probability is approxi-
mately 0.95 that it is within two standard deviations of the mean. In symbols: 

 

Figure 
9.4 

Normal density function. 
The shaded area represents 

PN (a ≤ Y ≤ b | μ, σ). 
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These are handy approximations for normal random variables and sometimes are 
called the Empirical Rule because these probabilities are found to hold (approxi-
mately) in many real-world situations. 

A table has been provided in Appendix E so that you can find cumulative normal 
probabilities. But there is a catch! The table is for a standard normal distribution, 
one that has μ = 0 and σ = 1. To use this table, we must know how to convert from a 
normal with any mean and standard deviation to a standard normal. The conversion 
works by subtracting the mean and dividing by the standard deviation. In symbols, 

 

In most cases, we will leave off the values μ = 0, σ = 1 when we talk about the 
standard normal random variable Z. 

For example, if Y has a normal distribution with mean 10 and variance 400, then 
the probability that Y is less than or equal to 35 is 

 

Find this probability by looking in Appendix E as illustrated in Figure 9.5. This table 
has cumulative probabilities listed for values of z from —3.50 up to 3.49. Find 
z = 1.25, and read off P(Z ≤ 1.25) = 0.8944. 

Figure 9.5 
Using the normal 

distribution table to 
findPN(Z ≤ 1.25). 
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An Investment Example Consider three alternative investments, A, B, and C. 
Investing in C yields a sure return of $40. Investment A has an uncertain return (X), 
which is modeled in this case by a normal distribution with mean $50 and standard 
deviation $10. Investment B's return (represented by Y) also is modeled with a nor-
mal distribution having a mean of $59 and a standard deviation of $20. On the basis 
of expected values, B is the obvious choice because $59 is greater than $50 or $40. 
The decision tree is shown in Figure 9.6. 

Although it is obvious that the expected payoff for B is greater than the sure $40 
for C, we might be interested in the probability that B's payoff will be less than $40. 
To find this probability, we must convert the value of 40 in our problem to a stan-
dardized value. Subtract the mean and then divide by the standard deviation to get a 
standardized random variable Z; 

 

From Appendix E we find that 
P(Z < ─0.95) = 0.1711 

Doing the same thing for Investment A, we want PN(A ≤ $40 | μ = 50, σ = 10): 
 

Thus, even though Investment A has a lower expected value than does B, A has a 
smaller probability of having a return of less than $40. Why? The larger variance 
for B means that the distribution for B is spread out more than is the distribution 
for A. 

Figure 9.6 
Decision tree for 
three alternative 

investments. 
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We also might be interested in the probability of a particularly large return, say, 
 

Because Appendix E shows cumulative probabilities P (Z ≤ z), we must do extra 
work in this case. We can find the probability of the complement P(Z < 0.95) and 
subtract this from 1: 

PN(Z > 0.95) = 1 ─ PN(Z ≤ 0.95) 
= 1 ─ 0.8289 = 
0.1711 

The probability P(Z > 0.95) turns out to be the same as P(Z ≤ ─0.95). This exam-
ple points out the symmetry of the normal distribution. For any z, P (Z > z) = 
P(Z ≤ — z). To get our probability P(Z > 0.95), we could have found it directly in 
the table by looking up P(Z ≤ —0.95). Figure 9.7 shows this property graphically. 

Example: Quality Control Suppose that you are the manager for a manufacturing 
plant that produces disk drives for personal computers. One of your machines pro-
duces a part that is used in the final assembly. The width of this part is important to 
the disk drive's operation; if it falls below 3.995 or above 4.005 millimeters (mm), 
the disk drive will not work properly and must be repaired at a cost of $10.40. 

The machine can be set to produce parts with a width of 4 mm, but it is not per-
fectly accurate. In fact, the actual width of a part is normally distributed with mean 4 
mm and a variance that depends on the speed of the machine. If the machine is run at 
a slower speed, the width of the produced parts has a standard deviation of 0.0019 
mm. At the higher speed, however, the machine is less precise, producing parts with 
a standard deviation of 0.0026 mm. 

Of course, the higher speed means that more parts can be produced in less time, 
thus reducing the overall cost of the disk drive. In fact, it turns out that the cost of the 

Figure 9.7 
The symmetry of the 
normal distribution. 
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disk drive when the machine is set at high speed is $20.45. At low speed, the cost is 
$20.75. 

The question that you as plant manager face is whether it would be better to run the 
machine at high or low speed. Is the extra expense of lower speed more than offset by 
the increased precision and hence the lower defect rate? You would like to choose the 
strategy with the lower expected cost. Your decision tree is shown in Figure 9.8. 

To decide, we need to know the probability of a defective unit under both ma-
chine settings. Because the width of the part follows a normal distribution in each 
case, we can get these probabilities by calculating z values and using Appendix E: 

 

Likewise, we can calculate P(Defective | High Speed): 
 

 

Figure 9.8 
Decision tree for a 

quality-control 
problem. 
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With these probabilities, it now is possible to calculate the expected cost for each al-
ternative: 

E(Cost | Low Speed) = 0.9914($20.75) + 0.0086($31.15) 
= $20.84 E(Cost | High Speed) = 

0.9452($20.45) 4- 0.0548($30.85) 
= $21.02 

Thus, in this case the increased cost from the slower speed is more than offset by the 
increased precision and lower defect rate, and you would definitely choose the 
slower speed. 

The Beta Distribution 

Suppose you are interested in the proportion of voters who will vote for the 
Republican candidate in the next presidential election. If you are uncertain about this 
proportion, you may want to encode your uncertainty as a continuous probability dis-
tribution. Because the proportion can take only values between 0 and 1, neither the 
exponential nor the normal distribution can adequately reflect the uncertainty you 
face. The beta distribution, however, may be appropriate. Let Q denote an uncertain 
quantity that can take any value between 0 and 1. Then the beta density function is 

 
As before, q represents the possible values between 0 and 1 that Q can take. 

The numbers r and n are parameters that determine the shape of the density func-
tion. If n is large, the distribution is fairly "tight," whereas if n is small, the distribu-
tion is more "spread out" (Figure 9.9). If r = n/2, the density function is symmetric 
around 0.5. If this is not the case, however, the distribution is skewed to the right or 
left depending on whether r < n/2 or r > n/2, as in Figure 9.10. As usual with 
density functions, the area under the curve represents probability. Thus, in Figure 
9.10 the shaded area represents Pβ(0.2 ≤ Q ≤ 0.4 | n = 6, r = 4). A table in 
Appendix F provides cumulative probabilities for a wide variety of different beta 
distributions. We will demonstrate this table's use shortly. 

Formula (9.5) for the density function looks much like the binomial distribution 
[Formula (9.1)]. Keep in mind that the beta distribution is a distribution for Q, a con-
tinuous random variable, whereas the binomial distribution is a distribution for R, 
the number of successes in n trials. Thus, we are considering two entirely different 
uncertain quantities. The two distributions, however, are closely related. 

The expected value of a beta random variable is E(Q) = r/n, and the variance is 
Var(Q) = r(n — r)/[n2(n + 1)]. Looking at the formula for the expected value, 
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Figure 9.9 
Some symmetric beta 

distributions. 

 

 

 

 

 

 

Figure 9.10 
Some asymmetric beta 

distributions. 

r/n, the relationship between the beta and the binomial becomes apparent. Loosely 
speaking, r and n still can be interpreted as r successes in n trials. For example, if 
you had observed 4 successes in 10 trials from a binomial distribution with unknown 
proportion Q, your best guess for Q would be 4/10, or 0.40. Moreover, you might 
concede that Q might not be exactly 0.40, although it should be close to 0.40. 

One way to use a beta distribution to model your subjective beliefs about an un-
certain Q is to imagine a sample that would be roughly equivalent to your informa-
tion. In the case of the proportion of voters who will vote Republican, you may have 
a feeling that the proportion is "around 0.30," and perhaps you feel as if all of your 
information (reading newspapers, talking to friends) is roughly equivalent to having 
polled a random sample of 20 people. These beliefs about Q might be represented by 
a beta distribution with r = 6 and n = 20. 
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Another way to fit a beta distribution is to use the cumulative probability table for 
the beta distribution (Appendix F). This table works a lot like the others. First, find the 
appropriate r and n along the left margin; for example, look at a distribution with r = 6 
and n = 20. Read across the row to find the cumulative probabilities for values of q 
from 0 to 1 (column headings). For example, reading across, you find the number ".11" 
in the q = 0.18 column (Figure 9.11). This means that for a beta distribution 
with n = 20 and r = 6, Pβ(Q ≤ 0.18 | n = 20, r = 6) = 0.11, or there is an 11% chance 
that Q is less than 0.18. Likewise, you can see that Pβ(Q ≤ 0.28 | n = 20, r = 6) = 0.45, 
and Pβ (Q ≤ 0.30 | n = 20, r = 6) = 0.53. From these two values, we can deduce that 
the median for this distribution is approximately 0.29. That is, Pβ (Q < 0.29 | n = 20, r = 
6) is approximately 0.50. We also can see that Pβ (Q ≤ 0.48 | n = 20, r = 6) = 0.95. 
This statement means there is a 95% chance that Q is less than 0.48 in this distribution, 
and hence only a 5% chance that Q is greater than 0.48. 

To use the table to fit a beta distribution to your beliefs, you might assess the me-
dian and upper and lower quartiles of your subjective distribution for Q using the 
techniques discussed in Chapter 8 for assessing a continuous subjective probability 
distribution. Then look in the table for a combination of r and n that gives a beta dis-
tribution with the same (or nearly the same) median and quartiles. For example, sup-
pose you assess the median of your subjective distribution to be 0.40, the lower quar-
tile to be 0.29, and the upper quartile to be 0.52. That is, 

P(Q ≤ 0.29) = 0.25 
P(Q ≤ 0.40) = 0.50 
P(Q ≤ 0.52) = 0.75 

Looking in the table, a beta distribution with r = 4 and n = 10 has approximately 
the same median and quartiles: 

Pβ  (Q ≤ 0.29 | n = 10, r = 4) = 0.25 Pβ 
(Q ≤ 0.40 | n = 10, r = 4) = 0.52 Pβ 
(Q ≤ 0.52 | n = 10, r = 4) = 0.78 

Given the closeness between this beta distribution and your subjective assessments, 
you might find it useful to represent your subjective beliefs with the distribution. 

Figure 9.11 
Using the beta distribution table to find 
Pβ (Q ≤ 0.18 | n = 20, r = 6) = 
0.11. 
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Suppose, however, that you had assessed 
P(Q ≤ 0.36) = 0.25 P(Q ≤ 0.40) = 0.50 P(Q ≤ 0.52) = 0.75 
No beta distributions have characteristics that are very close to these. The one with r = 2 and n = 5 has 
(roughly) the correct median and upper quartile: Pβ (Q ≤ 0.40 | r = 2, n = 5) = 0.52 and Pβ (Q ≤ 
0.52 | r = 2, n = 5) = 0.72. On the lower end, however, the approximation is poor: Pβ (Q ≤ 0.36 | 
r = 2, n = 5) = 0.45. In this case, we would have three choices. We could be satisfied with a not-so-great 
approximation, use our subjective assessment directly (perhaps with a discrete approximation), or find 
another way to approximate our beliefs. 
Soft Pretzels One Last Time Let us return to the issue of how much market share your pretzel will 
capture. Denote the market share by Q; it is an uncertain quantity that must be between 0 and 1. You might 
want to model your beliefs about Q with a beta distribution. You know that Q is not likely to be close to 1. 
Suppose also that you think that the median is approximately 0.20 and the upper quartile is 0.38. To 
represent these assessments, you might choose a beta distribution with r = 1 and n = 4. From the table, you 
can see that this distribution for Q has a median around 0.21 and an upper quartile around 0.37: 

Pβ (Q ≤ 0.20 | r = 1, n = 4) = 0.49 Pβ 
(Q ≤ 0.38 | r = 1, n = 4) = 0.76 

The expected value of Q is r/n = 1/4 = 0.25. 
Should you become a pretzel entrepreneur? Recall that the decision was to price 

the pretzels at 50 cents each and that the total market is estimated to be 100,000 pret-
zels. You figure that the total fixed cost of the project amounts to $8000 for market-
ing, finance costs, and overhead. The variable cost of each pretzel is 10 cents. 

You only have one year to prove yourself, and then you will go on to graduate 
school no matter what happens. It also is apparent that this venture alone will not 
provide enough income to live on, but embarking on it will not interfere with other 
plans for gainful employment. Your rich uncle has agreed to help you financially, 
and you have savings of your own. The only question is whether the net contribution 
of the project will be positive or negative. 

Write the equation for net contribution as the difference between total revenue 
and total costs: 

Net Contribution = 100,000 (0.50) Q - 100,000 (0.10) Q - 8000 = 
100,000(0.40)Q -  8000 

The marginal contribution per pretzel sold is 40 cents, or 0.40. The expected net con-
tribution is 

E(Net Contribution) = 40,000E(Q) - 8000 = 
40,000(0.25) - 8000 = 
10,000 - 8000 = 2000 
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On the basis of expected value, becoming a pretzel entrepreneur is a good idea! 
But the project also is a pretty risky proposition. What is the probability, for instance, 
that the pretzels could result in a loss? To answer this, we can find the specific value 
for Q (call it q*) that would make the return equal to zero: 

0 = 40,000q* - 8000 

 

If Q turns out to be less than 0.20, you would have been better off with the savings 
account. We assessed the median of Q to be approximately 0.20. This means that 
there is just about a 50% chance that the pretzel project will result in a loss. Are you 
willing to go ahead with the pretzels? 

Probability Distributions and Decision-Analysis Software 

It should come as no surprise that decision-analysis software typically includes fa-
cilities for working with theoretical distributions like those we have described in this 
chapter. For example, DPL provides access to over 20 different continuous and dis-
crete distributions. DATA incorporates 15 different continuous distributions. Both 
programs use discrete-approximation techniques to represent the distributions. In 
particular, DATA has a built-in way to construct bracket medians. DPL builds the 
discrete approximation by means of a powerful and sophisticated "moment-match-
ing" method that creates a discrete distribution with mathematical characteristics 
(expected value, variance, and so on) which match the theoretical distribution. 

SUMMARY In this chapter we examined ways to use theoretical probability distributions in deci-
sion-analysis problems. The distributions we considered were the binomial, Poisson, 
exponential, normal, and beta. These are only a few of the simpler ones; many other 
theoretical distributions are available. Each is appropriate in different situations, and 
a decision analyst must develop expertise in recognizing which distribution provides 
the best model of the uncertainty in a decision situation. 

E X E R C I S E S  

9.1 In the binomial example with Melissa Bailey (page 318), what is the probability that she 
will be gone six or more weekends? 

9.2 Suppose you are interested in an investment with an uncertain return. You think that the 
return could be modeled as a normal random variable with mean $2000 and standard de 
viation $1500. What is the probability that the investment will end up with a loss? What 
is the probability that the return will be greater than $4000? 
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9.3 If there are, on average, 3.6 chocolate chips per cookie, what is the probability of finding 
no chocolate chips in a given cookie? Fewer than 5 chocolate chips? More than 10 chips? 

9.4 Refer to the discussion of the pretzel problem in the section on the beta distribution 
(pages 334-335). Find the probability that the net contribution of the pretzel project 
would be greater than $4500. 

9.5 Table look-up and calculation practice 
a   Binomial distribution. Find the following probabilities: 

P B  (R = 5  | n  = 1 0 ,  p  = 0.22)  P B  (R = 10 | n = 15, p = 0.63) 
P B   (R ≤ 1 | n = 7, p = 0.04) PB (R ≤ 3 | n = 10, p = 0.35) 
P B  (7 <  R  ≤  1 0  | n  = 1 2 ,  p  = 0.50)  PB  (R > 1 | n = 19, p = 0.06) 
PB  (R = 4 | n = 6, p = 0.42) PB (R < 2 | n = 4, p = 0.67) 

b   Poisson distribution. Find the following probabilities: 
PP (X = 3 | m = 2.0)         PP (X > 17 | m = 15) 
PP(X > 4 | m = 5.2) PP(X < 7 | m = 10.0) 
Pp(X ≤  1 | m = 3.9) PP(3 ≤  X < 7 | m = 1.5) 
PP(X = 4 | m = 1.75)        PP(X ≤  2 | m = 3.56) 

c    Exponential distribution. Find the following probabilities: 
PE(T ≤ 5 | m = 1) PE(T ≥ 4 | m = 0.25) 
PE(0.25 < T < 1 | m = 2)        PE(T ≥ 3.2 | m = 2) 
PE(T = 3.2 | m = 2) P E (T  ≥  k  | m  =  
1/ k )  

d   Normal distribution. Find the following probabilities: 
PN(Y < 12 | μ = 10, σ = 4) PN(Y > 50 | μ = 100, σ = 30) 
PN(100 < Y < 124 | μ = 133, σ = 15) PN(Y > 20 | μ = 15, σ = 4) 
PN(Y > 0 | μ = -10, σ = 4) PN(-44 < Y < 12 | μ = 10, σ = 20) 
PN(Y = 12 | μ = 10, σ = 4) PN(Y < 12 | μ = 10, σ = 4) 

e   Beta distribution. Find the following probabilities: 

Pβ (Q ≤ 0.9 | n = 10, r = 9) Pβ (Q ≥ 0.5 | H = 5, r = 2) 
Pβ (Q ≤ 0.44 | n = 30, r = 20) Pβ (0.04 < Q ≤ 0.38 | n = 18, r = 8) 
Pβ.(0.12 < Q ≤ 0.25 | n = 14, r = 4)    Pβ (Q = 0.76 | n = 18, r = 14) 

9.6    Find values for z such that 
PN(Z ≤ z | μ = 0, σ = l) = 0.05        PN(Z > z | μ = 0, σ = l) = 0.25 PN(Z ≤ z | μ 
= 0, σ = l) = 0.50       PN(Z > z | μ = 0, σ = l) = 0.10 

9.7 Find the parameters (μ and σ) for a normal distribution whose first and third quartiles are 
125 and 275. That is, PN(Y ≤ 125 | μ, σ) = 0.25 and PN(Y ≤ 275 | μ,  σ)  =  0.75. 
What are μ and σ? 



QUESTIONS AND PROBLEMS     337 

9.8 An exponential distribution has PE (T ≥ 5 | m) = 0.24. Find m. 

9.9 A Poisson distribution has PP(X ≥ 12 | m) = 0.01 and PP(X ≤ 2 | m) = 0.095. 
Find m. 

9.10 A Poisson distribution has PP(X = 0 | m) = 0.175. Calculate m. 

9.11 Use Appendix E to verify the Empirical Rule (page 327) for normal distributions, which 
states that the probability is approximately 0.68 that a normal random variable is within 
one standard deviation of the mean Μ, and the probability is approximately 0.95 that the 
random variable is within two standard deviations of the mean. 

QUESTIONS   AND   PROBLEMS 

9.12 The amount of time that a union stays on strike is judged to follow an exponential distri 
bution with a mean of 10 days. 
a Find the probability that a strike lasts less than one day. b Find 
the probability that a strike lasts less than six days. c   Find the 
probability that a strike lasts between six and seven days. 
d Find the conditional probability that a strike lasts less than seven days, given that it 

already has lasted six days. Compare your answer to part a. 

9.13 A photographer works part-time in a shopping center, two hours per day, four days per 
week. On the average, six customers arrive each hour, and the arrivals appear to occur in 
dependently of one another. Twenty minutes after she arrives one day, the photographer 
wonders what the chances are that exactly one customer will arrive during the next 15 
minutes. Find this probability (i) if two customers just arrived within the first 20 minutes 
and (ii) if no customers have come into the shop yet on this particular day. 

9.14 A consumer is contemplating the purchase of a new compact disc player. A consumer 
magazine reports data on the major brands. Brand A has lifetime (TA) which is exponen 
tially distributed with m = 0.2; and Brand B has lifetime (TB), which is exponentially 
distributed with m = 0.1. (The unit of time is one year.) 
a Find the expected lifetimes for A and B. If a consumer must choose between the two 

on the basis of maximizing expected lifetime, which one should be chosen? 
b Find the probability that As lifetime exceeds its expected value. Do the same for B. 

What do you conclude? 
c Suppose one consumer purchases a Brand A compact disc, and another consumer 

purchases a Brand B compact disc. Find the mean and variance of (i) the average life-
time of the two machines and (ii) the difference between the lifetimes of the two ma-
chines. (Hint: You must use the rules about means and variances of linear transfor-
mations that we discussed in Chapter 7.) 

9.15 On the basis of past data, the owner of an automobile dealership finds that, on average, 
8.5 cars are sold per day on Saturdays and Sundays during the months of January and 
February, with the sales rate relatively stable throughout the day. Moreover, purchases 
appear to be independent of one another. The dealership is open for 10 hours per day on 
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each of these days. There is no reason to believe that the sales for the upcoming year will 
be any different than in the past. 
a On the first Saturday in February, the dealership will open at 9 A.M. Find the proba-

bility that the time until the first sale is more than two hours, PE(T ≥ 2 hours | m 
= 8.5 cars per 10 hours). 

b Find the probability that the number of sales before 11 A.M. is equal to zero, 
Pp(X = 0 in 2 hours | m = 8.5 cars per 10 hours). Compare your answer to that 
from part a. Can you explain why the answers are the same? 

c The owner of the dealership gives her salespeople bonuses, depending on the total 
number of cars sold. She gives them $20 whenever exactly 13 cars are sold on a given 
day, $30 whenever 14 cars are sold, $50 whenever 15 cars are sold, and $70 when-
ever 16 or  more cars are sold. On any given Saturday or Sunday in January or 
February, what is the expected bonus that the dealer will have to pay? 

d Consider the bonus scheme presented in part c. February contains exactly four 
Saturdays and four Sundays. What is the probability that the owner will have to pay 
the $20 bonuses exactly twice in those days? 

9.16 Reconsider your assessed 0.05 and 0.95 fractiles in Problem 8.13. If you are perfectly 
calibrated when judging these fractiles, then you would expect that in any given situation 
the actual value has a 0.90 chance of falling between your assessed fractiles (for that vari 
able). 
a Assuming you are perfectly calibrated, what is the probability that 0, 1, or 2 of the 10 

actual values fall between the assessed fractiles? 
b To justify using the binomial distribution to answer part a, you must assume that the 

chance of any particular value falling between its fractiles is the same regardless of 
what happens with the other variables. Do you think this is a reasonable assumption? 
Why or why not? 

9.17 In the soft pretzels example concerning the taste test — in which we used binomial proba 
bilities — suppose the results had been that 4 out of the 20 people sampled preferred 
your 
pretzel. Use Bayes' theorem to find your posterior probability P(Hit | r = 4, n = 20) for 
the following pairs of prior probabilities: 
a P(Hit) = 0.2, P(Flop) = 0.8 
b P(Hit) = 0.4, P(Flop) = 0.6 
c P(Hit) = 0.5, P(Flop) = 0.5 
d P(Hit) = 0.75, P(Flop) = 0.25 
e P(Hit) = 0.90, P(Flop) = 0.10 
f P(Hit) = 1.0, P(Flop) = 0 

Create a graph of the posterior probability as a function of the prior probability. (We did 
something similar in Chapter 7 in discussing the Hinckley trial. Refer to Figure 7.20.) 

9.18 In a city, 60% of the voters are in favor of building a new park. An interviewer intends to 
conduct a survey. 
a If the interviewer selects 20 people randomly, what is the probability that more than 

15 of them will favor building the park? 
b Instead of choosing 20 people as in part a, suppose that the interviewer wants to con-

duct the survey until he has found exactly 12 who are in favor of the park. What is the 
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probability that the first 12 people surveyed all favor the park (in which case the in-
terviewer can stop)? What is the probability that the interviewer can stop after inter-
viewing the thirteenth subject? What is the probability that the interviewer can stop 
after interviewing the eighteenth subject? 

9.19 In bottle production, bubbles that appear in the glass are considered defects. Any bottle 
that has more than two bubbles is classified as "nonconforming" and is sent to recycling. 
Suppose that a particular production line produces bottles with bubbles at a rate of 1.1 
bubbles per bottle. Bubbles occur independently of one another. 
a   What is the probability that a randomly chosen bottle is nonconforming? 
b Bottles are packed in cases of 12. An inspector chooses one bottle from each case 

and examines it for defects. If it is nonconforming, she inspects the entire case, re-
placing nonconforming bottles with good ones. This process is called rectification. 
If the chosen bottle conforms (has two or fewer bubbles), then she passes the case. 
In total, 20 cases are produced. What is the probability that at least 18 of them 
pass? 

c What is the expected number of nonconforming bottles in the 20 cases after they have 
been inspected and rectified using the scheme described in part b? 

9.20 In our discussion of the Poisson distribution, we used this distribution to represent the 
process by which customers arrive at the pretzel stand. Is it reasonable to assume that the 
Poisson distribution is appropriate for finding the probabilities that we need? Why or 
why not? 

9.21 You are the mechanical engineer in charge of maintaining the machines in a factory. The 
plant manager has asked you to evaluate a proposal to replace the current machines with 
new ones. The old and new machines perform substantially the same jobs, and so the 
question is whether the new machines are more reliable than the old. You know from past 
experience that the old machines break down roughly according to a Poisson distribution, 
with the expected number of breakdowns at 2.5 per month. When one breaks down, $150 
is required to fix it. The new machines, however, have you a bit confused. According to 
the distributor's brochure, the new machines are supposed to break down at a rate of 1.5 
machines per month on average and should cost $170 to fix. But a friend in another plant 
that uses the new machines reports that they break down at a rate of approximately 3.0 
per month (and do cost $170 to fix). (In either event, the number of breakdowns in any 
month appears to follow a Poisson distribution.) On the basis of this information, you 
judge that it is equally likely that the rate is 3.0 or 1.5 per month. 
a   Based on minimum expected repair costs, should the new machines be adopted? 
b Now you learn that a third plant in a nearby town has been using these machines. 

They have experienced 6 breakdowns in 3.0 months. Use this information to find the 
posterior probability that the breakdown rate is 1.5 per month. 

c Given your posterior probability, should your company adopt the new machines in 
order to minimize expected repair costs? 

d Consider the information given in part b. If you had read it in  the distributor's 
brochure, what would you think? If you had read it in a trade magazine as the result 
of an independent test, what would you think? Given your answers, what do you 
think about using sample information and Bayes' theorem to find posterior probabili-
ties? Should the source of the information be taken into consideration somehow? 
Could this be done in some way in the application of Bayers' theorem? 
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9.22 In the soft pretzels example for the beta distribution, suppose you assessed the median of 
Q to be approximately 0.30 and the upper quartile 0.50. In this case you could use a beta 
distribution with parameters r = 1 and n = 3 to represent your beliefs. 
a Plug the values r = 1 and n = 3 into the formula for the beta distribution. The ex-

pression simplifies considerably. (Recall that 0! = 1 by definition.) 
b   Draw a graph of the distribution of Q. 
c Use what you know about areas of triangles to show that this distribution is a reason-

ably good representation of your subjective beliefs in the sense that the median and 
upper quartile are fairly close to your subjectively assessed median and upper quartile. 

d   Find the expected profit for the pretzel project with this new distribution. 
e   Find the probability that the pretzel project results in a loss under this distribution. 

9.23 Sometimes we use probability distributions that are not exact representations of the phys 
ical processes that they are meant to represent. (For example, we might use a normal dis 
tribution for a distribution of individuals' weights, even though no one can weigh less 
than zero pounds.) Why do we do this? 

9.24 You are an executive at Procter and Gamble and are about to introduce a new product. 
Your boss has asked you to predict the market share (Q, a proportion between 0 and 1) 
that the new product will capture. You are unsure of Q, and you would like to communi 
cate your uncertainty to the boss. You have made the following assessments: 

There is a l-in-10 chance that Q will be greater than 0.22, and also a l-in-10 
chance that Q will be less than 0.08. 
The value for Q is just as likely to be greater than 0.14 as less than 0.14. 

a What should your subjective probabilities P(0.08 < Q < 0.14) and P(0.14 
< Q < 0.22) be in order to guarantee coherence? 

b Use Appendix F to find a beta distribution for Q that closely approximates your sub-
jective beliefs. 

c The boss tells you that if you expect that the market share will be less than 0.15, the 
product should not be introduced. Write the boss a memo that gives an expected value 
and also explains how risky you think it would be to introduce the product. Use your 
beta approximation. 

9.25 Suppose you are considering two investments, and the critical issues are the rates of re 
turn (R1 and R2 ). For Investment 1, the expected rate of return (μ1) is 10%, and the stan 
dard deviation (σ1) is 3%. For the second investment, the expected rate of return (μ2 ) is 
20%, and the standard deviation (Σ2 ) is 12%. 
a Does it make sense to decide between these two investments on the basis of expected 

value alone? Why or why not? 
b Does it make sense to represent the uncertainty surrounding the rates of return with 

normal distributions? What conditions do we need for the normal distribution to pro-
vide a good fit? 

c Suppose you have decided to use normal distributions (either because of or in spite of 
your answer to part b). Use Appendix E to find the following probabilities: 
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P(R1 < 0%) 
P(R2 < 0%) 

P(R1 > 20%) 
P(R2 < 10%) 

d How can you find the probability that R1 > R2? Suppose R1 and R2 are correlated (as 
they would be if, say, both of the investments were stocks). Then the random variable 
ΔR = R1 — R2 is normal with mean Μ1 — μ2 and variance σ1

2  + σ2
2 — 2ρσ1σ2, where 

p is the correlation between R1 and R2. If ρ = 0.5, find P(R1 > R2).(Hint: Think 
about it in terms of ΔR, and find P (ΔR > 0).) 

e How could you use the information from the various probabilities developed in this 
problem to choose between the two investments? 

9.26 Your inheritance, which is in a blind trust, is invested entirely in McDonald's or in U.S. 
Steel. Because the trustee owns several McDonald's franchises, you believe the probabil 
ity that the investment is in McDonald's is 0.8. In any one year, the return from an invest 
ment in McDonald's is approximately normally distributed with mean 14% and standard 
deviation 4%, while the investment in U.S. Steel is approximately normally distributed 
with mean 12% and standard deviation 3%. Assume that the two returns are independent. 
a What is the probability that the investment earns between 6% and 18% (i) if the trust is 

invested entirely in McDonald's, and (ii) if the trust is invested entirely in U.S. Steel? 
b Without knowing how the trust is invested, what is the probability that the investment 

earns between 6% and 18%? 
c Suppose you learn that the investment earned more than 12%. Given this new infor-

mation, find your posterior probability that the investment is in McDonald's. 
d Suppose that the trustee decided to split the investment and put one-half into each of 

the two securities. Find the expected value and the variance of this portfolio. 

9.27 A continuous random variable X has the following density function: 

 

PU(X ≤ 4.3 | a = 3, b = 5) PU(0.25 
≤ X ≤ 0.75 | a = 0, b = 1) 

d   Plot the CDF for the uniform distribution where a = 0, b = 1. 
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e The expected value of a uniform distribution is E (X) = (b + a )/2, and the variance 
is Var(X) = (b — a)2/12. Calculate the expected value and variance of the uniform 
density with a = 3, b = 5. 

9.28    The length of time until a strike is settled is distributed uniformly from 0 to 10.5 days. 
(See the previous problem for an introduction to the uniform density.) 
a Find the probability that a strike lasts less than one day. b Find 
the probability that a strike lasts less than six days. c   Find the 
probability that a strike lasts between six and seven days. 
d Find the conditional probability that a strike lasts less than seven days, given that it 

already has lasted six days. 
e   Compare your answers with those of Problem 9.12. 

9.29 In a survey in a shopping center, the interviewer asks customer how long their shopping 
trips have lasted so far. The response (T) given by a randomly chosen customer is uni 
formly distributed from 0 to 1.5 hours. 
a   Find the probability that a customer has been shopping for 36 minutes or less. 
b The interviewer surveys 18 customers at different times. Find the probability that 

more than one-half of these customers say that they have been shopping for 36 min-
utes or less. 

9.30 A continuous random variable X has the following density function: 

 
a   Draw a graph of this density. Verify that the area under the density function equals 1. 
b A density function such as this one is called a triangular density. It is almost as easy 

to work with as the uniform density; probabilities for intervals can be calculated eas-
ily by calculating the areas of triangles and quadrilaterals. For example, find 
P(3 ≤ X ≤ 4.5) for this distribution. 

c Find the value x0.50 such that P(X ≤ x0.50) = 0.5. (That is, find the median of this 
distribution.) 

d Find the upper and lower quartiles of this distribution. That is, find x0.25 such that P(X 
≤ x0.25) = 0.25, and find x0.75 such that P(X ≤ x0.75) = 0.75. 

9.31 A greeting card shop makes cards that are supposed to fit into 6-inch (in) envelopes. The 
paper cutter, however, is not perfect. The length of a cut card is normally distributed with 
mean 5.9 in and standard deviation 0.0365 in. If a card is longer than 5.975 in, it will not 
fit into a 6-in envelope. 
a   Find the probability that a card will not fit into a 6-in envelope. 
b The cards are sold in boxes of 20. What is the probability that in one box there will be 

two or more cards that do not fit in 6-in envelopes? 

9.32 You are the maintenance engineer for a plant that manufactures consumer electronic goods. 
You are just about to leave on your vacation for two weeks, and the boss is concerned about 
certain machines that have been somewhat unreliable, requiring your expertise to keep 
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them running. The boss has asked you how many of these machines you expect to fail while 
you are out of town, and you have decided to give him your subjective probability distribu-
tion. You have made the following assessments: 

1 There is a 0.5 chance that none of the machines will fail. 

2 There is an approximate 0.15 chance that two or more will fail. 

3 There is virtually no chance that four or more will fail. 

Being impatient with this slow assessment procedure, you decide to try to fit a theoretical 
distribution. 
a   Many operations researchers would use a Poisson distribution in this case. Why 

might the Poisson be appropriate? Why might it not be appropriate? 
b   Find a Poisson distribution that provides a good representation of your assessed be-

liefs. Give a specific value for the parameter m. 
c   Given your answer to b, what is the expected number of machines that will break 

down during your absence? 

9 . 3 3  After you have given your boss your information (Problem 9.32), he considers how ac 
curate you have been in the past when you have made such assessments. In fact, he de 
cides you are somewhat optimistic (and he believes in Murphy's Law), so he assigns a 
Poisson distribution with m = 1 to the occurrence of machine breakdowns during your 
two-week vacation. Now the boss has a decision to make. He either can close the part of 
the plant involving the machines in question, at a cost of $10,000, or he can leave that 
part up and running. Of course, if there are no machine failures, there is no cost. If there 
is only one failure, he can work with the remaining equipment until you return, so the 
cost is effectively zero. If there are two or more failures, however, there will be assembly 
time lost, and he will have to call in experts to repair the machines immediately. The cost 
would be $15,000. What should he do? 

9 . 3 4  Regarding the soft pretzels again, suppose you decide to conduct a taste test of a new 
recipe at your stand. On average, one person comes to the stand every four minutes, and 
the arrivals seem to follow a Poisson distribution fairly closely. You decide to check for 
30 minutes to see how many customers during that time prefer the new recipe. Suppose 
the probability is 0.4 that any arriving customer prefers the new recipe over the old one. 
What is the probability that you will find four or more customers who prefer the new 
recipe during your 30-minute test period? 

9 . 3 5  A factory manager must decide whether to stock a particular spare part. The part is ab 
solutely essential to the operation of certain machines in the plant. Stocking the part costs 
$10 per day in storage and cost of capital. If the part is in stock, a broken machine can be 
repaired immediately, but if the part is not in stock, it takes one day to get the part from 
the distributor, during which time the broken machine sits idle. The cost of idling one 
machine for a day is $65. There are 50 machines in the plant that require this particular 
part. The probability that any one of them will break and require the part to be replaced 
on any one day is only 0.004 (regardless of how long since the part was previously re 
placed). The machines break down independently of one another. 
a   If you wanted to use a probability distribution for the number of machines that break 

down on a given day, would you use the binomial or Poisson distribution? Why? 
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b Whichever theoretical distribution you chose in part a, what are appropriate parame-
ters? That is, if you chose the binomial, what are the values for p and nl If you chose 
the Poisson, what is the value for m? 

c If the plant manager wants to minimize his expected cost, should he keep zero, one, 
or two parts in stock? Draw a decision tree and solve the manager's problem. (Do not 
forget that more than one machine can fail in one day!) 

9.36 Another useful distribution that is based on the normal is the lognormal distribution. 
Among other applications, this distribution is used by environmental engineers to repre-
sent the distribution of pollutant levels, by economists to represent the distribution of re-
turns on investments, and by actuaries to represent the distribution of insurance claims. 

Finding probabilities from a lognormal distribution is "as easy as falling off a log"! If X 
is lognormally distributed with parameters \x and a, then Y = ln(X) is normally dis-
tributed and has mean \i and variance a2. Thus, the simplest way to work with a log-
normal random variable X is to work in terms of Y = ln(X). It is easy to obtain proba-
bilities for Y from the normal table. The expected value and variance of X are given by 
the following formulas: 

 
For example, if Xis lognormally distributed with parameters μ = 0.3 and σ = 0.2, then Y is normal with mean 
0.3 and standard deviation 0.2. Finding probabilities just means taking logs: 
PL(X ≥ 1.4 | μ = 0.3, σ = 0.2) = PN(Y ≥ ln(1.4) | μ = 0.3, σ = 0.2) 
= PN(Y ≥ 0.336 | μ = 0.3, σ = 0.2) = P(Z ≥ 0.18) = 0.4286 
The mean and expected value of X are 

E(X) = e0.3+0.5(0.2)2 
= 1.38 

 

After all that, here is a problem to work. After a hurricane, claims for property damage 
pour into the insurance offices. Suppose that an insurance actuary models noncommer-
cial property damage claims (X, in dollars) as being lognormally distributed with param-
eters μ = 10 and σ = 0.3. Claims on different properties are assumed to be indepen-
dent. 
a   Find the mean and standard deviation of these claims. 
b   Find the probability that a claim will be greater than $50,000. 
c The company anticipates 200 claims. If the state insurance commission requires the 

company to have enough cash on hand to be able to satisfy all claims with probabil-
ity 0.95, how much money should be in the company's reserve? [Hint: The total 
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claims can be represented by the variable Q = Σ1
200    Xi, and Q will be approximately 

normally distributed with mean 200 E(X) and variance 200 Var(X).] 

C A S E     S T U D I E S  

OVERBOOKING 

Most airlines practice overbooking. That is, they are willing to make more reser-
vations than they have seats on an airplane. Why would they do this? The basic 
reason is simple; on any given flight a few passengers are likely to be "no-shows." 
If the airline overbooks slightly, then it still may be able to fill the airplane. Of 
course, this policy has its risks. If more passengers arrive to claim their reserva-
tions than there are seats available, the airline must "bump" some of its passen-
gers. Often this is done by asking for volunteers. If a passenger with a reserved 
seat is willing to give up his or her seat, the airline typically will give a refund as 
well as provide a free ticket to the same or another destination. The fundamental 
trade-off is whether the additional expected revenue gained by flying an airplane 
that is nearer to capacity on average is worth the additional expected cost of re-
funds and free tickets. 

To study the overbooking policy, let us look at a hypothetical situation. 
Mockingbird Airlines has a small commuter airplane with places for 16 passengers. 
The airline uses this jet on a route for which it charges $225 for a one-way fare. 
Every flight has a fixed cost of $900 (for pilot's salary, fuel, airport fees, and so on). 
Each passenger costs Mockingbird an additional $100. Finally, the no-show rate is 
4%. That is, on average approximately 4% of those passengers holding confirmed 
reservations do not show up. Refunds for unused tickets are made only if the reser-
vation is canceled at least 24 hours before scheduled departure. 

How many reservations should Mockingbird be willing to sell on this airplane? 
The strategy will be to calculate the expected profit for a given number of reserva-
tions. For example, suppose that the Mockingbird manager decides to sell 18 reser-
vations. The revenue is $225 times the number of reservations: 

R = $225(18) 
= $4050 

The cost consists of two components. The first is the cost of flying the plane and 
hauling the passengers who arrive (but not more than the airplane's capacity of 16): 

C1 = $900 + $100 x Min(Arrivals, 16) 

The second component is the cost of refunds and free tickets that must be issued if 
17 or 18 passengers arrive: 

C2 = ($225 + $100) x Max(0, Arrivals - 16) 
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In this expression for C2, the $225 represents the refund for the purchased ticket, and 
the $100 represents the cost of the free ticket. The Max () expression calculates the 
number of excess passengers who show up (zero if the number of arrivals is fewer 
than 16). 

Questions 

1 Find the probability that more than 16 passengers will arrive if Mockingbird sells 
17 reservations (Res = 17). Do the same for 18 and 19. 

2 Find: 

E(R | Res = 16) 
E(C1 | Res = 16) 
E(C2 | Res = 16) 

Finally, calculate E (Profit | Res = 16) = E(R | Res = 16) - E(C1 | Res = 16) 

- E(C2 | Res = 16) 

Repeat Question 2 for 17, 18, and 19 reservations. What is your conclusion? 
Should Mockingbird overbook? By how much? 
Since the airlines were deregulated in the 1970s, pricing has become more compet-
itive. One of the promotional schemes is the "supersaver" fare that requires early 
payment and restrictions on refunds. For example, to receive the special fare, a cus-
tomer may be required to purchase a nonrefundable ticket two weeks in advance, 
after which changes can be made only by paying a penalty (e.g., $50). How do you 
think this policy has affected the airlines' overbooking policy? 

EARTHQUAKE  PREDICTION 

Because of the potential damage and destruction that earthquakes can cause, geolo-
gists and geophysicists have put considerable effort into understanding when and 
where earthquakes occur. The ultimate aim is the accurate prediction of earthquakes 
on the basis of movements in the earth's crust, although this goal appears to be some 
way off. In the meantime, it is possible to examine past data and model earthquakes 
probabilistically. 

Fortunately, considerable data exist on the basis of which to model earthquakes 
as a probabilistic phenomenon. Gere and Shah provide the information shown in 
Table 9.1. Richter magnitude refers to the severity of the earthquake. For example, if 
an earthquake is in the 8.0-8.9 category, by definition the ground would shake 
strongly for 30 to 90 seconds over an area with a diameter of 160 to 320 kilometers. 
Earthquakes of magnitude less than 4.0 are not dangerous and, for the most part, are 
not noticed by laypeople. 
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Table 9.1 
Earthquake frequency 

data for California. 

 

Richter Magnitude Average Number of Earthquakes 
per 100 Years in California 

8.0-8,9 1 
7.0-7.9 12 

6.0-6.9 80 
5.0-5.9 400 
4.0-4.9 2000 

Source: J. M. Gere and H. C. Shah (1984) Terra Non Firma: Understanding and Preparing for 
Earthquakes. Stanford, CA: Stanford Alumni Association. 

An earthquake of magnitude 8.0 or greater could cause substantial damage and a 
large number of deaths if it were to occur in a highly populated part of the world. In 
fact, the San Francisco earthquake of April 6,1906, was calculated later as measuring 
8.3 on the Richter scale. The resulting fire burned much of the city, and some 700 peo-
ple died. California is particularly susceptible to earthquakes because the state strad-
dles two portions of the earth's crust that are slipping past each other, primarily along 
the San Andreas Fault. For this reason, we will consider the probability of a severe 
earthquake happening again in California in the near future. 

Questions 

1 We can model the occurrence of earthquakes using a Poisson distribution. Strictly 
speaking, the independence requirement for the Poisson is not met for two reasons. 
First, the geologic processes at work in California suggest that the probability of a 
large earthquake increases as time elapses following an earlier large quake. 
Second, large earthquakes often are followed by aftershocks. Our model will ig 
nore these issues and hence can be viewed only as a first-cut approximation at con 
structing a probabilistic model for earthquakes. 
The data from Gere and Shah indicate that, on average, 2493 earthquakes with 
magnitude 4.0 or greater will occur in California over a 100-year period. Thus, we 
might consider using a Poisson distribution with m = 24.93 to represent the prob-
ability distribution for the number of earthquakes (all magnitudes greater than 4.0) 
that will hit California during the next year. Use this distribution to find the follow-
ing probabilities: 

PP(X ≤ 10 in Next Year | m = 24.93 Earthquakes per Year) 
PP(X ≤ 7 in Six Months | m == 24.93 Earthquakes per Year) 
PP(X > 3 in Next Month | m = 24.93 Earthquakes per Year) 

2 We also can model the probability distribution for the magnitude of an earth 
quake. For example, the data suggest that the probability of an earthquake in 
California of magnitude 8.0 or greater is 1/2493, or approximately 0.0004. If we 
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use an exponential distribution to model the distribution of magnitudes, assuming 
that 4.0 is the least possible, then we might use the following model. Let M denote 
the magnitude, and let M' = M — 4. Then, using the exponential formula, we have 
P(M ≥ 8) = P(M' ≥ 4) = e─4m = 0.0004. Now we can solve for m: 

e─4m = 0.0004 
ln(e─4m) = ln(0.0004) 

─4m = ─7.824 

m = 1.96 

Thus, the density function for M is given by 

f (M) = 1.96e─L96(M─4) 

Plot this density function. 
We now can find the probability that any given earthquake will have a magnitude 
within a specified range on the Richter scale. For example, use this model to find 

PE(M ≤ 6.0 | m = 1.96) PE(5.0 ≤ 
M ≤ 7.5 | m = 1.96) PE(M ≥ 6.4 
| m = 1.96) 

You may find it instructive to use this distribution to calculate the probability that 
an earthquake's magnitude falls within the five ranges of magnitude shown in Table 
9.1. Here is a sensitivity-analysis issue: How might you find other reasonable val-
ues for m? What about a range of possible values for m? 
3 We now have all of the pieces in the puzzle to find the probability of at least one 
severe (8.0 magnitude or more) earthquake occurring in California in the near 
future, say, within the next six months. Our approach will be to find the probability 
of the complement 

P(X8 +≥ l)  = l ─ P(X8 + = 0) 

where X8+ is used to denote the number of earthquakes having magnitude 8.0 or 
greater. Now expand P(X8+ = 0) using total probability: 

P(X8+ = 0) = P(X8+ = 0 I X = 0) P(X = 0) +P(X8+ = 0 I X = 1) P(X = 1) 

+ • • • + P(X8+ = 0 | X = k) P(X = k) + • • • 

 
The probabilities P(X = k) are just the Poisson probabilities from Question 1: P(X 

= k) = PP(X = k | m = 12.5) 

where m = 12.5 because we are interested in a 6-month period. The probability of 
no earthquakes of magnitude 8.0 out of the k that occur is easy to find. If k = 0, 
then P(X8+ = 0 | X = 0) = 1. If k = 1, then 
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P(X8+ = 0 I X = 1) = PE(M < 8.0 | m = 1.96) 
= 1  ─ e─ 1 . 9 6 ( 8 - 4 )  

= 0.9996 

Likewise, if k = 2, then 

P(X8+ = 0 | X = 2) = (0.9996)2 = 0.9992 

because this is just the probability of two independent earthquakes each having 
magnitude less than 8.0. Generalizing, 

P(X8+ = 0 | X = k) = (0.9996)k Now we 

can substitute these probabilities into the formula: P(X8+ ≥ 

0) = 1 ─ P(X8+ = 0) 

 
To calculate this, you must calculate with k until the Poisson probability is so small 
that the remaining probabilities do not matter. It turns out that the probability of at least 
one earthquake of magnitude 8.0 or more within six months is approximately 0.005. 

Now that you have seen how to do this, try calculating the probability of at least 
one earthquake of magnitude 8.0 or more (i) within the next year and (ii) within the 
next five years. For these, you may want to use a computer program to calculate the 
Poisson probabilities. How does the probability of at least one severe earthquake 
vary as you use the different reasonable values for m from your exponential model 
in Question 2? [Hint: Calculating the Poisson probabilities may be difficult, even 
on an electronic spreadsheet, because of the large exponential and factorial terms. 
An easy way to calculate these probabilities is to use the recursive equation 

 
[This equation can be used easily in an electronic spreadsheet or calculator without 
having to calculate large factorial and exponential terms.] 
Using the probability model described above, it turns out that the probability of at 
least one earthquake of magnitude 8.0 or more within the next 20 years in California 
is approximately 0.2 (or higher, depending on the value used for m in the exponen-
tial distribution for the magnitude, M). That is a l-in-5 chance. Now imagine that 
you are a policy maker in California's state government charged with making rec-
ommendations regarding earthquake preparedness. How would this analysis affect 
your recommendations? What kinds of issues do you think should be considered? 
What about the need for more research regarding precise earthquake prediction at a 
specific location? What about regulations regarding building design and construc-
tion? What other issues are important? 
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Table 9.2 
Probabilities for major 

earthquakes in 
California from two 
different probability 

models. 

 

Time USCS Probability Possion Model Probability 
Next 5 years 0.27 0.29 

Next 10 years 0.49 0,50 
Next 20 years 0.71 0.75 
Next 30 years 0.90 0.87 

Source for USGS probabilities: U.S. Geological Survey (1988). "Probabilities of Large Earthquakes 
Occurring in California on the San Andreas Fault," by the Working Group on California Earthquake 
Probabilities. USGS Open-File Report No. 88-398, Menlo Park, CA. 

The probabilistic model that we have developed using the information from Gere 
and Shah is based on a very simplistic model and does not account for geologic 
processes. Geologists do, however, use probability models in some cases as a basis 
for earthquake predictions. For example, as mentioned at the beginning of Chapter 8, 
a recent U.S. Geological Survey report concluded that the probability of an earth-
quake of 7.5-8.0 magnitude along the southern portion of the San Andreas Fault 
within the next 30 years is approximately 60%. The authors of the report actually 
constructed separate probability models for the occurrence of large quakes in differ-
ent segments of major faults using data from the individual segments. Rather than a 
Poisson model, they used a lognormal distribution to model the uncertainty about the 
time between large earthquakes. Although their approach permits them to make 
probability statements regarding specific areas, their results can be aggregated to 
give probabilities for at least one major earthquake in the San Francisco Bay Area, 
along the southern San Andreas Fault in Southern California, or along the San 
Jacinto Fault. Table 9.2 compares their probabilities, which were developed for 
"large" earthquakes with expected magnitudes of 6.5-8.0, with our Poisson model 
probabilities of at least one earthquake having magnitude of 7.0 or greater. It is com-
forting to know that our model, even with its imperfections, provides probabilities 
that are not radically different from the geologists' estimates. 

MUNICIPAL  SOLID  WASTE 

Linda Butner considered her task. As the risk analysis expert on the city's 
Incineration Task Force (ITF), she was charged with reporting back to the ITF and to 
the city regarding the risks posed by constructing an incinerator for disposal of the 
city's solid waste. It was not a question of whether such an incinerator would be con-
structed. The city landfill site would be full within three years, and no alternative 
sites were available at a reasonable cost. 

In particular, the state Department of Environmental Quality (DEQ) required in-
formation regarding levels of pollutants the incinerator was expected to produce. 
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DEQ was concerned about organic compounds, metals, and acid gases. It was as-
sumed that the plant would incorporate appropriate technology and that good com-
bustion practices would be followed. Residual emissions were expected, however, 
and the officials were interested in obtaining close estimates of these. Linda's task 
was to provide any analysis of anticipated emissions of dioxins and furans (organic 
compounds), particulate matter (PM, representing metals), and sulfur dioxide (SO2, 
representing the acid gases). She figured that a thorough analysis of these substances 
would enable her to answer questions about others. 

The current specifications called for a plant capable of burning approximately 
250 tons of waste per day. This placed it at the borderline between small- and 
medium-sized plants according to the Environmental Protection Agency's (EPA) 
guidelines. In part, this size was chosen because the EPA had proposed slightly dif-
ferent permission levels for these two plant sizes, and the city would be able to 
choose the plant size that was most advantageous. A smaller (less than 250 tons/day) 
plant would be expected to have an electrostatic precipitator for reducing particulate 
matter but would not have a specified SO2 emission level. A larger plant would have 
a fabric filter instead of an electrostatic precipitator and would also use dry sorbent 
injection — the injection of chemicals into the flue — to control the SO2 level. A 
summary of the EPA's proposed emission levels is shown in Table 9.3. 

Standard practice in environmental risk analysis called for assessment and analy-
sis of "worst case" scenarios. But to Linda's way of thinking, this kind of approach 
did not adequately portray the uncertainty that might exist. Incineration of municipal 
solid waste (MSW) was particularly delicate in this regard, because the levels of var-
ious pollutants could vary dramatically with the content of the waste being burned. 
Moreover, different burning conditions within the incineration chamber (more or 
less oxygen, presence of other gasses, different temperatures, and so on) could radi-
cally affect the emissions. To capture the variety of possible emission levels for the 
pollutants, Linda decided to represent the uncertainty about a pollutant-emission 
level with a probability distribution. 

The lognormal distribution makes sense as a distribution for pollutant-emission 
levels. (See Problem 9.36 for an introduction to the lognormal.) After consulting the 
available data for the content of pollutants in MSW and the pollutant-emission levels 
for other incinerators, Linda constructed a table (Table 9.4) to show the parameters 

Table 9.3 
Proposed pollutant 

emission levels. 

 

 Plant Capacity (Tons 
of Waste per Day) 

Pollutant Small (Less than 
250) 

Medium (250 or 
More) 

Dioxms/furam (ng/Nm3) 500 125 

PM (mg/dscm) 69 69 
SO2(ppmdv) — 30 

Notes: ng/Nm3 = nanograms per normal cubic meter; mg/dscm = milligrams per dry standard cubic 
meter; ppmdv = parts per million, by dry volume. 
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Table 9.4 
Lognormal distribution 

parameters μ and σ 
for pollutants. 

 

Pollutant μ σ 

Dioxins/furans 3.13 1.20 

PM 3.43 044 
SO2 3.20 0.39 

Figure 9.12 
Lognormal density 

function for SO2 emis-
sions from incineration 

plant. 

for the lognormal distributions for the three pollutants in question. Figure 9.12 illus-
trates the lognormal distribution for the SO2 emissions. 

As Linda looked at this information, she realized that she could make certain 
basic calculations. For example, it would be relatively straightforward to calculate 
the probability that the plant's emissions would exceed the proposed levels in Table 
9.3. Having these figures in hand, she felt she would be able to make a useful pre-
sentation to the task force. 

Questions 

1 The plant will be required to meet established emission levels for dioxins/furans 
and PM on an annual basis. Find the probabilities for exceeding the small-plant 
levels specified in Table 9.3 for these two pollutants. Repeat the calculations for the 
medium-plant emission levels. 

2 If the plant is subject to SO2 certification, its emissions of this pollutant will be 
monitored on a continual basis and the average daily emission level must remain 
below the specified level in Table 9.3. The numbers in Table 9.4, however, refer to 
the probability distribution of a single observation. That is, we could use the speci 
fied lognormal distribution to find the probability that a single reading of the SO2 

 



R E F E R E N C E S  

REFERENCES      353 

level exceeds the specified level. Finding the probability that an average daily 
emission exceeds the specified level, though, requires more analysis. 
Let us assume that the average emission level will be calculated by taking n obser-
vations and then calculating the geometric mean. To do this, we multiply the n ob-
servations together and then take the nth root of the product. In symbols, let G de-
note the geometric mean: 

 

It turns out that if each Xi is drawn independently from a distribution which is log-
normal with parameters μ and σ, then G has a lognormal distribution with param-
eters μ and σ / √n. In our case we will take the 24th root of a product of 24 hourly 
observations of emission levels. 
Find the probability that the geometric mean of the 24 hourly emission observa-
tions exceeds the SO2 limit specified in Table 9.3. Compare this to the probability 
that a single observation will exceed the same limit. 

3      Discuss the issues that the city should consider in deciding whether to build a 
small- or medium-sized plant. 

Sources: J. Marcus, and R. Mills (1988) "Emissions from Mass Burn Resource Recovery Facilities," Risk 
Analysis, No. 8, 315-327; and (1989) "Emission Guidelines: Municipal Waste Combustors," Federal 
Register, 54 (243), 52209. 

In this chapter we have only scratched the surface of theoretical probability distributions, 
although we have discussed most of the truly useful probability models. Theoretical dis-
tributions are widely used in operations research and in the construction of formal mod-
els of dynamic and uncertain systems. For additional study as well as many illustrative 
examples, consult the texts by DeGroot (1970), Feller (1968), Olkin, Gleser, and Derman 
(1980), or Winkler (1972). Johnson and Kotz (1969, 1970a, 1970b, and 1972) have com-
piled encyclopedic information on a great variety of probability distributions. 

DeGroot, M. (1970) Optimal Statistical Decisions. New York: McGraw-Hill. 
Feller, W. (1968) An Introduction to Probability Theory and Its Applications, Vol. i, 3rd 

ed. New York: Wiley. 
Johnson, N. L., and S. Kotz (1969) Distributions in Statistics: Discrete Distributions. 

New York: Houghton Mifflin. 
Johnson, N. L., and S. Kotz (1970a) Distributions in Statistics: Continuous Univariate 

Distributions I. Boston: Houghton Mifflin. 
Johnson, N. L., and S. Kotz (1970b) Distributions in Statistics: Continuous Univariate     
Distributions II. Boston: Houghton Mifflin. 
Johnson, N. L., and S. Kotz (1972) Distributions in Statistics: Continuous Multivariate 

Distributions. New York: Wiley. 
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Olkin, L, L. J. Gleser, and C. Derman (1980) Probability Models and Applications. New 
York: Macmillan. 

Winkler, R. L. (1972) Introduction to Bayesian Inference and Decision. New York: Holt. 

E P I L O G U E  The case study on earthquake prediction was written in early October 1989, just two 
weeks before an earthquake of magnitude 7.1 occurred near Santa Cruz, California, on 
the San Andreas Fault. Strong ground shaking lasted for approximately 15 seconds. The 
results were 67 deaths, collapsed buildings around the Bay Area, damage to the Bay 
Bridge between San Francisco and Oakland, and the destruction of a one-mile stretch of 
freeway in Oakland. This was a small earthquake, however, relative to the 8.3 magnitude 
quake in 1906. The "big one" is still to come, and may cause even more damage. 



CHAPTER 10. Using Data 

e have discussed subjective judgments and theoretical distributions as sources for probabilities when 
modeling uncertainty in a decision problem. In this chapter we consider an obvious source for 

information about probabilities; historical data. It is possible to use data alone to develop 
probability distributions; we cover the development of discrete and continuous 
distributions in the first part of the chapter. We also consider the use of data to 
understand and model relationships among variables. It is possible to use data in 
conjunction with theoretical probability models; that is, the data can provide information 
to help refine assessments regarding the parameters of a theoretical distribution. In the 
last part of the chapter, we discuss the use of data in conjunction with some of the 
theoretical models discussed in Chapter 9. 

Using Data to Construct Probability Distributions 
Using past data when it is available is a straightforward idea, and most likely you 
have done something like this in the past, at least informally. Suppose, for example, 
that you are interested in planning a picnic at the Portland Zoo on an as-yet-undeter-
mined day during February. Obviously, the weather is a concern in this case, and you 
want to assess the probability of rain. If you were to ask the National Weather 
Service for advice in this regard, forecasters would report that the probability of rain 
on any given day in February is approximately 0.47. They base this estimate on 
analysis of weather during past years; on 47% of the days in February over the past 
several years rain has fallen in Portland. 

355 

W 
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We can think about developing both discrete and continuous probability distri-
butions on the basis of empirical data. For the discrete situation, the problem really 
becomes one of creating a relative frequency histogram from the data. In the case 
of a continuous situation, we can use the data to draw an empirically based CDF. 
We will look briefly at each of these. 

Histograms 

Imagine that you are in charge of a manufacturing plant, and you are trying to de-
velop a maintenance policy for your machines. An integral part of the analysis lead-
ing to policy selection most likely would involve an examination of the frequency of 
machine failures. For example, you might collect the following data over 260 days: 

• No Failures        217 days 
• One Failure 32 days 
• Two Failures         11 days 

These data lead to the following relative frequencies, which could be used as es-
timates of probabilities of machine failures in your analysis: 

No Failures         0.835 = 217/260 
One Failure        0.123 = 32/260 
Two Failures      0.042 = 11 /260 

Thus, we would have a histogram that looks like Figure 10.1, and in a decision tree, 
we would have a chance node with three branches like that in Figure 10.2. 

Our treatment of histograms and estimation of discrete probabilities is brief pre-
cisely because the task is simply a matter of common sense. The only serious con-
sideration to keep in mind is that you should have enough data to make a reliable es-
timate of the probabilities. (One nuclear power plant accident is not enough to 

Figure 10.1 
Relative frequency 

histogram for machine 
failure data. 
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Figure 10.2 
The decision-tree 
representation of 

uncertainty regarding 
machine failures. 

develop a probability distribution!) The data requirements depend on the particular 
problem, but the minimum should be approximately five observations in the least 
likely category. The other categories, of course, will have more observations. 

Finally, keep in mind that your probability estimates are just that — estimates. 
The goal is to model uncertainty. Always ask yourself whether the probabilities esti-
mated on the basis of the data truly reflect the uncertainty that you face. If you are 
not satisfied with the representation based on the data, you may need to model your 
uncertainty using subjective assessment methods. In particular, this might be the 
case if you think that the past may not indicate what the future holds. 

Empirical CDFs 

Continuous probability distributions are common in decision-making situations. We 
have seen how to assess a continuous probability distribution subjectively through 
assessment of a CDF. Our use of data to estimate a continuous distribution will fol-
low the same basic strategy. To illustrate the principles, we will use an example and 
data concerning the costs related to correctional halfway houses. 

HALFWAY  HOUSES 

A halfway house is a facility that provides a residence and some supervision and 
support for individuals who have been recently released from prison. The purpose of 
these halfway houses is to ease the transition from prison life to normal civilian life, 
with the ultimate goal being to improve an ex-convict's chance of successful inte-
gration into society. The National Advisory Committee on Criminal Justice 
Standards and Goals is responsible for providing information pertaining to the costs 
and resource implications of correctional standards that are related to halfway 
houses. 

The main purpose of the reports made by the advisory committee is to provide cost 
information to state and local decision makers regarding the many services that halfway 
houses perform. One important variable is yearly per-bed rental costs. Denote this 
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Table 10.1 
Yearly bed-rental costs 
for 35 halfway houses. 

 

  Rental Costs ($)   
52 205 303 400 64

3 
16 250 313 402 69

3 100 257 317 408 73
2 136 264 325 417 74
9 137 280 345 422 75
0 186 282 373 472 79
1 196 283 384 480 89

 

Source: T. Sincich, (1989) Business Statistics by Example, 3rd ed. San Francisco: Dellen. 

variable by С Table 10.1 shows yearly per-bed rental costs (in dollars) — values of С 
— for a random sample of 35 halfway houses. The data are arranged in ascending 
order. 

To create a smooth CDF from these data, recall the idea of a cumulative probabil-
ity. Suppose we look at the middle value, 325. Eighteen of the 35 values are less than 
or equal to 325. It also is true that 18 values are less than or equal to 326, 327, ..., 
up to 344.99. So P(C ≤ 325) = P(C ≤ 326) = • • • = P(C ≤ 344.99) = 18/35, or 
0.514. So how can we estimate the 0.514 fractile? Take 335 as the best estimate of 
the 0.514 fractile; 335 is the value that is halfway between 325 and 345. Figure 10.3 
shows what we are doing in terms of a CDF graph. The data points define the ends of 
the flat steps on the graph. Our estimate, the smooth curve, will go through the cen-
ters of the flat steps. 

To get a CDF, we do the same thing for all data points. The procedure first rank 
orders the data and then calculates the centers of the flats; this is just a matter of cal-
culating the halfway points between adjacent data points. For example, consider the 

Figure 10.3 
Building the CDF by 

drawing a smooth 
curve through the 
centers of the flat 

steps. 
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halfway point between the first and second data points. The halfway point is 
(52 + 76)/2 = 64. Call this x1. Now calculate x2, ..., xn ─ 1, where n is the number of 
data points. Now associate with each xm its approximate cumulative probability. The 
value xm is in the mth position, and so it has cumulative probability estimated as 
m/n. In symbols, P(X ≤ xm) is approximately mln. In our example, P(C ≤ 64) is 
approximately 1/35, or 0.029. Likewise, x15 = 308, so P(C ≤ 308) is approxi-
mately 15/35, or 0.429. Table 10.2 shows the calculations for all 35 data points. The 
final step is to plot these points as in Figure 10.4. The tails of the CDF are sketched 
as smooth extrapolations of the curve. 

Although all of the calculations that must be done to obtain a CDF look compli-
cated, these are the kinds of calculations that can be done easily on an electronic 
spreadsheet and then plotted on a graph. 

Once we have the CDF, we can use it in the same way as before. For example, 
we could use it to make probability statements about the uncertain quantity. With the 
halfway house, for example, we could say that there is a 50% chance that the yearly 
bed-rental cost will fall between $240 and $450. Likewise, we could say that there is 

Table 10.2 
Estimated cumulative 

probabilities for the 
halfway-house data. 

 

Obs. 
No. 

Cost xm Cumulative 
Probability 

Obs. 
No. 

Cost xm Cumulative 
Probability 

1 52 64.0 0.029 19 345 359,0 0,543 

2 76 88.0 0.057 20 373 378.5 0.571 

3 100 118.0 0.086 21 384 392.0 0.600 
4 136 136.5 0.114 22 400 401.0 0.629 

5 137 161.5 0.143 23 402 405.0 0.657 

6 186 191.0 0.171 24 408 412,5 0.686 

7 196 200.5 0.200 25 417 419.5 0.714 

8 205 227.5 0.229 26 422 447.0 0.743 

9 250 253.5 0.257 27 472 476.0 0.771 

10 257 260.5 0.286 28 480 561.5 0.800 

11 264 272.0 0.314 29 643 668.0 0.829 
12 280 281.0 0.343 30 693 712.5 0.857 
13 282 282.5 0371 31 732 740.5 0,886 
14 283 293.0 0.400 32 749 749,5 0.914 
15 303 308.0 0429 33 750 770.5 0.943 
16 313 315.0 0.457 34 791 841.0 0.971 

17 317 321.0 0,486 35 891   
18 325 335.0 0.514     
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Figure 10.4 
Estimated CDF for the 

halfway-house data. 

a 25% chance that the cost would fall below $240 and a 25% chance that it would 
fall above $450. 

Another way we could use the empirical CDF would be to derive a discrete ap-
proximation (Chapter 8) for inclusion in a decision tree. In the case of the halfway-
house data, Figure 10.5 shows a three-point discrete approximation that has been 
constructed using the extended Pearson-Tukey method described in Chapter 8. 
Recall that the 0.05 and 0.95 fractiles each are given probability 0.185 and the me-
dian is given probability 0.63. These fractiles are indicated in Figure 10.4. 

There are other alternatives for using data to approximate a continuous distribu-
tion. One way that may be familiar to you is to split the data into reasonable groups 
and create a relative frequency histogram of the grouped data. This procedure is 
straightforward and similar to the discussion above regarding discrete probabilities. 
Again, no category should contain fewer than five observations, and typically the 
widths of the intervals that define the categories should be the same. If you need 
more direction on the use of histograms for continuous distributions, consult any in-
troductory statistics textbook. The text by Sincich, from which the halfway-house 
data were taken, is an excellent source. 

Figure 10.5 
Three-point approxi-

mation for the 
halfway-house data. 
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Using Data to Fit Theoretical Probability Models 

Another way to deal with data is simply to fit a theoretical distribution to it. 
Typically, this involves two steps. First, we must decide what kind of distribution is 
appropriate (binomial, Poisson, normal, and so on). The choice should be based both 
on an understanding of the situation (for example, whether the uncertain quantity 
must be between 0 and 1, which suggests a beta distribution, or whether a discrete 
distribution is appropriate) as well as an inspection of the distribution of the data. 
For example, it makes little sense to fit a normal distribution, which is symmetric, to 
data whose distribution is highly skewed. 

Having chosen the kind of distribution, the next step is to choose the values of 
the distribution parameters. In the case of the binomial, for instance, we need values 
for n and p. For the normal, μ and σ are required. Parameter values can be chosen 
by calculating some summary statistics (mean, standard deviation, and so on) for a 
sample and then simply using those as the parameter values. For example, it is pos-
sible to calculate the sample mean (x─) and sample variance (s2) for the 35 halfway-
house observations: 

 
Thus, we might choose a normal distribution with mean μ = 380.4 and standard de-
viation σ = 217.6 to represent the distribution of the yearly bed-rental costs. 

Another possibility is to fit a theoretical distribution using fractiles. That is, 
find a theoretical distribution whose fractiles match as well as possible with the 
fractiles of the empirical data. This is the data-based counterpart of the procedure 
discussed in Chapter 9 for fitting a theoretical distribution to a subjectively as-
sessed distribution. In this case we would be fitting a theoretical distribution to a 
data-based distribution. 

For most initial attempts to model uncertainty in a decision analysis, it may be 
adequate to use the sample mean and variance as estimates of the mean and variance 
of the theoretical distribution and to establish parameter values in this way. 
Refinement of the probability model may require more careful judgment about the 
kind of distribution as well as more care in fitting the parameters. Statisticians have 
devised many clever parameter-estimation methods. A discussion of these tech-
niques is beyond the scope of this treatment but may be found in advanced textbooks 
in statistics. 



362      CHAPTER 10 USING DATA 

Software for Fitting Distributions: BestFit 

Excellent software exists to help a decision analyst fit theoretical distributions to 
data. BestFit, a program published by Palisade Software, provides an easy-to-use 
personal-computer environment for fitting distributions. This program allows the 
user to estimate parameters for many different families of distributions, including 
all of the ones discussed in Chapter 9. (In addition, BestFit can handle cumulative 
probability information, thereby providing a way for an analyst to fit theoretical 
distributions to subjective assessments elicited from experts as in Chapter 8.) For 
the power user, the program displays elaborate statistics, and the analyst can control 
many aspects of the analytical process. For the less sophisticated, BestFit can guide 
the process or even go through a fully automatic distribution-fitting procedure. 

Figure 10.6 shows a computer screen from BestFit, which runs in a Windows en-
vironment. The halfway-house data are listed in the spreadsheet on the left side of the 
screen, and the two graphs to the right show the results of fitting two kinds of distri-
butions to these data. For example, the normal distribution has a mean of $380 and 
standard deviation $218; this represents the "best fitting" normal distribution for these 
data. The other distribution is from the gamma family, which is closely related to the 
exponential and Poisson distributions. Although neither of these models is a perfect 
fit, it turns out that the gamma distribution fits somewhat better than the normal. 

A companion program called RiskView allows the user to display and analyze 
the chosen distribution. For example, the analyst could use the program to extract the 
appropriate fractiles from the gamma distribution in Figure 10.6 in order to create a 

Figure 10.6 
Fitting distributions to 

the halfway-house 
data with BestFit. 
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discrete approximation or to derive fractiles for making probability statements about 
the uncertain quantity. 

Using Data to Model Relationships 

One of the most important things that we do with data is to try to understand the re-
lationships that exist among different phenomena in our world. The following list in-
cludes just a few examples: 

Causes of Cancer. Our smoking habits, diet, exercise, stress level, and many 
other aspects of our lives have an impact on our overall health as well as the risk of 
having cancer. Scientists collect data from elaborate experiments to understand the 
relationships among these variables. 

Sales Revenue, For a business, perhaps the most crucial issue is understanding 
how various economic conditions, including its own decisions, can impact demand 
for products and hence revenue. Firms try to understand the relationships among 
sales revenue, prices, advertising, and other variables. 

Economic Conditions. Economists develop statistical models to study the com-
plex relationships among macroeconomic variables like disposable income, gross 
domestic product, unemployment, and inflation. 

Natural Processes. Much scientific work is aimed at understanding the relation-
ships among variables in the real world. A few examples include understanding the re-
lationships among weather phenomena, movements in the earth's crust, changes in ani-
mal and plant populations due to ecological changes, and causes of violence in society. 

In most cases, the motivation for studying relationships among phenomena that 
we observe is to gain some degree of control over our world. In many cases we hope 
to make changes in those areas where we have direct control in order to accomplish 
a change in another area. For example, on occasion the U.S. Federal Reserve Board 
buys or sells securities in order to have an impact on interest rates in the U.S. money 
market. Doing so requires an understanding of how their operations in the market 
can affect interest rates. Firms want to set prices and advertising budgets so that they 
result in an optimal level of profits, but doing so requires an understanding of what 
affects demand for their products and services. Scientific studies of natural processes 
often are used as inputs in government policy and regulation decisions. 

In this section, we will focus on the problem of using data on a number of auxil-
iary variables (which we will denote as X1,..., Xk) to determine the distribution of 
some other variable of interest (Y) that is related to the X's. Y is sometimes called a 
response variable, because its probability distribution changes in response to 
changes in the X's. Likewise, the X's sometimes are called explanatory variables, 
because they can be used to help explain the changes in Y. (Y and the X's are also 
sometimes called dependent and independent variables, although this terminology 
can be misleading. Y does not necessarily depend on the X's in a causal sense, and the 
X's can be highly dependent — in a probabilistic sense — among themselves.) 
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In a business context, a common example is forecasting sales, and to come up with 
a conditional distribution for sales (Y), we might want to use explanatory variables such 
as price (X1), advertising (X2), a competitor's price (X3), or other important micro-
economic variables. These variables could be either quantities that are uncertain (like 
the competitor's price) or variables that are under the control of the decision maker 
(e.g., price and advertising). Often it is possible to obtain data indicating the amount of 
sales that was associated with a particular price, amount of advertising, and so on. How 
to use such data to create a model of the relationships among the variables is our topic. 

The use of data to understand relationships is not trivial. Consider the influence 
diagram in Figure 10.7. The brute force approach would require obtaining enough 
data to estimate the conditional distribution for the particular variable of interest (Y) 
for every possible combination of values for its conditioning or predecessor variables 
(X1 and X2)! In addition, of course, we would need to know what are feasible values 
for the decision variable (X1), and we would have to assess a distribution for the pos-
sible values for the uncertain variable (X2). That would require a lot of data, and even 
in simple problems this could be a tedious or infeasible task. 
One possible simplification, of course, is to use approximations. For example, in 
Figure 10.7 we could reduce the continuous distribution for X2 to an extended 
Pearson-Tukey three-point approximation, and we could consider three possible val-
ues for X1 (low, medium, and high, say). Even in this case, we would need to assess 
nine different conditional probability distributions for Y based on the possible scenar-
ios. An approach like this may be possible in a simple situation, but the data require-
ments again become unwieldy as soon as there are more than just a few conditioning 
arcs. For example, suppose we were to add two more variables, X3 and X4, as in 
Figure 10.8. Using three-point approximations for the uncertain variables (X2 and 
X3) and considering only three possible values for each of the two decision variables 
(X1 and X4), we would still need to come up with 81 conditional distributions. 

Figure 10.7 
An influence diagram 

for modeling 
relationships among 
uncertain quantities 

X1, X2, and Y. 

Figure 10.8 
An influence 

diagram relating two 
uncertain quantities 

and two decision 
variables to Y. 
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(There are 81 conditional distributions because there are 34 = 81 different combina-
tions of the values for the X's.) Clearly, we need a way to streamline this process! 

The Regression Approach 

One way to approach this problem is to split it up into two pieces. First is determin-
ing the conditional expected value of Y given the X's, E( Y | X1,..., Xk). The second 
step is to consider the conditional probability distribution around that expected 
value. Statisticians refer to this general modeling approach as regression. 

We focus here on the simplest regression model, whose assumptions naturally 
lead it to be called linear regression. Beginning with the expected value: 

1   The conditional expected value of Y is linear in the X's. In symbols, 

E(Y | X1,..., Xk) = β0 + β1X1 + • • • + βkXk 

The β's are coefficients, and they serve the purpose of combining the X values to 
obtain a conditional expected value for Y. Moreover, every unit increase in Xi leads 
to a βi change (positive or negative, as indicated by the sign of ft) in the condi-
tional expected value of Y. For example, suppose we have an equation relating re-
gional expected sales (in $ 1000s) of a high-volume consumer electronics item (say, 
a portable stereo) to the amount of money spent on advertising in that region (in 
$ 1000s), the price set forth for that item in the ads ($), and the current price of a 
competitive product ($): 

E(Sales | Advertising, Price, Competition Price) 
= 2000 + 14.8(Advertising) - 500(Price) + 500(Competitive Price) 

An influence diagram portraying this relationship is shown in Figure 10.9. Note that 
we have placed the coefficients on the arrows, indicating the effect that each variable 
has on the expected value of Sales. For example, every additional $1000 spent on 
Advertising leads to an increase in expected Sales of $14,800 (14.8 times $1000, the 
units for Sales), given that Price and Competition Price stay the same. The opposite 
signs on the coefficients for Price and Competition Price indicate that these variables 
are expected to have opposite effects; an increase in our price should decrease our 
expected sales (everything else being equal), as indicated by the negative coefficient 
(—500). But an increase in Competition Price (again, with everything else held con-
stant) is good news for us and should increase our expected sales, as indicated by the 
positive coefficient (+500) on Competition Price. Moreover, the price effects are 
quite strong, reflecting the competitive nature of the market; an increase in Price of 
$1 leads to a $500,000 decrease in expected Sales. Likewise, a $1 increase in the 
Competition Price leads to an increase in expected Sales of $500,000. 

It is important to remember that the equation defines a relationship between the 
explanatory variables and the expected Y (Sales). The actual Y value will be above or 
below this expected value to some extent; this is where the uncertainty and the con- 
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Figure 10.9 
Relating sales to three 
explanatory variables. 

ditional probability distribution of Y come into play. The regression approach makes 
the following assumption about this distribution: 
2   The distribution around the conditional expected value has the same shape re-

gardless of the particular X values. 

A convenient way to think about this is in terms of random errors (or "noise") added 
to the conditional expected value. Denote a random error as e, and let us say that 
these errors are, on average, equal to zero: E(ε) = 0. Now we can write an expres-
sion for an actual Y value as follows: 

Y = E ( Y  |  X 1 > . . . ,  X k )  +  ε) 

This implies that the conditional distribution (and the corresponding density) of Y, 
given the X's, has the same shape as the distribution (or density) of the errors, but it 
is just shifted so that the distribution is centered on the expected value E( Y  |  
X 1 > . . . ,  X k ) . 

Take the Sales example. Suppose that the errors — the unexplainable factors 
that make Sales fall above or below its conditional expected value — have a CDF 
as shown in Figure 10.10. Now, suppose we decide to spend $40,000 on 
Advertising (X1) and to set Price (X2) at $97.95, and Competition Price (X3) turns 
out to be $94.99. Then expected Sales (Y), conditional on these values, would be 

E(Y |X1, X2, X3) = 2000 + 14.8(40) - 500(97.95) + 500(94.99) = 
1112($1000s) 

Suppose in an entirely different scenario we had Advertising equal to $70,000, Price 
equal to $93.95, and Competition Price equal to $98.99. Then conditional expected 
Sales would be 

E(Y | X1, X2, X3) = 2000 + 14.8(70) - 500(93.95) + 500(98.99) 
= 5556($10005) 

The conditional CDFs for Sales, given the three conditioning variables in each sce-
nario and the distribution for errors, are displayed in Figure 10.11. As you can see, 
the distributions have the same shape as the distribution for the errors shown in 
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Figure 10.10 
A CDF for error in the 

sales example. 

 

 

 

 

Figure 10.11 
Conditional CDFs 

for sales in 
two scenarios. 

 

 

 

 

 

Figure 10.10. In Figure 10.11, though, the location of the distributions are different, 
and this is due entirely to differences in the explanatory variables. 

Our two assumptions — a linear expression for conditional expected value 
and the constant shape for the conditional distribution — take us quite a long way 
toward being able to use data to study relationships among variables. You should 
keep in mind, however, that this is only one way to model the relationships and 
that it is quite possible for the expected-value relationships to be nonlinear or for 
the distribution to change shape. An example of a nonlinear relationship would be 
the degree of acidity in a lake and the number of microorganisms. If the lake is 
highly acidic, then reducing the acidity can lead to an increase in microorganisms up 
to a point, beyond which further changes are detrimental to the microorganisms' 
population. Changes in the distribution can be somewhat more subtle. Consider a 
retailer who is interested in entering a new market segment. Although the retailer may 
be fairly sure of the amount of sales resulting from ads aimed at her traditional 
market, the same 
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advertising dollars spent in an effort to attract the new customers might lead to a 
great deal of uncertainty. 

Although our approach has some limitations, it will provide an excellent base 
that can be extended via additional modeling techniques. We will mention some of 
these techniques later. For now, though, let us turn to the problem of using data 
within the regression framework we have established. 

Estimation: The Basics 

The discussion above has assumed that we know the β coefficients and the distribu-
tion of the errors. Of course, we may be able to make subjective judgments of these 
quantities, but if data are available, we may want to use that information in a sys-
tematic way to estimate the β's and to construct a data-based distribution of errors. 
To understand the process, let us simplify the sales example that we have been using. 
Suppose that all we have are data for Sales and Advertising, and we want to study the 
relationship between these two variables alone. The data, observations of 
Advertising and Sales during 36 different promotions in the eastern United States, 
are shown in Table 10.3. Figure 10.12 shows a scatterplot of these data; each point 
on the graph represents one of the observations. 

Using the linear-regression assumptions from the previous section, we establish 
the equation relating expected Sales (Y) and Advertising (X1): 

E(Y |  X1) = β0 + β1Xl 

Figure 10.12 
A scatterplot of 

advertising versus 
sales. 
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Table 10.3 
Data for sales 

example. 

 

Promotion Advertising ($1000s) Sales ($1000s) 

1 366 10541 

2  377 8891 
3 387 5905 
4 418 8251 
5 434 11461 
6 450 6924 
7 457 7347 
8 466 10972 
9 467 7811 
10 468 10559 
11 468 9825 
12 475 9130 
13 479 5116 
14 479 7830 
15 481 8388 
16 490 8588 
17 494 6945 
18 502 7697 
19 505 9655 
20 529 11516 
21 5 3 2  11952 
22 533 13547 
23 542 9168 
24 544 11942 
25 547 9917 
26 554 10666 
27 556 9717 
28 560 13457 
29 561 10319 
30 566 9731 
31 566 10279 
32 582 7202 
33 609 12103 
34 612 11482 
35 617 11944 
36 623 9188 
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We use our data to estimate β0 and β1. Estimating β0 and β1 amounts to finding 
a line that passes through the cloud of points in the scatterplot; Figure 10.13 shows 
two different candidates with their corresponding expressions. The expressions 
show what those particular lines use as estimates of β0 and β1. The dashed line, for 
example, estimates β0 to be 1900 and β1 to be 15. Clearly, no single line can pass 
precisely through all of the points at once, but we would like to find one that in some 
sense is the "best fitting" line. And, as you can see from the graph, there are many 
reasonable estimates for β0 and β1. 

How will we choose the best-fitting line through the data points? Although there 
are many possible answers to this question, we will choose a way that many statis-
ticians have found convenient and useful. In simple terms, we will choose the line 
that minimizes the sum of the squared vertical distances between the line and each 
point. Figure 10.14 shows how this will work for two sample points, A and B. 
Between the line and any given point (xi) there is a certain vertical distance, which 
we will call the residual (ei). For any given line, we can calculate the residuals for 
all of the points. Then we square each residual and add up the squares. And the 
problem is to find the line that minimizes this total of squared residuals. (The deci-
sion to minimize squared residuals is somewhat arbitrary. We could just as well 
choose estimates that minimize the sum of the absolute values of residuals, for ex-
ample. Any error measure that penalizes large errors above or below the line will 
work. Mathematicians have focused on the sum of squared residuals because this 
sum is easy to work with mathematically.) 

Figure 10.13 
Two possible lines 

relating expected sales 
and advertising. 
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Figure 10.14 
Calculating residuals. 

In symbols, let fro and b\ represent the estimates of β0 and β1. With this we can 
calculate the ith residual as 

ei = yi - (b0 + bixi) 

Squaring and summing over the n residuals gives the total (which we denote by SSE 
for the sum of squared errors): 

 
We want to choose b0 and b1 so that SSE is minimized. While this sounds like a 

complicated problem, it turns out to be a rather straightforward calculus problem. 
And even more good news is that you will never need to do the calculations your-
self! Many computer programs are available that do the calculations for you auto-
matically. 

Figure 10.15 shows the spreadsheet in Microsoft Excel that results from doing 
the calculations using Excel's built-in "Regression" procedure in the Sales-
Advertising example. The figure highlights Excel's estimates b0 = 3028.18 and 
b1 = 12.95. These are the coefficients that define the minimum-SSE line. (In fact, 
SSE = 117,853,513 and is shown in the column labeled "Sum of Squares.") Excel 
does many other calculations that are useful in drawing inferences from the data. For 
our purposes now, that of modeling relationships among variables, we will stick to 
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Figure 10.15 
Using Excel to 

estimate regression 
coefficients. 

the basics. All we require at this point are b0 and b1, the estimates of β0 and β1. At the 
end of the chapter we will briefly discuss the idea of statistical inference and how it 
relates to decision-analysis modeling. 

We can write out the expression for the line defined by the estimates b0 and b1: 
E(Y | X1) = 3028.18 + 12.95X1 

This equation makes sense. In general, we expect Sales to increase when we spend 
more on Advertising, as indicated by the positive coefficient 12.95. In particular, this 
coefficient can be interpreted as follows: For every additional $1000 spent on adver-
tising, Sales are expected to increase by $12,950. (Recall that Advertising and Sales 
are measured in $1000s.) 

For our simple model, we now have an indication of how expected Sales 
change as Advertising changes. How can we use the data to construct a model of 
the distribution of errors? This step is straightforward; for every data point we 
have a residual, which can be thought of as an estimate of the error associated with 
that particular point. Thus, the distribution of the residuals should be a good ap-
proximation to the distribution of the errors. Table 10.4 shows the calculation of 
the residuals, and Figure 10.16a displays a cumulative distribution constructed 
from those residuals in the same way that we constructed the distribution of 
halfway-house bed costs earlier (Figure 10.4). Figure 10.16b is a histogram of the 
residuals. 

The CDF can be used to make probability statements about the errors. For exam-
ple, we can see that the quartiles are approximately —1300 and +1300, so there is 
approximately a 50% chance that the error falls between these values. Or we can use 
the CDF to construct a discrete approximation. The dashed lines in Figure 10.16a for 
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Table 10.4 
Residuals for the sales 

example. 

 

Observation Sales 
(Y) 

Advertising 
(X) 

E(Y | X) = 
3028.18 
+12.95X 

Residual  
= Y - E(Y | X) 

1 10541 366 7768 2773 

2 8891 377 7911 980 
3  5905 387 8040 -2135 
4 8251 418 8442 -191 
5  11461 434 8649 2812 
6 6924 450 8856 -1932 
7  7347 457 8947 -1600 
8 10972 466 9063 1909 
9 7811 467 9076 -1265 
10 10559 468 9089 1470 
11 9825 468 9089 736 
12 9130 475 9180 —50 
13 5116 479 9232 -4116 
14 7830 479 9232 -1402 
15 8388 481 9258 -870 
16 8588 490 9374 -786 
17 6945 494 9426 -2481 
18 7697 502 9530 -1833 
19 9655 505 9568 87 
20 11516 529 9879 1637 
21 11952 532 9918 2034 
2 2  13547 533 9931 3616 
23 9168 542 10048 -880 
24 11942 544 10074 1868 
25 9917 547 10112 -195 
26 10666 554 10203 463 
27 9717 556 10229 -512 
28 13457 560 10281 3176 
29 10319 561 10294 25 
30 9731 566 10358 -627 
31 10279 566 10358 -79 
32 7202 582 10566 -3364 
33 12103 609 10915 1188 
34 11482 612 10954 528 
35 11944 617 11019 925 
36 9188 623 11097 -1909 
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Figure 10.16    CDF and histogram of residuals. 

Figure 10.17 
Extended Pearson- 

Tukey approximation 
for error distribution. 

the 0.05, 0.50, and 0.95 fractiles represent the required numbers for a three-point ex-
tended Pearson-Tukey approximation as shown in Figure 10.17. 

The CDF can also be used as a basis for representing the uncertainty in Sales 
given Advertising. To create a conditional distribution for Sales given Advertising, 
simply add the conditional expected Sales to the horizontal scale. For example, if 
Advertising = $110,000, then E(Sales | Advertising) = $4,452,680; add this 
amount to the horizontal scale to get the distribution for Sales given Advertising = 
$110,000 as shown in Figure 10.18. This distribution can in turn be used to generate 
conditional probability statements about Sales. Or we could create a discrete approx-
imation of the distribution for use in an influence diagram or decision tree. Finally, 
we could also fit a theoretical distribution. Typically in regression analysis, a normal 
distribution is fit to the residuals, but virtually any continuous distribution that 
makes sense for the situation could be used. (For example, the residuals could be 
used as data in BestFit to find the best-fitting distribution.) 

All of our effort has paid off in modeling terms. With the coefficient estimates 
and the distribution of errors, we have a complete, if simplified, model of the uncer-
tainty in Sales given its conditioning variable, Advertising. Figure 10.19 shows an 
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Figure 10.18 
CDF for sales given 

advertising = 
$110,000. 

 

 

 

 

 

 

 

 

 

   

              Figure 10.19 
Influence diagram 

model showing rela-
tionship between sales 

and advertising. 
 
 
 
 
 
 
 
 
 

influence diagram that represents the simple model we have created, including a 
three-point approximation for Sales given Advertising. 

Estimation: More than One Conditioning Variable 

Our advertising-and-sales example above demonstrated the basics. The model that 
we came up with, though, really is quite simplistic. In fact, with Advertising as the 
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only explanatory variable, we implicitly assume that nothing else matters. But that 
clearly is too simple, and we have already argued that both the price of our product 
and our competitor's price also matter. 

An augmented data set is shown in Table 10.5. For each of the 36 occasions, we 
now also have information on Price (X2) and Competition Price (X3). Can we in-
corporate these data into our analysis? The answer is yes, and the procedure is es-
sentially the same as it was before. 

We want to come up with estimates for /3Q, ft, ft, and ft in the following 
expression: 

E(Y | X1, X2, X3) = β0 + β1X1 + β2X2 + β3X3 

As before, we will let b0, b1, b2, and b3 denote the estimates of the corresponding β 
coefficients. Analogous to the one-variable version of the problem, we can calculate 
expected Sales, given the values of the conditioning variables. In turn, we can calcu-
late the residual by subtracting the expected sales calculation from the actual sales 
for that observation. And, as before, we want to specify the b's so that the sum of the 
squared residuals is minimized. Accomplishing this is just a slightly more general 
version of the one-variable problem described above. 

The same computer program used for the one-variable problem can be used here. 
Figure 10.20 shows the Excel screen with the results of the regression analysis with 
all three conditioning variables. As before, b0, b1, b2, and b3 are in the column la-
beled "Coefficients." With these values, we can now write out the formula for ex-
pected Sales, given the three conditioning variables: 

E(Y | X1, X2, X3) = 2199.34 + 15.05X1 - 503.76X2 + 499.67X3 

This expression makes sense. As before, every additional $1000 spent on 
Advertising increases expected Sales, but now in a more complete model this effect 
is estimated to be $15,050. The coefficients on Price and Competition Price are in-
terpreted similarly; a $1 Price increase would lead to a decrease in expected Sales of 
$503,760, whereas a $1 increase in the Competition Price would bring expected 
Sales up by $499,670. 

Also as before, we can calculate the residuals and use them to construct a CDF 
for the errors. Table 10.6 gives the residuals for our full model, and Figure 10.21 
displays the CDF of the residuals. From the graph (especially the horizontal scale), 
you can see that the distribution of errors is much tighter in the full model than it 
was in the model above in which we used only Advertising. In fact, an estimate of 
the standard deviation (often called the standard error and usually abbreviated as 
se) of the current distribution is $459,100, and is given in Cell B134 in Figure 
10.20. For the single-variable model, the standard deviation was over $1.8 million, 
which is shown in the corresponding cell in Figure 10.15. The interpretation is 
straightforward; Price and Competition Price are variables that are relevant (and 
useful!) for understanding the uncertainty about Sales. Without them in the previ-
ous model, we were ignoring important information. With them in the current 
model, the result ultimately is less uncertainty about Sales. For example, with 
Advertising set at $110,000, Price at $94.50, and Competition Price at $96.69, 
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Table 10.5 
Augmented data set 

for sales example. 

 

Promotion Advertising ($1000$) Price ($) Competition Price ($) Sates ($ 1000s) 

1 366 90,99 96.95 10541 

2 377 90.99 93.99 8891 
3 387 94.99 90.99 5905 
4 418 96.99 97.95 8251 
5 434 92.99 97.95 11461 
6 450 95.95 93.95 6924 
7 457 93.95 90,99 7347 
8 466 91.95 96.95 10972 
9 467 96.95 94.99 7811 
10 468 92.95 96.95 10559 
11 468 97.99 98.95 9825 
12 475 9L95 90.99 9130 
13 479 99.95 91.95 5116 
14 479 96,99 95.95 7830 
15 481 91.95 90.95 8388 
16 490 96.99 .. 96-99 8588 
17 494 96.95 91.95 6945 
18 502 98.95 95.95 7697 
19 505 94.99 96.99 9655 
20 529 93.99 97.95 *  11516 
21 532 91.99 95,99 11952 
22 533 92,99 97,99 13547 
23 542 93.99 92,95 9168 
24 544 90.95 95.95 11942 
25 547 94.99 93.95 9917 
26 554 89.95 90.95 10666 
27 556 96,95 95.95 9717 
28 560 9L99 97.95 13457 
29 561 98,99 97.95 10319 
30 566 93.95 91.99 9731 
31 566 94.99 94.99. 10279 
32 582 98,99 91.99 7202 
33 609 89.95 92.99 12103 
34 612 92.95 92.99 11482 
35 617 92.95 94.95 11944 
36 623 94.99 91,99 9188 
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Figure 10.20 
Regression analysis 

for full model. 

conditional expected Sales would be $4,562,600. This is almost the same value 
that we had before when we used only Advertising. Now, though, you can see in 
Figure 10.22 that the uncertainty about Sales is much less, as reflected in the 
tighter distribution. 

The tightness of the distribution, as indicated by the CDF of the errors and the 
standard deviation of that distribution, is the best available indication of the value 
of the model. For example, a product manager might look at the $1.8 million stan-
dard deviation for the previous single-variable model and scoff. Such a broad dis-
tribution makes planning difficult at best. On the other hand, the $459,100 stan-
dard deviation of the residuals in the full model may represent enough accuracy 
that this model could be used for planning production and distribution for a major 
promotion. And further model enhancements (adding other variables or improved 
modeling through advanced techniques) might reduce the uncertainty even further, 
thereby making the model that much more useful as a forecasting and planning 
tool. 

The influence diagram in Figure 10.23 shows the entire model, including a three-
point approximation of the error distribution to represent the conditional uncertainty 
about Sales. 

Regression Analysis and Modeling: Some Do's and Don't's 

The examples and discussion above give you a good idea of how regression analy-
sis can be used to create models in decision analysis. However, you should be 
aware that we have barely scratched the surface of this powerful statistical tech-
nique. Complete coverage of regression is beyond the scope of this text, but many 
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Table 10.6 
Residuals for the full 

model. 

 

Observation Sales(Y) E(Y | X1, X2, X3) Residual 

1 10541 10312 229 

2 8891 8999 -108 
3 5905 5635 270 
4 8251 8572 -321 
5 11461 10827 634 
6 6924 7578 -654 
7 7347 7212 135 
8 10972 11333 -361 
9 7811 7850 -39 
10 10559 10859 -300 
11 9825 9320 505 
12 9130 8490 640 
13 5116 5000 116 
14 7830 8490 -660 
15 8388 8561 -173 
16 8588 9175 -587 
17 6945 6737 208 
18 7697 7849 -152 
19 9655 10408 -753 
20 11516 11753 -237 
21 11952 11826 126 
22 13547 12337 1210 
2 3  9168 9450 -282 
24 11942 12511 -569 
25 9917 9521 396 
26 10666 10667 -1 
27 9717 9669 48 
28 13457 13227 230 
29 10319 9716 603 
30 9731 9352 379 
31 10279 10327 -48 
32 7202 7054 148 
33 12103 12514 -411 
34 11482 11047 435 
35 11944 12102 -158 
36 9188 9686 -498 
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Figure 10.21 
CDF of residuals for 

the full model 

 

 

 

 

 

Figure 10.22 
CDF of sales given 

advertising = 
$110,000, price = 

$94.50, and competi-
tion price = $96.69. 
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Figure 10.23 
Influence diagram 

model of sales given 
advertising, price, and 

competition price. 

excellent statistical textbooks are available. This section provides a brief survey of 
some of the issues in regression modeling, especially as they relate to decision 
analysis. 

We have seen a number of approaches to creating uncertainty models, including 
subjective assessment, the use of theoretical distributions, and data. The use of data 
can be very powerful; a statistical model and analysis, when based on an appropriate 
data set of adequate size, is very persuasive. The drawback is that data collection can 
take time and resources and may not always be feasible. In such cases, an analyst 
might be better off relying on theoretical distributions and expert subjective judg-
ments. Still, when data are available, they can be valuable. 

Although you should by now have an understanding of regression basics (which 
will improve with practice on some problems), there is much more to learn. Many 
courses in statistics are available, as are innumerable textbooks, some of which are 
listed in this chapter's reference section. Also, become familiar with at least one 
computer program for doing regression. The examples have used the simple (in 
some ways primitive) regression facility that is available with Excel. Packages de-
veloped specifically for statistical analysis may provide a more complete set of 
analysis options, but the flexible spreadsheet environment can be very useful to a de-
cision analyst. 

Creating an uncertainty model with regression can be quite powerful. It does 
have some important limitations, however. Two in particular warrant consideration 
in the context of decision analysis. First, the data set must have an adequate number 
of observations. Just what "adequate" means is debatable; many rules of thumb have 
been proposed, and some work better than others. The approach we have described 
above for decision-analysis modeling will perform poorly without enough data to 
estimate the coefficients and the error distribution. Although "enough data" may 
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mean different things in different contexts, a conservative rule of thumb would be to 
have at least 10 observations for each explanatory variable and never less than 30 
observations total. 

The main reason for having adequate data is that many data points may be nec-
essary to fully represent all of the different ways in which the variables can occur to-
gether. You would like to have as good a representation as possible of all the possi-
ble combinations. In the sales example, we would like to have occasions when prices 
are high, low, and in between, and for each different price level, advertising expen-
ditures should range from high to low. Note that there is no guarantee that a large 
data set will automatically provide adequate coverage of all possibilities. 
(Inadequate coverage can result in nonsensical coefficient estimates. Advanced tech-
niques can diagnose this situation and provide ways to get around it to some extent.) 
On the other hand, very small data sets almost by definition will not provide ade-
quate coverage. 

Another way to view this problem is to realize that a small number of observa-
tions means that we cannot be very sure that the b's are accurate or reliable esti-
mates of the β's. When we use the b's to calculate the conditional expected value, 
however, we are in essence assuming that the b's are good estimates and that vir-
tually all of the uncertainty in the response variable comes from the error term. In 
fact, with a small data set, we may also be very unsure about what the conditional 
expected value itself should be. In some cases you might want to model the uncer-
tainty about the estimates explicitly and incorporate this additional uncertainty by 
an appropriate broadening of Y's conditional probability distribution. Statistical 
procedures for generating appropriate probability intervals under these circum-
stances are included in most computer regression programs (although not in 
Excel). 

Even with an adequate data set and a satisfactory model and analysis, there re-
mains an important limitation. Recall that the regression model has a particular 
form; it is a linear combination of the explanatory variables. And the coefficient esti-
mates are based on the particular set of observations in the data set. The upshot is 
that your model may be a terrific approximation of the relationship for the variables 
in the neighborhood of the data that you have. But if you try to predict the response 
variable outside of the range of your data, you may find that your model performs 
poorly. For example, our sales example above was based on prices that ranged from 
about $89 to $100. If the product manager was contemplating reducing the price to 
$74.95, it is unlikely that an extrapolation of the model would give an accurate an-
swer; there is no guarantee that the linear approximation used in the first place would 
extend so far outside of the range of the data. The result can be an inaccurate condi-
tional expected value and a poor representation of the uncertainty, usually in the 
form of a too-narrow distribution, resulting in turn in poor planning. In practical 
terms, this means that the company could be taken by surprise by how many (or how 
few) units are sold during the promotion. 

The limitation with the range of the data goes somewhat further yet when we use 
multiple explanatory variables, and this is related to the discussion of the data re-
quirement above. You may try to predict the response variable for a combination of 
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the explanatory variables that is poorly represented in the data. Even though the 
value of each explanatory variable falls within its own range, the combination for 
which you want to create a forecast could be very unusual. In the sales example, it 
would not be unreasonable to find in such a competitive situation that both Price and 
Competition Price move together. Thus, we might be unlikely to observe these prices 
more than a few dollars apart. Using Price = $89.99 and Competition Price = 
$99.95 (or visa versa) could turn out to be a situation poorly represented by the data, 
and in this case the analysis may provide a very misleading representation of the ex-
pected Sales and the uncertainty. Although there is no simple way to avoid this prob-
lem, one helpful step is to prepare scatterplots of all pairs of explanatory variables 
and to ensure that the point for which you wish to predict the response variable lies 
within the data cloud in each of the scatterplots. Thus, in the sales example, we 
would be sure that the combination of prices and advertising that we wanted to ana-
lyze fell within the data clouds for each of three different scatterplots: Price versus 
Competition Price, Price versus Advertising, and Competition Price versus 
Advertising. 

Regression Analysis: Some Bells and Whistles 

As mentioned, our coverage of regression is necessarily limited. In this section, we 
look briefly at some of the ways in which regression analysis can be extended. 

Nonlinear Models. First, we can easily get past the notion that the conditional ex-
pected value is a linear function of the explanatory variables. For example, suppose 
an analyst encounters the scatterplot in Figure 10.24, which relates average temper-
ature (X) and energy consumption (Y), measured in kilowatt-hours, for small resi-
dences. A linear relationship between these two quantities clearly would not work 
well, and the reason is obvious: When the temperature deviates from a comfortable 
average temperature (around 20° C), we consume additional energy for either heat-
ing or air conditioning. To model this, a quadratic expression of the form 
E(Y | X) = β0 + β1X + β2X2 might work well. Implementation is easy: For each 
observation calculate X2, thereby creating a second explanatory variable. Now run 
the regression with two explanatory variables, X and X2. The coefficient estimates 
obtained define a parabolic curve that fits the data best in a least-squares sense. A 
similar approach works for fitting exponential or logarithmic functional forms, some 
of which have very compelling and useful economic interpretations. A textbook on 
regression modeling such as Neter, Wasserman, and Kutner (1989) discusses such 
modeling techniques in depth. 

Categorical Explanatory Variables. Up to this point, all of the explanatory vari-
ables have been continuous. But not all useful measurements occur along a contin-
uum. We might want to treat sales regions or sexes differently, for example. Or it 
might be useful to classify people into different age categories (child, adolescent, 
young adult, middle age, senior citizen) for marketing purposes. Is it possible to deal 
with such situations in a regression model? 
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Figure 10.24 
A nonlinear relation-

ship between tempera-
ture and energy 

consumption. 

The answer is yes, and the technique is straightforward. Suppose we have mar-
keting data (X1,..., Xk) for both men and women, but we would like to treat them 
separately. We can create a categorical variable (Xk+1) that equals 1 for men and 0 

 
This adds an extra column to the data matrix, and in the regression equation we in-
clude the new categorical variable: 

E(Y | X1,..., Xk, Xk+1) = β0 + β1X1 + • • • + βkXk + βk+1 Xk+1 

Now consider how this equation works for men and women separately. Women have 
Xk+1 coded as a 0 , so the last term on the right-hand side drops out. Thus, for 
women the expression becomes 

Women:        E(Y | X1,..., Xk, Xk+1 = 0) = β0 + β1X1 + • • • + βkXk  

For men, on the other hand, Xk+1 = 1, and so the last term becomes βk+1:  

Men:        E(Y | X1, ..., Xk, Xk+1 = 1) = β0 + β1X1 + • • • + βkXk + βk+1 
= (β0 + βk+1) + β1X1 + • • • + βkXk 
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In other words, the coefficients for X1 through Xk are exactly the same, but the ex-
pressions have different constant terms to represent the different genders. The inter-
pretation of βk+1 is that this is the incremental difference in expected Y for a man as 
compared to a woman. For example, if Y represents mail-order clothing purchases 
per year, then βk+1 = —$50 means that, everything else (age, income, and so on) 
being equal, a man is expected to spend $50 less per year on mail-order clothing than 
a woman. 

Actually doing the analysis is easy. Create the categorical variable, include it as 
one of the explanatory variables in the regression analysis, and obtain the coeffi-
cient for the categorical variable from the computer printout. The rest is the same 
as before: To generate a prediction for a particular person, plug in the appropriate 
demographic data for all of the variables (including gender), calculate 
E(Y | X1,..., Xk, Xk+1), and use the error distribution to construct the conditional 
probability distribution for Y. 

Note that we had two categories (male and female), and we were able to distin-
guish between them with just one categorical variable. What if you have more than one 
category? The rule is that you should use one less categorical variable than there are 
categories. For example, take the age example that we mentioned. There are five cate-
gories: child, adolescent, young adult, middle age, and senior citizen. (These cate-
gories must, or course, be defined clearly enough so that any individual can be placed 
unambiguously into one of the categories.) Now define four categorical variables: 

 
Each individual will have a 1 or a 0 for each of these variables. Imagine seeing the 
values of these variables for some particular person. If you see that Xk+3 = 1 and 
the others are zero, you know that this person is a young adult, and likewise for the 
other variables. In fact, there will never be more than one nonzero value, and that 
nonzero value will be a 1, indicating the person's category. But what if you see zeros 
for all four of these variables? Simple: This person falls into none of the four cate-
gories associated with the variables and therefore must be a senior citizen. 

The rule of having one less categorical variable than you have categories is easy 
to forget. It may seem natural to set up one variable for each category. There is a fail-
safe mechanism, however. Your computer program will not run with the extra cate-
gorical variable! It will most likely produce some cryptic error message like 
ANALYSIS FAILED — MATRIX SINGULAR, which is its way of indicating that 
it is unable to solve the required equations. Although this type of message can 
indicate other problems, if you have categorical variables, it almost surely means 
that you have one too many. 
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Categorical Response Variable (Y) The regression procedure we have pre-
sented is designed especially for situations in which F is a continuous variable. 
Often, though, you want to use data to predict whether an observation falls into a 
particular category (e.g., whether a particular customer will place another order or 
whether a particular individual will develop cancer). In decision-analysis terms, you 
would want to specify the conditional probability of falling into that category, given 
the values of the conditioning variables. 

Statistical procedures are available to use data for this very purpose. However, 
these procedures have special requirements, and it is beyond the scope of this short 
introduction to describe how to use them. Suffice it to say that the standard approach 
laid out above for continuous variables is not appropriate for categorical response 
variables. If you would like to use data to model conditional probabilities for such a 
variable, consult one of the advanced regression texts mentioned at the end of this 
chapter. 

Regression Modeling: Decision Analysis Versus Statistical 
Inference 

Our approach in this section has very much reflected the decision-analysis paradigm. 
We have used data as a basis for constructing a model of the uncertainty surrounding 
a response variable. Our focus has been particularly on coming up with a conditional 
probability distribution for F, given values of conditioning variables. The motivation 
has been that understanding and modeling the relationships among the explanatory 
and response variables can be of use in making decisions. 

If you have been exposed to regression analysis before, perhaps in a statistics 
course, you no doubt realize that the perspective taken here is somewhat different 
from the conventional approach. Although our approach is not entirely inconsistent 
with conventional thinking, there are some key differences: 

• Statistical inference often focuses on various types of hypothesis tests to answer 
questions like, "Is a particular coefficient equal to zero?" Or, "Is this set of ex- 
planatory variables able to explain any of the variation in Y?" As decision analysts, 
such questions would more likely be framed as, "Is it reasonable to include Xi as 
an explanatory variable, or should it be left out?" A decision analyst might answer 
such a question with standard sensitivity-analysis techniques, which would permit 
consideration of the context of the current decision, including costs, benefits, and 
other risks. The conventional hypothesis-testing approach ignores these issues. 

• Conventional regression modeling and the inference that is typically done (in- 
cluding hypothesis tests and the calculation of confidence and prediction inter- 
vals for Y) rely on the assumption that the errors follow a normal distribution. 
While the analysis can be quite powerful when this condition is met, it can be 
limiting or even misleading for situations in which normality is inappropriate. As 
decision analysts, we have focused on using the data to create a useful model of 
the uncertainty in the system for forecasting and decision-making purposes, 
which includes coming up with a suitable error distribution. 
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In the standard regression approach, a question left unaddressed is how to model 
uncertainty in the explanatory variables. For those variables that are themselves un-
certain (like Competition Price in our example), it may be important from a deci-
sions-analysis point of view to model that uncertainty. The influence-diagram ap-
proach that we have developed in this chapter provides the basis for such modeling. 
Either historical data or subjective judgments can be used to assign a probability 
distribution to an uncertain explanatory variable. Thus included in the model, that 
uncertainty becomes an integral part of any further analysis that is done. 

An Admonition: Use with Care 

With a little knowledge of regression, you have a very powerful data-analysis tool. A 
temptation is to apply it indiscriminately to a wide variety of situations. Part of its 
appeal is that it is using "objective" data, and hence the analysis and results are free 
of subjective judgments and bias. This is far from true! In fact, you should appreci-
ate the broad range of judgments and assumptions that we made: linear expected val-
ues, the error probability distribution that does not change shape, the inclusion of 
particular explanatory variables in the model. More fundamentally, we implicitly 
make the judgment that the past data we use are appropriate for understanding cur-
rent and future relationships among the variables. When we use a conditional proba-
bility distribution based on regression analysis, all of these judgments are implicit. 
Thus, the admonition is to use regression with care (especially with regard to its data 
requirements) and to be cognizant of its limitations and implicit assumptions. 
Regression is a rich and complex statistical tool. This section has provided only a 
brief introduction: further study of regression analysis will be especially helpful for 
developing your skill in using data for modeling in decision analysis. 

Natural Conjugate Distributions (Optional) 

So far we have considered modeling uncertainty using subjective judgments, theo-
retical models, and data. It is clear that we can mix these techniques to varying de-
grees. We have seen examples in which we have used a theoretical model to repre-
sent a subjective probability distribution (the use of the beta distribution in the soft 
pretzel problem), others in which data were used to estimate parameters for a theo-
retical distribution (the halfway-house data), and still others in which data were used 
to modify subjective probabilities regarding the parameter of a theoretical distribu-
tion (the soft pretzel examples using the binomial and Poisson distributions). Our 
topic now continues in this vein. We will see how to use Bayes' theorem in a sys-
tematic way to use data to update beliefs in the context of theoretical models. 

Recall the Poisson example in Chapter 9 (page 322) in which we wondered about 
the quality of a new location for the soft pretzel kiosk. The new location could have 
been good, bad, or dismal, with P(Good) = 0.7, P(Bad) = 0.2, and P(Dismal) = 0.2. 
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Each characterization is associated with a specific value of m, the expected number 
of pretzels sold per hour; a good location implies m = 20, bad implies m = 10, and 
dismal implies m = 6. The uncertainty about the nature of the location also can be 
thought of as uncertainty about the parameter m: P(m = 20) = 0.7, P(m = 10) = 
0.2, and P(m = 6) = 0.1. Furthermore, we might have had more than three possible 
values for m; in fact, the location might have been anything between dismal and 
wonderful, or might have had m values anywhere from 0 to, say, 50 (or even higher). 

Uncertainty about a parameter (such as m) often can be modeled with a continu-
ous probability distribution. As before, this would be the prior probability distribu-
tion. Then, as in the Poisson example, we may obtain data that provide information 
about the parameter of the process. Bayes' theorem provides the mechanism for 
using the data to update the prior probability distribution in order to arrive at a pos-
terior probability distribution. 

In this section, we will explore this process in some detail. It turns out that the 
mathematical details are such that performing the calculations can be quite difficult 
unless the prior distribution and the distribution for the data match in a particular 
way. We will look at two such situations. The first is when the decision maker is un-
certain about the parameter p in a binomial distribution and represents that uncer-
tainty with a beta prior distribution. The decision maker then observes data, the out-
come of a binomial random variable, and uses these data to update the prior 
distribution. In the second situation, the decision maker is uncertain about the mean 
μ of a normal distribution and represents that uncertainty with another normal dis-
tribution for μ. Now the decision maker takes a sample, calculates a sample mean, 
and uses this information to update the prior distribution for μ. 

Our plan of attack is as follows. First, we will discuss the overall process. The 
process is not particularly complicated, but the concepts involved are somewhat de-
manding. A thorough understanding of the process requires attention to several con-
ceptual issues. Next, we will show how the process works in the two specific situa-
tions that were mentioned above, and we will see examples. We will end with a 
discussion of how the uncertainty about a distribution parameter influences one's 
prediction or forecast. 

Uncertainty About Parameters and Bayesian Updating 

The flowchart (not an influence diagram) in Figure 10.25 shows the process that we 
will go through. The symbol 0 is used to represent a parameter of a theoretical dis-
tribution in which we may be interested. The process goes as follows. 

First, the decision maker chooses some theoretical distribution to model his or 
her beliefs regarding an uncertain quantity X (for example, a normal distribution to 
model the scores of students on a standardized exam or a Poisson distribution to 
model the number of customers who arrive at a soft pretzel kiosk). Let P(X = x | θ) 
denote this theoretical distribution, which has some parameter θ about which the de-
cision maker is uncertain. Being uncertain about 0, the decision maker assesses a 
prior probability distribution f (θ) for the parameter. At this point, P(X = x | θ) and 
f(θ) together embody all of the decision maker's beliefs about the possible outcomes 
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Figure 10.25 
Using data to update 

uncertainty about 
parameter 6 via 
Bayes' theorem. 

of the uncertain quantity X. If necessary, the decision maker can use this model of 
the uncertainty in solving a decision problem. Our concern here, however, is how to 
use data. Thus, the next step in the process is the acquisition of data and the incorpo-
ration of the new information into the model. 

Suppose that the decision maker, having assessed P(X = x | θ) and f(θ), now ob-
serves an x, an outcome from the physical system (for example, a sample of exam 
scores or actual arrivals at the soft pretzel kiosk over a period of time). Label the data 
as x1. The data contain information that the decision maker can use to refine his or 
her probabilities. In particular, Bayes' theorem allows for the updating of the prior 
distribution f(θ) so that it becomes a posterior distribution f(θ | x1): 

 

Equation (10.1) is simply Bayes' theorem when f(θ) is a continuous distribution. 
The output of Bayes' theorem in this case is a posterior distribution of θ after having 
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observed x1. That is, f(θ | x1) represents the decision maker's uncertainty about θ 
after having seen data x1. 

The term P(x1| θ) in Equation (10.1) is called the likelihood function. We calcu-
lated likelihoods for the binomial and Poisson soft pretzel examples in Chapter 9: 
We did it when we calculated the probability of observing the data for each possible 
parameter value. In the binomial case, we calculated binomial probabilities for the 
observed data depending on whether the pretzels were a hit (p = 0.3) or a flop 
(p = 0.1). In the Poisson case, we calculated Poisson probabilities for the observed 
number of arrivals depending on whether the new location was good (m = 20 per 
Hr), bad (m = 10 per Hr), or dismal (m = 6 per Hr). 

The flowchart in Figure 10.25 is shown with three dots at the bottom, indicating 
that the process can continue. That is, the decision maker now has uncertainty about 
θ, as represented by f(θ | x1). New data (x2) might be observed, and the decision 
maker again can incorporate this new information via Bayes' theorem. The result 
would be f(θ | x1, x2). This sequential updating process can continue indefinitely. 

In principle, Equation (10.1) can be used regardless of the form of the likelihood 
function or the proper distribution f(θ). With specific mathematical expressions for 
these functions, it always is possible to have a computer crunch the numbers to gen-
erate a posterior distribution f(θ | x1). It may not be possible to write down a mathe-
matical expression for f(θ | x1), but the computer could grind out the calculations, 
evaluate f(θ | x1) for many different values of 0, and finally plot the distribution. But 
an easier way to do this would be nice. 

Fortunately, there is an easier way in certain situations. Recall that we are mov-
ing from a prior distribution to a posterior distribution. In certain cases, the prior and 
posterior distributions have the same form. This form is called the natural conjugate 
distribution for the theoretical distribution that represents the physical process. 
Moreover, in these cases relatively simple rules guide the use of observed data in ad-
justing the prior distribution to obtain the posterior. In other words, this elegant re-
sult reduces the seemingly complicated Equation (10.1) to a few simple formulas in 
these cases. Two such cases involve the binomial and normal distributions. We will 
discuss each one in turn, using examples. 

Binomial Distributions: Natural Conjugate Priors for p 

In this case, the chosen theoretical distribution to represent the physical process is bino-
mial with parameters n and p. That is, the decision maker knows that the process gener-
ates many observations that are either successes or failures, and that in a group of n ob-
servations there will be some number X of successes. Thus, P(X = x | 0) in this case is 
equal to the binomial probability PB(X = r | n, p), which is given in Equation (9.1). 

Of course, PB(X = r |  n, p) is easy to calculate for any value of r as long as p is 
known. In this case, however, we want to incorporate uncertainty about p. The natural 
conjugate prior distribution for p is a beta distribution. That is, if the decision maker 
uses the beta distribution to model the prior uncertainty about p and then updates that 
beta prior on the basis of an observation from the process, then the posterior distribu-
tion of p also will be a beta distribution. Note that the beta distribution is a reasonable 
model, because p must be between 0 and 1. Here is how the updating process works: 
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The decision maker considers a physical process and concludes that its uncer-
tainty can be represented with a binomial distribution. That is, out of n trials, the 
probability of r successes is PB(X = r | n, p). 
The decision maker assesses a beta prior distribution for p, fβ(p | r0, n0). That is, 
the decision maker carefully considers the uncertainty about p and concludes that 
it can be adequately represented with a beta distribution having parameters r0 
and n0. Based on this prior distribution for p, a good estimate for p would be the 
mean of this distribution, r0 /n0. 
The decision maker observes n1 independent trials, and r1 of these are successes. 
Based on these data alone, of course, a good estimate for/? would be r1 /n1. The 
issue is how to combine this information with the prior distribution. Combining 
the data with the prior distribution via Bayes' theorem gives a posterior 
distribution for p that is also a beta distribution, fβ (p | r*, n*), where 

 

That is, the decision maker only has to add the r's and n's to find the parameters 
of the posterior distribution for p. 

In addition, we can see how this process could continue as new data are observed. The 
posterior fβ (p | r *, n*) becomes the prior distribution in the next round. Data r2 and 
n2 are observed. Thus, the parameters for the posterior distribution after observing r2 
and n2 are r** = r* + r2 = r0 + r1 + r2 and n** = n* + n2= n0 + n1 + n2. 

In Chapter 9 we discussed briefly that in subjectively assessing a beta distribu-
tion, the decision maker may think of r and n as representing "equivalent informa-
tion." If the decision maker believes that the available information is equivalent to 
having observed 5 successes in 10 trials, then appropriate beta parameters would be 
r = 5 and n = 10. In performing the updating of a prior distribution via Bayes' the-
orem here, we can see just how appropriate this analogy is. Essentially, the r's and 
n's are added together as if they had all resulted from sample observations. 

As an example, let us return to the soft pretzel example in Chapter 9, specifically 
pages 334-335. There we considered whether to proceed with the marketing of your 
pretzels. Of course, if you are convinced that your new pretzel will be a great seller, 
you certainly would undertake the project. The problem is that the proportion (Q) of 
the market that your pretzel might capture is uncertain. In the example, this uncer-
tainty about Q is represented with a beta distribution having parameters r = 1 and n 
= 4. Let us take this as a prior distribution, fβ(Q |r0 = 1, n0 = 4). The expected 
value of this distribution is E(Q) = 1/4 = 0.25, which would be a good estimate for Q 
based on the prior distribution. 

Now suppose you run a taste test. You bake 20 pretzels, and 7 of 20 tasters prefer 
your pretzel over the competition's. Thus, r 1  =  7  and n1 = 20. Combining 
these 
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Figure 10.26 
Prior and posterior 

distributions for 
the market proportion 

captured by the soft 
pretzel 

data with the prior distribution, the posterior probability distribution for Q is 
fβ(Q | r* = 1 + 7 = 8, n* = 4 + 20 = 24). The posterior expected value of Q is 
8/24 = 0.33. The data have considerably affected your beliefs about Q. Figure 
10.26 shows both the prior and posterior distributions. The additional data have 
greatly reduced the uncertainty about Q. 

Normal Distributions: Natural Conjugate Priors for μ 

Suppose the decision maker chooses a normal distribution to represent the physical 
process. That is, the decision maker knows that the outcomes (the x's) that arise from 
the process are numbers that can take on any value in a continuum, and believes that 
a normal distribution provides a good representation for the x's distribution. In this 
case, P(x | θ) is the expression fN  (x | μ, σ) from Equation (9.4). 

We will assume that the standard deviation of the process, cr, is known. The deci-
sion maker, however, does now know μ but is willing to assess a probability distri-
bution for it. The natural conjugate prior distribution for μ also turns out to be a 
normal distribution. That is, if the decision maker chooses a normal prior distribution 
to represent the uncertainty about μ and then updates that prior based on observations 
from the process, the resulting posterior distribution for /x also will be normal. Let us 
suppose that the decision maker assesses a normal distribution for μ, fN (μ | m0, σ0). 

This situation can be a bit confusing because so many different normal distributions 
are floating around. First, the original distribution is normal, fN (x | μ, σ). But we also 
have normal distributions for the parameter μ itself. The prior is fN (μ | m0, σ0), and the 
posterior also will be normal, fN (μ | m*, σ*). Here are the steps in the updating process: 

1 The decision maker considers a physical process and concludes that the uncer 
tainty of the process can be represented with a normal distribution. That is, the 
distribution of observations from the process is fN (x | μ, σ). 

2 The decision maker assesses a normal prior distribution for μ,  fN (μ |  m0, σ0). That 
is, the decision maker carefully considers the uncertainty about μ and concludes 
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that it c an be modeled with a normal distribution having parameters m0 and σ0. 
Based on this prior distribution for μ, a good estimate for μ would be the mean m0. 
The decision maker actually observes n1 independent observations from the 
process, and the average of these sample observations is x─

1. Based on these data 
alone, of course, a good estimate for μ would be x─

1. 
Combining the data with the prior distribution via Bayes' theorem gives a poste-
rior distribution for μ that also is a normal distribution, fN(μ | m*, σ*), where 

 

That is, the decision maker combines the prior information and the data via 
Equations (10.3a) and (10.3b) to obtain the posterior distribution of \x. 

As with the binomial model, one can see how the sequential incorporation of 
data would be done in this case. Observing the first sample would lead to the poste-
rior as given above. In the next round, m* and σ* become the parameters for a new 
prior distribution that is updated on the basis of a second set of observations, using 
Equations (10.3a) and (10.3b) with m* and σ* in place of m0 and σ0. Further se-
quential updating would follow the same pattern. 

In the binomial situation above, it was easy to see how the prior information 
could be interpreted as "equivalent" sample information. The same is true here, al-
though it is not evident from (10.3a) and (10.3b). Suppose, however, that we write 
σ0

2 = σ2/n0. Then n0 is interpreted as our "equivalent sample size." Having made this 
transformation, Equations (l0.a) and (10.3b) become 
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Figure 10.27 
Prior and posterior 

distributions for \x in 
the halfway-house 

example. 

From these expressions, it is clear how n0 and n1 are interacting. The posterior mean 
m* is simply a weighted average of m0 and x─

1, where the weights are based on the 
"sample sizes" n0 and n1. Posterior variance σ*2 has the same form as σ0

2, with the 
cumulative sample size n0 + n1 used as the divisor of the process variance σ2. 

As an example of the updating process for the normal distribution, let us again look 
at the halfway-house data. Suppose that a decision maker believes that yearly bed-
rental costs are normally distributed with mean μ and standard deviation σ = $220. 
The expected value μ is unknown, but the decision maker assesses a normal distribu-
tion with mean m0 = $345 and standard deviation σ0 = $50, fN  (μ | m0 = 
$345, σ0 = $50). For example, this means that the decision maker believes there is 
roughly a 68% chance that μ is between $295 and $395, and roughly a 95% chance 
that μ is between $245 and $445. 

Now suppose that the decision maker obtains the 35 observations listed in Table 
10.1. The sample mean of these observations is $380.40. We have n1 = 35 and x─

1 
= $380.40. Applying Equations (10.3a) and (10.3b), we obtain the posterior 
distribution of μ, a normal distribution with parameters m* = $367.80 and σ* = 
$29.80. The prior and posterior distributions are illustrated in Figure 10.27. Notice 
that, with the added information, the distribution for μ is tighter, reflecting less 
uncertainty about μ. 

Predictive Distributions 

We have represented the uncertainty about the physical process under investigation 
with the distribution P(X = x | θ). That is, if we only knew θ, we would have 
everything we need of the distribution of the x's. We do not know θ, however, but 
we do have a probability distribution for it, f(θ). To give a distribution for the x's, 
we must combine P(X = x | θ) and f(θ). As previously mentioned, these two kinds 
of uncertainty, taken together, provide a complete model of the uncertainty that the 
decision maker faces regarding the x's. We simply must figure out how to put these 
pieces together. 
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To see this, imagine the binomial process. The probability of r successes in n tri-
als is PB(X = r | n, p). But we need to know p in order to calculate probabilities 
using Equation (9.1). What we can do, however, is take something like an average 
over all possible values for p. This is exactly the approach we will take. 

If we want a distribution for the x's that does not depend on 0, we want P(X = x), not 
P(X = x | θ). We will call P(X = x) the predictive distribution because it describes our 
uncertainty about X — which x values are most likely, the probability that X will fall 
into different intervals, and so on. To get P(X = x), we must "integrate out" θ: 

 

You might recognize this expression as the denominator of Bayes' theorem as it was 
written in Equation (10.1). Figuring out this integral will not be any easier that it was 
in Equation (10.1). It will always be possible to use a computer to calculate this inte-
gral numerically, but numerical integration techniques are beyond the scope of this 
text. In cases in which we have a natural conjugate prior distribution for q, it may be 
possible to find a simple expression for this distribution. We will take a look at the 
normal and binomial processes. 

Predictive Distributions: The Normal Case 

If the physical process follows a normal distribution, the integral becomes 

 

We will express this in words. Taking into account the prior uncertainty about μ, 
the distribution of the next sampled observation from the process is normal with 
mean m0 and variance σp

2 = σ2 + σ0
2. The fact that the mean for x is m0 is reason-

able; our best guess for x would be /x, and our best guess for μ is m0. The fact that 
the variance is σ2 + σ0

2 shows that indeed the overall uncertainty about x is com-
posed of uncertainty about the process that generates the x's (σ2) and uncertainty 
about Μ (σ0

2). If we knew exactly what /x was, then the variance of the distribution 
simply would be σ2. 

What we have just done can be generalized to any normal distribution for μ. If 
some data already have been collected and the decision maker has a posterior distri-
bution for μ, fN(Μ | m*, σ*), then the predictive distribution for x is normal with 
mean m* and variance σp

2 = σ2 + σ*2. 



396     CHAPTER 10 USING DATA 

Continuing our halfway-house example, suppose that, having collected the data and 
updated the prior distribution for μ, the decision maker would like to express the un-
certainty about the next yearly bed rental (x). The distribution desired is the predictive 
distribution. We know that σ = $220 and that the posterior distribution for μ was normal 
with mean m* = $367.80 and standard deviation σ* = $29.80. Thus, the predict ive  
d i s t r ib u t io n  wi l l  b e  norma l  wi th  mean  $ 3 67 .80  and  var i ance  σp

2 = 
(220)2 + (29.82). Performing the calculations, we find that σp = $222, which is just 
barely more than the process standard deviation of $220. Thus, as we might have 
suspected, most of the uncertainty about the bed-rental cost is simply the result of fluc-
tuation in these costs. A little bit of uncertainty results from the uncertainty about μ. 

Predictive Distributions: The Binomial Case 

If the physical process is one that can be represented with a binomial distribution, 
then the matter is slightly more complicated. We really want to know how likely we 
would be to get different numbers of successes in n trials. The integral to find the 
predictive distribution P(X = r) becomes 

 
This rather unusual looking expression is called a beta-binomial probability distri-
bution. The number of successes r can take on only discrete values of 0, 1, . . ., n. 
The probability for any of these outcomes can be calculated by plugging values for 
r, n, r0, and n0 into the beta-binomial expression. 

As with the normal distribution, this result generalizes as long as the distribution of 
p is a beta distribution. For example, in the case of our soft pretzels, the posterior distri-
bution for p was a beta distribution with parameters r* = 8 and n* = 24. The predic-
tive distribution of r (the number of tasters out of n who would prefer the new pretzel) 
would be the same as given above, but with r* and n* replacing r0 and n0. For exam-
ple, the probability that 6 out of the next 12 tasters will prefer the new pretzel would be 

 
Probabilities for other possible values of r can be calculated in the same way. 

The use of data to update information in a systematic way via Bayes' theorem can be 
very useful in decision analysis. We have spent much time in discussing nat- 
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ural conjugate distributions here, and they can be quite helpful. What is perhaps 
more critical, however, is that you understand the concept that one can be uncertain 
about a parameter and encode that uncertainty as a probability distribution. This un-
certainty then has an impact on the decision maker's probability of future outcomes. 
Thus, the underlying ideas of distributions on parameters and predictive distribu-
tions for future outcomes are quite basic. 

In the next chapter, we will take this process a step further. In simulation we will 
generate random variables from theoretical probability distributions with specific pa-
rameters. This is a standard technique in decision analysis and risk analysis. But we 
also will be able to specify our parameters as uncertain. By specifying parameters 
themselves as probabilistic, we will be doing the simulation counterpart of the natural 
conjugate analysis that we have discussed here. Furthermore, we will not be limited 
to certain families of distributions. We will be able to specify any kind of probability 
distribution that seems reasonable; the computer will do the calculations for us. 

A Bayesian Approach to Regression Analysis (Optional) 

Can the Bayesian approach described above be applied to regression analysis as well 
as the normal and binomial models described in the last section? The answer is yes, 
although certain assumptions must be made. The most important is that some sort of 
theoretical distribution for the errors must be assumed; this provides the basis for 
defining the likelihood function for the data. A typical assumption is that the errors 
follow a normal distribution with variance σe

2. 
The general Bayesian approach is to model uncertainty about the model parame-

ters. In a regression model, the parameters would be the error variance σe
2 and the 

coefficients β0,..., βk. It turns out that there are natural conjugate prior distribu-
tions for these parameters and that data can be used to update these priors. Moreover, 
once the updating has been done, one can generate predictive distributions for future 
observations of the Y variable, given the X's. Thus, the Bayesian approach provides 
a systematic way to incorporate uncertainty about the coefficients as well as the error 
term, thereby giving a more complete accounting of uncertainty in the system. For 
more discussion of Bayesian regression, see Zellner, (1971) or Berry (1995). 

SUMMARY In this chapter we have seen some ways in which data can be used in the develop-
ment of probabilities and probability distributions for decision analysis. We began 
with the basics of constructing histograms and empirically based CDFs. A short dis-
cussion concerned the use of data to estimate parameters for theoretical distribu-
tions. The last part of the chapter discussed the use of data to update prior beliefs 
about parameters of a distribution. This process is based on Bayes' theorem. We saw 
how natural conjugate distributions worked for both normal and binomial cases. 
Finally, we discussed predictive distributions, or the distribution for future outcomes 
of a process when the parameters are uncertain. 
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E X E R C I S E S  

10.1 Explain in your own words the role that data can play in the development of models of 
uncertainty in decision analysis. 

10.2 Why might a decision maker be reluctant to make subjective probability judgments when 
historical data are available? In what sense does the use of data still involve subjective 
judgments? 

10.3 Suppose that an analyst for an insurance company is interested in using regression 
analysis to model the damage caused by hurricanes when they come ashore. The re 
sponse variable is Property Damage, measured in millions of dollars, and the explana 
tory variables are Diameter of Storm, Barometric Pressure, Wind Speed, and Time of 
Year. 
a What subjective judgments, both explicit and implicit, must the analyst make in cre-

ating and using this model? 
b If X1, Diameter of Storm, is measured in miles, what is the interpretation of the co-

efficient β1? 
c Suppose the analyst decides to introduce a categorical variable X5, which equals 1 if 

the eye of the hurricane comes ashore near a large city (defined as a city with popula-
tion ≥ 500,000) and 0 otherwise. How would you interpret β5 ? 

10.4 Estimate the 0.65 and 0.35 fractiles of the distribution of yearly bed-rental costs, based 
on the CDF in Figure 10.4. 

10.5 Choose appropriate intervals and create a relative frequency histogram based on the half 
way-house data in Table 10.1. 

10.6 Estimate the 0.25 and 0.75 fractiles of the conditional distribution for Sales in Figure 
10.22. 

Q U E S T I O N S    AND   P R O B L E M S  

10.7 It was suggested that five is the minimum number of data points for the least likely cate 
gory in constructing histograms. In many cases, however, we must estimate probabilities 
that are extremely small or for which relatively few data are available. In the example 
about machine failures at the beginning of the chapter (pages 356-357), suppose that we 
had one day out of 260 in which three failures occurred. What do you think we should do 
in such a situation? 

10.8 As discussed in the text, it often is possible to use a theoretical distribution as an approx 
imation of the distribution of some sample data. It is always important, however, to check 
to make sure that your data really do fit the distribution you propose to use. 

Consider the halfway-house data again. We calculated the sample mean x─ = 380.4 and 
the sample standard deviation s = 217.6. Taking these as approximately equal to μ and 
σ, use the Z table in Appendix E to find normal cumulative probabilities for dollar costs 
of 200, 300, 400, 500, 600, and 700. How do these theoretical normal probabilities com- 



QUESTIONS AND PROBLEMS      399 

pare with the data-based probabilities from the CDF in Figure 10.4? Do you think that 
the normal distribution is an appropriate distribution to use in this case? You might 
sketch the normal distribution CDF and superimpose it on Figure 10.4 to obtain a visual 
feel for how the normal distribution fits the data. 

10.9    A scientist collected the following weights (in grams) of laboratory animals: 
 

9.79 9.23 9.11 
9.62 8.73 11.93 

10.39 8.68 9.76 

9.59 11.49 9.86 
11.41 9.60 7.24 

a Use these data to create a data-based CDF for the distribution of weights for lab ani-
mals. Estimate the probability that an animal's weight will be less than 9.5 grams. 

b Fit a normal distribution to these data on the basis of the sample mean and sample 
variance. Use this normal distribution to estimate the probability that an animal's 
weight will be less than 9.5 grams. 

c Do you think the normal distribution used in part b is a good choice for a theoretical 
distribution to fit these data? Why or why not? 

10.10 A plant manager is interested in developing a quality-control program for an assembly 
line that produces light bulbs. To do so, the manager considers the quality of the products 
that come from the line. The light bulbs are packed in boxes of 12, and the line produces 
several thousand boxes of bulbs per day. To develop baseline data, some of the workers 
test all the bulbs in 100 boxes. They obtain the following results: 

 

No. of Defective Bulbs/Box No. of Boxes 

0 68 

1 27 
2 3 
3 2 

a   Plot a histogram of these results. 
b   What kind of theoretical distribution might fit this situation well? Explain. 
c Estimate parameters for the distribution you chose in part b by calculating the sample 

mean and variance. Use the theoretical distribution with its estimated parameters to 
estimate P(0 Defective), P(l Defective), P(2 Defective), and P(3 Defective). How do 
these estimates compare to the relative frequency of these events in the data? 

10.11 A retail manager in a discount store wants to establish a policy of the number of cashiers 
to have on hand and also when to open a new cash register. The first step in this process 
is to determine the rate at which customers arrive at the cash register. One day, the man-
ager observes the following times (in minutes) between arrivals of customers at the cash 
registers: 
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0.1 2.6 2.9 0.5 
1.2 1.8 4.8 3.3 
1.7 0.2 1.5 2.0 
4.2 0.6 1.0 2.6 
0.9 3.4 1.7 0.4 

a   Plot a CDF based on these data. 
b What kind of theoretical distribution do you think would be appropriate for these 

data? Why? 
c Calculate the sample mean and sample standard deviation of the data, and use these 

to estimate parameters for the theoretical distribution chosen in part b. 
d Plot a few points from the CDF of your theoretical distribution, and draw a smooth 

curve through them. How does this theoretical curve compare to the data-based 
CDF? 

10.12 An ecologist studying the breeding habits of birds sent volunteers from the local chapter 
of the Audubon Society into the field to count nesting sites for a particular species. Each 
team was to survey five acres of land carefully. Because she was interested in studying 
the distribution of nesting sites within a particular kind of ecological system, the ecolo-
gist was careful to choose survey sites that were as similar as possible. In total, 24 teams 
surveyed five acres each, and reported the following numbers of nesting sites in each of 
the five-acre parcels: 

 

7 12 6 9 
5 2 9 9 
7 3 9 9 
5 1 7 10 
1 8 6 3 
4 5 3 13 

a   Plot a histogram for these data. 
b   What kind of theoretical distribution might you select to represent the distribution of 

the number of nesting sites? Why? 
c    Estimate the parameters of the theoretical distribution by calculating the sample 

mean and sample variance. 
d   Plot the probability distribution based on your theoretical model from parts b and c. 

How does it compare to your histogram from part a? 

10.13 Decision analyst Sandy Baron has taken a job with an up-and-coming consulting firm 
in San Francisco. As part of the move, Sandy will purchase a house in the area. There 
are two houses that are especially attractive, but their prices seem high. To study the 
situation a bit more, Sandy obtained data on 30 recent real-estate transactions involv-
ing properties roughly similar to the two candidates. The data are shown in Table 
10.7. The Attractiveness Index measure is a score based on several aspects of a prop- 
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Table 10.7 
Data for 30 real-estate 

transactions in 
Problem 10.13. 

 

Property House Size 
<Sq. Ft) 

Lot Size 
(Acres) 

Attractiveness 
Index 

Sale Price 
($1000s) 

1 3000 3.6 64 550 

2 2300 1.2 69 461 
3 3300 1.3 72  501 
4 2100 3.2 71 455 
5 3900 1.1 40 503 
6 3100 2.0 74 529 
7 3600 1.6 69 478 
8 2900 2.5 85 562 
9 2000 2.6 70 417 

10 3500 1.3 74 566 
11 3100 2.3 79 494 
12 3200 1.5 75 515 
13 2800 1.3 62 490 
14 3300 3.3 62 537 
15 3000 3.9 70 527 
16 3400 2.4 81 577 
17 2800 1.7 77 490 
18 2000 3.4 67 486 
19 2400 2.9 68 450 
20 3600 2.9 84 674 
21 2400 1.9 75 454 
22 3000 2.8 63 523 
23 2200 3.6 78 469 
24 3600 2.4 73 628 
25 2900 1.1 85 570 
26 3000 4.4 69 564 
27 3100 1.8 54 444 
28 2200 2.1 75 494 
29 2500 3.9 61 479 
30 2900 1.1 74 477 

erty's character, including overall condition and features (e.g., swimming pool, view, 
seclusion). 
a   Run a regression analysis on the data in Table 10.7 with Sale Price as the response 

variable and House Size, Lot Size, and Attractiveness as explanatory variables. 
What are the coefficients for the three explanatory variables? Write out the 
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expression for the conditional expected Sale Price given House Size, Lot Size, and 
Attractiveness. 

b   Create a CDF based on the residuals from the regression in part a. c    
The two properties that Sandy is considering are as follows: 

 

House List Price House Size Lot Size Attractivenes
s 1 575 2700 1.6 75   

2 480 2000 2.0 80 

What is the expected Sale Price for each of these houses according to the regression 
analysis from part a? 

d Create a probability distribution of the Sale Price for each house in part c. Where 
does the List Price for each house fall in its respective distribution? What advice can 
you give Sandy for negotiating on these houses? 

10.14 Reilly Global Communications (RGC), Inc., sells communications systems to companies 
that have worldwide operations. Over the next year, RGC will be instituting important 
improvements in its manufacturing operations. The CEO and majority stockholder, Terry 
Reilly, has been extremely optimistic about the outlook for the firm and made the state 
ment that sales will certainly exceed $6 million in the first half of 1996. 

Semiannual data for RGC over the past 19 years are presented in Table 10.8. The 
Spending Index is related to the amount of disposable income that consumers have, ad-
justed for inflation and averaged over the industrial nations. System Price is the average 
sales price of systems that RGC sells, Capital Investment refers to capital investment in 
the business, and Advertising and Marketing and Sales are self-explanatory. 
a Use the data in Table 10.8 to run a regression analysis with Sales as the response vari-

able and the other four variables as explanatory variables. Write out the expression 
for Expected Sales, conditional on the other variables. Interpret the coefficients. 

b The forecast for the Spending Index in the first half of 1996 is 45.2. The company has 
committed $145,000 for capital improvements during this time. In order to make his 
goal of $6 million in sales, Reilly has indicated that the company will offer discounts 
on systems (to the extent that the average system price could be as low as $70,000) 
and will spend up to $90,000 on advertising and various marketing programs. If the 
firm drops the price as much as possible and spends the full $90,000 on Advertising 
and Marketing, what is the expected value for Sales over the next six months? 
Estimate the probability that Sales will exceed $6 million. 

c Given that the company spends the full $90,000 on Advertising and Marketing, how 
low would Price have to be in order to ensure a 90% chance that Sales will exceed $6 
million? What advice would you give Terry? 

10.15 Before performing the experiment, the scientist in Problem 10.9 thought a bit about the 
animals that he typically used in his lab. He knew (based on information from the ani 
mals' supplier) that the standard deviation of their weights was 1.5 grams. But the sup 
plier was unable to specify the average weight precisely. The company did say that there 
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Table 10.8 
Twenty years of data 

for Reilly Global 
Communications, Inc. 

 

Year Spending 
Index 

System Price 
($1000s) 

Capita! 
Investment 
($1000s) 

Advertising and 
Marketing 
($1000s) 

Sales 
($1000s) 

1977 39.8 56.2 49.9 76.9 5540 

 36.9 59.0 16.6 88.8 5439 
1978 26.8 56.7 89.2 51.3 4290 
 48.4 57.8 106.7 39.6 5502 
1979 39.4 59.1 142.6 51.7 4872 
 33.2 60.1 61.3 20.5 4708 
1980 33.6 59.8 -30,4 40.2 4628 
 38.3 60.1 -44.6 31.6 4110 
1981 28.5 63.1 -28.4 12.5 4123 
 27.7 62.3 75.7 68.3 4842 
1982 45.6 64.9 144.0 52.5 5740 
 35.5 64.9 112.9 76.7 5094 
1983 36.4 63.4 128.3 96.1 5383 
 32.0 65.6 10.1 48.0 4888 
1984 31.l 67.0 -24.8 27,2 4033 
 36,2 66.9 116.7 72.7 4942 
1985 40.8 66.2 120.4 62.3 5313 
 43.3 67.9 121.8 24.7 5140 
1986 

35. 

68.9 71.1 73.9 4397 
 47.6 71.4 -4.2 63.3 5149 
1987 41.5 69.3 -46.9 28.7 5151 
 42.0 69.7 7.6 91.4 4989 
1988 53.6 73.2 127.5 74.0 5927 
 43.2 73.4 -49.6 16.2 4704 
1989 43.6 73.1 100.1 43.0 5366 
 41.5 74.9 -40.2 41.1 4630 
1990 46.2 73.2 68.2 92.5 5712 
 42.9 74.2 88.0 83.3 5095 
1991 51.7 74.3 27.1 74.9 6124 
 32.8 77.1 59.3 87.5 4787 
1992 41.8 78.6 142.0 74.5 5036 
 51.5 77.1 126.4 21.3 5288 
1993 41.2 78.2 29.6 26.5 4647 
 45.5 77.9 18.0 94.6 5316 
1994 55.4 81.0 42.4 92.5 6180 
 44.1 79.9 -21.6 50.0 4801 
1995 41.7 80.6 148.4 83.2 5512 
 46.1 82.3 -17.6 91.2 5272 
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was a 68% chance that the average weight was between 9.0 and 9.8 grams and a 95% 
chance that the average weight was between 8.6 and 10.2 grams. 
a Use the stated probabilities to find a natural conjugate prior distribution for the aver-

age weight of the animals. What is P(μ ≥ 10 grams | m0, σ0)? 
b Find the posterior distribution for the average weight of the animals after having seen 

the data in Problem 10.9. What is P(μ ≥ 10 grams | m*, σ*)? 

10.16 Continuing Problem 10.15: 
a Based on the prior probability distribution for μ, find the predictive probability that 

a single lab animal will weigh more than 11 grams, P(x ≥ 11 grams | m0, σ0). 
b After having seen the data and updating the beliefs about \i, find the predictive prob-

ability that a lab animal weighs more than 11 grams, P(x ≥ 11 grams | m*, σ*)? 

10.17 The plant manager in Problem 10.10 actually began her investigation by assessing her 
subjective probability distribution for Q, the proportion of defective bulbs coming off the 
assembly line. Her assessed distribution was a beta distribution with parameters 
r0 = 1, n0 = 20; that is, her distribution was fβ(q | r0 = 1, n0 = 20). 
a   Plot this prior distribution for Q. 
b What would her posterior distribution for Q be after having observed the data in 

Problem 10.10? 

10.18 A political analyst was interested in the proportion C of individuals who would vote for a 
controversial ballot measure. While he thought that it would be a close call, he was un 
sure of the precise value for C. He assessed a beta distribution for C with parameters 
r0 = 3, n0 = 6. 
a   Plot this prior distribution for C. 
b The analyst is about to ask four individuals about their preferences. What is the prob-

ability that more than two of these individuals will express their support for the ballot 
measure? 

c Having questioned the four individuals, the analyst found that three would indeed 
vote for the ballot measure. Find the analyst's posterior distribution for C. Plot this 
posterior distribution and compare it with the prior distribution plotted in part a. 

d The analyst is now about to survey another 10 people. What is the probability that 
more than five of these people will support the ballot measure in this new poll? 

e Suppose that 6 of the 10 people surveyed said they would vote for the ballot measure. 
The analyst now must write up his results. What is his probability that the ballot mea-
sure will pass? 

10.19 A comptroller was preparing to analyze the distribution of balances in the various ac 
counts receivable for her firm. She knew from studies in previous years that the distribu 
tion would be normal with a standard deviation of $1500, but she was unsure of the mean 
μ. She thought carefully about her uncertainty about this parameter and assessed a nor 
mal distribution for μ with mean m0 = $10,000 and σ0 = $800. 

Over lunch, she discussed this problem with her friend, who also worked in the account-
ing division. Her friend commented that she also was unsure of μ but would have placed 
it somewhat higher. The friend said that "better" estimates for m0 and σ0 would have 
been $12,000 and $750, respectively. 
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a   Find P(μ > $11,000) for both prior distributions. 
b That afternoon, the comptroller randomly chose nine accounts and calculated x = 

$11,003. Find her posterior distribution for /x. Find the posterior distribution of Μ for 
her friend. Calculate P(μ > $11,000) for each case. 

c A week later the analysis had been completed. Of a total of 144 accounts (including the 
nine reported in part b), the average was x─ = $11,254. Find the posterior distribution 
for μ for each of the two prior distributions. Calculate P(Μ > $11,000) for each case. 

d   Discuss your answers to parts a, b, and c. What can you conclude? 

C A S E     S T U D I E S  

TACO  SHELLS 

Martin Ortiz, purchasing manager for the True Taco fast food chain, was contacted 
by a salesperson for a food service company. The salesperson pointed out the high 
breakage rate that was common in the shipment of most taco shells. Martin was 
aware of this fact, and noted that the chain usually experienced a 10% to 15% break-
age rate. The salesperson then explained that his company recently had designed a 
new shipping container that reduced the breakage rate to less than 5%, and he pro-
duced the results of an independent test to support his claim. 

When Martin asked about price, the salesperson said that his company charged 
$25 for a case of 500 taco shells, $1.25 more than True Taco currently was paying. 
But the salesperson claimed that the lower breakage rate more than compensated for 
the higher cost, offering a lower cost per usable taco shell than the current supplier. 
Martin, however, felt that he should try the new product on a limited basis and de-
velop his own evidence. He decided to order a dozen cases and compare the break-
age rate in these 12 cases with the next shipment of 18 cases from the current sup-
plier. For each case received, Martin carefully counted the number of usable shells. 
The results are shown below: 

 

Usable Shells 
New Supplier Current Supplier 

468 467 444 441 450 
474 469 449 434 444 
474 484 443 427 433 
479 470 440 446 441 
482 463 439 452 436 
478 468 448 442 429 
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Questions 

1 Martin Ortiz's problem appears to be which supplier to choose to achieve the low 
est expected cost per usable taco shell. Draw a decision tree of the problem, assum 
ing he orders one case of taco shells. Should you use continuous fans or discrete 
chance nodes to represent the number of usable taco shells in one case? 

2 Develop CDFs for the number of usable shells in one case for each supplier. 
Compare these two CDFs. Which appears to have the highest expected number of 
usable shells? Which one is riskier? 

3 Create discrete approximations of the CDFs found in Question 2. Use these ap 
proximations in your decision tree to determine which supplier should receive the 
contract. 

4 Based on the sample data given, calculate the average number of usable tacos per 
case for each supplier. Use these sample means to calculate the cost per usable taco 
for each supplier. Are your results consistent with your answer to Question 3? 
Discuss the advantages of finding the CDFs as part of the solution to the decision 
problem. 

5 Should Martin Ortiz account for anything else in deciding which supplier should 
receive the contract? 

Source: This case was adapted from W. Mendenhall, J. Reinmuth, and R. Beaver (1989) Statistics for 
Management and Economics, 6th ed. Boston: PWS-KENT. 

FORECASTING   SALES 

Sales documents were scattered all over Tim Hedge's desk. He had been asked to 
look at all of the available information and to try to forecast the number of mi-
crowave ovens that NewWave, Inc., would sell over the upcoming year. He had been 
with the company for only a month and had never worked for a microwave company 
before. In fact, he had never worked for a company that was involved in consumer 
electronics. He had been hired because the boss had been impressed with his ability 
to grasp and analyze a wide variety of different kinds of decision problems. 

Tim had dug up as much information as he could, and one of the things he had 
found was that one of NewWave's salespeople, Al Morley, had kept detailed records 
over the past 14 years of his own annual forecasts of the number of microwaves that 
the company would sell. Over the years, Morley had been fairly accurate. (His sales 
performance had been pretty good, too.) Of course, Morley had been only too happy 
to provide his own forecast of sales for the upcoming year. Tim thought this was fine, 
and reported back to his boss, Bill Maught. 

"Yes," said Bill after he had listened to Tim, "I am aware that Al has been making 
these forecasts over the years. We have never really kept track of his forecasts, though. 
Even though he claims to have been fairly accurate over the years, I can remember one 
or two when he was not very close. For example, I think last year he was off by about 
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6000 units. Of course, if you ask him about those cases, he can explain them in hind-
sight. But there is always the possibility of unusual unforeseen circumstances in any 
given year. Besides, I think he forecasts low. When he does that, his sales quota is set 
lower, and he's more likely to get a bonus. I'd say there's about a 95 percent chance 
that on average he underforecasts by 1000 units or more. In fact, I'd bet even money 
that his average forecast error [sales — forecast] is above 1700 units." 

Tim asked the obvious question. "Would you like me to look into this more? 
Maybe I could get a handle on just how good he is." 

"Fine with me," answered Bill. "Besides, if we really could get a handle on how 
good he is, then his forecast might be a good basis for us to work with each year." 

After that discussion, Tim had visited the accounting department to find out the 
number of units actually sold in each year for which Morley had made a forecast. He 
now had assembled the data and considered the numbers: 
 

Forecast (Units) Actual Safes Error (Sales — Forecast) 

39,000 41,553 2553 

44,000 46,223 2223 
46,000 49,351 3351 
54,000 55,393 1393 
60,000 61,607 1607 
59,000 68,835 9835 
99,000 101,647 2647 
124,000 123,573 -427 
149,000 156,473 7473 
145,000 146,333 1333 
159,000 155,668 -3332 
169,000 167,168 -1832 
171,000 171,477 477 
179,000 185,529 6529 

1 Calculate the average and standard deviation of Morley's forecasting errors. What 
do you think about Bill Maught's opinion of Morley's forecasting? 

2 Plot a CDF based on these data. Based on these data alone, what is the probability 
that Morley's forecast this year will be too low by 1700 units or more? 

3 Assume that Morley's forecast errors follow a normal distribution with standard 
deviation σ = 3000. Translate Bill Maught's probability assessments into a prior 
distribution for Morley's average error, μ. On the basis of these data, what would 
be Maught's posterior distribution? What is his posterior probability that Morley's 
average error is greater than 1700 units? 
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4 Morley has forecast sales of 187,000 units for the coming year. Based on Maught's 
posterior distribution for \x (Morley's average error), what is the probability distri-
bution for sales for this coming year? What is the probability that sales will be 
greater than 190,000 units? Then sketch a CDF for this distribution. 

OVERBOOKING,   PART  II 

Consider again the overbooking issue as discussed in the case study at the end of 
Chapter 9 (pages 345-346). Suppose the Mockingbird Airlines-operations manager 
believes that the no-show rate (N) is approximately 0.04 but is not exactly sure of 
this value. She assesses a probability distribution for N and finds that a beta distribu-
tion with r0 = 1 and n0 = 15 provides a good fit to her subjective beliefs. 

Questions 

1 Suppose that Mockingbird sells 17 reservations on the next flight. On the basis of 
this prior distribution, find the predictive probability that all 17 passengers will 
show up to claim their reservations. Find the probability that 16 will show up, 15, 
14, and so on. 

2 Should Mockingbird have overbooked for the next flight? If so, by how much? If 
not, why not? Support your answer with the necessary calculations. 

3 Now suppose 17 reservations are sold, and 17 passengers show up. Find the opera- 
tions manager's posterior distribution for N. 

4 On the basis of this new information and the manager's posterior distribution, 
should Mockingbird overbook on the next flight? If so, by how much? If not, why 
not? Support your answers with the necessary calculations. [Hint: You may have to 
be careful in calculating the factorial terms. Many calculators and electronic 
spreadsheets will not have sufficient precision to do these calculations very well. 
One trick is to cancel out as many terms in the numerator and denominator as pos 
sible. Another is to do the calculation by alternately multiplying and dividing. For 
example, 5!/6! = (5/6)(4/5)(3/4)(2/3)(l/2).] 

R E F E R E N C E S  

Using data as the basis for probability modeling is a central issue in statistics. Some tech-
niques that we have discussed, such as creating histograms, are basic tools; any basic sta-
tistics textbook will cover these topics. The text by Vatter et al. (1978) contains an excel-
lent discussion of the construction of a data-based CDF. Fitting a theoretical distribution 
using sample statistics such as the mean and standard deviation is also a basic and com-
monly used technique (for example, Olkin, Gleser, and Derman 1980), although it is 
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worth noting that statisticians have many different mathematical techniques for fitting 
distributions to empirical data. 

Virtually every introductory statistics text covers regression analysis at some level. 
More advanced texts include Chatterjee and Price (1977), Draper and Smith (1981), and 
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Monte Carlo Simulation 

he problems we have dealt with so far have allowed us to calculate expected values or to find probability 
distributions fairly easily. In real-world situations, however, many factors may be subject to some 

uncertainty. You can imagine what becomes of a decision tree that involves many 
uncertain events. The only way to prevent it from being a bushy mess is to present a 
skeleton version as in Figure 11.1, in which A and В represent alternative courses of 
action, each affected by many different uncertain quantities. We know that 
consideration of the uncertainties involved is important, but how will we deal with 
this much uncertainty? It is not at all clear that we will be able to use the techniques 
we have learned so far. We could, of course, painstakingly develop discrete 
approximations for all of the continuous distributions and construct the decision tree 
or influence diagram. In many cases this will work out fine. The decision tree, 
however, may become extremely complex. 

Figure 11.1 
Decision tree 

representing a complex 
decision situation with 

many sources of 
uncertainty. 

410 

T 
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Figure 11.2 
Influence diagram cor-
respondingto decision 

tree in Figure 11.1 
Interdependences also 
may exist among the 

uncertainty nodes, thus 
complicating the influ-
ence diagram further. 

FASHIONS 

An influence diagram can help somewhat in this kind of a situation. As a more 
compact representation of a decision problem, an influence diagram can provide a 
clear picture of the way that multiple sources of uncertainty affect the decision. 
Figure 11.2 is an influence diagram that corresponds to the skeleton decision tree in 
Figure 11.1. Careful structuring can lead to a complete influence diagram, especially 
if the probability distributions can be represented adequately by discrete distribu-
tions in the chance nodes. But if there are multiple interrelated uncertain quantities 
represented by complicated continuous distributions, then even an influence-
diagram approach may not be adequate. 

In many decision-analysis problems, the ultimate goal is the calculation of an 
expected value. If a complicated uncertainty model includes several continuous 
distributions with expected values that are easily found, then analyzing the problem 
may be relatively straightforward. But this is not always true. In the following real-
istic example, it may not be obvious how to calculate an expected value. 

Janet Dawes is in a quandary. She is the purchaser for a factory that produces fashion 
clothes. Her current task is to choose a supplier who can furnish fabric for a new line of 
garments. To ensure its supply for the upcoming year, her company must sign a contract 
with one of several textile suppliers. After a few inquiries, she has narrowed the choice 
to two specific suppliers. The first will supply as much fabric as she needs during the up-
coming year for $2.00 per yard and will guarantee supply through the year at this price. 

The second supplier has a price schedule that depends on how much Janet orders 
over the next year. The first 20,000 yards will cost $2.10 per yard. The next 10,000 
yards will cost $1.90 per yard. After this, the price drops to $1.70 per yard for the next 
10,000 yards, and then $1.50 per yard for anything more than 40,000 yards. 

After carefully considering the uncertainty about sales for the new garment line, 
Janet decides to model her uncertainty about the amount of fabric required over the 
next year as a normal distribution with mean 25,000 yards and standard deviation 
5000 yards. 
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If the new line of garments is successful, Janet Dawes can save considerable 
money by going with the second supplier. On the other hand, if she signs the contract 
with Supplier 2 and the new line of garments does not prove successful, the cost of 
materials will have been higher than it might have been with Supplier 1, thus adding 
to the cost of an already expensive experiment. What should she do? Her decision 
tree is shown in Figure 11.3. 

In Janet Dawes's problem, it is relatively easy to figure out the expected cost for 
Supplier 1: It is $2.00 per yard times 25,000 yards, or $50,000. But it is not so easy 
to figure out the expected cost for Supplier 2. To do this, we must know (a) the prob-
ability that X is within each interval and (b) the expected value of X for each interval. 
Part a is no problem; we could figure out the probabilities using the normal distribu-
tion as described in Chapter 9. It is not so clear, however, how to find the conditional 
expected values for X within each interval. 

One approach to dealing with complicated uncertainty models such as that dis-
cussed above is through computer simulation. Think of the entire decision situation 
as an uncertain event, and "play the game" represented by the decision tree many 
times. In Janet Dawes's problem, we could imagine the computer making a random 
drawing from a normal distribution to find the amount of fabric required. Based on 
this specific amount, the computer then would calculate the total cost using the ex-
pressions given in the decision tree. After performing this procedure many times, it 
would be possible to draw a histogram or risk profile of the cost figures and thus to 
calculate the average cost. On the basis of these results, and comparing them with 
the distribution of costs for Supplier 1 (normal with mean $50,000 and standard de-
viation $10,000), a choice can be made. 

For another example, imagine using a computer simulation to evaluate Alternative 
A in Figure 11.1. We would let the computer "flip a coin" to find the market size, then 

 
Figure 11.3 Decision tree for the fabric buyer. The expressions at the ends of the branches 
for Supplier 2 include the discounts. For example, if X is between 30,000 and 40,000 yards, 
the total cost is $42,000 for the first 20,000 yards, plus $19,000 for the next 10,000 yards, 
plus $1.70 per yard over 30,000. 
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flip another to find the price, another to find the growth rate, and so on, until all uncer-
tain quantities are chosen, each according to its own probability distribution. Of 
course, having the computer flip a coin means having it choose randomly the market 
size, price, growth rate, and so on. Once all of the necessary values had been deter-
mined in this random fashion, the computer then could calculate the net return. We 
then would repeat the entire procedure many times and track the results. At the end, it 
would be possible to graph the distribution of net returns and to examine descriptive 
statistics such as the mean, standard deviation, and probability of a negative return. 

The term Monte Carlo simulation often is used to refer to this process because, 
as in gambling, the eventual results depend on random selections of values. The 
basic idea is straightforward: If the computer "plays the game" long enough, we will 
have a very good idea of the distribution of the possible results. Although the con-
cept is easy, its implementation requires attention to many details. 

We can use Monte Carlo simulation to cope with situations in which uncertainty 
abounds; the objective is to represent the uncertainty surrounding the possible payoffs 
for the different alternatives. How does simulation fit into our perspective of building 
models to represent decision situations? When we put together all probability distri-
butions for all uncertain quantities, we are building a simulation model that we be-
lieve captures the relevant aspects of the uncertainty in the problem. After running the 
simulation many times, we have an approximation of the probability distribution for 
the payoffs from the different alternatives. The more simulations we can do, the more 
accurate that approximation. Finally, the results, both risk profiles and average out-
comes, can be used in the decision analysis to make an appropriate decision. 

For the main example in this chapter, we will continue the soft pretzel problem 
from Chapter 9. You are thinking about manufacturing and marketing soft pretzels 
using a new recipe, but you face many sources of uncertainty. In the process of analyz-
ing the decision, you might ask whether choosing to go into the soft pretzel business 
would have a positive expected value. By using the Monte Carlo simulation, we can ex-
amine the probability distribution of returns that would be associated with your pretzel 
business. 

Let us suppose that the market size is unknown, but your subjective beliefs about 
the market's size can be represented as a normal random variable with mean 100,000 
pretzels and standard deviation 10,000. The proportion (P) of the market that you 
will capture is unknown and, strictly speaking, is a continuous random variable that 
could range anywhere between 0 and 100%. You have decided, however, that your 
beliefs can be modeled adequately with the following discrete distribution: 

 

Proportion (%) Probability 

16 0.15 

19 035 
25 0.35 
28 0.15 
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Your pretzel's selling price is known to be $0.50. Variable costs are a uniform ran-
dom variable between $0.08 and $0.12 per pretzel. Fixed costs also are random, with 
a distribution we will describe later. 

Putting all of the pieces together to calculate net contribution yields 
Net Contribution = (Size x P/100) x (Price - Variable Cost) - Fixed Cost 

From this equation you can see the overall strategy; for each iteration, values for 
Size, P, Variable Cost, and Fixed Cost will be chosen from their respective distribu-
tions and then combined to get a figure for Net Contribution. Doing so for many it-
erations will yield a distribution for Net Contribution. 

Using Uniform Random Numbers 
as Building Blocks 

If we are going to construct random numbers from various different probability dis-
tributions, we will need a place to start. The starting point is a random variable that 
is uniformly distributed between 0 and 1. That is, all values between 0 and 1 are 
possible and equally likely. (See Problems 9.27-9.29.) Let x denote the number 
generated from such a distribution, and suppose we require a random number y* 
from the distribution (CDF) F(y) = P(F ≤ y). An example CDF is plotted in Figure 
11.4. Now generate a uniform x* between 0 and 1. Locate that x* on the vertical 
axis. Read across from x* to the CDF and down to the horizontal axis. The number 
on the horizontal is the required y*. 

This approach is straightforward and intuitive; we first generate a uniform ran-
dom number and then work backward through the CDF to get y. In principle, we can 
do this for any distribution. Unfortunately, it is not possible in some cases because of 
the mathematical form of F(y). In these cases, other methods can be used. 

Figure 11.4 
Generating a random 

number y* on the basis 
of a uniform random 

number x*. 
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General Uniform Distributions 

Suppose that we want to generate a uniform random number between 1 and 2 instead 
of between 0 and 1. The solution would be simply to calculate 

y  =  x  +  l  

Then y would be uniformly distributed between 1 and 2. If we wanted a random 
number between 0 and 2, we simply multiply x by 2. This would "stretch out" the 
uniform distribution so that it would cover the interval from 0 to 2. 

In general, suppose you want a uniform random number between a and b (a < b). 
The procedure is to generate x, then move it to the right place and stretch out the dis-
tribution to cover the desired interval. The formula is 

y = a + x(b — a) 

Multiplying x by (b — a) stretches out the distribution, and adding a moves the distri-
bution to the right place. If x turns out to be 0, then y = a, and if x is 1, then y = b. 

In our soft pretzel example, variable cost is uniformly distributed between $0.08 
and $0.12. Thus, the calculation is 

Variable Cost = 0.08 + x(0.12 ─ 0.08) 

This procedure for generating general uniform random numbers, which we de-
veloped intuitively, is fully compatible with the general simulation approach de-
scribed above. The CDF for a uniform distribution between a and b is a straight line 
as shown in Figure 11.5. The line has the equation F(y) = (y — a)/(b — a). (Can 
you verify this?) To work backward through this CDF, we set the uniform x* equal 
to F(y*) = (y* — a)/(b — a) and solve for y*. That is, we need to know what y* 

 

Figure 11.5 
Generating a uniform 

y* between a and b. 
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corresponds to our uniform x* between 0 and 1. Solving for y*, we obtain y* = a 
+ x*(b - a). 

Exponential Distributions 

Another continuous random variable that is easy to simulate using our general ap-
proach is an exponential random variable T. Suppose you want to generate a random 
number that is exponentially distributed with rate m. The CDF for this distribution is 
F(t) = 1 — e─tm. Thus, we generate a u niform x* and set x* = F(t*) = 1 — e─tm. 
Solving for t* gives 

 

Figure 11.6 shows the CDF and the graphical equivalent of solving for t*. 
The formula derived above can be programmed easily into an electronic spread-

sheet. But we can do a little bit better. If JC* is from a uniform distribution between 0 
and 1, then so is 1 — x*. Thus, we can simplify the procedure by calculating 

 

The random number t' also has an exponential distribution with rate m. The reason 
for the simplification is to avoid unnecessary calculations that would slow down the 
computer simulation. 

Figure 11.6 
Generating an 

exponential random 
number. 
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Discrete Distributions 

Discrete distributions also are easy to handle in a way that is similar to using the 
CDF. Suppose, for example, that we want to simulate flips of a fair coin. We want the 
probability of a head to be 0.50. First we generate x. Then if x ≤ 0.50, we will say 
that we have a head, and if x > 0.50, we will have a tail. Because x is from a uni-
form distribution, it has a 50% chance of being between 0 and 0.50 and a 50% 
chance of being between 0.50 and 1. 

The basic strategy is to split the interval from 0 to 1 into smaller intervals corre-
sponding to the outcomes of the discrete event. The outcome of the event then corre-
sponds to the interval into which x falls when it is generated. The probabilities are 
controlled by the widths of the intervals for x; smaller intervals have smaller proba-
bilities, and larger intervals have larger probabilities. 

In our soft pretzel example, we need to generate the market proportion captured 
(P) using discrete probabilities. The four intervals we need are as follows: 

• If x ≤ 0.15,then P = 16%. 
• If 0.15 < x ≤ 0.50, then P = 19%. 
• If 0.50 < x ≤ 0.85, then P = 25%. 
• If 0.85 < x, then P = 28%. 

Generating x, determining the interval in which it falls, and choosing P accordingly 
will generate discrete values of P with the appropriate probabilities. 

Other Distributions 

As you know, there are many other distributions that one might wish to use in a simu-
lation. The procedure we have described above can be used for many of these distribu-
tions, but there are other approaches as well. For example, a normal random variable 
can be created by adding up a number of independent uniform random variables. 
Another approach to generating normal random variables uses a pair of independent 
uniforms and, with complex transformations, produces a pair of independent normals. 
For more information on simulating random variables, see Law and Kelton (1991). 

Computer Software for Simulation 

Monte Carlo simulation has long been a useful tool for management scientists, and spe-
cialized programs for performing complex simulations have been available for some 
time. The recent development of simulation software that runs in conjunction with elec-
tronic spreadsheets, though, has put powerful simulation tools in the hands of anyone 
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with a personal computer. Here we describe two such programs, Crystal Ball and 
@RISK, and show how to analyze the soft pretzel problem using each of them. 

Both Crystal Ball and @RISK run as "add-ins" in Lotus 1-2-3 and Microsoft 
Excel spreadsheets, which make them exceptionally easy to use. The illustrations in 
this chapter use Excel as the underlying spreadsheet program, and Figure 11.7 shows 
the Excel spreadsheet for the soft pretzel problem. To start, typical values have been 
placed in the cells for Market Size, Market Proportion, Variable Cost, and Fixed 
Cost. Recall that Price is fixed at $0.50 per pretzel. 

With the spreadsheet set up, we are ready to put the simulation software to work. 
In both Crystal Ball and @RISK, performing a simulation requires four steps: defin-
ing the input distributions, identifying the outputs for which we want distributions, 
running the simulation, and analyzing the results. 

CRYSTAL BALL 

To assign probability distributions to inputs using Crystal Ball, the analyst selects a 
cell and chooses a particular distribution to assign. Crystal Ball provides 16 differ-
ent families of distributions, including a do-it-yourself custom distribution that can 
be used to create a distribution of virtually any shape. In Figure 11.7, a normal 
distribution with mean 100,000 and standard deviation 10,000 has been assigned to 
the Market Size Cell (B5), and a uniform distribution from $0.08 to $0.12 has been 
assigned to Variable Cost in cell B8. A discrete distribution, using the custom distri-
bution option with the values and probabilities on the right side of the spreadsheet, 
has been assigned to cell B6 for Market Proportion. 

For Fixed Cost, we will use a distribution called a triangular distribution (see 
Problem 9.30). A triangular distribution is defined by three points: the minimum, the 
maximum, and the most likely. Figure 11.8 shows the window from Crystal Ball in 

Figure 11.7 
The soft pretzel 

spreadsheet. 
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which a triangular distribution is being defined for Fixed Cost. We have indicated 
that Fixed Cost could be as low as $6500, as high as $9000, but the most likely value 
is $8000. 

With all four probability distributions assigned, the next step is to indicate that 
the output (called a forecast by Crystal Ball) desired is Net Contribution. At this 
point, the simulation is ready to run. Figure 11.9 shows the histogram of Net 

Figure 11.8 
Defining a triangular 

distribution in Crystal 
Ball 

 

 

 

 

 

 

 

 

 

 

Figure 11.9 
Crystal Ball's results 
from 1000 iterations 

of the soft pretzel 
model. 
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Contribution that resulted from 1000 iterations of the simulation, indicating a 36% 
chance that the soft pretzel venture will end up losing money. The results can also be 
viewed as a CDF, and a full complement of statistics about the distribution are avail-
able, including the ability to find the probability that Net Contribution falls into any 
specified interval. 

@ RISK 

Assigning probability distributions to input cells in @RISK is no different than 
building a standard spreadsheet formula in Excel; @RISK's special random-
number generators are entered into cell formulas just like any other Excel function. 
@RISK has many built-in functions that generate random variables according to 
specified distributions. For example, Figure 11.10 shows the assignment of the dis-
crete distribution for Market Proportion. 

After entering the distribution functions and indicating that Net Contribution is 
the output that we wish to track, we perform the simulation. A useful feature of 
@RISK is the ability to monitor the rate at which the output distribution is changing 

Figure 11.10 
Assigning a discrete 
distribution with an 

@ RISK function. 
The formula indicates 

that the values and 
probabilities are to be 

found in cells E4 
through F7. 
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and to stop the simulation when the changes are small enough (according to user-
specified parameters). After the simulation is finished, @RISK generates graphs 
similar to those of Crystal Ball. Figure 11.11, for example, shows the CDF for Net 
Contribution after 1000 iterations. As with Crystal Ball, the program produces a 
complete array of statistics on the output distribution. 

The figures and discussion above show the basic process of running simulations in 
Crystal Ball and @RISK. Of course, if you try this problem on your own computer with 
one of these programs (and you should!), you will probably obtain slightly different re-
sults; your computer will probably choose different random values for the variables. 

How do we put the results from a Monte Carlo Simulation to work? If we were 
simply interested in comparing the expected values of two projects, we might com-
pare the averages of the simulated results. The point of the simulation, however, has 
been to obtain an idea of the uncertainty that surrounds the ultimate payoff. Thus, the 
resulting histograms and CDFs, which are no more than risk profiles, can be used as 
discussed in Chapter 4. For example, visually comparing the graphs associated with 
two different risky alternatives can reveal the extent to which one project is riskier 
than another, even though they may have similar expected values. You may be able to 
decide between the two projects simply on the basis of comparing the graphs or by 
considering P(Profit < 0), say. Finally, a discrete approximation of the distribution 
could be placed into a decision tree for a rough approximation of the distribution. This 
strategy might be particularly appropriate if a simulation has been done as an auxil-
iary analysis to obtain a probability model for part of a complicated decision model. 

 

Figure 11.11 
@RISK's results from 
1000 iterations of the 

soft pretzel model. 
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Simulation and Sensitivity Analysis 

Imagine this scenario. You have constructed your simulation model, and as you 
show it to a colleague, the assumptions that you have made are called into question. 
Suppose your colleague wonders what the effect would be if your normal distribu-
tion for Market Size had a mean of 120,000 instead of 100,000. Or what about charg-
ing a price other than $0.50? Of course, it is a relatively simple matter to make a 
change in the spreadsheet or the assumptions and rerun the simulation. But both 
@RISK and Crystal Ball have some built-in sensitivity-analysis features. 

Let us take up the issue of sensitivity to price. It would be possible, of course, to 
charge a different price, and reasonable prices might range from $0.30 up to $0.70. 
Of course, charging a h igher price is better, everything else being equal. 
Unfortunately, everything else will not be equal; you can anticipate less sales as your 
price increases. In our model, this means that the Market Proportion will decrease. 
The question is whether there is a Price-Market Proportion combination that is best. 

We need a simple way to model the dependence between Price and Market 
Proportion. In Figure 11.12, the original spreadsheet has been modified to show how 
the Market Proportion changes (up or down) with changes in Price. You can see that 
each $0.10 change in price implies a five-point change in the Market Proportion. Net 
Contribution is calculated for each of the Price scenarios in cells D14-D18. You can 
see that $0.50 appears to be the best price. But this is just for the values in the spread-
sheet. What happens when we run the simulation? 

Figure 11.12 
Spreadsheet for price 

sensitivity analysis. 
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Figure 11.13 
Trend chart showing 

changes in risk profile 
as price changes. 

Figure 11.13 is a Trend Chart from Crystal Ball. (@RISK can produce a similar 
graph.) It shows how the risk profiles change as price changes. You can see clearly 
the change in the location of the distribution as the price increases. We begin with a 
distribution showing mostly losses when Price is $0.30; this price is simply too low. 
The median profit increases but then decreases with the higher prices as Market 
Proportion decreases. In addition, the distribution becomes broader as price in-
creases, the reason being that the higher price amplifies the uncertainties in Market 
Size and Market Proportion. It appears that a price around $0.50 is the best choice, 
based on this model. 

Distributions on Parameters (Optional) 

Suppose in the soft pretzel problem that you cannot settle on a single value for the 
mean of the distribution for the market size. Your uncertainty about this parameter 
can also be modeled with a probability distribution. This is similar to what we did in 
Chapter 10 in our discussion of natural conjugate prior distributions for parameters, 
but here there is no need to restrict ourselves to specific kinds of distributions. In a 
sense we will be placing a distribution on another distribution; such models are 
sometimes called hierarchical models, and the uncertainty about the distribution pa-
rameter is sometimes called second-order uncertainty. 

 



424     CHAPTER 11  MONTE CARLO SIMULATION 
 

Figure 11.14 
Incorporating uncer-
tainty about the mean 
of the distribution for 

market size. 

After carefully considering your beliefs about the mean of the market-size distri-
bution, let us suppose that you decide to model your uncertainty as a uniform ran-
dom variable between 90,000 and 110,000 pretzels. How would this change the 
model? Making the modification is straightforward; this uncertain mean simply be-
comes a new random variable in the simulation. Figure 11.14 illustrates this with 
@RISK, showing that the formula for Market Size in cell B4 now refers to cell B3, 
which in turn contains an @RISK function to generate a uniform random number 
between 90,000 and 110,000. On each iteration @RISK generates a new mean for 
the market-size distribution in cell B3 and then a specific market size from that dis-
tribution in cell B4. 

Simulation, Decision Trees, and Influence Diagrams 

Clearly, Monte Carlo simulation provides another modeling tool for decision analy-
sis. Indeed, simulation is an important tool, and probably will become more widely 
used because of the ease with which small simulations can be performed in a spread-
sheet environment. Because of this, it is worthwhile to spend a bit of time thinking 
about how simulation relates to the other modeling tools in decision analysis. 

Simulation is an excellent tool for developing a model of uncertainty. We have 
used it here to develop risk profiles for decision alternatives; with risk profiles for 
different alternatives in hand, a decision maker would have some basis in choosing 

 

RiskNormal(B3.1000
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one alternative over the other. As mentioned above, however, simulation also could 
be used as a subsidiary modeling tool to construct a probability model for a particu-
larly messy part of a problem. For example, if a policy maker is attempting to evalu-
ate alternatives regarding chemical spills, he or she may ask an analyst to develop a 
probability model for accidents that lead to spills. Such a model can be developed in 
the context of a simulation, and once an appropriate probability distribution is con-
structed, it can be used within a larger analysis. 

The ease with which simulation can be performed, along with the flexibility of 
the simulation environment, makes it an attractive analytical tool. But this ease of 
use and flexibility does not mean that the decision maker can get away with less ef-
fort. In fact, subtle issues in simulation require careful thought. For example, we typ-
ically build the simulation in such a way that many of the random numbers are inde-
pendent draws from their respective distributions. And the analyst may even model 
uncertainty about parameters through the specification of distributions on those pa-
rameters, but still have the parameters independent from one another. But would 
they be? If the analyst has been optimistic in assessing one parameter, perhaps other 
estimates have been subject to the same optimism. 

The problem of modeling dependence among random variables in a simulation is 
not trivial and can have a substantial impact on the output distributions. Both @RISK 
and Crystal Ball have ways to incorporate dependence into their models. 

A somewhat less subtle issue in simulation modeling is that an analyst may be 
tempted to include all possible sources of uncertainty in the model. This is relatively 
easy to do, after all, and somewhat more effort is required to do the sensitivity analy-
sis to determine whether an uncertain quantity really matters in the outcome of the 
model. Hence, there may be a tendency with simulation not to take certain analysis 
steps that can lead to real insights as to what matters in a model, what issues should 
be considered more fully, or what uncertainties may demand more attention, in either 
more careful assessment or information acquisition. 

For example, recall the Eagle Airlines case that we studied in detail in Chapter 5. 
Recall that Dick Carothers was trying to decide whether to purchase a new airplane 
for his business, and the decision was complicated by uncertainty about many differ-
ent variables. In Chapter 5 we showed via sensitivity analysis that the variables 
which had the greatest impact on Profit were Operating Cost, Hours Flown, 
Capacity, and Charter Price. A simple simulation approach might place triangular 
distributions on all of the variables in the problem (see Table 5.1), with the base 
value being the most likely and the low and high values determining the upper and 
lower bounds of the distributions. Running this simulation with all variables uncer-
tain yields results that are not very different from a simulation in which only the four 
most sensitive variables are specified as uncertain with the same triangular distribu-
tion. Thus, it is clear that these four variables drive the analysis; doing the sensitivity 
analysis first generates important insights about which variables are the most impor-
tant in this problem. 

In short, constructing a Monte Carlo simulation model requires the same careful 
thought that is required in any decision modeling. Simulation does have its own ad-
vantages (flexibility and ease of use) as well as disadvantages (rampant independence 
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assumptions and a tendency to solve problems with brute force) and hence, to some 
extent, leads to some special problems. But the same is true of simulation that is true 
of decision modeling in general. The decision maker and the decision analyst still are 
required to think clearly about the problem at hand and to be sure that the decision 
model addresses the important issues appropriately. Clear thinking is the key, not 
fancy quantitative modeling. The objective with any decision-analysis tool is to arrive 
at a requisite model of the decision, one that appropriately addresses all essential ele-
ments of the decision problem. It is through the process of constructing a requisite 
model, which includes careful thought about the issues, that the decision maker will 
gain insight and understanding about the problem. 

SUMMARY As we have seen in this chapter, Monte Carlo simulation is another approach to deal-
ing with uncertainty in a decision situation. The basic approach is to construct a 
model that captures all of the relevant aspects of the uncertainty, and then to translate 
this model into a form that a computer can use; we focused on the development of 
such models within the environment of electronic spreadsheets and the use of 
@RISK and Crystal Ball to perform the simulation and analyze the results. We dis-
cussed how sensitivity analysis and simulation can be used together, the possibility 
of including second-order uncertainty for distribution parameters, and the role of 
simulation in creating a requisite decision-analysis model. 

E X E R C I S E S  

11.1 Explain in your own words how Monte Carlo simulation may be useful to a decision 
maker. 

11.2 Explain how the simulation process works to produce results that are helpful to a deci 
sion maker. 

11.3 A simulation model has produced the three cumulative risk profiles displayed in Figure 
11.15. What advice would you give a decision maker on the basis of this output? 

11.4 A friend of yours has just learned about Monte Carlo simulation methods and has asked 
you to do a simulation of a complicated decision problem to help her make a choice. She 
would be happy to have you solve the problem and then recommend what action she 
should take. Explain why she needs to be involved in the simulation modeling process 
and what kind of information you need from her. 

Q U E S T I O N S    AND   P R O B L E M S  

11.5    Find the expected cost for Supplier 2 in Janet Dawes's purchasing problem as dia-
grammed in Figure 11.3. 
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Figure 11.15 
Three cumulative risk 

profiles from a 
simulation. 

11.6  Simulation is one way to find an expected value for Janet Dawes's problem as dia- 
grammed in Figure 11.3. How could you construct a discrete approximation that would at 
least provide an approximate expected cost for Supplier 2? 

11.7 What other real-world situations involve step functions like the one that Janet Dawes 
faces? 

11.8 An investor has purchased a call option for 100 shares of Alligator stock and intends to 
hold it until the day the option expires, at which time he will sell it if he can. The op 
tion is worth nothing on its expiration date unless the price of Alligator stock is more 
than $45 per share. For values of the stock greater than $45, the option will be worth 
100(Share Price — $45). The reasoning behind this value is that the call option permits 
the option's owner to purchase 100 shares at $45 per share. Thus, if the share price is 
greater than $45, then the option owner could buy the shares and immediately resell 
them at the market price, pocketing the difference. Of course, the investor is uncertain 
about Alligator's eventual share price on the exercise date, but his uncertainty can be 
modeled using a normal distribution having mean $45.50 and standard deviation 
$5.00. Construct a simulation to estimate the expected value of the option on the exer 
cise date. 

11.9 Your boss has asked you to work up a simulation model to examine the uncertainty re- 
garding the success or failure of five different investment projects. He provides probabil- 
ities for the success of each project individually: p1 = 0.50, p2 = 0.35, p3 = 0.65, 
p4 = 0.58, p5 = 0.45. Because the projects are run by different people in different seg 
ments of the investment market, you both agree that it is reasonable to believe that, given 
these probabilities, the outcomes of the projects are independent. He points out, however, 
that he really is not fully confident in these probabilities and that he could be off by as 
much as 0.05 in either direction on any given probability. 
a   How can you incorporate his uncertainty about the probabilities into your simulation? 
b Now suppose he says that if he is optimistic about the success of one project, he is 

likely to be optimistic about the others as well. For your simulation, this means that if 
one of the probabilities increases, the others also are likely to increase. How might 
you incorporate this information into your simulation? 
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11.10 A decision maker is working on a problem that requires her to study the uncertainty sur 
rounding the payoff of an investment. There are three possible levels of payoff — $1000, 
$5000, and $10,000. As a rough approximation, the decision maker believes that each 
possible payoff is equally likely. But she is not fully comfortable with the assessment that 
each probability is exactly 1/3, and so would like to conduct a sensitivity analysis. In 
fact, 
she believes that each probability could range from 0 to 1/2. 
a Show how a Monte Carlo simulation could facilitate a sensitivity analysis of the 

probabilities of the payoffs. 
b Suppose the decision maker is willing to say that each of the three probabilities could 

be chosen from a uniform distribution between 0 and 1. Could you incorporate this 
information into your simulation? If so, how? If not, explain why not, or what addi-
tional information you would need. 

11.11 Perform a simulation of the Eagle Airlines problem: 
a Treat all of the variables in Table 5.1 as uncertain, and create triangular distributions 

for each of them in @RISK or Crystal Ball. For each variable, use the base value as 
the most likely value, and the high and low values as the upper and lower bounds of 
the triangular distribution. Run the simulation to obtain a risk profile for Profit. What 
are the 0.05, 0.25, 0.50, 0.75, and 0.95 fractiles of this risk profile? 

b Now eliminate the uncertainty on all variables except Operating Cost, Hours Flown, 
Capacity, and Charter Price, leaving all of the other variables at their base values. 
Now rerun the simulation. Obtain the risk profile for Profit, being sure to note the 
0.05, 0.25, 0.50, 0.75, and 0.95 fractiles. Compare the risk profile obtained from this 
restricted model with the results from part a. 

c In Chapter 5, we indicated that Capacity and Hours Flown were probabilistically re-
lated. How could you model this in your simulation? If you are using @RISK or 
Crystal Ball, specify positive correlation (about 0.7) for these two variables, rerun the 
model, and compare the results with those from parts a and b. 

C A S E     S T U D I E S  

CHOOSING  A  MANUFACTURING   PROCESS 

AJS, Ltd., is a manufacturing company that performs contract work for a wide vari-
ety of firms. It primarily manufactures and assembles metal items, and so most of its 
equipment is designed for precision machining tasks. The executives of AJS cur-
rently are trying to decide between two processes for manufacturing a product. Their 
main criterion for measuring the value of a manufacturing process is net present 
value (NPV). The contractor will pay AJS $8 per unit. AJS is using a three-year hori-
zon for its evaluation (the current year and the next two years). 
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Process 1 

Under the first process, AJS's current machinery is used to make the product. The 
following inputs are used: 

Demand Demand for each of the three years is unknown. These three quantities 
are modeled as discrete random variables denoted D0, D1, and D2 with the following 
probability distributions: 

 

D0 P(D0)  D1 P(D1)  D2 P(D2) 

11K 0.2  8K 0.2  4K 0.1 

16K 0.6  19K 0.4  21K 0.5 
21K 0.2  27K 0.4  37K 0.4 

Variable Cost Variable cost per unit changes each year, depending on the costs for 
materials and labor. Let V0, V1, and V2 represent the three variable costs. The uncer-
tainty surrounding each variable is represented by a normal distribution with mean 
$4 and standard deviation $0.40. 

Machine Failure Each year, AJS's machines fail occasionally, but obviously it is 
impossible to predict when or how many failures will occur during the year. Each 
time a machine fails, it costs the firm $8000. Let Z0, Z1, and Z2 represent the number 
of machine failures in each of the three years, and assume that each is a Poisson ran-
dom variable with parameter m = 4. 

Fixed Cost   Each year a fixed cost of $12,000 is incurred. 

Process 2 

The second process involves scrapping the current equipment (it has no salvage 
value) and purchasing new equipment to make the product at a cost of $60,000. 
Assume that the firm pays cash for the new machine, and ignore tax effects. 

Demand Because of the new machine, the final product is slightly altered and im-
proved, and consequently the demands are likely to be higher than before, although 
more uncertain. The new demand distributions are: 
 

D0 P(D0)  D1 P(D1)  D2 P(D2) 

14K 0.3  12K 0.36  9K 0.4 

19K 0.4  23K 0.36  26K 0.1 
24K 0.3  31K 0.28  42K 0.5 
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Variable Cost Variable cost still changes each year, but this time V0, V1, and V2 are 
each judged to be normal with mean $3.50 and standard deviation $1.00. 

Machine Failures Equipment failures are less likely with the new equipment, oc-
curring each year according to a Poisson distribution with parameter m = 3. They 
also tend to be less serious, costing only $6000. 

Fixed Cost   The fixed cost of $ 12,000 is unchanged. 

Questions 

1 Draw an influence diagram for this decision problem. Do you think it would be fea 
sible to solve this problem with an influence diagram? Explain. 

2 Write out the formula for the NPV for both processes described above. Use the 
variable names as specified, and assume a 10% interest rate. 

3 For Process 1, construct a model and perform 1000 simulation trials. Estimate the 
mean and standard deviation of NPV for this process. Print a histogram of the re 
sults, and estimate the probability of a negative NPV occurring. 

4 Repeat Question 3 for Process 2. 

5 Compare the distribution of NPV for each of the two alternatives. Which process 
would be better for AJS? Why? 

Source: This case was provided by Tom Mc Williams. 

ORGANIC  FARMING 

Jane Keller surveyed the freshly plowed field on her farm. She and her husband, 
Tim, had taken over the farm from her parents 10 years ago. Since that time, she and 
Tim had worked hard to improve the profitability of the farm. Even though the work 
was hard, the lifestyle was rewarding. And she found that common sense combined 
with basics from some business courses had helped her in making difficult decisions. 

She faced one such decision now. Over the years, she had noticed more and 
more of her neighbors adopting a variety of organic farming methods. Many of the 
techniques were easy to adopt and made good sense. For example, companion 
planting and promoting a balanced ecology on the farm helped to create an envi-
ronment in which plants were less susceptible to insect and disease damage. Last 
year she had grown some produce using only organic methods and had sold it lo-
cally. She learned a lot on that small-scale project, and in particular she learned that 
she did not know much about natural methods for preventing specific diseases and 
controlling insects. 

Still, Jane was intrigued by the possibility of organic farming. Growers who 
could label their produce as "Organically Grown" commanded premium prices from 
specialty stores and at the local farmer's market. The Organic Farmers Association 
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(OFA) provided the necessary certification. Meeting OFA's requirements involved 
(1) documenting the use of the land over a period of years to ensure little or no con-
tamination from nonorganic pesticides, herbicides, and fertilizers; and (2) adhering 
to the farming methods that OFA deemed "organic." 

This year Tim wanted to expand the operation by planting in a new field that had 
not been farmed in 20 years. Because the new field would be some distance from the 
other planted areas, it would be an ideal location to grow organic produce. There 
would be no problem getting the new field certified by the OFA. When she made this 
suggestion to Tim, he agreed with the idea in principle but wanted to think seriously 
about the project. They had several questions to answer. Would they really be able to 
make money from such a project? What kinds of prices could they anticipate for or-
ganic produce? What risks were involved? 

Jane agreed to do some research. After visiting with her neighbors and spending 
a lot of time at the local organic gardening store, she was beginning to develop a 
plan. Although she could plant a large variety of different vegetables and herbs, most 
of the area would be devoted to tomatoes, green beans, and potatoes. She and Tim 
had plenty of experience with these crops, and she felt most comfortable experi-
menting with them. They would plant enough area so that, if the weather cooperated, 
they could expect to harvest 250 bushels of each crop. She was very uncertain about 
the exact yield, however, because of the variety of possible diseases and insects that 
could cause trouble and because of her own lack of experience with organic meth-
ods. For the tomatoes, she judged that there was a 68% chance that the yield would 
be between 235 and 265 bushels, and she was "almost sure" (95% chance) that the 
yield would be between 220 and 280 bushels. The green beans and potatoes she 
judged were somewhat less sensitive; for both of these crops, she estimated a 68% 
chance that the yield would fall between 242 and 258 bushels, and she was 95% sure 
that the yield would fall between 234 and 266 bushels. 

The uncertain yield was complicated further by the effects of weather. Jane knew 
that the weather could be either too dry or too rainy for the crops, and that this would 
reduce her yield somewhat. At the same time, adverse weather would affect all 
growers in her region, leading to a smaller supply of produce and hence higher 
prices. The worst possible scenario for the Kellers would be for the weather to be 
perfect, resulting in a bumper crop around the region, while the Keller's venture into 
organics resulted in a low yield because of insects, disease, and their own inexperi-
ence. Prices would be low and they would have relatively little to sell. 

Jane realized that she was facing a difficult judgmental task; ideally she would 
have to assess her uncertainty for the weather, the yield for each crop under different 
weather conditions, and the possible prices under the various conditions. To simplify 
matters, she decided to think about two scenarios. Under the first scenario, the 
weather would not affect the yield adversely. Under these conditions, she judged that 
the bushel price of tomatoes could range from $5.00 to $5.80. For potatoes, the range 
was $4.15 to $4.60; and for green beans, between $5.90 and $6.80. In each case, she 
figured that all prices in the specified range were equally likely. 

Under the second scenario, the weather would have adverse effects on the re-
gion's crops. Jane estimated a probability of 0.15 for adverse weather. Because 
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tomatoes were the most sensitive in this regard, the crop size would be reduced by 
some 20%. With smaller yields in the region, prices would be higher, ranging from 
$5.50 to $6.00 per bushel. Potatoes were the least sensitive, with only a 7% crop-
size reduction and prices between $4.50 and $4.80. Green beans were not terribly 
sensitive to the weather in terms of quantity, so Jane estimated a 4% reduction. 
Under adverse weather conditions, however, the quality of the beans could be 
highly variable, and so she estimated their price range under this scenario to be be-
tween $5.50 and $7.00. Again, she judged that all prices in the specified ranges 
were equally likely. 

Costs also had to be factored in. Organic methods were more labor-intensive 
than conventional methods, but because Jane and Tim did the work themselves, this 
did not really affect profits. Even so, Jane estimated that costs for the field would be 
approximately $800. With the uncertainty about the methods, however, she decided 
to represent costs with a normal distribution having mean $800 and standard devia-
tion $50. 

When she discussed this with Tim, he asked what this meant in terms of a "bot-
tom line." What could they expect their gross sales to be? Could she give him some 
idea of how uncertain their profit would be? If they went with conventional farming 
methods, they could expect profits to be approximately $2700, with a standard devi-
ation of some $100. If Jane could develop a probability distribution for profits under 
organic methods, perhaps the two distributions could be compared. 

Tim added another wrinkle. He showed her an advertisement and a related story 
in the newspaper about a newly developed, genetically engineered bacterial pesti-
cide named VegeTech. The ad claimed (and the story confirmed) that tests with 
VegeTech in their own geographical area had resulted in an average 10% increase in 
yield for all kinds of produce. The cost for this increase was approximately 20 cents 
per bushel. Given anticipated produce prices, this would appear to be cost-effective. 
The complication was that, while VegeTech had been fully approved by the appro-
priate federal agencies, OFA had not yet decided whether to approve its use as an or-
ganic substance. Proponents argued that it consisted of bacteria that attacked insects, 
while opponents argued that the bacteria had been synthesized and were not "or-
ganic" in the classic sense of the word. OFA had guaranteed that it would run tests 
and make a decision late this summer about the use of the substance; unfortunately, 
farmers would have to decide whether or not to use VegeTech before learning of 
OFA's decision. If the Kellers decided to use VegeTech, and if the OFA failed to cer-
tify it as an accepted organic substance, then the Kellers would not be able to label 
their produce "Organically Grown." The net effect would be a 15% reduction in the 
prices they could charge. By all indications, there was a 50-50 chance that the OFA 
would certify VegeTech. 

Question 

1 Construct a simulation model to address the issues that the Kellers face. Do you 
think that they should stick with the conventional methods or try organic agricul-
ture? If they go organic, should they try VegeTech this year? Support your conclu-
sions with appropriate simulation outputs (graphs, expected values, and so on). 
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OVERBOOKING,   PART  III 

Consider again Mockingbird Airlines' problem as described in the overbooking case 
study in Chapter 9 (pages 345-346). 

Questions 

1 Construct a simulation model of the system, and use it to find Mockingbird's opti 
mal policy regarding overbooking. Compare this answer with the one based on the 
analysis done in Chapter 9. 

2 Suppose that you are uncertain about the no-show rate. It could be as low as 0.02 or 
it could be as high as 0.06, and all values in between are equally likely. 
Furthermore, the cost of satisfying the bumped passengers may not be constant. 
That is, the airline may in some cases be able to entice a passenger or two to relin 
quish their seats in exchange for compensation that would be less than a refund and 
another free ticket. Alternatively, in some cases the total cost, including loss of 
goodwill, might be construed as considerably higher. Suppose, for example, that 
the cost of satisfying an excess customer is normally distributed with mean $300 
and standard deviation $40. 

Modify the simulation model constructed in Question 1 to include the uncertainties 
about the no-show rate and the cost. Do these sources of uncertainty affect the op-
timal overbooking policy? 

3 How else might Mockingbird's analysts address the uncertainty about the no-show 
rate and the cost? 

R E F E R E N C E S  

Hertz's (1964) article in Harvard Business Review extolled the virtues of simulation for 
the decision-analysis community early on. Hertz and Thomas (1983, 1984) provide dis-
cussion and examples of the use of simulation for decision analysis. Other texts that in-
clude introductory material on s imulation are Holloway (1979) and Samson (1988). 
Vatter et al. (1978) contains several interesting simulation case studies in decision mak-
ing. More technical introductions to Monte Carlo simulation at a moderate level are pro-
vided by Law and Kelton (1991) and Watson (1989). 

Not only can analysts use programs such as @RISK and Crystal Ball, but main-
stream decision-analysis programs also provide simulation capability. For example, the 
professional version of DPL includes the option of using simulation to evaluate a deci-
sion model. 

Hertz, D. B. (1964) "Risk Analysis in Capital Investment." Harvard Business Review. 
Reprinted in Harvard Business Review, September-October 1979, 169-181. 
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CHAPTER 12. Value of Information 

ecision makers who face uncertain prospects often gather information with the intention of reducing 
uncertainty. Information gathering includes consulting experts, conducting surveys, performing 

mathematical or statistical analyses, doing research, or simply reading books, journals, 
and newspapers. The intuitive reason for gathering information is straightforward; to 
the extent that we can reduce uncertainty about future outcomes, we can make choices 
that give us a better chance at a good outcome. 

In this chapter, we will work a few examples that should help you understand the 
principles behind information valuation. Naturally, the examples also will demon-
strate the techniques used to calculate information value. At the end of the chapter 
we will consider a variety of issues, including information in complex decisions, the 
use of information evaluation as an integral part of the decision-analysis process, 
what to do in the case of multiple nonmonetary objectives, and the problem of eval-
uating and selecting experts for the information they can provide. 

The main example for this chapter is the stock market example that we intro-
duced in Chapter 5 in our discussion of sensitivity analysis (pages 169-170). For 
convenience, the details are repeated here. 

INVESTING   IN  THE  STOCK  MARKET 

An investor has some funds available to invest in one of three choices: a high-risk 
stock, a low-risk stock, or a savings account that pays a sure $500. If he invests in the 
stocks, he must pay a brokerage fee of $200. 

435 

D 
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Figure 12.1 
(a) Influence-diagram 
and (b) decision-tree 
representations of the 

investor's problem. 

His payoff for the two stocks depends on what happens to the market. If the mar-
ket goes up, he will earn $1700 from the high-risk stock and $1200 from the low-risk 
stock. If the market stays at the same level, his payoffs for the high- and low-risk 
stocks will be $300 and $400, respectively. Finally, if the stock market goes down, 
he will lose $800 with the high-risk stock but still gain $100 with the low-risk stock. 

The investor's problem can be modeled with either an influence diagram or a de-
cision tree. These two representations are shown in Figure 12.1. 

Value of Information: Some Basic Ideas 

Before we begin an in-depth study of information from a decision-analysis perspec-
tive, let us consider certain fundamental notions. What does it mean for an expert to 
provide perfect information? How does probability relate to the idea of information? 
What is an appropriate basis on which to evaluate information in a decision situa-
tion? This section addresses these questions and thus sets the stage for a complete 
development of the value of information in the rest of the chapter. 

Probability and Perfect Information 

An expert's information is said to be perfect if it is always correct. We can use con-
ditional probabilities to model perfect information. Suppose that when state S will 
occur, the expert always says so (and never says that some other state will occur). In 
our stock market example, imagine an expert who always correctly identifies a situ-
ation in which the market will increase: 

P(Expert Says "Market Up" | Market Really Does Go Up) = 1 

Because the probabilities must add to 1, we also must have 
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P(Expert Says "Market Will Stay the Same or Fall" | 
Market Really Will Go Up) = 0 

But this is only half the story. The expert also must never say that state S will occur 
if any other state (S─) will occur. There must be no chance of our expert saying 
that the market will rise when it really will not: 

P(Expert Says "Market Will Go Up" 
| Market Really Will Stay the Same or Fall) = 0 

Notice the difference between this probability statement and the preceding. Both are 
conditional probabilities, but the conditions are different. 

If the expert's information is perfect, then upon hearing the expert's report no 
doubt about the future remains; if the expert says the market will rise, then we know 
that the market really will rise. Having used conditional probabilities to model the 
expert's perfect information, we can use Bayes' theorem to "flip" the probabilities as 
we did in Chapter 7 and show that there is no uncertainty after we have heard the ex-
pert. We want to know P(Market Really Will Go Up | Expert Says "Market Will Go 
Up"). Some notation will make our lives easier: 

Market Up = The market really goes up Market Down = The market 
really stays flat or goes down Exp Says "Up" = The expert says the 
market will go up Exp Says "Down" = The expert says the market will 
stay flat or go down 

Now we can apply Bayes' theorem: 

P(Market Up | Exp Says "Up") 

 
Observe that the posterior probability P(Market Up | Expert Says "Up") is equal 

to 1 regardless of the prior probability P(Market Up). This is because of the condi-
tional probabilities that we used to represent the expert's perfect performance. Of 
course, this situation is not typical of the real world. In real problems we rarely can 
eliminate uncertainty altogether. If the expert sometimes makes mistakes, these con-
ditional probabilities would not be l's and 0's and the posterior probability would not 
be 1 or 0; there still would be some uncertainty about what would actually happen. 

This exercise may seem a bit arcane. Its purpose is to introduce the idea of think-
ing about information in a probabilistic way. We can use conditional probabilities and 
Bayes' theorem to evaluate all kinds of information in virtually any decision setting. 
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The Expected Value of Information 

How can we place a value on information in a decision problem? For example, how 
could we decide whether to hire the expert described in the last section? Does it de-
pend on what the expert says? In the investment decision, the optimal choice is to in-
vest in the high-risk stock. Now imagine what could happen. If the expert says that 
the market will rise, the investor still would choose the high-risk stock. In this case, 
the information appears to have no value in the sense that the investor would have 
taken the same action regardless of the expert's information. On the other hand, the 
expert might say that the market will fall or remain the same, in which case the in-
vestor would be better off with the savings account. In this second case, the informa-
tion has value because it leads to a different action, one with a higher expected value 
than what would have been experienced without the expert's information. 

We can think about information value after the fact, as we have done in the pre-
ceding paragraph, but it is much more useful to consider it before the fact—that is, 
before we actually get the information or before we hire the expert. What effects do 
we anticipate the information will have on our decision? We will talk about the ex-
pected value of information. By considering the expected value, we can decide 
whether an expert is worth consulting, whether a test is worth performing, or which 
of several information sources would be the best to consult. 

The worst possible case would be that, regardless of the information we hear, we 
still would make the same choice that we would have made in the first place. In this 
case, the information has zero expected value! If we would take the same action re-
gardless of what an expert tells us, then why hire the expert in the first place? We are 
just as well off as we would have been without the expert. Thus, at the worst, the ex-
pected value of information is zero. But if there are certain cases — things an expert 
might say or outcomes of an experiment — on the basis of which we would change 
our minds and make a different choice, then the expected value of the information 
must be positive; in those cases, the information leads to a greater expected value. 
The expected value of information can be zero or positive, but never negative. 

At the other extreme, perfect information is the best possible situation. Nothing 
could be better than resolving all of the uncertainty in a problem. When all uncer-
tainty is resolved, we no longer have to worry about unlucky outcomes; for every 
choice, we know exactly what the outcome will be. Thus, the expected value of per-
fect information provides an upper bound for the expected value of information in 
general. Putting this together with the argument in the previous paragraph, the ex-
pected value of any information source must be somewhere between zero and the ex-
pected value of perfect information. 

Finally, you might have noticed that we continue to consider the expected value 
of information in terms of the particular choices faced. Indeed, the expected value of 
information is critically dependent on the particular decision problem at hand. For 
this reason, different people in different situations may place different values on the 
same information. For example, General Motors may find that economic forecasts 
from an expensive forecaster may be a bargain in helping the company refine its pro-
duction plans. The same economic forecasts may be an extravagant waste of money 
for a restaurateur in a tourist town. 
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Expected Value of Perfect Information 

Now we will see how to calculate the expected value of perfect information (EVPI) 
in the investment problem. For an expected value-maximizing investor, the optimal 
choice is the high-risk stock because it has the highest EMV ($580); however, this is 
partly because the investor is optimistic about what the market will do. How much 
would he be willing to pay for information about whether the market will move up, 
down, or sideways? 

Suppose he could consult an expert with perfect information — a clairvoyant 
— who could reveal exactly what the market would do. By including an arrow from 
"Market Activity" to "Investment Decision," the influence diagram in Figure 12.2 
represents the decision situation in which the investor has access to perfect informa-
tion. Remember, an arrow leading from an uncertainty node to a decision node 
means that the decision is made knowing the outcome of the uncertainty node. This 
is exactly what we want to represent in the case of perfect information; the investor 
knows what the market will do before he invests his money. 

With a representation of the decision problem including access to perfect infor-
mation, how can we find the EVPI? Easy. Solve each influence diagram, Figures 
12.1a and 12.2. Find the EMV of each situation. Now subtract the EMV for Figure 
12.1a ($580) from the EMV for Figure 12.2 ($1000). The difference ($420) is the 
EVPI. We can interpret this quantity as the maximum amount that the investor 
should be willing to pay the clairvoyant for perfect information. 

It also is useful to look at the decision-tree representation. To do this, draw a de-
cision tree that includes the opportunity to obtain perfect information (Figure 12.3). 
As in the influence-diagram representation, the EMV for consulting the clairvoyant 
is $1000. This is $420 better than the EMV obtained by acting without the informa-
tion. As before, EVPI is the difference, $420. 

Recall that in a decision tree the order of the nodes conforms to a chronologi-
cal ordering of the events. Is this what happens in the perfect-information branch 
in Figure 12.3? Yes and no. Yes in the sense that the uncertainty regarding the 
stock market's activity is resolved before the investment decision is made. This is 
the important part. But once the decision is made, the market still must go through 

 

Figure 12.2 
Perfect information in 
the investor's problem. 
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Figure 12.3 
Investment decision 
tree with the perfect-

information 
alternative. 

its performance. It is simply that the investor knows exactly what that performance 
will be. 

This points out a useful aspect of expected-value-of-information analysis with 
decision trees. If a decision maker faces some uncertainty in a decision, which is rep-
resented by those uncertainty nodes that come after his decision in a decision tree, 
redrawing the tree to capture the idea of perfect information is easy. Simply reorder 
the decision and uncertainty nodes! That is, redraw the tree so that the uncertainty 
nodes for which perfect information is available come before the decision node. This 
is exactly what we did in the perfect-information branch in Figure 12.3; in this 
branch, the "Market Activity" and "Investment Decision" nodes are reversed relative 
to their original positions. 

It is worth reiterating that the way we are thinking about the value of information 
is in a strictly a priori sense. The decision-tree representation reinforces this notion 
because we actually include the decision branch that represents the possibility of 
consulting the clairvoyant. The investor has not yet consulted the clairvoyant; rather, 
he is considering whether to consult the clairvoyant in the first place. That action in-
creases the expected value of the decision. Specifically, in this case there is a 50% 
chance that the clairvoyant will say that the market is not going up, in which case the 
appropriate decision would be the savings account rather than the high-risk stock. 
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Expected Value of Imperfect Information 

We rarely have access to perfect information. In fact, our information sources usu-
ally are subject to considerable error. Thus, we must extend our analysis to deal with 
imperfect information. 

The analysis of imperfect information parallels that of perfect information. We 
still consider the expected value of the information before obtaining it, and we will 
call it the expected value of imperfect information (EVII) to express the notion of 
collecting some information from a sample. 

In the investment example, suppose that the investor hires an economist who 
specializes in forecasting stock market trends. Because he can make mistakes, how-
ever, he is not a clairvoyant, and his information is imperfect. For example, suppose 
his track record shows that if the market actually will rise, he says "up" 80% of the 
time, "flat" 10%, and "down" 10%. We construct a table (Table 12.1) to characterize 
his performance in probabilistic terms. The probabilities therein are conditional; for 
example, P(Economist Says "Flat" | Flat) = 0.70. The table shows that he is better 
when times are good (market up) and worse when times are bad (market down); he 
is somewhat more likely to make mistakes when times are bad. 

How should the investor use the economist's information? Figure 12.4 shows an 
influence diagram that includes an uncertainty node representing the economist's 
forecast. The structure of this influence diagram should be familiar from Chapter 3; 
the economist's information is an example of imperfect information. The arrow from 

Table 12.1 
Conditional 

probabilities 
characterizing 

economist's 
forecasting ability. 

 

 True Market State 

Economist's Prediction Up Flat Down 

"Up" 0.80 0.15 0.20 
"Flat'* 0.10 0,70 0,20 
"Down" 0,10 0.15 0.60 
 1.00 1,00 1.00 

 

Figure 12.4 
Imperfect information 

in the investor's 
problem. 
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"Market Activity" to "Economic Forecast" means that the probability distribution for the particular 
forecast is conditioned on what the market will do. This is reflected in the distributions in Table 12.1. In 
fact, the distributions contained in the "Economic Forecast" node are simply the conditional probabilities 
from that table. 
Solving the influence diagram in Figure 12.4 gives the EMV associated with obtaining the economist's 
imperfect information before action is taken. The EMV turns out to be $822. As we did in the case of 
perfect information, we calculate EVII as the difference between the EMVs from Figures 12.4 and 12.1a, 
or the situation with no information. Thus, EVII equals $822 - $580 = $242. 
The influence-diagram approach is easy to discuss because we actually do not see the detail calculations. 
On the other hand, the decision-tree approach shows the calculation of EVII in its full glory. Figure 12.5 
shows the decision-tree representation of the situation, with a branch that represents the alternative of 
consulting the economist. Look at the way in which the nodes are ordered in the "Consult Economist" 
alternative. The first event is the economist's forecast. Thus, we need probabilities P(Economist Says 
"Up"), P(Economist Says "Flat"), and P(Economist Says "Down"). Then the investor decides what to do 
with his money. Finally, the market goes up, down, or sideways. Because the "Market Activity" node 
follows the "Economists Forecast" node in the decision tree, we must have conditional probabilities for the 
market such as P(Market Up | Economist Says "Up") or P(Market Flat | Economist Says "Down"). What 
we have, however, is the opposite. We have probabilities such as P(Market Up) and conditional 
probabilities such as P(Economist Says "Up" | Market Up). 
As we did when we first introduced the notion of the value of an expert's information at the beginning of 
this chapter, we must use Bayes' theorem to find the posterior probabilities for the actual market outcome. 
For example, what is P(Market Up | Economist Says "Up")? It stands to reason that after we hear him say 
"up," we should think it more likely that the market actually will go up than we might have thought before. 
We used Bayes' theorem to "flip" probabilities in Chapter 7. There are several ways to think about this 
situation. First, applying Bayes' theorem is tantamount to reversing the arrow between the nodes "Market 
Activity" and "Economic Forecast" in Figure 12.4. In fact, reversing this arrow is the first thing that must 
be done when solving the influence diagram (Figure 12.6). Or we can think in terms of flipping a 
probability tree as we did in Chapter 7. Figure 12.7a represents the situation we have, and Figure 12.7b 
represents what we need. 
Whether we think of the task as flipping a probability tree or reversing an arrow in an influence diagram, 
we still must use Bayes' theorem to find the probabilities we need. For example, 
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Figure 12.5 
Incomplete decision 

tree for the investment 
example, including the 

alternative for 
consulting the 

economist. 
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Figure 12.6 
First step in solving 

the influence diagram. 
We reverse the arrow 
between "Economic 

Forecast" and "Market 
Activity." 

 

 

Figure 12.7 
Flipping the 

probability tree to find 
posterior probabilities 
required for value-of- 
information analysis. 

In (a) we see what we 
have; in (b) we see 

what we need. 

P
(
U
p
)
,
 
P
( 

 

P(Up), P(Flat), and P(Down) are the investor's prior probabilities, while P(Economist 
Says "Up" | Up), and so on, are the conditional probabilities shown in Table 12.1. 
From the principle of total probability, the denominator is P(Economist Says "Up"). 
Substituting in values for the conditional probabilities and priors, 

 
P(Economist Says "Up") is given by the denominator and is equal to 0.485. 

Of course, we need to use Bayes' theorem to calculate nine different posterior 
probabilities to fill in the gaps in the decision tree in Figure 12.5. Table 12.2 shows 
the results of these calculations; these probabilities are included on the appropriate 
branches in the completed decision tree (Figure 12.8). 
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Table 12.2 
Posterior probabilities 

for market trends 
depending on 

economist's 
information. 

 

 Posterior Probability for: 

Economist's Prediction Market Up Market Flat Market Down 
"Up" 0.8247 0.0928 0,0825 
"Flat" 0.1667 0.7000 0.1333 
"Down" 0.2325 0.2093 0.5581 

We also noted that we needed the marginal probabilities P("Up"), P("Flat"), and 
P("Down"). These probabilities are P("Up") = 0.485, P("Flat") = 0.300, and 
P("Down) = 0.215; they also are included in Figure 12.8 to represent our uncer-
tainty about what the economist will say. As usual, the marginal probabilities can be 
found in the process of calculating the posterior probabilities because they simply 
come from the denominator in Bayes' theorem. 

From the completed decision tree in Figure 12.8 we can tell that the EMV for 
consulting the economist is $822, while the EMV for acting without consulting him 
is (as before) only $580. The EVII is the difference between the two EMVs. Thus, 
EVSI is $242 in this example, just as it was when we solved the problem using in-
fluence diagrams. Given this particular decision situation, the investor would never 
want to pay more than $242 for the economic forecast. 

As with perfect information, $242 is the value of the information only in an ex-
pected-value sense. If the economist says that the market will go up, then we would 
invest in the high-risk stock, just as we would if we did not consult him. Thus, if he 
does tell us that the market will go up, the information turns out to do us no good. 
But if he tells us that the market will be flat or go down, we would put our money in 
the savings account and avoid the relatively low expected value associated with the 
high-risk stock. In those two cases, we would "save" 500-187 = 313 and 
500- (-188) = 688, respectively, with the savings in terms of expected value. 
Thus, EVSI also can be calculated as the "expected incremental savings," which is 
0(0.485) + 313(0.300) + 688(0.215) = 242. 

Such probability calculations can make value-of-information analysis tedious 
and time-consuming. This is where computers can play a role. Influence-diagram 
programs can perform all of the necessary probability calculations and thus make 
finding EVSI a simple matter. Some decision-tree programs do the same thing, and it 
always is possible to construct an electronic spreadsheet model that will perform the 
calculations. 

One last note regarding value-of-information calculations. If you have used your 
calculator to work through the examples in this chapter, you may have found that 
your answers differed slightly from those in this book. This is because calculations 
involving Bayes' theorem and value of information tend to be highly sensitive to 
rounding error. The appropriate strategy is to carry calculations out to many decimal 
places throughout a given problem, rounding off to dollars or cents only at the end of 
the problem. Rounding off intermediate results that are used in later calculations 
sometimes can make a large difference in the final answer. 
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Figure 12.8 
Completed decision 

tree for the investment 
example. 
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Value of Information in Complex Problems 

The example we have looked at in this section has been a fairly simple one. There 
was only one uncertain event, the behavior of the market, and we modeled the un-
certainty with a simple discrete distribution. As we know, however, most real-world 
problems involve considerably more complex uncertainty models. In particular, we 
need to consider two specific situations. First, how can we handle continuous proba-
bility distributions? Second, what happens when there are many uncertain events 
and information is available about some or all of them? 

The answer to the first question is straightforward conceptually, but in practice the 
calculation of EVPI or EVII may be difficult when dealing with continuous probabil-
ity distributions. The principle is the same. Evaluate decision options with and with-
out the information, and find the difference in the EMVs, as we have done in the dis-
crete case. The problem, of course, is calculating the EMVs. Obviously, it always is 
possible to construct a discrete approximation as discussed in Chapter 8. Another pos-
sibility is to construct a Monte Carlo simulation model. Finally, for some theoretical 
probability models, analytical results are possible. The mathematics for such analysis, 
however, tend to be somewhat complicated and are beyond the scope of this introduc-
tory textbook. References for interested readers are included at the end of the chapter. 

The second question asks how we handle value-of-information problems when 
there are many uncertain events. Again, in principle, the answer is easy, and is most 
transparent if we think in terms of influence diagrams. Perfect information about any 
particular event simply implies the presence of an informational arc from the event to 
the decision node. Naturally, it is possible to include such arcs for a subset of events. 
The only requirement is that the event not be downstream in the diagram from the de-
cision node, because the inclusion of the information arc would lead to a cycle in the 
influence diagram. Solving the influence diagram with the informational arcs in place 
provides the EMV with the information, and this then may be compared to the EMV 
without the information to obtain the EVPI for the particular information sought. 

Consider the same problem when the model is in decision-tree form. In the deci-
sion tree in Figure 12.3, the information branch was constructed by reversing the 
event node and the decision node. The same principle can apply if there are many 
sources of uncertainty; simply move those chance nodes for which information is to 
be obtained so that they precede the decision node. Now calculating EMV for the in-
formation branch will give the EMV in the case of perfect information for those 
events that precede the decision node in the decision tree. 

For imperfect information, the same general principles apply. For influence dia-
grams, include an imperfect-information node that provides information to the deci-
sion maker. An excellent example is the toxic-chemicals influence diagram in Figure 
3.20. Two sources of imperfect information are included in that model, the exposure 
survey and the lab test. In a decision-tree model, it would be a matter of constructing 
a tree having the appropriate informational chance nodes preceding the decision node. 
Unfortunately, if there are more than one or two such chance nodes, the decision tree 
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can become extremely unwieldy. Moreover, it may be necessary to calculate and track 
the marginal and posterior probabilities for the decision tree; these calculations can be 
done automatically in the influence diagram. 

Value of Information, Sensitivity Analysis, and Structuring 

Our motivation for studying value of information has been to examine situations in 
which information is available and to show how decisions can be made systemati-
cally regarding what source of information to select and how much an expert's in-
formation might be worth. Strictly speaking, this is precisely what value-of-informa-
tion analysis can do. But it also can play an elegant and subtle role in the structuring 
of decisions and in the entire decision-analysis process of developing a requisite de-
cision model. Recall the ideas of sensitivity analysis from Chapter 5. In that chapter 
we talked about a process of building a decision structure. The first step is to find out, 
using a tornado diagram, those variables to which the decision was sensitive; these 
variables require probabilistic modeling. The second step, after constructing a prob-
abilistic model, may be to perform sensitivity analysis on the probabilities. 

A third step in the structuring of a probabilistic model would be to calculate the 
EVPI for each uncertain event. This analysis would indicate where the analyst or de-
cision maker should focus subsequent efforts in the decision-modeling process. That 
is, if EVPI is very low for an event, then there is little sense in spending a lot of ef-
fort in reducing the uncertainty by collecting information. But if EVPI for an event is 
relatively high, it may indeed be worthwhile to put considerable effort into the col-
lection of information that relates to the event. Such information can have a rela-
tively large payoff by reducing uncertainty and improving the decision maker's 
EMV. In this way, EVPI analysis can provide guidance to the decision analyst as to 
what issues should be tackled next in the development of a requisite decision model. 

We will end this chapter with a short description of a rather unusual application 
of value-of-information analysis. Although few applications are as elaborate as this 
one, this example does provide an idea of how the idea of information value, as de-
veloped in decision analysis, can be used to address real-world concerns. 

SEEDING   HURRICANES 

Hurricanes pack tremendous power in their high winds and tides. Recent storms such 
as Camille (1969) and Hugo (1989) caused damage in excess of a billion dollars and 
amply demonstrated the destructive potential of large hurricanes. In the 1960s, the U.S. 
government experimented with the seeding of hurricanes, or the practice of dropping 
silver iodide into the storm to reduce peak winds by forcing precipitation. After early 
limited experiments, Hurricane Debbie was seeded in 1969 with massive amounts of 
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silver iodide on two separate occasions. Each seeding was followed by substantial 
drops in peak wind speed. Given these results, should hurricanes that threaten highly 
populated areas be seeded on the basis of current knowledge? Should the government 
pursue a serious research program on the effects of hurricane seeding? 

Howard, Matheson, and North addressed these specific questions about hurri-
cane seeding. They asked whether it would be appropriate to seed hurricanes, or 
would a research program be appropriate, or should the federal government simply 
not pursue this type of weather modification? To answer these questions, they 
adopted a decision-analysis framework. On the basis of a relatively simple proba-
bilistic model of hurricane winds, along with the relationships among wind speed, 
damage, and the effect of seeding, they were able to calculate expected dollar losses 
for two decision alternatives — seeding and not seeding a typical threatening hurri-
cane. On the basis of their model, they concluded that seeding would be the pre-
ferred alternative if the federal government wanted to reduce expected damage. 

The authors realized that the government might be interested in more than the 
matter of reducing property damage. What would happen, for example, if the deci-
sion was made to seed a hurricane, the wind speed subsequently increased, and in-
creased damage resulted? The government most likely would become the target of 
many lawsuits for having taken action that appeared to have adverse effects. Thus, 
the government also faced an issue of responsibility if seeding were undertaken. On 
the basis of the authors' analysis, however, the government's "responsibility cost" 
would have to have been relatively high in order for the optimal decision to change. 

To address the issue of whether further research on seeding would be appropri-
ate, the authors used a value-of-information approach. They considered the possibil-
ity of repeating the seeding experiment that had been performed on Hurricane 
Debbie and the potential effects of such an experiment. By modeling the possible 
outcomes of this experiment and considering the effect on future seeding decisions, 
the authors were able to calculate the expected value of the research. Including rea-
sonable costs for government responsibility and anticipated damage over a single 
hurricane season, the expected value of the experiment was determined to be ap-
proximately $10.2 million. The authors also extended their analysis to include all fu-
ture hurricane seasons, discounting future costs by 7% per year. In this case, the ex-
pected value of the research was $146 million. To put these numbers in perspective, 
the cost of the seeding experiment would have been approximately $500,000. 
[Source: R. A. Howard, J. E. Matheson, and D. W. North (1972) "The Decision to 
Seed Hurricanes." Science, 176, 1191-1202.] 

Value of Information and Nonmonetary Objectives 

Throughout this chapter we have calculated the expected value of information on 
the basis of EMVs, implicitly assuming that the only objective that matters is mak-
ing money. This has been a convenient fiction; as you know, in many decision 
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situations there are multiple objectives. For example, consider the Federal 
Aviation Administration (FAA) bomb-detection example again (Chapter 3, Figure 
3.8). Recall that the FA A was interested in maximizing the detection effectiveness 
and passenger acceptance of the system while at the same time minimizing the 
cost and time to implementation. For any given system, there may be considerable 
uncertainty about the level of passenger acceptance, for example, but this uncer-
tainty could be reduced in many ways. A less expensive, but highly imperfect, op-
tion would be to run a survey. A more expensive test would be to install some of 
the systems at a few airports and try them out. But how much should be spent on 
such efforts? 

With the FAA example, the answer is relatively straightforward, because mini-
mizing cost happens to be one of the objectives. The answer would be to find the ad-
ditional cost that makes the net expected value of getting the information equal to the 
expected value without the information (and, naturally, without the cost). If there is 
a clear trade-off rate that can be established for, say, dollars of cost per additional 
point on the passenger-acceptance scale, then the increase in expected passenger-
acceptance level that results from additional information can be translated directly 
into dollars of cost. (Any increase in the expected value of the other objectives— 
which may happen due to choosing different options under different information 
scenarios — would also have to be included in the calculations. Doing so can also 
be accomplished through the specification of similar trade-offs between cost and 
the other objectives. Understanding such trade-offs is not complex and is treated in 
more detail in Chapter 15.) 

When a decision situation does not involve a monetary objective, the same tech-
niques that we have developed in this chapter can still be used. Suppose one objec-
tive is to minimize the decision maker's time; different choices and different out-
comes require different amounts of time from the decision maker. Information can 
be valued in terms of time; the expected value of perfect information might turn out 
to be, say, five days of work. If resolving some uncertainty would take more time 
than that, it would not be worth doing! 

Value of Information and Experts 

In Chapter 8 we discussed the role of experts in decision analysis. One of the is-
sues that analysts face in using experts is how to value them and how to decide 
how many and which experts to consult. In general, the valuation part is not a 
practical concern; the high stakes involved in typical public-policy risk analyses 
typically warrant the use of experts who may charge several thousand dollars per 
day in consulting fees. What is less obvious, however, is that experts typically pro-
vide information that is somewhat interrelated. Because experts tend to read the 
same journals, go to the same conferences, use the same techniques in their stud-
ies, and even communicate with each other, it comes as no surprise that the infor- 
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mation they provide can be highly redundant. The real challenge in expert use is to 
recruit experts who look at the same problem from very different perspectives. 
Recruiting experts from different fields, for example, can be worthwhile if the in-
formation provided is less redundant. It can even be the case that a highly diverse 
set of less knowledgeable (and less expensive) experts can be much more valuable 
than the same number of experts who are more knowledgeable (and cost more) but 
give redundant information! 

Calculating EVPI: DATA and DPL 

As we have seen in this chapter, performing EVPI calculations involves nothing 
more than reordering nodes in a decision tree. This is easy to do in any decision-
tree program, and it can be done for any combination of timing and event informa-
tion simply by restructuring the tree. DATA provides a menu command specifi-
cally for calculating EVPI for a specific chance node or set of nodes. DPL has no 
specific EVPI command but does provide a menu command called "Reorder 
Node," which facilitates restructuring the tree for EVPI calculations. One final 
comment about DPL: Once the decision tree has been created, EVPI calculations 
must be done by restructuring the tree; adding arcs in the influence-diagram view 
will not do the trick, because DPL uses the decision tree to specify sequencing of 
the nodes. 

SUMMARY By considering the expected value of information, we can make better decisions 
about whether to obtain information or which information source to consult. We saw 
that the expected value of any bit of information must be zero or greater, and it can-
not be more than the expected value of perfect information. Both influence diagrams 
and decision trees can be used as frameworks for calculating expected values. 
Influence diagrams provide the neatest representation because information available 
for a decision can be represented through appropriate use of arcs and, if necessary, 
additional uncertainty nodes representing imperfect information. In contrast, repre-
senting the expected value of imperfect information with decision trees is more com-
plicated, requiring the calculation of posterior and marginal probabilities. The ex-
pected value of information is simply the difference between the EMV calculated 
both with and without the information. 

The final sections in the chapter discussed generally how to solve value-of-infor-
mation problems in more complex situations. We concluded with discussions of the 
role that value-of-information analysis can play in the decision-analysis process of 
developing a requisite decision model, how to value information related to nonmon-
etary objectives, and evaluation and selection of experts. 
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E X E R C I S E S  

12.1 Explain why in decision analysis we are concerned with the expected value of information. 

12.2 Calculate the EVPI for the decision shown in Figure 12.9. 

12.3 What is the EVPI for the decision shown in Figure 12.10? Must you perform any calcu 
lations? Can you draw any conclusions regarding the relationship between value of in 
formation and deterministic dominance? 

12.4 For the decision tree in Figure 12.11, assume Chance Events E and F are independent. 
a   Draw the appropriate decision tree and calculate the EVPI for Chance Event E only. 
b   Draw the appropriate decision tree and calculate the EVPI for Chance Event F only. 
c Draw the appropriate decision tree and calculate the EVPI for both Chance Events E 

and F: that is, perfect information for both E and F is available before a decision is 
made. 

12.5 Draw the influence diagram that corresponds to the decision tree for Exercise 12.4. 
How would this influence diagram be changed in order to answer parts a, b, and c in 
Exercise 12.4? 

Figure 12.9 
Generic decision tree 

for Exercise 12.2. 

 

 

Figure 12.10 
Generic decision tree 

for Exercise 12.3. 
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Figure 12.11 
Generic decision tree 

for Exercise 12.4. 

Q U E S T I O N S    AND   P R O B L E M S  

12.6 The claim was made in the chapter that information always has positive value. What do 
you think of this? Can you imagine any situation in which you would prefer not to have 
some unknown information revealed? 
a Suppose you have just visited your physician because of a pain in your abdomen. The 

doctor has indicated some concern and has ordered some tests whose results the two 
of you are expecting in a few days. A positive test result will suggest that you may 
have a life-threatening disease, but even if the test is positive, the doctor would want 
to confirm it with further tests. Would you want the doctor to tell you the outcome of 
the test? Why or why not? 

b Suppose you are selling your house. Real-estate transaction laws require that you dis-
close what you know about significant structural defects. Although you know of no 
such defects, a buyer insists on having a qualified engineer inspect the house. Would 
you want to know the outcome of the inspection? Why or why not? 

c Suppose you are negotiating to purchase an office building. You have a lot of experi-
ence negotiating commercial real-estate deals, and your agent has explained this to 
the seller, who is relatively new to the business. As a result, you expect to do very 
well in this negotiation. Because of the unique circumstance of the building, your 
agent has suggested obtaining an appraisal of the property by a local expert. You 
know exactly how you would use this information; it would provide an upper bound 
on what you are willing to pay. This fact is also clear to the seller, who will know 
whether you obtained the appraisal but will only find out the appraised value if you 
elect to reveal it. Would you obtain the appraisal? Why or why not? 

12.7 Consider another oil-wildcatting problem. You have mineral rights on a piece of land that 
you believe may have oil underground. There is only a 10% chance that you will strike 
oil if you drill, but the payoff is $200,000. It costs $10,000 to drill. The alternative is not 
to drill at all, in which case your profit is zero. 
a   Draw a decision tree to represent your problem. Should you drill? 
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b Draw an influence diagram to represent your problem. How could you use the influ-
ence diagram to find EVPI? 

c    Calculate EVPI. Use either the decision tree or the influence diagram. 
d Before you drill you might consult a geologist who can assess the promise of the piece 

of land. She can tell you whether your prospects are "good" or "poor." But she is not a 
perfect predictor. If there is oil, the conditional probability is 0.95 that she will say 
prospects are good. If there is no oil, the conditional probability is 0.85 that she will 
say poor. Draw a decision tree that includes the "Consult Geologist" alternative. Be 
careful to calculate the appropriate probabilities to include in the decision tree. Finally, 
calculate the EVII for this geologist. If she charges $7000, what should you do? 

12.8 In Problem 4.16, find: 
a   EVPI for the cost of making the processor. 
b   EVPI for the cost of subcontracting the processor. 
c    EVPI for both uncertain events. 

12.9 Look again at Problem 8.11, which concerns whether you should drop your decision- 
analysis course. Estimate EVPI for your score in the course. 

12.10 In Problem 9.33, the issue is whether or not to close the plant, and if your boss knew ex- 
actly how many machines would fail during your absence, he would be able to decide 
what to do without the fear of making a mistake. 
a   Find his EVPI concerning the number of machine failures during your absence over 

the next two weeks. 
b   Suppose that the cost of repairing the broken machines is $30,000. Then what is 

EVPI? 
c    Suppose that the cost of repairing the machines is $15,000 but the cost of closing the 

plant is $20,000. Now calculate EVPI. 

12.11 Consider the Texaco-Pennzoil example from Chapter 4 (pages 101-102). 
a   What is EVPI to Hugh Liedtke regarding Texaco's reaction to a counteroffer of $5 

billion? Can you explain this result intuitively? 
b   The timing of information acquisition may make a difference. 

(i) For example, suppose that Liedtke could obtain information about the final court 
decision before making his current decision (take the $2 billion or counteroffer $5 
billion). What would be EVPI of this information? 
(ii) Suppose that Liedtke knew he would be able to obtain perfect information only 
after he has made his current decision but before he would have to respond to a po-
tential Texaco counteroffer of $3 billion. What would be EVPI in this case? 

c    In part b, EVPI for (ii) should be less than EVPI calculated in (i). Can you explain why? 
(Incidentally, if your results disagree with this, you should check your calculations!) 

12.12 In the Texaco-Pennzoil case, what is EVPI if Liedtke can learn both Texaco's reaction 
and the final court decision before he makes up his mind about the current $2 billion 
offer? (Hint: Your answer should be more than the sum of the EVPIs for Texaco's reac 
tion and the court decision calculated separately in Problem 12.11.) Can you explain why 
the interaction of the two bits of information should have this effect? 
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12.13 In Problem 5.9, assume that the grower's loss incurred with the burners would be 
$17,500 and that the loss incurred with the sprinklers would be $27,500. 
a   Find EVPI for the weather conditions (freeze or not). 
b Now assume that the loss incurred with the burners is uniformly distributed between 

$15,000 and $20,000. Also assume that the loss incurred with the sprinklers is uni-
formly distributed between $25,000 and $30,000. Now estimate EVPI regarding 
these losses, under the assumption that a better weather forecast cannot be obtained. 

c Do you think the farmer should put more effort into learning his costs more precisely 
or should he concentrate on obtaining better weather forecasts? 

12.14 Reconsider the Eagle Airlines example from Chapter 5, particularly as diagrammed in 
Figure 5.7. Assume that q and r are both 0.5. Calculate EVPI for each of the three uncer 
tain events individually. What can you conclude from your analysis? 

12.15 In Exercise 12.4, is it necessary to assume that the events are independent? What other 
assumption could be made? 

C A S E     S T U D I E S  

TEXACO   PENNZOIL   REVISITED 

Often when we face uncertainty, we would like more than simply to know the out-
come; it would be nice to control the outcome and bring about the best possible re-
sult! A king might consult his wizard as well as his clairvoyant, asking the wizard to 
cast a spell to cause the desired outcome to occur. How much should such a wizard 
be paid for these services? The expected value of his wizardry naturally depends on 
the decision problem at hand, just as the expected value of information does. But the 
way to calculate the "expected value of wizardry" (to use Ron Howard's term) is 
very similar to solving the calculations for the expected value of perfect information. 
To demonstrate this idea, we again will examine Hugh Liedtke's decision situation 
as diagrammed in Figure 4.2. Now consider the entirely hypothetical possibility that 
Liedtke could pay someone to influence Texaco's CEO, James Kinnear. 

Questions 

1 What would be the most desirable outcome from the "Texaco Reaction" chance 
node? 

2 Construct the decision tree now with three alternatives: "Accept $2 Billion," 
"Counteroffer $5 Billion," and "Counteroffer $5 Billion and Influence Kinnear." 

3 Solve your decision tree from Question 2. What is the maximum amount that 
Liedtke could afford to pay in order to influence Kinnear? 
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MEDICAL  TESTS 

One of the principles that arises from a decision-analysis approach to valuing infor-
mation is that information is worthless if no possible informational outcome will 
change the decision. For example, suppose that you are considering whether to make 
a particular investment. You are tempted to hire a consultant recommended by your 
Uncle Jake (who just went bankrupt last year) to help you analyze the decision. If, 
however, you think carefully about the things that the consultant might say and con-
clude that you would (or would not) make the investment regardless of the consul-
tant's recommendation, then you should not hire the consultant. This principle 
makes perfectly good sense in the light of our approach; do not pay for information 
that cannot possibly change your mind. 

In medicine, however, it is standard practice for physicians to order extensive 
batteries of tests for patients. Although different kinds of patients may be subjected 
to different overall sets of tests, it is nevertheless the case that many of these tests 
provide information that is worthless in a decision-analysis sense; the doctor's pre-
scription would be the same regardless of the outcome of a particular test. 

Questions 

1 As a patient, would you be willing to pay for such tests? Why or why not? 

2 What incentives do you think the doctor might have for ordering such tests, assum 
ing he realizes that his prescription would not change? 

3 How do his incentives compare to yours? 

DUMOND   INTERNATIONAL,   PART  II 

[Refer back to the DuMond International case study at the end of Chapter 5 
(pages 182-183).] Nancy Milnor had returned to her office, still concerned about 
the decision. Yes, she had persuaded the directors that their disagreements did not 
affect her analysis; her analysis still showed the new product to be the appropriate 
choice. The members of the board, however, had not been entirely satisfied. The 
major complaint was that there was still too much uncertainty. Could she find out 
more about the likelihood of a ban, or could she get a better assessment from en-
gineering regarding the delay? What about a more accurate sales forecast for the 
new product? 

Nancy gazed at her decision tree (Figure 5.21). Yes, she could address each of 
those questions, but where should she start? 
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Question 

1       Calculate EVPI for the three uncertain events in DuMond's decision as dia-
grammed in Figure 5.21. Where should Nancy Milnor begin her investigation? 

This chapter has focused primarily on the technical details of calculating the value of in-
formation. The most complete, and most highly technical, reference for this kind of 
analysis is Raiffa and Schlaifer (1961). Winkler (1972) provides an easily readable dis-
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ural conjugate prior distributions for model parameters (Chapter 10 in this text) and the 
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experts. 
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CHAPTER 13. Risk Attitudes 

his chapter marks the beginning of our in-depth study of preferences. Before we begin, let us review 
where we have been and think about where we are going. The first six chapters provided an introduction 

to the process of structuring decision problems for decision analysis and an 
overview of the role that probability and utility theory play in making choices. 
Chapters 7 through 12 have focused on probability concerns: using probability in a 
variety of ways to model uncertainty in decision problems, including the modeling 
of information sources in value-of-information problems. 

At this point, we change directions and look at the preference side of decision 
analysis. How can we model a decision maker's preferences? This chapter looks at 
the problems associated with risk and return trade-offs. Chapter 14 briefly explores 
the axiomatic foundations of utility theory and discusses certain paradoxes from 
cognitive psychology. These paradoxes generally indicate that people do not make 
choices that are perfectly consistent with the axioms, even though they may agree 
that the axioms are reasonable! Although such inconsistencies generally do not have 
serious implications for most decisions, there are certain occasions when they can 
cause difficulty. 

The primary motivating example for this chapter comes from the history of rail-
ways in the United States. Imagine what might have gone through E. H. Harriman's 
mind as he considered his strategy for acquiring the Northern Pacific Railroad in 
March 1901. 

461 

T 
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E.   H.   HARRIMAN   FIGHTS  FOR THE  NORTHERN   PACIFIC  RAILROAD 

"How could they do it?" E. H. Harriman asked, still angry over the fact that James 
Hill and J. P. Morgan had bought the Burlington Railroad out from under his nose. 
"Every U.S. industrialist knows I control the railroads in the West. I have the Illinois 
Central, the Union Pacific, the Central and Southern Pacific, not to mention the 
Oregon Railroad and Navigation Company. Isn't that true?" 

"Yes, sir," replied his assistant. 
"Well, we will put the pressure on Messrs. Hill and Morgan. They will be sur-

prised indeed to find out that I have acquired a controlling interest in their own rail-
road, the Northern Pacific. I may even be able to persuade them to let me have the 
Burlington. By the way, how are the stock purchases going?" 

"Sir, we have completed all of the purchases that you authorized so far. You may 
have noticed that our transactions have driven the price of Northern Pacific stock up 
to more than $100 per share." 

Harriman considered this information. If he bought too fast, he could force the 
stock price up high enough and fast enough that Hill might begin to suspect that 
Harriman was up to something. Of course, if Harriman could acquire the shares 
quickly enough, there would be no problem. On the other hand, if he bought the 
shares slowly, he would pay lower prices, and Hill might not notice the acquisition 
until it was too late. His assistant's information, however, suggested that his situation 
was somewhat risky. If Harriman's plan were discovered, Hill could persuade 
Morgan to purchase enough additional Northern Pacific shares to enable them to re-
tain control. In that case, Harriman would have paid premium prices for the stock for 
nothing! On the other hand, if Hill did not make the discovery immediately, the tri-
umph would be that much sweeter. 

"How many more shares do we need to have control?" asked Harriman. 
"If you could purchase another 40,000 shares, sir, you would own 51 percent of 

the company." 
Another 40,000 shares. Harriman thought about giving Hill and Morgan orders 

on how to run their own railroad. How enjoyable that would be! Yes, he would 
gladly increase his investment by that much. 

"Of course," his assistant continued, "if we try to purchase these shares immedi-
ately, the price will rise very quickly. You will probably end up paying an additional 
$15 per share above what you would pay if we were to proceed more slowly." 

"Well, $600,000 is a lot of money, and I certainly would not want to pay more. 
But it would be worth the money to be sure that we would be able to watch Hill 
and Morgan squirm! Send a telegram to my broker in New York right away to 
place the order. And be quick! It's already Friday. If we are going to do this, we 
need to do it today. I don't want Hill to have the chance to think about this over the 
weekend." 
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Risk 

Basing decisions on expected monetary values (EMVs) is convenient, but it can lead 
to decisions that may not seem intuitively appealing. For example, consider the fol-
lowing two games. Imagine that you have the opportunity to play one game or the 
other, but only one time. Which one would you prefer to play? Your choice also is 
drawn in decision-tree form in Figure 13.1. 

Game 1       Win $30 with probability 0.5 
Lose $1 with probability 0.5 

Game 2       Win $2000 with probability 0.5 
Lose $1900 with probability 0.5 

Game 1 has an expected value of $14.50. Game 2, on the other hand, has an ex-
pected value of $50.00. If you were to make your choice on the basis of expected 
value, then you would choose Game 2. Most of us, however, would consider Game 
2 to be riskier than Game 1, and it seems reasonable to suspect that most people ac-
tually would prefer Game 1. 

Using expected values to make decisions means that the decision maker is con-
sidering only the average or expected payoff. If we take a long-run frequency ap-
proach, the expected value is the average amount we would be likely to win over 
many plays of the game. But this ignores the range of possible values. After all, if we 
play each game 10 times, the worst we could do in Game 1 is to lose $10. On the 
other hand, the worst we could do in Game 2 is lose $19,000! 

Many of the examples and problems that we have considered so far have been an-
alyzed in terms of expected monetary value (EMV). EMV, however, does not capture 
risk attitudes. For example, consider the Texaco-Pennzoil example in Chapter 4 
(pages 101-102). If Hugh Liedtke were afraid of the prospect that Pennzoil could end 

 

Figure 13.1 
Two lottery games. 
Which game would 

you choose? 
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up with nothing at the end of the court case, he might be willing to take the $2 billion 
that Texaco offered. To consider the Eagle Airlines case (Chapter 5, pages 155-156), 
purchasing the airplane is a much riskier alternative than leaving the money in the 
bank. If Carothers were sensitive to risk, he might prefer to leave the money in the 
bank. Even someone like E. H. Harriman considered the riskiness of the situations in 
which he found himself. In our example, Harriman weighed the value of a riskless al-
ternative (immediately purchasing the 40,000 shares that were required to gain con-
trol) against the risky alternative of not purchasing the shares and the possible out-
comes that might then follow. Even though all of the dollar amounts were not 
specified, it is clear that Harriman was not thinking in terms of EMV. 

Individuals who are afraid of risk or are sensitive to risk are called risk-averse. 
We could explain risk aversion if we think in terms of a utility function (Figure 13.2) 
that is curved and opening downward (the technical term for a curve with this shape 
is concave). This utility function represents a way to translate dollars into "utility 
units." That is, if we take some dollar amount (x), we can locate that amount on the 
horizontal axis. Read up to the curve and then horizontally across to the vertical axis. 
From that point we can read off the utility value U(x) for the dollars we started with. 

A utility function might be specified in terms of a graph, as in Figure 13.2, or 
given as a table, as in Table 13.1. A third form is a mathematical expression. If 
graphed, for example, all of the following expressions would have the same general 
concave shape (opening downward) as the utility function graphed in Figure 13.2: 

U(x) = log (x) 

 

Of course, the utility and dollar values in Table 13.1 also could be graphed, as could 
the functional forms shown above. Likewise, the graph in Figure 13.2 could be con- 

Figure 13.2 
A utility function that 

displays risk aversion. 
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Table 13.1 
A utility function in 

tabular form. 

 

Wealth Utility Value 

2500 1.50 
1500 1.24 
1000 0.93 
600 0.65 
400 0.47 

0 0.15 

verted into a table of values. The point is that the utility function makes the transla-
tion from dollars to utility regardless of its displayed form. 

Risk Attitudes 

We think of a typical utility curve as (1) upward sloping and (2) concave (the curve 
opens downward). An upward-sloping utility curve makes fine sense; it means that 
more wealth is better than less wealth, everything else being equal. Few people will 
argue with this. Concavity in a utility curve implies that an individual is risk-averse. 
Imagine that you are forced to play the following game: 

Win $500 with probability 0.5 
Lose $500 with probability 0.5 

Would you pay to get out of this situation? How much? The game has a zero ex-
pected value, so if you would pay something to get out, you are avoiding a risky sit-
uation with zero expected value. Generally, if you would trade a gamble for a sure 
amount that is less than the expected value of the gamble, you are risk-averse. 
Purchasing insurance is an example of risk-averse behavior. Insurance companies 
analyze a lot of data in order to understand the probability distributions associated 
with claims for different kinds of policies. Of course, this work is costly. To make up 
these costs and still have an expected profit, an insurance company must charge 
more for its insurance policy than the policy can be expected to produce in claims. 
Thus, unless you have some reason to believe that you are more likely than others in 
your risk group to make a claim, you probably are paying more in insurance premi-
ums than the expected amount you would claim. 

Not everyone displays risk-averse behavior all the time, and so utility curves 
need not be concave. A convex (opening upward) utility curve indicates risk-seeking 
behavior (Figure 13.3). The risk seeker might be eager to enter into a gamble; for ex-
ample, he or she might pay to play the game just described. An individual who plays 
a state lottery exhibits risk-seeking behavior. State lottery tickets typically cost $1.00 
and have an expected value of approximately 50 cents. 
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Figure 13.3 
Three different shapes 

for utility functions. 

Finally, an individual can be risk-neutral. Risk neutrality is reflected by a utility 
curve that is simply a straight line. For this type of person, maximizing EMV is the 
same as maximizing expected utility. This makes sense; someone who is risk-neutral 
does not care about risk and can ignore risk aspects of the alternatives that he or she 
faces. Thus, EMV is a fine criterion for choosing among alternatives, because it also 
ignores risk. 

Although most of us are not risk-neutral, it often is reasonable for a decision 
maker to assume that his or her utility curve is nearly linear in the range of dollar 
amounts for a particular decision. This is especially true for large corporations that 
make decisions involving amounts which are small relative to their total assets. In 
many cases, it may be worthwhile to use EMV in a first-cut analysis, and then check 
to see whether the decision would be sensitive to changes in risk attitude. If the deci-
sion turns out to be fairly sensitive (that is, if the decision would change for a slightly 
risk-averse or slightly risk-seeking person), then the decision maker may want to 
consider modeling his or her risk attitude carefully. 

This discussion makes it sound as though individuals can be reduced to their 
utility functions, and those utility functions can reveal whether the individual is 
risk-averse or risk-seeking. Keep in mind, however, that the utility function is only 
a model of an individual's attitude toward risk. Moreover, our development of util-
ity functions in this chapter is intended to help with the modeling of risk attitudes 
at a fundamental level, and our model may not be able to capture certain compli-
cated psychological aspects. For example, some individuals may be extremely 
frightened by risk. Others may find that small wagers greatly increase their enjoy-
ment in watching a sporting event, for example. Still others may find that waiting 
for the uncertainty to be resolved is a source of excitement and exhilaration, al-
though concern about losing money is a source of anxiety. For some people, figur-
ing out exactly what their feelings are toward risky alternatives may be extremely 
complicated and may depend on the amount at stake, the context of the risk, and 
the time horizon. 
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Investing in the Stock Market, Revisited 

If we have a utility function that translates from dollars to utility, how should we 
use it? The whole idea of a utility function is that it should help to choose from 
among alternatives that have uncertain payoffs. Instead of maximizing expected 
value, the decision maker should maximize expected utility. In a decision tree or 
influence-diagram payoff table, the net dollar payoffs would be replaced by the 
corresponding utility values and the analysis performed using those values. The 
best choice then should be the action with the highest expected utility. 

As an example, let us reconsider the stock market-investment example from 
Chapters 5 and 12. You will recall that an investor has funds that he wishes to invest. 
He has three choices: a high-risk stock, a low-risk stock, or a savings account that 
would pay $500. If he invests in the stocks, he must pay a $200 brokerage fee. 

With the two stocks his payoff depends on what happens to the market. If the 
market goes up, he will earn $1700 from the high-risk stock and $1200 from the low-
risk stock. If the market stays at the same level, his payoffs for the high- and low-risk 
stocks will be $300 and $400, respectively. Finally, if the stock market goes down, 
he will lose $800 with the high-risk stock but still earn $100 from the low-risk stock. 
The probabilities that the market will go up, stay the same, or go down are 0.5, 0.3, 
and 0.2, respectively. 

Figure 13.4 shows his decision tree, including the brokerage fee and the payoffs 
for the two stocks under different market conditions. Note that the values at the ends 
of the branches are the net payoffs, taking into account both the brokerage fee and 
the investment payoff. Table 13.2 gives his utility function. 

We already calculated the expected values of the three investments in Chapter 
12. They are 

EMV (High-Risk Stock) = 580 
EMV (Low-Risk Stock) = 540 
EMV (Savings Account) = 500 

 

Figure 13.4 
Decision tree for the 
stock market investor. 
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Table 13.2 
Utility function for the 

investment problem. 

 

Dollar Utility 
Value Value 
1500 1.00 
1000 0.86 
500 0.65 
200 0.52 
100 0,46 
-100 0.33 

-1000 0.00 

As a result, an expected-value maximizer would choose the high-risk stock. 
Figure 13.5 shows the investor's decision tree with the utility values instead of 

the payoffs. Solving this decision tree, we calculate the expected utility (EU) for the 
three investments: 

EU (High-Risk Stock) = 0.638 
EU (Low-Risk Stock) = 0.652 
EU (Savings Account) = 0.650 

Now the preferred action is to invest in the low-risk stock because it provides the 
highest expected utility, although it does not differ much from that for the savings 
account. You can see how the expected utilities make it possible to rank these in-
vestments in order of preference. According to the utility function we are using, this 
investor dislikes risk enough to find the high-risk stock the least preferred of his 
three alternatives. 

Figure 13.5 
Decision tree for stock 

market investor — 
utility values instead 

of dollars. 
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Expected Utility, Certainty Equivalents, and Risk Premiums 

Two concepts are closely linked to the idea of expected utility. One is that of a cer-
tainty equivalent, or the amount of money that is equivalent in your mind to a given 
situation that involves uncertainty. For example, suppose you face the following 
gamble: 

Win $2000 with probability 0.50 
Lose $20 with probability 0.50 

Now imagine that one of your friends is interested in taking your place. "Sure," you 
reply, "I'll sell it to you." After thought and discussion, you conclude that the least 
you would sell your position for is $300. If your friend cannot pay that much, then 
you would rather keep the gamble. (Of course, if your friend were to offer more, you 
would take it!) 

Your certainty equivalent for the gamble is $300. This is a sure thing; no risk is 
involved. From this, the meaning of certainty equivalent becomes clear. If $300 is 
the least that you would accept for the gamble, then the gamble must be equivalent 
in your mind to a sure $300. 

In the example at the beginning of the chapter, Harriman decided that he would 
pay the additional $600,000 simply to avoid the riskiness of the situation. His think-
ing at the time was that committing the additional money would ensure his control of 
the Northern Pacific Railroad. He indicated that he did not want to pay more, and so 
we can think of $600,000 as his certainty equivalent for the gamble of purchasing 
the shares more slowly and risking detection. 

Let us again consider the stock market investor. We can make certain inferences 
about his certainty equivalent for the gambles represented by the low-risk and high-
risk stocks because we have information about his utility function. For example, his 
expected utility for the low-risk stock is 0.652, which is just a shade more than 
U($500) = 0.650. Thus, his certainty equivalent for the low-risk stock must be only 
a little more than $500. Likewise, his expected utility for the high-risk stock is 0.638, 
which is somewhat less than 0.650. Therefore, his certainty equivalent for the high-
risk stock must be less than $500 but not as little as $200, which has a utility of 0.520. 

You can see also that we can rank the investments by their certainty equiva-
lents. The high-risk stock, having the lowest certainty equivalent, is the least pre-
ferred. The low-risk stock, on the other hand, has the highest certainty equivalent, 
and so is the most preferred. Ranking alternatives by their certainty equivalents is 
the same as ranking them by their expected utilities. If two alternatives have the 
same certainty equivalent, then they must have the same expected utility, and the 
decision maker would be indifferent to a choice between the two. 

Closely related to the idea of a certainty equivalent is the notion of risk premium. 
The risk premium is defined as the difference between the EMV and the certainty 
equivalent: 

Risk Premium = EMV — Certainty Equivalent 
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Consider the gamble between winning $2000 and losing $20, each with probability 
0.50. The EMV of this gamble is $990. On reflection, you assessed your certainty 
equivalent to be $300, and so your risk premium is 

Risk Premium = $990 - $300 = 
$690 

Because you were willing to trade the gamble for $300, you were willing to "give 
up" $690 in expected value in order to avoid the risk inherent in the gamble. You can 
think of the risk premium as the premium you pay (in the sense of a lost opportunity) 
to avoid the risk. 

Figure 13.6 graphically ties together utility functions, certainty equivalents, and 
risk premiums. Notice that the certainty equivalent and the expected utility of a gam-
ble are points that are "matched up" by the utility function. That is, 

EU(Gamble) = U(Certainty Equivalent) 

In words, the utility of the certainty equivalent is equal to the expected utility of the 
gamble. Because these two quantities are equal, the decision maker must be indiffer-
ent to the choice between them. After all, that is the meaning of certainty equivalent. 
Now we can put all of the pieces together in Figure 13.6. Imagine a gamble has 
expected utility Y. The value Y is in utility units, so we must first locate Y on the ver-
tical axis. Trace a horizontal line from the expected utility point until the line inter-
sects the utility curve. Now drop down to the horizontal axis to find the certainty 
equivalent. The difference between the expected value and the certainty equivalent is 
the risk premium. 

Figure 13.6 
Graphical representa-

tion of risk premium. 
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For a risk-averse individual, the horizontal EU line reaches the concave utility 
curve before it reaches the vertical line that corresponds to the expected value. Thus, 
for a risk-averse individual the risk premium must be positive. If the utility function 
were convex, the horizontal EU line would reach the expected value before the utility 
curve. The certainty equivalent would be greater than the expected value, and so the 
risk premium would be negative. This would imply that the decision maker 
would have to be paid to give up an opportunity to gamble. 

In any given situation, the certainty equivalent, expected value, and risk pre-
mium all depend on two factors: the decision maker's utility function and the proba-
bility distribution for the payoffs. The values that the payoff can take combine with 
the probabilities to determine the EMV. The utility function, coupled with the prob-
ability distribution, determines the expected utility and hence the certainty equiva-
lent. The degree to which the utility curve is nonlinear determines the distance be-
tween the certainty equivalent and the expected payoff. 

If the certainty equivalent for a gamble is assessed directly, then finding the risk 
premium is straightforward — simply calculate the EMV of the gamble and subtract 
the assessed certainty equivalent. In other cases, the decision maker may have as-
sessed a utility function and now faces a particular gamble that he or she wishes to 
analyze. If so, there are four steps in finding the gamble's risk premium: 

1 Find the EU for the gamble. 
2 Find the certainty equivalent, or the sure amount that has the utility value equal 

to the EU that was found in Step 1. 
3 Calculate the EMV for the gamble. 
4 Subtract the certainty equivalent from the expected payoff to find the risk pre 

mium. This is the difference between the expected value of the risky situation 
and the sure amount for which the risky situation would be traded. 

Here is a simple example. Using the hypothetical utility function given in Figure 
13.7, we will find the risk premium for the following gamble: 

Win $4000 with probability 0.40 

Win $2000 with probability 0.20 

Win $0 with probability 0.15 

Lose $2000 with probability 0.25 

The first step is to find the expected utility: 

EU = 0.40 U($4000) + 0.20 U($2000) + 0.15 U($0) + 0.25 U(-$2000) 
= 0.40(0.90) + 0.20(0.82) + 0.15(0.67) + 0.25(0.38) = 0.72 

The second line is simply a matter of estimating the utilities from Figure 13.7 and 
substituting them into the equation. 
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Figure 13.7 
Utility function for a 
risk-averse decision 

maker. 

 

 

 

 

 

 

Figure 13.8 
Finding a certainty 

equivalent 
 
 
 
 
 
 
 
 
 
 
 
 

 

For Step 2, the certainty equivalent is the sure amount that gives the same utility 
as the expected utility of the gamble. Figure 13.8 shows the process of finding the 
certainty equivalent for the gamble that has EU = 0.72. We start at the vertical axis 
with the utility value of 0.72, read across to the utility curve, and then drop down to 
the horizontal axis. From Figure 13.8, we can see that the certainty equivalent is ap-
proximately $400. 

Step 3 calculates the expected payoff or EMV: 

EMV = 0.40($4000) + 0.20($2000) + 0.15($0) + 0.25(-$2000) = 
$1500 
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Finally, in Step 4, we calculate the risk premium by subtracting the certainty 
equivalent from the EMV: 

Risk Premium = $1500 - $400 = $1100 

Keeping Terms Straight 

One problem that students often have is that of confusion about the terms we use in 
utility theory. The basic idea, remember, is to use a utility function to translate dol-
lars into utility units. If we compare two risky projects on the basis of expected util-
ity (EU), we are working in utility units. When we calculate certainty equivalents or 
risk premiums, however, we are working in dollars. Thus, a certainty equivalent is 
not the same as the expected utility of a gamble. The two measurements provide 
equivalent information, but only in the sense that the certainty equivalent for a gam-
ble is the sure amount that gives the same utility as the expected utility of the gam-
ble. The translation from certainty equivalent to expected utility and back again is 
through the utility function, as depicted in Figures 13.6 and 13.8. Again, a certainty 
equivalent is a dollar amount, whereas expected utility is in utility units. Be careful 
to use these terms consistently. 

Utility Function Assessment 

Different people have different risk attitudes and thus are willing to accept different 
levels of risk. Some are more prone to taking risks, while others are more conserva-
tive and avoid risk. Thus, assessing a utility function is a matter of subjective judg-
ment, just like assessing subjective probabilities. In this section we will look at two 
utility-assessment approaches that are based on the idea of certainty equivalents. The 
following section introduces an alternative approach. 

It is worth repeating at this point our credo about modeling and decision mak-
ing. Remember that the objective of the decision-analysis exercise is to help you 
make a better decision. To do this, we construct a model, or representation, of the 
decision. When we assess a utility function, we are constructing a mathematical 
model or representation of preferences. This representation then is included in the 
overall model of the decision problem and is used to analyze the situation at hand. 
The objective is to find a way to represent preferences that incorporates risk atti-
tudes. A perfect representation is not necessary. All that is required is a model that 
represents feelings about risk well enough to understand and analyze the current 
decision. 
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Assessment Using Certainty Equivalents 

The first assessment method requires the decision maker to assess several certainty 
equivalents. Suppose you face an uncertain situation in which you may have $10 in 
the worst case, $100 in the best case, or possibly something in between. You have a 
variety of options, each of which leads to some uncertain payoff between $10 and 
$100. To evaluate the alternatives, you must assess your utility for payoffs from $10 
to $100. 

We can get the first two points of your utility function by arbitrarily setting 
U(100) =1 and U(10) = 0. This may seem a bit strange but is easily explained. The 
idea of the utility function, remember, is to rank-order risky situations. We can al-
ways take any utility function and rescale it — add a constant and multiply by a 
positive constant — so that the best outcome has a utility of 1 and the worst has a 
utility of 0. The rank ordering of risky situations in terms of expected utility will be 
the same for both the original and rescaled utility functions. What we are doing here 
is taking advantage of this ability to rescale. We are beginning the assessment 
process by setting two utility points. The remaining assessments then will be 
consistent with the scale set by these points. (We could just as well set the endpoints 
at 100 and 0, or 100 and -50, say. We are using 1 and 0 because this choice of 
endpoints turns out to be particularly convenient. But we will have to be careful not 
to confuse these utilities with probabilities!) 

Now imagine that you have the opportunity to play the following lottery, which 
we will call a reference lottery: 

Win $100 with probability 0.5 
Win $10 with probability 0.5 

What is the minimum amount for which you would be willing to sell your opportu-
nity to play this game? $25? $30? Your job is to find your certainty equivalent (CE) 
for this reference gamble. A decision tree for your choice is shown in Figure 13.9. 

Finding your certainty equivalent is where your subjective judgment comes into 
play. The CE undoubtedly will vary from person to person. Suppose that for this ref-
erence gamble your certainty equivalent is $30. That is, for $31 you would take the 
money, but for $29 you would rather play the lottery; $30 must be your true indiffer-
ence point. 

Figure 13.9 
A "reference gamble" 
for assessing a utility 

function. Your job is to 
find the certainty 

equivalent (CE) so that 
you are indifferent to 

options A and B. 
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The key to the rest of the analysis is this: Because you are indifferent between 
$30 and the risky gamble, the utility of $30 must equal the expected utility of the 
gamble. We know the utilities of $10 and $100, so we can figure out the expected 
utility of the gamble: 

U(30) = 0.5 U(100) + 0.5 U(10) 
= 0.5(1)+ 0.5(0) = 0.5 

We have found a third point on your utility curve. To find another, take a different 
reference lottery: 

Win $100 with probability 0.5 
Win $30 with probability 0.5 

Now find your certainty equivalent for this new gamble. Again, the certainty equiva-
lent will vary from person to person, but suppose that you settle on $50. We can do 
exactly what we did before, but with the new gamble. In this case, we can find the 
utility of $50 because we know U(100) and U(30) from the previous assessment. 

U(50) = 0.5 U(100) + 0.5 U(30) 
= 0.5(1) + 0.5(0.5) = 
0.75 

This is the fourth point on your utility curve. 
Now consider the reference lottery: 

Win $30 with probability 0.5 
Win $10 with probability 0.5 

Again you must assess your CE for this gamble. Suppose it turns out to be $18. Now 
we can do the familiar calculations: 

U(18) = 0.5 U(30) + 0.5 U(10) = 
0.5(0.5) + 0.5(0) = 0.25 

We now have five points on your utility curve, and we can graph and draw a curve 
through them. The graph is shown in Figure 13.10. A smooth curve drawn through 
the assessed points should be an adequate representation of your utility function for 
use in solving your decision problem. 

Assessment Using Probabilities 

The CE approach requires that you find a dollar amount that makes you indifferent 
between the gamble and the sure thing in Figure 13.9. Another approach involves 
setting the sure amount in Alternative B and adjusting the probability in the refer-
ence gamble to achieve indifference. We will call this the probability-equivalent 
(PE) assessment technique. 
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For example, suppose you want to know your utility for $65. This is not one of 
the certainty equivalents that you assessed, and thus U(65) is unknown. You could 
make an educated guess. Based on the previous assessments and the graph in Figure 
13.10, U(65) must be between 0.75 and 1.00; it probably is around 0.85. But rather 
than guess, you can assess the value directly. Consider the reference lottery: 

Win $100 with probability p Win 
$10 with probability (1 - p) 

This gamble is shown in Figure 13.11. 
To find your utility value for $65, adjust p until you are indifferent between the 

sure $65 and the reference gamble. That is, think about various probabilities that 
make the chance of winning $100 greater or less until you are indifferent between 
Alternatives C and D in Figure 13.11. Now you can find U(65) because you know 
that U(100) = 1 and U(10) = 0: 

U(65) = p U(100) + (1 - p) U(10) 
=  p ( l )  +  ( 1 -  p ) ( 0 )  

= p 

Figure 13.10 
Graph of the utility 

function assessed 
using the certainty-

equivalent approach. 

 

 

 

 

 

 

Figure 13.11 
A reference gamble 

for assessing the utility 
of $65 using the 

probability-equivalent 
method. 
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The probability that makes you indifferent just happens to be your utility value for 
$65. For example, if you chose p = 0.87 to achieve indifference, then U(65) = 0.87. 

Gambles, Lotteries, and Investments 

As with the assessment of subjective probabilities, we have framed utility assess-
ment in terms of gambles or lotteries. For many individuals this evokes images of 
carnival games or gambling in a casino, images that may seem irrelevant to the deci-
sion at hand or even distasteful. An alternative is to think in terms of investments that 
are risky. Instead of considering if you would accept or reject a particular gamble, 
think about whether you would make a particular investment. Would you agree to in-
vest in a security with a p chance of yielding $1000 and a 1 -  p  chance of yielding 
nothing? How much would you be willing to pay for such a security? Framing your 
utility-assessment questions in this way may help you to think more clearly about 
your utility, especially for investment decisions. 

Risk Tolerance and the Exponential Utility Function 

The assessment process just described works well for assessing a utility function 
subjectively, and it can be used in any situation, although it can involve a fair num-
ber of assessments. An alternative approach is to base the assessment on a particular 
mathematical function, such as one of those that we introduced early in the chapter. 
In particular, let us consider the exponential utility function: 

U(x) = 1 - e─ x/R 

This utility function is based on the constant e = 2.71828 . . . , the base of natural 
logarithms. This function is concave and thus can be used to represent risk-averse 
preferences. As x becomes large, U(x) approaches 1. The utility of zero, U(0), is 
equal to 0, and the utility for negative x (being in debt) is negative. 

In the exponential utility function, R is a parameter that determines how risk-
averse the utility function is. In particular, R is called the risk tolerance. Larger val-
ues of R make the exponential utility function flatter, while smaller values make it 
more concave or more risk-averse. Thus, if you are less risk-averse — if you can tol-
erate more risk — you would assess a larger value for R to obtain a flatter utility func-
tion. If you are less tolerant of risk, then you would assess a smaller R and have a 
more curved utility function. 

How can R be determined? A variety of ways exist, but it turns out that R has a 
very intuitive interpretation that makes its assessment relatively easy. Consider the 
gamble 

Win $Y with probability 0.5 Lose 
$Y/2 with probability 0.5 
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Figure 13.12 
Assessing your risk 
tolerance. Find the 

largest value of Y for 
which you would pre-

fer Alternative E. 

Would you be willing to take this gamble if Y were $100? $2000? $35,000? Or, 
framing it as an investment, how much would you be willing to risk ($Y/2) in order 
to have a 50% chance of tripling your money (winning $Y and keeping your $Y/2)? 
At what point would the risk become intolerable? The decision tree is shown in 
Figure 13.12. 

The largest value of Y for which you would prefer to take the gamble rather than 
not take it is approximately equal to your risk tolerance. This is the value that you 
can use for R in your exponential utility function. For example, suppose that after 
considering the decision tree in Figure 13.12 you conclude that the largest Y for 
which you would take the gamble is Y = $900. Hence, R = $900. Using this as-
sessment in the exponential utility function would result in the utility function 

U(x) = 1 - e─  x/900 

This exponential utility function provides the translation from dollars to utility units. 
Once you have your R value and your exponential utility function, it is fairly 
easy to find certainty equivalents. For example, suppose that you face the following 
gamble: 

Win $2000 with probability 0.4 
Win $1000 with probability 0.4 
Win $500 with probability 0.2 

The expected utility for this gamble is 

EU = 0.4 U($2000) + 0.4 U($1000) + 0.2 U($500) 
= 0.4(0.8916) + 0.4(0.6708) 4 + 0.2(0.4262) = 
0.7102 

To find the CE we must work backward through the utility function. We want to find 
the value x such that U(x) = 0.7102. Set up the equation 

0.7102 == 1 ─ e─ x/900 

Subtract 1 from each side to get 

─ 0.2898 = ─ e─  x / 9 0 0  

 



Multiply through to eliminate the minus signs: 

0.2898 = e─ x/900  

Now we can take natural logs of both sides to eliminate the exponential term: 

 

 

The procedure above requires that you use the exponential utility function to trans-
late the dollar outcomes into utilities, find the expected utility, and finally convert to 
dollars to find the exact certainty equivalent. That can be a lot of work, especially if 
there are many outcomes to consider. Fortunately, an approximation is available from 
Pratt (1964) and also discussed in McNamee and Celona (1987). Suppose you can fig-
ure out the expected value and variance of the payoffs. Then the CE is approximately 

 
where μ and σ2 are the expected value and variance, respectively. For example, in 
the gamble above, the expected value (EMV or μ) equals $1300, and the standard 
deviation (σ) equals $600. Thus, the approximation gives 

 

The approximation is within $15. That's pretty good! This approximation is espe-
cially useful for continuous random variables or problems where the expected value 
and variance are relatively easy to estimate or assess compared to assessing the en-
tire probability distribution. The approximation will be closest to the actual value 
when the outcome's probability distribution is a symmetric, bell-shaped curve. 

What are reasonable R values? For an individual's utility function, the appropri-
ate value for R clearly depends on the individual's risk attitude. As indicated, the less 
risk-averse a person is, the larger R is. Suppose, however, that an individual or a 
group (a board of directors, say) has to make a decision on behalf of a corporation. It 
is important that these decision makers adopt a decision-making attitude based on 
corporate goals and acceptable risk levels for the corporation. This can be quite dif-
ferent from an individual's personal risk attitude; the individual director may be 
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The rule (from algebra) is that ln(ey) = y. Now we simply solve for x: 
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unwilling to risk $10 million, even though the corporation can afford such a loss. 
Howard (1988) suggests certain guidelines for determining a corporation's risk tol-
erance in terms of total sales, net income, or equity. Reasonable values of R appear 
to be approximately 6.4% of total sales, 1.24 times net income, or 15.7% of equity. 
These figures are based on observations that Howard has made in the course of con-
sulting with various companies. More research may refine these figures, and it may 
turn out that different industries have different ratios for determining reasonable R's. 

Using the exponential utility function seems like magic, doesn't it? One assess-
ment, and we are finished! Why bother with all of those certainty equivalents that we 
discussed above? You know, however, that you never get something for nothing, and 
that definitely is the case here. The exponential utility function has a specific kind of 
curvature and implies a certain kind of risk attitude. This risk attitude is called con-
stant risk aversion. Essentially it means that no matter how much wealth you have — 
how much money in your pocket or bank account — you would view a particular 
gamble in the same way. The gamble's risk premium would be the same no matter 
how much money you have. Is constant risk aversion reasonable? Maybe it is for 
some people. Many individuals might be less risk-averse if they had more wealth. 

In later sections of this chapter we will study the exponential utility function in 
more detail, especially with regard to constant risk aversion. The message here is 
that the exponential utility function is most appropriate for people who really believe 
that they would view gambles the same way regardless of their wealth level. But 
even if this is not true for you, the exponential utility function can be a useful tool for 
modeling preferences. The next section shows how sensitivity analysis can be per-
formed in terms of risk tolerance. 

Risk Tolerance and Sensitivity Analysis: Eagle Airlines, 
Revisited 

In Chapter 5 we learned how to use sensitivity analysis to help with probability as-
sessment. We also can use sensitivity analysis to deal with preferences. The idea of 
risk tolerance suggests a tidy way to perform the analysis. Essentially, we will vary 
the risk tolerance in the exponential utility function to determine at what point the 
decision changes. 

Let us reconsider the Eagle Airlines case that we used for sensitivity analysis in 
Chapter 5 (pages 155-156). Recall that the question was whether Dick Carothers 
should purchase an additional aircraft and expand Eagle Airlines' operations. After 
considerable modeling, we worked the problem down to the consideration of three 
uncertain variables: the capacity of the scheduled flights (proportion of seats sold), 
the operating cost, and the total number of hours flown during a year. Figure 13.13 
shows the decision tree with specific probabilities on the branches. Using these prob-
abilities, we calculate the EMV for purchasing the airplane as $9644, which is con-
siderably more than $4200. It also is true, however, that purchasing the airplane is 
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substantially riskier than investing in the money market. If Carothers is risk-averse, 
just how risk-averse can he be and still be willing to purchase the airplane? Or in 
terms of his risk tolerance, how low could his risk tolerance be before he would 
rather invest in the money market? 

Answering this question is conceptually simple, but the calculations are tedious. 
We will use the exponential utility function. Conceptually, all we want to do is find 
the critical value for R such that the expected utility of purchasing the airplane 
equals the expected utility of investing in the money market. Then the question is 
whether Carothers's risk tolerance is above or below the critical value. If it is above 
the critical value, then he should buy the airplane; if it is less, then he should go with 
the less risky money market. 

What is the easiest way to find the critical value? The simplest is to use a com-
puter and search for the R value that makes the two expected utilities equal. 
Decision-analysis programs such as DATA and DPL allow the user to specify a value 
for R, the risk tolerance. In this case, it is a simple matter to try different values for R 
until the critical one is found. 

An electronic spreadsheet provides a convenient environment for sensitivity 
analysis with respect to risk tolerance. The expected utility calculations can be pro-
grammed easily into the cells of the spreadsheet. Figure 13.14 shows a Microsoft 
Excel spreadsheet with a table created to perform a sensitivity analysis on the risk 
tolerance. The decision tree, which is not shown but is in the upper part of the 
spreadsheet, has been created using macro commands to enter the decision and 

 

Figure 13.13 
Eagle Airlines' 

decision tree. 
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Figure 13.14 
Using a spreadsheet to 
find the critical value 

for R in the Eagle 
Airlines problem. 

chance nodes shown in Figure 13.13. Cells B5 and B6 (not shown) contain the final 
calculations of expected utility for purchasing the Piper Seneca and the utility for 
earning $4200 in the money market, each case using the R value specified in Cell 
B18. In Cell B20, a formula reports which of the two alternatives has the greater ex-
pected utility. A table in Cells A20-B33 has been created in which the R values along 
the right-hand side are used in the expected utility calculations. This table is created 
by selecting the block of cells, choosing the "Table" command, and specifying B18 
as the column-input cell. It may be worthwhile to recalculate the table several times, 
each time using a narrower range of R values. In the first calculation of the table, 
using R values over a very wide range helps to find the approximate location of the 
critical R. Then the table can be calculated several times, each using a finer grid to 
home in on the precise critical value. As you can see in Figure 13.14, the table 
checks R values that differ by only $10. 

As Figure 13.14 also shows, the critical R value is approximately $14,240. Now 
Carothers must ask whether he would be willing to accept an investment in which he 
would have the same chance of winning $14,240 or losing $7120. If he concludes 
that he would not take this gamble, then his risk tolerance must be smaller than 
$14,240, and he should not purchase the airplane. But if he would participate gladly 
in this gamble, then his risk tolerance must be greater than $14,240, and he should 
buy the airplane. 

Decreasing and Constant Risk Aversion (Optional) 

In this section we will consider how individuals might deal with risky investments. 
Suppose you had $1000 to invest. How would you feel about investing $500 in an 
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extremely risky venture in which you might lose the entire $500? Now suppose you 
have saved more money and have $20,000. Now how would you feel about that ex-
tremely risky venture? Is it more or less attractive to you? How do you think a per-
son's degree of risk aversion changes with wealth? 

Decreasing Risk Aversion 

If an individual's preferences show decreasing risk aversion, then the risk premium 
decreases if a constant amount is added to all payoffs in a gamble. Expressed infor-
mally, decreasing risk aversion means the more money you have, the less nervous 
you are about a particular bet. 

For example, suppose an individual's utility curve can be described by a loga-
rithmic function: 

U(x) = ln(x) 

where x is the wealth or payoff and ln(x) is the natural logarithm of x. Using this log-
arithmic utility function, consider the gamble 

Win $10 with probability 0.5 
Win $40 with probability 0.5 

To find the certainty equivalent, we first find the expected utility. The utility values 
for $10 and $40 are 

U($10) = ln(10) = 2.3026 
U($40) = ln(40) = 3.6889 

Calculating expected utility: 

EU = 0.5(2.3026) + 0.5(3.6889) = 2.9957 

To find the certainty equivalent, you must find the certain value x that has U(x) = 
2.9957; thus, set the utility function equal to 2.9957: 

2.9957 = ln(x) Now solve 

for x. To remove the logarithm, we take antilogs: 
e2.9957 = eln(x) = x 

The rule here corresponds to what we did with the exponential function. Here we 
have eln(y) = y. Finally, we simply calculate e2.9957: 

x = e2.9957 = $20 = CE 

To find the risk premium, we need the expected payoff, which is 

EMV = 0.5($10) + 0.5($40) = $25 

Thus, the risk premium is EMV - CE = $25 - $20 = $5. 
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Using the same procedure, we can find risk premiums for the lotteries as shown 
in Table 13.3. Notice that the sequence of lotteries is constructed so that each is like 
having the previous one plus $10. For example, the $20-$50 lottery is like having 
the $10-$40 lottery plus a $10 bill. The risk premium decreases with each $10 addi-
tion. The decreasing risk premium reflects decreasing risk aversion, which is a prop-
erty of the logarithmic utility function. 

An Investment Example 

For another example, suppose that an entrepreneur is considering a new business in-
vestment. To participate, the entrepreneur must invest $5000. There is a 25% chance 
that the investment will earn back the $5000, leaving her just as well off as if she had 
not made the investment. But there is also a 45% chance that she will lose the $5000 
altogether, although this is counterbalanced by a 30% chance that the investment 
will return the original $5000 plus an additional $10,000. Figure 13.15 shows the en-
trepreneur's decision tree. 

We will assume that this entrepreneur's preferences can be modeled with the log-
arithmic utility function U(x) = ln(x), where x is interpreted as total wealth. Suppose 
that the investor now has $10,000. Should she make the investment or avoid it? 

The easiest way to solve this problem is to calculate the expected utility of the in-
vestment and compare it with the expected utility of the alternative, which is to do 
nothing. The expected utility of doing nothing simply is the utility of the current 
wealth, or U(10,000), which is 

U(10,000) = ln(10,000) = 9.2103 

The expected utility of the investment is easy to calculate: 

EU = 0.30 U(20,000) + 0.25 U(10,000) + 0.45 U(5000) = 
0.30(9.9035) + 0.25(9.2103) + 0.45(8.5172) = 9.1064 

Because the expected utility of the investment is less than the utility of not investing, 
the investment should not be made. 

Table 13.3 
Risk premiums from 

logarithmic utility 
function. 

 

50-50 Camble 
Between ($) 

Expected 
Value ($) 

Certainty 
Equivalent ($) 

Risk 
Premium ($) 

10, 40 25 20.00 5.00 

20, 50 35 31.62 3.38 
30, 60 45 42.43 2.57 
40, 70 55 52,92 2.08 
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Figure 13.15 
Entrepreneur's invest-
ment decision. Current 
wealth is denoted by x. 

Now, suppose that several years have passed. The utility function has not 
changed, but other investments have paid off handsomely, and she currently has 
$70,000. Should she undertake the project now? Recalculating with a base wealth of 
$70,000 rather than $10,000, we find that the utility of doing nothing is U(70,000) 
= 11.1563, and the EU for the investment is 11.1630. Now the expected utility of the 
investment is greater than the utility of doing nothing, and so she should invest. 

The point of these examples is to show how decreasing risk aversion determines 
the way in which a decision maker views risky prospects. As indicated, the wealthier 
a decreasingly risk-averse decision maker is, the less anxious he or she will be about 
taking a particular gamble. Generally speaking, decreasing risk aversion makes 
sense when we think about risk attitudes and the way that many people appear to 
deal with risky situations. Many would feel better about investing money in the 
stock market if they were wealthier to begin with. For such reasons, the logarithmic 
utility function is commonly used by economists and decision theorists as a model of 
typical risk attitudes. 

Constant Risk Aversion 

An individual displays constant risk aversion if the risk premium for a gamble does 
not depend on the initial amount of wealth held by the decision maker. Intuitively, 
the idea is that a constantly risk-averse person would be just as anxious about taking 
a bet regardless of the amount of money available. 

If an individual is constantly risk-averse, the utility function is exponential. It 
would have the following form: 

U(x) = 1 ─ e─ x/R 

For example, suppose that the decision maker has assessed a risk tolerance of $35: 

U(x) = 1 ─ e─ x/35 

We can perform the same kind of analysis that we did with the logarithmic utility 
function above. Consider the gamble 
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Win $10 with probability 0.5 
Win $40 with probability 0.5 

As before, the expected payoff is $25. To find the CE, we must find the expected util-
ity, which requires plugging the amounts $10 and $40 into the utility function: 

U(10) = 1 ─ e─10/35 = 0.2485 
U(40) = 1 ─ e─40/35 =0.6811 

Thus, EU = 0.5 (0.2485) + 0.5 (0.6811) = 0.4648. To find the certainty equivalent, 
set the utility function to 0.4648. The value for x that gives the utility of 0.4648 is 
the gamble's CE: 

0.4648 = 1 ─ e─ x/35 

Now we can solve for x as we did earlier when working with the exponential utility 
function: 

0.5352 = e─ x/35 
ln(0.5352) = ─0.6251 = ─ x/35 

x = 0.6251(35) = $21.88 = CE 

Finally, the expected payoff (EMV) is $25, and so the risk premium is 

Risk Premium = EMV - CE = $25 - $21.88 = $3.12 

Using the same procedure, we can find the risk premium for each gamble in 
Table 13.4. The risk premium stays the same as long as the difference between the 
payoffs does not change. Adding a constant amount to both sides of the gamble does 
not change the decision maker's attitude toward the gamble. 

Alternatively, you can think about this as a situation where you have a bet in 
which you may win $15 or lose $15. In the first gamble above, you face this bet with 
$25 in your pocket. In the constant-risk-aversion situation, the way you feel about 
the bet (as reflected in the risk premium) is the same regardless of how much 
money is added to your pocket. In the decreasing-risk-aversion situation, adding 
something to your pocket made you less risk-averse toward the bet, thus resulting 
in a lower risk premium. 

Table 13.4 
Risk premiums from 

exponential utility 
function. 

 

50-50 Gamble 
Between ($) 

Expected 
Value ($) 

Certainty 
Equivalent ($) 

Risk Premium 
($) 

10, 40 25 21.88 3,12 

20, 50 35 31.88 3.12 
30, 60 45 41.88 3.12 
40, 70 55 51.88 3.12 
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Figure 13.16 plots the two utility functions on the same graph. They have been 
rescaled so that U(10) = 0 and U(100) = 1 in each case. Note their similarity. It does 
not take a large change in the utility curve's shape to alter the nature of the individ-
ual's risk attitude. 

Is constant risk aversion appropriate? Consider the kinds of risks that railroad 
barons such as E. H. Harriman undertook. Would a person like Harriman have been 
willing to risk millions of dollars on the takeover of another railroad had he not al-
ready been fairly wealthy? The argument easily can be made that the more wealth 
one has, the easier it is to take larger risks. Thus, decreasing risk aversion appears to 
provide a more appropriate model of preferences than does constant risk aversion. 
This is an important point to keep in mind if you decide to use the exponential utility 
function and the risk-tolerance parameter; this utility function displays constant risk 
aversion. 

After all is said and done, while the concepts of decreasing or constant risk aver-
sion may be intriguing from the point of view of a decision maker who is interested 
in modeling his or her risk attitude, precise determination of a decision maker's util-
ity function is not yet possible. Decision theorists still are learning how to elicit and 
measure utility functions. Many unusual effects arise from human nature; we will 
study some of these in the next chapter. It would be an overstatement to suggest that 
it is possible to determine precisely the degree of an individual's risk aversion or 
whether he or she is decreasingly risk-averse. It is a difficult enough problem just to 
determine whether someone is risk-averse or risk-seeking! 

Thus, it may be reasonable to use the exponential utility function as an approxima-
tion in modeling preferences and risk attitudes. A quick assessment of risk tolerance, 

 

Figure 13.16 
Logarithmic and 

exponential utility 
functions plotted 
over the range of 

$10 to $100. 
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and you are on your way. And if even that seems a bit strained, then it is always possi-
ble to use the sensitivity-analysis approach; it may be that a precise assessment of the 
risk tolerance is not necessary. 

Some Caveats 

A few things remain to be said about utilities. These are thoughts to keep in mind as 
you work through utility assessments and use utilities in decision problems. 

1 Utilities do not add up. That is, U(A + B) ≠ U(A) + U(B). This actually is the 
whole point of having a nonlinear utility function. Thus, when using utilities in a 
decision analysis, you must calculate net payoffs or net contributions at the end- 
points of the decision tree before transforming to utility values. 

2 Utility differences do not express strength of preferences. Suppose that U(A1) 
─ 
U(A2) > U(A3) — U(A4). This does not necessarily mean that you would rather 
go from A2 to A1 instead of from A4 to A3. Utility only provides a numerical 
scale for ordering preferences, not a measure of their strengths. Whether this is 
reasonable is a matter of some debate. For example, von Winterfeldt and 
Edwards (1986) give the following example: You are first told that you will re 
ceive $100, and then told that you actually will receive $500, and then finally 
told that the actual payment will be $10,000. It would indeed be a pleasant sur 
prise to go from $100 to $500, but for most of us, the delight we would experi 
ence from $500 to $10,000 would eclipse the difference between $100 and 
$500. Von Winterfeldt and Edwards argue that we can make judgments of just 
this sort. Whether one agrees or not, it is necessary to interpret utility carefully 
in this regard. 

3 Utilities are not comparable from person to person. A utility function is a subjec 
tive personal statement of an individual's preferences and so provides no basis 
for comparing utilities among individuals. 

SUMMARY In this chapter we have explored some basic concepts that underlie risk and return 
trade-offs, with the aim of being able to understand how to model a decision maker's 
risk preferences. We discussed the notion of a risk premium (EMV — CE), which 
can be thought of as a measure of how risk-averse a decision maker is in regard to a 
particular risky situation. The basic procedure for assessing a utility function re-
quires comparison of lotteries with riskless payoffs. Once a utility function has been 
determined, the procedure is to replace dollar payoffs in a decision tree or influence 
diagram with utility values and solve the problem to find the option with the greatest 
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expected utility. We also studied the exponential utility function and the notion of 
risk tolerance. Because of its nature, the exponential utility function is particularly 
useful for modeling preferences in decision analysis. The concepts of decreasing and 
constant risk aversion also were discussed. 

E X E R C I S E S  

13.1 Why is it important for decision makers to consider their attitudes toward risk? 

13.2 We have not given a specific definition of risk. How would you define it? Give examples 
of lotteries that vary in riskiness in terms of your definition of risk. 

13.3 Explain in your own words the idea of a certainty equivalent. 

13.4 Explain what is meant by the term risk premium. 

13.5 Explain in your own words the idea of risk tolerance. How would it apply to utility func 
tions other than the exponential utility function? 

13.6 Suppose a decision maker has the utility function shown in Table 13.1. An investment 
opportunity has EMV $1236 and expected utility 0.93. Find the certainty equivalent for 
this investment and the risk premium. 

13.7 A decision maker's assessed risk tolerance is $1210. Assume that this individual's pref 
erences can be modeled with an exponential utility function. 
a   Find U($1000), U($800), U($0), and U(-$1250). 
b   Find the expected utility for an investment that has the following payoff distribution: 

P($1000) = 0.33 
P($800) = 0.21 
P($0) = 0.33 P(-
$1250)=0.13 

c   Find the exact certainty equivalent for the investment and the risk premium. 
d   Find the approximate certainty equivalent using the expected value and variance of 

the payoffs. 
e   Another investment possibility has expected value $2400 and standard deviation 

$300. Find the approximate certainty equivalent for this investment. 

13.8 Many firms evaluate investment projects individually on the basis of expected value and 
at the same time maintain diversified holdings in order to reduce risk. Does this make 
sense in light of our discussion of risk attitudes in this chapter? 

13.9 A friend of yours, who lives in Reno, has life insurance, homeowner's insurance, and au 
tomobile insurance and also regularly plays the quarter slot machines in the casinos. 
What kind of a utility function might explain this kind of behavior? How else might you 
explain such behavior? 

13.10 Two risky gambles were proposed at the beginning of the chapter: 
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Game 1       Win $30 with probability 0.5 Lose 
$1 with probability 0.5 

Game 2       Win $2000 with probability 0.5 Lose 
$1900 with probability 0.5 

Many of us would probably pay to play Game 1 but would have to be paid to participate 
in Game 2. Is this true for you? How much would you pay (or have to be paid) to take 
part in either game? 

QUESTIONS   AND   PROBLEMS 

13.11 St. Petersburg Paradox. Consider the following game that you have been invited to 
play by an acquaintance who always pays his debts. Your acquaintance will flip a fair 
coin. If it comes up heads, you win $2. If it comes up tails, he flips the coin again. If 
heads occurs on the second toss, you win $4. If tails, he flips again. If heads occurs on the 
third toss, you win $8, and if tails, he flips again, and so on. Your payoff is an uncertain 
amount with the following probabilities: 

 

Payoff Probability 

2 0.50  

4 0.25  
8 0.125  
● ●  
● ●  
● ● (where n is the number 

2n 0.5n of the toss when the 
● ● first head occurs) 
● ●  
● ●  

This is a good game to play because you are bound to come out ahead. There is no possi-
ble outcome from which you can lose. How much would you pay to play this game? $10? 
$20? What is the expected value of the game? Would you be indifferent between playing 
the game and having the expected value for sure? 

13.12 Assess your utility function in two different ways. 
a   Use the certainty-equivalent approach to assess your utility function for wealth over 

a range of $100 to $20,000. 
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b Use the probability-equivalent approach to assess U($1500), U($5600), U($9050), 
and U($ 13,700). Are these assessments consistent with the assessments made in part 
a? Plot these assessments and those from part a on the same graph and compare them. 

13.13 Assess your risk tolerance (R). Now rescale your exponential utility function — the 
one 
you obtain by substituting your R value into the exponential utility function — so 
that 
U($100) = 0 and U($20,000) =  1.   [That is,   find constants a and b so that 
a + b ( 1  ─ e─100/R) = 0 and a + b(1 ─ e─20'000/R) = 1.] Now plot the rescaled util 
ity function on the same graph with the utility assessments from Problem 13.12. How do 
your assessments compare? 

13.14 Let us return to the Texaco-Pennzoil example from Chapter 4 and think about Liedtke's 
risk attitude. Suppose that Liedtke's utility function is given by the utility function in 
Table 13.5. 
a Graph this utility function. Based on this graph, how would you classify Liedtke's at-

titude toward risk? 
b Use the utility function in conjunction with the decision tree sketched in Figure 4.2 to 

solve Liedtke's problem. With these utilities, what strategy should he pursue? Should 
he still counteroffer $5 billion? What if Texaco counteroffers $3 billion? Is your an-
swer consistent with your response to part a? 

c Based on this utility function, what is the least amount (approximately) that Liedtke 
should agree to in a settlement? (Hint: Find a sure amount that gives him the same ex-
pected utility that he gets for going to court.) What does this suggest regarding plau-
sible counteroffers that Liedtke might make? 

13.15 Of course, Liedtke is not operating by himself in the Texaco-Pennzoil case; he must re 
port to a board of directors. Table 13.6 gives utility functions for three different directors. 
Draw graphs of these. How would you classify each director in terms of his or her atti 
tude toward risk? What would be the strategies of each? (That is, what would each one do 
with respect to Texaco's current offer, and how would each react to a Texaco counterof 
fer of $3 billion? To answer this question, you must solve the decision tree — calculate ex 
pected utilities — for each director.) 

13.16 How do you think Liedtke (Problem 13.14) and the directors in Problem 13.15 will be 
able to reconcile their differences? 

13.17  Rescale the utility function for Director A in Problem 13.15 so that it ranges between 0 
and 1. That is, find constants a and b so that when you multiply the utility function by a 

Table 13.5 
Utility function 

for Liedtke. 

 

Payoff 
(Billions) 

Utility 

10.3 1.00 
5.0 0.75 
3,0 0.60 
2.0 0.45 
0,0 0.00 
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Table 13.6 
Utility functions for 

three Pennzoil 
directors. 

 

 Utility 

Payoff Director A Director B Director C 

10.3 3.0 100 42.05 

5.0 2.9 30 23.50 
3.0 2.8 15 16.50 
2.0 2.6 8 13.00 
0.0 1.0 0 6.00 

and then add b, the utility for $10.30 is 1 and the utility for $0 is 0. Graph the rescaled 
utility function and compare it to the graph of the original utility function. Use the 
rescaled utility function to solve the Texaco-Pennzoil decision tree. Is the optimal choice 
consistent with the one you found in Problem 13.15? 

13.18 What if Hugh Liedtke were risk-averse? Based on Figure 4.2, find a critical value for 
Hugh Liedtke's risk tolerance. If his risk tolerance is low enough (very risk-averse), he 
would accept the $2 billion offer. How small would his risk tolerance have to be for 
EU(Accept $2 Billion) to be greater than EU(Counteroffer $5 Billion)? 

13.19 The idea of dominance criteria and risk aversion come together in an interesting way, 
leading to a different kind of dominance. If two risky gambles have the same expected 
payoff, on what basis might a risk-averse individual choose between them without per 
forming a complete utility analysis? 

13.20 This problem is related to the ideas of dominance that we discussed in Chapters 4 and 8. 
Investment D below is said to show "second-order stochastic dominance" over 
Investment C. In this problem, it is up to you to explain why D dominates C. 

You are contemplating two alternative uncertain investments, whose distributions for 
payoffs are as below. 

 

 Probabilities  
Payoff Investment C Investment D 

50 1/3 1/4 

100 1/3 1/2 
150 1/3 1/4 

If your preference function is given by U(x) = 1 — e ─x/100, calculate EU for both C 
and D. Which would you choose? 
Plot the CDFs for C and D on the same graph. How do they compare? Use the graph 
to explain intuitively why any risk-averse decision maker would prefer D. (Hint: 
Think about the concave shape of a risk-averse utility function.) 
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13.21 Utility functions need not relate to dollar values. Here is a problem in which we know lit-
tle about five abstract outcomes. What is important, however, is that a person who does 
know what A to E represent should be able to compare the outcomes using the lottery 
procedures we have studied. 

A decision maker faces a risky gamble in which she may obtain one of five outcomes. 
Label the outcomes A, B, C, D, and E. A is the most preferred, and E is least preferred. 
She has made the following three assessments. 

• She is indifferent between having C for sure or a lottery in which she wins A with 
probability 0.5 or E with probability 0.5. 

• She is indifferent between having B for sure or a lottery in which she wins A with 
probability 0.4 or C with probability 0.6. 

• She is indifferent between these two lotteries: 

1: A 50% chance at B and a 50% chance at D 
2: A 50% chance at A and a 50% chance at E 

What are U(A), U(B), U(C), U(D), and U(E)? 

13.22 You have considered insuring a particular item of property (such as an expensive camera, 
your computer, or your Stradivarius violin), but after considering the risks and the insur 
ance premium quoted, you have no clear preference for either purchasing the insurance 
or taking the risk. The insurance company then tells you about a new scheme called 
"probabilistic insurance." You pay half the above premium but have coverage only in the 
sense that in the case of a claim there is a probability of one-half that you will be asked to 
pay the other half of the premium and will be completely covered, or that you will not be 
covered and will have your premium returned. The insurance company can be relied on 
to be fair in flipping the coin to determine whether or not you are covered. 
a Do you consider yourself to be risk-averse? 
b Would you purchase probabilistic insurance? 
c Draw a decision tree for this problem. 
d Show that a risk-averse individual always should prefer the probabilistic insurance. 

(Hint: This is a difficult problem. To solve it you must be sure to consider that you are in-
different between the regular insurance and no insurance. Write out the equation relating 
these two alternatives and see what it implies. Another strategy is to select a specific util-
ity function — the log utility function U(x) = log(x), say — and then find values for the 
probability of a claim, your wealth, the insurance premium, and the value of your piece 
of property so that the utility of paying the insurance premium is equal to the expected 
utility of no insurance. Now use these values to calculate the expected utility of the prob-
abilistic insurance. What is the result?) 

13.23 An investor with assets of $10,000 has an opportunity to invest $5000 in a venture that is 
equally likely to pay either $15,000 or nothing. The investor's utility function can be de 
scribed by the log utility function U(x) = ln(x), where x is his total wealth. 
a   What should the investor do? 
b   Suppose the investor places a bet with a friend before making the investment deci-

sion. The bet is for $1000; if a fair coin lands heads up, the investor wins $1000, but 



494      CHAPTER 13 RISK ATTITUDES 

if it lands tails up, the investor pays $1000 to his friend. Only after the bet has been 
resolved will the investor decide whether or not to invest in the venture. What is an 
appropriate strategy for the investor? If he wins the bet, should he invest? What if he 
loses the bet? 

c    Describe a real-life situation in which an individual might find it appropriate to gamble 
before deciding on a course of action. 

Source: D. E. Bell (1988) "Value of Pre-Decision Side Bets for Utility Maximizers." Management 
Science, 34, 797-800. 

13.24 A bettor with utility function U(x) = ln(x), where x is total wealth, has a choice between 
the following two alternatives: 

A       Win $ 10,000 with probability 0.2 

Win $1000 with probability 0.8 

B        Win $3000 with probability 0.9 Lose 

$2000 with probability 0.1 

a   If the bettor currently has $2500, should he choose A or B? b   
Repeat a, assuming the bettor has $5000. c    Repeat a, 
assuming the bettor has $10,000. 
d   Do you think that this pattern of choices between A and B is reasonable? Why or why 

not? 
Source: D. E. Bell (1988) "One-Switch Utility Functions and a Measure of Risk." Management Science, 
34, 1416-1424. 

13.25 Repeat Problem 13.24 with U(x) = 0.0003x ─ 8.48 e─x/2775. A utility function of this 
form is called linear-plus-exponential, because it contains both linear (0.0003 x) and ex 
ponential terms. It has a number of interesting and useful properties, including the fact 
that it only switches once among any pair of lotteries (such as those in Problem 13.24) as 
wealth increases (see Bell 1995a, b). 

13.26 Show that the linear-plus-exponential utility function in Problem 13.25 has decreasing 
risk aversion. {Hint: You can use this utility function to evaluate a series of lotteries like 
those described in the text and analyzed in Tables 13.3 and 13.4. Show that the risk pre 
mium for a gamble decreases as wealth increases.) 

13.27 Buying and selling prices for risky investments obviously are related to certainty equiva 
lents. This problem, however, shows that the prices depend on exactly what is owned in 
the first place! 

Suppose that Peter Brown's utility for total wealth (A) can be represented by the utility 
function U(A) = ln(A). He currently has $1000 in cash. A business deal of interest to him 
yields a reward of $100 with probability 0.5 and $0 with probability 0.5. 
a   If he owns this business deal in addition to the $1000, what is the smallest amount for 

which he would sell the deal? 
b   Suppose he does not own the deal. What equation must be solved to find the largest 

amount he would be willing to pay for the deal? 
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c    For part b, it turns out that the most he would pay is $48.75, which is not exactly the 
same as the answer in part a. Can you explain why the amounts are different? 

d   {Extra credit for algebra hotshots.) Solve your equation in part b to verify the answer 
($48.75) given in part c. 

Source: This problem was suggested by R. L. Winkler. 

13.28 We discussed decreasing and constant risk aversion. Are there other possibilities? Think 
about this as you work through this problem. 

Suppose that a person's utility function for total wealth is 

U(A) = 200A ─ A2        for 0 ≤ A ≤ 100 

where A represents total wealth in thousands of dollars. 
a   Graph this preference function. How would you classify this person with regard to 

her attitude toward risk? 
b   If the person's total assets are currently $10K, should she take a bet in which she will 

win $10K with probability 0.6 and lose $10K with probability 0.4? 
c    If the person's total assets are currently $90K, should she take the bet given in part b? 
d   Compare your answers to parts b and c. Does the person's betting behavior seem rea-

sonable to you? How could you intuitively explain such behavior? 

Source: R. L. Winkler (1972). 

13.29 Suppose that a decision maker has the following utility function: 

U(x) = ─0.000156x2 + 0.028125x - 0.265625 

Use this utility function to calculate risk premiums for the gambles shown in Tables 13.3 
and 13.4; create a similar table but based on this quadratic utility function. How would 
you classify the risk attitude of a decision maker with this utility function? Does such a 
risk attitude seem reasonable to you? 

13.30 The CEO of a chemicals firm must decide whether to develop a new process that has 
been suggested by the research division. His decision tree is shown in Figure 13.17. 
There are two sources of uncertainty. The production cost is viewed as a continuous ran 
dom variable, uniformly distributed between $1.75 and $2.25, and the size of the market 

 

Figure 13.17 
Decision tree for 

Problem 13.30. 
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(units sold) for the product is normally distributed with mean 10,300 units and standard 
deviation 2200 units. 

The firm's CEO is slightly risk-averse. His utility function is given by 

U(Z) = 1 ─ e─z/20'000        where Z is the net profit 

Should the CEO develop the new process? Answer this question by running a computer 
simulation, using 200 trials. Should the decision maker be concerned about the fact that 
if he develops the new process, the utility could be less than or greater than the utility for 
$0? On what basis should he make his decision? 

13.31 The year is 2020, and you are in the supercomputer business. Your firm currently pro-
duces a machine that is relatively expensive (list price $6 million) and relatively slow 
(for supercomputers in the twenty-first century). Speed of supercomputers is measured in 
gigaflops per second (gps), where one "flop" is one calculation. Thus, one 1 gps = 1 bil-
lion calculations per second. Your current machine is capable of 150 gps. If you could do 
it, you would prefer to develop a supercomputer that costs less (to beat the competition) 
and is faster. 

You have a research-and-development (R&D) decision to make based on two alterna-
tives. You can choose one or the other of the following projects, or neither, but budget 
constraints prevent you from engaging in both projects. 
A The super-supercomputer. This project involves the development of a machine that 

is extremely fast (800 gps) and relatively inexpensive ($5 million). But this is a fairly 
risky project. The engineers who have been involved in the early stages estimate that 
there is only a 50% chance that this project would succeed. If it fails, you will be 
stuck with your current machine. 

B The better supercomputer. This project would pursue the development of an 
$8 million machine capable of 500 gps. This project also is somewhat risky. The en-
gineers believe that there is only a 40% chance that this project will achieve its goal. 
They quickly point out, however, that even if the $8 million, 500 gps machine does 
not materialize, the technology involved is such that they would at least be able to 
produce a $5 million machine capable of 350 gps. 

The decision tree is shown in Figure 13.18. To decide between the two alternatives, you 
have made the following assessments: 
I The best possible outcome is the $5 million, 800 gps machine, and the worst outcome 

is the status quo $6 million, 150 gps machine. 
II If  you had the choice,  you would be indifferent between Alternat ives X and Y shown 

in Figure 13.19a.  
III If you had the choice, you would be indifferent between Alternatives X' and Y' in 

Figure 13.19b. 
a     Using assessments I, II, and III, decide between Projects A and B. Justify your 

decision. 
b     Explain why Project A appears to be riskier than Project B. Given that A is 

riskier than B, would you change your answer to part a? Why or why not? 

13.32 Show that the value of Y that yields indifference between the two alternatives in Figure 
13.12 is within about 4% of the risk tolerance R. 
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Figure 13.18 
Choosing between two 

risky supercomputer 
development projects. 

 

Figure 13.19 
Assessments to assist 

your choice from 
among the supercom-

puter R&D projects in 
Problem 13.31. 

C A S E     S T U D I E S  

INTERPLANTS,   INC. 

Don Newcomb was perplexed. It had been five years since he had founded 
Interplants, Inc., a research-and-development firm that developed genetically engi-
neered plants for interplanetary space flight. During that five years, he and his scien-
tists had made dramatic advances in developing special plants that could be used for 
food and air-purification systems in space stations and transports. In fact, he mused, 
their scientific success had been far greater than he had ever expected. 

Five years ago, after the world superpowers had agreed to share space-travel 
technology, the outlook had been quite rosy. Everyone had been optimistic. Indeed, 
he was one of many investors who had jumped at the chance to be involved in the 
development of such technology. But now, after five tumultuous years, the prospects 
were less exciting. 

First, there had been the disappointing realization that none of the superpowers had 
made substantial success on an ion engine to power space vehicles. Such an engine 
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was absolutely crucial to the success of interplanetary space flight, because — theo-
retically, at least — it would make travel 10 times as fast as conventionally powered 
ships. When the importance of such an engine became obvious, the superpowers had 
generously funded a huge multinational research project. The project had made sub-
stantial progress, but many hurdles remained. Don's risk assessors estimated that 
there was still a 15% chance that the ion engine would prove an infeasible power 
source. If this were to happen, of course, Don and the many other investors in space-
travel technology would lose out. 

Then there was the problem with the settlement policy. The superpowers could 
not agree on a joint policy for the settlement of interplanetary space, including the 
deployment of space stations as well as settlements on planets and their satellites. 
The United American Alliance urged discretion and long-range planning in this mat-
ter, suggesting that a multinational commission be established to approve individual 
settlement projects. Pacificasia and the Allied Slavic Economic Community were de-
manding that space be divided now. By immediately establishing property rights, 
they claimed, the superpowers would be able to develop the optimum space econ-
omy in which the superpowers could establish their own economic policies within 
their "colonies" as well as determine trade policies with the other superpowers. 
Europa favored the idea of a commission, but also was eager to explore other avail-
able economic possibilities. 

The discussion among the superpowers had been going on since long before the 
founding of Interplants. Five years ago, progress was being made, and it appeared 
that an agreement was imminent. But 18 months ago the process stalled. The partic-
ipants in the negotiations had established positions from which they would not 
budge. Don had followed the discussions closely and had even provided expert ad-
vice to the negotiators regarding the potential for interplanetary agricultural devel-
opments. He guessed that there was only a 68% chance that the superpowers would 
eventually arrive at an agreement. Naturally, until an agreement was reached there 
would be little demand for space-traveling plants. 

Aside from these external matters, Don still faced the difficult issue of develop-
ing a full-scale production process for his plants. He and his engineers had some 
ideas about the costs of the process, but at this point, all they could do was come up 
with a probability distribution for the costs. In thinking about the distribution, Don 
had decided to approximate it with a three-point discrete distribution. Thus, he char-
acterized the three branches as "inexpensive," "moderate," and "costly," with proba-
bilities of 0.185, 0.63, and 0.185, respectively. Of course, his eventual profit (or loss) 
depended on the costs of the final process. 

Don also had thought long and hard about the profits that he could anticipate 
under each of the various scenarios. Essentially, he thought about the uncertainty in 
two stages. First was the determination of costs, and second was the outcome of the 
external factors (the ion-engine research and the negotiations regarding settlement 
policy). If costs turned out to be "inexpensive," then, in the event that the superpow-
ers agreed and the ion engine was successful, he could expect a profit of 125 billion 
credits. He would lose 15 billion credits if either the engine or the negotiations 
failed. Likewise, if costs were "moderate," he could anticipate either a profit of 100 
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billion credits if both of the external factors resulted in a positive outcome, or a loss 
of 18 billion if either of the external factors were negative. Finally, the correspond-
ing figures in the case of a "costly" production process were profits of 75 bi llion 
credits or a loss of 23 billion. 

"This is so confusing," complained Don to Paul Fiester, his chief engineer. "I re-
ally never expected to be in this position. Five years ago none of these risks were ap-
parent to me, and I guess I just don't tolerate risk well." 

After a pause, Paul quietly suggested "Well, maybe you should sell the business." 
Don considered that. "Well, that's a possibility. I have no idea how many crazy 

people out there would want it." 
"Some of the other engineers and I might be crazy enough," Paul replied. 

"Depending on the price, of course. At least we'd be going in with our eyes open. We 
know what the business is about and what the risks are." 

Don gave the matter a lot of thought that night. "What should I sell the company 
for? I hate to give up the possibility of earning up to 125 billion credits. But I don't 
like the possibility of losing 23 billion either — no one would!" As he lay awake, he 
finally decided that he would let the business go — with all its risks — for 20 
billion credits. If he could get that much for it, he'd sell. If not, he'd just as soon 
stick with it, in spite of his frustrations with the risks. 

Questions 

1 Draw a decision tree for Don Newcomb's problem. 

2 What is the significance of his statement that he would sell the business for 20 bil 
lion credits? 

3 Suppose that Don's risk attitude can be modeled with an exponential utility func 
tion. If his certainty equivalent were 15 billion credits, find his risk tolerance. What 
would his risk tolerance be if his CE were 20 billion? 

TEXACO   PENNZOIL  ONE   MORE  TIME 

In Problem 12.11 (page 454), we made EVPI calculations for Liedtke's decision in 
the Texaco-Pennzoil case. Calculating EVPI is somewhat different when the deci-
sion maker is risk-averse; that is, we cannot simply fold a tree back using expected 
values and then compare the expected values with and without information. And we 
cannot fold back the tree in terms of expected utility and compare the expected util-
ities. In fact, in general we must find a value C such that when we subtract that value 
from each endpoint of the decision tree on the "Acquire Information" branch, the ex-
pected utility of this branch is equal to the expected utility of the "No Information" 
branch. Figure 13.20 illustrates the principle by including a branch for acquiring in-
formation about Texaco's response. 
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Figure 13.20 
Finding EVPI in the 

Texaco-Pennzoil deci-
sion when the decision 

maker is risk-averse. 
Find C so that the ex-

pected utility of the 
"Acquire Information" 

branch has the same 
expected utility as the 
next-best alternative. 

When using the exponential utility function, however, there is a simple shortcut. 
Because the exponential utility function displays constant risk aversion, we can 
work in terms of certainty equivalents. That is, we can calculate CEs for the 
"Acquire Information" and "No Information" branches and compare them. The dif-
ference between the two is the expected value of the information! Consider Liedtke's 
decision as diagrammed in Figure 13.20. Suppose that his decision analyst has mod-
eled Pennzoil's corporate preferences with an exponential utility function and a risk 
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tolerance of $1 billion. An acquaintance of Liedtke's knows Texaco CEO James 
Kinnear quite well and has offered to find out how Kinnear would react to a $5 bil-
lion counteroffer. Thus, the third alternative available to Liedtke is to acquire infor-
mation about Texaco. 

Question 

1       Find the expected value of perfect information regarding the Texaco reaction. 
Compare your answer to the answer from Problem 12.11a. 

STRENLAR,   PART  III 

Consider once again Fred Wallace's decision in the Strenlar case study at the end of 
Chapter 4 (pages 148-150). What if Fred is risk-averse? Assume that Fred's attitude 
toward risk in this case can be adequately modeled using an exponential utility func-
tion in which the utility is calculated for net present value. Thus, 

U(NPV) = 1 ─ e─NPV/R 

Question 

1       Check the sensitivity of Fred's decision to his risk tolerance, R. What is the critical R 
value for which his optimal decision changes? What advice can you give to Fred? 

R E F E R E N C E S  

For the most part, the material presented in this chapter has been my own version of fa-
miliar material. Good basic treatments of expected utility and risk aversion are avail-
able in most decision-analysis textbooks, including Bunn (1984), Holloway (1979), 
Raiffa (1968), Vatter et al. (1978), von Winterfeldt and Edwards (1986), and Winkler 
(1972). Keeney and Raiffa (1976) offer a somewhat more advanced treatment that fo-
cuses on multiattribute utility models, although it does contain an excellent exposition 
of the basic material at a somewhat higher mathematical level. The text by von 
Winterfeldt and Edwards (1986) points out that we tend to think about different kinds 
of money (pocket money, monthly income, investment capital) in different ways; thus, 
how utility-assessment questions are framed in terms of these different funds can have 
a strong effect on the utility function. 

The material on the exponential utility function and risk tolerance is based primarily 
on Holloway (1979) and McNamee and Celona (1987). Both books contain excellent dis-
cussion and problems on this material. 

For students who wish more detail on decreasing and constant risk aversion, look in the 
financial economics literature. In financial models, utility functions for market participants 
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are important for modeling the economic system. An excellent starting point is Copeland 
and Weston (1979). A classic article that develops the idea of a risk-aversion coefficient (the 
reciprocal of risk tolerance) is Pratt (1964). Bell (1995a, b) discusses the "linear-plus-
exponential" utility function aw — b e─cw, where w is total wealth. This utility function 
has many desirable properties; see Problems 13.25 and 13.26. 
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E P I L O G U E  Harriman's broker, Jacob H. Schiff, was at his synagogue when Harriman's order for 
40,000 shares was placed; the shares were never purchased. By the following 
Monday, Hill had cabled Morgan in France, and they had decided to buy as many 
Northern Pacific shares as they could. The share price went from $114 on Monday to 
$1000 on Thursday. In the aftermath, Hill and Morgan agreed that Harriman should 
be represented on the board of directors. Harriman, however, had little if any influ-
ence; James Hill continued to run the Great Northern, Northern Pacific, and 
Burlington railroads as he saw fit. [Source: S. H. Holbrook (1958) "The Legend of 
Jim Hill." American Heritage, IX(4), 10-13, 98-101.] 



CHAPTER 14.  Utility Axioms, Paradoxes, 
and Implications 

n this chapter we will look at several issues. First, we will consider some of the foundations of utility theory. 
From the basis of a few behavioral axioms, it is possible to establish logically that people who behave 

according to the axioms should make choices consistent with the maximization of 
expected utility. But since the early 1950s, cognitive psychologists have noted that 
people do not always behave according to expected utility theory, and a large literature 
now covers these behavioral paradoxes. We review part of that literature here. Because 
decision analysis depends on foundational axioms, it is worthwhile to consider some 
implications of these behavioral paradoxes, particularly with regard to the assessment 
of utility functions. 

The following example previews some of the issues we will consider. This one is 
a participatory example. You should think hard about the choices you are asked to 
make before reading on. 

PREPARING   FOR  AN   INFLUENZA  OUTBREAK 

The United States is preparing for an outbreak of an unusual Asian strain of in-
fluenza. Experts expect 600 people to die from the disease. Two programs are avail-
able that could be used to combat the disease, but because of limited resources only 
one can be implemented. 
Program A (Tried and True)   400 people will be saved. 

Program В (Experimental)     There is an 80% chance that 600 people will be 
saved and a 20% chance that no one will be saved. 

503 
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Which of these two programs do you prefer? Now 
consider the following two programs: 

Program С    200 people will die. 
Program D    There is a 20% chance that 600 people will die and an 80% chance 

that no one will die. 

Would you prefer С or D? 
Source: Reprinted with permission from Tversky, A., and D. Kahneman, "The Framing of Decisions and 
the Psychology of Choice," Science, 211, 453-458. Copyright 1981 by the American Association for the 
Advancement of Science. 

Axioms for Expected Utility 

Our first step in this chapter is to look at the behavioral assumptions that form the 
basis of expected utility. These assumptions, or axioms, relate to the consistency with 
which an individual expresses preferences from among a series of risky prospects. 
Instead of axioms, we might call these rules for clear thinking. In the following dis-
cussion, the axioms are presented at a fairly abstract level. Simple examples are given 
to clarify their meaning. As we put them to work in the development of the main ar-
gument, the importance and intuition behind the axioms should become clearer. 

1 Ordering and transitivity. A decision maker can order (establish preference or in 
difference) any two alternatives, and the ordering is transitive. For example, 
given any alternatives A1, A2, and A3, either A1 is preferred to A2 (which is some 
times written as " A1 > A2 "), A2 is preferred to Al or the decision maker is in 
different between A1 and A2 (A1 ~ A2). Transitivity means that if A1 is preferred 
to A2 and A2 is preferred to A3, then A1 is preferred to A3. For example, this axiom 
says that an individual could express his or her preferences regarding, say, cities 
in which to reside. If that person preferred Amsterdam to London and London to 
Paris, then he or she would prefer Amsterdam to Paris. 

2 Reduction of compound uncertain events. A decision maker is indifferent be 
tween a compound uncertain event (a complicated mixture of gambles or lotter 
ies) and a simple uncertain event as determined by reduction using standard 
probability manipulations. This comes into play when we reduce compound 
events into reference gambles. The assumption says that we can perform the re 
duction without affecting the decision maker's preferences. We made use of this 
axiom in Chapter 4 in our discussion of risk profiles. The progression from 
Figure 4.20 through Figure 4.22 is a matter of reducing to simpler terms the com 
pound uncertain event that is associated with the counteroffer. 

3 Continuity. A decision maker is indifferent between a consequence A (for example, 
win 100) and some uncertain event involving only two basic consequences A1 and 
A2, where A1 > A > A2. This simply says that we can construct a reference gamble 
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with some probability p, 0 < p < 1, for which the decision maker will be indiffer-
ent between the reference gamble and A. For example, suppose you find yourself as 
the plaintiff in a court case. You believe that the court will award you either $5000 or 
nothing. Now imagine that the defendant offers to pay you $1500 to drop the 
charges. According to the continuity axiom, there must be some probability p of 
winning $5000 (and the corresponding 1 — p probability of winning nothing) for 
which you would be indifferent between taking or rejecting the settlement offer. Of 
course, if your subjective probability of winning happens to be lower than p, then 
you would accept the proposal. 

4 Substitutability. A decision maker is indifferent between any original uncertain 
event that includes outcome A and one formed by substituting for A an uncertain 
event that is judged to be its equivalent. Figure 14.1 shows how this works. This 
axiom allows the substitution of uncertain reference gambles into a decision for 
their certainty equivalents and is just the reverse of the reduction axiom already 
stated. For example, suppose you are interested in playing the lottery, and you are 
just barely willing to pay 50 cents for a ticket. If I owe you 50 cents, then you 
should be just as willing to accept a lottery ticket as the 50 cents in cash. 

5 Monotonicity. Given two reference gambles with the same possible outcomes, a 
decision maker prefers the one with the higher probability of winning the pre 
ferred outcome. This one is easy to see. Imagine that two different car dealer 
ships each can order the new car that you want. Both dealers offer the same price, 
delivery, warranty, and financing, but one is more likely to provide good service 
than the other. To which one would you go? The one that has the better chance of 
providing good service, of course. 

6 Invariance. All that is needed to determine a decision maker's preferences among 
uncertain events are the payoffs (or consequences) and the associated probabilities. 

7 Finiteness. No consequences are considered infinitely bad or infinitely good. 

Most of us agree that these assumptions are reasonable under almost all circum-
stances. It is worth noting, however, that many decision theorists find some of the 
axioms controversial! The reasons for the controversy range from introspection re-
garding particular decision situations to formal psychological experiments in which 
human subjects make choices that clearly violate one or more of the axioms. We will 
discuss some of these experiments in the next section. 

 

Figure 14.1 
Two decision trees. If 

A is equivalent to a 
lottery with a p chance 

at С and 1 — p 
chance at D, then 
Decision Tree I is 

equivalent to Decision 
Tree II. 
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For example, the substitutability axiom is a particular point of debate. For some 
decision makers, the fact of having to deal with two uncertain events in Decision 
Tree II of Figure 14.1 can be worse than facing the single one in Decision Tree I. 
Moreover, individuals might make this judgment and at the same time agree that in a 
single-stage lottery, A is indeed equivalent to the risky prospect with p chance at С 
and a 1 — p chance at D. 

As another example, we can pick on the apparently innocuous transitivity axiom. 
In Figure 14.2, you have two lotteries from which to choose. Each of the six out-
comes has probability 1/6. One way to look at the situation is that the prize in Game 
В is better than Game A's in five of the six outcomes, and thus it may be reasonable 
to prefer B, even though the structure of the lotteries is essentially the same. Now 
consider the games in Figure 14.3. If В was preferred to A in Figure 14.2, then by 
the same argument С would be preferred to B, D to C, E to D, F to E, and, finally, 
A would be preferred to F. Thus, these preferences do not obey the transitivity 
axiom, because transitivity would never permit A to be preferred to something else 
that is in turn preferred to A. 

The controversy about individual axioms notwithstanding, if you accept axioms 
1 through 7, then logically you also must accept the following proposition. 

Figure 14.2 
A pair of lotteries. 

Outcomes 1 through 6 
each occur with proba-
bility 1/6. Would you 
prefer to play Game A 

or Game B? 

Figure 14.3 
More games to 

consider. Outcomes 1 
through 6 each still 

have probability 
1/6. 
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Proposition: Given any two uncertain outcomes B1 and B2, if assumptions 1 
through 7 hold, there are numbers Ul, U2, ..., Un representing preferences (or 
utilities) associated with the consequences such that the overall preference be-
tween the uncertain events is reflected by the expected values of the U's for each 
consequence. In other words, if you accept the axioms, (1) it is possible to find a 
utility function for you to evaluate the consequences, and (2) you should be mak-
ing your decisions in a way that is consistent with maximizing expected utility. 

In the following pages we will demonstrate how the axioms permit the transfor-
mation of uncertain alternatives into reference gambles (gambles between the best 
and worst alternatives) with different probabilities. It is on the basis of this kind of 
transformation that the proposition can be proved. 

Suppose you face the simple decision problem shown in Figure 14.4. For conve-
nience, assume the payoffs are in dollars. The continuity axiom says that we can find 
reference gambles that are equivalent to the outcomes at the ends of the branches. 
Suppose (hypothetically) that you are indifferent between $15 and the following ref-
erence gamble: 

Win $40 with probability 0.36 
Win $10 with probability 0.64 

Likewise, suppose you are indifferent between $20 and the next reference gamble: 

Win $40 with probability 0.60 
Win $10 with probability 0.40 

The substitutability axiom says that we can replace the original outcomes with 
their corresponding reference gambles, as in Figure 14.5. (We have replaced the out-
comes in Lottery В with "trivial" lotteries. The reason for doing so will become ap-
parent.) The substitutability axiom says that you are indifferent between A and A' 
and also between В and В'. Thus, the problem has not changed. 

Now use the reduction-of-compound-events axiom to reduce the decision tree 
(Figure 14.6). In performing this step, the overall probability of winning 40 in A" is 
0.5(0.60) +0.5(0.36), or 0.48; it is similarly calculated for winning 10. For the 
lower half of the tree, we just retrieve В again. The monotonicity axiom means we 
prefer A" to B", and so by t ransitivity (which says that A" ~ A' ~ A and 
B" ~ B' ~ В) we must prefer A to В in the original decision. 

To finish the demonstration, we must show that it is possible to come up with 
numbers that represent utilities so that a higher expected utility implies a preferred 
alternative, and vice versa. In this case, we need utilities that result in a higher ex-
pected utility for Alternative A. Use the probabilities assessed above in the reference 
gambles as those utilities. (Now you can see the reason for the extension of В in 
Figure 14.5; we need the probabilities.) We can redraw the original decision tree, as 
in Figure 14.7, with the utilities in place of the original monetary payoffs. 
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Figure 14.4 
A simple decision 

problem under 
uncertainty. 

 

 

Figure 14.5 
Decision tree after 

substituting reference 
gambles for outcomes. 

 

 

 

Figure 14.6 
Reducing the deci-

sion tree. 
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Calculating expected utilities shows that A has the higher expected utility and hence 
should be preferred: 

EU(A) = 0.5(0.60) + 0.5(0.36) = 0.48 
EU(B) = 0.3(1.00) + 0.7(0) = 0.30 

This exercise may seem both arcane and academic. But put simply, if you think 
it is reasonable to behave according to the axioms at the beginning of the section, 
then (1) it is possible to find your utility values, and (2) you should make decisions 
that would be consistent with the maximization of expected utility. 

In our initial Chapter 13 discussions of utility assessment, the claim was made 
that a utility function could be scaled (multiplied by a positive constant and added to 
a constant) without changing anything. Now you should see clearly that the whole 
purpose of a utility function is to rank-order risky prospects. Take Alternatives A and 
B. We have concluded that A is preferred to B because EU(A)= 0.48, which is 
greater than EU(B) = 0.30. Suppose that we take the utility numbers, as shown in 
Figure 14.7, and scale them. That is, let 

U'(x) = a + bU(x) 

where b > 0 and U(x) is our original utility function (from Figure 14.7). We can calcu-
late the expected utilities of A and B on the basis of the following new utility function: 

EU'(A) = 0.5[a + bU(20)] + 0.5[a + bU(15)] = a + 
b[0.5U(20) + 0.5U(15)] = a + bEU(A) = a 
+ b(0.48) 

EU'(B) = 0.3[a + bU(40)] + 0.7[a + bU(10)] 
= a + b[0.3U(40) + 0.7U(10)] = a + 
bEU(B) 
= a + b(0.30) 

 

Figure 14.7 
Original decision tree 

with utility values 
replacing monetary 

values. 
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It should be clear that EU'(A) will be greater than EU'(B) as long as b > 0. As 
indicated, the implication is that we can scale our utility functions linearly with the 
constants a and b without changing the rankings of the risky alternatives in terms of 
expected utility. Specifically, this means that no matter what the scale of a utility 
function, we always can rescale it so that the largest value is 1 and the smallest is 0. 
(For that matter, you can rescale it so that the largest and smallest values are what-
ever you want!) 

If you look carefully at our transformations of the original decision problem 
above, you will see that we never explicitly invoked either the invariance or finite-
ness axioms. Why are these axioms important? The invariance axiom says that we 
need nothing but the payoffs and the probabilities; nothing else matters. (In the con-
text of multiattribute utility as discussed in the next two chapters, we would need 
consequences on all relevant dimensions.) 

The finiteness axiom assures us that expected utility will never be infinite, and so 
we always will be able to make meaningful comparisons. To see the problem with 
unbounded utility, suppose that you have been approached by an evangelist who has 
told you that unless you accept his religion, you will burn in Hell for eternity. If you 
attach an infinitely negative utility to an eternity in Hell (and it is difficult to imagine 
a worse fate), then no matter how small your subjective probability that the evange-
list is right, as long as it is even slightly positive you must be compelled to convert. 
This is simply because any small positive probability multiplied by the infinitely 
negative utility will result in an infinitely negative expected utility. Similar problems 
are encountered if an outcome is accorded infinite positive utility; you would do any-
thing at all if doing so gave you even the slightest chance at achieving some won-
derful outcome. Thus, if an outcome in your decision problem has unbounded utility, 
then the expected utility approach does not help much when it comes to making the 
decision. 

Paradoxes 

Even though the axioms of expected utility theory appear to be compelling when we 
discuss them, people do not necessarily make choices in accordance with them. 
Research into these behavioral paradoxes began almost as early as the original re-
search into utility theory itself, and now a large literature exists for many aspects of 
human behavior under uncertainty. Much of this literature is reviewed in von 
Winterfeldt and Edwards (1986) and Hogarth (1987). We will cover a few high 
points to indicate the nature of the results. 

Framing effects are among the most pervasive paradoxes in choice behavior. 
Tversky and Kahneman (1981) show how an individual's risk attitude can change 
depending on the way the decision problem is posed — that is, on the "frame" in 
which a problem is presented. The difficulty is that the same decision problem usu-
ally can be expressed in different frames. A good example is the influenza-outbreak 
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problem at the beginning of the chapter. You may have noticed that Program A is the 
same as C and that B is the same as D. It all depends on whether you think in terms 
of deaths or lives saved. Many people prefer A on one hand, but D on the other. 

To a great extent, the reason for the inconsistent choices appears to be that dif-
ferent points of reference are used to frame the problem in two different ways. That 
is, in Programs A and B the reference point is that 600 people are expected to die, but 
some may be saved. Thus, we think about gains in terms of numbers of lives saved. 
On the other hand, in Programs C and D, the reference point is that no people would 
be expected to die without the disease. In this case, we tend to think about lives lost. 
One of the important general principles that psychologists Kahneman and Tversky 
and others have discovered is that people tend to be risk-averse in dealing with gains 
but risk-seeking in deciding about losses. A typical assessed utility function for 
changes in wealth is shown in Figure 14.8. These results have been obtained in many 
different behavioral experiments (for example, see Swalm 1966). 

More fundamental than the risk-averse-risk-seeking dichotomy is that the refer-
ence point or status quo can be quite flexible in some situations and inflexible in oth-
ers. For example, the influenza-outbreak example can be viewed with relative ease 
from either frame. For many people, the financial status quo changes as soon as they 
file their income-tax return in anticipation of a refund; they "spend" their refund, 
usually in the form of credit, long before the check arrives in the mail. In other cases, 
individuals may maintain a particular reference point far longer than they should. A 
case in point is that gamblers often try to make up their losses; they throw good 
money after bad. Here "gamblers" can refer to individuals in casinos as well as to 
stock market investors or even managers who maintain a commitment to a project 
that has obviously gone sour. Typically, such a gambler will argue that backing out 
of a failed project amounts to a waste of the resources already spent. 

Is a specific axiom being violated when a decision maker's choices exhibit a 
framing effect? The answer to this question is not exactly clear. Although many pos-
sibilities exist, the invariance axiom may be the weak link in this case. It may be that 

 

Figure 14.8 
Typical assessed utility 

function for changes 
in wealth. 

 



512      CHAPTER 14 UTILITY AXIOMS, PARADOXES, AND IMPLICATIONS 

payoffs (or utilities) and probabilities are not sufficient to determine a decision 
maker's preferences. Some understanding of the decision maker's frame of reference 
also may be required. 

For another example, consider the problem: 

Allais Paradox 
You have two decisions to make. 

Decision 1:     A    Win $1 million with probability 1 
B Win $5 million with probability 0.10 

Win $1 million with probability 0.89 
Win $0 with probability 0.01 

Before proceeding, choose A or B. Would you give up a sure $1 million for a 
small chance at $5 million and possibly nothing? 

Decision 2:     C    Win $ 1 million with probability 0.11 
Win $0 with probability 0.89 D    Win $5 
million with probability 0.10 Win $0 million 
with probability 0.90 

Now choose C or D in Decision 2. 

This is the well-known Allais Paradox (Allais 1953; Allais and Hagen 1979). 
The decisions are shown in decision-tree form in Figure 14.9. Experimentally, as 
many as 82% of subjects prefer A over B and 83% prefer D over C. But we can eas-
ily show that choosing A on the one hand and D on the other is contrary to expected 
utility maximization. Let U($0) = 0 and U($5,000,000) = 1; they are the best and 
worst outcomes. Then, 

EU(A) = U($l million) 

EU(B) = 0.10 + 0.89U($l million) 

Thus, A is preferred to B if and only if 

U($l million) > 0.10 + 0.89 U($l million) 

or 

U($l million) > 0.91 

Now for Decision 2, 

EU(C) = 0.11 U($l million) 

EU(D) = 0.10 so D is preferred 

to C if and only if U($l million) < 0.91. 
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Figure 14.9 
Choices in the Allais 

Paradox. 

U($l million) cannot be both.greater than and less than 0.91 at the same time, so 
choosing A and D is not consistent with expected utility. Consistent choices are A and 
C or B and D. Kahneman and Tversky (1981) have attributed this common inconsis-
tency to the certainty effect, whereby individuals tend to place too much weight on a 
certain outcome relative to uncertain outcomes. In the Allais Paradox, the certainty ef-
fect would tend to make individuals overvalue A in Decision 1, possibly leading to an 
inconsistent choice. When confronted with their inconsistency, some individuals re-
vise their choices. Would you revise yours in light of this discussion? 

Another way to look at the Allais Paradox is to structure the decision problem 
using lottery tickets in a hat. Imagine that 100 tickets are numbered sequentially 
from 1 to 100 and placed in a hat. One ticket will be drawn at random, and you will 
receive a prize depending on the option you choose and the number on the ticket. 
Prizes for A and B are described in Table 14.1. For A, you would win $1 million re-
gardless of the ticket chosen, but for B you would win nothing if Ticket 1 is chosen, 
$5 million for Tickets 2 through 11, and $1 million for Tickets 12 through 100. Note 
that you win the same ($1 million) in the two lotteries for Tickets 12 through 100. 
Thus, your choice should depend only on your preferences regarding the outcomes 
for Tickets 1 through 12. 

The same kind of thing can be done for Options C and D, which also are shown 
in Table 14.1. If you choose C, you win $1 million for Tickets 1-11 and nothing for 
Tickets 12-100. In D you would win nothing for Ticket 1, $5 million for Tickets 2-
11, and nothing for Tickets 12-100. Again, you win exactly the same thing (noth-
ing) in both C and D for Tickets 12-100, and so your preferences between C and D 
should depend only on your preferences regarding Tickets 1-11. As you can see, the 
prizes associated with Tickets 1-11 are the same for Options A and C on the one 
hand and B and D on the other. Thus, if you prefer A to B you also should prefer C to 
D, and vice versa. 

It is intuitively reasonable that your preferences should not depend on Tickets 
12-100, because the outcome is the same regardless of the decision made. This is an 
example of the sure-thing principle, which says that our preferences over lotteries or 
risky prospects should depend only on the parts of the lotteries that can lead to dif-
ferent outcomes. The idea of the sure thing is that, in the choice between A and B, 
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Table 14.1 
Prizes in the Allais 

Paradox. Tickets 
1-100 are placed in a 
hat, and one ticket is 

drawn randomly. The 
dollar amounts shown 

in the table are the 
prizes for the four 

options. 

    
  Tickets  

Option 1 2-11 12-100 
    
    

A $1 million $1 million $1 million 
B 0 $5 million $1 million 
C $1 million $1 million 0 
D 0 $5 million 0 

    

winning $1 million is a sure thing if one of the tickets from 12 to 100 is drawn, re-
gardless of you choice. If, as in the Allais choices, there are possible outcomes that 
have the same value to you regardless of the option you choose, and these outcomes 
occur with the same probability regardless of the option chosen, then you can ignore 
this part of the lottery. The sure-thing principle can be derived logically from our ax-
ioms. For our purposes, it is best to think of it as a behavioral principle that is con-
sistent with our axioms; if you agree to behave in accordance with the axioms, then 
you also should obey the sure-thing principle. If your choices in the Allais Paradox 
were inconsistent, then your preferences violated the sure-thing principle. 

Implications 

As we learned above, people do not always behave according to the behavioral ax-
ioms. This fact has distinct implications for the practice of decision analysis. First, 
there are implications regarding how utility assessments should be made. Second, 
and perhaps more intriguing, are the implications for managers and policy makers 
whose jobs depend on how people actually do make decisions. It may be important 
for such managers to consider some of the above-described behavioral phenomena. 
In this section, we will look at the issues involved in each of these areas. 

Implications for Utility Assessment 

We rely on assessments of certainty equivalents and other comparisons to find a util-
ity function. Given the discussion above, it is clear that, in the assessment process, 
we ask decision makers to perform tasks that we know they do not always perform 
consistently according to the axioms! Thus, it is no surprise that the behavioral para-
doxes discussed above may have some impact on the way that utility functions 
should be assessed. Our discussion here will be brief, not because the literature is 
particularly large, but because many research questions remain to be answered. 

There are several approaches to the assessment of utilities. In Chapter 13 we in-
troduced the certainty-equivalent approach (find a CE for a specified gamble) and 
the probability-equivalent approach (find a probability that makes a reference lottery 
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equivalent to a specific certain amount). If we think of the general case (Figure 
14.10) as being indifferent between CE for sure and the reference lottery: 

Win G with probability p Win L 
with probability 1 — p 

then it is clear that we must preset three out of the four variables p, CE, G, and L. 
The selection of the fourth, which makes the decision maker indifferent between the 
two prospects, allows the specification of a utility value. Most practioners use either 
the CE or PE approaches. Assessing a certainty equivalent involves fixing G, L, and 
p and assessing CE; the probability-equivalent method involves fixing CE, G, and L 
and assessing p. 

The relative merits of the possible assessment techniques have been discussed to 
some degree. Hershey, Kunreuther, and Shoemaker (1982) report that the use of the 
CE approach tends to result in more risk-averse responses than does the PE approach 
when the consequences are gains. On the other hand, when the consequences are 
losses, the CE approach results in more risk-seeking behavior. When using the PE 
approach, many people appear to exhibit certain forms of probability distortion. 
Although the evidence is far from conclusive, it indicates that people deal best with 
50-50 chances. This empirical result appears to be related to the certainty effect dis-
cussed above. 

Clearly, these results have an impact on the assessment of utility functions; the 
nature of the decision maker's responses and hence the deduced risk attitude can de-
pend on the way that questions have been posed in the assessment procedure. 
McCord and De Neufville (1986) have suggested, in light of the distortion from the 
certainty effect, that utilities should not be assessed using the CE approach, which 
requires a decision maker to compare a lottery with a certain quantity. The CE ap-
proach, they argue, contains a built-in bias. They suggest that it would be more ap-
propriate to assess utilities by comparing lotteries. For example, suppose that A is 
the best outcome and C is the worst, and we would like to assess U(B), which is 
somewhere between A and C. McCord and De Neufville's technique would have the 
decision maker assess the probability p that produces indifference between the two 

 

Figure 14.10 
A general framework 
for assessing utilities. 

If three of the four variables (G, L, CE, and p) are fixed, assessment of the fourth such that 
the decision maker is indifferent between the two decision branches permits establishment of 
utility values. 
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lotteries in the decision tree in Figure 14.11. Because p makes the decision maker 
indifferent, we can set up the equation 

0.5 U(B) + 0.5 U(C) = p U(A) + (1 - p) U(C) 

Substituting U(A) = 1 and U(C) = 0 and rearranging, this becomes 
U(B) = 2p 

Thus, the utility is relatively easy to find once the assessment has been made. 
The McCord-De Neufville approach does indeed lead to utility assessments that 

are less risk-averse than those made with certainty equivalents. Figure 14.12 com-
pares the two methods in terms of hypothetical utility functions that might be as-
sessed. It may be the case, however, that decision makers have a harder time think-
ing about comparable lotteries than about certainty equivalents. 

Managerial and Policy Implications 

The idea that people actually make decisions that are sometimes inconsistent with 
decision-analysis principles is not new. In fact, the premise of a book such as this 

Figure 14.11 
The McCord-De 
Neufville utility-

assessment 
procedure. 

 

 

 

 

Figure 14.12 
Comparing utility 

functions assessed with 
different approaches. 
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one is that it is possible to improve one's decision-making skills. But now we have 
seen that individuals behave in certain specific and predictable ways. What implica-
tions does this have for managers and policy makers? 

The most fundamental issue has to do with the reference point or status quo. 
What is the status quo in a particular decision situation? How do people establish a 
status quo for decision-making purposes? Can the perception of the status quo be 
manipulated, and, if so, how? Complete answers to these questions are certainly be-
yond the scope of our discussion here, but we can discuss important examples in 
which the status quo plays an important role. 

First is the problem of "sunk costs." As briefly mentioned earlier, managers fre-
quently remain committed to a project that obviously has gone bad. In decision-
analysis terms, the money that already has been spent on the project no longer 
should influence current and future decisions. Any decisions, particularly whether to 
continue or abandon a project, must be forward-looking — that is, consider only fu-
ture cash flows. To account for the sunk costs, they would have to be accounted for 
on every branch and hence could not affect the relative ordering of the alternatives. 

What do we say to an individual who seems unable to ignore sunk costs? One 
piece of advice is to make sure that the individual understands exactly what the sta-
tus quo is. If the individual wants to "throw good money after bad," then he or she 
may be operating on the basis of a previous status quo; abandoning the project may 
look like accepting a sure loss of the money already invested. From this perspective, 
it might seem quite reasonable instead to seek a risky gain by remaining committed 
to the project. But the real status quo is that the project is unlikely to yield the antic-
ipated benefits. From this new perspective, abandoning the project amounts to the 
avoidance of a losing venture; funds would be better invested elsewhere. 

In other cases, a problem's frame may be specified with equal validity in several 
ways. Consider the case of seat belts. If people view seat belts as inconvenient and 
uncomfortable, then they may refuse to wear them; the status quo is the level of com-
fort when unbuckled. Suppose, however, the status quo were established as how well 
off people are in general. Who would want to risk the loss of a healthy family, a pro-
ductive life, and possibly much of one's savings? The use of a seat belt is a form of in-
expensive insurance to avoid a possible dramatic loss relative to this new status quo. 

A similar argument can be made in the area of environmental protection. People 
may view environmental programs as anything from inconveniences (being forced 
to separate recyclable materials from trash) to major economic impediments (adher-
ing to EPA's complex regulations). The implied status quo is the current level of di-
rect costs; the programs represent a sure loss relative to this status quo. If, however, 
emphasis is given to the current overall condition of the community, nation, or 
world, then the increased cost induced by the programs can be viewed as a small 
amount of insurance necessary to avoid a large loss relative to our current overall 
welfare. 

A third situation in which the perception of the status quo can be productively ma-
nipulated is in the area of creativity enhancement. In Chapter 6 we discussed remov-
ing blocks to creativity. In organizations, one key approach is to make the environ-
ment as nonthreatening as possible so that individuals will not be afraid to present 
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new ideas. In the terminology of this section, the goal is to establish a status quo in the 
organizational environment such that individuals will view the presentation of a new 
idea as one in which the loss is small if the idea fails but otherwise the potential gain 
is large. 

In the discussion so far we have focused our attention on issues concerning the 
status quo. We turn now to the certainty effect, or the fact that we tend to overvalue 
sure outcomes relative to uncertain ones. This psychological phenomenon can have 
interesting effects on our decision making, especially under conditions of uncertainty. 

In our western culture, we abhor uncertainty. Indeed, it is appropriate to expend 
resources for information in order to reduce uncertainty. This is true only up to a 
point, however, as we discussed in Chapter 12. But where may the certainty effect 
lead? We may try too hard to eliminate uncertainty altogether. For example, in orga-
nizations, there may be a tendency to spend far too much effort and far too many re-
sources on tracking down elusive information in an effort to know the "truth." More 
insidious is a tendency to ignore uncertainty altogether. We often tend to view fore-
casts, for example, as perfect indicators of the future, ignoring their inherent uncer-
tainty. The use of carefully assessed probabilistic forecasts is an important way to 
avoid this problem. 

As a society, the certainty effect may be a factor in our preoccupation with cer-
tain kinds of health and environmental risks. Many individuals — activists in various 
causes — would prefer to eliminate risk altogether and thus they call for stringent 
regulations on projects that appear to pose risks to the population or environment. 
Certainly these individuals play a valuable role in drawing our attention to important 
issues, but achieving zero risk in our society is not only impractical, but also impos-
sible. A sound approach to the management of risk in our society requires a consid-
eration of both the benefits and costs of reducing risk to various levels. 

In this brief section we have considered certain implications of the behavioral 
paradoxes for the application of decision analysis (especially utility assessment), as 
well as for organizational decisions and policy making. But we have only scratched 
the surface here. As research progresses in this fertile area, many other behavioral 
paradoxes and their implications will be studied. The examples we have considered 
illustrate the pervasiveness of the effects as well as their importance. 

A Final Perspective 

We have discussed a variety of inconsistencies in human behavior. Do these incon-
sistencies invalidate expected utility theory? The argument all along has been that 
people do not seem to make coherent decisions without some guidance. If a decision 
maker does wish to make coherent decisions, then a careful decision-analysis ap-
proach, including a careful assessment of personal preferences, can help the decision 
maker in looking for better decisions. 
It is easy to get the impression that utility and probability numbers reside in a decision 

maker's mind and that the assessment procedure simply elicits those numbers. 
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But the process is more than that. Just as the process of structuring a decision prob-
lem helps the decision maker understand the problem better and possibly leads to the 
recognition of new alternatives for action, so may the assessment process provide a 
medium in which the decision maker actually can develop his or her preferences or 
beliefs about uncertainty. The assessment process helps to mold the decision maker's 
subjective preferences and beliefs. How many of us, for example, have given much 
thought to assessing a utility function for a cup of coffee (Problem 14.16) or consid-
ered the probability distribution for a grade in a decision-analysis course (Problem 
8.11)? Certainly the assessed numbers do not already exist inside our heads; they 
come into being through the assessment procedure. This is exactly why assessment 
often requires hard thinking and why decisions are hard to make. Thus, perhaps the 
best way to think about the assessment process is in constructive terms. Reflecting 
on the decision problem faced and considering our preferences and beliefs about un-
certainty provides a basis not only for building a model of the problem and necessary 
beliefs, but also for constructing those beliefs in the first place. This view may ex-
plain some of the behavioral paradoxes that we have discussed; individuals who 
have not thought long and hard in thoroughly developing their preferences and be-
liefs might have a tendency to make inconsistent judgments. 

This constructive view of the assessment process is a fundamental matter. You 
may recall that we introduced these ideas way back in Chapter 1 when we suggested 
that the decision-analysis process actually helps a decision maker develop his or her 
thoughts about the structure of the problem, beliefs about uncertainty, and prefer-
ences. Again, the idea of a requisite model is appropriate. A decision model is requi-
site in terms of preferences if it captures the essential preference issues that matter to 
the decision maker for the problem at hand. Thus, this constructive view suggests 
that decision analysis should provide an environment in which the decision maker 
can systematically develop his or her understanding of the problem, including pref-
erences and beliefs about uncertainty. But how can we be sure that decision analysis 
does provide such an environment? More research is required to answer this ques-
tion completely. The decision-analysis approach, however, does encourage decision 
makers to think about the issues in a systematic way. Working through the decision-
analysis cycle (modeling, analyzing, performing sensitivity analysis, and then mod-
eling again) should help the decision maker to identify and think clearly about the 
appropriate issues. Thus, the argument is that good initial decision-analysis structur-
ing of a problem will lead to appropriate assessments and careful thought about im-
portant issues. 

SUMMARY We have covered a lot of ground in this chapter. We started with the axioms that un-
derlie utility theory and showed how those axioms imply that an individual should 
make decisions that are consistent with the maximization of expected utility. Then 
we examined some of the behavioral paradoxes that have been documented. These 
are situations in which intelligent people make decisions that violate one or more of 
the axioms, and thus make decisions that are inconsistent with expected utility. 
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These paradoxes do not invalidate the idea that we should still make decisions ac-
cording to expected utility; recall that the basic goal of decision analysis is to help 
people improve their decision-making skills. But the paradoxes do have certain im-
plications. We explored some of these implications, including the possibility of as-
sessing equivalent lotteries rather than certainty equivalents and implications for 
policy makers. We ended with a constructive perspective of assessment, whereby it 
provides a medium within which the decision maker can explore and develop prefer-
ences and beliefs. 

E X E R C I S E S  

14.1 In your own words explain why the axioms that underlie expected utility are important to 
decision analysis. 

14.2 From a decision-analysis perspective, why is it worthwhile to spend time studying the 
kinds of paradoxes described in this chapter? 

14.3 Most people are learning constantly about themselves and their environment. Our tastes 
develop and change as our environment changes. As new technologies arise, new risks 
are discovered. What are the implications of this dynamic environment for decision 
analysis? 

14.4 a   Find the value for p that makes you indifferent between 

Lottery 1       Win $ 1000 with probability p 
Win $0 with probability 1 — p 

and 

Lottery 2       Win $400 for sure 

b  Now find the q that makes you indifferent between 

Lottery 3       Win $400 with probability 0.50 
Win $0 with probability 0.50 

and 

Lottery 4       Win $ 1000 with probability q 
Win $0 with probability 1 — q 

c According to your assessment in part a, U($400) = p . In part b, U($400) = 2q. 
Explain why this is the case. 

d To be consistent, your assessments should be such that p = 2q. Were your assess-
ments consistent? Would you change them? Which assessment do you feel most con-
fident about? Why? 
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Q U E S T I O N S    AND   P R O B L E M S  

14.5 We used the phrase "rules for clear thinking" to refer to the axioms described in this 
chapter. However, these "rules" do not cover every aspect of decision making as we have 
discussed it in this book. In particular, the axioms do not tell us in detail how to structure 
a problem, how to generate creative alternatives, or how to perform a sensitivity analysis. 
Can you give some "rules for clear thinking" that would help a decision maker in these 
aspects of decision making? (See Frisch and Clemen 1994.) 

14.6 Imagine that you collect bottles of wine as a hobby. How would you react to these situa 
tions? 

a You have just learned that one of the bottles (Wine A) that you purchased five years 
ago has appreciated considerably. A friend has offered to buy the bottle from you for 
$100. His offer is a fair price. Would you sell the bottle of wine? 

b A second bottle of wine (Wine B) is viewed by experts as being equivalent in value 
to Wine A. You never purchased a bottle of Wine B, but a casual acquaintance did. In 
conversation at a party, he offers to sell you his bottle of Wine B for $100. Would you 
buy it? 

Many people would neither sell Wine A nor buy Wine B. Explain why this pattern of 
choices is inconsistent with expected utility. What other considerations might be taken 
into account? 

14.7 Consider the following two scenarios: 

a You have decided to see a show for which tickets cost $20. You bought your ticket in 
advance, but as you enter the theater, you find that you have lost the ticket. You did 
not make a note of your seat number, and the ticket is not recoverable or refundable in 
any way. Would you pay another $20 for a second ticket? 

b You have decided to see a show whose tickets cost $20. As you open your wallet to 
pay for the ticket, you discover that you have lost a $20 bill. Would you still buy a 
ticket to see the show? 

Many individuals would not purchase a second ticket under the first scenario, but they 
would under the second. Explain why this is inconsistent with expected utility. How 
would you explain this kind of behavior? 

14.8 Imagine yourself in the following two situations: 
a You are about to go shopping to purchase a stereo system at a local store. Upon read-

ing the newspaper, you find that another stereo store across town has the system you 
are interested in for $1089.99. You had been planning to spend $1099.95, the best 
price you had found after considerable shopping. Would you drive across town to pur-
chase the stereo system at the other store? 

b You are about to go shopping to purchase a popcorn popper at a local hardware store 
for $19.95, the best price you have seen yet. Upon reading the paper, you discover that 
a department store across town has the same popper for $9.99. Would you drive across 
town to purchase the popper at the department store? 
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Many people would drive across town to save money on the popcorn popper, but not on 
the stereo system. Why is this inconsistent with expected utility? What explanation can 
you give for this behavior? 

14.9    A classified advertisement, placed by a car dealer, reads as follows: 

*NEW* 
1991 BMW 525i 
Retail $38,838.50 
WAS $32,998 

NOW 
$32,498 

a   What is your reaction to this advertisement? 

b In the same paper, a computer dealer advertised a $500 discount on a computer sys-
tem, marked down from $3495 to $2995. Which do you think is a better deal, the spe-
cial offer on the car or the computer? Why? 

14.10 Consider these two scenarios: 

a You have made a reservation to spend the weekend at the coast. To get the reservation, 
you had to make a nonrefundable $50 deposit. As the weekend approaches, you feel a 
bit out of sorts. On balance, you decide that you would be happier at home than at the 
coast. Of course, if you stay home, you forfeit the deposit. Would you stay home or go 
to the coast? What arguments would you use to support your position? 

b You have decided to spend the weekend at the coast and have made a reservation at 
your favorite resort. While driving over, you discover a new resort. After looking it 
over, you realize that you would rather spend your weekend here. Your reservation at 
the coast can be canceled easily at no charge. Staying at the new resort, however, 
would cost $50 more. Would you stay at the new resort or continue to the coast? 

Are your decisions consistent in parts a and b? Explain why or why not. 

14.11 Even without a formal assessment process, it often is possible to learn something about 
an individual's utility function just through the preferences revealed by choice behavior. 
Two persons, A and B, make the following bet: A wins $40 if it rains tomorrow and B 
wins $10 if it does not rain tomorrow. 

a If they both agree that the probability of rain tomorrow is 0.10, what can you say 
about their utility functions? 

b If they both agree that the probability of rain tomorrow is 0.30, what can you say 
about their utility functions? 

c Given no information about their probabilities, is it possible that their utility functions 
could be identical? 

d If they both agree that the probability of rain tomorrow is 0.20, could both individuals 
be risk-averse? Is it possible that their utility functions could be identical? Explain. 

Source: R. L. Winkler (1972) Introduction to Bayesian Inference and Decision. New York: Holt. 
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14.12 Assess your utility function for money in the bank over a range from $100 to $20,000 
using the McCord-De Neufville procedure described in this chapter. Plot the results of 
your assessments on the same graph as the assessments made for Problem 13.12. Discuss 
the differences in your assessments from one method to the other. Can you explain any 
inconsistencies among them? 

14.13 Assume that you are interested in purchasing a new model of a personal computer whose 
reliability has not yet been perfectly established. Measure reliability in terms of the num 
ber of days in the shop over the first three years that you own the machine. (Does this def 
inition of reliability pass the clarity test?) Now assess your utility function for computer 
reliability over the range from 0 days (best) to 50 days (worst). Use whatever assessment 
technique with which you feel most comfortable, and use computer assessment aids if 
they are available. 

14.14 You are in the market for a new car. An important characteristic is the lifespan of the car. 
(Define lifespan as the number of miles driven until the car breaks down, requiring such 
extensive repairs that it would be cheaper to buy an equivalent depreciated machine.) 
Assess your utility function for automobile life span over the range from 40,000 to 
200,000 miles. 

14.15 Being a student, you probably have well-developed feelings about homework. Given the 
same amount of material learned, the less the better, right? (I thought so!) Define home 
work as the number of hours spent outside of class on various assignments that enter into 
your final grade. Now, assuming that the amount of material learned is the same in all in 
stances, assess your utility function for homework over the range from 0 hours per week 
(best) to 20 hours per week (worst). {Hint: You may have to narrow the definition of 
homework. For example, does it make a difference what kind of course the homework is 
for? Does it matter whether the homework is term papers, case studies, short written as 
signments, oral presentations, or something else?) 

14.16 We usually think of utility functions as always sloping upward (more is better) or down 
ward (less is better; fewer nuclear power plant disasters, for example). But this is not al 
ways the case. In this problem, you must think about your utility function for coffee ver 
sus milk. 

Imagine that you are about to buy a cup of coffee. Let c (0 ≤ c ≤ 1) represent the pro-
portion of the contents of the cup accounted for by coffee, and 1 — c the proportion ac-
counted for by milk. 

a Assess your utility function for c for 0 ≤ c ≤ 1. Note that if you like a little milk in 
your coffee, the high point on your utility function may be at a value of c somewhere 
between 0 and 1. 

b Compare (A) the mixture consisting of proportions c of coffee and 1 — c of milk in a 
cup and (B) the lottery yielding a cup of coffee with probability c and a cup of milk 
with probability 1 — c. (The decision tree is shown in Figure 14.13.) Are the expected 
amounts of milk and coffee the same in A and B? [That is, if you calculate E(c), is it 
the same in A and B?] Is there any value of c for which you are indifferent between A 
and B? (How about when c is 0 or 1?) Are you indifferent between A and B for the 
value of c at the high point of your utility function? 

c How would you describe your risk attitude with respect to c? Are you risk-averse or 
risk-prone, or would some other term be more appropriate? 
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Figure 14.13 
Decision tree 
for problem 
14.16b. 

14.17 In a court case, a plaintiff claimed that the defendant should pay her $3 million for dam-
ages. She did not expect the judge to award her this amount; her expected value actually 
was $1 million. The defendant also did not believe that the court would award the full 
$3 million, and shared the plaintiff's expected value of $1 million. 

a Assuming that the plaintiff is thinking about the award in terms of gains, explain why 
you might expect her to be risk-averse in this situation. If she is risk-averse, what kind 
of settlement offer might she accept from the defendant? 

b Assuming that the defendant is thinking about the situation in terms of losses, ex-
plain why you might expect him or her to be risk-seeking. What would this imply 
about settlement offers to which the defendant might agree? (Hint: Draw an example 
of a risk-seeking utility curve over the possible negative payoffs for the defendant. 
Now find the certainty equivalent.) 

c Discuss your answers to parts a and b. What are the implications for settlements in 
real-world court cases? What would happen if the defendant's expected value were 
less than the plaintiff's? 

C A S E     S T U D I E S  

THE  L IFE   INSURANCE  CAME 

Peggy Ewen sat back in her chair and listened as Tom Pitman tried to explain. "I 
don't know what's going on," Tom said. "I have no trouble making the phone calls, 
and I seem to be able to set up in-home visits. I am making at least as many visits as 
anyone else in the office. For some reason, though, I cannot talk them into buying the 
product. I seem to be unlucky enough to have run into a lot of people who just are 
not interested in life insurance." 

Peggy thought about this. Tom had been with the company for five months now. 
He was bright and energetic. He had gone through the training program easily, and 
had appeared to hit the ground running. His paperwork was always perfect. For some 
reason, though, his career selling life insurance was virtually stalled. His sales rate 
was only one-third that of the next best salesperson. Why? 

Peggy asked, "How do you feel about going to the in-home visits?" 
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"Fine," Tom replied. "Well, I'm starting to feel a little apprehensive about it just 
because I'm becoming less sure of myself." 

"Well, that's something we'll have to work on. But how do the visits go? What 
do you talk about? Tell me what a typical visit would be like." 

"Let's see. Usually I'll come in, sit down, and we'll chat briefly. They'll offer me 
a cup of coffee. After a short visit, we get right down to business. I go through the 
presentation material provided by the company. Eventually we get around to talking 
about the reasons for purchasing life insurance. I really stress the importance of 
being able to make up for the loss of income. The presentation material stresses the 
idea of building up savings for sending kids to school or for retirement. You know, 
the idea of being sure that the extra money will be there down the road. But I really 
don't think that's why most people buy life insurance. I think they buy it to be sure 
that their family will be able to make up for a loss. For just a small premium, they 
can be sure that the loss won't happen, or at least they can minimize the loss." 

Peggy seemed interested in Tom's account. "So you really stress the idea that for 
a little bit of money they can insure against the loss of income." 

"Yes," Tom answered. "I'd rather have them look at life insurance as protection 
against a potential loss, rather than as a savings mechanism that would provide some 
sure amount in the future. Most of them know that there are better ways to save, any-
way." 

"And how would you classify your typical client? What kind of income 
bracket?" 

"Mostly young couples just starting out," said Tom. "Maybe they've just had 
their first child. Not much income yet. Not much savings, either. We usually discuss 
this early on in the conversation. In general they seem to be quite aware of their fi-
nancial situation. Occasionally they are even quite sensitive about it." 

Peggy looked at Tom and grinned. "Tom, I do believe that there's something you 
can do right now to improve your sales rate." 

Questions 

1 About what issue is Peggy thinking? 

2 What are the implications for people interested in selling financial securities such 
as insurance, annuities, and so on? 

3 What are the implications for their customers? 

NUCLEAR  POWER  PARANOIA 

Ray Kaplan was disgusted. The rally against the power plant had gone poorly. The 
idea had been to get a lot of people out to show the utility company that the commu-
nity did not support the idea of nuclear power. It was just too dangerous! Too much 
chance of an accident. Sure, the officials always pointed out that there had never 
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been a serious nuclear power plant accident in the United States. They always 
pointed to the safeguards in the plants, and to the safety features required by federal 
regulations. "You're safer in our plant than on the freeway," they claimed. Well, the 
same officials met with the protesters again today and said the same old things. Ray 
was getting tired of it. He hopped on his motorcycle and rode home. Fast. 

He was still ruminating about the rally while he broiled his steak over the char-
coal that evening. As he snacked on a bowl of ice cream after dinner, he asked him-
self, "Can't they see the potential for disaster?" 

The next day, Ray decided to mow his lawn and then ride out to the beach. About 
a mile from his house, he realized that he wasn't wearing his motorcycle helmet. 
Well, he thought, the beach was only about 20 miles away. Besides, it would be nice 
to feel the wind in his hair. The ride was nice, even though the traffic was heavier 
than he had expected. The fumes from one of the trucks really got to him briefly, but 
fortunately the exit for the beach was right there. As he lay down on his towel to soak 
up the sunshine, his mind went back to the rally. "Darn," he thought. "I'll probably 
develop an ulcer just worrying about that silly power plant." 

Question 

1        What do you think about Ray Kaplan's behavior? 

THE   MANAGERS   PERSPECTIVE 

Ed Freeman just couldn't understand it. Why were the activists so blind? For years 
the information had been available showing just how safe nuclear power plants 
were. Study after study had concluded that the risk of fatalities from a nuclear power 
plant accident was far less than driving a car, flying in a commercial airliner, and 
many other commonplace activities in which people freely chose to engage. Sure, 
there had been some close calls, such as Three Mile Island, and there had been the 
terrible accident at Chernobyl in the Soviet Union. Still, the overall record of the nu-
clear power industry in the United States was excellent. No one could deny it if they 
would only compare the industry to others. 

His risk assessors had gone through their own paces, documenting the safety fea-
tures of his plant for the Nuclear Regulatory Commission; it was up to date and, in 
fact, one of the safest plants in the country. The experts had estimated the probability 
of an accident at the plant as nearly zero. Furthermore, even if an accident were to 
occur, the safety systems that had been built in would minimize the public's exposure. 

Given all this, he just could not understand the public opposition to the plant. He 
knew that these were bright people. They were articulate, well read, and were able to 
marshal their supporters with great skill. But they seemed to ignore all of the data as 
well as the experts' reports and conclusions. 

"I guess it takes all kinds," he sighed as he prepared to go back to work. 
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Questions 

1 This case and "Nuclear Power Paranoia" go together. People often are willing to 
engage voluntarily in activities that are far more risky (in the sense of the probabil 
ity of a serious injury or death) than living near a nuclear power plant. Why do you 
think this is the case? 

2 What makes new technologies seem risky to you? 

The axioms of expected utility, along with the notion of subjective probability, were first 
discussed by Ramsey (1931), but the world appears to have ignored him. Most econo-
mists refer to "von Neumann-Morgenstern utility functions" because in 1947 von 
Neumann and Morgenstern published their celebrated Theory of Games and Economic 
Behavior in which they also set forth a set of axioms for choice behavior that leads to 
maximization of expected utility. The axioms subsequently appeared in a wide variety of 
forms and in many textbooks. Some examples are Luce and Raiffa (1957), Savage 
(1954), DeGroot (1970), and, more recently, French (1986). French's text is excellent for 
those interested in the axiomatic mathematics that underlie decision theory. 

The various axioms have been debated widely. Our discussion of the transitivity 
axiom, for example, was suggested by Dr. Peter Fishburn as part of his acceptance speech 
for the Ramsey Medal, an award for distinguished contributions to decision analysis. If 
Peter Fishburn, one of the foremost scholars of decision theory, is willing to concede that 
intransitive preferences might not be unreasonable, perhaps we should pay attention! 
Fishburn (1989) summarizes many of the recent developments in the axioms and theory. 

The text by von Winterfeldt and Edwards (1986) also contains much intriguing dis-
cussion of the axioms from the point of view of behavioral researchers and a discussion 
of the many paradoxes found in behavioral decision theory. Hogarth (1987) also covers 
this topic. Tversky and Kahneman (1981) provide an excellent and readable treatment of 
framing effects, and Kahneman and Tversky (1979) present a theory of behavioral deci-
sion making that accounts for many anomalies in individual decision behavior. 

The fact that people do not normally follow the axioms perfectly has been the source of 
much debate about expected utility theory. Many theorists have attempted to relax the ax-
ioms in ways that are consistent with the observed patterns of choices that people make (e.g., 
Fishburn 1988). For the purpose of decision analysis, though, the question is whether we 
should model what people actually do or whether we should help them to adhere to axioms 
that are compelling but in some instances difficult to follow because of our own frailties. 
This debate is taken up by Rex Brown (1992) and Ron Howard (1992) and is a central theme 
of a collection of articles in Edwards (1992). Luce and von Winterfeldt (1994) make an ar-
gument for decision analysis in which the status quo is explicitly used as an essential ele-
ment in decision models, and subjective assessments are made relative to the status quo. 

The debate about axioms is fine as far as it goes, but it is important to realize that many 
aspects of decision making are not covered by the axioms. In particular, the axioms tell 
you what to do once you have your problem structured and probabilities and utilities as-
sessed. The axioms do indicate that decisions problems can be decomposed into issues of 
value (utility) and uncertainty (probability), but no guidance is provided regarding how to 
determine the important dimensions of value or the important uncertainties in a decision 
situation. The axioms provide little help in terms of creativity, sensitivity analysis, or even 
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how to recognize a decision situation. Frisch and Clemen (1994) discuss this issue from 
the point of view of psychological research on decision making and the prescriptive goals 
of decision analysis. 

The constructionist view of decision analysis that is presented in the last section of 
this chapter does not appear to be widely discussed, although such a view has substantial 
and fundamental implications for research in decision theory as well as in decision-
analysis practice. For more discussion of this topic with regard to utility assessment, see 
von Winterfeldt and Edwards (1986, p. 356), Fischer (1979), and Payne, Bettman, and 
Johnson (1993). On the probability side, Shafer and Tversky (1986) view probability and 
structuring of inference problems in an interesting "constructive" way. Phillip's notion of 
the development of a requisite model (1982, 1984) and Watson and Buede's (1987) ap-
proach to decision analysis contain many of the elements of the constructionist view. 

For many people, risk refers primarily to dangerous circumstances that may cause 
bodily injury, disease, or even death. The two cases, "Nuclear Power Paranoia" and "The 
Manager's Perspective," introduce the idea of risk to life and limb instead of risk in mon-
etary gambles. Although one might think that measuring such risks would be a straight-
forward matter of assessing probability distributions for injuries or deaths — for example, 
with respect to options associated with building or siting a power plant — it turns out that 
people are very sensitive to certain kinds of risk. How individuals perceive risk has an im-
portant impact on how risks should be managed and how to communicate risk information 
to the public. For good introductory material, see Slovic (1987) and Morgan (1993). 
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E P I L O G U E  We began the chapter with the Asian influenza example. This kind of study has been done 
repeatedly by many different experimenters, and the results are always the same; many of 
the subjects make inconsistent choices that depend on the framing of the problem. Of 
course, many of these experiments have been done using college students and other indi-
viduals who are not used to making this kind of decision. It would be nice to think that in-
dividuals who make difficult decisions often would not be susceptible to such inconsisten-
cies. Unfortunately, such is not the case. Tversky and Kahneman (1981) report the same 
kinds of inconsistencies among decisions made by university faculty and physicians. 



C H A P T E R      15. Conflicting 
Objectives I: Fundamental Objectives and 
the Additive Utility Function 

he utility functions for money that we have considered have embodied an important fundamental trade-
off: monetary return versus riskiness. We have argued all along that the basic reason for using a utility 

function as a preference model in decision making is to capture our attitudes about 
risk and return. Accomplishing high returns and minimizing exposure to risk are 
two conflicting objectives, and we already have learned how to model our 
preference trade-offs between these objectives using utility functions. Thus, we 
already have addressed two of the fundamental conflicting objectives that decision 
makers face. 

There are many other trade-offs that we make in our decisions, however. Some 
of the examples from Chapters 3 and 4 involved cost versus safety or fun versus 
salary. The FAA bomb-detection example balanced detection effectiveness, passen-
ger acceptance, time to implement, and cost. Other examples are familiar: When pur-
chasing cars or computers, we consider not only reliability and life span but also 
price, ease of use, maintenance costs, operating expenses, and so on. When deciding 
among school courses, you might be interested in factors such as the complementar-
ity of material covered, importance in relation to your major and career goals, time 
schedule, and quality of the instructor. Still other examples and possible objectives 
appear in Figure 15.1 (abstracted from Keeney and Raiffa 1976). 

As individuals, we usually can do a fair job of assimilating enough information 
so that we feel comfortable with a decision. In many cases, we end up saying things 
like, "Well, I can save some money now and buy a new car sooner," "You get what 
you pay for," and "You can't have everything." These are obvious intuitive state-
ments that reflect the informal trade-offs that we make. Understanding trade-offs in 
detail, however, may be critical for a company executive who is interested in acquir-
ing hundreds of personal computers or a large fleet of automobiles for the firm. 

530 
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Figure 15.1 
Four examples of deci-
sions involving compli-
cated preference trade-

offs. Source: Keeney, 
R., and Raiffa, H. 

(1976) Decisions with 
Multiple Objectives: 

Preference and Value 
Tradeoffs. New York: 

John Wiley, pp. 1-4. 
Reprinted by 

permission. 

 

1    A mayor must decide whether to approve a 
major new electric power generating station. 
The city needs more power capacity, but the 
new plant would worsen the city's air quality. 
The mayor might consider the following 
issues: 
• The health of residents • The economic 
conditions of the residents • The 
psychological state of the residents • The 
economy of the city and the state • 
Businesses • Local politics 
2   Imagine the issues involved in the treat-
ment of heroin addicts. A policy maker might 
like to: 
• Reduce the size of the addict pool • Reduce 
costs to the city and its residents • Reduce 
crimes against property and persons • Improve 
the "quality of life" of addicts • Improve the 
"quality of life" of nonaddicts • Curb 
organized crime • Live up to the high ideals 
of civil rights and civil liberties • Decrease the 
alienation of youth • Get elected to higher 
political office 

3    In choosing a site for a new airport near 
Mexico City, the head of the Ministry of 
Public Works had to balance such objectives as: 
• Minimize the costs to the federal 
government • Raise the capacity of airport 
facilities • Improve the safety of the system • 
Reduce noise levels • Reduce access time to 
users • Minimize displacement of people for 
expansion • Improve regional development 
(roads, for instance) • Achieve political aims 
4    A doctor prescribing medical treatment 
must consider a variety of issues: 
• Potential health complications for the patient 
(perhaps death) • Money cost to the patient • 
Patient's time spent being treated • Cost to 
insurance companies • Payments to the 
doctor • Utilization of resources (nurses, 
hospital space, equipment) • Information 
gained in treating this patient (may be helpful 
in treating others) 

In this chapter we will present a relatively straightforward way of dealing with 
conflicting objectives. Essentially, we will create an additive preference model; that 
is, we will calculate a utility score for each objective and then add the scores, 
weighting them appropriately according to the relative importance of the various ob-
jectives. The procedure is easy to use and intuitive. Computer programs are available 
that make the required assessment process fairly simple. But with the simple addi-
tive form comes limitations. Some of those limitations will be exposed in the prob-
lems at the end of the chapter. In Chapter 16, we will see how to construct more com-
plicated preference models that are less limiting. 

Where are we going? The first part of the chapter reviews some of the issues re-
garding identifying objectives, constructing objective hierarchies, and creating use-
ful attribute scales. With objectives and attribute scales specified, we move on to the 
matter of understanding trade-offs. In the section tided "Trading Off Conflicting 
Objectives: The Basics," we will look at an example that offers a relatively simple 
choice involving three automobiles and two objectives. In this initial discussion, we 
will develop intuitive ways to trade off two conflicting objectives. The purpose of 
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this discussion is to introduce ideas, help you focus on the primary issues involved, 
and provide a framework for thinking clearly. 

The next section formally introduces the additive utility function and explores 
some of its properties. In particular, we introduce indifference curves and the mar-
ginal rate of substitution between objectives. We also show that the simple multiob-
jective approach described in Chapters 3 and 4 is consistent with the additive utility 
function. 

The additive utility function is composed of two different kinds of elements, 
scores on individual attribute scales and weights for the corresponding objectives. 
Many different methods exist for assessing the scores and the weights, and these are 
the topics of the following sections. 

In the last section of the chapter, we consider an actual example in which the city 
of Eugene, Oregon, evaluates four candidate sites for a new public library. The ex-
ample shows the process of defining objectives and attribute scales, rating the alter-
natives on each attribute scale, assessing weights, and then putting all of the assess-
ments together to obtain an overall comparison of the four sites. 

Objectives and Attributes 

In Chapter 3 we discussed at length the notion of conflicting objectives in decision 
making. Understanding objectives is an important part of the structuring process. We 
stressed the importance of identifying fundamental objectives, the essential reasons 
that matter in any given decision context. Fundamental objectives are organized into 
a hierarchy in which the lower levels of the hierarchy explain what is meant by the 
higher (more general) levels. Figure 15.2 shows a fundamental-objectives hierarchy 
for evaluating alternative-energy technologies. We also discussed the notion of 
means objectives, which are not important in and of themselves but help, directly or 
indirectly, to accomplish the fundamental objectives. Distinguishing means and fun-
damental objectives is important because we would like to measure the available al-
ternatives relative to the fundamental objectives, the things we really care about. 

The discussion in Chapter 3 also introduced attribute scales. Attribute scales pro-
vide the means to measure accomplishment of the fundamental objectives. Some at-
tribute scales are easily defined; if minimizing cost is an objective, then measuring 
cost in dollars is an appropriate attribute scale. Others are more difficult. In Figure 
15.2, for example, there is no obvious way to measure risks related to aesthetic as-
pects of the environment. In cases like these, we discussed the use of constructed 
scales and related measurements as proxies. 

For convenience, we use the term attribute to refer to the quantity measured on 
an attribute scale. For example, if an objective is to minimize cost, then the attribute 
scale might be defined in terms of dollars, and we would refer to dollar cost as the at-
tribute for this objective. Use of the term "attribute" is common in the decision-
analysis literature, and many authors use multiattribute utility theory (MAUT) to 
refer to topics covered in Chapters 15 and 16. 
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Figure 15.2 
Objectives hierarchy 

for evaluating alterna-
tive-energy technolo-

gies. [Source: von 
Winterfeldt and 

Edwards (1986).] 

There are a number of essential criteria for fundamental objectives and their at-
tributes. Many of these we discussed in Chapters 3 and 4, and you are encouraged to 
review those sections. Here is an encapsulation: 

1 The set of objectives, as represented by the fundamental-objectives hierarchy, 
should be complete; it should include all relevant aspects of a decision. The fact 
that important objectives are missing can be indicated by reluctance to accept the 
results of an analysis or simply the gnawing feeling that something is missing. If 
the results "just don't feel right," ask yourself what is wrong with the alternatives 
that the analysis suggests should be preferred. Careful thought and an honest an 
swer should reveal the missing objectives. 

2 At the same time, the set of objectives should be as small as possible. Too many 
objectives can be cumbersome and hard to grasp. Keep in mind that the objec 
tives hierarchy is meant to be a useful representation of objectives that are im 
portant to the decision maker. Furthermore, each objective should differentiate 
the available alternatives. If all of the alternatives are equivalent with regard to a 
particular objective (as measured by its corresponding attribute), then that objec 
tive will not be of any help in making the decision. 

3 The set of fundamental objectives should not be redundant. That is, the same ob 
jectives should not be repeated in the hierarchy, and the objectives should not be 
closely related. 
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4 As far as possible, the set of objectives should be decomposable. That is, the de 
cision maker should be able to think about each objective easily without having 
to consider others. For example, in evaluating construction bids, the cost of the 
project and the amount of time required may be important attributes. In most 
cases, we can think about these attributes separately; regardless of the cost, it al 
ways would be preferable to complete the project sooner, and vice versa. Thus, 
the objectives would be decomposable into these two attributes, which can be 
considered independently. On the other hand, if you are deciding which course to 
take, you may want to choose the most interesting topic and at the same time 
minimize the amount of effort required. These attributes, however, are related in 
a way that does not permit decomposition; whether you want to put in a lot of ef 
fort may depend on how interested you are in the material. Hence, you may have 
to alter your set of objectives. For example, you might construct a scale that mea 
sures something like the extent to which the course inspires you to work harder 
and learn more. 

5 Means and fundamental objectives should be distinguished. Even if fundamental 
objectives are difficult to measure and means objectives are used as proxies, it is 
important to remain clear on why the decision matters in the first place. Doing so 
can help avoid choosing an inappropriate alternative for the wrong reason. 

6 Attribute scales must be operational. They should provide an easy way to mea 
sure performance of the alternatives or the outcomes on the fundamental objec 
tives. Another way to put it is that the attribute scales should make it straightfor 
ward (if not easy) to fill in the cells in the consequence matrix. 

Trading Off Conflicting Objectives: The Basics 

The essential problem in multiobjective decision making is deciding how best to 
trade off increased value on one objective for lower value on another. Making these 
trade-offs is a subjective matter and requires the decision maker's judgment. In this 
section, we will look at a simple approach that captures the essence of trade-offs. We 
will begin with an example that involves only two objectives. 

Choosing an Automobile: An Example 

Suppose you are buying a car, and you are interested in both price and life span. You 
would like a long expected life span — that is, the length of time until you must re-
place the car — and a low price. (These assumptions are made for the purpose of this 
example; some people might enjoy purchasing a new car every three years, and for 
them a long life span may be meaningless.) Let us further suppose that you have nar-
rowed your choices down to three alternatives: the Portalo (a relatively expensive 
sedan with a reputation for longevity), the Norushi (renowned for its reliability), and 
the Standard Motors car (a relatively inexpensive domestic automobile). You have 
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done some research and have evaluated all three cars on both attributes as shown in 
Table 15.1. Plotting these three alternatives on a graph with expected life span on the 
horizontal axis and price on the vertical axis yields Figure 15.3. The Portalo, 
Norushi, and Standard show up on the graph as three points arranged on an upward-
sloping curve. That the three points are ordered in this way reflects the notion, "You 
get what you pay for." If you want a longer expected life span, you have to pay more 
money. 

Occasionally alternatives may be ruled out immediately by means of a domi-
nance argument. For example, consider a hypothetical car that costs $15,000 and has 
an expected life span of seven years (Point A in Figure 15.3). Such a car would be a 
poor choice relative to the Norushi, which gives a longer expected life for less 
money. Thus, A would be dominated by the Norushi. 

On the other hand, none of the cars under consideration is dominated. With this 
being the case, how can you choose? The question clearly is, "How much are you 
willing to pay to increase the life span of your car?" To answer this question, we will 
start with the Standard and assume that you will purchase it if the others are not bet-
ter. Is it worthwhile to switch from the Standard to the Norushi? Note that the slope 
of the line connecting the Norushi and the Standard is $666.67 per year. The switch 
would be worthwhile if you were willing to pay at least $666.67 for each additional 
year of life span, or $2000 to increase the expected life span by three years. Would 
you be willing to pay more than $2000 to increase the expected life of your car by 

Table 15.1 
Automobile purchase 

alternatives. 

 

 Portato Norushi Standard Motors 

Price ($ 1000s) 17 10 8 

Life Span (Years) 12 9 6 

 

Figure 15.3 
Graph of three cars, 
comparing price and 

expected life span. 
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three years? This is a subjective assessment! If you would, then it is worthwhile to 
switch to the Norushi from the Standard. If not, do not switch. 

For the sake of continuing the example, assume that you make the switch, and 
that you have decided that the Norushi is better for you than the Standard; you would 
pay at least $2000 for the additional three years of life span. Now, should you switch 
to the Portalo? Notice that the slope of the line connecting the Norushi and the 
Portalo is $2333.33 per year, or $7000 for an additional three years. You were will-
ing to pay at least $666.67 for an extra year. Now, what about an extra $7000 for an-
other three years? Are the extra years of expected life span worth this much to you? 
If so, make the switch to the Portalo. If not, stick with the Norushi. 

This simple procedure permits you to move systematically through the alterna-
tives. The idea is to start at one corner of the graph (for example, the Standard) and 
then consider switching with each of the other alternatives, always moving in the 
same direction. Once a switch is made, there is never a need to reconsider the previ-
ous alternative. (After all, the one to which you changed must be better.) If there 
were many cars to choose from, the procedure would be to plot them all on a graph, 
eliminate the dominated alternatives, and then systematically move through the non-
dominated set, beginning at the lower left-hand side of the graph and considering the 
alternatives that are to the upper right-hand side. 

This procedure works well in the context of two conflicting objectives, and you 
can see how we are trading off the two. At each step we ask whether the additional 
benefit from switching (the increase in expected life span) is worth the cost (the in-
crease in price). The same kind of procedure can be used with three or more attri-
butes. The trade-offs become more complicated, however, and graphical interpreta-
tion is difficult. 

The Additive Utility Function 

The automobile example above is intended to give you an intuitive idea of how trade-
offs work. This particular example is easy because it seems natural to many of us to 
think in terms of dollars, and we often can reduce nonmonetary attributes to dollars. 
But what if we wanted to trade off life span and reliability? We would like to have a 
systematic procedure that we can apply in any situation fairly easily. To do this, we 
must find satisfactory ways to answer two questions. The first question has to do with 
comparing the attribute levels of the available alternatives. We are comparing three 
different automobiles. How do they compare on the two attributes? Is the Portalo 
"twice as good" on life span as the Norushi? How does the Standard compare (quan-
titatively) to the Portalo on price? In the energy example in Figure 15.2, alternative 
technologies must be ranked on each of their attributes. For example, substantial dif-
ferences may exist among these technologies on all of the detail attributes. To get any-
where with the construction of a quantitative model of preferences, we must assess 
numerical scores for each alternative that reflect the comparisons. 



THE ADDITIVE UTILITY FUNCTION      537 

The second question asks how the attributes compare in terms of importance. In 
the automobile example, is life span twice as important as price, and exactly what 
does "twice as important" mean? In the alternative-energy example, how do the en-
vironmental and health risks compare in terms of importance within the "Minimize 
Risks" fundamental objective? As with the scores, numerical weights must be as-
sessed for each attribute. 

The model that we will adopt in this chapter is called the additive utility function. 
We assume that we have individual utility functions U1(x1), ... , Um(xm) for m differ-
ent attributes x1 through xm. These are utility functions just like those that we dis-
cussed in Chapters 13 and 14. In particular, we assume that each utility function as-
signs values of 0 and 1 to the worst and best levels on that particular objective. The 
additive utility function is simply a weighted average of these different utility func-
tions. For an outcome that has levels x1 ..., xm on the m objectives, we would cal-
culate the utility of this outcome as 

U(x1, . . . , x m )  =  k 1  U1(x1) + • • •  +  k m  Um (xm) 

 
(15.1) 

where the weights are k1, . . . ,  km. All of the weights are positive, and they add up to 1. 
First, you can see this additive utility function also assigns values of 0 and 1 to the 
worst and best conceivable outcomes, respectively. To see this, look at what happens 
when we plug in the worst level (xi) for each objective. The individual utility 
functions then assign 0 for each objective [U(xi

─) = 0], and so the overall utility is 
also 0. If we plug in the best possible value for each objective (xi

+), the individual 
utility functions are equal to 1 [U(xi

+) = 1], and so the overall utility becomes 

U(x1+, . . . , x m
+ )  =  k 1  U1(x1

+) + • • • + 
kmUm(xm+) = k1 + • • • + km = 1 

You can see that this utility function is consistent with what we developed in 
Chapters 3 and 4. In Chapter 3 we discussed how to assess "scores" by using at-
tribute scales; you can see that the individual utility functions U, in Equation (15.1) 
define the attribute scales. In Chapters 3 and 4 we had the attribute scales ranging 
from 0 to 100, whereas here we have defined the utility functions to range from 0 to 
1. The transformation is simple enough; think of the 0 and 100 in Chapters 3 and 4 as 
0% and 100%. In the case of quantitative natural scales we showed in Chapter 4 how 
to, standardize those to a scale from 0 to 100, and in the case of constructed scales we 
had to make a subjective assessment of the value of the intermediate levels on the 
scale from 0 to 100. As we proceed through this chapter, we will examine some al-
ternative ways of coming up with the individual utility functions. 

In Chapter 4 we turned to the assessment of weights. We used a simple technique 
of comparing the importance of the range of one attribute with another. Later in this 
chapter we will discuss this and several other approaches for assessing weights. 
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Choosing an Automobile: Proportional Scores 

To understand the additive utility function better, let us work through a simple example 
with the automobile choice. We will begin with the determination of the individual 
utility values, following the same proportional-scoring technique discussed in Chapter 
4 (except that we will have the utility functions range from 0 to 1 rather than 0 to 100). 
The first step is easy. The Standard is best on price and worst on life span, so assign 
it a 1 for price and a 0 for life span: UP, (Standard) = 1 and UL(Standard) = 0, where 
the subscripts P and L represent price and life span, respectively. Do the opposite 
for the Portalo, which is worst on price and best on life span: UP(Portalo) = 0 and 
UL(Portalo) = 1. Now, how do we derive the corresponding scores for the 
Norushi? Because we have natural numerical measures for the objectives (dollars 
and years), we can simply scale the Norushi's price and life span. A general formula 
is handy. Calculate 

 

For the Norushi's price, 
 

Likewise, the Norushi's utility for life span is 
 

The intuition behind these calculations is that 9 years is exactly halfway between 6 and 
12 years [thus UL(Norushi) = 0.50], whereas $10,000 is 78% of the way from $17,000 
to $8000. Moreover, you can see that the values of 0 and 1, which we assigned to the 
Standard and the Portalo, are consistent with the general formula; plugging in the worst 
value for x yields Ui (Worst) = 0, and plugging in the best value gives Ui(Best) = 1. 
The utilities for the three cars are summarized in Table 15.2. As long as the objectives 
have natural numerical attributes, it is a straightforward matter to scale those attributes 
so that the utility of the best is 1, the utility of the worst is 0, and the intermediate alter-
natives have scores that reflect the relative distance between the best and worst. 

Table 15.2 
Utilities for three cars 

on two attributes. 

 

 Portalo Norushi Standard Motors 

Price (UP) 0.00 0.78 1.00 
Life Span (UL) 1.00 0.50 0.00 
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Assessing Weights: Pricing Out the Objectives 

Now we must assess the weights for price and life span. But before we decide on the 
weights once and for all, let us look at the implications of various weights. For the 
automobile example, we must assess kP and kL which represent the weights for price 
and life span, respectively. 

Suppose you were to decide that price and expected life span should be weighted 
equally, or kP = kL = 0.5. In general, we are going to calculate 

U(Price, Life Span) = kP UP (Price) + kL UL(Life Span) 

Thus, the weighted utilities would be 

U(Portalo) = 0.5(0.00) + 0.5(1.00) = 0.50 
U(Norushi) = 0.5(0.78) + 0.5(0.50) = 0.64 

U(Standard) = 0.5(1.00) + 0.5(0.00) = 0.50 

The Standard and the Portalo come out with exactly the same overall utility because 
of the way that price and life span are traded off against each other. Because the dif-
ference between 1 and 0 amounts to $9000 in price versus six years in life span, the 
equal weight in this case says that one additional year of life span is worth $1500. 
The Norushi comes out on top because you pay less than $1500 per year for the three 
additional years in expected life span as compared to the Standard. 

Suppose that you have little money to spend on a car. Then you might think that 
price should be twice as important as life span. To model this, let kP = 0.67 and 
kL = 0.33. Now the overall utilities for the cars are Portalo, 0.33; Norushi, 0.69; and 
Standard, 0.67. In this case the weights imply that an increase in life span of one year 
is only worth an increase in price of $750. (You can verify this by calculating the 
utility for a car that costs $8750 and is expected to last seven years; such a car will 
have the same weighted score as the Standard.) Again the Norushi comes out as 
being preferred to the Standard, because its three-year increase in life span (relative 
to the Standard) is accompanied by only a $2000 increase in price, whereas the 
weights indicate that the additional three years would be worth $2250. 

You may not be happy with either scheme. Perhaps you have thought carefully 
about the relative importance of expected life span and price, and you have decided 
that you would be willing to pay up to $600 for an extra year of expected life span. 
You have thus priced out the value of an additional year of expected life span. How 
can you translate this price into the appropriate weights? Take the Standard as your 
base case (although any of the three automobiles could be used for this). Essentially, 
you are saying that you would be indifferent between paying $8000 for six years of 
expected life span and $8600 for seven years of expected life span. Using Equation 
(15.2), we can find that such a hypothetical car (Car B) would score 1/6 = 0.167 on 
expected life span (which is one-sixth of the way from the worst to the best case) and 
0.933 on price ($8600 is 0.933 of the way from the worst to the best case). Because 
you would be indifferent between the Standard and the hypothetical Car B, the 
weights must satisfy 
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U(Standard) = U(Car B) kP(1.00) + kL(0) = kP(0.933) + 
kL (0.167) Simplify this equation to find that 

kP(l.00- 0.933) = kL(0.167) 

 
or that 

kP = 2.50kL 

Including the condition that the weights must sum to 1, we have 
kP =2.50(1 -kP)  

or 

kP = 0.714       and       kL = 0.286 

Note that these weights are consistent with what we did above. The weight 
kP = 0.667 implied a price of $750 per additional year of expected life span. With a 
still lower price ($600), we obtained a higher weight for kP. 
The final objective, or course, is to compare the cars in terms of their overall utili-
ties: 

U(Portalo) = 0.714(0.00) + 0.286(1.00) = 0.286 
U(Norushi) = 0.714(0.78) + 0.286(0.50) = 0.700 
U(Standard) = 0.714(1.00) + 0.286(0.00) = 0.714 

The Standard comes out only slightly better than the Norushi. This is consistent with 
the switching approach described earlier. The weights here came from the assess-
ment that one year of life span was worth only $600, not the $666.67 or more re-
quired to switch from the Standard to the Norushi. 

Indifference Curves 

The assessment that you would trade $600 for an additional year of life span can be 
used to construct indifference curves, which can be thought of as a set of alternatives 
(some perhaps being hypothetical) among which the decision maker is indifferent. 
For example, we already have established that you would be indifferent between the 
Standard and hypothetical Car B, which costs $8600 and lasts seven years. Thus, in 
Figure 15.4 we have a line that passes through the points for the Standard and the 
point for the hypothetical Car B (Point B). All of the points along this line represent 
cars that would be equivalent to the Standard; all would have the same utility, 0.714. 
Other indifference curves also are shown with their corresponding utilities. Note that 
the indifference curves have higher utilities as one moves down and to the right, be-
cause you would rather pay less money and have a longer life span. You can see that 
the Norushi and the Portalo are not preferred to the Standard because they lie above 
the 0.714 indifference curve. 
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Figure 15.4 
Indifference curves for 

the automobile 
decision. 

The slope of the indifference curves in Figure 15.4 is related to the trade-off rate 
that was assessed. Specifically, the slope is $600 per year, the price that was assessed 
for each year of expected life span. This also is sometimes called the marginal rate 
of substitution, or the rate at which one attribute can be used to replace another. 

When using the additive utility function, it is  straightforward to calculate how 
much a utility point in objective i is worth in terms of objective j. Let us say that you 
want to know how much one utility unit of attribute i is worth in terms of utility units 
of attribute j. Then the marginal rate of substitution between i and j is simply ki/kj. 
Thus, in the automobile case, the marginal rate of substitution in terms of the utility 
scales is 0.286/0.714 = 0.40. In other words, the increase of one utility point on the 
life-span scale is worth 40% of the increase of one point on the price scale. 

Unfortunately, knowing the marginal rate of substitution in utility terms is not so 
useful. If you are using the additive utility function and proportional scores as we 
have done here, then the marginal rate of substitution in terms of the original attri-
butes is easily calculated. Let Mij denote the marginal rate of substitution between at-
tributes i and j. Then 

(15.3) 

Thus, for the automobiles MLP can be calculated as 

 
In general, without proportional scores or with a nonadditive overall utility func-

tion, the marginal rate of substitution can vary depending on the values of the attributes 
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xi and xj, and the reason is that the indifference curves may be just that: curves instead 
of straight lines. Moreover, calculating Mij can be difficult, requiring calculus to deter-
mine the slope of an indifference curve at a particular point. It is often possible to graph 
approximate indifference curves, however, and doing so can provide insight into one's 
assessed trade-offs. We will return to indifference curves in Chapter 16. 

Assessing Individual Utility Functions 

As you can see, the essence of using the additive utility function is to be able to as-
sess the individual utility functions and the weights. In this section we look at some 
issues regarding the assessment of the individual utility functions. 

Proportional Scores 

In the example here and in Chapter 4, we have used the proportional scoring ap-
proach. In fact, we have just taken the original values and scaled them so that they 
now range from 0 (worst) to 1 (best). For the automobile example, Figure 15.5 
graphs the price relative to a car's score on price. The graph shows a straight line, 
and we know about straight lines in this context: They imply risk neutrality and all of 
the unusual behavior associated with risk neutrality. 

Let us think about what risk neutrality implies here with another simple example. 
Imagine that you face two career choices. You could decide to invest your life sav- 

Figure 15.5 
Proportional scores 

for prices of three 
cars. 
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ings in an entrepreneurial venture, or you could take a job as a government bureau-
crat. After considering the situation carefully, you conclude that your objectives are 
purely monetary, and you can think in terms of income and savings. (Actually, more 
than just monetary outcomes should influence your career choice!) The bureaucratic 
job has a well-defined career path and considerable security. After 10 years, you 
know with virtual certainty that you will make $30,000 per year and have $60,000 in 
the bank toward retirement. On the other hand, becoming an entrepreneur is a risky 
proposition. The income and savings outcomes could range anywhere from zero dol-
lars in the case of failure to some large amount in the event of success. To solve the 
problem, you decide to assess a continuous distribution and fit a discrete approxima-
tion. The decision tree in Figure 15.6 shows your probability assessments and alter-
natives. You can see that for the entrepreneurial alternative, the expected values are 
$30,000 in income and $60,000 in savings, the same as the certain values associated 
with the bureaucratic job. 

Now we assign scores to the outcomes. For income, the best is $60,000, the 
worst is 0, and $30,000 is halfway between. These outcomes receive scores of 1, 0, 
and 1/2, respectively. Performing the same analysis for the savings dimension 
results in similar scores, and the decision tree with these scores appears in Figure 
15.7. 

We now calculate expected scores for the two alternatives; this requires calculat-
ing scores for each of the three possible outcomes. Let kI and kS represent the weights 
that we would assign to income and savings. The scores (U) for the possible out-
comes are 

 

Figure 15.6 
A career decision. 

 

 

 

 

 

Figure 15.7 
A career decision with 

proportional scores. 
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U($60,000, $120,000) = kI(1) + kS(1) = kI+kS 

U($30,000, $60,000) = kI(1/2) + kS(1/2) = 
1/2{kI+ kS) U(0,0) = kI(0) + kS(0) = 0 

Now we can calculate the expected utility (EU) for the entrepreneurial venture. That 
expected score is obtained by averaging the scores over the three branches: 

EU(Entrepreneur) = 0.185(kI + kS) + 0.63[1/2(kI + kS)] + 0.185(0) = 
0.50(kI + kS) = 0.50 

because kI + kS = 1. Of course, the expected score for the bureaucratic option also 
is 0.50, and so, on the basis of expected scores, the two alternatives are equivalent. 
(In fact, it is important to note that the two alternatives have the same score regard-
less of the specific values of kI and kS.) It is obvious, however, that being an entre-
preneur is riskier. If each job really has the same expected scores in all relevant di-
mensions, would you be indifferent? (Probably not, but we will not guess about 
whether you would choose the riskier job or the more secure one!) 

Ratios 

Another way to assess utilities — and a particularly appropriate one for attributes 
that are not naturally quantitative — is to assess them on the basis of some ratio 
comparison. For example, let us return to the automobile example. Suppose that 
color is an important attribute in your automobile purchase decision. Clearly, this is 
not something that is readily measurable on a meaningful numerical scale. Using a 
ratio approach, you might conclude that to you blue is twice as good as red and that 
yellow is 2 \ times as good as red. We could accomplish the same by assigning some 
number of points between 0 and 100 to each possible alternative on the basis of 
performance on the attribute. In this way, for example, you might assign 30 points 
to red, 60 points to blue, and 75 poi nts to yellow. This could be represented 
graphically as in Figure 15.8. 

Figure 15.8 
Graphically scoring 

alternatives. 
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Now, however, we must scale these assessments so that they range from 0 to 1. 
We need to find constants a and b so that 

0 = a + b(30) 
1 = a + b(75) 

Solving these two equations simultaneously gives 
 

Applying these scaling constants, we can calculate UC, the utilities for the three 
colors: 

 

  

Figure 15.9 shows the scaled scores, which now represent your relative preference 
for the different colors. They may be used to calculate weighted scores for different 
cars in a decision problem in which color is one attribute to consider. For example, 
with appropriate trade-off weights for price, color, and life span, the weighted score 
for a blue Portalo would be 

U($17,000, 12 Years, Blue) = kP(0) + kL(1) + kC(0.667) 

You can see how the ratio approach can be used to compare virtually any set of al-
ternatives whether or not they are quantitatively measured. 

 

Figure 15.9 
Scaled scores for 

colors. 
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Standard Utility-Function Assessment 

In principle, assessing the individual utility functions need be no more complicated 
than the assessment procedures described in Chapters 13 and 14. For the automobile 
example, we would need to assess utility functions for price, life span, and color. If 
you face a decision that is complicated by both uncertainty and trade-offs, this is the 
best solution. The utility functions, having been assessed in terms of your prefer-
ences over uncertain situations, are models of your preferences in which your risk at-
titude is built in. 

To see the effect of building in a risk attitude, let us return to the example above 
about the two jobs. Suppose we assess utility functions for income and savings and 
find that 

UI ($60,000) = 1 
UI($30,000) = 0.75 
U I(0)  = 0  

and 
US ($120,000) = 1 US 
($60,000) = 0.68 
US(0) = 0 

With these utilities, the expected score for becoming an entrepreneur is 

EU(Entrepreneur) = 0.185(1kI + lkS) + 0.63(0.75kI + 0.68kS) 
+ 0.185(0kI + 0kS) = 0.658kI  + 0.613kS Now 

compare EU(Entrepreneur) with U(Bureaucrat): 

U(Bureaucrat) = 0.750kI + 0.680kS 

Regardless of the specific values for the weights kI and kS, the expected score for 
being a bureaucrat always will be greater than the expected score for being an entre-
preneur because the coefficients for kI and kS are larger for the bureaucrat than for the 
entrepreneur. This makes sense; the expected values (EMVs) for the two alternatives 
are equal for each attribute, but being an entrepreneur clearly is riskier. When we use 
a utility function for money that incorporates risk aversion, the riskier alternative 
ends up with a lower expected utility. 

Assessing Weights 

In the examples here and in Chapter 4, we have seen two different methods of as-
sessing weights for the additive utility function. The approach in the automobile ex-
ample is called pricing out because it involves determining the value of one objec- 
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tive in terms of another (usually dollars). The summer-job example in Chapter 4, 
though, used an approach that we will call swing weighting. We will discuss both of 
these methods here along with a third method based on a comparison of lotteries. 

Pricing Out 

The pricing-out method for assessing weights is no more complicated than what was 
described above in the automobile example. The essence of the procedure is to de-
termine the marginal rate of substitution between one particular attribute (usually 
monetary) and any other attribute. Thus, we might say that a year of life span is 
worth $600. Or, in a decision regarding whether to accept a settlement offer or pur-
sue a lawsuit, one might assess that it would be worth $350 in time and frustration to 
avoid an hour consulting with lawyers, giving depositions, or sitting in a courtroom. 
(And that would be on top of the cost of the lawyers' time!) 

Assessing the marginal rate of substitution is straightforward in concept. The idea 
is to find your indifference point: the most you would pay for an incremental unit of 
benefit, or the least you would accept for an incremental unit of something undesir-
able. Although this idea seems straightforward, it can be a difficult assessment to 
make, especially for attributes with which we have little buying or selling experience. 

As you can see, pricing out is especially appropriate for direct determination of the 
marginal rate of substitution from one attribute scale to another. Because the additive 
utility function implies a constant marginal rate of substitution, pricing out is consis-
tent with the notion of proportional scores. However, when the individual utility func-
tions are nonlinear or not readily interpretable in terms of an interval scale (as they 
might not be with a constructed scale), then pricing out makes less sense. One would 
have to ask, "How much utility on Attribute Scale 1 would I be willing to give up for a 
unit increase on Attribute Scale 2?" This is a more difficult assessment, and in situa-
tions like this, one of the following weight-assessment procedures might be easier. 

Swing Weighting 

The swing-weighting approach can be used in virtually any weight-assessment situ-
ation. It requires a thought experiment in which the decision maker compares indi-
vidual attributes directly by imagining (typically) hypothetical outcomes. We 
demonstrate the procedure in this section with the automobile example. 

To assess swing weights, the first step is to create a table like the one in Table 15.3 
for the automobiles. The first row indicates the worst possible outcome, or the out-
come that is at the worst level on each of the attributes. In the case of the automobiles, 
this would be a red car that lasts only six years and costs $17,000. This "worst case" 
provides a benchmark. Each of the succeeding rows "swings" one of the attributes 
from worst to best. For example, the second row in Table 15.3 is for a red car that lasts 
12 years and costs $17,000. The last row is for a car that is worst on price and life 
span ($17,000 and six years, respectively) but is your favorite color, yellow. 

With the table constructed, the assessment can begin. The first step is to rank-
order the outcomes. You can see in Table 15.3, a "4" has been placed in the "Rank" 
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Table 15.3 
Swing-weight assess-

ment table for automo-
bile example. 

 

Attribute Swung 
from Worst to Best 

Consequence to 
Compare                     

          Rank          Rate          Weight 

(Benchmark) 6 years. $17,000. red                   4   

Life span 12 vears. $17,000. red ─ ─ ─ 
Price 6 vears. $8000. red ─ ─ ─ 
Color 6 vears. $17,000, yellow ─ ─ ─ 

column for the first row. There are four hypothetical cars to compare, and it is safe to 
assume that the benchmark car — the one that is worst on all the objectives — will 
rank fourth (worst) overall. The others must be compared to determine which ranks 
first (best), second, and third. Suppose that after some thought you conclude that the 
low-price car is the best, then the long life-span car, and finally the yellow car. Table 
15.4 shows the partially completed table. 

The next step is to fill in the "Rate" column in the table. You can see in Table 15.4 
that two of the ratings are predetermined; the rating for the benchmark car is 0 and the 
rating for the top-ranked car is 100. The ratings for the other two cars must fall be-
tween 0 and 100. The comparison is relatively straightforward to make; how much 
less satisfaction do you get by swinging life span from 6 to 12 years as compared to 
swinging price from $17,000 to $8000? What about swinging color from red to yel-
low as compared to swinging price? You can even think about it in percentage terms; 
considering the increase in satisfaction that results from swinging price as 100%, 
what percentage of that increase do you get by swinging life span from worst to best? 

Suppose that after careful thought, your conclusion is to assign 75 points to life 
span and 10 points to color. Essentially, this means that you think improving life 
span from worst to best is worth 75% of the value you get by improving the price 
from $17,000 to $8000. Likewise, changing the color from yellow to red is worth 
only 10% of the improvement in price. With these assessments, the table can be 
completed and weights calculated. Table 15.5 shows the completed table. The 
weights are the normalized ratings; recall that by convention we have the weights 
add up to 1. For example, kP is calculated as 100/(100 + 75 + 10) = 0.541. 
Likewise, we have kL = 75/(100 + 75 + 10) = 0.405, and kC = 10/(100 + 75 
+ 10) = 0.054. 

Table 15.4 
Swing-weight assess-
ment table with ranks 

assessed. 

 

Attribute Swung 
from Worst to Best 

Consequence 
to Compare 

Rank Rate Weight 

(Benchmark) 6 years, $17,000, red 4 0  

Life span 12 years, $17,000, red 2   
Price 6 years, $8000, red 1 100  
Color 6 years, $17,000, yellow 3   
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Table 15.5 
Completed swing-
weight assessment 

table. 

 

Attribute Swung 
from Worst to Best 

Consequence 
to Compare 

Rank Rate Weight 

(Benchmark) 6 years, $17,000, red 4 0  

Life span 12 years, $17,000, red 2 75 0.405 = 75/185 
Price 6 years, $8000, red 1 100 0.541 = 100/185 
Color 6 years, $17,000, yellow 3 10 0,054 = 10/185 

  Total 185 1.000 

With the weights determined, we can calculate the overall utility for different al-
ternatives or outcomes. For example, we now can finish calculating the utility for a 
blue Portalo: 

U($17,000, 12 Years, Blue) = kP(0) + kL(1) + kC(0.667) 
= 0.541(0) + 0.405(1) + 0.054(0.667) = 
0.441 

Why do swing weights work? The argument is straightforward. Here are the util-
ities for the hypothetical cars that you have considered: 

U(Worst Conceivable Outcome) = U($17,000, 6 Years, Red) 

= kP(0) + kL(0) + kC(0) = 
0 

U($8000, 6 Years, Red) = kP(1) + kL(0) + kC(0) = kP 

U($17,000, 12 Years, Red) = kP(0) + kL(1) + kC(0) = 
kL U($17,000, 6 Years, Yellow) = kP(0) + kL(0) + kC(1) 
= kC 

From the first two equations, you can see that the increase in satisfaction from 
swinging price from worst to best is just kP. Likewise, the improvement from swing-
ing any attribute from worst to best is simply the value of the corresponding weight. 
When you compare the relative improvements in utility by swinging the attributes 
one at a t ime, you are assessing the ratios kL/kP and kC/kP. These assessments, along 
with the constraint that the weights add to 1, allow us to calculate the weights. Figure 
15.10 graphically shows how swing weights work. 

Swing weights have a built-in advantage in that they are sensitive to the range of 
values that an attribute takes on. For example, suppose you are comparing two per-
sonal computers, and price is an attribute. One computer costs $3500 and the other 
$3600. When you work through the swing-weight assessment procedure, you proba-
bly will conclude that the increase in utility from swinging the price is pretty small. 
This would result, appropriately, in a small weight for price. But if the difference in 
price is $1000 rather than $100, the increase in utility experienced by swinging from 
worst to best would be much larger, resulting in a larger weight for price. 
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Figure 15.10 
Graphic representation 

of swing-weighting 
procedure. 

If you have a hard time thinking about the "Worst Conceivable Outcome," you 
might try reversing this procedure. That is, use as a benchmark the "Best 
Conceivable Outcome," best on all attributes, and consider decreases in satisfaction 
from swinging attributes from high to low. Assess relative decreases in satisfaction, 
and use those assessments in exactly the same way that we used the relative utility 
increases. 

Lottery Weights 

It should come as no surprise that we also can use lottery-comparison techniques to 
assess weights. In fact, the technique we will use is a version of the probability-
equivalent assessment technique introduced in Chapter 13. The general assessment 
setup is shown in Figure 15.11. 

The assessment of the probability p that makes you indifferent between the lot-
tery and the sure thing turns out to be the weight for the one odd attribute in the sure 
thing. We will see how this works in the case of the automobiles. Figure 15.12 shows 
the assessment decision for determining the weight associated with price. 

Suppose that the indifference probability in Figure 15.12 turns out to be 0.55. 
Write down the equation that is implied by the indifference: 

kP UP ($8000) + kL UL (6 Years) + kC UC (Red) 
= 0.55[kP UP($8000) + kL UL(12 Years) + kC UC(Yellow)] + 

0.45[kP UP($17,000) + kL UL(6 Years) + kC UC(Red)] 

As before, the individual utilities range from 0 to 1. This means that 
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Figure 15.11 
Assessing weights 

using a lottery tech-
nique. The task is to 

assess the probability p 
that makes you indif-

ferent between the lot-
tery (A) and the sure 

thing (B). 
 

 

Figure 15.12 
Assessing the weight 

for price. 

UP($8000) = 1.00       UP($17,000) = 0 
UL (12 Years) = 1.00   UL (6 Years) = 0 UC 
(Yellow) = 1.00      UC(Red) = 0 

Substitute these values into the equation to obtain 

kP = 0.55(kP + kL + kC) 

Because kP  + kL + kC = l we have kP = 0.55, which is simply the indifference 
probability that was assessed. Thus, we have a direct way to find the trade-off weight 
for the price attribute. Repeating this procedure one more time for the life-span at-
tribute gives kL, and then kC follows because the weights must add to 1. Of course, a 
simple way to check for consistency is to repeat the procedure a third time for the 
color attribute. If assessed weights do not add to 1 and are not even close, then the 
additive model that we are using in this chapter is not appropriate. Chapter 16 dis-
cusses more complicated multiattribute utility models that may be able to accommo-
date such preferences. 

Finally, you may have wondered why we always scale the individual utility func-
tions from 0 to 1. The answer is contained in the equations above that underlie the 
weight-assessment techniques. In each case, we needed the values of 0 and 1 for best 
and worst cases in order to solve for the weights; the idea that scores are scaled from 
0 to 1 is built into these assessment techniques. The result is that weights have very 
specific meanings. In particular, the swing-weight approach implies that we can in-
terpret the weights in terms of improvements in utility that result from changing one 
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attribute from low to high, and those low and high values may be specific to the al-
ternatives being considered. The lottery-assessment method suggests that the 
weights can be interpreted as an indifference probability in a comparison of lotteries. 
The specific low and high values among the alternatives are important anchors for 
interpreting these indifference probabilities. 

Keeping Concepts Straight: Certainty Versus Uncertainty 

Up to this point we have been doing something that is, strictly speaking, not correct. 
We have been mixing up decision making under conditions of certainty with deci-
sion making under conditions of uncertainty. For example, the decision regarding 
which automobile to buy, as we have framed it, is one that is made under certainty 
regarding the outcomes; the Norushi, Portalo, and Standard Motors cars have partic-
ular characteristics (price, color, and advertised life span) that you know for sure 
when you buy them. On the other hand, we could reframe the problem and consider 
life span to be uncertain. In this case, we would assess a probability distribution over 
possible life spans for each car. The decision model we would create would require 
us to assess a utility function that covers all of the possible-life span outcomes so 
that we could appropriately value the probability distributions or lotteries for life 
span that come with each car. As we also saw, the entrepreneur-bureaucrat example 
involves uncertainty, and we needed an appropriate utility function in order to eval-
uate those two options in a way that made sense. 

Why does it matter whether we are talking about certainty or uncertainty? Some 
of the utility-assessment methods we have talked about are appropriate for decisions 
under uncertainty, and some are not. When making decisions under certainty, we can 
use what are called value functions (also known as ordinal utility functions). Value 
functions are only required to rank-order sure outcomes in a way that is consistent 
with the decision maker's preferences for those outcomes. There is no concern with 
lotteries or uncertain outcomes. In fact, different value functions that rank sure out-
comes in the same way may rank a set of lotteries in different ways. 

If you face a decision under uncertainty, you should use what is called a cardinal 
utility function. A cardinal utility function appropriately incorporates your risk atti-
tude so that lotteries are rank-ordered in a way that is consistent with your risk atti-
tude. All of the discussion in Chapters 13 and 14 concerned cardinal utility; we con-
structed preference models to incorporate risk attitudes. 

The good news is that most of the assessment techniques we have examined are 
appropriate for conditions of both certainty and uncertainty. Of the methods for as-
sessing individual utility functions, only the ratio approach is, strictly speaking, lim-
ited only to decisions under certainty; nothing about this assessment method encodes 
the decision maker's attitude about risk. The proportional-scores technique is a spe-
cial case; it may be used under conditions of uncertainty by a decision maker who is 
risk-neutral for the specified attributes. Of course, all of the lottery-based utility-
assessment methods from Chapters 13 and 14 are appropriate for decisions under 
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uncertainty. And all of the weight-assessment methods described in this chapter can 
be used regardless of the presence or absence of uncertainty; once a specific multiat-
tribute preference model is established, the weight-assessment methods amount to 
various ways of establishing indifference among specific lotteries or consequences. 
The weights can then be derived on the basis of these indifference judgments. 

How much does the distinction between ordinal and cardinal utility models re-
ally matter? Although the distinction can be important in theoretical models of eco-
nomic behavior, practical decision-analysis applications rarely distinguish between 
the two. Human decision makers need help understanding objectives and trade-offs, 
and all of the assessment techniques described in this chapter are useful in this re-
gard. As always, we adopt a modeling view. The objective of assessing a multiat-
tribute utility function is to gain insight and understanding of the decision maker's 
trade-offs among multiple objectives. Any assessment method or modeling tech-
nique that helps to do this — which includes all that are mentioned in this chapter 
— should result in a reasonable preference model that can lead the decision maker 
to a clear choice among available alternatives. 

In a way, the situation is similar to the discussion on decreasing and constant risk 
aversion in Chapter 13, where we argued that it is difficult enough to determine the 
extent of a given individual's risk aversion, let alone whether it is decreasing or not. 
When facing multiple objectives, any approach that will help us to understand trade-
offs among objectives is welcome. Attention to preference ordering of lotteries rather 
than sure outcomes can be important in some situations but would come after obtain-
ing a good basic understanding of the objectives and approximate trade-off weights. 

A similar argument can be made for the additive utility function itself. Although 
strictly speaking it has some limitations and special requirements that will be explained 
in Chapter 16, it is an exceptionally useful and easy way to model preferences in many 
situations. Even if used only as an approximation, the additive utility function takes us a 
long way toward understanding our preferences and resolving a difficult decision. 

An Example: Library Choices 

With the discussion of assessing utility functions and weights behind us, we now 
turn to a realistic problem. This example will demonstrate the development of an ad-
ditive utility function when there are many objectives. The issue is site selection for 
a new public library. 

THE   EUGENE   PUBLIC   LIBRARY 

In 1986 a solution was sought for the overcrowded and inadequate conditions at the 
public library in Eugene, Oregon. The current building, with approximately 38,000 
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square feet of space, had been built in 1959 with the anticipation that it would serve 
satisfactorily for some 30 years. In the intervening years, Eugene's population had 
grown to the point that, on a per capita basis, the Eugene Public Library was one of 
the most heavily used public libraries in the western United States. All available 
space had been used. Even the basement, which had not been designed originally for 
patron use, had been converted to a periodicals reading room. Low-circulation mate-
rials had to be removed from the stacks and placed in storage to make room for pa-
trons and books. Expansion was imperative; consultants estimated that 115,000 
square feet of space were needed. The current building could be expanded, but be-
cause of the original design it could not be operated as efficiently as a brand new 
building. Other potential sites were available, but all had their own benefits and 
drawbacks. After much thought, the possibilities were reduced to four sites in or near 
downtown Eugene, one of which was the current site. Some were less expensive for 
one reason or another, others had better opportunities for future expansion, and so 
on. How could the city choose from among them? 

In evaluating the four proposed library sites, the first task was to create a funda-
mental-objectives hierarchy. What aspects of site location were important? The com-
mittee in charge of the study created the hierarchy shown in Figure 15.13 with seven 
root-level fundamental objectives and a second level of detail objectives. Parking, 
for example, was broken down into patron parking, off-site parking, night staff park-
ing, and bookmobile space. (Without knowledge of Eugene's financial system, cer-
tain attributes in the "Related Cost" category may not make sense.) An important ob-
jective that is conspicuous by its absence is minimizing the cost of building a library. 
The committee's strategy was to compare the sites on the seven fundamental criteria 
first, and then consider the price tags for each. We will see later how this comparison 
can be made. 

Comparing the four candidate sites (alternatives) required these four steps: 

1 Evaluate the alternatives on each attribute. 
2 Weight the attributes. This can be done with any of the three weight-assessment 

methods (although pricing out may be difficult because the overall cost is not in- 
cluded in this part of the analysis). 

3 Calculate overall utility with the additive utility function. 
4 Choose the alternative with the greatest overall utility. 

Application of this procedure in the analysis of the four library sites produced the 
matrix shown in Table 15.6. The relative weights and the individual utilities are all 
shown in this table. (Actually, the committee's scores did not range from 0 to 1. 
Their scores have been thusly rescaled here, and the weights have been adjusted to 
be consistent with the new numbers. Six attributes on which all four sites were 
scored the same also have been eliminated.) 

The overall utility is calculated and shown on a scale from 0 to 100, rather than 
from 0 to 1; this just makes the table easier to read. Under each fundamental objec-
tive is a subtotal for each site. For example, the subtotal for Site 1 under "Parking" is 
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Figure 
15.13 

Fundamental objec-
tives for the Eugene 
Public Library site-

evaluation study. 

Subtotal (Parking1) = [(0.053 x 0.20 x 1.00) + (0.053 x 0.60 x 0.00) 
+ (0.053 x 0.20 x 1.00)]  x 100 

= 2.12 

(The factor of 100 at the end simply changes the scale so that it ranges from 0 to 
100.) Once all individual utilities have been calculated for each fundamental objec-
tive, they are simply added to find the overall utility for each site. For example, 
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Table 15.6 
Matrix of weights and 

utilities for four library 
sites. 

      
   Utilities   
Attributes % Site 1 Site 2 Site 3 Site 4 

      
Site Size (21.1%)      

Initial 38 1.00 0.00 1.00 1.00 
Expansion (Horizontal) 13 0.00 0.00 0.00 1.00 
Mixed Use 25 0.00 1.00 1.00 1.00 
Construction Staging 12 1.00 0.00 0.00 1.00 
Public Open Space 12 1.00 0.00 0.00 0.00 

Subtotals  13.08 5.28 1329 18.57 
Access (20.6%)      

 Direct Parking 8 0.00 1.00 0.00 0.00 
Commercial Proximity 23 0.00 1.00 0.67 1.00 
Employment Proximity 15 0,50 1.00 0.00 1.00                    
Heavy Traffic 23 033 033 1.00 0.00 
Bus Route Proximity 15 0.00 0.50 0.50 1.00 
Residential Proximity 16 1.00 0.00 1.00 0.50                   

Subtotals  6.40 12.55 - 12,75 12.57          
Parking (53%)      

Patron Parking 20 1.00 0,00 1.00 1.00 
Off-Site Parking 60 0.00 1.00 0.33 0.33     
Bookmobile Parking 20 1.00 0.00 1.00 1.00 

Subtotals  2.12 3.18 3.17 3.17 
Traffic Impacts (4.5%)      

Auto Circulation 47 0.00 0.75 1.00 0.00                    
Adjacent Parking 29 0.00 0.00 1.00 0.00 
Bus Patterns 24 1.00 1.00 1.00 0.00 

Subtotals  1.08 2.67 4.50 0.00 

Land Use/Design (8.4%)      

Image/Scale/Visibility 13 0.00 1.00 0.00 0.00                   
Enhance Adjacent Uses 13 0.00 1.00 1.00 1.00 
Adj. Uses Enhance Lib* 38 0.00 1.00 1.00 0.00 
Downtown Plan Fit 13 1.00 0,00 1.00 1.00                   
Lost Devel. Options 23 1.00 0.00 0.00 0.00 

Subtotals  3.02 5.38 5.38 2.18 
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Table 15.6 
(Continued) 

      
Attributes % Site l Site 2 Site 3 Site 4 

Public Support (19.0%)      

Patron Acceptance 25 1.00 0.33 0.67 0.00 
DT/Community Support 25 1.00 0.67 0.33 0.00 
Perceived Safety 25 1.00 033 1.00 0,00 
Public Ownerhip 17 0.00 1.00 1.00 0.00 
Private Opportunity 8 1.00 0.00 1.00 1.00 

Subtotals  15.77 9.55 14.25 1.52 
Related Costs (21.1%)      

Operating Costs 20 0.00 1.00 1.00 1.00 
Use of Existing Building 20 1.00 0.00 0.00 0.00 
No General Fund $ 30 0,00 1.00 1.00 1.00 
Tax Roll Impact, Removal 10 0.00 1.00 1.00 0.00 
Tax Roll Impact, Added 20 0.00 1.00 1.00 1.00 

Subtotals  4.22 16.88 16.88 14.77 
 

Weighted Score 45 70 55.51 70.22 52 78 

Source: Adapted from Robertson/Sherwood/Architects (1987) "Preliminary Draft Report: Eugene 
Public Library Selection Study. Executive Summary." Eugene, OR: Robertson/Sherwood. 

U(Site 1) = 13.08 + 6.40 + 2.12 + 1.08 + 3.02 + 15.77 + 4.22 
= 45.70 

You can see that the overall weight given to a specific attribute is the product of the 
specific weight at the lower level and the overall weight for the fundamental objec-
tive. For example, Site 1 has U(Construction Staging) = 1.00. This utility then is 
multiplied by 0.12, the weight for construction staging, and then multiplied by 0.211, 
the weight for the fundamental attribute of "Site Size." Thus, in this grand scheme, 
the utilities are weighted by a product of the weights at the two levels in the value 
tree. To express this more formally, let ki represent the weight of the /th fundamental 
objective, and kij and Uij the weight and utility, respectively, for the jth attribute 
under fundamental objective i. If there are m fundamental objectives and mt detail at-
tributes under fundamental objective i, then the overall utility for a site is 
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From these expressions, we can see that the utilities on the individual attributes are 
being weighted by the product of the appropriate weights and then added. Thus, we 
still have an additive score that is a weighted combination of the individual utilities, 
just as we did in the simpler two- and three-attribute examples above. Moreover, it 
also should be clear that as the hierarchy grows to have more levels, the formula 
also grows, multiplying the individual utilities by all of the appropriate weights in 
the hierarchy. 

The result of all of the calculations for the library example? Site 3 ranked the 
best with 70.22 points, Site 2 was second with 55.51 points, and Sites 4 and 1 (the 
current location) were ranked third and fourth overall with 52.78 and 45.70 points, 
respectively. 

There is another interesting and intuitive way to interpret this kind of analysis. 
Imagine that 100 points are available to be awarded for each alternative, depending 
on how a given alternative ranks on each attribute. In the library case, 21.1 of the 100 
points are awarded on the basis of "Site Size," 20.6 on the basis of "Access," 5.3 for 
"Parking," and so on. Within the "Site Size" category, the weights on the detail ob-
jectives determine how the 21.1 points for "Site Size" will be allocated; 38% of the 
21.1 points (or 8.02 points) will be awarded on the basis of "Initial Size," 13% of the 
21.1 points (2.74 points) will be awarded on the basis of "Expansion," and so on. We 
can see how this subdivision could continue through many layers in a hierarchy. 
Finally, when the ends of the branches are reached, we must determine utilities for 
the alternatives. If the utilities range from 0 to 1, then the utility indicates what pro-
portion of the available points are awarded to the alternative for the particular detail 
attribute being considered. For example, Site 3 has a utility of 0.67 on "Commercial 
Proximity," so it receives 67% of the points available for this detail attribute. How 
many points are available? The weight of 23% tells us that 23% of the total points for 
"Access" are allocated to "Commercial Proximity," and the 20.6% weight for 
"Access" says that 20.6 points total are available for "Access." Thus, Site 3 earns 

points for "Commercial Proximity." For each detail at-
tribute, calculate the points awarded to Site 3. Now add those points; the total is Site 
3's overall utility (70.22) on a scale from 0 to 100. 

Recall that cost was an important attribute that was not included in the analysis 
of the library sites. The committee studying the problem decided to ignore construc-
tion costs until the sites were well understood in terms of their other attributes. But 
now that we have ranked the sites on the basis of the attributes, we must consider 
money. Table 15.7 shows the costs associated with each site, along with the overall 
utilities from Table 15.6, and Figure 15.14 shows the same information, graphically 
plotting cost against overall utility. 

Table 15.7 and Figure 15.14 show clearly that Sites 1 and 4 are dominated. That 
is, if you like Site 4, then you should like Sites 2 or 3 even better, because each has a 
greater utility for less money. Likewise, Site 2 clearly dominates Site 1. Thus, Sites 
1 and 4 can be eliminated from the analysis altogether on the basis of dominance. 
This leaves Sites 2 and 3. Is it worthwhile to pay the additional $2.72 million to gain 
14.71 additional points in terms of overall utility? Alternatively, is an increase of one 
point in the utility worth $184,908? 
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Table 15.7 
Cost and overall utility 

for four library sites. 

 

Site  Cost ($Million)  Overall Utility 

1  21.74  45.70 
2  18.76  55.51 

3  21.48  70.22 
4  24.80  52.78 

 

Figure 15.14 
Library site costs plot-

ted against overall 
utility. 

Obviously, we are trying to price out the value of a single point on our 1-to-100 
scale, just as we previously priced out the value of changes in attributes. But an-
swering this question now is difficult because one point in the overall utility may 
have many components. One possible approach is to return to the detail attributes, 
look for specific attributes on which Site 3 is ranked higher than Site 2, and consider 
how much we would be willing to pay (in dollars) to bring Site 2 up to Site 3's level 
on this attribute. For example, Site 3 scored much higher than Site 2 for access dur-
ing heavy traffic periods. The difference is that Site 2 is in a relatively congested area 
of downtown and on one of the city's main thoroughfares. In contrast, Site 3 is lo-
cated at the edge of downtown, and access would be through relatively low-volume 
streets. How much would altering the traffic patterns be worth so that Site 2 would 
be just as good as Site 3 for this attribute? One million dollars? More? 

Let us suppose that we have assessed that the difference between the sites in terms 
of access during heavy traffic is indeed worth $1 million. It turns out that Site 3's ad-
vantage increases its weighted score by 3.17 points. (This is the difference between 
the sites in points awarded for this attribute.) Thus, the assessment would indicate 
that 3.17 points of overall utility are worth $1 million, or $315,457 per point of util-
ity. This is greater than the $184,908 per point required to switch from Site 2 to Site 3. 
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A pricing-out approach such as this can be used to assess the dollar value of one 
point of overall utility. Rather than making only one assessment, however, we should 
make several on different attributes where the two alternatives differ. For some of 
these assessments it may be possible to make estimates of true costs in terms of the 
market price of adjacent land, redesigning traffic patterns, constructing parking lots, 
and so on, and these cost estimates then might be helpful in assessing the dollar 
value of specific differences between sites. If the assessments in terms of prices per 
point of overall utility come out fairly close, then the average of these assessments 
can be used as a reasonable measure of the value of one point of overall utility. In the 
case of the library sites, if the final price per point is less than $184,908, then Site 2 
is preferred; otherwise Site 3 is preferred. If the price per point turns out to be very 
close to $184,908, then the two sites are approximately equivalent. 

The analysis probably would have been more complete had the committee 
elected to include minimizing cost as one of its fundamental objectives. In fact, all of 
the other attributes could have been priced out in terms of dollars, thus making the 
comparisons and trade-offs more intuitive. But it is not unusual for groups to ignore 
costs in an initial stage. The motivation often is political; it may be easier to gain 
constituent support by playing up the benefits of a project such as a new library early 
before talking about the "bottom line." 

Using Software for Multiple-Objective Decisions 

As you can imagine, multiple-objective decisions can become very complex. The li-
brary example involved only four alternatives and a relatively simple objectives hier-
archy. Still, there were many assessments to make, and the calculations involved, 
though straightforward, are tedious. Given the ubiquitous nature of multiple-objective 
decisions, it should come as no surprise that many different multiple-objective deci-
sion programs are available. All of them provide some combination of different as-
sessment methods and ways to analyze the alternatives. For example, in Chapter 3 we 
took a quick look at Logical Decisions. This program allows one to judge trade-offs 
graphically, with the swing-weight approach, and still other methods we have not 
mentioned. Alternatives can be compared with each other, and sensitivity analysis on 
the weights can be performed. Two other available programs are HIVIEW and 
HIPRE 3+. Both of these are similar to Logical Decisions in creating a modeling en-
vironment that is especially tuned to use of the additive utility function. 

SUMMARY This chapter has introduced the basics of making decisions that involve trade-offs. The 
basic problem is to create a model of the decision maker's preferences in terms of the 
various objectives. The first step in doing so, as discussed in detail in Chapter 3, is to 
understand which objectives are most important in making your decision; this requires 
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introspection as to the fundamental objectives. The goal of this step is to create a fun-
damental-objectives hierarchy and a set of operational attribute scales to measure the 
performance of each alternative or outcome on each of the fundamental objectives. 

To evaluate the alternatives, we introduced the additive utility function, which 
calculates an overall utility for an alternative or outcome as a weighted sum of indi-
vidual utility functions for each fundamental objective. Assessing the individual util-
ity functions is best done through a consistent method of comparison that results in 
utilities ranging from 0 to 1. We discussed three methods: calculation of proportional 
scores, assessment of ratios, and the conventional lottery-based assessment dis-
cussed in Chapters 13 and 14. Once these utility functions are established, weights 
must also be assessed. Several assessment procedures are possible here, all provid-
ing mechanisms for determining the rate at which the attributes can be traded off 
against one another. Sometimes trade-off rates can be assessed in terms of dollars by 
pricing out the other attributes. The swing-weighting and lottery-based assessment 
techniques can be used even if it is difficult to think of the attributes in dollar terms, 
and these techniques lead to clear interpretations of the assessed weights. With 
weights and individual utility functions determined, overall utilities are calculated 
by applying the additive utility formula. We demonstrated the procedure with an ex-
ample in which potential sites for a public library were evaluated. 

E X E R C I S E S  

15.1 Why is it important to think carefully about decision situations that involve multiple con- 
flicting objectives?     

15.2 Explain the general decision-analysis approach to dealing with multiple objectives. 

15.3 Explain what is meant by the term indifference curve. 

15.4    Explain the idea of dominance in the context of multiobjective decision making. 

15.5 Imagine that you are working on a committee to develop an employment-conditions pol 
icy for your firm. During the discussion of safety, one committee member states that em 
ployee safety is twice as important as benefits such as flexible work time, employer- 
sponsored day care, and so on. 
a   How might you respond to such a statement? 
b Suppose the statement was that employee safety was twice as important as insurance 

benefits. How might you translate this statement into a form (perhaps based on dollar 
values) so that it would be possible to evaluate various policy alternatives in terms of 
safety and insurance in a way that would be consistent with the statement? 

15.6 Explain why proportional scores represent a risk attitude that is risk-neutral. 

15.7 An MBA student evaluating weather outcomes for an upcoming party has concluded that 
a sunny day would be twice as good as a cloudy day, and a cloudy day would be three 
times as good as a rainy day. Use these assessments to calculate utilities that range from 
0 to 1 for sunny, rainy, and cloudy days. 
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15.8 Explain in your own words why swing weights produce meaningful weights for evaluat 
ing alternatives. 

15.9 A decision maker is assessing weights for two attributes using the swing-weight method. 
When he imagines swinging the attributes individually from worst to best, he concludes 
that his improvement in satisfaction from Attribute A is 70% of the improvement from 
swinging Attribute B. Calculate kA and kB. 

 

15.10 Explain in your own words why the lottery method works to produce meaningful weights 
for evaluating alternatives. 

15.11 A decision maker is assessing weights for three attributes using the lottery-assessment 
method. In considering the lotteries, she concludes that she is indifferent between: 

A       Win the best possible combination with probability 0.34 
Win the worst possible combination with probability 0.66 

and 

B      Win a combination that is worst on Attributes 1 and 3 and 
best on 2 

She also has concluded that she is indifferent between 
C      Win the best possible combination with probability 0.25 

Win the worst possible combination with probability 0.75 

and 
D      Win a combination that is worst on Attributes 2 and 3 and 

best on 1 

Find weights k1, k2, and k3. 

Q U E S T I O N S    AND   P R O B L E M S  

15.12 Suppose that you are searching for an apartment in which to live while you go to school. 
Apartments near campus generally cost more than equivalent apartments farther away. 
Five apartments are available. One is right next to campus, and another is one mile away. 
The remaining apartments are two, three, and four miles away. 
a Suppose you have a tentative agreement to rent the apartment that is one mile from 

campus. How much more would you be willing to pay in monthly rent to obtain the 
one next to campus? (Answer this question on the basis of your own personal experi-
ence. Other than rent and distance from campus, the two apartments are equivalent.) 

b Now suppose you have a tentative agreement to rent the apartment that is four miles 
away. How much more would you be willing to pay in monthly rent to move to the 
apartment that is only three miles from campus? 

c What are the implications of your answers to parts a and b? Would it be appropriate 
to rank the apartments in terms of distance using the proportional-scoring technique? 
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d   Sketch an indifference curve that reflects the way you would trade off rent versus 
proximity to campus. Is your indifference curve a straight line? 

15.13 A friend of yours is in the market for a new computer. Four different machines are under 
consideration. The four computers are essentially the same, but they vary in price and re 
liability. The least expensive model is also the least reliable, the most expensive is the 
most reliable, and the other two are in between. 
a   Describe to your friend how you would approach the decision. 
b   Define reliability in a way that would be appropriate for the decision. Do you need to 

consider risk? c    How might your friend go about establishing a marginal rate of 
substitution between 

reliability and price? 
15.14 Continuing Problem 15.13, the computers are described as follows: 

A Price: $998.95 Expected number of days in the shop per year: 4 

B Price: $ 1300.00 Expected number of days in the shop per year: 2 

C Price: $1350.00 Expected number of days in the shop per year: 2.5 

D Price: $1750.00 Expected number of days in the shop per year: 0.5 

The computer will be an important part of your friend's livelihood for the next two years. 
(After two years, the computer will have a negligible salvage value.) In fact, your friend 
can foresee that there will be specific losses if the computer is in the shop for repairs. The 
magnitude of the losses are uncertain but are estimated to be approximately $180 per day 
that the computer is down. 
a   Can you give your friend any advice without doing any calculations? 
b Use the information given to determine weights kP and kR, where R stands for relia-

bility. What assumptions are you making? 
c    Calculate overall utilities for the computers. What do you conclude? 
d Sketch three indifference curves that reflect your friend's trade-off rate between reli-

ability and price. 
e What considerations other than losses might be important in determining the trade-

off rate between cost and reliability? 
15.15 Throughout the chapter we have assessed individual utility functions that range from 0 to 

1. What is the advantage of doing this? 
15.16 You are an up-and-coming developer in downtown Seattle and are interested in constructing 

a building on a site that you own. You have collected four bids from prospective contractors. 
The bids include both a cost (millions of dollars) and a time to completion (months): 

 

Contractor Cost Time 

A 100 20 

B 80 25 
C 79 28 
D 82 26 
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The problem now is to decide which contractor to choose. B has indicated that for an-
other $20 million he could do the job in 18 months, and you have said that you would be 
indifferent between that and the original proposal. In talking with C, you have indicated 
that you would just as soon pay her an extra $4 million if she could get the job done in 26 
months. Who gets the job? Explain your reasoning. (It may be convenient to plot the four 
alternatives on a graph.) 

15.17 Once you decide that you are in the market for a personal computer, you have many dif 
ferent considerations. You should think about how you will use the computer, and so you 
need to know whether appropriate software is available and at what price. The nature of 
the available peripheral equipment (printers, disk drives, and so on) can be important. The 
"feel" of the computer, which is in some sense determined by the operating system and the 
user interface, can be critical. Are you an experienced user? Do you want to be able to pro 
gram the machine, or will you (like most of us) rely on existing or over-the-counter soft 
ware? If you intend to use the machine for a lot of number crunching, processor speed may 
be important. Reliability and service are other matters. For many students, an important 
question is whether the computer will be compatible with other systems in any job they 
might eventually have. Finally, of course, price and operating costs are important. 

Create a fundamental-objectives hierarchy to compare your options. Take care in doing 
this; be sure that you establish the fundamental objectives and operational attributes that 
will allow you to make the necessary comparisons. (Note that the attributes suggested 
above are not exhaustive, and some may not apply to you!) 

Use your model to evaluate at least three different computers (preferably from different 
manufacturers). You will have to specify precisely the packages that you compare. It also 
might be worthwhile to include appropriate software and peripheral equipment. (Exactly 
what you compare is up to you, but make the packages meaningful.) Be sure that your 
utilities are such that the best alternative gets a 1 and the worst a 0 for each attribute. 
Assess weights using pricing out, swing weighting, or lottery weights. Calculate overall 
utilities for your alternatives. 

Try using the utility functions for money and computer reliability that you assessed in 
Problems 14.12 and 14.13. You may have to rescale the utility functions to obtain scores 
so that the best alternative in this problem scores 1, and the worst scores 0. 

If possible, use a computer-based multiattribute decision program to do this problem. 

15.18 When you choose a place to live, what objectives are you trying to accomplish? What 
makes some apartments better than others? Would you rather live close to campus or far 
ther away and spend less money? What about the quality of the neighborhood? How 
about amenities such as a swimming pool? 

Create a fundamental-objectives hierarchy that allows you to compare apartment options. 
Take care in doing this; be sure to establish the fundamental objectives and operational 
attributes that will allow you to make the necessary comparisons. 

Once you are satisfied with your hierarchy, use it to compare available housing alterna-
tives. Try ranking different apartments that are advertised in the classified section of the 
newspaper, for example. Be sure that your individual utilities follow the rules: Best takes 
a 1 and worst takes 0. (Try using the utility function for money that you assessed in 
Problem 14.12. You may have to rescale it so that your best alternative gets a 1 and worst 
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gets a 0.) Assess weights using pricing out, swing weighting, or lottery weights. Evaluate 
your alternatives with the additive utility function. 

If possible, use a computer-based multiattribute decision program to do this problem. 

15.19 What is important to you in choosing a job? Certainly salary is important, and for many 
people location matters a lot. Other considerations might involve promotion potential, 
the nature of the work, the organization itself, benefits, and so on. 

Create a fundamental-objectives hierarchy that allows you to compare job offers. Be sure 
to establish the fundamental objectives and operational attributes that will allow you to 
make the necessary comparisons. 

Once you are satisfied with your hierarchy, use it to compare your job offers. You also may 
want to think about your "ideal" job in order to compare your current offers with your 
ideal. You also might consider your imaginary worst possible job in all respects. (For the 
salary attribute, try using the utility function for money that you assessed in Problem 
14.12, or some variation of it. You may have to rescale it so that your best alternative is 1 
and worst 0.) Assess weights for the attributes using pricing out, swing weighting, or lot-
tery weights, being careful to anchor your judgments in terms of both ideal and worst 
imaginable jobs. Evaluate your various job offers with the additive utility function. 

If possible, use a computer-based multiattribute decision program to do this problem. 

15.20 How can you compare your courses? When you consider those that you have taken, it 
should be clear that some were better than others and that the good ones were, perhaps, 
good for different reasons. What are the important dimensions that affect the quality of a 
course? Some are obvious, such as the enthusiasm of an instructor, topic, and amount and 
type of work involved. Other aspects may not be quite so obvious; for example, how you 
perceive one course may depend on other courses you have had. 

In this problem, the objective is to create a "template" that will permit consistent evalua-
tion of your courses. The procedure is essentially the same as it is for any multiattribute 
decision, except that you will be able to use the template to evaluate future courses. Thus, 
we do not have a set of alternatives available to use for the determination of scores and 
weights. (You want to think, however, about current and recent courses in making your 
assessments.) 

First, create a fundamental-objectives hierarchy that allows you to compare courses. Be sure 
to establish the fundamental objectives and operational attributes that will allow for the nec-
essary comparisons. Constructing a set of objectives for comparing courses is considerably 
more difficult than comparing computers, apartments, or jobs. You may find that many of the 
attributes you consider initially will overlap with others, leading to a confusing array of at-
tributes that are interdependent. It may take considerable thought to reduce the degree of re-
dundancy in your hierarchy and to arrive at one that is complete, decomposable, small 
enough to be manageable, and involves attributes that are easy to think about. 

Once you a re satisfied with your objectives and attributes, imagine the best and worst 
courses for each attribute. Create attribute scales (constructed scales where appropriate) 
for each objective. The idea is to be able to return to these scales with any new course and 
determine utilities for each objective with relative ease. (Try using the homework utility 
function that you developed in Problem 14.15. You may have to rescale it so that your 
best alternative gets a 1 and the worst a 0.) 
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Once you have created the attribute scales, you are ready to assess the weights. Try the 
swing-weighting or lottery approach for assessing the weights. (Pricing out may be diffi-
cult to do in this particular example. Can you place a dollar value on your attributes?) 
Finally, with scales and weights established, you are ready to evaluate courses. Try com-
paring three or four of your most recent courses. (Try evaluating one that you took more 
than a year ago. Can you remember enough about the course to assess the individual util-
ities with some degree of confidence?) 
If possible, implement your course-evaluation template using a computer-based multiat-
tribute decision program. Alternatively, you might create a spreadsheet template that you 
could use to evaluate courses. 

15.21 Refer to the discussion of the automobiles in the section on "Trading Off Conflicting 
Objectives: The Basics." We discussed switching first from the Standard to the Norushi, 
and then from the Norushi to the Portalo. Would it make sense to consider a direct switch 
from the Standard to the Portalo? Why or why not? 

15.22 In Chapter 2 we discussed net present value (NPV) as a procedure for evaluating conse 
quences that yield cash flows at different points in time. If xi is the cash flow at year i and 
r is the discount rate, then the NPV is given by 

 

where the summation is over all future cash flows including the current x0. 
a Explain how the NPV criterion is similar to the additive utility function that was dis-

cussed in this chapter. What are the attributes? What are the weights? Describe the 
way cash at time period i is traded off against cash at time period i + 1. (Hint: 
Review Chapter 2!) 

b Suppose that you can invest in one of two different projects. Each costs $20,000. The 
first project is riskless and will pay you $10,000 each year for the next three years. 
The second one is risky. There is a 50% chance that it will pay $15,000 each year for 
the next three years and a 50% chance that it will pay only $5000 per year for the next 
three years. Your discount rate is 9%. Calculate the NPV for both the riskless and 
risky project. Compare them. What can you conclude about the use of NPV for de-
ciding among risky projects? 

c How might your NPV analysis in part b be modified to take risk into account? Could 
you use a utility function? How does the idea of a risk-adjusted discount rate fit into 
the picture? How could the interest rate be adjusted to account for risk? Would this be 
the same as using a utility function for money? 

15.23 Following up Problem 15.22, even though we take riskiness into account, there still is 
difficulty with NPV as a decision criterion. Suppose that you are facing the two risky pro-
jects shown in Figure 15.15. 

Project A pays either $10,000 for each of two years or $100 for those two years. Project 
B pays $10,000 either in the first year or the second year and $100 in the other year. 
Assume that the cash flows are annual new profits. 
a    Which of these two risky investments would you prefer? Why? 
b Calculate the expected NPV for both projects, using the same 9% interest rate from 

Problem 15.22. Based on expected NPV, in which project would you invest? 
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Figure 15.15 
Decision tree for 

problem 15.23. 
Which of these two 

risky investments 
would you prefer? 

c After careful assessment, you have concluded that you are risk-averse and that your 
utility function can be adequately represented by U(Xi) = ln(Xi), where Xi repre-
sents cash flow during year i. Calculate the expected net present utility for each pro-
ject. Net present utility is given by 

 
d NPU in part c should incorporate your attitude toward risk. Are your NPU calcula-

tions in part c consistent with your preferences in part a? What is there about these 
two projects that is not captured by your utility function? Can you think of any other 
way to model your preferences? 

15.24 Instead of calculating a "discounted" utility as we did in Problem 15.23, let us consider 
calculating U(NPV). That is, calculate NPV first, using an appropriate interest rate, and 
then calculate a utility value for the NPV. For your utility function, use the exponential 
utility function U(NPV) = 1 ─ e─NPV/5000. Use this approach to calculate the expected 
utility of Projects A and B in Figure 15.15. Which would you choose? Are there any 
problems with using this procedure for evaluating projects? 

15.25 A policy maker in the Occupational Safety and Health Administration is under pressure 
from industry to permit the use of certain chemicals in a newly developed industrial 
process. Two different versions of the process use two different chemicals, A and B. The 
risks associated with these chemicals are not known with certainty, but the available in 
formation indicates that they may affect two groups of people in the following ways: 

 

• Chemical A     There is a 50% chance that Group 1 will be adversely affected, while 
Group 2 is unaffected; and a 50% chance that Group 2 is adversely affected, while 
Group 1 is unaffected. 

• Chemical B    There is a 50% chance that both groups will be adversely affected, and 
a 50% chance that neither group will be affected. 

Assume that "adversely affected" means the same in every case — an expected increase of 
one death in the affected group over the next two years. The decision maker's problem 
looks like the decision tree in Figure 15.16. 
a   Calculate the expected number of deaths for each chemical. 
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Figure 15.16 
Deciding between 

alternative chemicals 
in problem 15.25. 

b   A decision maker who values consequences using an overall utility might calculate 
the utility for each consequence as 

U(Chemical) = k1U1(Group 1 Deaths) + k2U2 (Group 2 Deaths) 

For both U1 and U2, the best and worst possible outcomes are 0 deaths and 1 death, re-
spectively. Thus, 

U1 (1 Death) = 0       U1 (0 Deaths) = 1 
U2 (l Death) = 0        U2 (0 Deaths) = 1 

Explain why k1 and 1 — k1 may not be equal. 
c Assume that k1 = 0.4. Show that the decision maker who evaluates the two chemi-

cals in terms of their expected overall utilities (as defined above) would be indifferent 
between them. Does the value of k1 matter? 

d Why might the decision maker not be indifferent between the two programs? (Most 
people think about the decision maker's risk attitude toward the number of deaths or 
lives saved. Besides this, think about the following: Suppose you are a member of 
Group 1, and the decision maker has chosen Chemical A. It turned out that Group 1 
was affected. How would you feel? What would you do? What does this imply for the 
decision maker?) 

15.26 Refer to the discussion of the three automobiles in the section "Trading Off Conflicting 
Objectives: The Basics." Suppose we had the following individual utility functions for 
price and life span: 

 

Life span Price 
UL(6 years) = 0.00 UP (17,000) = 0.00 
UL(9 Years) =0.75 UP (10,000) = 0.50 
UL(12 Years) = 1.00 UP (8000) = 1,00 
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The additive utility model discussed in this chapter would give us the following: 

U(Price, Life Span) = kLUL(Life Span) + (1 - kL)UP(Price) 

a   With kl = 0.45, calculate the utility for the three cars. Which would be chosen? 
b Suppose that you are not completely comfortable with the assessment of kl = 0.45. How 

large could kl be before the decision changes, and what would be the new choice? How 
small could kl be before the decision changes, and what would be the new choice? Would 
you say that the choice among these three cars is very sensitive to the assessment of kl? 

15.27 Refer to Table 15.6. Your boss is a member of the library-site selection committee. She is 
not perfectly satisfied with the assessments shown in the table. Specifically, she wonders 
to what extent the assessed weights and individual utilities on the detail attributes could 
change without affecting the overall ranking of the four sites. Use an electronic spread 
sheet to answer this question, and write a memo that discusses your findings. (Hint: 
There is no specific way to attack a sensitivity analysis like this. One possibility is to es 
tablish reasonable ranges for the weights and then create a tornado diagram. Be sure that 
your weights add to 1 in each category!) 

15.28 Refer to Problem 15.11. Suppose that the decision maker has made a third assessment, 
concluding that she is indifferent between 

E      Win the best possible combination with probability 0.18 
Win the worst possible combination with probability 0.82 

and 
F      Win a combination that is worst on Attributes 1 and 2, and 

best on 3 

What does this assessment imply for the analysis? Is it consistent with your answer for k3 
in Problem 15.11? What should you do now? 

C A S E     S T U D I E S  

THE   SATANIC  VERSES 

In early 1989, the Ayatollah Khomeini of Iran decreed that Salman Rushdie, the 
British author of The Satanic Verses, should be put to death. In many ways, 
Rushdie's novel satirized Islam and the Prophet Muhammed. Khomeini declared 
that Rushdie should die and that whoever killed him would go to Heaven. 

Many bookstores in both Europe and the United States that carried The Satanic 
Verses found themselves in a bind. Some Muslims threatened violence unless the 
bookstores stopped selling the book. Some booksellers removed the book from their 
shelves and sold it only to customers who specifically asked for it. Others refused to 
sell it altogether on the grounds that it was too risky. Still others defied the threats. 
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One bookseller in Berkeley, California, continued selling the book on the grounds 
that he would not allow anyone to interfere with the principle of freedom of the 
press. His store was bombed, and damage was substantial. His reaction? He in-
creased security. 

Questions 

1 Imagine that you are the owner of a bookstore faced with the decision of what to do 
about The Satanic Verses. In deciding on a course of action, there are several con 
flicting objectives. Develop an objectives hierarchy and operational attribute 
scales. 

2 What alternatives do you have? 

3 What risks do you face? Do the risks differ depending on the alternative you 
choose? Sketch a simple influence diagram or decision tree for your problem. 

DILEMMAS   IN   MEDICINE 

In Alpha and Omega: Ethics at the Frontiers of Life and Death, author Ernie Young 
specifies four fundamental principles that must be considered in making medical de-
cisions: beneficence, nonmaleficence, justice, and autonomy. The following descrip-
tions of these principles have been abstracted from the book (pp. 21-23): 

• Beneficence implies that the physician's most important duty is to provide ser 
vices that are beneficial to the patient. In many cases, this can mean taking mea 
sures that are intended to preserve the patient's life. 

• Nonmaleficence is the duty not to cause harm to the patient. A medical aphorism 
of uncertain origin proclaims primum non nocere — above all, do no harm. Harm 
can mean different things in different situations and for different patients, and 
can include death, disability, separation from loved ones, or deprivation of plea 
sure or freedom. The difficulty is that many medical procedures entail at least 
some harm or the potential for harm. This always must be weighed against the 
potential benefits. 

• Justice in this context refers to the fair use of resources. It is, after all, impossible 
to do absolutely everything that would be medically justifiable for all patients. 
Thus, decisions must be made regarding the allocation of scarce resources. The 
issue is how to make these decisions fairly or equitably. For example, how should 
we decide what patients have priority for receiving donated organs? Is it appro 
priate to admit a terminally ill patient to an intensive care unit? 

• Autonomy requires allowing a patient to make his or her own decisions regarding 
medical treatment as far as is possible. The patient, operating as an independent, 
self-determining agent, should be able to obtain appropriate information and par- 
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ticipate fully in the decisions regarding the course of treatment and, ultimately, 
the patient's life. 

In most medical situations, these principles do not conflict. That is, the physician 
can provide beneficial care for the patient without causing harm, the treatment can 
be provided equitably, and the patient can easily make his or her own decisions. In a 
few cases, however, the principles are in conflict and it is impossible to accomplish 
all of them at once. For example, consider the case of a terminally ill patient who in-
sists that everything possible be done to extend his or her life. Doing so may violate 
both nonmaleficence and justice while at the same time providing limited benefit. 
But not providing the requested services violates autonomy. Thus, the physician 
would be in a very difficult dilemma. 

Questions 

1 Discuss the relationship between the medical ethics here and decision making in 
the face of conflicting objectives. Sketch an objectives hierarchy for a physician 
who must cope with difficult problems such as those described above. Can you ex 
plain or expand on the four fundamental objectives by developing lower-level ob 
jectives? 

2 Neonatology is the study and treatment of newborn infants. Of particular concern is 
the treatment of low-birth-weight infants who are born prematurely. Often these 
babies are the victims of poor prenatal care and may be burdened with severe de 
formities. Millions of dollars are spent annually to save the lives of such infants. 
Discuss the ways in which the four principles conflict in this situation. Could you 
give any guidelines to a panel of doctors and hospital administrators grappling with 
such problems? 

3 Terminally ill patients face the prospect of death within a relatively short period of 
time. In the case of cancer victims, their last months can be extremely painful. 
Increasing numbers of such patients consider taking their own lives, and much con 
troversy has developed concerning euthanasia, or mercy killing. Imagine that a pa 
tient is terminally ill and mentions that he or she is considering suicide. If every 
thing reasonable has been done to arrest the disease without success, this may be a 
reasonable option. Furthermore, the principle of autonomy should be respected 
here, provided that the patient is mentally stable and sound and understands fully 
the implications. But how deeply should the physician or loved one be involved? 
There are varying degrees of involvement. First, the physician might simply pro 
vide counseling and emotional support. The next step would be encouraging the pa 
tient by removing obstacles. Third, the physician might provide information about 
how to end one's life effectively and without trauma. The next step would be to as 
sist in the procurement of the means to commit suicide. Helping the patient to end 
his or her life represents still another step, and actually killing the patient — by 
lethal injection or removal of a life support system, for example — would 
represent 
full involvement. 

Suppose that one of your loved ones were terminally ill and considering sui-
cide. What issues would you want him or her to consider carefully? Draw an objec-
tives hierarchy for the patient's decision. 
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Now suppose that the patient has asked you to assist in his or her suicide. 
What issues would you want to consider when deciding on your level of involve-
ment? Sketch an objectives hierarchy for your own decision. Compare this hierar-
chy with the patient's. 

Source: E. Young (1989) Alpha and Omega: Ethics at the Frontiers of Life and Death, Palo Alto, CA: 
Stanford Alumni Association. 

A  MATTER  OF   ETHICS 

Paul Lambert was in a difficult situation. When he started his current job five years 
ago, he understood clearly that he would be working on sensitive defense contracts 
for the government. In fact, his firm was a subcontractor for some major defense 
contractors. What he did not realize at the time — indeed, he only discovered this 
gradually over the past two years — was that the firm was overcharging. And it was 
not just a matter of a few dollars. In some cases, the government was overcharged by 
as much as a factor of 10. 

Three weeks ago, he inadvertently came across an internal accounting memo that 
documented one particularly flagrant violation. He quietly made a copy and locked it 
in his desk. At the time, he was amazed, then righteously indignant. He resolved to 
take the evidence immediately to the appropriate authorities. But the more he 
thought about it, the more confused he became. Finally, he called his brother-in-law, 
Jim Grillich. Jim worked for another defense-related firm and agreed to have lunch 
with Paul. After exchanging stories about their families and comments on recent 
sporting events, Paul laid his cards on the table. 

"Looks as though you could really make some waves," Jim commented, after lis-
tening to Paul's story. 

"I guess I could. But I just don't know. If I blow the whistle, I'd feel like I'd have 
to resign. And then it would be tough to find another job. Nancy and I don't have a 
lot of savings, you know." The thought of dipping into their savings made Paul shake 
his head. "I just don't know." 

The two men were silent for a long time. Then Paul continued, "To make matters 
worse, I really believe that the work that the company is doing, especially in the re-
search labs, is important. It may have a substantial impact on our society over the 
next 20 years. The CEO is behind the research 100 percent, and I gather from the few 
comments I've overheard that he's essentially funding the research by overcharging 
on the subcontracts. So if I call foul, the research program goes down the drain." 

"I know what you mean." Jim went on to recount a similar dilemma that he faced 
a few years before. 

"So what did you do?" 
"The papers are still in my desk. I always wanted to talk to someone about it. I 

even thought about calling you up, but I never did. After a while, it seemed like it 
was pretty easy just to leave the papers in there, locked up, safe and sound." 
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Questions 

1 What trade-offs is Paul trying to make? What appear to be his fundamental 
objectives? 

2 Suppose that Paul's take-home pay is currently $2400 per month. In talking to an 
employment company,, he is told that it will probably take two months to find a 
similar job if he leaves his current one, and he had better expect three months if he 
wants a better job. In looking at his savings account of $10,500, he decides that he 
cannot justify leaving his job, even though this means keeping quiet about the over 
charging incident. Can you say anything about an implicit trade-off rate between 
the fundamental objectives that you identified above? 

3 Have you ever been in a situation in which it was difficult for you to decide whether 
to take an ethically appropriate action? Describe the situation. What made the deci 
sion difficult? What trade-offs did you have to make? What did you finally do? 

FDA  AND  THE  TESTING   OF   EXPERIMENTAL   DRUGS 

The Food and Drug Administration (FDA) of the federal government is one of the 
largest consumer-protection agencies in the world. One of the FDA's charges is to 
ensure that drugs sold to consumers do not pose health threats. As a result, the test-
ing procedure that leads to a new drug's approval is rigorous and demanding. So 
much so, in fact, that some policy makers are calling for less stringent standards. 
Below are some of the dilemmas that FDA faces: 

• If an experimental drug shows promise in the treatment of a dangerous disease 
such as AIDS, should the testing procedure be abbreviated in order to get the 
drug to market more quickly? 

• The FDA already is a large and costly bureaucracy. By easing testing standards, 
substantial dollars could be saved. But would it be more likely that a dangerous 
drug would be approved? What are the costs of such a mistake? 

A fundamental trade-off is involved here. What are we gaining in the way of assur-
ance of safe drugs, and what are we giving up by keeping the drugs away from the 
general public for an additional year or two? 

Questions 

1 What are the consequences (both good and bad) of keeping a drug from consumers 
for some required period of rigorous testing? 

2 What are the consequences (both good and bad) of allowing drugs to reach con 
sumers with less stringent testing? 

3 Imagine that you are the FDA's commissioner. A pharmaceutical company requests 
special permission to rush a new AIDS drug to market. On the basis of a first round 
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of tests, the company estimates that the new drug will save the lives of 200 AIDS 
victims in the first year. Your favorite pharmacologist expresses reservations, how-
ever, claiming that without running the complete series of tests, he fears that the 
drug may have as-yet-undetermined but serious side effects. What decision would 
you make? Why? 

4 Suppose that the drug in Question 3 was for arthritis. It could be used by any indi-
vidual who suffers from arthritis and, according to the preliminary tests, would be 
able to cure up to 80% of rheumatoid arthritis cases. But your pharmacologist ex-
presses the same reservations as for the AIDS drug. Now what decision would you 
make? Why? 

R E F E R E N C E S  

The additive utility function has been described by many authors. The most comprehensive 
discussion, and the only one that covers swing weights, is that by von Winterfeldt and 
Edwards (1986). Keeney and Raiffa (1976) and Keeney (1980) also devote a lot of mater-
ial to this preference model. Edwards and Barron (1994) discuss some heuristic approaches 
to assessing weights, including the use of only rank-order information about the objectives. 

The basic idea of creating an additive utility function is fairly common and has been 
applied in a variety of settings. Moreover, this basic approach also has earned several dif-
ferent names. For example, a cost-benefit analysis typically prices out nonmonetary costs 
and benefits and then aggregates them. For an interesting critique of a cost-benefit analy-
sis, see Bunn (1984, Chapter 5). 

Other decision-aiding techniques also use the additive utility function implicitly or ex-
plicitly, including the Analytic Hierarchy Process (Saaty, 1980) and goal programming with 
nonpreemptive weights (see Winston 1987). Conjoint analysis, a statistical technique used in 
market research to determine preference patterns of consumers on the basis of survey data, 
often is used to create additive utility functions. In all of these, some kind of subjective judg-
ment forms the basis for the weights, and yet the interpretation of the weights is not always 
clear. For all of these alternative models, extreme care must be exercised in making the judg-
ments on which the additive utility function is based. There is no substitute for thinking hard 
about trade-off issues. This text's view is that the decision-analysis approach discussed in 
this chapter provides the best systematic framework for making those judgments. 
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Winston, W. (1987) Operations Research: Applications and Algorithms. Boston: PWS-
KENT. 
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E P I L O G U E  What happened with the Eugene Public Library? After much public discussion, an alter-
native emerged that had not been anticipated. An out-of-state developer expressed a de-
sire to build a multistory office building in downtown Eugene (at Site 2, in fact) and pro-
posed that the library could occupy the lower two floors of the building. By entering into 
a partnership with the developer, the city could save a lot in construction costs. Many cit-
izens voiced concerns about the prospect of the city's alliance with a private developer, 
others were concerned about the complicated financing arrangement, and still others dis-
approved of the proposed location for a variety of reasons. On the other hand, the sup-
porters pointed out that this might be the only way that Eugene would ever get a new li-
brary. In March 1989, the proposal to accept the developer's offer was submitted to the 
voters. The result? They turned down the offer. 

Eugene had still more chances to get a new library. In 1991, a study commissioned by 
the city concluded that a building vacated by Sears in downtown Eugene — only a few 
blocks from the current library — would be a suitable site for the new facility. In a March 
election of that year, nearly three-quarters of those who voted agreed with this assess-
ment. A subsequent vote in May of 1994 to authorize issuance of bonds to pay for refur-
bishing the building and moving the library, however, was defeated by a handful of ab-
sentee ballots. The argument was made that the ballot measure was too complex; it 
proposed using the funds for other city facilities as well as the library. A measure that fo-
cused on funding only the library would surely fare better. In November of 1994, such a 
measure was placed on the ballot. And defeated by fewer than 100 absentee ballots. 



CHAPTER 16. Conflicting Objectives II: 
Multiattribute Utility Models with 
Interactions 

he additive utility function described in Chapter 15 is an easy-to-use technique. It is incomplete, however, 
because it ignores certain fundamental characteristics of choices among multiattribute alternatives. We 

discussed one problem with proportional scores — they assume risk neutrality. 
Problem 15.22 demonstrated this in the important context of the common NPV 
choice criterion. More subtle are situations in which attributes interact. For example, 
two attributes may be substitutes for one another to some extent. Imagine a C EO 
who oversees several divisions. The simultaneous success of every division may not 
be terribly important; as long as some divisions perform well, cash flows and profits 
will be adequate. On the other hand, attributes can be complementary. An example 
might be the success of various phases of a research-and-development project. The 
success of each individual project is valuable in its own right. But the success of all 
phases might make possible an altogether new technology or process, thus leading to 
substantial synergistic gains in many ways. In this case, high achievement on all 
attributes (success in the various R&D phases) is worth more than the sum of the 
value obtained from the individual successes. 

Such interactions cannot be captured by the additive utility function. That model is 
essentially an additive combination of preferences for individual attributes. To capture 
the kinds of interactions that we are talking about here, as well as risk attitudes, we 
must think more generally. Let us think in terms of a utility surface, such as the one de-
picted in Figure 16.1 for two attributes. Although it is possible to think about many at-
tributes at once, we will develop multiattribute utility theory concepts using only two 
attributes. The ideas are readily extended to more attributes, and at the end of the chap-
ter we will say a bit about multiattribute utility functions for three or more attributes. 

Much of this chapter is fairly abstract and technical. To do a good job with the 
material, the mathematics are necessary. After theoretical development, which is 

576 

T 



MULTIATTRIBUTE UTILITY FUNCTIONS: DIRECT ASSESSMENT     577 

Figure 16.1 
A utility surface for 

two attributes. 

sprinkled with illustrative examples, we will process a complete example that in-
volves the assessment of a two-attribute utility function for managing a blood bank. 
We also discuss briefly how to deal with three or more attributes and demonstrate 
such a model in a large-scale electric-utility example. 

Multiattribute Utility Functions: Direct Assessment 

To assess a utility function like the one in Figure 16.1, we can use the same basic ap-
proach that we already have used. For example, consider the reference-gamble 
method. The appropriate reference gamble has the worst pair (x─, y─) and the best 
pair (x+, y+) as the two possible outcomes: 

Win (x+, y+) with probability p Win 
(x─, y─) with probability 1 — p 

Now for any pair (x, y), where x─ ≤ x ≤ x+ and y─ ≤ y ≤ y+, find the probability p 
to use in the reference gamble that will make you indifferent between (x, y) and the 
reference gamble. As before, you can use p as your utility U(x, y) because 
U(x+, y+) = 1, and U(x─, y─) = 0. Figure 16.2 shows the decision tree that repre- 

Figure 16.2 
Directly assessing a 
multiattribute utility. 
The probability that 

makes you indifferent 
between the lottery 

and the sure thing is 
your utility value 

for (x, y). 
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Figure 16.3 
Sketching indifferent 

curves. The point val-
ues are the assessed 
utility values for the 
corresponding (x, y) 

pair. 

sents the assessment situation. This is simply the standard probability-equivalent 
utility assessment technique that we have seen before. 

You can see that we will wind up with many utility numbers after making this as-
sessment for a reasonable number of (x, y) pairs. There may be several pairs with the 
same utility, and you should be indifferent among such pairs. Thus, (x, y) pairs with 
the same utilities must fall on an indifference curve. One approach to understanding 
your multiattribute preferences is simply to plot the assessed points on a graph, as in 
Figure 16.3, and sketch rough indifference curves. 

To find a good representation of preferences through direct assessment, however, 
there is a drawback: You must assess utilities for a substantial number of points. And 
even though it is straightforward to see how this approach might be extended to three 
or more attributes, the more being considered, the more points you must assess, and 
the more complicated graphical representations become. An easier way would be 
convenient. 

Another approach that would ease the assessment burden would be to think 
about a multiattribute utility function that is made up of the individual utility func-
tions. Mathematically, we might represent the most general case as 

U(x,y) = f[UX(x), UY(y)] 

The f [•, •] notation means that U(x, y) is a function of the individual utility functions 
UX(x) and UY( y). In Chapter 15, the form we used was 

In this chapter we will consider 

U(x, y) = c1 + c2 UX(x) + c3UY(y) + c4 UX(x) UY (y) 

The importance of any such formulation is that it greatly eases the assessment bur-
den; as in Chapter 15, we only require the individual utility functions and enough in-
formation to put them together. Being able to break down the multiattribute utility 
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function this way sometimes is called separability; the overall utility function can be 
"separated" into chunks that represent different attributes. 

Is such an arrangement possible? Yes, but it requires some interesting conditions 
for the combined utility function. These conditions concern how the preferences in-
teract among the attributes, a point suggested in the beginning of this chapter. We 
will digress briefly to discuss these conditions. 

Independence Conditions 

Preferential Independence 

One thing we need in order to have the kind of separability mentioned above is mu-
tual preferential independence. An attribute Y is said to preferentially independent of 
X if preferences for specific outcomes of Y do not depend on the level of attribute X. 
As an example, let Y be the time to completion of a project and X its cost. If we pre-
fer a project time of 5 days to one of 10 days, assuming that the cost is 100 in each 
case, and if we also prefer a project time of 5 days to one of 10 days if the cost is 200 
in both cases, then Y is preferentially independent of X; it does not matter what the 
cost is — we still prefer the shorter completion time. 

We need mutual preferential independence, so we also need the cost to be prefer-
entially independent of the completion time. If we prefer lower cost no matter what 
the completion time, then X is preferentially independent of Y. Then we can say that 
the two attributes are mutually preferentially independent. 

Preferential independence seems to be a pretty reasonable condition to assume, es-
pecially in cases like the one involving costs and time to completion. But it is easy to 
imagine situations in which preferential independence might not hold. For example, in 
Chapter 15 it was suggested that your preference for amount of homework effort might 
depend on course topic. Bunn (1984) relates a nice hypothetical example in which 
preferential independence might not hold. Consider a decision with outcomes that af-
fect both the place where you live and the automobile that you drive. Let X be an out-
come variable that could denote either Los Angeles or an African farm, and Y an out-
come variable denoting either a Cadillac or a Land Rover. The value of X (whether you 
live in Los Angeles or on an African farm) may well affect your preference for a 
Cadillac or a Land Rover. Therefore, Y would not be preferentially independent of X. 
Consider the reverse: You may prefer Los Angeles to an African farm (or vice versa) 
regardless of the car you own. Thus, one attribute would be preferentially independent 
of the other, but the two are not mutually preferentially independent. 

It probably is fair to say that mutual preferential independence holds for many 
people and many situations, or that at least it is a reasonable approximation. Mutual 
preferential independence is like the decomposability property for an objectives hi-
erarchy. If a decision maker has done a good job of building a decomposable hierar-
chy, mutual preferential independence probably is a reasonable assumption. But it 
should never be taken for granted. 

If you recall the discussion about value functions and utility functions from 
Chapter 15, you will realize that mutual preferential independence, being about sure 
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outcomes, is a condition that applies to value functions. In fact, mutual preferential 
independence is exactly the condition that is needed for the additive (ordinal) utility 
function to be appropriate when making a decision with no uncertainty. That is, when 
a decision maker's preferences display mutual preferential independence, then the ad-
ditive utility function, assessed using any of the techniques described in Chapter 15, 
is appropriate for decisions under certainty. Once we move to decision under uncer-
tainty, however, mutual preferential independence is not quite strong enough. 
Although it is a necessary condition for obtaining separability of a (cardinal) multiat-
tribute utility function, it is not sufficient. Thus, we must look at stronger conditions. 

Utility Independence 

Utility independence is slightly stronger than preferential independence. An attribute 
Y is considered utility independent of attribute X if preferences for uncertain choices 
involving different levels of Fare independent of the value of X Imagine assessing a 
certainty equivalent for a lottery involving only outcomes in Y If our certainty 
equivalent amount for the Y lottery is the same no matter what the level of X, then Y 
is utility independent of X. If X also is utility independent of Y, then the two attributes 
are mutually utility independent. 

Utility independence clearly is analogous to preferential independence, except that 
the assessments are made under conditions of uncertainty. For the project evaluation ex-
ample above, suppose we assess that the certainty equivalent for an option giving, say, 
a 50% chance of Y = 5 and a 50% chance of Y = 10 does not depend on the level at 
which the cost X is fixed. As long as our preferences for lotteries in the completion-time 
attribute are the same (as, say, measured by their certainty equivalents) regardless of the 
fixed level of cost, then completion time is utility independent of cost. 

Keeney and Raiffa (1976) discuss an example in which utility independence 
might not hold. Suppose that X and Y are the rates of serious crime in two precincts 
of a metropolitan police division. In determining the joint utility function for this re-
gion's police chief, the issue of utility independence for X and Y would be faced. 
With Y fixed at 5, a relatively low rate of crime, he may be quite risk-averse to rates 
of crime in region X. He may not want to appear as though he is neglecting a partic-
ular precinct. Thus, his certainty equivalent for an option giving a 50% chance of 
X = 0 and a 50% chance of X = 30 may be 22 when Y is fixed at 5. If Y were fixed 
at the higher rate of 15, however, his certainty equivalent may be less risk-aversely 
assessed at 17. Thus, one must not assume that utility independence will hold in all 
cases. Even so, almost all reported multiattribute applications assume utility inde-
pendence and thus are able to use a decomposable utility function. 

Determining Whether Independence Exists 

How can you determine whether your preferences are preferentially independent? The 
simplest approach is to imagine a series of paired comparisons that involve one of the at- 



DETERMINING WHETHER INDEPENDENCE EXISTS      581 

tributes. With the other attribute fixed at its lowest level, decide which outcome in each 
pair is preferred. Once this is done, imagine changing the level of the fixed attribute. 
Would your comparisons be the same? Would the comparisons be the same regardless of 
the fixed level of the other attribute? If so, then preferential independence holds. 

Determining whether independence holds is a rather delicate matter. The follow-
ing sample dialogue is taken from Keeney and Raiffa (1976). The notation has been 
changed to correspond to our notation here. 

ANALYST. I would now like to investigate how you feel about various Y values when 
we hold fixed a particular value of X. For example, on the first page of this 
questionnaire [this is shown to the assessor] there is a list of 25 paired comparisons 
between Y evaluations; each element of the pair describes levels on the Y attributes 
alone. On this first page it is assumed that, throughout, the X evaluations are all the 
same, that is, x1 [the fixed value for X is shown to the assessor]. Is this clear? 
ASSESSOR. Crystal clear, but you are asking me for a lot of work. 
ANALYST. Well, I have a devious purpose in mind, and it will not take as much 
time as you think to find out what I want. Now on the second page of the 
questionnaire [this is shown to the assessor] the identical set of 25 paired comparisons 
are repeated, but now the fixed, common level on the X attribute is changed from x1 
to x2 [value is shown to the assessor]. Are you with me? 
ASSESSOR. All the way. 
ANALYST. On page 3, we have the same 25 paired comparisons but now the 
common value of the X value is x3 [shown to the assessor]. 
ASSESSOR. You said this would not take long. 
ANALYST. Well now, here comes the punchline. Suppose that you painstakingly 
respond to all of the paired comparisons on page 1 where x1 is fixed. Now when you 
go to the next page would your responses change to these same 25 paired 
comparisons? 
ASSESSOR. Let's see. In the second page all paired comparisons are the same 
except x1 is replaced with x2. What difference should that make? 
ANALYST. Well, you tell me. If we consider this first comparison [pointed to on the 
questionnaire] does it make any difference if the X values are fixed at xx or x2? There 
could be some interaction concerning how you view the paired comparison 
depending on the common value of X. 
ASSESSOR. I suppose that might be the case in some other situation, but in the first 
comparison I prefer the left alternative to the right no matter what the X value is . . .  
as long as they are the same. 
ANALYST. Okay. Would you now feel the same if you consider the second paired 
comparison? 
ASSESSOR. Yes. And the third and so on. Am I being naive? Is there some trick 
here? 
ANALYST. No, not at all. I am just checking to see if the X values have any in-
fluence on your responses to the paired comparisons. So I gather that you are telling 
me that your responses on page 1 carry over to page 2. 
ASSESSOR. That's right. 
ANALYST. And to page 3, where the X value is held fixed at x3 [shown to 
assessor]? 
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ASSESSOR. Yes. 
ANALYST. Well, on the basis of this information I now pronounce that for you 
attribute Y is preferentially independent of attribute X. 
ASSESSOR. That's nice to know. ANALYST. That's all I wanted to find out. 
ASSESSOR. Aren't you going to ask me to fill out page 1? ANALYST. No. 
That's too much work. There are less painful ways of getting that 
information. 

Source: Keeney, R., and H. Raiffa (1976) Decisions with Multiple Objectives: Preferences and Value 
Tradeoffs. New York: Wiley. Reprinted in 1993 by Cambridge University Press. Copyright Cambridge 
University Press. 

The dialogue describes how to check for preferential independence. Checking for 
utility independence would be much the same, except that the paired comparisons 
would be comparisons between lotteries involving attribute Y rather than sure out-
comes. As long as the comparisons remain the same regardless of the fixed value for 
X, then Y can be considered utility independent of X. Of course, to establish mutual 
preferential or utility independence, the roles of X and Y would have to be reversed to 
determine whether paired comparisons of outcomes or lotteries in X depended on 
fixed values for Y. If each attribute turns out to be independent of the other, then mu-
tual utility or preferential (whichever is appropriate) independence holds. 

Using Independence 

If a decision maker's preferences show mutual utility independence, then a two-
attribute utility function can be written as a composition of the individual utility 
functions. As usual, the least preferred outcome (x─, y─) is assigned the utility 
value 0, and the most preferred pair (x+, y+) is assigned the utility value 1. 

Under mutual utility independent preferences, the two-attribute utility function 
can be written as 
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The product term UX(x) UY(y) in this utility function is what permits the modeling of in-
teractions among attributes. The utility functions UX and UY are conditional utility func-
tions, and each must be assessed with the other attribute fixed at a particular level. (For 
example, in assessing UY, imagine that X is fixed at a specific level.) To understand the 
last two conditions, all we must do is plug the individual utilities into the equation. For 
example, 

U(x+, y-) = kX UX{x+) + kY UY(y-) + (1 - kX  ─ kY) UX(x+) UY(y─) = 
kX(1) + kY(0) + (1 ─ kX - kY)(l)(0) = kX 

This multiattribute utility function, called a multilinear expression, is not as bad as it 
looks! Look at it from the point of view of the X attribute. Think about fixing Y at a 
value (say, ya); you get a conditional utility function for X, given that Y is fixed at ya: 

U ( x ,  y a )  =  k Y  U Y ( y a )  +  [ k X  +  ( l  ─  k X   ─  k Y )  U Y ( y a ) ]  U X ( x )  

Because Y is fixed atya, the terms kYUY(ya) and [kX + (1 + kX — kY) UY(ya)] are just 
constants. Thus, U(x, ya) is simply a scaled version of UX(x). Now change to another y 
(yb). What happens to the utility function for X? The expression now looks like 

U ( x ,  y b )  =  k Y  U Y ( y b )  +  [ k x  +  ( l  ─  k X   ─  k Y )  U Y ( y b ) ]  U X ( x )  

This is just another linear transformation of UX(x), and so U(x, yb) and U(x, ya) must be 
identical in terms of the way that lotteries involving the X attribute would be 
ranked. We have scaled the utility function UX(x) in two different ways, but the scal-
ing does not change the ordering of preferences. Now, notice that we can do exactly 
the same thing with the Y attribute; for different fixed values of X (xa and xb), the con-
ditional utility functions are simply linear transformations of each other: 

U(xa, y) = kX UX(xa) + [kY + (1 ─ kX  ─ kY) UX(xa)] UY(y) 
U(xb, y) = kX UX(xb) + [kY + (1 ─ kX  ─ kY) UX(xb)] UY(y) 

No matter what the level of one attribute, preferences over lotteries in the second at-
tribute (Y) stay the same. This was the definition of utility independence in the last 
section. We have mutual utility independence because the conditional utility function 
for one attribute stays essentially the same no matter which attribute is held fixed. 

Additive Independence 

Look again at the multiattribute utility function 

U(x, y) = kX UX(x) + kY UY(y) + (1 ─ kX  ─ kY) UX(x) UY(y) 

If kX + kY = 1, then the utility function turns out to be simply additive: 

U(x, y) = kX UX(x) + (1 ─ kX) UY(y) 
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If this is the case, we only have to assess the two individual utility functions UX(x) 
and UY(y) and the weighting constant kX. This would be convenient: It would save 
having to assess kY. Of course, this is just the additive utility function from Chapter 
15. How is this kind of multiattribute utility function related to the independence 
conditions? To be able to model preferences accurately with this additive utility 
function, we need additive independence, an even stronger condition than utility in-
dependence. 

The statement of additive independence is the following: Suppose X and Y are 
mutually utility independent, and you are indifferent between Lotteries A and B: 

A        (x─, y─) with probability 0.5 
(x+, y+) with probability 0.5 

B        (x─, y+) with probability 0.5 
(x+, y─) with probability 0.5 

If this is the case, then the utility function can be written as the weighted combina-
tion of the two utility functions, U(x, y) = kX UX(x) + (1 — kX) UX(y). You can see 
by writing out the expected utilities of the lotteries that they are equivalent: 

EU(A) = 0.5[kX UX(x─) + (1 - kX) UY(y─)] + 0.5[kX UX(x+) + (1 - kX) UY(y+)] = 
0.5[kX UX(x─) + (1 - kX) UY(y─) + kX UX(x+) + (1 - kX) UY(y+)] 

EU(B) = 0.5[kX UX(x─) + (1 - kX) UY(y+)] + 0.5[kX UX(x+) + (1 - kX) UY(y─)] = 
0.5[kX UX(x─) + (1 - kX) UY(y+) + kX UX(x+) + (1 - kX) UY(y ─ )] = EU(A) 

The intuition behind additive independence is that, in assessing uncertain out-
comes over both attributes, we only have to look at one attribute at a time, and it 
does not matter what the other attribute's values are in the uncertain outcomes. This 
sounds a lot like utility independence. The difference is that, in the case of additive 
independence, changes in lotteries in one attribute do not affect preferences for lot-
teries in the other attribute; for utility independence, on the other hand, changes in 
sure levels of one attribute do not affect preferences for lotteries in the other at-
tribute. Here is another way to say it: When we are considering a choice among risky 
prospects involving multiple attributes, if additive independence holds, then we can 
compare the alternatives one attribute at a time. In comparing Lotteries A and B 
above, we are indifferent because (1) for attribute X, each lottery gives us a 50% 
chance at x─ and a 50% chance at x+; and (2) for Y, each lottery gives us a 50% 
chance at y─ and a 50% chance at y+. Looking at the attributes one at a time, the 
two lotteries are the same. 

The additive utility function from Chapter 15 requires additive independence of 
preferences across attributes in order to be an accurate model of a decision maker's 
preferences in decisions under uncertainty. Think back to some of the examples or 
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problems. Do you think this idea of additive independence makes sense in purchas-
ing a car? Think about reliability and quality of service, two attributes that might be 
important in this decision. When you purchase a new car, you do not know whether 
the reliability will be high or low, and you may not know the quality of the service. 
To some extent, however, the two attributes are substitutes for each other. Suppose 
you faced the hypothetical decision shown in Figure 16.4. Would you prefer Lottery 
A or B? Most of us probably would take A. If you have a clear preference for one or 
the other, then additive independence cannot hold. 

von Winterfeldt and Edwards (1986) discuss reports from behavioral decision 
theory that indicate additive independence usually does not hold. If this is the case, 
what is the justification for the use of the additive utility function? Many multiat-
tribute decisions that we make involve little or no uncertainty, and evidence has 
shown that the additive model is reasonable for most situations under conditions of 
certainty. And in extremely complicated situations with many attributes, the additive 
model may be a useful rough-cut approximation. It may turn out that considering the 
interactions among attributes is not critical to the decision at hand. 

Finally, it is possible to use simple approximation techniques to include interac-
tions within the additive utility framework. For example, suppose that we have a de-
cision problem with many attributes that are, for the most part, additively indepen-
dent of one another. The additive representation of the utility function does not allow 
for any interaction among the attributes. If this is appropriate for almost all of the 
possible outcomes, then we may use the additive representation while including a 
specific "bonus" or "penalty" (depending on which is appropriate) for those out-
comes with noticeable interaction effects. 

Raiffa (1982) has an interesting example. Suppose a city is negotiating a new 
contract with its police force. Two attributes are (1) increase in vacation for officers 
who have less than five years of service and (2) increase in vacation for officers who 
have more than five years of service. The city loses points in an additive value func-
tion for increases in vacation for either group. If either group is held to no increase, 
then the city loses no points for that particular group. But the city would be happy if 
all its officers could be held to no increase in vacation time; thus, no precedent is set 
for the other group. To capture this interaction, the city gets a "bonus" of some points 
in its overall utility if there is no increase in vacation for either group. 

 

Figure 16.4 
An assessment lottery 
for a car purchase. If 

you have a clear 
preference for A or B, 
then additive indepen-

dence cannot hold. 
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Substitutes and Complements 

In the multiattribute utility function, the interaction between the attributes is cap-
tured by the term (1 — kX — kY) UX(x) UY(y). How can we interpret this? Keeney 
and Raiffa (1976) give an interesting interpretation of the coefficient (1 — kX — kY). 
The sign of (1 — kX — kY) can be interpreted in terms of whether x and y are com-
plements or substitutes for each other. Suppose (1 — kX — kY) is positive. Now ex-
amine the multiattribute utility function: 

U(x ,  y )  = k X  U X (x )  + k Y  U Y (y )  +  ( l  ─ k X   ─ k Y )  U X (x )  U Y (y )  

Preferred values of X and Y will give high values to the conditional utility func-
tions, and the positive (1 — kX — kY) will drive up the overall utility for the pair 
even higher. Thus, if (1 — kX — kY) is positive, the two attributes complement 
each other. On the other hand, if (1 — kX — kY) is negative, high values on each 
scale will result in a high product term, which must be subtracted in the multiat-
tribute preference value. In this sense, preferred values of each attribute work 
against each other. But if one attribute is high and the other low, the subtraction ef-
fect is not as strong. Thus, if (1 — kX — kY) is negative, the two attributes are 
substitutes. 

Keeney and Raiffa (1976) offer two examples. In one, imagine a corporation 
with two divisions that operate in different markets altogether, and let profits in 
each division represent two attributes of concern to the president. To a great extent, 
success by the two divisions could be viewed as substitutes. That is, if profit from 
one division was down while the other was up, the firm would get along fine. 
Financial success by one division would most likely ensure the overall success of 
the firm. 

For an example of the complementary case, Keeney and Raiffa consider the 
problem a general would face in a battle being fought on two fronts. If we let the 
consequences on the two fronts represent two distinct attributes, then these two at-
tributes may be complementary. That is, defeat on one front may be almost as bad as 
defeat on both fronts, and a completely successful outcome may be guaranteed only 
by victory on both. 

Assessing a Two-Attribute Utility Function 

Now that we have seen the basics of two-attribute utility functions, we are ready to 
assess one. The procedure is relatively straightforward. First, we determine whether 
mutual utility independence holds. Provided that it does, we then assess the individ-
ual utility functions. Finally, the scaling constants are determined in order to put the 
individual utility functions together. 
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THE   BLOOD   BANK 

In a hospital blood bank it is important to have a policy for deciding how much 
of each type of blood should be kept on hand. For any particular year, there is a 
"shortage rate," the percentage of units of blood demanded but not filled from stock 
because of shortages. Whenever there is a shortage, a special order must be placed to 
locate the required blood elsewhere or to locate donors. An operation may be post-
poned, but only rarely will a blood shortage result in a death. Naturally, keeping a lot 
of blood stocked means that a shortage is less likely. But there is also a rate at which 
blood is "outdated," or kept on the shelf the maximum amount of time, after which it 
must be discarded. Although having a lot of blood on hand means a low shortage 
rate, it probably also would mean a high outdating rate. Of course, the eventual out-
come is unknown because it is impossible to predict exactly how much blood will be 
demanded. Should the hospital try to keep as much blood on hand as possible so as 
to avoid shortages? Or should the hospital try to keep a fairly low inventory in order 
to minimize the amount of outdated blood discarded? How should the hospital blood 
bank balance these two objectives? [Source: Keeney and Raiffa (1976).] 

The outcome at the blood bank depends on uncertain demand over the year as 
well as the specific inventory policy (stock level) chosen. Thus, we can think of each 
possible inventory policy as a lottery over uncertain outcomes having two attributes, 
shortage and outdating. Shortage is measured as the annual percentage of units de-
manded but not in stock, while outdating is the percentage of units that are discarded 
due to aging. A high stock level probably will lead to less shortage but more outdat-
ing, and a low stock level will lead to more shortage and less outdating. To choose an 
appropriate stock level, we need to assess both the probability distribution over 
shortage and outdating outcomes for each possible stock level and the decision 
maker's utility function over these outcomes. Because each outcome has two attri-
butes, we need a two-attribute utility function. Here we focus on the assessment of 
the utility function through the following steps: 

1 The first step was to explain the problem to the nurse in charge of ordering blood. 
Maintaining an appropriate stock level was her responsibility, so it made sense to 
base an analysis of the problem on her personal preferences. She understood the 
importance of the problem and was motivated to think hard about her assess 
ments. Without such understanding and motivation on her part, the entire project 
probably would have failed. 

2 It was established that the annual outdating and shortage rates might range from 
10% (worst case) to 0% (best case). 

3 Did mutual utility independence hold? The nurse assessed a certainty equivalent 
for uncertain shortage rates (Attribute X), given a fixed outdating rate (Attribute 
Y). The certainty equivalent did not change for different outdating rates. Thus, 
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shortage was found to be utility independent of outdating. Similar procedures 
showed the reverse to be true as well. Thus, shortage and outdating were mutu-
ally utility independent, implying the multilinear form for the utility function. 

4 The next step was to assess the conditional utility functions UX(x) and UY(y). In 
each case, the utility function was assessed conditional on the other attribute 
being held constant at 0. To assess UX(x), it was first established that preferences 
decreased as x increased. Using the lotteries that had been assessed earlier in the 
utility independence step, an exponential utility function was determined. Setting 
UX(0) = 1 (best case) and UX(10) = 0 (worst case), the utility function was 

UX(x) = 1 + 0.375(1 ─ ex/7.692) 

Likewise, the second utility function was determined using the previously as-
sessed certainty equivalents, and again an exponential form was used. The utility 
function was 

UY(y) = 1 + 2.033(1 ─ ey/25) 

This utility function also has UY(0) = 1 and UY(10) = 0. 
5 Assessing the weights kX and kY is the key to finding the two-attribute utility func 

tion. The trick is to use as much information as possible to set up equations based on 
indifferent outcomes and lotteries, and then to solve the equations for the weights. 
Because we have two unknowns, kX and kY, we will be solving two equations in two 
unknowns. To set up two equations, we will need two utility assessments. 

Recall that the multilinear form can be written as 

U(x, y) = kXUX(x) + kYUY(y) + (1 - kX - kY) UX(x) UY(y) 

We also know that 

U(10, 0) = kY 

U(0, 10) = kX 

These follow from steps 3 and 4 above, substituting x─ = 10, x+ = 0, y─ = 10, and 
y+ = 0.  

The nurse determined that she was indifferent between the two outcomes 
(x = 4.75, y = 0) and (x = 0,  y = 10). This first assessment indicates that, for her, 
avoiding shortages is more important than avoiding outdating. We can substitute 
each one of these points into the expression for the utility function, establishing the 
first equation relating kX and kY: 

U(4.75, 0) = kX UX(4.75) + kY UY(0) + (1 ─ kX - kY) UX(4.75) UY(0) = 
kX UX(4.75) + kY(1) + (l ─ kX  ─ kY) UX(4.75) (1) 

Because she was indifferent between (4.75, 0) and (0, 10), we have 
U(4.75, 0) = U(0, 10)        (because she is indifferent) 
= kX  [from U(0, 10) = kX, above] 
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Substituting, we obtain 

kX = kX UX(4.75) + kY + (1 ─ kX - kY) UX(4.75) (16.1) 
= kY + (l ─ kY)UX(4.75) = kY + ( l  ─  
kY)[l + 0.375(1 - e4.75/7 .692)] = kY  + (1 ─ 
kY)0.68 = 0.68 + 032kY 

In the second assessment, the decision maker concluded that she was indifferent 
between the outcome (6, 6) and a 50-50 lottery between the outcomes (0, 0) and 
(10, 10). Using this assessment, we can find U(6, 6): 

U(6, 6) = 0.5 U(0, 0) + 0.5 U(10, 10) = 
0.5(1) + 0.5(0) 
= 0.5 

This is just a standard assessment of a certainty equivalent for a 50-50 gamble 
between the best and worst outcomes. Now substitute U(6, 6) = 0.5 into the two-
attribute utility function to find a second equation in terms of kX and kY: 

0.5 = U(6, 6) 
= kX UX(6) + kY UY(6) + (1 ─ kX - kY) UX(6) UY(6) 

Substituting the values X = 6 and Y = 6 into the formulas for the individual utility 
functions gives 

UX(6) = 
0.56 UY(6) 

= 0.45 

Now plug these into the equation for U(6, 6) to get 

0.5 = kX(0.56) + kY(0.45) + (1 ─ kX  ─ kY)(0.56)(0.45) 

which simplifies to 
0.248 = 0.308 kX  + 0.198 kY (16.2) 

Now we have two linear equations in kX  and kY — Equations (16.1) and (16.2): 

kX = 0.680 + 0.320 kY 0.248 
= 0.308 kX +0.198 kY 

Solving these two equations simultaneously for kX and kY, we find that kX = 0.72 and 
kY = 0.13. Thus, the two-attribute utility function can be written as 

U(x, y) = 0.72 UX(x) + 0.13 UY(y) + 0.15 UX(x) UY(y) 

where UX(x) and UY(y) are given by the exponential utility functions defined above. 
Now we can find the utility for any (x, y) pair (as long as the x's and y's are each be-
tween 0 and 10, the range of the assessments). Any policy for ordering blood can be 
evaluated in terms of its expected utility. Table 16.1 shows utilities for different 
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possible outcomes, and Figure 16.5 shows the indifference curves associated with 
the utility function. From Figure 16.5, we can verify the conditions and assessments 
that were used: 

U(0, 0) = 1 U(10, 10) = 0 
U(10, 0) = 0.13 = kY U(0, 10) = U(4.75, 0) = 0.72 = kX 
U(6, 6) = 0.50 

The final assessed utility function is readily interpreted. The large value for kX 
relative to kY means that the nurse is much more concerned about the percentage of 
shortage than she is about the percentage of outdating. This makes sense; most of us 
would agree that the objective of the blood bank is primarily to save lives, and we 
probably would rather throw out old blood than not have enough on hand when it is 

 

Table 16.1 
Utility values for 

shortage and outdating 
in the blood bank. 

 y Values (Outdating) 
x Values (Shortage) 0 2 4 6 8 10 

       
0 1.00 0.95 0.90 0.85 0.79 0.72 
2 0.90 0.86 0.81 0.76 0.70 0.64 
4 0.78 0.74 0.69 0.64 0.59 0.54 
6 0.62 0.58 0.54 0.50 0.45 0.40 
8 0.40 0.37 0.34 031 0.27 0.23 

10 0.13 0.11 0.08 0,06 0.03 0.00 

Figure 16.5 
Indifference curves for 
nurse's utility function 
for shortage and out-
dating. The numbers 

are U(x, y) for the cor-
responding indiffer-

ence curve. 
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needed. The fact that kX + kY < 1 means that the two attributes are complements 
rather than substitutes. We can see this in Figure 16.5. For example, imagine an out-
come of (8, 8), for which the utility is 0.27 (Point A). Now imagine improving the 
shortage percentage to zero. This would increase the utility value to U(0, 8) = 0.79, 
for an approximate net increase of 0.52. On the other hand, improving the outdating 
percentage the same amount results in U(8, 0) = 0.40, for a net increase of 0.13. If 
we increased both at the same time, we would have U(0, 0) = 1.00, an increase of 
0.73. The increase in utility from increasing both at once is greater than the sum of 
the individual increases (0.73 > 0.52 + 0.13 = 0.65). This is the sense in which 
there is an interaction. This kind of phenomenon is impossible in the additive utility 
function. 

Three or More Attributes (Optional) 

When the decision problem involves three or more objectives, modeling prefer-
ences is more difficult. Building a utility function that will permit interactions 
across many attributes can become complex. Under certain conditions, how-
ever, the multiplicative utility function can be used. Let Xi denote the ith at-
tribute, and Ui(xi) and ki the corresponding individual utility function and scal-
ing constant. The multiplicative utility function for n different attributes is 
given by the equation 

(16.3) 

The ki's have the same meaning they had in the two-attribute case: 

U(x1
─, . . . xi─1, xi.,  xi+1, ... , xn

─ ) = ki 

That is, ki is the utility of an outcome having the best level on attribute Xi and worst 
on all others. Thus, we can assess the ki's directly through our standard reference-
lottery approach, which is shown in Figure 16.6. We have the reference lottery with 
the best possible and worst possible outcomes versus the sure thing having the best 
level on attribute Xi and the worst level on all others. The probability pi that makes 
us indifferent between the lottery and the sure thing in our utility for the sure thing 
and hence is equal to ki. The decision maker can assess each of the ki's in this way 
and then find the scaling constant k that satisfies the condition given above. Finally, 
putting the individual utility functions together with the scaling constants gives the 
overall utility function. 

 

 

where k is a nonzero solution to the equation 
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Figure 16.6 

 
Assessing scaling constants for the multiplicative utility function. The pi that makes the deci-
sion maker indifferent between the lottery and the sure thing is the utility of the sure out-
come and hence equals ki. 

The multiplicative utility function requires a fairly strong version of utility inde-
pendence. Strictly speaking, each subset of the attributes must be utility-independent 
of the remaining attributes. This essentially means that we should be able to partition 
the attributes into two subsets in any way we want, and then consider lotteries in one 
subset, holding the attributes in the other subset fixed. As long as preferences for the 
lotteries do not depend on the level of the remaining attributes, the multiplicative 
utility function should provide a good model of the decision maker's preferences. If 
the multiplicative model is not appropriate, then a more general version of the multi-
linear model may be a possibility. For more details, consult Keeney and Raiffa 
(1976). 

When Independence Fails 

We have just dealt in depth with situations in which the assumption of mutual utility 
independence results in a reasonable model of preferences. This is not always true. 
Suppose we are interested in assessing a two-attribute utility function over attributes 
X and Y but have found that neither X nor Y is utility independent of the other. Then 
neither the multilinear nor additive forms for the utility function are appropriate. 
How can we obtain a reasonable U(x, y) for decision-making purposes? Several pos-
sibilities exist. One is simply to perform a direct assessment as described at the be-
ginning of this chapter. Pick the best and worst (x, y) pairs, assign them utility values of 
1 and 0, and then use reference gambles to assess the utility values for other points. A 
second approach is to transform the attributes and proceed to analyze the problem 
with the new set. Of course, the new set of attributes still must capture the critical 
aspects of the problem, and they must be measurable. Take the example discussed 
above in which X and Y designate measures of the crime rates in two sections of a 
city. There may be a complicated preference structure for (x, y) pairs. For political 
reasons, the relative ordering of hypothetical lotteries for criminal activity in one 
section may be highly dependent on the level of crime in the other section. But sup- 
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pose we define s = (x +  y)/2 and t = | x — y |. Then s may be interpreted as an av-
erage crime index for the city and t as an indicator of the balance of criminal activity 
between the two sections. Any (x, y) outcome implies a unique (s, t) outcome, so it is 
easy to transform from one set of attributes to the other. Furthermore, even though x 
and y may not be utility independent, it may be reasonable to model s and t as being 
utility independent, thus simplifying the assessment procedure. 

One of the most difficult and subtlest concepts in multiattribute utility theory is 
the notion of interaction among attributes. To use the additive utility function from 
Chapter 15, we must have no interaction at all. To use the multilinear utility function 
discussed in this chapter, we can have some interaction, but it must be of a limited 
form. (Any interactions must conform to the notion of utility independence.) The 
blood bank example demonstrated the nature of the interaction between two attri-
butes that is possible with the multilinear utility function. In this section, we are con-
cerned with situations in which the interactions are even more complicated than 
those that are possible in the multilinear case. Fortunately, evidence from behavioral 
research suggests that it is rarely, if ever, necessary to model extremely complex 
preference interactions. 

Chapter 15 and 16 have presented many of the principles and decision-analysis 
techniques that are useful in making decisions in the face of conflicting objectives. 
Given the complexity of the techniques, it is important to keep in mind the model-
ing perspective that we have held all along. The objective of using the multiattribute 
decision-analysis techniques is to construct a model that is a reasonable representa-
tion of a decision maker's value structure. If minimal interactions exist among the 
attributes, then the additive utility function is appropriate. When attributes interact, 
then it may be necessary to consider multiattribute utility theory, just as we have in 
this chapter. 

Multiattribute Utility in Action: BC Hydro 

Can multiattribute utility modeling be of use? Consider the situation of the British 
Columbia Hydro and Power Authority (BC Hydro): 

STRATEGIC   DECISIONS  AT  BC   HYDRO 

In the late 1980s, BC Hydro found itself at an important juncture. Knowing that it 
would face many strategic decisions in the future, its directors wanted to prepare to 
make those decisions in the best possible way. It would have to make decisions re-
garding power-generation plants, placement of transmission lines, employee relations, 
how to communicate with public and special-interest groups, environmental impact of 
its activities and facilities, and policies for addressing large-scale problems such as 
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global warming. To ensure that many different decisions would be coordinated and 
would all serve the organization's interests, Mr. Ken Peterson was appointed as 
Director of Strategic Planning. In short, Peterson's job was to make BC Hydro the 
leader in strategic planning among North American utility companies. To help 
Peterson get started, BC Hydro had a general mission statement. Like most such state-
ments, however, BC Hydro's was broad and lacked details. It was certainly not up to 
the task of coordinating the myriad of diverse decisions that BC Hydro would face. 

Realizing that he would need a way to think systematically about BC Hydro's 
strategic alternatives, Peterson enlisted Ralph Keeney and Tim McDaniels to help 
identify the organization's objectives and construct a multiattribute utility function. 
The project is described in Keeney (1992) and Keeney and McDaniels (1992). The 
process began with interviews of key decision makers in the organization to identify 
fundamental objectives. Once a satisfactory set of fundamental objectives was estab-
lished, the process continued through all of the steps necessary to define and assess 

Figure 16.7 
Two nonlinear utility 

functions for BC 
Hydro, (a) A risk-

averse utility function 
for government divi-

dend, (b) A risk-prone 
utility function for du-

ration of outages to 
large customers. 

Source: Keeney (1992, p. 364). 
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individual utility functions for the attributes and scaling constants for the multiat-
tribute utility function. The final utility function involved 18 different attributes in 
six major groups (economics, environment, health and safety, equity, service quality, 
and public-service recognition). The hierarchy of objectives with corresponding at-
tributes and ranges is shown in Table 16.2. 

Keeney reports that the component utility functions were linear (i.e., proportional 
scores were used) for all but two of the attributes. The two that were not linear were 
annual government dividend and large customer outage duration. The individual util-
ity functions for these two attributes are shown in Figure 16.7. Note that the dividend 
utility function shows risk aversion, but the outage utility function is risk-seeking. 

The assessment proceeded by creating multiattribute utility functions for each of 
the groups and subgroups in Table 16.2. For example, two-attribute utility functions 
were created for service quality to small customers and large customers, each one 
covering the number of outages and outage duration for the corresponding customer 
type. These two utility functions were then combined with individual utility func-
tions for new service and inquiries to create a four-attribute utility function for ser-
vice. Finally, the service utility function was combined with five similar utility func-
tions for each of the other major groups. 

All of the multiattribute utility functions (including the overall function for the 
six major groups) were additive except for the economic utility function, which was 
multiplicative as in Equation (16.3). The reason for the nonadditive economic utility 
function is that the economic attributes were thought to be substitutes for each other 
to some extent. For the additive part of the model, it is possible to collapse the hier-
archy and calculate the weight that any one attribute has in the overall utility func-
tion. This is done simply by multiplying the weight for the attribute times the weight 
for the group (or subgroup) in which it resides, and so on, until the top level of the 
objectives hierarchy is reached. (You will recall that we did this in the library exam-
ple in Chapter 15.) The scaling weights, thusly calculated, are shown in Table 16.3 
for the additive attributes. (This table is taken from Keeney's Table 12.5 (1992). 
Note that scaling constants are given for public and worker health-and-safety aggre-
gates rather than for the individual mortality and morbidity attributes. The same is 
true for small and large customer service attributes.) 

Table 16.3 also shows in parentheses the scaling constants for the six major at-
tribute groups, thus indicating the relative importance of these top-level objectives. 
The most important of the six is the economic objective, accounting for almost 40% 
of the total weight. The table also shows the scaling constants for the three compo-
nents in the economic utility function and the constant k that defines the interactions 
in this multiplicative submodel. The economic utility function is given by 

1 ─ 0.76 U(x1, x2, x3) = [1 - 0.76 (0.84) U1(x1)] (16.4) 
[1 - 0.76 (0.18) U2(x2)][1 - 0.76 (0.30) U3(x3)] 

where xl, x2, and x3 represent levelized energy costs, annual dividend, and resource 
losses, respectively. 

From Table 16.3, the overall utility of any given consequence can be calcu-
lated. First, find the individual for each attribute. Then, for the additive components, 
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Table 
16.2 

Attributes and ranges 
for BC Hydro's strate-

gic utility function. 

 

 Worst Level Best Level 

Economics   
Levelized cost of energy from new sources 
(1989 $0.001/kWh) 

55 35 

Annuaiized dividend payable (1989 $ million) 0 200 
Economic cost or resource losses (1989 $ million) 20 0 

Environment   
Local Impacts   
Flora (hectares of mature forest lost) 10,000 0 
Fauna (hectares of wildlife habitat lost) 10,000 0 
Wilderness ecosystem (hectares of wilderness lost) 10,000 0 
Recreation (hectares of recreational land lost) 10,000 0 
Aesthetic (annual person-years of viewing high-
voltage transmission lines in scenic terrain) 

500,000 0 

Global impact (megawatts generated from fossil fuels) 1000 0 
Health and Safety   

Public   
Mortality (annual person-years of life lost) Morbidity 
(annual person-years of "severe'' disability) 

100 
1000 

0 0 

Employees   
Mortality (annual person-years of life lost) 100 0 
Morbidity (annual person-years of lost work time) 1000 0 

Equity   
Equitable pricing (constructed scale: see Keeney 1992, 
section 123) 

0.5 0 

Equitable compensation (annual average number of 
individuals who feel they are inequitably treated) 

500 0 

Service quality   
Small customers   

Outages (annual number per customer) 2 0 
Outage duration (hours per outage) 24 0 

Large customers   
Outages (annual number per customer) 2 0 
Outage duration (hours per outage) 24 0 

New service (installation time in workdays) 20 1 
Inquiries (minutes until personal response) 1 0 

Public-service recognition (constructed scale: 
see Keeney 1992, section 12.3) 

0 4 

Source: Keeney (1992, pp. 358-359). 
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Table 16.3 
Scaling constants for 
BC Hydro's strategic 

utility function. 

 

 Scaling Constant 

Economics (0.395)  

Constants for multiplicative function:  
Levelized cost of energy 0.84 
Annualized dividend 0.18 
Resource cost 0.30 
Scaling constant k -0.76 

Constants for additive function:  

Environment (0.250)  
Flora 0.023 
Fauna 0.046 
Wilderness ecosystem 0.093 
Recreation 0.046 
Aesthetic 0,023 
Global impact 0,019 

Health and Safety (0.089)  
Public 0.045 
Worker 0.045 

Equity (0.012)  
Equitable pricing 0.004 
Equitable compensation 0.008 

Service quality (0.250)  
Small customers 0.111 
Large customers 0.125 
New service 0.010 
Inquiries 0,005 

Public-service recognition (0.004) 0.004 

multiply each utility value times its weight and add up the resulting products. For the 
economic attributes, calculate the utility from Equation (16.4) and multiply the re-
sult times 0.395, the weight given to the economic component. Finally, add this 
product to the sum of the weighted utilities from the previous step. Of course, no one 
would do this in such a painstaking way by hand. Fortunately, it is very straightfor-
ward to program such utility calculations either into a specialized utility program or 
even in an electronic spreadsheet. 

Keeney (1992) shows how this utility function for BC Hydro can be used to 
generate important insights. For example, he shows the resource value in dollars of 
various attributes: Each hectare of wilderness lost is valued at $2500, but a hectare 
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of flora lost is worth $625. Each person-year of aesthetic deterioration is worth 
$13. One statistical fatality, for either an employee or a member of the general 
public, is worth $3 million. Many other economic trade-offs are listed in Keeney's 
Table 12.6 (1992). These are the amounts that BC Hydro should just be willing to 
sacrifice (but no more) in order to save a hectare, a life, or a person-year of aes-
thetic damage. In addition to these trade-offs, Keeney lists a number of decision 
opportunities that arose from the analysis, including studying the implications of 
resource losses on economic activity, developing a database for fatalities, studying 
public environmental values, and understanding the process of responding to tele-
phone inquiries. 

Did the definition of strategic objectives and a strategic utility function have an 
impact on BC Hydro? Ken Peterson is quoted as saying: 

The structured set of objectives has influenced BC Hydro planning in many 
contexts. Two examples include our work to develop a decision framework for 
supply planning, and a case study of an investment to upgrade reliability, both of 
which have adopted a multiple objective structure. Less obvious has been an 
evolution in how key senior planners view planning issues. The notion of a utility 
function over a range of objectives (rather than a single objective, like costs) is 
evident in many planning contexts. The specific trade-offs in the elic-itation 
process are less important than the understanding that trade-offs are unavoidable 
in electricity utility decisions and that explicit, well-structured, informed trade-offs 
can be highly useful {Interfaces, November-December 1992, p. 109). 

The use of multiattribute utility models has been a source of insight for many de-
cision makers in diverse decision situations. For example, Keeney and Raiffa (1976) 
report applications involving fire department operations, strategic decision making 
by a technical consulting firm, evaluation of computer systems, siting of nuclear 
power facilities, the analysis of sites for the Mexico City airport, and many others. 
Other applications are described in von Winterfeldt and Edwards (1986). 

SUMMARY We have continued the discussion of making decisions in the face of conflicting ob-
jectives. Much of the chapter has been a rather technical discussion and treatment of 
independence conditions: preferential independence, utility independence, and addi-
tive independence. The differences among these have to do with the presence or ab-
sence of uncertainty. Preferential independence says that preferences for sure out-
comes in one attribute do not depend on the level of other attributes. Utility 
independence requires that preferences for gambles or lotteries in an attribute do not 
depend on the level of other attributes. Additive independence is still stronger: 
Preferences over lotteries in one attribute must not depend on lotteries in the other 
attributes. The blood bank example showed how to apply mutual utility indepen-
dence to assess a two-dimensional utility function that includes an interaction term. 
We saw that the attributes of shortage and outdating were complementary; they work 
together to increase the decision maker's utility. We briefly saw what to do when 
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there are three or more attributes, and what to do if no independence properties hold. 
Finally, the BC Hydro application demonstrated multiattribute utility in a large-scale 
organizational setting. 

E X E R C I S E S  

16.1 Explain what is meant when we speak of interaction between attributes. Why would the 
additive utility function from Chapter 15 be inappropriate if two attributes interact? 

16.2 What are the advantages and disadvantages of directly assessing a multiattribute utility 
function? 

16.3 Explain preferential independence in your own words. Can you cite an example from 
your own experience in which preferential independence holds? Can you cite an example 
in which it does not hold? 

16.4 Explain in your own words the difference between preferential independence and utility 
independence. 

16.5 Explain in your own words the difference between utility independence and additive in 
dependence. Why is it important to understand the concept of additive independence? 

16.6 Suppose that a company would like to purchase a fairly complicated machine to use in its 
manufacturing operation. Several different machines are available, and their prices are 
more or less equivalent. But the machines vary considerably in their available technical 
support (Attribute X) and reliability (Attribute Y). Some machines have a high degree of 
reliability and relatively low support, while others are less reliable but have excellent 
field support. The decision maker determined what the best and worst scenarios were for 
both attributes, and an assessment then was made regarding the independence of the de 
cision maker's preferences for these attributes. It was determined that utility indepen 
dence held. Individual utility functions UX(x) and UY(y) were assessed. Finally, the deci 
sion maker was found to be indifferent in comparing Lottery A with its alternative B: 

A       Best on both reliability and support with probability 0.67 

Worst on both reliability and support with probability 0.33 

B        Best on reliability and worst on support 

The decision maker also was indifferent between 

C        Best on both reliability and support with probability 0.48 
Worst on both reliability and support with probability 0.52 

D       Worst on reliability and best on support 
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a   What are the values for kX and kY? Write out the decision maker's full two-attribute 
utility function for reliability and support. 

b   Are the two attributes substitutes or complements? Explain, both intuitively and on 
the basis of kX and kY. 

Q U E S T I O N S    AND   P R O B L E M S  

16.7 A hospital administrator is making a decision regarding the hospital's policy of treating 
individuals who have no insurance coverage. The policy involves examination of a 
prospective patient's financial resources. The issue is what level of net worth should be 
required in order for the patient to be provided treatment. Clearly, there are two compet-
ing objectives in this decision. One is to maximize the hospital's revenue, and the other is 
to provide as much care as possible to the uninsured poor. Attributes to measure achieve-
ment toward these two objectives are (1) prospective revenue (R), and (2) percentage of 
uninsured poor who are treated (P). 

The two attributes were examined for independence, and the administrator concluded 
that they were mutually utility independent. Utility functions UR(r) and UP(p) for the two 
attributes then were assessed. Then two more assessments were made. Lottery A and its 
certain alternative B were judged to be equivalent by the administrator: 

A        Best on revenue, worst on treating poor with probability 0.65 
Worst on revenue, best on treating poor with probability 0.35 

B        Levels of revenue and treatment of poor that give UR (r) = 0.5 
and UP (p) = 0.5 

In the second assessment, Lottery C and its certain alternative D were judged to be 
equivalent: 

C        Best on both revenue and treating poor with probability 0.46 
Worst on both revenue and treating poor with probability 0.54 

D        Worst on revenue and best on treatment of poor 

a   Find values for kR and kP. Should the administrator consider these two attributes to be 
substitutes or complements? Why or why not? 

b   Comment on using an additive utility model in this situation. Would such a model se-
riously compromise the analysis of the decision? 

16.8 Suppose you face an investment decision in which you must think about cash flows in two 
different years. Regard these two cash flows as two different attributes, and let X represent 
the cash flow in Year 1, and Y the cash flow in Year 2. The maximum cash flow you could 
receive in any year is $20,000, and the minimum is $5000. You have assessed your indi-
vidual utility functions for X and Y, and have fitted exponential utility functions to them: 
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UX(x) = 1.05 ─ 2.86 e-x/5000 

UY(y) = 1.29 ─ 2.12 e─y/10,000 

Furthermore, you have decided that utility independence holds, and so these individ-
ual utility functions for each cash flow are appropriate regardless of the amount of the 
other cash flow. You also have made the following assessments: 

• You would be indifferent between a sure outcome of $7500 each year for two 
years and a risky investment with a 50% chance at $20,000 each year, and a 50% 
chance at $5000 each year. 

• You would be indifferent between getting (1) $18,000 the first year and $5000 
the second, and (2) getting $5000 the first year and $20,000 the second. 

a   Use these assessments to find the scaling constants kX and kY. What does the value of 
(1 — kX  ─ kY) imply about the cash flows of the different periods? 

b   Use this utility function to choose between Alternatives A and B in Problem 15.23 
(Figure 15.15). 

c    Draw indifference curves for U(x, y) = 0.25, 0.50, and 0.75. 

16.9 Refer to Problem 15.25. A decision maker who prefers Chemical B might be said to be 
sensitive to equity between the two groups. The eventual outcome with Chemical A is not 
equitable; one group is better off than the other. On the other hand, with Chemical B, both 
groups are treated the same. Let X and Y denote the expected increase in the number of 
deaths in Groups 1 and 2, respectively, and denote a decision maker's utility function as 

U(x, y) = kX UX(x) + kY UY(y) + (1 - kX - kY) UX(x) UY(y) 

What can you say about the value of (1 — kX — kY)? Are X and Y complements or 
substitutes? 

16.10 In Problems 13.12 and 14.13 you assessed individual utility functions for money (X) and 
computer reliability (Y). In this problem, we will use these assessed utility functions to 
put together a two-attribute utility function for use in a computer-purchase decision. (If 
you have not already worked Problems 13.12 or 14.13, do so before continuing. Even if 
you already have assessed these utility functions, review them and confirm that they are 
good models of your preferences. When you assessed them, did you consciously think 
about keeping all other important attributes at the same level?) 
a Are your preferences mutually utility independent? Your utility for money probably 

does not depend on your computer's level of reliability. But would you be less ner-
vous about computer reliability if you had more money in the bank? Imagine that you 
have $5000 in the bank. Now assess a certainty equivalent (in terms of computer 
downtime) for a 50-50 gamble between your computer being down for 20 days next 
year or not breaking down at all. Now imagine that you have $30,000 in the bank, and 
reassess your certainty equivalent. Is it the same? Are your preferences for money 
and computer reliability mutually utility independent? 

b Regardless of your answer to part a, let us assume that your preferences for money 
and computer reliability are mutually utility independent. Now make the following 
assessments: 
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i. Assess a certainty equivalent (in terms of both attributes: computer downtime 
and money) for a 50-50 gamble between the worst outcome ($1000 in the bank 
and 50 days of computer downtime) and the best outcome ($20,000 in the bank 
and no downtime). 

ii. Imagine the outcome that is $1000 and no downtime (worst level in money, and 
best level in computer reliability). Assess a dollar amount x so that the outcome x 
dollars and 50 days of downtime is equivalent to $1000 and no downtime. 

c Using your individual assessed utility functions from Problems 13.12 and 14.13 and 
assessments i and ii from part b, calculate kX and kY. Write out your two-attribute utility 
function. 

(Note: This problem can be done without having fit a mathematical expression to your indi-
vidual utility function. It can be done with a utility function expressed as a table or as a graph.) 

16.11 Someday you probably will face a choice among job offers. Aside from the nature of the 
job itself, two attributes that are important for many people are salary and location. Some 
people prefer large cities, others prefer small towns. Some people do not have strong 
preferences about the size of the town in which they live; this would show up as a low 
weight for the population-size attribute in a multiattribute utility function. 

Assess a two-attribute utility function for salary (X) and population size (Y): 
a Determine whether your preferences for salary and town size are mutually utility 

independent. 
b If your preferences display mutual utility independence, assess the two individual 

utility functions and the weights kX and kY. Draw indifference curves for your as-
sessed utility function. If your preferences do not display mutual utility indepen-
dence, then you need to think about alternative approaches. The simplest is to assess 
several utility points as described at the beginning of this chapter and "eyeball" the 
indifference curves. 

c What other attributes are important in a job decision? Would the two-attribute utility 
function you just assessed be useful as a first approximation if many of the other at-
tributes were close in comparing two jobs? 

16.12 Refer to Problem 15.17. For some of the attributes in your computer decision, you face 
uncertainty. The additive utility function assessed in Problem 15.17 essentially assumes 
that additive independence among attributes is reasonable. 
a Check some of your attributes with formal assessments for additive independence. 

Follow the example in the text in setting up the two lotteries. (One lottery is a 50-50 
gamble between best and worst on both attributes. The other is a 50-50 gamble be-
tween (i) best on X, worst on Y; and (ii) worst on X, best on Y) 

b How could you extend this kind of assessment for additive independence to more 
than two attributes? 

16.13 Show that when n = 2, the multiplicative utility function is equivalent to the two- 
attribute multilinear utility function. (Hint: This is an algebra problem. You must show 
that one utility function is a scaled version of the other. Start by solving for the scaling 
constant k in the multiplicative function when n = 2. Then substitute your expression 
for k into the multiplicative utility function and simplify.) 
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16.14 In many cases a group of people must make a decision that involves multiple objectives. 
In fact, difficult decisions usually are dealt with by committees composed of individuals 
who represent different interests. For example, imagine a lumber mill owner and an en 
vironmentalist on a committee trying to decide on national forest management policy. It 
might make sense for the committee to try to assess a multiattribute "group utility func 
tion." But assessment of the weights would be a problem because different individuals 
probably would want to weight the attributes differently. Can you give any advice to a 
committee working on a problem that might help it to arrive at a decision? How should 
the discussions be structured? Can sensitivity analysis help in such a situation; if 
so, how? 

16.15 In making a land-use policy decision, a planner had to consider three objectives: the de 
velopment of the best economic mixture of industrial and residential uses, the preserva 
tion of sensitive environmental areas, and satisfying the largest industrial firm in the 
community. Attributes to measure achievement along these three objectives were devel 
oped. Let kecon represent the scaling constant for the economy, kenv the scaling constant 
for the environmental concerns, and kfirm the scaling constant for satisfying the firm. After 
careful thought, the planner assessed kecon = 0.36, kenv = 0.25, and kfirm = 0.14. Use 
Equation 16.3 for the multiplicative utility model to verify that the scaling constant k is 
approximately 1.303. 

C A S E     S T U D I E S  

A  MINING-INVESTMENT  DECISION 

A major U.S. mining firm faced a difficult capital-investment decision. The firm had 
the opportunity to bid on two separate parcels of land that had valuable ore de-
posits. The project involved planning, exploration, and eventually production of 
minerals. The firm had to decide how much to bid, whether to bid alone or with a 
partner, and how to develop the site if the bid were successful. Overall, the com-
pany would have to commit approximately $500 million to the project if it obtained 
the land. 

Figure 16.8 shows a skeleton version of the decision-tree model for this decision. 
Note that one of the immediate alternatives is not to bid at all, but to stay with and 
develop the firm's own property. Some of the key uncertainties are whether the bid is 
successful, the success of a competing venture, capital-investment requirements, op-
erating costs, and product price. 

Figure 16.9 shows cumulative distribution functions for net present value (NPV) 
from four possible strategies. Strategy 25 — develop own property with partner — 
stochastically dominates all of the other strategies considered, and hence appears to 
be a serious candidate for the chosen alternative. The decision makers realized, 
however, that while they did want most to maximize the project's NPV, they also 
had another objective, the maximization of product output (PO). Because of this, a 
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Figure 16.8 Skeleton decision tree for mining-investment decision. 

Figure 16.9 
Cumulative risk pro-

files for four strategies 
in mining-investment 

decision. 
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Table 16.4 
Expected utilities (EU) 

and certainty equiva-
lents (CE) for strate-

gies in mining-
investment decision. 

 

 Bid High 
Alone 

Bid High 
with 
Partner 

Bid Low 
with 
Partner 

Develop Own 
Property with 
Partner 

Do 
Nothing 

EU 0374 0.577 0.564 0.567 0308 

CE(NPV,      
in SMillion, PO = 50) 51 52 45 47  

 

R E F E R E N C E S  

two-attribute utility function for NPV and PO was constructed. The individual util-
ity functions were assessed as exponential utility functions: 

UPO(po) = 1 ─ e─ po/33-33 

UNPV(npv) = 1 ─ e─(npv +100)/200 

The scaling constants also were assessed, yielding kNPV = 0.79 and kP0 = 0.16. 
Using this two-attribute model, expected utilities and certainty equivalents—a cer-
tain (NPV, PO) pair, with PO set to a specific level — were calculated. Table 16.4 
shows the results for some of the strategies. 

Questions 

1 Which of the alternatives should be chosen? Why? Discuss the apparent conflict 
between the stochastic dominance results (Figure 16.9) and the results from the 
utility model. 

2 The values of the scaling constants suggest that NPV and PO are viewed by the 
firm as complements. Can you explain intuitively why these two attributes would 
be complements rather than substitutes? 

Source: A. C. Hax and K. M. Wiig (1977) "The Use of Decision Analysis in a Capital Investment 
Problem." In D. Bell, R. L. Keeney, and H. Raiffa (eds.) Conflicting Objectives in Decisions, pp. 
277-297. New York: Wiley. Figures 16.8 and 16.9 reprinted by permission. 

Chapter 16 represents only the tip of the iceberg when it comes to general multiattribute 
utility modeling. If you are interested in reading more, the standard reference for multiat-
tribute utility theory is Keeney and Raiffa (1976). Keeney (1980) covers most of the 
same material and is a little easier to read. Bunn (1984) provides a somewhat less techni-
cal summary of many of the techniques, and von Winterfeldt and Edwards (1986) have 
extensive discussion with an emphasis on behavioral issues. Further references and ex-
amples of applications can be obtained from all of these texts. 

Bunn, D. (1984) Applied Decision Analysis. New York: McGraw-Hill. 
Keeney, R. (1980) Siting Energy Facilities. New York: Academic Press. 
Keeney, R. (1992) Value-Focused Thinking: A Path to Creative Decisionmaking. 
Cambridge, MA: Harvard University Press. 
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Keeney, R., and T. McDaniels (1992) "Value-Focused Thinking about Strategic 
Decisions at BC Hydro." Interfaces, 22, 94-109. 

Keeney, R., and H. Raiffa (1976) Decisions with Multiple Objectives. New York: Wiley. 
Raiffa, H. (1982) The Art and Science of Negotiation. Cambridge, MA: Harvard 
University Press. 
von Winterfeldt, D., and W. Edwards (1986) Decision Analysis and Behavioral Research. 
Cambridge: Cambridge University Press. 

E P I L O G U E  The Mining-Investment Decision. Hax and Wiig (1977) reported that the deci-
sion was to adopt Strategy 2 — bid high with a partner. Just looking at NPV left the 
decision maker feeling uneasy. But with the product volume included in the two-
attribute analysis, the decision maker was satisfied that the important objectives had 
been considered, so it was easy to adopt the strategy with the highest EU. 



CHAPTER 17 

Conclusion and Further 
Reading 

e all have to face hard decisions from time to time. Sometimes we must make difficult personal 
decisions such as how to care for an elderly loved one or which one of several job offers to accept. 

Many policy decisions for corporations or governmental agencies are hard to make. 
In fact, as time goes by, it becomes increasingly clear that as a society we must 
grapple with some particularly thorny problems, such as competitiveness in the 
world marketplace, the risks associated with new technologies, and trade-offs 
between short-term economic benefits and long-term environmental stability. 

The argument all along has been that decision analysis can help with such hard 
decisions. The cycle of structuring the decision, modeling uncertainty and prefer-
ences, analyzing and then performing sensitivity analysis can lead a decision maker 
systematically through the issues that make the decision complicated and toward a 
requisite decision model, one that captures all of the essential elements of the prob-
lem The objective is to arrive at a decision model that explicates the complex parts 
in a way that the decision maker can choose from the alternatives with insight and 
understanding. 

At the same time that decision analysis provides a framework for tackling difficult 
decisions, it also furnishes the decision maker with a complete tool kit for construct-
ing the necessary models of uncertainty and preferences. We have spent much time in 
considering probability and how to use it to model the uncertainty that a decision 
maker faces. Subjective assessment, theoretical models, and the use of data and sim-
ulation are all tools in the decision analyst's kit. We also discussed the tools available 
for modeling preferences. We considered in some depth the fundamental trade-off be-
tween risk and return. Finally, the last two chapters focused on the modeling of pref-
erences when the decision maker must try to satisfy conflicting objectives. 

607 

W 



608      CHAPTER 17 CONCLUSION AND FURTHER READING 

Throughout the book the view of decision making has been optimistic. We all are 
subject to human foibles, but a person interested in making better decisions can use 
the principles and tools that we have discussed in order to do a better job. In day-to-
day decisions, it may be simply a matter of thinking in terms of an informally decom-
posed problem: What is the nature of the problem? What are the objectives? Are there 
trade-offs to make? What uncertainties are there? Is it a risky situation? More compli-
cated situations may warrant considerable effort and careful use of the modeling tools. 

Finally, in the process of reading the text and working through the problems, you 
may have learned something about yourself. You may have learned how you person-
ally feel about uncertainty in your life, how you deal with risky situations, or what 
kinds of trade-offs are important to you. If you have learned something about the 
tools of decision analysis, gained an understanding of what it means to build a model 
of a decision problem, and learned a little about your own decision-making person-
ality, then your work has been worthwhile. If you feel that you are more prepared to 
face some of the complicated decisions that we all must face as we move into the 
twenty-first century, then the goal of this text has been achieved. 

A Decision-Analysis Reading List 

Where should you go from here? The references at the end of each chapter can lead 
you to more information on specific topics. You undoubtedly noticed that many of 
the references reappeared several times. Several textbooks cover decision analysis at 
a variety of levels and from different perspectives. Here are some favorites: 

• Max Bazerman and Margaret Neale (1992) Negotiating Rationally. New York: 
Free Press. An introduction to behavioral aspects of negotiation, written at a 
slightly lower level than the companion volume by Neale and Bazerman. Taking 
a decision-analysis perspective, the authors also emphasize prescriptive advice 
for negotiators. 

• Derek Bunn (1984) Applied Decision Analysis. New York: McGraw-Hill. An ex 
cellent book written at about the same level as this one, although more theoreti 
cal and somewhat more terse. Excellent problems. 

• Robyn Dawes (1988) Rational Choice in an Uncertain World. San Diego, CA: 
Harcourt Brace. An easy-to-read introduction to the behavioral issues in decision 
analysis. 

• Simon French (1986) Decision Theory: An Introduction to the Mathematics of 
Rationality. London: Wiley. If you liked the chapter on utility axioms, you would 
love this book. The text covers a lot of new material, including consensus, group 
decisions, and non-Bayesian approaches. The problems are good, tending to be 
technical and theoretical rather than applied. 

• Robin M. Hogarth (1987) Judgment and Choice, 2nd ed. New York: Wiley. An 
excellent introduction to behavioral decision theory, this is decision analysis 
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from a psychological perspective. This book covers a broad range of topics and is 
very easy to read. 

• Ronald A. Howard and James Matheson (eds.) (1983) The Principles and 
Applications of Decision Analysis (2 volumes). Palo Alto, CA: Strategic 
Decisions Group. Since the early 1960s, Ron Howard has been practicing deci 
sion analysis and teaching the principles to students in the Engineering- 
Economic Systems Department at Stanford University. This two-volume set con 
tains many papers presenting the principles and techniques that make up the 
"Stanford School" of decision analysis. 

• Daniel Kahneman, Paul Slovic, and Amos Tversky (1982) Judgment under 
Uncertainty: Heuristics and Biases. Cambridge: Cambridge University Press. A 
reader filled with classic articles on behavioral decision theory. 

• Ralph Keeney (1992) Value-Focused Thinking: A Path to Creative Decision 
Making. Cambridge, MA: Harvard University Press. As you know by now, this 
book provides all the details on understanding one's objectives and using them as 
a basis for decision-analysis models and improved decision making. 

• Ralph Keeney and Howard Raiffa (1976) Decisions with Multiple Objectives: 
Preferences and Value Tradeoffs. New York: Wiley. Reprinted in 1993 by 
Cambridge University Press. This is the standard reference for multiattribute util 
ity theory, although it also is good for decision analysis in general. Many applica 
tions are described. Much of the material is highly technical, although the mathe 
matics are not difficult. Gems of insight and explanation are scattered through the 
technical material. Unfortunately, no problems are included. 

• Dennis V. Lindley (1985) Making Decisions, 2nd ed. New York: Wiley. A classic 
by a founder in the field. Professor Lindley explains difficult concepts well. The 
problems tend to be somewhat abstract. 

• M. Granger Morgan and Max Henrion (1990) Uncertainty: A Guide to Dealing with 
Uncertainty in Quantitative Risk and Policy Analysis. Cambridge: Cambridge 
University Press. The authors provide an in-depth treatment of the use of uncertainty 
for risk analysis. Especially good on the elicitation and use of expert judgment. 

• Margaret Neale and Max Bazerman (1991) Cognition and Rationality in 
Negotiation. New York: Free Press. An excellent summary of behavioral issues 
in negotiation and group decision making. Many of the results are closely related 
to parallel results in individual decision making. 

• Scott Pious (1993) The Psychology of Judgment and Decision Making. New 
York: McGraw-Hill. The best up-to-date summary of behavioral decision theory. 

• Howard Raiffa (1968) Decision Analysis. Reading, MA: Addison-Wesley. 
Professor Raiffa also is a founder of decision analysis, and like Lindley, he ex 
plains the material well. The problems tend to be abstract. The text covers the ba 
sics (and then some) and still is worthwhile after almost 30 years. 

• Howard Raiffa (1982) The Art and Science of Negotiation. Cambridge, MA: 
Belknap Press. Raiffa discusses negotiations from a decision-theoretic point of 
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view. A well-written (and easy-to-read!) book that provides deep insights and 
top-flight analytical tools. 

• Detlof von Winterfeldt and Ward Edwards (1986) Decision Analysis and 
Behavioral Research. Cambridge: Cambridge University Press. An up-to-date 
and in-depth treatment of decision analysis from a behavioral perspective. 
Professor Edwards has been involved in decision analysis since its beginnings, 
and his history (Chapter 14) is an eye-opener. The authors have a strong slant to 
ward applications and behavioral research that provides evidence on the applica 
bility of decision-analysis tools. Like Keeney and Raiffa, there are no problems. 

• Robert L. Winkler (1972) Introduction to Bayesian Inference and Decision. New 
York: Holt. An excellent introduction to decision theory. Professor Winkler is es 
pecially interested in Bayesian models of information, and the book is slanted 
more toward inference and statistics than toward applied decision analysis. 
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Software Sources   

@RISK Palisade Corporation Best Fit           Palisade Corporation 

 31 Decker Rd. 31 Decker Rd. 
 Newfield,NY 14867 Newfield,NY 14867 
 (800) 432-7475 (800) 432-4757 
 (607) 277-8000 (607) 277-8000 

Crystal Ball Decisioneering, Inc. DATA             TreeAge Software, Inc. 

 2530 S. Parker Road, Suite 220 P.O. Box 990207 
 Aurora, CO 80014 Boston, MA 02199-0207 
 (800) 289-2550 (617) 536-2128 

DPL Applied Decision Analysis Student editions of DPL available from: 

 2710 Sand Hill Rd. Duxbury Press 
 Menlo Park, CA 94025 10 Davis Dr. 
 (415)926-9251 Belmont, CA 94002 
  (800) 423-0563 

HIVIEW KRYSALIS LTD. HIPRE 3+      Santa Monica Software 

 28 Derwent Dr. 30033 Harvester Rd. 
 Maidenhead Malibu, CA 90265 
 Berks. SL6 6LB (310)395-7635 
 England  
 44 (0) 628-36861  

Logical   

Decisions Logical Decisions  
 1014 Wood Lily Dr.  
 Golden, CO 80401  
 (303) 526-7536  
 (800) 355-6442  



Appendixes 

A Binomial Distribution: Individual Probabilities 
B Binomial Distribution: Cumulative Probabilities 
C Poisson Distribution: Individual Probabilities 
D Poisson Distribution: Cumulative Probabilities 
E Normal Distribution: Cumulative Probabilities 
F Beta Distribution: Cumulative Probabilities 



Answers to Selected 
Numerical Exercises 

The following are answers to selected numerical exercises only. Solutions and 
answers to all exercises, questions, and problems can be found in the instructor's 
manual. 

Chapter 2: 2.9. $158.78.    2.10. $2003.90, 19.2%.    2.11a. $23.71, -$28.44. 
2.11b. 14.5%.    2.12a. -$25.60.    2.12b. $25.60.    2.12c. -$0.08. 

Chapter 4: 4.4. 3.0, 3.2.    4.6. 8.1, 3.2.    4.8. 5.08, 4.5. 

Chapter 7: 7.3. 0.12, 0.29, 0.41, 0.65, 0.35, 0.29, 0.18, 0.17.    7.4. 0.94. 
7.6. j, c, c, c, j, c, c, c, c, c, j.    7.7. σB = $3.72 million. σc = 0.    7.8. 0.58, 0.34, 
0.75, 0.42, 0.58, 0.66, 0.34, 0.25, 0.75.    7.9. 0.90, 0.61, 0.61, 0.39, 0.61, 0.10, 
0.90, 0.10, 0.90.    7.10. 2.73, 0.60.    7.14. 0.70, 0.98, 0.21, 0.79, 0.970, 0.030, 
0.603, 0.397.    7.15. 0.56.    7.16a. 2.65, 0.728, 0.853.    7.16b. 26.40, 2255.04, 
47.49.    7.16c. 0.632, 0.233, 0.482.    7.19a. $7000, 12250.    7.19b. $42,895, 
41871.    7.20. $1594, 430,575.    7.22. 0.24, 0.795, 0.001.    7.24. 0.779, 0.041, 
0.656,0.134. 

Chapter 8: 8.13. (1) 39 years; (2) 4187 miles; (3) 13 countries; (4) 39 books; (5) 
2160 miles; (6) 390,000 pounds; (7) 1756; (8) 645 days; (9) 5959 miles; (10) 36,198 
feet. 

Chapter 9: 9.1.0.915.    9.2.0.0918, 0.0918.   9.3.0.027, 0.706, 0.001. 
9.4.0.33.   9.5a. 0.037, 0.971,0.191, 0.157; 0.205, 0.514, 0.317, 0.108. 
9.5b. 0.180, 0.594,0.099, 0.068; 0.336, 0.130, 0.190, 0.310.    9.5c. 0.993, 0.471, 0.0; 
0.368, 0.002, 0.368.    9.5d. 0.6915, 0.2604, 0.0062, 0.0; 0.9525, 0.1056, 0.5363, 
0.6915.   9.5e. 0.39, 0.01, 0.36; 0.31, 0.30, 0.    9.6. -1.645, 0; 0.675, 1.28. 

9.7. μ = 200, σ = 111.11.    9.8.0.2854.    9.9.5.4.    9.10.1.743. 

Chapter 10: 10.4. 275,400.    10.6. 9300, 9850. 

Chapter 12: 12.2. 1.2.    12.4. 3.04, 1.20, 3.22. 

Chapter 13: 13.6. $236.    13.7a. 0.56, 0.48, 0,-1.81.    13.7b. 0.052. 
13.7c. $64.52, $270.98.    13.7d. $106.18.    13.7e. $2363. 

Chapter 15: 15.7. 1, 0.4, 0.    15.9. 0.41, 0.59.    15.11. 0.25, 0.34, 0.41. 

Chapter 16: 16.6. 0.48, 0.67. 
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