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I'm	sure	you	noticed,	but	"JS"	in	the	book	series	title	is	not	an	abbreviation	for	words	used	to	curse	about	JavaScript,
though	cursing	at	the	language's	quirks	is	something	we	can	probably	all	identify	with!

From	the	earliest	days	of	the	web,	JavaScript	has	been	a	foundational	technology	that	drives	interactive	experience	around
the	content	we	consume.	While	flickering	mouse	trails	and	annoying	pop-up	prompts	may	be	where	JavaScript	started,
nearly	2	decades	later,	the	technology	and	capability	of	JavaScript	has	grown	many	orders	of	magnitude,	and	few	doubt	its
importance	at	the	heart	of	the	world's	most	widely	available	software	platform:	the	web.

But	as	a	language,	it	has	perpetually	been	a	target	for	a	great	deal	of	criticism,	owing	partly	to	its	heritage	but	even	more	to
its	design	philosophy.	Even	the	name	evokes,	as	Brendan	Eich	once	put	it,	"dumb	kid	brother"	status	next	to	its	more
mature	older	brother	"Java".	But	the	name	is	merely	an	accident	of	politics	and	marketing.	The	two	languages	are	vastly
different	in	many	important	ways.	"JavaScript"	is	as	related	to	"Java"	as	"Carnival"	is	to	"Car".

Because	JavaScript	borrows	concepts	and	syntax	idioms	from	several	languages,	including	proud	C-style	procedural	roots
as	well	as	subtle,	less	obvious	Scheme/Lisp-style	functional	roots,	it	is	exceedingly	approachable	to	a	broad	audience	of
developers,	even	those	with	just	little	to	no	programming	experience.	The	"Hello	World"	of	JavaScript	is	so	simple	that	the
language	is	inviting	and	easy	to	get	comfortable	with	in	early	exposure.

While	JavaScript	is	perhaps	one	of	the	easiest	languages	to	get	up	and	running	with,	its	eccentricities	make	solid	mastery
of	the	language	a	vastly	less	common	occurrence	than	in	many	other	languages.	Where	it	takes	a	pretty	in-depth
knowledge	of	a	language	like	C	or	C++	to	write	a	full-scale	program,	full-scale	production	JavaScript	can,	and	often	does,
barely	scratch	the	surface	of	what	the	language	can	do.

Sophisticated	concepts	which	are	deeply	rooted	into	the	language	tend	instead	to	surface	themselves	in	seemingly
simplistic	ways,	such	as	passing	around	functions	as	callbacks,	which	encourages	the	JavaScript	developer	to	just	use	the
language	as-is	and	not	worry	too	much	about	what's	going	on	under	the	hood.

It	is	simultaneously	a	simple,	easy-to-use	language	that	has	broad	appeal,	and	a	complex	and	nuanced	collection	of
language	mechanics	which	without	careful	study	will	elude	true	understanding	even	for	the	most	seasoned	of	JavaScript
developers.

Therein	lies	the	paradox	of	JavaScript,	the	Achilles'	Heel	of	the	language,	the	challenge	we	are	presently	addressing.
Because	JavaScript	can	be	used	without	understanding,	the	understanding	of	the	language	is	often	never	attained.

If	at	every	point	that	you	encounter	a	surprise	or	frustration	in	JavaScript,	your	response	is	to	add	it	to	the	blacklist,	as
some	are	accustomed	to	doing,	you	soon	will	be	relegated	to	a	hollow	shell	of	the	richness	of	JavaScript.

While	this	subset	has	been	famously	dubbed	"The	Good	Parts",	I	would	implore	you,	dear	reader,	to	instead	consider	it	the
"The	Easy	Parts",	"The	Safe	Parts",	or	even	"The	Incomplete	Parts".

This	You	Don't	Know	JavaScript	book	series	offers	a	contrary	challenge:	learn	and	deeply	understand	all	of	JavaScript,
even	and	especially	"The	Tough	Parts".

Here,	we	address	head	on	the	tendency	of	JS	developers	to	learn	"just	enough"	to	get	by,	without	ever	forcing	themselves
to	learn	exactly	how	and	why	the	language	behaves	the	way	it	does.	Furthermore,	we	eschew	the	common	advice	to
retreat	when	the	road	gets	rough.

I	am	not	content,	nor	should	you	be,	at	stopping	once	something	just	works,	and	not	really	knowing	why.	I	gently	challenge
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you	to	journey	down	that	bumpy	"road	less	traveled"	and	embrace	all	that	JavaScript	is	and	can	do.	With	that	knowledge,
no	technique,	no	framework,	no	popular	buzzword	acronym	of	the	week,	will	be	beyond	your	understanding.

These	books	each	take	on	specific	core	parts	of	the	language	which	are	most	commonly	misunderstood	or	under-
understood,	and	dive	very	deep	and	exhaustively	into	them.	You	should	come	away	from	reading	with	a	firm	confidence	in
your	understanding,	not	just	of	the	theoretical,	but	the	practical	"what	you	need	to	know"	bits.

The	JavaScript	you	know	right	now	is	probably	parts	handed	down	to	you	by	others	who've	been	burned	by	incomplete
understanding.	That	JavaScript	is	but	a	shadow	of	the	true	language.	You	don't	really	know	JavaScript,	yet,	but	if	you	dig
into	this	series,	you	will.	Read	on,	my	friends.	JavaScript	awaits	you.

JavaScript	is	awesome.	It's	easy	to	learn	partially,	and	much	harder	to	learn	completely	(or	even	sufficiently).	When
developers	encounter	confusion,	they	usually	blame	the	language	instead	of	their	lack	of	understanding.	These	books	aim
to	fix	that,	inspiring	a	strong	appreciation	for	the	language	you	can	now,	and	should,	deeply	know.

Note:	Many	of	the	examples	in	this	book	assume	modern	(and	future-reaching)	JavaScript	engine	environments,	such	as
ES6.	Some	code	may	not	work	as	described	if	run	in	older	(pre-ES6)	engines.

Summary



Over	the	years,	my	employer	has	trusted	me	enough	to	conduct	interviews.	If	we're	looking	for	someone	with	skills	in
JavaScript,	my	first	line	of	questioning…	actually	that's	not	true,	I	first	check	if	the	candidate	needs	the	bathroom	and/or	a
drink,	because	comfort	is	important,	but	once	I'm	past	the	bit	about	the	candidate's	fluid	in/out-take,	I	set	about	determining
if	the	candidate	knows	JavaScript,	or	just	jQuery.

Not	that	there's	anything	wrong	with	jQuery.	It	lets	you	do	a	lot	without	really	knowing	JavaScript,	and	that's	a	feature	not	a
bug.	But	if	the	job	calls	for	advanced	skills	in	JavaScript	performance	and	maintainability,	you	need	someone	who	knows
how	libraries	such	as	jQuery	are	put	together.	You	need	to	be	able	to	harness	the	core	of	JavaScript	the	same	way	they	do.

If	I	want	to	get	a	picture	of	someone's	core	JavaScript	skill,	I'm	most	interested	in	what	they	make	of	closures	(you've	read
that	book	of	this	series	already,	right?)	and	how	to	get	the	most	out	of	asynchronicity,	which	brings	us	to	this	book.

For	starters,	you'll	be	taken	through	callbacks,	the	bread	and	butter	of	asynchronous	programming.	Of	course,	bread	and
butter	does	not	make	for	a	particularly	satisfying	meal,	but	the	next	course	is	full	of	tasty	tasty	promises!

If	you	don't	know	promises,	now	is	the	time	to	learn.	Promises	are	now	the	official	way	to	provide	async	return	values	in
both	JavaScript	and	the	DOM.	All	future	async	DOM	APIs	will	use	them,	many	already	do,	so	be	prepared!	At	the	time	of
writing,	Promises	have	shipped	in	most	major	browsers,	with	IE	shipping	soon.	Once	you've	finished	that,	I	hope	you	left
room	for	the	next	course,	Generators.

Generators	snuck	their	way	into	stable	versions	of	Chrome	and	Firefox	without	too	much	pomp	and	ceremony,	because,
frankly,	they're	more	complicated	than	they	are	interesting.	Or,	that's	what	I	thought	until	I	saw	them	combined	with
promises.	There,	they	become	an	important	tool	in	readability	and	maintenance.

For	dessert,	well,	I	won't	spoil	the	surprise,	but	prepare	to	gaze	into	the	future	of	JavaScript!	Features	that	give	you	more
and	more	control	over	concurrency	and	asynchronicity.

Well,	I	won't	block	your	enjoyment	of	the	book	any	longer,	on	with	the	show!	If	you've	already	read	part	of	the	book	before
reading	this	Foreword,	give	yourself	10	asynchronous	points!	You	deserve	them!

Jake	Archibald
jakearchibald.com,	@jaffathecake
Developer	Advocate	at	Google	Chrome

http://jakearchibald.com
http://twitter.com/jaffathecake
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One	of	the	most	important	and	yet	often	misunderstood	parts	of	programming	in	a	language	like	JavaScript	is	how	to
express	and	manipulate	program	behavior	spread	out	over	a	period	of	time.

This	is	not	just	about	what	happens	from	the	beginning	of	a		for		loop	to	the	end	of	a		for		loop,	which	of	course	takes
some	time	(microseconds	to	milliseconds)	to	complete.	It's	about	what	happens	when	part	of	your	program	runs	now,	and
another	part	of	your	program	runs	later	--	there's	a	gap	between	now	and	later	where	your	program	isn't	actively	executing.

Practically	all	nontrivial	programs	ever	written	(especially	in	JS)	have	in	some	way	or	another	had	to	manage	this	gap,
whether	that	be	in	waiting	for	user	input,	requesting	data	from	a	database	or	file	system,	sending	data	across	the	network
and	waiting	for	a	response,	or	performing	a	repeated	task	at	a	fixed	interval	of	time	(like	animation).	In	all	these	various
ways,	your	program	has	to	manage	state	across	the	gap	in	time.	As	they	famously	say	in	London	(of	the	chasm	between
the	subway	door	and	the	platform):	"mind	the	gap."

In	fact,	the	relationship	between	the	now	and	later	parts	of	your	program	is	at	the	heart	of	asynchronous	programming.

Asynchronous	programming	has	been	around	since	the	beginning	of	JS,	for	sure.	But	most	JS	developers	have	never
really	carefully	considered	exactly	how	and	why	it	crops	up	in	their	programs,	or	explored	various	other	ways	to	handle	it.
The	good	enough	approach	has	always	been	the	humble	callback	function.	Many	to	this	day	will	insist	that	callbacks	are
more	than	sufficient.

But	as	JS	continues	to	grow	in	both	scope	and	complexity,	to	meet	the	ever-widening	demands	of	a	first-class	programming
language	that	runs	in	browsers	and	servers	and	every	conceivable	device	in	between,	the	pains	by	which	we	manage
asynchrony	are	becoming	increasingly	crippling,	and	they	cry	out	for	approaches	that	are	both	more	capable	and	more
reason-able.

While	this	all	may	seem	rather	abstract	right	now,	I	assure	you	we'll	tackle	it	more	completely	and	concretely	as	we	go	on
through	this	book.	We'll	explore	a	variety	of	emerging	techniques	for	async	JavaScript	programming	over	the	next	several
chapters.

But	before	we	can	get	there,	we're	going	to	have	to	understand	much	more	deeply	what	asynchrony	is	and	how	it	operates
in	JS.

You	may	write	your	JS	program	in	one	.js	file,	but	your	program	is	almost	certainly	comprised	of	several	chunks,	only	one	of
which	is	going	to	execute	now,	and	the	rest	of	which	will	execute	later.	The	most	common	unit	of	chunk	is	the		function	.

The	problem	most	developers	new	to	JS	seem	to	have	is	that	later	doesn't	happen	strictly	and	immediately	after	now.	In
other	words,	tasks	that	cannot	complete	now	are,	by	definition,	going	to	complete	asynchronously,	and	thus	we	will	not
have	blocking	behavior	as	you	might	intuitively	expect	or	want.

Consider:

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

var	data	=	ajax(	"http://some.url.1"	);

console.log(	data	);

//	Oops!	`data`	generally	won't	have	the	Ajax	results

You're	probably	aware	that	standard	Ajax	requests	don't	complete	synchronously,	which	means	the		ajax(..)		function	does
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not	yet	have	any	value	to	return	back	to	be	assigned	to		data		variable.	If		ajax(..)		could	block	until	the	response	came
back,	then	the		data	=	..		assignment	would	work	fine.

But	that's	not	how	we	do	Ajax.	We	make	an	asynchronous	Ajax	request	now,	and	we	won't	get	the	results	back	until	later.

The	simplest	(but	definitely	not	only,	or	necessarily	even	best!)	way	of	"waiting"	from	now	until	later	is	to	use	a	function,
commonly	called	a	callback	function:

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	function	myCallbackFunction(data){

				console.log(	data	);	//	Yay,	I	gots	me	some	`data`!

}	);

Warning:	You	may	have	heard	that	it's	possible	to	make	synchronous	Ajax	requests.	While	that's	technically	true,	you
should	never,	ever	do	it,	under	any	circumstances,	because	it	locks	the	browser	UI	(buttons,	menus,	scrolling,	etc.)	and
prevents	any	user	interaction	whatsoever.	This	is	a	terrible	idea,	and	should	always	be	avoided.

Before	you	protest	in	disagreement,	no,	your	desire	to	avoid	the	mess	of	callbacks	is	not	justification	for	blocking,
synchronous	Ajax.

For	example,	consider	this	code:

function	now()	{

				return	21;

}

function	later()	{

				answer	=	answer	*	2;

				console.log(	"Meaning	of	life:",	answer	);

}

var	answer	=	now();

setTimeout(	later,	1000	);	//	Meaning	of	life:	42

There	are	two	chunks	to	this	program:	the	stuff	that	will	run	now,	and	the	stuff	that	will	run	later.	It	should	be	fairly	obvious
what	those	two	chunks	are,	but	let's	be	super	explicit:

Now:

function	now()	{

				return	21;

}

function	later()	{	..	}

var	answer	=	now();

setTimeout(	later,	1000	);

Later:

answer	=	answer	*	2;

console.log(	"Meaning	of	life:",	answer	);

The	now	chunk	runs	right	away,	as	soon	as	you	execute	your	program.	But		setTimeout(..)		also	sets	up	an	event	(a
timeout)	to	happen	later,	so	the	contents	of	the		later()		function	will	be	executed	at	a	later	time	(1,000	milliseconds	from
now).



Any	time	you	wrap	a	portion	of	code	into	a		function		and	specify	that	it	should	be	executed	in	response	to	some	event
(timer,	mouse	click,	Ajax	response,	etc.),	you	are	creating	a	later	chunk	of	your	code,	and	thus	introducing	asynchrony	to
your	program.

There	is	no	specification	or	set	of	requirements	around	how	the		console.*		methods	work	--	they	are	not	officially	part	of
JavaScript,	but	are	instead	added	to	JS	by	the	hosting	environment	(see	the	Types	&	Grammar	title	of	this	book	series).

So,	different	browsers	and	JS	environments	do	as	they	please,	which	can	sometimes	lead	to	confusing	behavior.

In	particular,	there	are	some	browsers	and	some	conditions	that		console.log(..)		does	not	actually	immediately	output
what	it's	given.	The	main	reason	this	may	happen	is	because	I/O	is	a	very	slow	and	blocking	part	of	many	programs	(not
just	JS).	So,	it	may	perform	better	(from	the	page/UI	perspective)	for	a	browser	to	handle		console		I/O	asynchronously	in
the	background,	without	you	perhaps	even	knowing	that	occurred.

A	not	terribly	common,	but	possible,	scenario	where	this	could	be	observable	(not	from	code	itself	but	from	the	outside):

var	a	=	{

				index:	1

};

//	later

console.log(	a	);	//	??

//	even	later

a.index++;

We'd	normally	expect	to	see	the		a		object	be	snapshotted	at	the	exact	moment	of	the		console.log(..)		statement,	printing
something	like		{	index:	1	}	,	such	that	in	the	next	statment	when		a.index++		happens,	it's	modifying	something	different
than,	or	just	strictly	after,	the	output	of		a	.

Most	of	the	time,	the	preceding	code	will	probably	produce	an	object	representation	in	your	developer	tools'	console	that's
what	you'd	expect.	But	it's	possible	this	same	code	could	run	in	a	situation	where	the	browser	felt	it	needed	to	defer	the
console	I/O	to	the	background,	in	which	case	it's	possible	that	by	the	time	the	object	is	represented	in	the	browser	console,
the		a.index++		has	already	happened,	and	it	shows		{	index:	2	}	.

It's	a	moving	target	under	what	conditions	exactly		console		I/O	will	be	deferred,	or	even	whether	it	will	be	observable.	Just
be	aware	of	this	possible	asynchronicity	in	I/O	in	case	you	ever	run	into	issues	in	debugging	where	objects	have	been
modified	after	a		console.log(..)		statement	and	yet	you	see	the	unexpected	modifications	show	up.

Note:	If	you	run	into	this	rare	scenario,	the	best	option	is	to	use	breakpoints	in	your	JS	debugger	instead	of	relying	on
	console		output.	The	next	best	option	would	be	to	force	a	"snapshot"	of	the	object	in	question	by	serializing	it	to	a		string	,
like	with		JSON.stringify(..)	.

Let's	make	a	(perhaps	shocking)	claim:	despite	your	clearly	being	able	to	write	asynchronous	JS	code	(like	the	timeout	we
just	looked	at),	up	until	recently	(ES6),	JavaScript	itself	has	actually	never	had	any	direct	notion	of	asynchrony	built	into	it.

What!?	That	seems	like	a	crazy	claim,	right?	In	fact,	it's	quite	true.	The	JS	engine	itself	has	never	done	anything	more	than
execute	a	single	chunk	of	your	program	at	any	given	moment,	when	asked	to.

"Asked	to."	By	whom?	That's	the	important	part!

The	JS	engine	doesn't	run	in	isolation.	It	runs	inside	a	hosting	environment,	which	is	for	most	developers	the	typical	web
browser.	Over	the	last	several	years	(but	by	no	means	exlusively),	JS	has	expanded	beyond	the	browser	into	other
environments,	such	as	servers,	via	things	like	Node.js.	In	fact,	JavaScript	gets	embedded	into	all	kinds	of	devices	these
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days,	from	robots	to	lightbulbs.

But	the	one	common	"thread"	(that's	a	not-so-subtle	asynchronous	joke,	for	what	it's	worth)	of	all	these	environments	is	that
they	have	a	mechanism	in	them	that	handles	executing	multiple	chunks	of	your	program	over	time,	at	each	moment
invoking	the	JS	engine,	called	the	"event	loop."

In	other	words,	the	JS	engine	has	had	no	innate	sense	of	time,	but	has	instead	been	an	on-demand	execution	environment
for	any	arbitrary	snippet	of	JS.	It's	the	surrounding	environment	that	has	always	scheduled	"events"	(JS	code	executions).

So,	for	example,	when	your	JS	program	makes	an	Ajax	request	to	fetch	some	data	from	a	server,	you	set	up	the	"response"
code	in	a	function	(commonly	called	a	"callback"),	and	the	JS	engine	tells	the	hosting	environment,	"Hey,	I'm	going	to
suspend	execution	for	now,	but	whenever	you	finish	with	that	network	request,	and	you	have	some	data,	please	call	this
function	back."

The	browser	is	then	set	up	to	listen	for	the	response	from	the	network,	and	when	it	has	something	to	give	you,	it	schedules
the	callback	function	to	be	executed	by	inserting	it	into	the	event	loop.

So	what	is	the	event	loop?

Let's	conceptualize	it	first	through	some	fake-ish	code:

//	`eventLoop`	is	an	array	that	acts	as	a	queue	(first-in,	first-out)

var	eventLoop	=	[	];

var	event;

//	keep	going	"forever"

while	(true)	{

				//	perform	a	"tick"

				if	(eventLoop.length	>	0)	{

								//	get	the	next	event	in	the	queue

								event	=	eventLoop.shift();

								//	now,	execute	the	next	event

								try	{

												event();

								}

								catch	(err)	{

												reportError(err);

								}

				}

}

This	is,	of	course,	vastly	simplified	pseudocode	to	illustrate	the	concepts.	But	it	should	be	enough	to	help	get	a	better
understanding.

As	you	can	see,	there's	a	continuously	running	loop	represented	by	the		while		loop,	and	each	iteration	of	this	loop	is	called
a	"tick."	For	each	tick,	if	an	event	is	waiting	on	the	queue,	it's	taken	off	and	executed.	These	events	are	your	function
callbacks.

It's	important	to	note	that		setTimeout(..)		doesn't	put	your	callback	on	the	event	loop	queue.	What	it	does	is	set	up	a	timer;
when	the	timer	expires,	the	environment	places	your	callback	into	the	event	loop,	such	that	some	future	tick	will	pick	it	up
and	execute	it.

What	if	there	are	already	20	items	in	the	event	loop	at	that	moment?	Your	callback	waits.	It	gets	in	line	behind	the	others	--
there's	not	normally	a	path	for	preempting	the	queue	and	skipping	ahead	in	line.	This	explains	why		setTimeout(..)		timers
may	not	fire	with	perfect	temporal	accuracy.	You're	guaranteed	(roughly	speaking)	that	your	callback	won't	fire	before	the
time	interval	you	specify,	but	it	can	happen	at	or	after	that	time,	depending	on	the	state	of	the	event	queue.

So,	in	other	words,	your	program	is	generally	broken	up	into	lots	of	small	chunks,	which	happen	one	after	the	other	in	the
event	loop	queue.	And	technically,	other	events	not	related	directly	to	your	program	can	be	interleaved	within	the	queue	as
well.

Note:	We	mentioned	"up	until	recently"	in	relation	to	ES6	changing	the	nature	of	where	the	event	loop	queue	is	managed.



It's	mostly	a	formal	technicality,	but	ES6	now	specifies	how	the	event	loop	works,	which	means	technically	it's	within	the
purview	of	the	JS	engine,	rather	than	just	the	hosting	environment.	One	main	reason	for	this	change	is	the	introduction	of
ES6	Promises,	which	we'll	discuss	in	Chapter	3,	because	they	require	the	ability	to	have	direct,	fine-grained	control	over
scheduling	operations	on	the	event	loop	queue	(see	the	discussion	of		setTimeout(..0)		in	the	"Cooperation"	section).

It's	very	common	to	conflate	the	terms	"async"	and	"parallel,"	but	they	are	actually	quite	different.	Remember,	async	is
about	the	gap	between	now	and	later.	But	parallel	is	about	things	being	able	to	occur	simultaneously.

The	most	common	tools	for	parallel	computing	are	processes	and	threads.	Processes	and	threads	execute	independently
and	may	execute	simultaneously:	on	separate	processors,	or	even	separate	computers,	but	multiple	threads	can	share	the
memory	of	a	single	process.

An	event	loop,	by	contrast,	breaks	its	work	into	tasks	and	executes	them	in	serial,	disallowing	parallel	access	and	changes
to	shared	memory.	Parallelism	and	"serialism"	can	coexist	in	the	form	of	cooperating	event	loops	in	separate	threads.

The	interleaving	of	parallel	threads	of	execution	and	the	interleaving	of	asynchronous	events	occur	at	very	different	levels
of	granularity.

For	example:

function	later()	{

				answer	=	answer	*	2;

				console.log(	"Meaning	of	life:",	answer	);

}

While	the	entire	contents	of		later()		would	be	regarded	as	a	single	event	loop	queue	entry,	when	thinking	about	a	thread
this	code	would	run	on,	there's	actually	perhaps	a	dozen	different	low-level	operations.	For	example,		answer	=	answer	*	2	
requires	first	loading	the	current	value	of		answer	,	then	putting		2		somewhere,	then	performing	the	multiplication,	then
taking	the	result	and	storing	it	back	into		answer	.

In	a	single-threaded	environment,	it	really	doesn't	matter	that	the	items	in	the	thread	queue	are	low-level	operations,
because	nothing	can	interrupt	the	thread.	But	if	you	have	a	parallel	system,	where	two	different	threads	are	operating	in	the
same	program,	you	could	very	likely	have	unpredictable	behavior.

Consider:

var	a	=	20;

function	foo()	{

				a	=	a	+	1;

}

function	bar()	{

				a	=	a	*	2;

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

In	JavaScript's	single-threaded	behavior,	if		foo()		runs	before		bar()	,	the	result	is	that		a		has		42	,	but	if		bar()		runs
before		foo()		the	result	in		a		will	be		41	.

If	JS	events	sharing	the	same	data	executed	in	parallel,	though,	the	problems	would	be	much	more	subtle.	Consider	these
two	lists	of	pseudocode	tasks	as	the	threads	that	could	respectively	run	the	code	in		foo()		and		bar()	,	and	consider	what
happens	if	they	are	running	at	exactly	the	same	time:

Parallel	Threading



Thread	1	(	X		and		Y		are	temporary	memory	locations):

foo():

		a.	load	value	of	`a`	in	`X`

		b.	store	`1`	in	`Y`

		c.	add	`X`	and	`Y`,	store	result	in	`X`

		d.	store	value	of	`X`	in	`a`

Thread	2	(	X		and		Y		are	temporary	memory	locations):

bar():

		a.	load	value	of	`a`	in	`X`

		b.	store	`2`	in	`Y`

		c.	multiply	`X`	and	`Y`,	store	result	in	`X`

		d.	store	value	of	`X`	in	`a`

Now,	let's	say	that	the	two	threads	are	running	truly	in	parallel.	You	can	probably	spot	the	problem,	right?	They	use	shared
memory	locations		X		and		Y		for	their	temporary	steps.

What's	the	end	result	in		a		if	the	steps	happen	like	this?

1a		(load	value	of	`a`	in	`X`			==>	`20`)

2a		(load	value	of	`a`	in	`X`			==>	`20`)

1b		(store	`1`	in	`Y`			==>	`1`)

2b		(store	`2`	in	`Y`			==>	`2`)

1c		(add	`X`	and	`Y`,	store	result	in	`X`			==>	`22`)

1d		(store	value	of	`X`	in	`a`			==>	`22`)

2c		(multiply	`X`	and	`Y`,	store	result	in	`X`			==>	`44`)

2d		(store	value	of	`X`	in	`a`			==>	`44`)

The	result	in		a		will	be		44	.	But	what	about	this	ordering?

1a		(load	value	of	`a`	in	`X`			==>	`20`)

2a		(load	value	of	`a`	in	`X`			==>	`20`)

2b		(store	`2`	in	`Y`			==>	`2`)

1b		(store	`1`	in	`Y`			==>	`1`)

2c		(multiply	`X`	and	`Y`,	store	result	in	`X`			==>	`20`)

1c		(add	`X`	and	`Y`,	store	result	in	`X`			==>	`21`)

1d		(store	value	of	`X`	in	`a`			==>	`21`)

2d		(store	value	of	`X`	in	`a`			==>	`21`)

The	result	in		a		will	be		21	.

So,	threaded	programming	is	very	tricky,	because	if	you	don't	take	special	steps	to	prevent	this	kind	of
interruption/interleaving	from	happening,	you	can	get	very	surprising,	nondeterministic	behavior	that	frequently	leads	to
headaches.

JavaScript	never	shares	data	accross	threads,	which	means	that	level	of	nondeterminism	isn't	a	concern.	But	that	doesn't
mean	JS	is	always	deterministic.	Remember	earlier,	where	the	relative	ordering	of		foo()		and		bar()		produces	two
different	results	(	41		or		42	)?

Note:	It	may	not	be	obvious	yet,	but	not	all	nondeterminism	is	bad.	Sometimes	it's	irrelevant,	and	sometimes	it's	intentional.
We'll	see	more	examples	of	that	throughout	this	and	the	next	few	chapters.

Because	of	JavaScript's	single-threading,	the	code	inside	of		foo()		(and		bar()	)	is	atomic,	which	means	that	once		foo()	
starts	running,	the	entirety	of	its	code	will	finish	before	any	of	the	code	in		bar()		can	run,	or	vice	versa.	This	is	called	"run-
to-completion"	behavior.

Run-to-Completion



In	fact,	the	run-to-completion	semantics	are	more	obvious	when		foo()		and		bar()		have	more	code	in	them,	such	as:

var	a	=	1;

var	b	=	2;

function	foo()	{

				a++;

				b	=	b	*	a;

				a	=	b	+	3;

}

function	bar()	{

				b--;

				a	=	8	+	b;

				b	=	a	*	2;

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

Because		foo()		can't	be	interrupted	by		bar()	,	and		bar()		can't	be	interrupted	by		foo()	,	this	program	only	has	two
possible	outcomes	depending	on	which	starts	running	first	--	if	threading	were	present,	and	the	individual	statements	in
	foo()		and		bar()		could	be	interleaved,	the	number	of	possible	outcomes	would	be	greatly	increased!

Chunk	1	is	synchronous	(happens	now),	but	chunks	2	and	3	are	asynchronous	(happen	later),	which	means	their	execution
will	be	separated	by	a	gap	of	time.

Chunk	1:

var	a	=	1;

var	b	=	2;

Chunk	2	(	foo()	):

a++;

b	=	b	*	a;

a	=	b	+	3;

Chunk	3	(	bar()	):

b--;

a	=	8	+	b;

b	=	a	*	2;

Chunks	2	and	3	may	happen	in	either-first	order,	so	there	are	two	possible	outcomes	for	this	program,	as	illustrated	here:

Outcome	1:

var	a	=	1;

var	b	=	2;

//	foo()

a++;

b	=	b	*	a;

a	=	b	+	3;

//	bar()

b--;

a	=	8	+	b;

b	=	a	*	2;

a;	//	11



b;	//	22

Outcome	2:

var	a	=	1;

var	b	=	2;

//	bar()

b--;

a	=	8	+	b;

b	=	a	*	2;

//	foo()

a++;

b	=	b	*	a;

a	=	b	+	3;

a;	//	183

b;	//	180

Two	outcomes	from	the	same	code	means	we	still	have	nondeterminism!	But	it's	at	the	function	(event)	ordering	level,
rather	than	at	the	statement	ordering	level	(or,	in	fact,	the	expression	operation	ordering	level)	as	it	is	with	threads.	In	other
words,	it's	more	deterministic	than	threads	would	have	been.

As	applied	to	JavaScript's	behavior,	this	function-ordering	nondeterminism	is	the	common	term	"race	condition,"	as		foo()	
and		bar()		are	racing	against	each	other	to	see	which	runs	first.	Specifically,	it's	a	"race	condition"	because	you	cannot
predict	reliably	how		a		and		b		will	turn	out.

Note:	If	there	was	a	function	in	JS	that	somehow	did	not	have	run-to-completion	behavior,	we	could	have	many	more
possible	outcomes,	right?	It	turns	out	ES6	introduces	just	such	a	thing	(see	Chapter	4	"Generators"),	but	don't	worry	right
now,	we'll	come	back	to	that!

Let's	imagine	a	site	that	displays	a	list	of	status	updates	(like	a	social	network	news	feed)	that	progressively	loads	as	the
user	scrolls	down	the	list.	To	make	such	a	feature	work	correctly,	(at	least)	two	separate	"processes"	will	need	to	be
executing	simultaneously	(i.e.,	during	the	same	window	of	time,	but	not	necessarily	at	the	same	instant).

Note:	We're	using	"process"	in	quotes	here	because	they	aren't	true	operating	system–level	processes	in	the	computer
science	sense.	They're	virtual	processes,	or	tasks,	that	represent	a	logically	connected,	sequential	series	of	operations.
We'll	simply	prefer	"process"	over	"task"	because	terminology-wise,	it	will	match	the	definitions	of	the	concepts	we're
exploring.

The	first	"process"	will	respond	to		onscroll		events	(making	Ajax	requests	for	new	content)	as	they	fire	when	the	user	has
scrolled	the	page	further	down.	The	second	"process"	will	receive	Ajax	responses	back	(to	render	content	onto	the	page).

Obviously,	if	a	user	scrolls	fast	enough,	you	may	see	two	or	more		onscroll		events	fired	during	the	time	it	takes	to	get	the
first	response	back	and	process,	and	thus	you're	going	to	have		onscroll		events	and	Ajax	response	events	firing	rapidly,
interleaved	with	each	other.

Concurrency	is	when	two	or	more	"processes"	are	executing	simultaneously	over	the	same	period,	regardless	of	whether
their	individual	constituent	operations	happen	in	parallel	(at	the	same	instant	on	separate	processors	or	cores)	or	not.	You
can	think	of	concurrency	then	as	"process"-level	(or	task-level)	parallelism,	as	opposed	to	operation-level	parallelism
(separate-processor	threads).

Note:	Concurrency	also	introduces	an	optional	notion	of	these	"processes"	interacting	with	each	other.	We'll	come	back	to
that	later.

For	a	given	window	of	time	(a	few	seconds	worth	of	a	user	scrolling),	let's	visualize	each	independent	"process"	as	a	series
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of	events/operations:

"Process"	1	(	onscroll		events):

onscroll,	request	1

onscroll,	request	2

onscroll,	request	3

onscroll,	request	4

onscroll,	request	5

onscroll,	request	6

onscroll,	request	7

"Process"	2	(Ajax	response	events):

response	1

response	2

response	3

response	4

response	5

response	6

response	7

It's	quite	possible	that	an		onscroll		event	and	an	Ajax	response	event	could	be	ready	to	be	processed	at	exactly	the	same
moment.	For	example	let's	visualize	these	events	in	a	timeline:

onscroll,	request	1

onscroll,	request	2										response	1

onscroll,	request	3										response	2

response	3

onscroll,	request	4

onscroll,	request	5

onscroll,	request	6										response	4

onscroll,	request	7

response	6

response	5

response	7

But,	going	back	to	our	notion	of	the	event	loop	from	eariler	in	the	chapter,	JS	is	only	going	to	be	able	to	handle	one	event	at
a	time,	so	either		onscroll,	request	2		is	going	to	happen	first	or		response	1		is	going	to	happen	first,	but	they	cannot
happen	at	literally	the	same	moment.	Just	like	kids	at	a	school	cafeteria,	no	matter	what	crowd	they	form	outside	the	doors,
they'll	have	to	merge	into	a	single	line	to	get	their	lunch!

Let's	visualize	the	interleaving	of	all	these	events	onto	the	event	loop	queue.

Event	Loop	Queue:

onscroll,	request	1			<---	Process	1	starts

onscroll,	request	2

response	1												<---	Process	2	starts

onscroll,	request	3

response	2

response	3

onscroll,	request	4

onscroll,	request	5

onscroll,	request	6

response	4

onscroll,	request	7			<---	Process	1	finishes

response	6

response	5

response	7												<---	Process	2	finishes

"Process	1"	and	"Process	2"	run	concurrently	(task-level	parallel),	but	their	individual	events	run	sequentially	on	the	event
loop	queue.



By	the	way,	notice	how		response	6		and		response	5		came	back	out	of	expected	order?

The	single-threaded	event	loop	is	one	expression	of	concurrency	(there	are	certainly	others,	which	we'll	come	back	to
later).

As	two	or	more	"processes"	are	interleaving	their	steps/events	concurrently	within	the	same	program,	they	don't	necessarily
need	to	interact	with	each	other	if	the	tasks	are	unrelated.	If	they	don't	interact,	nondeterminism	is	perfectly
acceptable.

For	example:

var	res	=	{};

function	foo(results)	{

				res.foo	=	results;

}

function	bar(results)	{

				res.bar	=	results;

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

	foo()		and		bar()		are	two	concurrent	"processes,"	and	it's	nondeterminate	which	order	they	will	be	fired	in.	But	we've
constructed	the	program	so	it	doesn't	matter	what	order	they	fire	in,	because	they	act	independently	and	as	such	don't
need	to	interact.

This	is	not	a	"race	condition"	bug,	as	the	code	will	always	work	correctly,	regardless	of	the	ordering.

More	commonly,	concurrent	"processes"	will	by	necessity	interact,	indirectly	through	scope	and/or	the	DOM.	When	such
interaction	will	occur,	you	need	to	coordinate	these	interactions	to	prevent	"race	conditions,"	as	described	earlier.

Here's	a	simple	example	of	two	concurrent	"processes"	that	interact	because	of	implied	ordering,	which	is	only	sometimes
broken:

var	res	=	[];

function	response(data)	{

				res.push(	data	);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	response	);

ajax(	"http://some.url.2",	response	);

The	concurrent	"processes"	are	the	two		response()		calls	that	will	be	made	to	handle	the	Ajax	responses.	They	can	happen
in	either-first	order.

Let's	assume	the	expected	behavior	is	that		res[0]		has	the	results	of	the		"http://some.url.1"		call,	and		res[1]		has	the
results	of	the		"http://some.url.2"		call.	Sometimes	that	will	be	the	case,	but	sometimes	they'll	be	flipped,	depending	on
which	call	finishes	first.	There's	a	pretty	good	likelihood	that	this	nondeterminism	is	a	"race	condition"	bug.

Note:	Be	extremely	wary	of	assumptions	you	might	tend	to	make	in	these	situations.	For	example,	it's	not	uncommon	for	a
developer	to	observe	that		"http://some.url.2"		is	"always"	much	slower	to	respond	than		"http://some.url.1"	,	perhaps	by
virtue	of	what	tasks	they're	doing	(e.g.,	one	performing	a	database	task	and	the	other	just	fetching	a	static	file),	so	the
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observed	ordering	seems	to	always	be	as	expected.	Even	if	both	requests	go	to	the	same	server,	and	it	intentionally
responds	in	a	certain	order,	there's	no	real	guarantee	of	what	order	the	responses	will	arrive	back	in	the	browser.

So,	to	address	such	a	race	condition,	you	can	coordinate	ordering	interaction:

var	res	=	[];

function	response(data)	{

				if	(data.url	==	"http://some.url.1")	{

								res[0]	=	data;

				}

				else	if	(data.url	==	"http://some.url.2")	{

								res[1]	=	data;

				}

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	response	);

ajax(	"http://some.url.2",	response	);

Regardless	of	which	Ajax	response	comes	back	first,	we	inspect	the		data.url		(assuming	one	is	returned	from	the	server,
of	course!)	to	figure	out	which	position	the	response	data	should	occupy	in	the		res		array.		res[0]		will	always	hold	the
	"http://some.url.1"		results	and		res[1]		will	always	hold	the		"http://some.url.2"		results.	Through	simple	coordination,
we	eliminated	the	"race	condition"	nondeterminism.

The	same	reasoning	from	this	scenario	would	apply	if	multiple	concurrent	function	calls	were	interacting	with	each	other
through	the	shared	DOM,	like	one	updating	the	contents	of	a		<div>		and	the	other	updating	the	style	or	attributes	of	the
	<div>		(e.g.,	to	make	the	DOM	element	visible	once	it	has	content).	You	probably	wouldn't	want	to	show	the	DOM	element
before	it	had	content,	so	the	coordination	must	ensure	proper	ordering	interaction.

Some	concurrency	scenarios	are	always	broken	(not	just	sometimes)	without	coordinated	interaction.	Consider:

var	a,	b;

function	foo(x)	{

				a	=	x	*	2;

				baz();

}

function	bar(y)	{

				b	=	y	*	2;

				baz();

}

function	baz()	{

				console.log(a	+	b);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

In	this	example,	whether		foo()		or		bar()		fires	first,	it	will	always	cause		baz()		to	run	too	early	(either		a		or		b		will	still	be
	undefined	),	but	the	second	invocation	of		baz()		will	work,	as	both		a		and		b		will	be	available.

There	are	different	ways	to	address	such	a	condition.	Here's	one	simple	way:

var	a,	b;

function	foo(x)	{

				a	=	x	*	2;

				if	(a	&&	b)	{

								baz();

				}

}

function	bar(y)	{



				b	=	y	*	2;

				if	(a	&&	b)	{

								baz();

				}

}

function	baz()	{

				console.log(	a	+	b	);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

The		if	(a	&&	b)		conditional	around	the		baz()		call	is	traditionally	called	a	"gate,"	because	we're	not	sure	what	order		a	
and		b		will	arrive,	but	we	wait	for	both	of	them	to	get	there	before	we	proceed	to	open	the	gate	(call		baz()	).

Another	concurrency	interaction	condition	you	may	run	into	is	sometimes	called	a	"race,"	but	more	correctly	called	a	"latch."
It's	characterized	by	"only	the	first	one	wins"	behavior.	Here,	nondeterminism	is	acceptable,	in	that	you	are	explicitly	saying
it's	OK	for	the	"race"	to	the	finish	line	to	have	only	one	winner.

Consider	this	broken	code:

var	a;

function	foo(x)	{

				a	=	x	*	2;

				baz();

}

function	bar(x)	{

				a	=	x	/	2;

				baz();

}

function	baz()	{

				console.log(	a	);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

Whichever	one	(	foo()		or		bar()	)	fires	last	will	not	only	overwrite	the	assigned		a		value	from	the	other,	but	it	will	also
duplicate	the	call	to		baz()		(likely	undesired).

So,	we	can	coordinate	the	interaction	with	a	simple	latch,	to	let	only	the	first	one	through:

var	a;

function	foo(x)	{

				if	(!a)	{

								a	=	x	*	2;

								baz();

				}

}

function	bar(x)	{

				if	(!a)	{

								a	=	x	/	2;

								baz();

				}

}

function	baz()	{

				console.log(	a	);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);



The		if	(!a)		conditional	allows	only	the	first	of		foo()		or		bar()		through,	and	the	second	(and	indeed	any	subsequent)
calls	would	just	be	ignored.	There's	just	no	virtue	in	coming	in	second	place!

Note:	In	all	these	scenarios,	we've	been	using	global	variables	for	simplistic	illustration	purposes,	but	there's	nothing	about
our	reasoning	here	that	requires	it.	As	long	as	the	functions	in	question	can	access	the	variables	(via	scope),	they'll	work	as
intended.	Relying	on	lexically	scoped	variables	(see	the	Scope	&	Closures	title	of	this	book	series),	and	in	fact	global
variables	as	in	these	examples,	is	one	obvious	downside	to	these	forms	of	concurrency	coordination.	As	we	go	through	the
next	few	chapters,	we'll	see	other	ways	of	coordination	that	are	much	cleaner	in	that	respect.

Another	expression	of	concurrency	coordination	is	called	"cooperative	concurrency."	Here,	the	focus	isn't	so	much	on
interacting	via	value	sharing	in	scopes	(though	that's	obviously	still	allowed!).	The	goal	is	to	take	a	long-running	"process"
and	break	it	up	into	steps	or	batches	so	that	other	concurrent	"processes"	have	a	chance	to	interleave	their	operations	into
the	event	loop	queue.

For	example,	consider	an	Ajax	response	handler	that	needs	to	run	through	a	long	list	of	results	to	transform	the	values.
We'll	use		Array#map(..)		to	keep	the	code	shorter:

var	res	=	[];

//	`response(..)`	receives	array	of	results	from	the	Ajax	call

function	response(data)	{

				//	add	onto	existing	`res`	array

				res	=	res.concat(

								//	make	a	new	transformed	array	with	all	`data`	values	doubled

								data.map(	function(val){

												return	val	*	2;

								}	)

				);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	response	);

ajax(	"http://some.url.2",	response	);

If		"http://some.url.1"		gets	its	results	back	first,	the	entire	list	will	be	mapped	into		res		all	at	once.	If	it's	a	few	thousand	or
less	records,	this	is	not	generally	a	big	deal.	But	if	it's	say	10	million	records,	that	can	take	a	while	to	run	(several	seconds
on	a	powerful	laptop,	much	longer	on	a	mobile	device,	etc.).

While	such	a	"process"	is	running,	nothing	else	in	the	page	can	happen,	including	no	other		response(..)		calls,	no	UI
updates,	not	even	user	events	like	scrolling,	typing,	button	clicking,	and	the	like.	That's	pretty	painful.

So,	to	make	a	more	cooperatively	concurrent	system,	one	that's	friendlier	and	doesn't	hog	the	event	loop	queue,	you	can
process	these	results	in	asynchronous	batches,	after	each	one	"yielding"	back	to	the	event	loop	to	let	other	waiting	events
happen.

Here's	a	very	simple	approach:

var	res	=	[];

//	`response(..)`	receives	array	of	results	from	the	Ajax	call

function	response(data)	{

				//	let's	just	do	1000	at	a	time

				var	chunk	=	data.splice(	0,	1000	);

				//	add	onto	existing	`res`	array

				res	=	res.concat(

								//	make	a	new	transformed	array	with	all	`chunk`	values	doubled

								chunk.map(	function(val){

												return	val	*	2;

								}	)

				);
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				//	anything	left	to	process?

				if	(data.length	>	0)	{

								//	async	schedule	next	batch

								setTimeout(	function(){

												response(	data	);

								},	0	);

				}

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	response	);

ajax(	"http://some.url.2",	response	);

We	process	the	data	set	in	maximum-sized	chunks	of	1,000	items.	By	doing	so,	we	ensure	a	short-running	"process,"	even
if	that	means	many	more	subsequent	"processes,"	as	the	interleaving	onto	the	event	loop	queue	will	give	us	a	much	more
responsive	(performant)	site/app.

Of	course,	we're	not	interaction-coordinating	the	ordering	of	any	of	these	"processes,"	so	the	order	of	results	in		res		won't
be	predictable.	If	ordering	was	required,	you'd	need	to	use	interaction	techniques	like	those	we	discussed	earlier,	or	ones
we	will	cover	in	later	chapters	of	this	book.

We	use	the		setTimeout(..0)		(hack)	for	async	scheduling,	which	basically	just	means	"stick	this	function	at	the	end	of	the
current	event	loop	queue."

Note:		setTimeout(..0)		is	not	technically	inserting	an	item	directly	onto	the	event	loop	queue.	The	timer	will	insert	the	event
at	its	next	opportunity.	For	example,	two	subsequent		setTimeout(..0)		calls	would	not	be	strictly	guaranteed	to	be
processed	in	call	order,	so	it	is	possible	to	see	various	conditions	like	timer	drift	where	the	ordering	of	such	events	isn't
predictable.	In	Node.js,	a	similar	approach	is		process.nextTick(..)	.	Despite	how	convenient	(and	usually	more	performant)
it	would	be,	there's	not	a	single	direct	way	(at	least	yet)	across	all	environments	to	ensure	async	event	ordering.	We	cover
this	topic	in	more	detail	in	the	next	section.

As	of	ES6,	there's	a	new	concept	layered	on	top	of	the	event	loop	queue,	called	the	"Job	queue."	The	most	likely	exposure
you'll	have	to	it	is	with	the	asynchronous	behavior	of	Promises	(see	Chapter	3).

Unfortunately,	at	the	moment	it's	a	mechanism	without	an	exposed	API,	and	thus	demonstrating	it	is	a	bit	more	convoluted.
So	we're	going	to	have	to	just	describe	it	conceptually,	such	that	when	we	discuss	async	behavior	with	Promises	in	Chapter
3,	you'll	understand	how	those	actions	are	being	scheduled	and	processed.

So,	the	best	way	to	think	about	this	that	I've	found	is	that	the	"Job	queue"	is	a	queue	hanging	off	the	end	of	every	tick	in	the
event	loop	queue.	Certain	async-implied	actions	that	may	occur	during	a	tick	of	the	event	loop	will	not	cause	a	whole	new
event	to	be	added	to	the	event	loop	queue,	but	will	instead	add	an	item	(aka	Job)	to	the	end	of	the	current	tick's	Job	queue.

It's	kinda	like	saying,	"oh,	here's	this	other	thing	I	need	to	do	later,	but	make	sure	it	happens	right	away	before	anything
else	can	happen."

Or,	to	use	a	metaphor:	the	event	loop	queue	is	like	an	amusement	park	ride,	where	once	you	finish	the	ride,	you	have	to	go
to	the	back	of	the	line	to	ride	again.	But	the	Job	queue	is	like	finishing	the	ride,	but	then	cutting	in	line	and	getting	right	back
on.

A	Job	can	also	cause	more	Jobs	to	be	added	to	the	end	of	the	same	queue.	So,	it's	theoretically	possible	that	a	Job	"loop"
(a	Job	that	keeps	adding	another	Job,	etc.)	could	spin	indefinitely,	thus	starving	the	program	of	the	ability	to	move	on	to	the
next	event	loop	tick.	This	would	conceptually	be	almost	the	same	as	just	expressing	a	long-running	or	infinite	loop	(like
	while	(true)	..	)	in	your	code.

Jobs	are	kind	of	like	the	spirit	of	the		setTimeout(..0)		hack,	but	implemented	in	such	a	way	as	to	have	a	much	more	well-
defined	and	guaranteed	ordering:	later,	but	as	soon	as	possible.
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Let's	imagine	an	API	for	scheduling	Jobs	(directly,	without	hacks),	and	call	it		schedule(..)	.	Consider:

console.log(	"A"	);

setTimeout(	function(){

				console.log(	"B"	);

},	0	);

//	theoretical	"Job	API"

schedule(	function(){

				console.log(	"C"	);

				schedule(	function(){

								console.log(	"D"	);

				}	);

}	);

You	might	expect	this	to	print	out		A	B	C	D	,	but	instead	it	would	print	out		A	C	D	B	,	because	the	Jobs	happen	at	the	end	of
the	current	event	loop	tick,	and	the	timer	fires	to	schedule	for	the	next	event	loop	tick	(if	available!).

In	Chapter	3,	we'll	see	that	the	asynchronous	behavior	of	Promises	is	based	on	Jobs,	so	it's	important	to	keep	clear	how
that	relates	to	event	loop	behavior.

The	order	in	which	we	express	statements	in	our	code	is	not	necessarily	the	same	order	as	the	JS	engine	will	execute
them.	That	may	seem	like	quite	a	strange	assertion	to	make,	so	we'll	just	briefly	explore	it.

But	before	we	do,	we	should	be	crystal	clear	on	something:	the	rules/grammar	of	the	language	(see	the	Types	&	Grammar
title	of	this	book	series)	dictate	a	very	predictable	and	reliable	behavior	for	statement	ordering	from	the	program	point	of
view.	So	what	we're	about	to	discuss	are	not	things	you	should	ever	be	able	to	observe	in	your	JS	program.

Warning:	If	you	are	ever	able	to	observe	compiler	statement	reordering	like	we're	about	to	illustrate,	that'd	be	a	clear
violation	of	the	specification,	and	it	would	unquestionably	be	due	to	a	bug	in	the	JS	engine	in	question	--	one	which	should
promptly	be	reported	and	fixed!	But	it's	vastly	more	common	that	you	suspect	something	crazy	is	happening	in	the	JS
engine,	when	in	fact	it's	just	a	bug	(probably	a	"race	condition"!)	in	your	own	code	--	so	look	there	first,	and	again	and
again.	The	JS	debugger,	using	breakpoints	and	stepping	through	code	line	by	line,	will	be	your	most	powerful	tool	for
sniffing	out	such	bugs	in	your	code.

Consider:

var	a,	b;

a	=	10;

b	=	30;

a	=	a	+	1;

b	=	b	+	1;

console.log(	a	+	b	);	//	42

This	code	has	no	expressed	asynchrony	to	it	(other	than	the	rare		console		async	I/O	discussed	earlier!),	so	the	most	likely
assumption	is	that	it	would	process	line	by	line	in	top-down	fashion.

But	it's	possible	that	the	JS	engine,	after	compiling	this	code	(yes,	JS	is	compiled	--	see	the	Scope	&	Closures	title	of	this
book	series!)	might	find	opportunities	to	run	your	code	faster	by	rearranging	(safely)	the	order	of	these	statements.
Essentially,	as	long	as	you	can't	observe	the	reordering,	anything's	fair	game.

For	example,	the	engine	might	find	it's	faster	to	actually	execute	the	code	like	this:
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var	a,	b;

a	=	10;

a++;

b	=	30;

b++;

console.log(	a	+	b	);	//	42

Or	this:

var	a,	b;

a	=	11;

b	=	31;

console.log(	a	+	b	);	//	42

Or	even:

//	because	`a`	and	`b`	aren't	used	anymore,	we	can

//	inline	and	don't	even	need	them!

console.log(	42	);	//	42

In	all	these	cases,	the	JS	engine	is	performing	safe	optimizations	during	its	compilation,	as	the	end	observable	result	will	be
the	same.

But	here's	a	scenario	where	these	specific	optimizations	would	be	unsafe	and	thus	couldn't	be	allowed	(of	course,	not	to
say	that	it's	not	optimized	at	all):

var	a,	b;

a	=	10;

b	=	30;

//	we	need	`a`	and	`b`	in	their	preincremented	state!

console.log(	a	*	b	);	//	300

a	=	a	+	1;

b	=	b	+	1;

console.log(	a	+	b	);	//	42

Other	examples	where	the	compiler	reordering	could	create	observable	side	effects	(and	thus	must	be	disallowed)	would
include	things	like	any	function	call	with	side	effects	(even	and	especially	getter	functions),	or	ES6	Proxy	objects	(see	the
ES6	&	Beyond	title	of	this	book	series).

Consider:

function	foo()	{

				console.log(	b	);

				return	1;

}

var	a,	b,	c;

//	ES5.1	getter	literal	syntax

c	=	{

				get	bar()	{

								console.log(	a	);

								return	1;

				}

};



a	=	10;

b	=	30;

a	+=	foo();																//	30

b	+=	c.bar;																//	11

console.log(	a	+	b	);				//	42

If	it	weren't	for	the		console.log(..)		statements	in	this	snippet	(just	used	as	a	convenient	form	of	observable	side	effect	for
the	illustration),	the	JS	engine	would	likely	have	been	free,	if	it	wanted	to	(who	knows	if	it	would!?),	to	reorder	the	code	to:

//	...

a	=	10	+	foo();

b	=	30	+	c.bar;

//	...

While	JS	semantics	thankfully	protect	us	from	the	observable	nightmares	that	compiler	statement	reordering	would	seem	to
be	in	danger	of,	it's	still	important	to	understand	just	how	tenuous	a	link	there	is	between	the	way	source	code	is	authored
(in	top-down	fashion)	and	the	way	it	runs	after	compilation.

Compiler	statement	reordering	is	almost	a	micro-metaphor	for	concurrency	and	interaction.	As	a	general	concept,	such
awareness	can	help	you	understand	async	JS	code	flow	issues	better.

A	JavaScript	program	is	(practically)	always	broken	up	into	two	or	more	chunks,	where	the	first	chunk	runs	now	and	the
next	chunk	runs	later,	in	response	to	an	event.	Even	though	the	program	is	executed	chunk-by-chunk,	all	of	them	share	the
same	access	to	the	program	scope	and	state,	so	each	modification	to	state	is	made	on	top	of	the	previous	state.

Whenever	there	are	events	to	run,	the	event	loop	runs	until	the	queue	is	empty.	Each	iteration	of	the	event	loop	is	a	"tick."
User	interaction,	IO,	and	timers	enqueue	events	on	the	event	queue.

At	any	given	moment,	only	one	event	can	be	processed	from	the	queue	at	a	time.	While	an	event	is	executing,	it	can
directly	or	indirectly	cause	one	or	more	subsequent	events.

Concurrency	is	when	two	or	more	chains	of	events	interleave	over	time,	such	that	from	a	high-level	perspective,	they
appear	to	be	running	simultaneously	(even	though	at	any	given	moment	only	one	event	is	being	processed).

It's	often	necessary	to	do	some	form	of	interaction	coordination	between	these	concurrent	"processes"	(as	distinct	from
operating	system	processes),	for	instance	to	ensure	ordering	or	to	prevent	"race	conditions."	These	"processes"	can	also
cooperate	by	breaking	themselves	into	smaller	chunks	and	to	allow	other	"process"	interleaving.
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In	Chapter	1,	we	explored	the	terminology	and	concepts	around	asynchronous	programming	in	JavaScript.	Our	focus	is	on
understanding	the	single-threaded	(one-at-a-time)	event	loop	queue	that	drives	all	"events"	(async	function	invocations).
We	also	explored	various	ways	that	concurrency	patterns	explain	the	relationships	(if	any!)	between	simultaneously	running
chains	of	events,	or	"processes"	(tasks,	function	calls,	etc.).

All	our	examples	in	Chapter	1	used	the	function	as	the	individual,	indivisible	unit	of	operations,	whereby	inside	the	function,
statements	run	in	predictable	order	(above	the	compiler	level!),	but	at	the	function-ordering	level,	events	(aka	async
function	invocations)	can	happen	in	a	variety	of	orders.

In	all	these	cases,	the	function	is	acting	as	a	"callback,"	because	it	serves	as	the	target	for	the	event	loop	to	"call	back	into"
the	program,	whenever	that	item	in	the	queue	is	processed.

As	you	no	doubt	have	observed,	callbacks	are	by	far	the	most	common	way	that	asynchrony	in	JS	programs	is	expressed
and	managed.	Indeed,	the	callback	is	the	most	fundamental	async	pattern	in	the	language.

Countless	JS	programs,	even	very	sophisticated	and	complex	ones,	have	been	written	upon	no	other	async	foundation
than	the	callback	(with	of	course	the	concurrency	interaction	patterns	we	explored	in	Chapter	1).	The	callback	function	is
the	async	work	horse	for	JavaScript,	and	it	does	its	job	respectably.

Except...	callbacks	are	not	without	their	shortcomings.	Many	developers	are	excited	by	the	promise	(pun	intended!)	of
better	async	patterns.	But	it's	impossible	to	effectively	use	any	abstraction	if	you	don't	understand	what	it's	abstracting,	and
why.

In	this	chapter,	we	will	explore	a	couple	of	those	in	depth,	as	motivation	for	why	more	sophisticated	async	patterns
(explored	in	subsequent	chapters	of	this	book)	are	necessary	and	desired.

Let's	go	back	to	the	async	callback	example	we	started	with	in	Chapter	1,	but	let	me	slightly	modify	it	to	illustrate	a	point:

//	A

ajax(	"..",	function(..){

				//	C

}	);

//	B

	//	A		and		//	B		represent	the	first	half	of	the	program	(aka	the	now),	and		//	C		marks	the	second	half	of	the	program	(aka
the	later).	The	first	half	executes	right	away,	and	then	there's	a	"pause"	of	indeterminate	length.	At	some	future	moment,	if
the	Ajax	call	completes,	then	the	program	will	pick	up	where	it	left	off,	and	continue	with	the	second	half.

In	other	words,	the	callback	function	wraps	or	encapsulates	the	continuation	of	the	program.

Let's	make	the	code	even	simpler:

//	A

setTimeout(	function(){

				//	C

},	1000	);

//	B
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Stop	for	a	moment	and	ask	yourself	how	you'd	describe	(to	someone	else	less	informed	about	how	JS	works)	the	way	that
program	behaves.	Go	ahead,	try	it	out	loud.	It's	a	good	exercise	that	will	help	my	next	points	make	more	sense.

Most	readers	just	now	probably	thought	or	said	something	to	the	effect	of:	"Do	A,	then	set	up	a	timeout	to	wait	1,000
milliseconds,	then	once	that	fires,	do	C."	How	close	was	your	rendition?

You	might	have	caught	yourself	and	self-edited	to:	"Do	A,	setup	the	timeout	for	1,000	milliseconds,	then	do	B,	then	after	the
timeout	fires,	do	C."	That's	more	accurate	than	the	first	version.	Can	you	spot	the	difference?

Even	though	the	second	version	is	more	accurate,	both	versions	are	deficient	in	explaining	this	code	in	a	way	that	matches
our	brains	to	the	code,	and	the	code	to	the	JS	engine.	The	disconnect	is	both	subtle	and	monumental,	and	is	at	the	very
heart	of	understanding	the	shortcomings	of	callbacks	as	async	expression	and	management.

As	soon	as	we	introduce	a	single	continuation	(or	several	dozen	as	many	programs	do!)	in	the	form	of	a	callback	function,
we	have	allowed	a	divergence	to	form	between	how	our	brains	work	and	the	way	the	code	will	operate.	Any	time	these	two
diverge	(and	this	is	by	far	not	the	only	place	that	happens,	as	I'm	sure	you	know!),	we	run	into	the	inevitable	fact	that	our
code	becomes	harder	to	understand,	reason	about,	debug,	and	maintain.

I'm	pretty	sure	most	of	you	readers	have	heard	someone	say	(even	made	the	claim	yourself),	"I'm	a	multitasker."	The
effects	of	trying	to	act	as	a	multitasker	range	from	humorous	(e.g.,	the	silly	patting-head-rubbing-stomach	kids'	game)	to
mundane	(chewing	gum	while	walking)	to	downright	dangerous	(texting	while	driving).

But	are	we	multitaskers?	Can	we	really	do	two	conscious,	intentional	actions	at	once	and	think/reason	about	both	of	them
at	exactly	the	same	moment?	Does	our	highest	level	of	brain	functionality	have	parallel	multithreading	going	on?

The	answer	may	surprise	you:	probably	not.

That's	just	not	really	how	our	brains	appear	to	be	set	up.	We're	much	more	single	taskers	than	many	of	us	(especially	A-
type	personalities!)	would	like	to	admit.	We	can	really	only	think	about	one	thing	at	any	given	instant.

I'm	not	talking	about	all	our	involuntary,	subconscious,	automatic	brain	functions,	such	as	heart	beating,	breathing,	and
eyelid	blinking.	Those	are	all	vital	tasks	to	our	sustained	life,	but	we	don't	intentionally	allocate	any	brain	power	to	them.
Thankfully,	while	we	obsess	about	checking	social	network	feeds	for	the	15th	time	in	three	minutes,	our	brain	carries	on	in
the	background	(threads!)	with	all	those	important	tasks.

We're	instead	talking	about	whatever	task	is	at	the	forefront	of	our	minds	at	the	moment.	For	me,	it's	writing	the	text	in	this
book	right	now.	Am	I	doing	any	other	higher	level	brain	function	at	exactly	this	same	moment?	Nope,	not	really.	I	get
distracted	quickly	and	easily	--	a	few	dozen	times	in	these	last	couple	of	paragraphs!

When	we	fake	multitasking,	such	as	trying	to	type	something	at	the	same	time	we're	talking	to	a	friend	or	family	member	on
the	phone,	what	we're	actually	most	likely	doing	is	acting	as	fast	context	switchers.	In	other	words,	we	switch	back	and	forth
between	two	or	more	tasks	in	rapid	succession,	simultaneously	progressing	on	each	task	in	tiny,	fast	little	chunks.	We	do	it
so	fast	that	to	the	outside	world	it	appears	as	if	we're	doing	these	things	in	parallel.

Does	that	sound	suspiciously	like	async	evented	concurrency	(like	the	sort	that	happens	in	JS)	to	you?!	If	not,	go	back	and
read	Chapter	1	again!

In	fact,	one	way	of	simplifying	(i.e.,	abusing)	the	massively	complex	world	of	neurology	into	something	I	can	remotely	hope
to	discuss	here	is	that	our	brains	work	kinda	like	the	event	loop	queue.

If	you	think	about	every	single	letter	(or	word)	I	type	as	a	single	async	event,	in	just	this	sentence	alone	there	are	several
dozen	opportunities	for	my	brain	to	be	interrupted	by	some	other	event,	such	as	from	my	senses,	or	even	just	my	random
thoughts.

I	don't	get	interrupted	and	pulled	to	another	"process"	at	every	opportunity	that	I	could	be	(thankfully	--	or	this	book	would
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never	be	written!).	But	it	happens	often	enough	that	I	feel	my	own	brain	is	nearly	constantly	switching	to	various	different
contexts	(aka	"processes").	And	that's	an	awful	lot	like	how	the	JS	engine	would	probably	feel.

OK,	so	our	brains	can	be	thought	of	as	operating	in	single-threaded	event	loop	queue	like	ways,	as	can	the	JS	engine.	That
sounds	like	good	match.

But	we	need	to	be	more	nuanced	than	that	in	our	analysis.	There's	a	big,	observable	difference	between	how	we	plan
various	tasks,	and	how	our	brains	actually	operate	those	tasks.

Again,	back	to	the	writing	of	this	text	as	my	metaphor.	My	rough	mental	outline	plan	here	is	to	keep	writing	and	writing,
going	sequentially	through	a	set	of	points	I	have	ordered	in	my	thoughts.	I	don't	plan	to	have	any	interruptions	or	nonlinear
activity	in	this	writing.	But	yet,	my	brain	is	nevertheless	switching	around	all	the	time.

Even	though	at	an	operational	level	our	brains	are	async	evented,	we	seem	to	plan	out	tasks	in	a	sequential,	synchronous
way.	"I	need	to	go	to	the	store,	then	buy	some	milk,	then	drop	off	my	dry	cleaning."

You'll	notice	that	this	higher	level	thinking	(planning)	doesn't	seem	very	async	evented	in	its	formulation.	In	fact,	it's	kind	of
rare	for	us	to	deliberately	think	solely	in	terms	of	events.	Instead,	we	plan	things	out	carefully,	sequentially	(A	then	B	then
C),	and	we	assume	to	an	extent	a	sort	of	temporal	blocking	that	forces	B	to	wait	on	A,	and	C	to	wait	on	B.

When	a	developer	writes	code,	they	are	planning	out	a	set	of	actions	to	occur.	If	they're	any	good	at	being	a	developer,
they're	carefully	planning	it	out.	"I	need	to	set		z		to	the	value	of		x	,	and	then		x		to	the	value	of		y	,"	and	so	forth.

When	we	write	out	synchronous	code,	statement	by	statement,	it	works	a	lot	like	our	errands	to-do	list:

//	swap	`x`	and	`y`	(via	temp	variable	`z`)

z	=	x;

x	=	y;

y	=	z;

These	three	assignment	statements	are	synchronous,	so		x	=	y		waits	for		z	=	x		to	finish,	and		y	=	z		in	turn	waits	for		x	=
y		to	finish.	Another	way	of	saying	it	is	that	these	three	statements	are	temporally	bound	to	execute	in	a	certain	order,	one
right	after	the	other.	Thankfully,	we	don't	need	to	be	bothered	with	any	async	evented	details	here.	If	we	did,	the	code	gets
a	lot	more	complex,	quickly!

So	if	synchronous	brain	planning	maps	well	to	synchronous	code	statements,	how	well	do	our	brains	do	at	planning	out
asynchronous	code?

It	turns	out	that	how	we	express	asynchrony	(with	callbacks)	in	our	code	doesn't	map	very	well	at	all	to	that	synchronous
brain	planning	behavior.

Can	you	actually	imagine	having	a	line	of	thinking	that	plans	out	your	to-do	errands	like	this?

"I	need	to	go	to	the	store,	but	on	the	way	I'm	sure	I'll	get	a	phone	call,	so	'Hi,	Mom',	and	while	she	starts	talking,	I'll	be
looking	up	the	store	address	on	GPS,	but	that'll	take	a	second	to	load,	so	I'll	turn	down	the	radio	so	I	can	hear	Mom
better,	then	I'll	realize	I	forgot	to	put	on	a	jacket	and	it's	cold	outside,	but	no	matter,	keep	driving	and	talking	to	Mom,
and	then	the	seatbelt	ding	reminds	me	to	buckle	up,	so	'Yes,	Mom,	I	am	wearing	my	seatbelt,	I	always	do!'.	Ah,	finally
the	GPS	got	the	directions,	now..."

As	ridiculous	as	that	sounds	as	a	formulation	for	how	we	plan	our	day	out	and	think	about	what	to	do	and	in	what	order,
nonetheless	it's	exactly	how	our	brains	operate	at	a	functional	level.	Remember,	that's	not	multitasking,	it's	just	fast	context
switching.

The	reason	it's	difficult	for	us	as	developers	to	write	async	evented	code,	especially	when	all	we	have	is	the	callback	to	do
it,	is	that	stream	of	consciousness	thinking/planning	is	unnatural	for	most	of	us.

Doing	Versus	Planning



We	think	in	step-by-step	terms,	but	the	tools	(callbacks)	available	to	us	in	code	are	not	expressed	in	a	step-by-step	fashion
once	we	move	from	synchronous	to	asynchronous.

And	that	is	why	it's	so	hard	to	accurately	author	and	reason	about	async	JS	code	with	callbacks:	because	it's	not	how	our
brain	planning	works.

Note:	The	only	thing	worse	than	not	knowing	why	some	code	breaks	is	not	knowing	why	it	worked	in	the	first	place!	It's	the
classic	"house	of	cards"	mentality:	"it	works,	but	not	sure	why,	so	nobody	touch	it!"	You	may	have	heard,	"Hell	is	other
people"	(Sartre),	and	the	programmer	meme	twist,	"Hell	is	other	people's	code."	I	believe	truly:	"Hell	is	not	understanding
my	own	code."	And	callbacks	are	one	main	culprit.

Consider:

listen(	"click",	function	handler(evt){

				setTimeout(	function	request(){

								ajax(	"http://some.url.1",	function	response(text){

												if	(text	==	"hello")	{

																handler();

												}

												else	if	(text	==	"world")	{

																request();

												}

								}	);

				},	500)	;

}	);

There's	a	good	chance	code	like	that	is	recognizable	to	you.	We've	got	a	chain	of	three	functions	nested	together,	each	one
representing	a	step	in	an	asynchronous	series	(task,	"process").

This	kind	of	code	is	often	called	"callback	hell,"	and	sometimes	also	referred	to	as	the	"pyramid	of	doom"	(for	its	sideways-
facing	triangular	shape	due	to	the	nested	indentation).

But	"callback	hell"	actually	has	almost	nothing	to	do	with	the	nesting/indentation.	It's	a	far	deeper	problem	than	that.	We'll
see	how	and	why	as	we	continue	through	the	rest	of	this	chapter.

First,	we're	waiting	for	the	"click"	event,	then	we're	waiting	for	the	timer	to	fire,	then	we're	waiting	for	the	Ajax	response	to
come	back,	at	which	point	it	might	do	it	all	again.

At	first	glance,	this	code	may	seem	to	map	its	asynchrony	naturally	to	sequential	brain	planning.

First	(now),	we:

listen(	"..",	function	handler(..){

				//	..

}	);

Then	later,	we:

setTimeout(	function	request(..){

				//	..

},	500)	;

Then	still	later,	we:

ajax(	"..",	function	response(..){

				//	..

}	);

Nested/Chained	Callbacks



And	finally	(most	later),	we:

if	(	..	)	{

				//	..

}

else	..

But	there's	several	problems	with	reasoning	about	this	code	linearly	in	such	a	fashion.

First,	it's	an	accident	of	the	example	that	our	steps	are	on	subsequent	lines	(1,	2,	3,	and	4...).	In	real	async	JS	programs,
there's	often	a	lot	more	noise	cluttering	things	up,	noise	that	we	have	to	deftly	maneuver	past	in	our	brains	as	we	jump	from
one	function	to	the	next.	Understanding	the	async	flow	in	such	callback-laden	code	is	not	impossible,	but	it's	certainly	not
natural	or	easy,	even	with	lots	of	practice.

But	also,	there's	something	deeper	wrong,	which	isn't	evident	just	in	that	code	example.	Let	me	make	up	another	scenario
(pseudocode-ish)	to	illustrate	it:

doA(	function(){

				doB();

				doC(	function(){

								doD();

				}	)

				doE();

}	);

doF();

While	the	experienced	among	you	will	correctly	identify	the	true	order	of	operations	here,	I'm	betting	it	is	more	than	a	little
confusing	at	first	glance,	and	takes	some	concerted	mental	cycles	to	arrive	at.	The	operations	will	happen	in	this	order:

	doA()	

	doF()	

	doB()	

	doC()	

	doE()	

	doD()	

Did	you	get	that	right	the	very	first	time	you	glanced	at	the	code?

OK,	some	of	you	are	thinking	I	was	unfair	in	my	function	naming,	to	intentionally	lead	you	astray.	I	swear	I	was	just	naming
in	top-down	appearance	order.	But	let	me	try	again:

doA(	function(){

				doC();

				doD(	function(){

								doF();

				}	)

				doE();

}	);

doB();

Now,	I've	named	them	alphabetically	in	order	of	actual	execution.	But	I	still	bet,	even	with	experience	now	in	this	scenario,
tracing	through	the		A	->	B	->	C	->	D	->	E	->	F		order	doesn't	come	natural	to	many	if	any	of	you	readers.	Certainly	your
eyes	do	an	awful	lot	of	jumping	up	and	down	the	code	snippet,	right?



But	even	if	that	all	comes	natural	to	you,	there's	still	one	more	hazard	that	could	wreak	havoc.	Can	you	spot	what	it	is?

What	if		doA(..)		or		doD(..)		aren't	actually	async,	the	way	we	obviously	assumed	them	to	be?	Uh	oh,	now	the	order	is
different.	If	they're	both	sync	(and	maybe	only	sometimes,	depending	on	the	conditions	of	the	program	at	the	time),	the
order	is	now		A	->	C	->	D	->	F	->	E	->	B	.

That	sound	you	just	heard	faintly	in	the	background	is	the	sighs	of	thousands	of	JS	developers	who	just	had	a	face-in-
hands	moment.

Is	nesting	the	problem?	Is	that	what	makes	it	so	hard	to	trace	the	async	flow?	That's	part	of	it,	certainly.

But	let	me	rewrite	the	previous	nested	event/timeout/Ajax	example	without	using	nesting:

listen(	"click",	handler	);

function	handler()	{

				setTimeout(	request,	500	);

}

function	request(){

				ajax(	"http://some.url.1",	response	);

}

function	response(text){

				if	(text	==	"hello")	{

								handler();

				}

				else	if	(text	==	"world")	{

								request();

				}

}

This	formulation	of	the	code	is	not	hardly	as	recognizable	as	having	the	nesting/indentation	woes	of	its	previous	form,	and
yet	it's	every	bit	as	susceptible	to	"callback	hell."	Why?

As	we	go	to	linearly	(sequentially)	reason	about	this	code,	we	have	to	skip	from	one	function,	to	the	next,	to	the	next,	and
bounce	all	around	the	code	base	to	"see"	the	sequence	flow.	And	remember,	this	is	simplified	code	in	sort	of	best-case
fashion.	We	all	know	that	real	async	JS	program	code	bases	are	often	fantastically	more	jumbled,	which	makes	such
reasoning	orders	of	magnitude	more	difficult.

Another	thing	to	notice:	to	get	steps	2,	3,	and	4	linked	together	so	they	happen	in	succession,	the	only	affordance	callbacks
alone	gives	us	is	to	hardcode	step	2	into	step	1,	step	3	into	step	2,	step	4	into	step	3,	and	so	on.	The	hardcoding	isn't
necessarily	a	bad	thing,	if	it	really	is	a	fixed	condition	that	step	2	should	always	lead	to	step	3.

But	the	hardcoding	definitely	makes	the	code	a	bit	more	brittle,	as	it	doesn't	account	for	anything	going	wrong	that	might
cause	a	deviation	in	the	progression	of	steps.	For	example,	if	step	2	fails,	step	3	never	gets	reached,	nor	does	step	2	retry,
or	move	to	an	alternate	error	handling	flow,	and	so	on.

All	of	these	issues	are	things	you	can	manually	hardcode	into	each	step,	but	that	code	is	often	very	repetitive	and	not
reusable	in	other	steps	or	in	other	async	flows	in	your	program.

Even	though	our	brains	might	plan	out	a	series	of	tasks	in	a	sequential	type	of	way	(this,	then	this,	then	this),	the	evented
nature	of	our	brain	operation	makes	recovery/retry/forking	of	flow	control	almost	effortless.	If	you're	out	running	errands,
and	you	realize	you	left	a	shopping	list	at	home,	it	doesn't	end	the	day	because	you	didn't	plan	that	ahead	of	time.	Your
brain	routes	around	this	hiccup	easily:	you	go	home,	get	the	list,	then	head	right	back	out	to	the	store.

But	the	brittle	nature	of	manually	hardcoded	callbacks	(even	with	hardcoded	error	handling)	is	often	far	less	graceful.	Once
you	end	up	specifying	(aka	pre-planning)	all	the	various	eventualities/paths,	the	code	becomes	so	convoluted	that	it's	hard
to	ever	maintain	or	update	it.

That	is	what	"callback	hell"	is	all	about!	The	nesting/indentation	are	basically	a	side	show,	a	red	herring.



And	as	if	all	that's	not	enough,	we	haven't	even	touched	what	happens	when	two	or	more	chains	of	these	callback
continuations	are	happening	simultaneously,	or	when	the	third	step	branches	out	into	"parallel"	callbacks	with	gates	or
latches,	or...	OMG,	my	brain	hurts,	how	about	yours!?

Are	you	catching	the	notion	here	that	our	sequential,	blocking	brain	planning	behaviors	just	don't	map	well	onto	callback-
oriented	async	code?	That's	the	first	major	deficiency	to	articulate	about	callbacks:	they	express	asynchrony	in	code	in
ways	our	brains	have	to	fight	just	to	keep	in	sync	with	(pun	intended!).

The	mismatch	between	sequential	brain	planning	and	callback-driven	async	JS	code	is	only	part	of	the	problem	with
callbacks.	There's	something	much	deeper	to	be	concerned	about.

Let's	once	again	revisit	the	notion	of	a	callback	function	as	the	continuation	(aka	the	second	half)	of	our	program:

//	A

ajax(	"..",	function(..){

				//	C

}	);

//	B

	//	A		and		//	B		happen	now,	under	the	direct	control	of	the	main	JS	program.	But		//	C		gets	deferred	to	happen	later,
and	under	the	control	of	another	party	--	in	this	case,	the		ajax(..)		function.	In	a	basic	sense,	that	sort	of	hand-off	of
control	doesn't	regularly	cause	lots	of	problems	for	programs.

But	don't	be	fooled	by	its	infrequency	that	this	control	switch	isn't	a	big	deal.	In	fact,	it's	one	of	the	worst	(and	yet	most
subtle)	problems	about	callback-driven	design.	It	revolves	around	the	idea	that	sometimes		ajax(..)		(i.e.,	the	"party"	you
hand	your	callback	continuation	to)	is	not	a	function	that	you	wrote,	or	that	you	directly	control.	Many	times	it's	a	utility
provided	by	some	third	party.

We	call	this	"inversion	of	control,"	when	you	take	part	of	your	program	and	give	over	control	of	its	execution	to	another	third
party.	There's	an	unspoken	"contract"	that	exists	between	your	code	and	the	third-party	utility	--	a	set	of	things	you	expect
to	be	maintained.

It	might	not	be	terribly	obvious	why	this	is	such	a	big	deal.	Let	me	construct	an	exaggerated	scenario	to	illustrate	the
hazards	of	trust	at	play.

Imagine	you're	a	developer	tasked	with	building	out	an	ecommerce	checkout	system	for	a	site	that	sells	expensive	TVs.
You	already	have	all	the	various	pages	of	the	checkout	system	built	out	just	fine.	On	the	last	page,	when	the	user	clicks
"confirm"	to	buy	the	TV,	you	need	to	call	a	third-party	function	(provided	say	by	some	analytics	tracking	company)	so	that
the	sale	can	be	tracked.

You	notice	that	they've	provided	what	looks	like	an	async	tracking	utility,	probably	for	the	sake	of	performance	best
practices,	which	means	you	need	to	pass	in	a	callback	function.	In	this	continuation	that	you	pass	in,	you	will	have	the	final
code	that	charges	the	customer's	credit	card	and	displays	the	thank	you	page.

This	code	might	look	like:

analytics.trackPurchase(	purchaseData,	function(){

				chargeCreditCard();

				displayThankyouPage();

}	);

Easy	enough,	right?	You	write	the	code,	test	it,	everything	works,	and	you	deploy	to	production.	Everyone's	happy!

Trust	Issues

Tale	of	Five	Callbacks



Six	months	go	by	and	no	issues.	You've	almost	forgotten	you	even	wrote	that	code.	One	morning,	you're	at	a	coffee	shop
before	work,	casually	enjoying	your	latte,	when	you	get	a	panicked	call	from	your	boss	insisting	you	drop	the	coffee	and
rush	into	work	right	away.

When	you	arrive,	you	find	out	that	a	high-profile	customer	has	had	his	credit	card	charged	five	times	for	the	same	TV,	and
he's	understandably	upset.	Customer	service	has	already	issued	an	apology	and	processed	a	refund.	But	your	boss
demands	to	know	how	this	could	possibly	have	happened.	"Don't	we	have	tests	for	stuff	like	this!?"

You	don't	even	remember	the	code	you	wrote.	But	you	dig	back	in	and	start	trying	to	find	out	what	could	have	gone	awry.

After	digging	through	some	logs,	you	come	to	the	conclusion	that	the	only	explanation	is	that	the	analytics	utility	somehow,
for	some	reason,	called	your	callback	five	times	instead	of	once.	Nothing	in	their	documentation	mentions	anything	about
this.

Frustrated,	you	contact	customer	support,	who	of	course	is	as	astonished	as	you	are.	They	agree	to	escalate	it	to	their
developers,	and	promise	to	get	back	to	you.	The	next	day,	you	receive	a	lengthy	email	explaining	what	they	found,	which
you	promptly	forward	to	your	boss.

Apparently,	the	developers	at	the	analytics	company	had	been	working	on	some	experimental	code	that,	under	certain
conditions,	would	retry	the	provided	callback	once	per	second,	for	five	seconds,	before	failing	with	a	timeout.	They	had
never	intended	to	push	that	into	production,	but	somehow	they	did,	and	they're	totally	embarrassed	and	apologetic.	They
go	into	plenty	of	detail	about	how	they've	identified	the	breakdown	and	what	they'll	do	to	ensure	it	never	happens	again.
Yadda,	yadda.

What's	next?

You	talk	it	over	with	your	boss,	but	he's	not	feeling	particularly	comfortable	with	the	state	of	things.	He	insists,	and	you
reluctantly	agree,	that	you	can't	trust	them	anymore	(that's	what	bit	you),	and	that	you'll	need	to	figure	out	how	to	protect
the	checkout	code	from	such	a	vulnerability	again.

After	some	tinkering,	you	implement	some	simple	ad	hoc	code	like	the	following,	which	the	team	seems	happy	with:

var	tracked	=	false;

analytics.trackPurchase(	purchaseData,	function(){

				if	(!tracked)	{

								tracked	=	true;

								chargeCreditCard();

								displayThankyouPage();

				}

}	);

Note:	This	should	look	familiar	to	you	from	Chapter	1,	because	we're	essentially	creating	a	latch	to	handle	if	there	happen
to	be	multiple	concurrent	invocations	of	our	callback.

But	then	one	of	your	QA	engineers	asks,	"what	happens	if	they	never	call	the	callback?"	Oops.	Neither	of	you	had	thought
about	that.

You	begin	to	chase	down	the	rabbit	hole,	and	think	of	all	the	possible	things	that	could	go	wrong	with	them	calling	your
callback.	Here's	roughly	the	list	you	come	up	with	of	ways	the	analytics	utility	could	misbehave:

Call	the	callback	too	early	(before	it's	been	tracked)
Call	the	callback	too	late	(or	never)
Call	the	callback	too	few	or	too	many	times	(like	the	problem	you	encountered!)
Fail	to	pass	along	any	necessary	environment/parameters	to	your	callback
Swallow	any	errors/exceptions	that	may	happen
...

That	should	feel	like	a	troubling	list,	because	it	is.	You're	probably	slowly	starting	to	realize	that	you're	going	to	have	to



invent	an	awful	lot	of	ad	hoc	logic	in	each	and	every	single	callback	that's	passed	to	a	utility	you're	not	positive	you	can
trust.

Now	you	realize	a	bit	more	completely	just	how	hellish	"callback	hell"	is.

Some	of	you	may	be	skeptical	at	this	point	whether	this	is	as	big	a	deal	as	I'm	making	it	out	to	be.	Perhaps	you	don't
interact	with	truly	third-party	utilities	much	if	at	all.	Perhaps	you	use	versioned	APIs	or	self-host	such	libraries,	so	that	its
behavior	can't	be	changed	out	from	underneath	you.

So,	contemplate	this:	can	you	even	really	trust	utilities	that	you	do	theoretically	control	(in	your	own	code	base)?

Think	of	it	this	way:	most	of	us	agree	that	at	least	to	some	extent	we	should	build	our	own	internal	functions	with	some
defensive	checks	on	the	input	parameters,	to	reduce/prevent	unexpected	issues.

Overly	trusting	of	input:

function	addNumbers(x,y)	{

				//	+	is	overloaded	with	coercion	to	also	be

				//	string	concatenation,	so	this	operation

				//	isn't	strictly	safe	depending	on	what's

				//	passed	in.

				return	x	+	y;

}

addNumbers(	21,	21	);				//	42

addNumbers(	21,	"21"	);				//	"2121"

Defensive	against	untrusted	input:

function	addNumbers(x,y)	{

				//	ensure	numerical	input

				if	(typeof	x	!=	"number"	||	typeof	y	!=	"number")	{

								throw	Error(	"Bad	parameters"	);

				}

				//	if	we	get	here,	+	will	safely	do	numeric	addition

				return	x	+	y;

}

addNumbers(	21,	21	);				//	42

addNumbers(	21,	"21"	);				//	Error:	"Bad	parameters"

Or	perhaps	still	safe	but	friendlier:

function	addNumbers(x,y)	{

				//	ensure	numerical	input

				x	=	Number(	x	);

				y	=	Number(	y	);

				//	+	will	safely	do	numeric	addition

				return	x	+	y;

}

addNumbers(	21,	21	);				//	42

addNumbers(	21,	"21"	);				//	42

However	you	go	about	it,	these	sorts	of	checks/normalizations	are	fairly	common	on	function	inputs,	even	with	code	we
theoretically	entirely	trust.	In	a	crude	sort	of	way,	it's	like	the	programming	equivalent	of	the	geopolitical	principle	of	"Trust
But	Verify."

So,	doesn't	it	stand	to	reason	that	we	should	do	the	same	thing	about	composition	of	async	function	callbacks,	not	just	with
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truly	external	code	but	even	with	code	we	know	is	generally	"under	our	own	control"?	Of	course	we	should.

But	callbacks	don't	really	offer	anything	to	assist	us.	We	have	to	construct	all	that	machinery	ourselves,	and	it	often	ends	up
being	a	lot	of	boilerplate/overhead	that	we	repeat	for	every	single	async	callback.

The	most	troublesome	problem	with	callbacks	is	inversion	of	control	leading	to	a	complete	breakdown	along	all	those	trust
lines.

If	you	have	code	that	uses	callbacks,	especially	but	not	exclusively	with	third-party	utilities,	and	you're	not	already	applying
some	sort	of	mitigation	logic	for	all	these	inversion	of	control	trust	issues,	your	code	has	bugs	in	it	right	now	even	though
they	may	not	have	bitten	you	yet.	Latent	bugs	are	still	bugs.

Hell	indeed.

There	are	several	variations	of	callback	design	that	have	attempted	to	address	some	(not	all!)	of	the	trust	issues	we've	just
looked	at.	It's	a	valiant,	but	doomed,	effort	to	save	the	callback	pattern	from	imploding	on	itself.

For	example,	regarding	more	graceful	error	handling,	some	API	designs	provide	for	split	callbacks	(one	for	the	success
notification,	one	for	the	error	notification):

function	success(data)	{

				console.log(	data	);

}

function	failure(err)	{

				console.error(	err	);

}

ajax(	"http://some.url.1",	success,	failure	);

In	APIs	of	this	design,	often	the		failure()		error	handler	is	optional,	and	if	not	provided	it	will	be	assumed	you	want	the
errors	swallowed.	Ugh.

Note:	This	split-callback	design	is	what	the	ES6	Promise	API	uses.	We'll	cover	ES6	Promises	in	much	more	detail	in	the
next	chapter.

Another	common	callback	pattern	is	called	"error-first	style"	(sometimes	called	"Node	style,"	as	it's	also	the	convention
used	across	nearly	all	Node.js	APIs),	where	the	first	argument	of	a	single	callback	is	reserved	for	an	error	object	(if	any).	If
success,	this	argument	will	be	empty/falsy	(and	any	subsequent	arguments	will	be	the	success	data),	but	if	an	error	result
is	being	signaled,	the	first	argument	is	set/truthy	(and	usually	nothing	else	is	passed):

function	response(err,data)	{

				//	error?

				if	(err)	{

								console.error(	err	);

				}

				//	otherwise,	assume	success

				else	{

								console.log(	data	);

				}

}

ajax(	"http://some.url.1",	response	);

In	both	of	these	cases,	several	things	should	be	observed.

First,	it	has	not	really	resolved	the	majority	of	trust	issues	like	it	may	appear.	There's	nothing	about	either	callback	that
prevents	or	filters	unwanted	repeated	invocations.	Moreover,	things	are	worse	now,	because	you	may	get	both	success	and
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error	signals,	or	neither,	and	you	still	have	to	code	around	either	of	those	conditions.

Also,	don't	miss	the	fact	that	while	it's	a	standard	pattern	you	can	employ,	it's	definitely	more	verbose	and	boilerplate-ish
without	much	reuse,	so	you're	going	to	get	weary	of	typing	all	that	out	for	every	single	callback	in	your	application.

What	about	the	trust	issue	of	never	being	called?	If	this	is	a	concern	(and	it	probably	should	be!),	you	likely	will	need	to	set
up	a	timeout	that	cancels	the	event.	You	could	make	a	utility	(proof-of-concept	only	shown)	to	help	you	with	that:

function	timeoutify(fn,delay)	{

				var	intv	=	setTimeout(	function(){

												intv	=	null;

												fn(	new	Error(	"Timeout!"	)	);

								},	delay	)

				;

				return	function()	{

								//	timeout	hasn't	happened	yet?

								if	(intv)	{

												clearTimeout(	intv	);

												fn.apply(	this,	arguments	);

								}

				};

}

Here's	how	you	use	it:

//	using	"error-first	style"	callback	design

function	foo(err,data)	{

				if	(err)	{

								console.error(	err	);

				}

				else	{

								console.log(	data	);

				}

}

ajax(	"http://some.url.1",	timeoutify(	foo,	500	)	);

Another	trust	issue	is	being	called	"too	early."	In	application-specific	terms,	this	may	actually	involve	being	called	before
some	critical	task	is	complete.	But	more	generally,	the	problem	is	evident	in	utilities	that	can	either	invoke	the	callback	you
provide	now	(synchronously),	or	later	(asynchronously).

This	nondeterminism	around	the	sync-or-async	behavior	is	almost	always	going	to	lead	to	very	difficult	to	track	down	bugs.
In	some	circles,	the	fictional	insanity-inducing	monster	named	Zalgo	is	used	to	describe	the	sync/async	nightmares.	"Don't
release	Zalgo!"	is	a	common	cry,	and	it	leads	to	very	sound	advice:	always	invoke	callbacks	asynchronously,	even	if	that's
"right	away"	on	the	next	turn	of	the	event	loop,	so	that	all	callbacks	are	predictably	async.

Note:	For	more	information	on	Zalgo,	see	Oren	Golan's	"Don't	Release	Zalgo!"
(https://github.com/oren/oren.github.io/blob/master/posts/zalgo.md)	and	Isaac	Z.	Schlueter's	"Designing	APIs	for
Asynchrony"	(http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony).

Consider:

function	result(data)	{

				console.log(	a	);

}

var	a	=	0;

ajax(	"..pre-cached-url..",	result	);

a++;

Will	this	code	print		0		(sync	callback	invocation)	or		1		(async	callback	invocation)?	Depends...	on	the	conditions.

https://github.com/oren/oren.github.io/blob/master/posts/zalgo.md
http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony


You	can	see	just	how	quickly	the	unpredictability	of	Zalgo	can	threaten	any	JS	program.	So	the	silly-sounding	"never
release	Zalgo"	is	actually	incredibly	common	and	solid	advice.	Always	be	asyncing.

What	if	you	don't	know	whether	the	API	in	question	will	always	execute	async?	You	could	invent	a	utility	like	this
	asyncify(..)		proof-of-concept:

function	asyncify(fn)	{

				var	orig_fn	=	fn,

								intv	=	setTimeout(	function(){

												intv	=	null;

												if	(fn)	fn();

								},	0	)

				;

				fn	=	null;

				return	function()	{

								//	firing	too	quickly,	before	`intv`	timer	has	fired	to

								//	indicate	async	turn	has	passed?

								if	(intv)	{

												fn	=	orig_fn.bind.apply(

																orig_fn,

																//	add	the	wrapper's	`this`	to	the	`bind(..)`

																//	call	parameters,	as	well	as	currying	any

																//	passed	in	parameters

																[this].concat(	[].slice.call(	arguments	)	)

												);

								}

								//	already	async

								else	{

												//	invoke	original	function

												orig_fn.apply(	this,	arguments	);

								}

				};

}

You	use		asyncify(..)		like	this:

function	result(data)	{

				console.log(	a	);

}

var	a	=	0;

ajax(	"..pre-cached-url..",	asyncify(	result	)	);

a++;

Whether	the	Ajax	request	is	in	the	cache	and	resolves	to	try	to	call	the	callback	right	away,	or	must	be	fetched	over	the	wire
and	thus	complete	later	asynchronously,	this	code	will	always	output		1		instead	of		0		--		result(..)		cannot	help	but	be
invoked	asynchronously,	which	means	the		a++		has	a	chance	to	run	before		result(..)		does.

Yay,	another	trust	issued	"solved"!	But	it's	inefficient,	and	yet	again	more	bloated	boilerplate	to	weigh	your	project	down.

That's	just	the	story,	over	and	over	again,	with	callbacks.	They	can	do	pretty	much	anything	you	want,	but	you	have	to	be
willing	to	work	hard	to	get	it,	and	oftentimes	this	effort	is	much	more	than	you	can	or	should	spend	on	such	code	reasoning.

You	might	find	yourself	wishing	for	built-in	APIs	or	other	language	mechanics	to	address	these	issues.	Finally	ES6	has
arrived	on	the	scene	with	some	great	answers,	so	keep	reading!

Callbacks	are	the	fundamental	unit	of	asynchrony	in	JS.	But	they're	not	enough	for	the	evolving	landscape	of	async
programming	as	JS	matures.

First,	our	brains	plan	things	out	in	sequential,	blocking,	single-threaded	semantic	ways,	but	callbacks	express
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asynchronous	flow	in	a	rather	nonlinear,	nonsequential	way,	which	makes	reasoning	properly	about	such	code	much
harder.	Bad	to	reason	about	code	is	bad	code	that	leads	to	bad	bugs.

We	need	a	way	to	express	asynchrony	in	a	more	synchronous,	sequential,	blocking	manner,	just	like	our	brains	do.

Second,	and	more	importantly,	callbacks	suffer	from	inversion	of	control	in	that	they	implicitly	give	control	over	to	another
party	(often	a	third-party	utility	not	in	your	control!)	to	invoke	the	continuation	of	your	program.	This	control	transfer	leads	us
to	a	troubling	list	of	trust	issues,	such	as	whether	the	callback	is	called	more	times	than	we	expect.

Inventing	ad	hoc	logic	to	solve	these	trust	issues	is	possible,	but	it's	more	difficult	than	it	should	be,	and	it	produces	clunkier
and	harder	to	maintain	code,	as	well	as	code	that	is	likely	insufficiently	protected	from	these	hazards	until	you	get	visibly
bitten	by	the	bugs.

We	need	a	generalized	solution	to	all	of	the	trust	issues,	one	that	can	be	reused	for	as	many	callbacks	as	we	create
without	all	the	extra	boilerplate	overhead.

We	need	something	better	than	callbacks.	They've	served	us	well	to	this	point,	but	the	future	of	JavaScript	demands	more
sophisticated	and	capable	async	patterns.	The	subsequent	chapters	in	this	book	will	dive	into	those	emerging	evolutions.



In	Chapter	2,	we	identified	two	major	categories	of	deficiencies	with	using	callbacks	to	express	program	asynchrony	and
manage	concurrency:	lack	of	sequentiality	and	lack	of	trustability.	Now	that	we	understand	the	problems	more	intimately,	it's
time	we	turn	our	attention	to	patterns	that	can	address	them.

The	issue	we	want	to	address	first	is	the	inversion	of	control,	the	trust	that	is	so	fragilely	held	and	so	easily	lost.

Recall	that	we	wrap	up	the	continuation	of	our	program	in	a	callback	function,	and	hand	that	callback	over	to	another	party
(potentially	even	external	code)	and	just	cross	our	fingers	that	it	will	do	the	right	thing	with	the	invocation	of	the	callback.

We	do	this	because	we	want	to	say,	"here's	what	happens	later,	after	the	current	step	finishes."

But	what	if	we	could	uninvert	that	inversion	of	control?	What	if	instead	of	handing	the	continuation	of	our	program	to
another	party,	we	could	expect	it	to	return	us	a	capability	to	know	when	its	task	finishes,	and	then	our	code	could	decide
what	to	do	next?

This	paradigm	is	called	Promises.

Promises	are	starting	to	take	the	JS	world	by	storm,	as	developers	and	specification	writers	alike	desperately	seek	to
untangle	the	insanity	of	callback	hell	in	their	code/design.	In	fact,	most	new	async	APIs	being	added	to	JS/DOM	platform
are	being	built	on	Promises.	So	it's	probably	a	good	idea	to	dig	in	and	learn	them,	don't	you	think!?

Note:	The	word	"immediately"	will	be	used	frequently	in	this	chapter,	generally	to	refer	to	some	Promise	resolution	action.
However,	in	essentially	all	cases,	"immediately"	means	in	terms	of	the	Job	queue	behavior	(see	Chapter	1),	not	in	the
strictly	synchronous	now	sense.

When	developers	decide	to	learn	a	new	technology	or	pattern,	usually	their	first	step	is	"Show	me	the	code!"	It's	quite
natural	for	us	to	just	jump	in	feet	first	and	learn	as	we	go.

But	it	turns	out	that	some	abstractions	get	lost	on	the	APIs	alone.	Promises	are	one	of	those	tools	where	it	can	be	painfully
obvious	from	how	someone	uses	it	whether	they	understand	what	it's	for	and	about	versus	just	learning	and	using	the	API.

So	before	I	show	the	Promise	code,	I	want	to	fully	explain	what	a	Promise	really	is	conceptually.	I	hope	this	will	then	guide
you	better	as	you	explore	integrating	Promise	theory	into	your	own	async	flow.

With	that	in	mind,	let's	look	at	two	different	analogies	for	what	a	Promise	is.

Imagine	this	scenario:	I	walk	up	to	the	counter	at	a	fast-food	restaurant,	and	place	an	order	for	a	cheeseburger.	I	hand	the
cashier	$1.47.	By	placing	my	order	and	paying	for	it,	I've	made	a	request	for	a	value	back	(the	cheeseburger).	I've	started	a
transaction.

But	often,	the	chesseburger	is	not	immediately	available	for	me.	The	cashier	hands	me	something	in	place	of	my
cheeseburger:	a	receipt	with	an	order	number	on	it.	This	order	number	is	an	IOU	("I	owe	you")	promise	that	ensures	that
eventually,	I	should	receive	my	cheeseburger.

So	I	hold	onto	my	receipt	and	order	number.	I	know	it	represents	my	future	cheeseburger,	so	I	don't	need	to	worry	about	it
anymore	--	aside	from	being	hungry!
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While	I	wait,	I	can	do	other	things,	like	send	a	text	message	to	a	friend	that	says,	"Hey,	can	you	come	join	me	for	lunch?	I'm
going	to	eat	a	cheeseburger."

I	am	reasoning	about	my	future	cheeseburger	already,	even	though	I	don't	have	it	in	my	hands	yet.	My	brain	is	able	to	do
this	because	it's	treating	the	order	number	as	a	placeholder	for	the	cheeseburger.	The	placeholder	essentially	makes	the
value	time	independent.	It's	a	future	value.

Eventually,	I	hear,	"Order	113!"	and	I	gleefully	walk	back	up	to	the	counter	with	receipt	in	hand.	I	hand	my	receipt	to	the
cashier,	and	I	take	my	cheeseburger	in	return.

In	other	words,	once	my	future	value	was	ready,	I	exchanged	my	value-promise	for	the	value	itself.

But	there's	another	possible	outcome.	They	call	my	order	number,	but	when	I	go	to	retrieve	my	cheeseburger,	the	cashier
regretfully	informs	me,	"I'm	sorry,	but	we	appear	to	be	all	out	of	cheeseburgers."	Setting	aside	the	customer	frustration	of
this	scenario	for	a	moment,	we	can	see	an	important	characteristic	of	future	values:	they	can	either	indicate	a	success	or
failure.

Every	time	I	order	a	cheeseburger,	I	know	that	I'll	either	get	a	cheeseburger	eventually,	or	I'll	get	the	sad	news	of	the
cheeseburger	shortage,	and	I'll	have	to	figure	out	something	else	to	eat	for	lunch.

Note:	In	code,	things	are	not	quite	as	simple,	because	metaphorically	the	order	number	may	never	be	called,	in	which	case
we're	left	indefinitely	in	an	unresolved	state.	We'll	come	back	to	dealing	with	that	case	later.

This	all	might	sound	too	mentally	abstract	to	apply	to	your	code.	So	let's	be	more	concrete.

However,	before	we	can	introduce	how	Promises	work	in	this	fashion,	we're	going	to	derive	in	code	that	we	already
understand	--	callbacks!	--	how	to	handle	these	future	values.

When	you	write	code	to	reason	about	a	value,	such	as	performing	math	on	a		number	,	whether	you	realize	it	or	not,	you've
been	assuming	something	very	fundamental	about	that	value,	which	is	that	it's	a	concrete	now	value	already:

var	x,	y	=	2;

console.log(	x	+	y	);	//	NaN		<--	because	`x`	isn't	set	yet

The		x	+	y		operation	assumes	both		x		and		y		are	already	set.	In	terms	we'll	expound	on	shortly,	we	assume	the		x		and
	y		values	are	already	resolved.

It	would	be	nonsense	to	expect	that	the		+		operator	by	itself	would	somehow	be	magically	capable	of	detecting	and	waiting
around	until	both		x		and		y		are	resolved	(aka	ready),	only	then	to	do	the	operation.	That	would	cause	chaos	in	the
program	if	different	statements	finished	now	and	others	finished	later,	right?

How	could	you	possibly	reason	about	the	relationships	between	two	statements	if	either	one	(or	both)	of	them	might	not	be
finished	yet?	If	statement	2	relies	on	statement	1	being	finished,	there	are	just	two	outcomes:	either	statement	1	finished
right	now	and	everything	proceeds	fine,	or	statement	1	didn't	finish	yet,	and	thus	statement	2	is	going	to	fail.

If	this	sort	of	thing	sounds	familiar	from	Chapter	1,	good!

Let's	go	back	to	our		x	+	y		math	operation.	Imagine	if	there	was	a	way	to	say,	"Add		x		and		y	,	but	if	either	of	them	isn't
ready	yet,	just	wait	until	they	are.	Add	them	as	soon	as	you	can."

Your	brain	might	have	just	jumped	to	callbacks.	OK,	so...

function	add(getX,getY,cb)	{

				var	x,	y;

				getX(	function(xVal){

Values	Now	and	Later



								x	=	xVal;

								//	both	are	ready?

								if	(y	!=	undefined)	{

												cb(	x	+	y	);				//	send	along	sum

								}

				}	);

				getY(	function(yVal){

								y	=	yVal;

								//	both	are	ready?

								if	(x	!=	undefined)	{

												cb(	x	+	y	);				//	send	along	sum

								}

				}	);

}

//	`fetchX()`	and	`fetchY()`	are	sync	or	async

//	functions

add(	fetchX,	fetchY,	function(sum){

				console.log(	sum	);	//	that	was	easy,	huh?

}	);

Take	just	a	moment	to	let	the	beauty	(or	lack	thereof)	of	that	snippet	sink	in	(whistles	patiently).

While	the	ugliness	is	undeniable,	there's	something	very	important	to	notice	about	this	async	pattern.

In	that	snippet,	we	treated		x		and		y		as	future	values,	and	we	express	an	operation		add(..)		that	(from	the	outside)	does
not	care	whether		x		or		y		or	both	are	available	right	away	or	not.	In	other	words,	it	normalizes	the	now	and	later,	such	that
we	can	rely	on	a	predictable	outcome	of	the		add(..)		operation.

By	using	an		add(..)		that	is	temporally	consistent	--	it	behaves	the	same	across	now	and	later	times	--	the	async	code	is
much	easier	to	reason	about.

To	put	it	more	plainly:	to	consistently	handle	both	now	and	later,	we	make	both	of	them	later:	all	operations	become	async.

Of	course,	this	rough	callbacks-based	approach	leaves	much	to	be	desired.	It's	just	a	first	tiny	step	toward	realizing	the
benefits	of	reasoning	about	future	values	without	worrying	about	the	time	aspect	of	when	it's	available	or	not.

We'll	definitely	go	into	a	lot	more	detail	about	Promises	later	in	the	chapter	--	so	don't	worry	if	some	of	this	is	confusing	--
but	let's	just	briefly	glimpse	at	how	we	can	express	the		x	+	y		example	via		Promise	s:

function	add(xPromise,yPromise)	{

				//	`Promise.all([	..	])`	takes	an	array	of	promises,

				//	and	returns	a	new	promise	that	waits	on	them

				//	all	to	finish

				return	Promise.all(	[xPromise,	yPromise]	)

				//	when	that	promise	is	resolved,	let's	take	the

				//	received	`X`	and	`Y`	values	and	add	them	together.

				.then(	function(values){

								//	`values`	is	an	array	of	the	messages	from	the

								//	previously	resolved	promises

								return	values[0]	+	values[1];

				}	);

}

//	`fetchX()`	and	`fetchY()`	return	promises	for

//	their	respective	values,	which	may	be	ready

//	*now*	or	*later*.

add(	fetchX(),	fetchY()	)

//	we	get	a	promise	back	for	the	sum	of	those

//	two	numbers.

//	now	we	chain-call	`then(..)`	to	wait	for	the

//	resolution	of	that	returned	promise.

.then(	function(sum){

				console.log(	sum	);	//	that	was	easier!

}	);

Promise	Value



There	are	two	layers	of	Promises	in	this	snippet.

	fetchX()		and		fetchY()		are	called	directly,	and	the	values	they	return	(promises!)	are	passed	into		add(..)	.	The
underlying	values	those	promises	represent	may	be	ready	now	or	later,	but	each	promise	normalizes	the	behavior	to	be	the
same	regardless.	We	reason	about		X		and		Y		values	in	a	time-independent	way.	They	are	future	values.

The	second	layer	is	the	promise	that		add(..)		creates	(via		Promise.all([	..	])	)	and	returns,	which	we	wait	on	by	calling
	then(..)	.	When	the		add(..)		operation	completes,	our		sum		future	value	is	ready	and	we	can	print	it	out.	We	hide	inside	of
	add(..)		the	logic	for	waiting	on	the		X		and		Y		future	values.

Note:	Inside		add(..)	,	the		Promise.all([	..	])		call	creates	a	promise	(which	is	waiting	on		promiseX		and		promiseY		to
resolve).	The	chained	call	to		.then(..)		creates	another	promise,	which	the		return	values[0]	+	values[1]		line	immediately
resolves	(with	the	result	of	the	addition).	Thus,	the		then(..)		call	we	chain	off	the	end	of	the		add(..)		call	--	at	the	end	of
the	snippet	--	is	actually	operating	on	that	second	promise	returned,	rather	than	the	first	one	created	by		Promise.all([	..
])	.	Also,	though	we	are	not	chaining	off	the	end	of	that	second		then(..)	,	it	too	has	created	another	promise,	had	we
chosen	to	observe/use	it.	This	Promise	chaining	stuff	will	be	explained	in	much	greater	detail	later	in	this	chapter.

Just	like	with	cheeseburger	orders,	it's	possible	that	the	resolution	of	a	Promise	is	rejection	instead	of	fulfillment.	Unlike	a
fulfilled	Promise,	where	the	value	is	always	programmatic,	a	rejection	value	--	commonly	called	a	"rejection	reason"	--	can
either	be	set	directly	by	the	program	logic,	or	it	can	result	implicitly	from	a	runtime	exception.

With	Promises,	the		then(..)		call	can	actually	take	two	functions,	the	first	for	fulfillment	(as	shown	earlier),	and	the	second
for	rejection:

add(	fetchX(),	fetchY()	)

.then(

				//	fullfillment	handler

				function(sum)	{

								console.log(	sum	);

				},

				//	rejection	handler

				function(err)	{

								console.error(	err	);	//	bummer!

				}

);

If	something	went	wrong	getting		X		or		Y	,	or	something	somehow	failed	during	the	addition,	the	promise	that		add(..)	
returns	is	rejected,	and	the	second	callback	error	handler	passed	to		then(..)		will	receive	the	rejection	value	from	the
promise.

Because	Promises	encapsulate	the	time-dependent	state	--	waiting	on	the	fulfillment	or	rejection	of	the	underlying	value	--
from	the	outside,	the	Promise	itself	is	time-independent,	and	thus	Promises	can	be	composed	(combined)	in	predictable
ways	regardless	of	the	timing	or	outcome	underneath.

Moreover,	once	a	Promise	is	resolved,	it	stays	that	way	forever	--	it	becomes	an	immutable	value	at	that	point	--	and	can
then	be	observed	as	many	times	as	necessary.

Note:	Because	a	Promise	is	externally	immutable	once	resolved,	it's	now	safe	to	pass	that	value	around	to	any	party	and
know	that	it	cannot	be	modified	accidentally	or	maliciously.	This	is	especially	true	in	relation	to	multiple	parties	observing
the	resolution	of	a	Promise.	It	is	not	possible	for	one	party	to	affect	another	party's	ability	to	observe	Promise	resolution.
Immutability	may	sound	like	an	academic	topic,	but	it's	actually	one	of	the	most	fundamental	and	important	aspects	of
Promise	design,	and	shouldn't	be	casually	passed	over.

That's	one	of	the	most	powerful	and	important	concepts	to	understand	about	Promises.	With	a	fair	amount	of	work,	you
could	ad	hoc	create	the	same	effects	with	nothing	but	ugly	callback	composition,	but	that's	not	really	an	effective	strategy,
especially	because	you	have	to	do	it	over	and	over	again.

Promises	are	an	easily	repeatable	mechanism	for	encapsulating	and	composing	future	values.



As	we	just	saw,	an	individual	Promise	behaves	as	a	future	value.	But	there's	another	way	to	think	of	the	resolution	of	a
Promise:	as	a	flow-control	mechanism	--	a	temporal	this-then-that	--	for	two	or	more	steps	in	an	asynchronous	task.

Let's	imagine	calling	a	function		foo(..)		to	perform	some	task.	We	don't	know	about	any	of	its	details,	nor	do	we	care.	It
may	complete	the	task	right	away,	or	it	may	take	a	while.

We	just	simply	need	to	know	when		foo(..)		finishes	so	that	we	can	move	on	to	our	next	task.	In	other	words,	we'd	like	a
way	to	be	notified	of		foo(..)	's	completion	so	that	we	can	continue.

In	typical	JavaScript	fashion,	if	you	need	to	listen	for	a	notification,	you'd	likely	think	of	that	in	terms	of	events.	So	we	could
reframe	our	need	for	notification	as	a	need	to	listen	for	a	completion	(or	continuation)	event	emitted	by		foo(..)	.

Note:	Whether	you	call	it	a	"completion	event"	or	a	"continuation	event"	depends	on	your	perspective.	Is	the	focus	more	on
what	happens	with		foo(..)	,	or	what	happens	after		foo(..)		finishes?	Both	perspectives	are	accurate	and	useful.	The
event	notification	tells	us	that		foo(..)		has	completed,	but	also	that	it's	OK	to	continue	with	the	next	step.	Indeed,	the
callback	you	pass	to	be	called	for	the	event	notification	is	itself	what	we've	previously	called	a	continuation.	Because
completion	event	is	a	bit	more	focused	on	the		foo(..)	,	which	more	has	our	attention	at	present,	we	slightly	favor
completion	event	for	the	rest	of	this	text.

With	callbacks,	the	"notification"	would	be	our	callback	invoked	by	the	task	(	foo(..)	).	But	with	Promises,	we	turn	the
relationship	around,	and	expect	that	we	can	listen	for	an	event	from		foo(..)	,	and	when	notified,	proceed	accordingly.

First,	consider	some	pseudocode:

foo(x)	{

				//	start	doing	something	that	could	take	a	while

}

foo(	42	)

on	(foo	"completion")	{

				//	now	we	can	do	the	next	step!

}

on	(foo	"error")	{

				//	oops,	something	went	wrong	in	`foo(..)`

}

We	call		foo(..)		and	then	we	set	up	two	event	listeners,	one	for		"completion"		and	one	for		"error"		--	the	two	possible
final	outcomes	of	the		foo(..)		call.	In	essence,		foo(..)		doesn't	even	appear	to	be	aware	that	the	calling	code	has
subscribed	to	these	events,	which	makes	for	a	very	nice	separation	of	concerns.

Unfortunately,	such	code	would	require	some	"magic"	of	the	JS	environment	that	doesn't	exist	(and	would	likely	be	a	bit
impractical).	Here's	the	more	natural	way	we	could	express	that	in	JS:

function	foo(x)	{

				//	start	doing	something	that	could	take	a	while

				//	make	a	`listener`	event	notification

				//	capability	to	return

				return	listener;

}

var	evt	=	foo(	42	);

evt.on(	"completion",	function(){

				//	now	we	can	do	the	next	step!

}	);

evt.on(	"failure",	function(err){

				//	oops,	something	went	wrong	in	`foo(..)`

}	);

Completion	Event



	foo(..)		expressly	creates	an	event	subscription	capability	to	return	back,	and	the	calling	code	receives	and	registers	the
two	event	handlers	against	it.

The	inversion	from	normal	callback-oriented	code	should	be	obvious,	and	it's	intentional.	Instead	of	passing	the	callbacks	to
	foo(..)	,	it	returns	an	event	capability	we	call		evt	,	which	receives	the	callbacks.

But	if	you	recall	from	Chapter	2,	callbacks	themselves	represent	an	inversion	of	control.	So	inverting	the	callback	pattern	is
actually	an	inversion	of	inversion,	or	an	uninversion	of	control	--	restoring	control	back	to	the	calling	code	where	we	wanted
it	to	be	in	the	first	place.

One	important	benefit	is	that	multiple	separate	parts	of	the	code	can	be	given	the	event	listening	capability,	and	they	can	all
independently	be	notified	of	when		foo(..)		completes	to	perform	subsequent	steps	after	its	completion:

var	evt	=	foo(	42	);

//	let	`bar(..)`	listen	to	`foo(..)`'s	completion

bar(	evt	);

//	also,	let	`baz(..)`	listen	to	`foo(..)`'s	completion

baz(	evt	);

Uninversion	of	control	enables	a	nicer	separation	of	concerns,	where		bar(..)		and		baz(..)		don't	need	to	be	involved	in
how		foo(..)		is	called.	Similarly,		foo(..)		doesn't	need	to	know	or	care	that		bar(..)		and		baz(..)		exist	or	are	waiting	to
be	notified	when		foo(..)		completes.

Essentially,	this		evt		object	is	a	neutral	third-party	negotiation	between	the	separate	concerns.

As	you	may	have	guessed	by	now,	the		evt		event	listening	capability	is	an	analogy	for	a	Promise.

In	a	Promise-based	approach,	the	previous	snippet	would	have		foo(..)		creating	and	returning	a		Promise		instance,	and
that	promise	would	then	be	passed	to		bar(..)		and		baz(..)	.

Note:	The	Promise	resolution	"events"	we	listen	for	aren't	strictly	events	(though	they	certainly	behave	like	events	for	these
purposes),	and	they're	not	typically	called		"completion"		or		"error"	.	Instead,	we	use		then(..)		to	register	a		"then"		event.
Or	perhaps	more	precisely,		then(..)		registers		"fulfillment"		and/or		"rejection"		event(s),	though	we	don't	see	those
terms	used	explicitly	in	the	code.

Consider:

function	foo(x)	{

				//	start	doing	something	that	could	take	a	while

				//	construct	and	return	a	promise

				return	new	Promise(	function(resolve,reject){

								//	eventually,	call	`resolve(..)`	or	`reject(..)`,

								//	which	are	the	resolution	callbacks	for

								//	the	promise.

				}	);

}

var	p	=	foo(	42	);

bar(	p	);

baz(	p	);

Note:	The	pattern	shown	with		new	Promise(	function(..){	..	}	)		is	generally	called	the	"revealing	constructor".	The
function	passed	in	is	executed	immediately	(not	async	deferred,	as	callbacks	to		then(..)		are),	and	it's	provided	two

Promise	"Events"
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parameters,	which	in	this	case	we've	named		resolve		and		reject	.	These	are	the	resolution	functions	for	the	promise.
	resolve(..)		generally	signals	fulfillment,	and		reject(..)		signals	rejection.

You	can	probably	guess	what	the	internals	of		bar(..)		and		baz(..)		might	look	like:

function	bar(fooPromise)	{

				//	listen	for	`foo(..)`	to	complete

				fooPromise.then(

								function(){

												//	`foo(..)`	has	now	finished,	so

												//	do	`bar(..)`'s	task

								},

								function(){

												//	oops,	something	went	wrong	in	`foo(..)`

								}

				);

}

//	ditto	for	`baz(..)`

Promise	resolution	doesn't	necessarily	need	to	involve	sending	along	a	message,	as	it	did	when	we	were	examining
Promises	as	future	values.	It	can	just	be	a	flow-control	signal,	as	used	in	the	previous	snippet.

Another	way	to	approach	this	is:

function	bar()	{

				//	`foo(..)`	has	definitely	finished,	so

				//	do	`bar(..)`'s	task

}

function	oopsBar()	{

				//	oops,	something	went	wrong	in	`foo(..)`,

				//	so	`bar(..)`	didn't	run

}

//	ditto	for	`baz()`	and	`oopsBaz()`

var	p	=	foo(	42	);

p.then(	bar,	oopsBar	);

p.then(	baz,	oopsBaz	);

Note:	If	you've	seen	Promise-based	coding	before,	you	might	be	tempted	to	believe	that	the	last	two	lines	of	that	code
could	be	written	as		p.then(	..	).then(	..	)	,	using	chaining,	rather	than		p.then(..);	p.then(..)	.	That	would	have	an
entirely	different	behavior,	so	be	careful!	The	difference	might	not	be	clear	right	now,	but	it's	actually	a	different	async
pattern	than	we've	seen	thus	far:	splitting/forking.	Don't	worry!	We'll	come	back	to	this	point	later	in	this	chapter.

Instead	of	passing	the		p		promise	to		bar(..)		and		baz(..)	,	we	use	the	promise	to	control	when		bar(..)		and		baz(..)	
will	get	executed,	if	ever.	The	primary	difference	is	in	the	error	handling.

In	the	first	snippet's	approach,		bar(..)		is	called	regardless	of	whether		foo(..)		succeeds	or	fails,	and	it	handles	its	own
fallback	logic	if	it's	notified	that		foo(..)		failed.	The	same	is	true	for		baz(..)	,	obviously.

In	the	second	snippet,		bar(..)		only	gets	called	if		foo(..)		succeeds,	and	otherwise		oopsBar(..)		gets	called.	Ditto	for
	baz(..)	.

Neither	approach	is	correct	per	se.	There	will	be	cases	where	one	is	preferred	over	the	other.

In	either	case,	the	promise		p		that	comes	back	from		foo(..)		is	used	to	control	what	happens	next.

Moreover,	the	fact	that	both	snippets	end	up	calling		then(..)		twice	against	the	same	promise		p		illustrates	the	point	made
earlier,	which	is	that	Promises	(once	resolved)	retain	their	same	resolution	(fulfillment	or	rejection)	forever,	and	can
subsequently	be	observed	as	many	times	as	necessary.



Whenever		p		is	resolved,	the	next	step	will	always	be	the	same,	both	now	and	later.

In	Promises-land,	an	important	detail	is	how	to	know	for	sure	if	some	value	is	a	genuine	Promise	or	not.	Or	more	directly,	is
it	a	value	that	will	behave	like	a	Promise?

Given	that	Promises	are	constructed	by	the		new	Promise(..)		syntax,	you	might	think	that		p	instanceof	Promise		would	be
an	acceptable	check.	But	unfortunately,	there	are	a	number	of	reasons	that's	not	totally	sufficient.

Mainly,	you	can	receive	a	Promise	value	from	another	browser	window	(iframe,	etc.),	which	would	have	its	own	Promise
different	from	the	one	in	the	current	window/frame,	and	that	check	would	fail	to	identify	the	Promise	instance.

Moreover,	a	library	or	framework	may	choose	to	vend	its	own	Promises	and	not	use	the	native	ES6		Promise	
implementation	to	do	so.	In	fact,	you	may	very	well	be	using	Promises	with	libraries	in	older	browsers	that	have	no	Promise
at	all.

When	we	discuss	Promise	resolution	processes	later	in	this	chapter,	it	will	become	more	obvious	why	a	non-genuine-but-
Promise-like	value	would	still	be	very	important	to	be	able	to	recognize	and	assimilate.	But	for	now,	just	take	my	word	for	it
that	it's	a	critical	piece	of	the	puzzle.

As	such,	it	was	decided	that	the	way	to	recognize	a	Promise	(or	something	that	behaves	like	a	Promise)	would	be	to	define
something	called	a	"thenable"	as	any	object	or	function	which	has	a		then(..)		method	on	it.	It	is	assumed	that	any	such
value	is	a	Promise-conforming	thenable.

The	general	term	for	"type	checks"	that	make	assumptions	about	a	value's	"type"	based	on	its	shape	(what	properties	are
present)	is	called	"duck	typing"	--	"If	it	looks	like	a	duck,	and	quacks	like	a	duck,	it	must	be	a	duck"	(see	the	Types	&
Grammar	title	of	this	book	series).	So	the	duck	typing	check	for	a	thenable	would	roughly	be:

if	(

				p	!==	null	&&

				(

								typeof	p	===	"object"	||

								typeof	p	===	"function"

				)	&&

				typeof	p.then	===	"function"

)	{

				//	assume	it's	a	thenable!

}

else	{

				//	not	a	thenable

}

Yuck!	Setting	aside	the	fact	that	this	logic	is	a	bit	ugly	to	implement	in	various	places,	there's	something	deeper	and	more
troubling	going	on.

If	you	try	to	fulfill	a	Promise	with	any	object/function	value	that	happens	to	have	a		then(..)		function	on	it,	but	you	weren't
intending	it	to	be	treated	as	a	Promise/thenable,	you're	out	of	luck,	because	it	will	automatically	be	recognized	as	thenable
and	treated	with	special	rules	(see	later	in	the	chapter).

This	is	even	true	if	you	didn't	realize	the	value	has	a		then(..)		on	it.	For	example:

var	o	=	{	then:	function(){}	};

//	make	`v`	be	`[[Prototype]]`-linked	to	`o`

var	v	=	Object.create(	o	);

v.someStuff	=	"cool";

v.otherStuff	=	"not	so	cool";

v.hasOwnProperty(	"then"	);								//	false

Thenable	Duck	Typing



	v		doesn't	look	like	a	Promise	or	thenable	at	all.	It's	just	a	plain	object	with	some	properties	on	it.	You're	probably	just
intending	to	send	that	value	around	like	any	other	object.

But	unknown	to	you,		v		is	also		[[Prototype]]	-linked	(see	the	this	&	Object	Prototypes	title	of	this	book	series)	to	another
object		o	,	which	happens	to	have	a		then(..)		on	it.	So	the	thenable	duck	typing	checks	will	think	and	assume		v		is	a
thenable.	Uh	oh.

It	doesn't	even	need	to	be	something	as	directly	intentional	as	that:

Object.prototype.then	=	function(){};

Array.prototype.then	=	function(){};

var	v1	=	{	hello:	"world"	};

var	v2	=	[	"Hello",	"World"	];

Both		v1		and		v2		will	be	assumed	to	be	thenables.	You	can't	control	or	predict	if	any	other	code	accidentally	or	maliciously
adds		then(..)		to		Object.prototype	,		Array.prototype	,	or	any	of	the	other	native	prototypes.	And	if	what's	specified	is	a
function	that	doesn't	call	either	of	its	parameters	as	callbacks,	then	any	Promise	resolved	with	such	a	value	will	just	silently
hang	forever!	Crazy.

Sound	implausible	or	unlikely?	Perhaps.

But	keep	in	mind	that	there	were	several	well-known	non-Promise	libraries	preexisting	in	the	community	prior	to	ES6	that
happened	to	already	have	a	method	on	them	called		then(..)	.	Some	of	those	libraries	chose	to	rename	their	own	methods
to	avoid	collision	(that	sucks!).	Others	have	simply	been	relegated	to	the	unfortunate	status	of	"incompatible	with	Promise-
based	coding"	in	reward	for	their	inability	to	change	to	get	out	of	the	way.

The	standards	decision	to	hijack	the	previously	nonreserved	--	and	completely	general-purpose	sounding	--		then		property
name	means	that	no	value	(or	any	of	its	delegates),	either	past,	present,	or	future,	can	have	a		then(..)		function	present,
either	on	purpose	or	by	accident,	or	that	value	will	be	confused	for	a	thenable	in	Promises	systems,	which	will	probably
create	bugs	that	are	really	hard	to	track	down.

Warning:	I	do	not	like	how	we	ended	up	with	duck	typing	of	thenables	for	Promise	recognition.	There	were	other	options,
such	as	"branding"	or	even	"anti-branding";	what	we	got	seems	like	a	worst-case	compromise.	But	it's	not	all	doom	and
gloom.	Thenable	duck	typing	can	be	helpful,	as	we'll	see	later.	Just	beware	that	thenable	duck	typing	can	be	hazardous	if	it
incorrectly	identifies	something	as	a	Promise	that	isn't.

We've	now	seen	two	strong	analogies	that	explain	different	aspects	of	what	Promises	can	do	for	our	async	code.	But	if	we
stop	there,	we've	missed	perhaps	the	single	most	important	characteristic	that	the	Promise	pattern	establishes:	trust.

Whereas	the	future	values	and	completion	events	analogies	play	out	explicitly	in	the	code	patterns	we've	explored,	it	won't
be	entirely	obvious	why	or	how	Promises	are	designed	to	solve	all	of	the	inversion	of	control	trust	issues	we	laid	out	in	the
"Trust	Issues"	section	of	Chapter	2.	But	with	a	little	digging,	we	can	uncover	some	important	guarantees	that	restore	the
confidence	in	async	coding	that	Chapter	2	tore	down!

Let's	start	by	reviewing	the	trust	issues	with	callbacks-only	coding.	When	you	pass	a	callback	to	a	utility		foo(..)	,	it	might:

Call	the	callback	too	early
Call	the	callback	too	late	(or	never)
Call	the	callback	too	few	or	too	many	times
Fail	to	pass	along	any	necessary	environment/parameters
swallow	any	errors/exceptions	that	may	happen

The	characteristics	of	Promises	are	intentionally	designed	to	provide	useful,	repeatable	answers	to	all	these	concerns.

Promise	Trust



Primarily,	this	is	a	concern	of	whether	code	can	introduce	Zalgo-like	effects	(see	Chapter	2),	where	sometimes	a	task
finishes	synchronously	and	sometimes	asynchronously,	which	can	lead	to	race	conditions.

Promises	by	definition	cannot	be	susceptible	to	this	concern,	because	even	an	immediately	fulfilled	Promise	(like		new
Promise(function(resolve){	resolve(42);	})	)	cannot	be	observed	synchronously.

That	is,	when	you	call		then(..)		on	a	Promise,	even	if	that	Promise	was	already	resolved,	the	callback	you	provide	to
	then(..)		will	always	be	called	asynchronously	(for	more	on	this,	refer	back	to	"Jobs"	in	Chapter	1).

No	more	need	to	insert	your	own		setTimeout(..,0)		hacks.	Promises	prevent	Zalgo	automatically.

Similar	to	the	previous	point,	a	Promise's		then(..)		registered	observation	callbacks	are	automatically	scheduled	when
either		resolve(..)		or		reject(..)		are	called	by	the	Promise	creation	capability.	Those	scheduled	callbacks	will	predictably
be	fired	at	the	next	asynchronous	moment	(see	"Jobs"	in	Chapter	1).

It's	not	possible	for	synchronous	observation,	so	it's	not	possible	for	a	synchronous	chain	of	tasks	to	run	in	such	a	way	to	in
effect	"delay"	another	callback	from	happening	as	expected.	That	is,	when	a	Promise	is	resolved,	all		then(..)		registered
callbacks	on	it	will	be	called,	in	order,	immediately	at	the	next	asynchronous	opportunity	(again,	see	"Jobs"	in	Chapter	1),
and	nothing	that	happens	inside	of	one	of	those	callbacks	can	affect/delay	the	calling	of	the	other	callbacks.

For	example:

p.then(	function(){

				p.then(	function(){

								console.log(	"C"	);

				}	);

				console.log(	"A"	);

}	);

p.then(	function(){

				console.log(	"B"	);

}	);

//	A	B	C

Here,		"C"		cannot	interrupt	and	precede		"B"	,	by	virtue	of	how	Promises	are	defined	to	operate.

It's	important	to	note,	though,	that	there	are	lots	of	nuances	of	scheduling	where	the	relative	ordering	between	callbacks
chained	off	two	separate	Promises	is	not	reliably	predictable.

If	two	promises		p1		and		p2		are	both	already	resolved,	it	should	be	true	that		p1.then(..);	p2.then(..)		would	end	up
calling	the	callback(s)	for		p1		before	the	ones	for		p2	.	But	there	are	subtle	cases	where	that	might	not	be	true,	such	as	the
following:

var	p3	=	new	Promise(	function(resolve,reject){

				resolve(	"B"	);

}	);

var	p1	=	new	Promise(	function(resolve,reject){

				resolve(	p3	);

}	);

var	p2	=	new	Promise(	function(resolve,reject){

				resolve(	"A"	);

}	);

p1.then(	function(v){

				console.log(	v	);

}	);

Calling	Too	Early

Calling	Too	Late

Promise	Scheduling	Quirks



p2.then(	function(v){

				console.log(	v	);

}	);

//	A	B		<--	not		B	A		as	you	might	expect

We'll	cover	this	more	later,	but	as	you	can	see,		p1		is	resolved	not	with	an	immediate	value,	but	with	another	promise		p3	
which	is	itself	resolved	with	the	value		"B"	.	The	specified	behavior	is	to	unwrap		p3		into		p1	,	but	asynchronously,	so		p1	's
callback(s)	are	behind		p2	's	callback(s)	in	the	asynchronus	Job	queue	(see	Chapter	1).

To	avoid	such	nuanced	nightmares,	you	should	never	rely	on	anything	about	the	ordering/scheduling	of	callbacks	across
Promises.	In	fact,	a	good	practice	is	not	to	code	in	such	a	way	where	the	ordering	of	multiple	callbacks	matters	at	all.	Avoid
that	if	you	can.

This	is	a	very	common	concern.	It's	addressable	in	several	ways	with	Promises.

First,	nothing	(not	even	a	JS	error)	can	prevent	a	Promise	from	notifying	you	of	its	resolution	(if	it's	resolved).	If	you	register
both	fulfillment	and	rejection	callbacks	for	a	Promise,	and	the	Promise	gets	resolved,	one	of	the	two	callbacks	will	always
be	called.

Of	course,	if	your	callbacks	themselves	have	JS	errors,	you	may	not	see	the	outcome	you	expect,	but	the	callback	will	in
fact	have	been	called.	We'll	cover	later	how	to	be	notified	of	an	error	in	your	callback,	because	even	those	don't	get
swallowed.

But	what	if	the	Promise	itself	never	gets	resolved	either	way?	Even	that	is	a	condition	that	Promises	provide	an	answer	for,
using	a	higher	level	abstraction	called	a	"race":

//	a	utility	for	timing	out	a	Promise

function	timeoutPromise(delay)	{

				return	new	Promise(	function(resolve,reject){

								setTimeout(	function(){

												reject(	"Timeout!"	);

								},	delay	);

				}	);

}

//	setup	a	timeout	for	`foo()`

Promise.race(	[

				foo(),																				//	attempt	`foo()`

				timeoutPromise(	3000	)				//	give	it	3	seconds

]	)

.then(

				function(){

								//	`foo(..)`	fulfilled	in	time!

				},

				function(err){

								//	either	`foo()`	rejected,	or	it	just

								//	didn't	finish	in	time,	so	inspect

								//	`err`	to	know	which

				}

);

There	are	more	details	to	consider	with	this	Promise	timeout	pattern,	but	we'll	come	back	to	it	later.

Importantly,	we	can	ensure	a	signal	as	to	the	outcome	of		foo()	,	to	prevent	it	from	hanging	our	program	indefinitely.

By	definition,	one	is	the	appropriate	number	of	times	for	the	callback	to	be	called.	The	"too	few"	case	would	be	zero	calls,
which	is	the	same	as	the	"never"	case	we	just	examined.

Never	Calling	the	Callback

Calling	Too	Few	or	Too	Many	Times



The	"too	many"	case	is	easy	to	explain.	Promises	are	defined	so	that	they	can	only	be	resolved	once.	If	for	some	reason
the	Promise	creation	code	tries	to	call		resolve(..)		or		reject(..)		multiple	times,	or	tries	to	call	both,	the	Promise	will
accept	only	the	first	resolution,	and	will	silently	ignore	any	subsequent	attempts.

Because	a	Promise	can	only	be	resolved	once,	any		then(..)		registered	callbacks	will	only	ever	be	called	once	(each).

Of	course,	if	you	register	the	same	callback	more	than	once,	(e.g.,		p.then(f);	p.then(f);	),	it'll	be	called	as	many	times	as
it	was	registered.	The	guarantee	that	a	response	function	is	called	only	once	does	not	prevent	you	from	shooting	yourself	in
the	foot.

Promises	can	have,	at	most,	one	resolution	value	(fulfillment	or	rejection).

If	you	don't	explicitly	resolve	with	a	value	either	way,	the	value	is		undefined	,	as	is	typical	in	JS.	But	whatever	the	value,	it
will	always	be	passed	to	all	registered	(and	appropriate:	fulfillment	or	rejection)	callbacks,	either	now	or	in	the	future.

Something	to	be	aware	of:	If	you	call		resolve(..)		or		reject(..)		with	multiple	parameters,	all	subsequent	parameters
beyond	the	first	will	be	silently	ignored.	Although	that	might	seem	a	violation	of	the	guarantee	we	just	described,	it's	not
exactly,	because	it	constitutes	an	invalid	usage	of	the	Promise	mechanism.	Other	invalid	usages	of	the	API	(such	as	calling
	resolve(..)		multiple	times)	are	similarly	protected,	so	the	Promise	behavior	here	is	consistent	(if	not	a	tiny	bit	frustrating).

If	you	want	to	pass	along	multiple	values,	you	must	wrap	them	in	another	single	value	that	you	pass,	such	as	an		array		or
an		object	.

As	for	environment,	functions	in	JS	always	retain	their	closure	of	the	scope	in	which	they're	defined	(see	the	Scope	&
Closures	title	of	this	series),	so	they	of	course	would	continue	to	have	access	to	whatever	surrounding	state	you	provide.	Of
course,	the	same	is	true	of	callbacks-only	design,	so	this	isn't	a	specific	augmentation	of	benefit	from	Promises	--	but	it's	a
guarantee	we	can	rely	on	nonetheless.

In	the	base	sense,	this	is	a	restatement	of	the	previous	point.	If	you	reject	a	Promise	with	a	reason	(aka	error	message),
that	value	is	passed	to	the	rejection	callback(s).

But	there's	something	much	bigger	at	play	here.	If	at	any	point	in	the	creation	of	a	Promise,	or	in	the	observation	of	its
resolution,	a	JS	exception	error	occurs,	such	as	a		TypeError		or		ReferenceError	,	that	exception	will	be	caught,	and	it	will
force	the	Promise	in	question	to	become	rejected.

For	example:

var	p	=	new	Promise(	function(resolve,reject){

				foo.bar();				//	`foo`	is	not	defined,	so	error!

				resolve(	42	);				//	never	gets	here	:(

}	);

p.then(

				function	fulfilled(){

								//	never	gets	here	:(

				},

				function	rejected(err){

								//	`err`	will	be	a	`TypeError`	exception	object

								//	from	the	`foo.bar()`	line.

				}

);

The	JS	exception	that	occurs	from		foo.bar()		becomes	a	Promise	rejection	that	you	can	catch	and	respond	to.

This	is	an	important	detail,	because	it	effectively	solves	another	potential	Zalgo	moment,	which	is	that	errors	could	create	a
synchronous	reaction	whereas	nonerrors	would	be	asynchronous.	Promises	turn	even	JS	exceptions	into	asynchronous

Failing	to	Pass	Along	Any	Parameters/Environment

Swallowing	Any	Errors/Exceptions



behavior,	thereby	reducing	the	race	condition	chances	greatly.

But	what	happens	if	a	Promise	is	fulfilled,	but	there's	a	JS	exception	error	during	the	observation	(in	a		then(..)		registered
callback)?	Even	those	aren't	lost,	but	you	may	find	how	they're	handled	a	bit	surprising,	until	you	dig	in	a	little	deeper:

var	p	=	new	Promise(	function(resolve,reject){

				resolve(	42	);

}	);

p.then(

				function	fulfilled(msg){

								foo.bar();

								console.log(	msg	);				//	never	gets	here	:(

				},

				function	rejected(err){

								//	never	gets	here	either	:(

				}

);

Wait,	that	makes	it	seem	like	the	exception	from		foo.bar()		really	did	get	swallowed.	Never	fear,	it	didn't.	But	something
deeper	is	wrong,	which	is	that	we've	failed	to	listen	for	it.	The		p.then(..)		call	itself	returns	another	promise,	and	it's	that
promise	that	will	be	rejected	with	the		TypeError		exception.

Why	couldn't	it	just	call	the	error	handler	we	have	defined	there?	Seems	like	a	logical	behavior	on	the	surface.	But	it	would
violate	the	fundamental	principle	that	Promises	are	immutable	once	resolved.		p		was	already	fulfilled	to	the	value		42	,	so
it	can't	later	be	changed	to	a	rejection	just	because	there's	an	error	in	observing		p	's	resolution.

Besides	the	principle	violation,	such	behavior	could	wreak	havoc,	if	say	there	were	multiple		then(..)		registered	callbacks
on	the	promise		p	,	because	some	would	get	called	and	others	wouldn't,	and	it	would	be	very	opaque	as	to	why.

There's	one	last	detail	to	examine	to	establish	trust	based	on	the	Promise	pattern.

You've	no	doubt	noticed	that	Promises	don't	get	rid	of	callbacks	at	all.	They	just	change	where	the	callback	is	passed	to.
Instead	of	passing	a	callback	to		foo(..)	,	we	get	something	(ostensibly	a	genuine	Promise)	back	from		foo(..)	,	and	we
pass	the	callback	to	that	something	instead.

But	why	would	this	be	any	more	trustable	than	just	callbacks	alone?	How	can	we	be	sure	the	something	we	get	back	is	in
fact	a	trustable	Promise?	Isn't	it	basically	all	just	a	house	of	cards	where	we	can	trust	only	because	we	already	trusted?

One	of	the	most	important,	but	often	overlooked,	details	of	Promises	is	that	they	have	a	solution	to	this	issue	as	well.
Included	with	the	native	ES6		Promise		implementation	is		Promise.resolve(..)	.

If	you	pass	an	immediate,	non-Promise,	non-thenable	value	to		Promise.resolve(..)	,	you	get	a	promise	that's	fulfilled	with
that	value.	In	other	words,	these	two	promises		p1		and		p2		will	behave	basically	identically:

var	p1	=	new	Promise(	function(resolve,reject){

				resolve(	42	);

}	);

var	p2	=	Promise.resolve(	42	);

But	if	you	pass	a	genuine	Promise	to		Promise.resolve(..)	,	you	just	get	the	same	promise	back:

var	p1	=	Promise.resolve(	42	);

var	p2	=	Promise.resolve(	p1	);

p1	===	p2;	//	true

Trustable	Promise?



Even	more	importantly,	if	you	pass	a	non-Promise	thenable	value	to		Promise.resolve(..)	,	it	will	attempt	to	unwrap	that
value,	and	the	unwrapping	will	keep	going	until	a	concrete	final	non-Promise-like	value	is	extracted.

Recall	our	previous	discussion	of	thenables?

Consider:

var	p	=	{

				then:	function(cb)	{

								cb(	42	);

				}

};

//	this	works	OK,	but	only	by	good	fortune

p

.then(

				function	fulfilled(val){

								console.log(	val	);	//	42

				},

				function	rejected(err){

								//	never	gets	here

				}

);

This		p		is	a	thenable,	but	it's	not	a	genuine	Promise.	Luckily,	it's	reasonable,	as	most	will	be.	But	what	if	you	got	back
instead	something	that	looked	like:

var	p	=	{

				then:	function(cb,errcb)	{

								cb(	42	);

								errcb(	"evil	laugh"	);

				}

};

p

.then(

				function	fulfilled(val){

								console.log(	val	);	//	42

				},

				function	rejected(err){

								//	oops,	shouldn't	have	run

								console.log(	err	);	//	evil	laugh

				}

);

This		p		is	a	thenable	but	it's	not	so	well	behaved	of	a	promise.	Is	it	malicious?	Or	is	it	just	ignorant	of	how	Promises	should
work?	It	doesn't	really	matter,	to	be	honest.	In	either	case,	it's	not	trustable	as	is.

Nonetheless,	we	can	pass	either	of	these	versions	of		p		to		Promise.resolve(..)	,	and	we'll	get	the	normalized,	safe	result
we'd	expect:

Promise.resolve(	p	)

.then(

				function	fulfilled(val){

								console.log(	val	);	//	42

				},

				function	rejected(err){

								//	never	gets	here

				}

);

	Promise.resolve(..)		will	accept	any	thenable,	and	will	unwrap	it	to	its	non-thenable	value.	But	you	get	back	from
	Promise.resolve(..)		a	real,	genuine	Promise	in	its	place,	one	that	you	can	trust.	If	what	you	passed	in	is	already	a
genuine	Promise,	you	just	get	it	right	back,	so	there's	no	downside	at	all	to	filtering	through		Promise.resolve(..)		to	gain
trust.



So	let's	say	we're	calling	a		foo(..)		utility	and	we're	not	sure	we	can	trust	its	return	value	to	be	a	well-behaving	Promise,
but	we	know	it's	at	least	a	thenable.		Promise.resolve(..)		will	give	us	a	trustable	Promise	wrapper	to	chain	off	of:

//	don't	just	do	this:

foo(	42	)

.then(	function(v){

				console.log(	v	);

}	);

//	instead,	do	this:

Promise.resolve(	foo(	42	)	)

.then(	function(v){

				console.log(	v	);

}	);

Note:	Another	beneficial	side	effect	of	wrapping		Promise.resolve(..)		around	any	function's	return	value	(thenable	or	not)	is
that	it's	an	easy	way	to	normalize	that	function	call	into	a	well-behaving	async	task.	If		foo(42)		returns	an	immediate	value
sometimes,	or	a	Promise	other	times,		Promise.resolve(	foo(42)	)		makes	sure	it's	always	a	Promise	result.	And	avoiding
Zalgo	makes	for	much	better	code.

Hopefully	the	previous	discussion	now	fully	"resolves"	(pun	intended)	in	your	mind	why	the	Promise	is	trustable,	and	more
importantly,	why	that	trust	is	so	critical	in	building	robust,	maintainable	software.

Can	you	write	async	code	in	JS	without	trust?	Of	course	you	can.	We	JS	developers	have	been	coding	async	with	nothing
but	callbacks	for	nearly	two	decades.

But	once	you	start	questioning	just	how	much	you	can	trust	the	mechanisms	you	build	upon	to	actually	be	predictable	and
reliable,	you	start	to	realize	callbacks	have	a	pretty	shaky	trust	foundation.

Promises	are	a	pattern	that	augments	callbacks	with	trustable	semantics,	so	that	the	behavior	is	more	reason-able	and
more	reliable.	By	uninverting	the	inversion	of	control	of	callbacks,	we	place	the	control	with	a	trustable	system	(Promises)
that	was	designed	specifically	to	bring	sanity	to	our	async.

We've	hinted	at	this	a	couple	of	times	already,	but	Promises	are	not	just	a	mechanism	for	a	single-step	this-then-that	sort	of
operation.	That's	the	building	block,	of	course,	but	it	turns	out	we	can	string	multiple	Promises	together	to	represent	a
sequence	of	async	steps.

The	key	to	making	this	work	is	built	on	two	behaviors	intrinsic	to	Promises:

Every	time	you	call		then(..)		on	a	Promise,	it	creates	and	returns	a	new	Promise,	which	we	can	chain	with.
Whatever	value	you	return	from	the		then(..)		call's	fulfillment	callback	(the	first	parameter)	is	automatically	set	as	the
fulfillment	of	the	chained	Promise	(from	the	first	point).

Let's	first	illustrate	what	that	means,	and	then	we'll	derive	how	that	helps	us	create	async	sequences	of	flow	control.
Consider	the	following:

var	p	=	Promise.resolve(	21	);

var	p2	=	p.then(	function(v){

				console.log(	v	);				//	21

				//	fulfill	`p2`	with	value	`42`

				return	v	*	2;

}	);

//	chain	off	`p2`

p2.then(	function(v){

Trust	Built

Chain	Flow



				console.log(	v	);				//	42

}	);

By	returning		v	*	2		(i.e.,		42	),	we	fulfill	the		p2		promise	that	the	first		then(..)		call	created	and	returned.	When		p2	's
	then(..)		call	runs,	it's	receiving	the	fulfillment	from	the		return	v	*	2		statement.	Of	course,		p2.then(..)		creates	yet
another	promise,	which	we	could	have	stored	in	a		p3		variable.

But	it's	a	little	annoying	to	have	to	create	an	intermediate	variable		p2		(or		p3	,	etc.).	Thankfully,	we	can	easily	just	chain
these	together:

var	p	=	Promise.resolve(	21	);

p

.then(	function(v){

				console.log(	v	);				//	21

				//	fulfill	the	chained	promise	with	value	`42`

				return	v	*	2;

}	)

//	here's	the	chained	promise

.then(	function(v){

				console.log(	v	);				//	42

}	);

So	now	the	first		then(..)		is	the	first	step	in	an	async	sequence,	and	the	second		then(..)		is	the	second	step.	This	could
keep	going	for	as	long	as	you	needed	it	to	extend.	Just	keep	chaining	off	a	previous		then(..)		with	each	automatically
created	Promise.

But	there's	something	missing	here.	What	if	we	want	step	2	to	wait	for	step	1	to	do	something	asynchronous?	We're	using
an	immediate		return		statement,	which	immediately	fulfills	the	chained	promise.

The	key	to	making	a	Promise	sequence	truly	async	capable	at	every	step	is	to	recall	how		Promise.resolve(..)		operates
when	what	you	pass	to	it	is	a	Promise	or	thenable	instead	of	a	final	value.		Promise.resolve(..)		directly	returns	a	received
genuine	Promise,	or	it	unwraps	the	value	of	a	received	thenable	--	and	keeps	going	recursively	while	it	keeps	unwrapping
thenables.

The	same	sort	of	unwrapping	happens	if	you		return		a	thenable	or	Promise	from	the	fulfillment	(or	rejection)	handler.
Consider:

var	p	=	Promise.resolve(	21	);

p.then(	function(v){

				console.log(	v	);				//	21

				//	create	a	promise	and	return	it

				return	new	Promise(	function(resolve,reject){

								//	fulfill	with	value	`42`

								resolve(	v	*	2	);

				}	);

}	)

.then(	function(v){

				console.log(	v	);				//	42

}	);

Even	though	we	wrapped		42		up	in	a	promise	that	we	returned,	it	still	got	unwrapped	and	ended	up	as	the	resolution	of	the
chained	promise,	such	that	the	second		then(..)		still	received		42	.	If	we	introduce	asynchrony	to	that	wrapping	promise,
everything	still	nicely	works	the	same:

var	p	=	Promise.resolve(	21	);

p.then(	function(v){

				console.log(	v	);				//	21



				//	create	a	promise	to	return

				return	new	Promise(	function(resolve,reject){

								//	introduce	asynchrony!

								setTimeout(	function(){

												//	fulfill	with	value	`42`

												resolve(	v	*	2	);

								},	100	);

				}	);

}	)

.then(	function(v){

				//	runs	after	the	100ms	delay	in	the	previous	step

				console.log(	v	);				//	42

}	);

That's	incredibly	powerful!	Now	we	can	construct	a	sequence	of	however	many	async	steps	we	want,	and	each	step	can
delay	the	next	step	(or	not!),	as	necessary.

Of	course,	the	value	passing	from	step	to	step	in	these	examples	is	optional.	If	you	don't	return	an	explicit	value,	an	implicit
	undefined		is	assumed,	and	the	promises	still	chain	together	the	same	way.	Each	Promise	resolution	is	thus	just	a	signal	to
proceed	to	the	next	step.

To	further	the	chain	illustration,	let's	generalize	a	delay-Promise	creation	(without	resolution	messages)	into	a	utility	we	can
reuse	for	multiple	steps:

function	delay(time)	{

				return	new	Promise(	function(resolve,reject){

								setTimeout(	resolve,	time	);

				}	);

}

delay(	100	)	//	step	1

.then(	function	STEP2(){

				console.log(	"step	2	(after	100ms)"	);

				return	delay(	200	);

}	)

.then(	function	STEP3(){

				console.log(	"step	3	(after	another	200ms)"	);

}	)

.then(	function	STEP4(){

				console.log(	"step	4	(next	Job)"	);

				return	delay(	50	);

}	)

.then(	function	STEP5(){

				console.log(	"step	5	(after	another	50ms)"	);

}	)

...

Calling		delay(200)		creates	a	promise	that	will	fulfill	in	200ms,	and	then	we	return	that	from	the	first		then(..)		fulfillment
callback,	which	causes	the	second		then(..)	's	promise	to	wait	on	that	200ms	promise.

Note:	As	described,	technically	there	are	two	promises	in	that	interchange:	the	200ms-delay	promise	and	the	chained
promise	that	the	second		then(..)		chains	from.	But	you	may	find	it	easier	to	mentally	combine	these	two	promises
together,	because	the	Promise	mechanism	automatically	merges	their	states	for	you.	In	that	respect,	you	could	think	of
	return	delay(200)		as	creating	a	promise	that	replaces	the	earlier-returned	chained	promise.

To	be	honest,	though,	sequences	of	delays	with	no	message	passing	isn't	a	terribly	useful	example	of	Promise	flow	control.
Let's	look	at	a	scenario	that's	a	little	more	practical.

Instead	of	timers,	let's	consider	making	Ajax	requests:

//	assume	an	`ajax(	{url},	{callback}	)`	utility

//	Promise-aware	ajax

function	request(url)	{

				return	new	Promise(	function(resolve,reject){

								//	the	`ajax(..)`	callback	should	be	our

								//	promise's	`resolve(..)`	function

								ajax(	url,	resolve	);



				}	);

}

We	first	define	a		request(..)		utility	that	constructs	a	promise	to	represent	the	completion	of	the		ajax(..)		call:

request(	"http://some.url.1/"	)

.then(	function(response1){

				return	request(	"http://some.url.2/?v="	+	response1	);

}	)

.then(	function(response2){

				console.log(	response2	);

}	);

Note:	Developers	commonly	encounter	situations	in	which	they	want	to	do	Promise-aware	async	flow	control	with	utilities
that	are	not	themselves	Promise-enabled	(like		ajax(..)		here,	which	expects	a	callback).	Although	the	native	ES6		Promise	
mechanism	doesn't	automatically	solve	this	pattern	for	us,	practically	all	Promise	libraries	do.	They	usually	call	this	process
"lifting"	or	"promisifying"	or	some	variation	thereof.	We'll	come	back	to	this	technique	later.

Using	the	Promise-returning		request(..)	,	we	create	the	first	step	in	our	chain	implicitly	by	calling	it	with	the	first	URL,	and
chain	off	that	returned	promise	with	the	first		then(..)	.

Once		response1		comes	back,	we	use	that	value	to	construct	a	second	URL,	and	make	a	second		request(..)		call.	That
second		request(..)		promise	is		return	ed	so	that	the	third	step	in	our	async	flow	control	waits	for	that	Ajax	call	to
complete.	Finally,	we	print		response2		once	it	returns.

The	Promise	chain	we	construct	is	not	only	a	flow	control	that	expresses	a	multistep	async	sequence,	but	it	also	acts	as	a
message	channel	to	propagate	messages	from	step	to	step.

What	if	something	went	wrong	in	one	of	the	steps	of	the	Promise	chain?	An	error/exception	is	on	a	per-Promise	basis,
which	means	it's	possible	to	catch	such	an	error	at	any	point	in	the	chain,	and	that	catching	acts	to	sort	of	"reset"	the	chain
back	to	normal	operation	at	that	point:

//	step	1:

request(	"http://some.url.1/"	)

//	step	2:

.then(	function(response1){

				foo.bar();	//	undefined,	error!

				//	never	gets	here

				return	request(	"http://some.url.2/?v="	+	response1	);

}	)

//	step	3:

.then(

				function	fulfilled(response2){

								//	never	gets	here

				},

				//	rejection	handler	to	catch	the	error

				function	rejected(err){

								console.log(	err	);				//	`TypeError`	from	`foo.bar()`	error

								return	42;

				}

)

//	step	4:

.then(	function(msg){

				console.log(	msg	);								//	42

}	);

When	the	error	occurs	in	step	2,	the	rejection	handler	in	step	3	catches	it.	The	return	value	(	42		in	this	snippet),	if	any,	from
that	rejection	handler	fulfills	the	promise	for	the	next	step	(4),	such	that	the	chain	is	now	back	in	a	fulfillment	state.

Note:	As	we	discussed	earlier,	when	returning	a	promise	from	a	fulfillment	handler,	it's	unwrapped	and	can	delay	the	next
step.	That's	also	true	for	returning	promises	from	rejection	handlers,	such	that	if	the		return	42		in	step	3	instead	returned	a



promise,	that	promise	could	delay	step	4.	A	thrown	exception	inside	either	the	fulfillment	or	rejection	handler	of	a		then(..)	
call	causes	the	next	(chained)	promise	to	be	immediately	rejected	with	that	exception.

If	you	call		then(..)		on	a	promise,	and	you	only	pass	a	fulfillment	handler	to	it,	an	assumed	rejection	handler	is	substituted:

var	p	=	new	Promise(	function(resolve,reject){

				reject(	"Oops"	);

}	);

var	p2	=	p.then(

				function	fulfilled(){

								//	never	gets	here

				}

				//	assumed	rejection	handler,	if	omitted	or

				//	any	other	non-function	value	passed

				//	function(err)	{

				//					throw	err;

				//	}

);

As	you	can	see,	the	assumed	rejection	handler	simply	rethrows	the	error,	which	ends	up	forcing		p2		(the	chained	promise)
to	reject	with	the	same	error	reason.	In	essence,	this	allows	the	error	to	continue	propagating	along	a	Promise	chain	until
an	explicitly	defined	rejection	handler	is	encountered.

Note:	We'll	cover	more	details	of	error	handling	with	Promises	a	little	later,	because	there	are	other	nuanced	details	to	be
concerned	about.

If	a	proper	valid	function	is	not	passed	as	the	fulfillment	handler	parameter	to		then(..)	,	there's	also	a	default	handler
substituted:

var	p	=	Promise.resolve(	42	);

p.then(

				//	assumed	fulfillment	handler,	if	omitted	or

				//	any	other	non-function	value	passed

				//	function(v)	{

				//					return	v;

				//	}

				null,

				function	rejected(err){

								//	never	gets	here

				}

);

As	you	can	see,	the	default	fulfillment	handler	simply	passes	whatever	value	it	receives	along	to	the	next	step	(Promise).

Note:	The		then(null,function(err){	..	})		pattern	--	only	handling	rejections	(if	any)	but	letting	fulfillments	pass	through	--
has	a	shortcut	in	the	API:		catch(function(err){	..	})	.	We'll	cover		catch(..)		more	fully	in	the	next	section.

Let's	review	briefly	the	intrinsic	behaviors	of	Promises	that	enable	chaining	flow	control:

A		then(..)		call	against	one	Promise	automatically	produces	a	new	Promise	to	return	from	the	call.
Inside	the	fulfillment/rejection	handlers,	if	you	return	a	value	or	an	exception	is	thrown,	the	new	returned	(chainable)
Promise	is	resolved	accordingly.
If	the	fulfillment	or	rejection	handler	returns	a	Promise,	it	is	unwrapped,	so	that	whatever	its	resolution	is	will	become
the	resolution	of	the	chained	Promise	returned	from	the	current		then(..)	.

While	chaining	flow	control	is	helpful,	it's	probably	most	accurate	to	think	of	it	as	a	side	benefit	of	how	Promises	compose
(combine)	together,	rather	than	the	main	intent.	As	we've	discussed	in	detail	several	times	already,	Promises	normalize
asynchrony	and	encapsulate	time-dependent	value	state,	and	that	is	what	lets	us	chain	them	together	in	this	useful	way.

Certainly,	the	sequential	expressiveness	of	the	chain	(this-then-this-then-this...)	is	a	big	improvement	over	the	tangled	mess
of	callbacks	as	we	identified	in	Chapter	2.	But	there's	still	a	fair	amount	of	boilerplate	(	then(..)		and		function(){	..	}	)	to



wade	through.	In	the	next	chapter,	we'll	see	a	significantly	nicer	pattern	for	sequential	flow	control	expressivity,	with
generators.

There's	some	slight	confusion	around	the	terms	"resolve,"	"fulfill,"	and	"reject"	that	we	need	to	clear	up,	before	you	get	too
much	deeper	into	learning	about	Promises.	Let's	first	consider	the		Promise(..)		constructor:

var	p	=	new	Promise(	function(X,Y){

				//	X()	for	fulfillment

				//	Y()	for	rejection

}	);

As	you	can	see,	two	callbacks	(here	labeled		X		and		Y	)	are	provided.	The	first	is	usually	used	to	mark	the	Promise	as
fulfilled,	and	the	second	always	marks	the	Promise	as	rejected.	But	what's	the	"usually"	about,	and	what	does	that	imply
about	accurately	naming	those	parameters?

Ultimately,	it's	just	your	user	code	and	the	identifier	names	aren't	interpreted	by	the	engine	to	mean	anything,	so	it	doesn't
technically	matter;		foo(..)		and		bar(..)		are	equally	functional.	But	the	words	you	use	can	affect	not	only	how	you	are
thinking	about	the	code,	but	how	other	developers	on	your	team	will	think	about	it.	Thinking	wrongly	about	carefully
orchestrated	async	code	is	almost	surely	going	to	be	worse	than	the	spaghetti-callback	alternatives.

So	it	actually	does	kind	of	matter	what	you	call	them.

The	second	parameter	is	easy	to	decide.	Almost	all	literature	uses		reject(..)		as	its	name,	and	because	that's	exactly
(and	only!)	what	it	does,	that's	a	very	good	choice	for	the	name.	I'd	strongly	recommend	you	always	use		reject(..)	.

But	there's	a	little	more	ambiguity	around	the	first	parameter,	which	in	Promise	literature	is	often	labeled		resolve(..)	.	That
word	is	obviously	related	to	"resolution,"	which	is	what's	used	across	the	literature	(including	this	book)	to	describe	setting	a
final	value/state	to	a	Promise.	We've	already	used	"resolve	the	Promise"	several	times	to	mean	either	fulfilling	or	rejecting
the	Promise.

But	if	this	parameter	seems	to	be	used	to	specifically	fulfill	the	Promise,	why	shouldn't	we	call	it		fulfill(..)		instead	of
	resolve(..)		to	be	more	accurate?	To	answer	that	question,	let's	also	take	a	look	at	two	of	the		Promise		API	methods:

var	fulfilledPr	=	Promise.resolve(	42	);

var	rejectedPr	=	Promise.reject(	"Oops"	);

	Promise.resolve(..)		creates	a	Promise	that's	resolved	to	the	value	given	to	it.	In	this	example,		42		is	a	normal,	non-
Promise,	non-thenable	value,	so	the	fulfilled	promise		fulfilledPr		is	created	for	the	value		42	.		Promise.reject("Oops")	
creates	the	rejected	promise		rejectedPr		for	the	reason		"Oops"	.

Let's	now	illustrate	why	the	word	"resolve"	(such	as	in		Promise.resolve(..)	)	is	unambiguous	and	indeed	more	accurate,	if
used	explicitly	in	a	context	that	could	result	in	either	fulfillment	or	rejection:

var	rejectedTh	=	{

				then:	function(resolved,rejected)	{

								rejected(	"Oops"	);

				}

};

var	rejectedPr	=	Promise.resolve(	rejectedTh	);

As	we	discussed	earlier	in	this	chapter,		Promise.resolve(..)		will	return	a	received	genuine	Promise	directly,	or	unwrap	a
received	thenable.	If	that	thenable	unwrapping	reveals	a	rejected	state,	the	Promise	returned	from		Promise.resolve(..)		is
in	fact	in	that	same	rejected	state.

Terminology:	Resolve,	Fulfill,	and	Reject



So		Promise.resolve(..)		is	a	good,	accurate	name	for	the	API	method,	because	it	can	actually	result	in	either	fulfillment	or
rejection.

The	first	callback	parameter	of	the		Promise(..)		constructor	will	unwrap	either	a	thenable	(identically	to
	Promise.resolve(..)	)	or	a	genuine	Promise:

var	rejectedPr	=	new	Promise(	function(resolve,reject){

				//	resolve	this	promise	with	a	rejected	promise

				resolve(	Promise.reject(	"Oops"	)	);

}	);

rejectedPr.then(

				function	fulfilled(){

								//	never	gets	here

				},

				function	rejected(err){

								console.log(	err	);				//	"Oops"

				}

);

It	should	be	clear	now	that		resolve(..)		is	the	appropriate	name	for	the	first	callback	parameter	of	the		Promise(..)	
constructor.

Warning:	The	previously	mentioned		reject(..)		does	not	do	the	unwrapping	that		resolve(..)		does.	If	you	pass	a
Promise/thenable	value	to		reject(..)	,	that	untouched	value	will	be	set	as	the	rejection	reason.	A	subsequent	rejection
handler	would	receive	the	actual	Promise/thenable	you	passed	to		reject(..)	,	not	its	underlying	immediate	value.

But	now	let's	turn	our	attention	to	the	callbacks	provided	to		then(..)	.	What	should	they	be	called	(both	in	literature	and	in
code)?	I	would	suggest		fulfilled(..)		and		rejected(..)	:

function	fulfilled(msg)	{

				console.log(	msg	);

}

function	rejected(err)	{

				console.error(	err	);

}

p.then(

				fulfilled,

				rejected

);

In	the	case	of	the	first	parameter	to		then(..)	,	it's	unambiguously	always	the	fulfillment	case,	so	there's	no	need	for	the
duality	of	"resolve"	terminology.	As	a	side	note,	the	ES6	specification	uses		onFulfilled(..)		and		onRejected(..)		to	label
these	two	callbacks,	so	they	are	accurate	terms.

We've	already	seen	several	examples	of	how	Promise	rejection	--	either	intentional	through	calling		reject(..)		or
accidental	through	JS	exceptions	--	allows	saner	error	handling	in	asynchronous	programming.	Let's	circle	back	though	and
be	explicit	about	some	of	the	details	that	we	glossed	over.

The	most	natural	form	of	error	handling	for	most	developers	is	the	synchronous		try..catch		construct.	Unfortunately,	it's
synchronous-only,	so	it	fails	to	help	in	async	code	patterns:

function	foo()	{

				setTimeout(	function(){

								baz.bar();

				},	100	);

}

Error	Handling



try	{

				foo();

				//	later	throws	global	error	from	`baz.bar()`

}

catch	(err)	{

				//	never	gets	here

}

	try..catch		would	certainly	be	nice	to	have,	but	it	doesn't	work	across	async	operations.	That	is,	unless	there's	some
additional	environmental	support,	which	we'll	come	back	to	with	generators	in	Chapter	4.

In	callbacks,	some	standards	have	emerged	for	patterned	error	handling,	most	notably	the	"error-first	callback"	style:

function	foo(cb)	{

				setTimeout(	function(){

								try	{

												var	x	=	baz.bar();

												cb(	null,	x	);	//	success!

								}

								catch	(err)	{

												cb(	err	);

								}

				},	100	);

}

foo(	function(err,val){

				if	(err)	{

								console.error(	err	);	//	bummer	:(

				}

				else	{

								console.log(	val	);

				}

}	);

Note:	The		try..catch		here	works	only	from	the	perspective	that	the		baz.bar()		call	will	either	succeed	or	fail	immediately,
synchronously.	If		baz.bar()		was	itself	its	own	async	completing	function,	any	async	errors	inside	it	would	not	be	catchable.

The	callback	we	pass	to		foo(..)		expects	to	receive	a	signal	of	an	error	by	the	reserved	first	parameter		err	.	If	present,
error	is	assumed.	If	not,	success	is	assumed.

This	sort	of	error	handling	is	technically	async	capable,	but	it	doesn't	compose	well	at	all.	Multiple	levels	of	error-first
callbacks	woven	together	with	these	ubiquitous		if		statement	checks	inevitably	will	lead	you	to	the	perils	of	callback	hell
(see	Chapter	2).

So	we	come	back	to	error	handling	in	Promises,	with	the	rejection	handler	passed	to		then(..)	.	Promises	don't	use	the
popular	"error-first	callback"	design	style,	but	instead	use	"split	callbacks"	style;	there's	one	callback	for	fulfillment	and	one
for	rejection:

var	p	=	Promise.reject(	"Oops"	);

p.then(

				function	fulfilled(){

								//	never	gets	here

				},

				function	rejected(err){

								console.log(	err	);	//	"Oops"

				}

);

While	this	pattern	of	error	handling	makes	fine	sense	on	the	surface,	the	nuances	of	Promise	error	handling	are	often	a	fair
bit	more	difficult	to	fully	grasp.

Consider:

var	p	=	Promise.resolve(	42	);



p.then(

				function	fulfilled(msg){

								//	numbers	don't	have	string	functions,

								//	so	will	throw	an	error

								console.log(	msg.toLowerCase()	);

				},

				function	rejected(err){

								//	never	gets	here

				}

);

If	the		msg.toLowerCase()		legitimately	throws	an	error	(it	does!),	why	doesn't	our	error	handler	get	notified?	As	we	explained
earlier,	it's	because	that	error	handler	is	for	the		p		promise,	which	has	already	been	fulfilled	with	value		42	.	The		p		promise
is	immutable,	so	the	only	promise	that	can	be	notified	of	the	error	is	the	one	returned	from		p.then(..)	,	which	in	this	case
we	don't	capture.

That	should	paint	a	clear	picture	of	why	error	handling	with	Promises	is	error-prone	(pun	intended).	It's	far	too	easy	to	have
errors	swallowed,	as	this	is	very	rarely	what	you'd	intend.

Warning:	If	you	use	the	Promise	API	in	an	invalid	way	and	an	error	occurs	that	prevents	proper	Promise	construction,	the
result	will	be	an	immediately	thrown	exception,	not	a	rejected	Promise.	Some	examples	of	incorrect	usage	that	fail
Promise	construction:		new	Promise(null)	,		Promise.all()	,		Promise.race(42)	,	and	so	on.	You	can't	get	a	rejected	Promise	if
you	don't	use	the	Promise	API	validly	enough	to	actually	construct	a	Promise	in	the	first	place!

Jeff	Atwood	noted	years	ago:	programming	languages	are	often	set	up	in	such	a	way	that	by	default,	developers	fall	into
the	"pit	of	despair"	(http://blog.codinghorror.com/falling-into-the-pit-of-success/)	--	where	accidents	are	punished	--	and	that
you	have	to	try	harder	to	get	it	right.	He	implored	us	to	instead	create	a	"pit	of	success,"	where	by	default	you	fall	into
expected	(successful)	action,	and	thus	would	have	to	try	hard	to	fail.

Promise	error	handling	is	unquestionably	"pit	of	despair"	design.	By	default,	it	assumes	that	you	want	any	error	to	be
swallowed	by	the	Promise	state,	and	if	you	forget	to	observe	that	state,	the	error	silently	languishes/dies	in	obscurity	--
usually	despair.

To	avoid	losing	an	error	to	the	silence	of	a	forgotten/discarded	Promise,	some	developers	have	claimed	that	a	"best
practice"	for	Promise	chains	is	to	always	end	your	chain	with	a	final		catch(..)	,	like:

var	p	=	Promise.resolve(	42	);

p.then(

				function	fulfilled(msg){

								//	numbers	don't	have	string	functions,

								//	so	will	throw	an	error

								console.log(	msg.toLowerCase()	);

				}

)

.catch(	handleErrors	);

Because	we	didn't	pass	a	rejection	handler	to	the		then(..)	,	the	default	handler	was	substituted,	which	simply	propagates
the	error	to	the	next	promise	in	the	chain.	As	such,	both	errors	that	come	into		p	,	and	errors	that	come	after		p		in	its
resolution	(like	the		msg.toLowerCase()		one)	will	filter	down	to	the	final		handleErrors(..)	.

Problem	solved,	right?	Not	so	fast!

What	happens	if		handleErrors(..)		itself	also	has	an	error	in	it?	Who	catches	that?	There's	still	yet	another	unattended
promise:	the	one		catch(..)		returns,	which	we	don't	capture	and	don't	register	a	rejection	handler	for.

You	can't	just	stick	another		catch(..)		on	the	end	of	that	chain,	because	it	too	could	fail.	The	last	step	in	any	Promise
chain,	whatever	it	is,	always	has	the	possibility,	even	decreasingly	so,	of	dangling	with	an	uncaught	error	stuck	inside	an
unobserved	Promise.

Pit	of	Despair
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Sound	like	an	impossible	conundrum	yet?

It's	not	exactly	an	easy	problem	to	solve	completely.	There	are	other	ways	to	approach	it	which	many	would	say	are	better.

Some	Promise	libraries	have	added	methods	for	registering	something	like	a	"global	unhandled	rejection"	handler,	which
would	be	called	instead	of	a	globally	thrown	error.	But	their	solution	for	how	to	identify	an	error	as	"uncaught"	is	to	have	an
arbitrary-length	timer,	say	3	seconds,	running	from	time	of	rejection.	If	a	Promise	is	rejected	but	no	error	handler	is
registered	before	the	timer	fires,	then	it's	assumed	that	you	won't	ever	be	registering	a	handler,	so	it's	"uncaught."

In	practice,	this	has	worked	well	for	many	libraries,	as	most	usage	patterns	don't	typically	call	for	significant	delay	between
Promise	rejection	and	observation	of	that	rejection.	But	this	pattern	is	troublesome	because	3	seconds	is	so	arbitrary	(even
if	empirical),	and	also	because	there	are	indeed	some	cases	where	you	want	a	Promise	to	hold	on	to	its	rejectedness	for
some	indefinite	period	of	time,	and	you	don't	really	want	to	have	your	"uncaught"	handler	called	for	all	those	false	positives
(not-yet-handled	"uncaught	errors").

Another	more	common	suggestion	is	that	Promises	should	have	a		done(..)		added	to	them,	which	essentially	marks	the
Promise	chain	as	"done."		done(..)		doesn't	create	and	return	a	Promise,	so	the	callbacks	passed	to		done(..)		are
obviously	not	wired	up	to	report	problems	to	a	chained	Promise	that	doesn't	exist.

So	what	happens	instead?	It's	treated	as	you	might	usually	expect	in	uncaught	error	conditions:	any	exception	inside	a
	done(..)		rejection	handler	would	be	thrown	as	a	global	uncaught	error	(in	the	developer	console,	basically):

var	p	=	Promise.resolve(	42	);

p.then(

				function	fulfilled(msg){

								//	numbers	don't	have	string	functions,

								//	so	will	throw	an	error

								console.log(	msg.toLowerCase()	);

				}

)

.done(	null,	handleErrors	);

//	if	`handleErrors(..)`	caused	its	own	exception,	it	would

//	be	thrown	globally	here

This	might	sound	more	attractive	than	the	never-ending	chain	or	the	arbitrary	timeouts.	But	the	biggest	problem	is	that	it's
not	part	of	the	ES6	standard,	so	no	matter	how	good	it	sounds,	at	best	it's	a	lot	longer	way	off	from	being	a	reliable	and
ubiquitous	solution.

Are	we	just	stuck,	then?	Not	entirely.

Browsers	have	a	unique	capability	that	our	code	does	not	have:	they	can	track	and	know	for	sure	when	any	object	gets
thrown	away	and	garbage	collected.	So,	browsers	can	track	Promise	objects,	and	whenever	they	get	garbage	collected,	if
they	have	a	rejection	in	them,	the	browser	knows	for	sure	this	was	a	legitimate	"uncaught	error,"	and	can	thus	confidently
know	it	should	report	it	to	the	developer	console.

Note:	At	the	time	of	this	writing,	both	Chrome	and	Firefox	have	early	attempts	at	that	sort	of	"uncaught	rejection"	capability,
though	support	is	incomplete	at	best.

However,	if	a	Promise	doesn't	get	garbage	collected	--	it's	exceedingly	easy	for	that	to	accidentally	happen	through	lots	of
different	coding	patterns	--	the	browser's	garbage	collection	sniffing	won't	help	you	know	and	diagnose	that	you	have	a
silently	rejected	Promise	laying	around.

Is	there	any	other	alternative?	Yes.

Uncaught	Handling
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The	following	is	just	theoretical,	how	Promises	could	be	someday	changed	to	behave.	I	believe	it	would	be	far	superior	to
what	we	currently	have.	And	I	think	this	change	would	be	possible	even	post-ES6	because	I	don't	think	it	would	break	web
compatibility	with	ES6	Promises.	Moreover,	it	can	be	polyfilled/prollyfilled	in,	if	you're	careful.	Let's	take	a	look:

Promises	could	default	to	reporting	(to	the	developer	console)	any	rejection,	on	the	next	Job	or	event	loop	tick,	if	at	that
exact	moment	no	error	handler	has	been	registered	for	the	Promise.
For	the	cases	where	you	want	a	rejected	Promise	to	hold	onto	its	rejected	state	for	an	indefinite	amount	of	time	before
observing,	you	could	call		defer()	,	which	suppresses	automatic	error	reporting	on	that	Promise.

If	a	Promise	is	rejected,	it	defaults	to	noisily	reporting	that	fact	to	the	developer	console	(instead	of	defaulting	to	silence).
You	can	opt	out	of	that	reporting	either	implicitly	(by	registering	an	error	handler	before	rejection),	or	explicitly	(with
	defer()	).	In	either	case,	you	control	the	false	positives.

Consider:

var	p	=	Promise.reject(	"Oops"	).defer();

//	`foo(..)`	is	Promise-aware

foo(	42	)

.then(

				function	fulfilled(){

								return	p;

				},

				function	rejected(err){

								//	handle	`foo(..)`	error

				}

);

...

When	we	create		p	,	we	know	we're	going	to	wait	a	while	to	use/observe	its	rejection,	so	we	call		defer()		--	thus	no	global
reporting.		defer()		simply	returns	the	same	promise,	for	chaining	purposes.

The	promise	returned	from		foo(..)		gets	an	error	handler	attached	right	away,	so	it's	implicitly	opted	out	and	no	global
reporting	for	it	occurs	either.

But	the	promise	returned	from	the		then(..)		call	has	no		defer()		or	error	handler	attached,	so	if	it	rejects	(from	inside
either	resolution	handler),	then	it	will	be	reported	to	the	developer	console	as	an	uncaught	error.

This	design	is	a	pit	of	success.	By	default,	all	errors	are	either	handled	or	reported	--	what	almost	all	developers	in
almost	all	cases	would	expect.	You	either	have	to	register	a	handler	or	you	have	to	intentionally	opt	out,	and	indicate	you
intend	to	defer	error	handling	until	later;	you're	opting	for	the	extra	responsibility	in	just	that	specific	case.

The	only	real	danger	in	this	approach	is	if	you		defer()		a	Promise	but	then	fail	to	actually	ever	observe/handle	its	rejection.

But	you	had	to	intentionally	call		defer()		to	opt	into	that	pit	of	despair	--	the	default	was	the	pit	of	success	--	so	there's	not
much	else	we	could	do	to	save	you	from	your	own	mistakes.

I	think	there's	still	hope	for	Promise	error	handling	(post-ES6).	I	hope	the	powers	that	be	will	rethink	the	situation	and
consider	this	alternative.	In	the	meantime,	you	can	implement	this	yourself	(a	challenging	exercise	for	the	reader!),	or	use	a
smarter	Promise	library	that	does	so	for	you!

Note:	This	exact	model	for	error	handling/reporting	is	implemented	in	my	asynquence	Promise	abstraction	library,	which
will	be	discussed	in	Appendix	A	of	this	book.

We've	already	implicitly	seen	the	sequence	pattern	with	Promise	chains	(this-then-this-then-that	flow	control)	but	there	are
lots	of	variations	on	asynchronous	patterns	that	we	can	build	as	abstractions	on	top	of	Promises.	These	patterns	serve	to
simplify	the	expression	of	async	flow	control	--	which	helps	make	our	code	more	reason-able	and	more	maintainable	--

Promise	Patterns



even	in	the	most	complex	parts	of	our	programs.

Two	such	patterns	are	codified	directly	into	the	native	ES6		Promise		implementation,	so	we	get	them	for	free,	to	use	as
building	blocks	for	other	patterns.

In	an	async	sequence	(Promise	chain),	only	one	async	task	is	being	coordinated	at	any	given	moment	--	step	2	strictly
follows	step	1,	and	step	3	strictly	follows	step	2.	But	what	about	doing	two	or	more	steps	concurrently	(aka	"in	parallel")?

In	classic	programming	terminology,	a	"gate"	is	a	mechanism	that	waits	on	two	or	more	parallel/concurrent	tasks	to
complete	before	continuing.	It	doesn't	matter	what	order	they	finish	in,	just	that	all	of	them	have	to	complete	for	the	gate	to
open	and	let	the	flow	control	through.

In	the	Promise	API,	we	call	this	pattern		all([	..	])	.

Say	you	wanted	to	make	two	Ajax	requests	at	the	same	time,	and	wait	for	both	to	finish,	regardless	of	their	order,	before
making	a	third	Ajax	request.	Consider:

//	`request(..)`	is	a	Promise-aware	Ajax	utility,

//	like	we	defined	earlier	in	the	chapter

var	p1	=	request(	"http://some.url.1/"	);

var	p2	=	request(	"http://some.url.2/"	);

Promise.all(	[p1,p2]	)

.then(	function(msgs){

				//	both	`p1`	and	`p2`	fulfill	and	pass	in

				//	their	messages	here

				return	request(

								"http://some.url.3/?v="	+	msgs.join(",")

				);

}	)

.then(	function(msg){

				console.log(	msg	);

}	);

	Promise.all([	..	])		expects	a	single	argument,	an		array	,	consisting	generally	of	Promise	instances.	The	promise
returned	from	the		Promise.all([	..	])		call	will	receive	a	fulfillment	message	(	msgs		in	this	snippet)	that	is	an		array		of	all
the	fulfillment	messages	from	the	passed	in	promises,	in	the	same	order	as	specified	(regardless	of	fulfillment	order).

Note:	Technically,	the		array		of	values	passed	into		Promise.all([	..	])		can	include	Promises,	thenables,	or	even
immediate	values.	Each	value	in	the	list	is	essentially	passed	through		Promise.resolve(..)		to	make	sure	it's	a	genuine
Promise	to	be	waited	on,	so	an	immediate	value	will	just	be	normalized	into	a	Promise	for	that	value.	If	the		array		is	empty,
the	main	Promise	is	immediately	fulfilled.

The	main	promise	returned	from		Promise.all([	..	])		will	only	be	fulfilled	if	and	when	all	its	constituent	promises	are
fulfilled.	If	any	one	of	those	promises	instead	is	rejected,	the	main		Promise.all([	..	])		promise	is	immediately	rejected,
discarding	all	results	from	any	other	promises.

Remember	to	always	attach	a	rejection/error	handler	to	every	promise,	even	and	especially	the	one	that	comes	back	from
	Promise.all([	..	])	.

While		Promise.all([	..	])		coordinates	multiple	Promises	concurrently	and	assumes	all	are	needed	for	fulfillment,
sometimes	you	only	want	to	respond	to	the	"first	Promise	to	cross	the	finish	line,"	letting	the	other	Promises	fall	away.

This	pattern	is	classically	called	a	"latch,"	but	in	Promises	it's	called	a	"race."

Warning:	While	the	metaphor	of	"only	the	first	across	the	finish	line	wins"	fits	the	behavior	well,	unfortunately	"race"	is	kind

Promise.all([	..	])
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of	a	loaded	term,	because	"race	conditions"	are	generally	taken	as	bugs	in	programs	(see	Chapter	1).	Don't	confuse
	Promise.race([..])		with	"race	condition."

	Promise.race([	..	])		also	expects	a	single		array		argument,	containing	one	or	more	Promises,	thenables,	or	immediate
values.	It	doesn't	make	much	practical	sense	to	have	a	race	with	immediate	values,	because	the	first	one	listed	will
obviously	win	--	like	a	foot	race	where	one	runner	starts	at	the	finish	line!

Similar	to		Promise.all([	..	])	,		Promise.race([	..	])		will	fulfill	if	and	when	any	Promise	resolution	is	a	fulfillment,	and	it
will	reject	if	and	when	any	Promise	resolution	is	a	rejection.

Warning:	A	"race"	requires	at	least	one	"runner,"	so	if	you	pass	an	empty		array	,	instead	of	immediately	resolving,	the
main		race([..])		Promise	will	never	resolve.	This	is	a	footgun!	ES6	should	have	specified	that	it	either	fulfills,	rejects,	or
just	throws	some	sort	of	synchronous	error.	Unfortunately,	because	of	precedence	in	Promise	libraries	predating	ES6
	Promise	,	they	had	to	leave	this	gotcha	in	there,	so	be	careful	never	to	send	in	an	empty		array	.

Let's	revisit	our	previous	concurrent	Ajax	example,	but	in	the	context	of	a	race	between		p1		and		p2	:

//	`request(..)`	is	a	Promise-aware	Ajax	utility,

//	like	we	defined	earlier	in	the	chapter

var	p1	=	request(	"http://some.url.1/"	);

var	p2	=	request(	"http://some.url.2/"	);

Promise.race(	[p1,p2]	)

.then(	function(msg){

				//	either	`p1`	or	`p2`	will	win	the	race

				return	request(

								"http://some.url.3/?v="	+	msg

				);

}	)

.then(	function(msg){

				console.log(	msg	);

}	);

Because	only	one	promise	wins,	the	fulfillment	value	is	a	single	message,	not	an		array		as	it	was	for		Promise.all([	..	])	.

We	saw	this	example	earlier,	illustrating	how		Promise.race([	..	])		can	be	used	to	express	the	"promise	timeout"	pattern:

//	`foo()`	is	a	Promise-aware	function

//	`timeoutPromise(..)`,	defined	ealier,	returns

//	a	Promise	that	rejects	after	a	specified	delay

//	setup	a	timeout	for	`foo()`

Promise.race(	[

				foo(),																				//	attempt	`foo()`

				timeoutPromise(	3000	)				//	give	it	3	seconds

]	)

.then(

				function(){

								//	`foo(..)`	fulfilled	in	time!

				},

				function(err){

								//	either	`foo()`	rejected,	or	it	just

								//	didn't	finish	in	time,	so	inspect

								//	`err`	to	know	which

				}

);

This	timeout	pattern	works	well	in	most	cases.	But	there	are	some	nuances	to	consider,	and	frankly	they	apply	to	both
	Promise.race([	..	])		and		Promise.all([	..	])		equally.

Timeout	Race
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The	key	question	to	ask	is,	"What	happens	to	the	promises	that	get	discarded/ignored?"	We're	not	asking	that	question
from	the	performance	perspective	--	they	would	typically	end	up	garbage	collection	eligible	--	but	from	the	behavioral
perspective	(side	effects,	etc.).	Promises	cannot	be	canceled	--	and	shouldn't	be	as	that	would	destroy	the	external
immutability	trust	discussed	in	the	"Promise	Uncancelable"	section	later	in	this	chapter	--	so	they	can	only	be	silently
ignored.

But	what	if		foo()		in	the	previous	example	is	reserving	some	sort	of	resource	for	usage,	but	the	timeout	fires	first	and
causes	that	promise	to	be	ignored?	Is	there	anything	in	this	pattern	that	proactively	frees	the	reserved	resource	after	the
timeout,	or	otherwise	cancels	any	side	effects	it	may	have	had?	What	if	all	you	wanted	was	to	log	the	fact	that		foo()		timed
out?

Some	developers	have	proposed	that	Promises	need	a		finally(..)		callback	registration,	which	is	always	called	when	a
Promise	resolves,	and	allows	you	to	specify	any	cleanup	that	may	be	necessary.	This	doesn't	exist	in	the	specification	at
the	moment,	but	it	may	come	in	ES7+.	We'll	have	to	wait	and	see.

It	might	look	like:

var	p	=	Promise.resolve(	42	);

p.then(	something	)

.finally(	cleanup	)

.then(	another	)

.finally(	cleanup	);

Note:	In	various	Promise	libraries,		finally(..)		still	creates	and	returns	a	new	Promise	(to	keep	the	chain	going).	If	the
	cleanup(..)		function	were	to	return	a	Promise,	it	would	be	linked	into	the	chain,	which	means	you	could	still	have	the
unhandled	rejection	issues	we	discussed	earlier.

In	the	meantime,	we	could	make	a	static	helper	utility	that	lets	us	observe	(without	interfering)	the	resolution	of	a	Promise:

//	polyfill-safe	guard	check

if	(!Promise.observe)	{

				Promise.observe	=	function(pr,cb)	{

								//	side-observe	`pr`'s	resolution

								pr.then(

												function	fulfilled(msg){

																//	schedule	callback	async	(as	Job)

																Promise.resolve(	msg	).then(	cb	);

												},

												function	rejected(err){

																//	schedule	callback	async	(as	Job)

																Promise.resolve(	err	).then(	cb	);

												}

								);

								//	return	original	promise

								return	pr;

				};

}

Here's	how	we'd	use	it	in	the	timeout	example	from	before:

Promise.race(	[

				Promise.observe(

								foo(),																				//	attempt	`foo()`

								function	cleanup(msg){

												//	clean	up	after	`foo()`,	even	if	it

												//	didn't	finish	before	the	timeout

								}

				),

				timeoutPromise(	3000	)				//	give	it	3	seconds

]	)



This		Promise.observe(..)		helper	is	just	an	illustration	of	how	you	could	observe	the	completions	of	Promises	without
interfering	with	them.	Other	Promise	libraries	have	their	own	solutions.	Regardless	of	how	you	do	it,	you'll	likely	have	places
where	you	want	to	make	sure	your	Promises	aren't	just	silently	ignored	by	accident.

While	native	ES6	Promises	come	with	built-in		Promise.all([	..	])		and		Promise.race([	..	])	,	there	are	several	other
commonly	used	patterns	with	variations	on	those	semantics:

	none([	..	])		is	like		all([	..	])	,	but	fulfillments	and	rejections	are	transposed.	All	Promises	need	to	be	rejected	--
rejections	become	the	fulfillment	values	and	vice	versa.
	any([	..	])		is	like		all([	..	])	,	but	it	ignores	any	rejections,	so	only	one	needs	to	fulfill	instead	of	all	of	them.
	first([	..	])		is	a	like	a	race	with		any([	..	])	,	which	is	that	it	ignores	any	rejections	and	fulfills	as	soon	as	the	first
Promise	fulfills.
	last([	..	])		is	like		first([	..	])	,	but	only	the	latest	fulfillment	wins.

Some	Promise	abstraction	libraries	provide	these,	but	you	could	also	define	them	yourself	using	the	mechanics	of
Promises,		race([	..	])		and		all([	..	])	.

For	example,	here's	how	we	could	define		first([	..	])	:

//	polyfill-safe	guard	check

if	(!Promise.first)	{

				Promise.first	=	function(prs)	{

								return	new	Promise(	function(resolve,reject){

												//	loop	through	all	promises

												prs.forEach(	function(pr){

																//	normalize	the	value

																Promise.resolve(	pr	)

																//	whichever	one	fulfills	first	wins,	and

																//	gets	to	resolve	the	main	promise

																.then(	resolve	);

												}	);

								}	);

				};

}

Note:	This	implementation	of		first(..)		does	not	reject	if	all	its	promises	reject;	it	simply	hangs,	much	like	a
	Promise.race([])		does.	If	desired,	you	could	add	additional	logic	to	track	each	promise	rejection	and	if	all	reject,	call
	reject()		on	the	main	promise.	We'll	leave	that	as	an	exercise	for	the	reader.

Sometimes	you	want	to	iterate	over	a	list	of	Promises	and	perform	some	task	against	all	of	them,	much	like	you	can	do	with
synchronous		array	s	(e.g.,		forEach(..)	,		map(..)	,		some(..)	,	and		every(..)	).	If	the	task	to	perform	against	each	Promise
is	fundamentally	synchronous,	these	work	fine,	just	as	we	used		forEach(..)		in	the	previous	snippet.

But	if	the	tasks	are	fundamentally	asynchronous,	or	can/should	otherwise	be	performed	concurrently,	you	can	use	async
versions	of	these	utilities	as	provided	by	many	libraries.

For	example,	let's	consider	an	asynchronous		map(..)		utility	that	takes	an		array		of	values	(could	be	Promises	or	anything
else),	plus	a	function	(task)	to	perform	against	each.		map(..)		itself	returns	a	promise	whose	fulfillment	value	is	an		array	
that	holds	(in	the	same	mapping	order)	the	async	fulfillment	value	from	each	task:

if	(!Promise.map)	{

				Promise.map	=	function(vals,cb)	{

								//	new	promise	that	waits	for	all	mapped	promises

								return	Promise.all(

												//	note:	regular	array	`map(..)`,	turns

												//	the	array	of	values	into	an	array	of

												//	promises

												vals.map(	function(val){
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																//	replace	`val`	with	a	new	promise	that

																//	resolves	after	`val`	is	async	mapped

																return	new	Promise(	function(resolve){

																				cb(	val,	resolve	);

																}	);

												}	)

								);

				};

}

Note:	In	this	implementation	of		map(..)	,	you	can't	signal	async	rejection,	but	if	a	synchronous	exception/error	occurs
inside	of	the	mapping	callback	(	cb(..)	),	the	main		Promise.map(..)		returned	promise	would	reject.

Let's	illustrate	using		map(..)		with	a	list	of	Promises	(instead	of	simple	values):

var	p1	=	Promise.resolve(	21	);

var	p2	=	Promise.resolve(	42	);

var	p3	=	Promise.reject(	"Oops"	);

//	double	values	in	list	even	if	they're	in

//	Promises

Promise.map(	[p1,p2,p3],	function(pr,done){

				//	make	sure	the	item	itself	is	a	Promise

				Promise.resolve(	pr	)

				.then(

								//	extract	value	as	`v`

								function(v){

												//	map	fulfillment	`v`	to	new	value

												done(	v	*	2	);

								},

								//	or,	map	to	promise	rejection	message

								done

				);

}	)

.then(	function(vals){

				console.log(	vals	);				//	[42,84,"Oops"]

}	);

Let's	review	the	ES6		Promise		API	that	we've	already	seen	unfold	in	bits	and	pieces	throughout	this	chapter.

Note:	The	following	API	is	native	only	as	of	ES6,	but	there	are	specification-compliant	polyfills	(not	just	extended	Promise
libraries)	which	can	define		Promise		and	all	its	associated	behavior	so	that	you	can	use	native	Promises	even	in	pre-ES6
browsers.	One	such	polyfill	is	"Native	Promise	Only"	(http://github.com/getify/native-promise-only),	which	I	wrote!

The	revealing	constructor		Promise(..)		must	be	used	with		new	,	and	must	be	provided	a	function	callback	that	is
synchronously/immediately	called.	This	function	is	passed	two	function	callbacks	that	act	as	resolution	capabilities	for	the
promise.	We	commonly	label	these		resolve(..)		and		reject(..)	:

var	p	=	new	Promise(	function(resolve,reject){

				//	`resolve(..)`	to	resolve/fulfill	the	promise

				//	`reject(..)`	to	reject	the	promise

}	);

	reject(..)		simply	rejects	the	promise,	but		resolve(..)		can	either	fulfill	the	promise	or	reject	it,	depending	on	what	it's
passed.	If		resolve(..)		is	passed	an	immediate,	non-Promise,	non-thenable	value,	then	the	promise	is	fulfilled	with	that
value.

But	if		resolve(..)		is	passed	a	genuine	Promise	or	thenable	value,	that	value	is	unwrapped	recursively,	and	whatever	its
final	resolution/state	is	will	be	adopted	by	the	promise.
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A	shortcut	for	creating	an	already-rejected	Promise	is		Promise.reject(..)	,	so	these	two	promises	are	equivalent:

var	p1	=	new	Promise(	function(resolve,reject){

				reject(	"Oops"	);

}	);

var	p2	=	Promise.reject(	"Oops"	);

	Promise.resolve(..)		is	usually	used	to	create	an	already-fulfilled	Promise	in	a	similar	way	to		Promise.reject(..)	.
However,		Promise.resolve(..)		also	unwraps	thenable	values	(as	discusssed	several	times	already).	In	that	case,	the
Promise	returned	adopts	the	final	resolution	of	the	thenable	you	passed	in,	which	could	either	be	fulfillment	or	rejection:

var	fulfilledTh	=	{

				then:	function(cb)	{	cb(	42	);	}

};

var	rejectedTh	=	{

				then:	function(cb,errCb)	{

								errCb(	"Oops"	);

				}

};

var	p1	=	Promise.resolve(	fulfilledTh	);

var	p2	=	Promise.resolve(	rejectedTh	);

//	`p1`	will	be	a	fulfilled	promise

//	`p2`	will	be	a	rejected	promise

And	remember,		Promise.resolve(..)		doesn't	do	anything	if	what	you	pass	is	already	a	genuine	Promise;	it	just	returns	the
value	directly.	So	there's	no	overhead	to	calling		Promise.resolve(..)		on	values	that	you	don't	know	the	nature	of,	if	one
happens	to	already	be	a	genuine	Promise.

Each	Promise	instance	(not	the		Promise		API	namespace)	has		then(..)		and		catch(..)		methods,	which	allow	registering
of	fulfillment	and	rejection	handlers	for	the	Promise.	Once	the	Promise	is	resolved,	one	or	the	other	of	these	handlers	will
be	called,	but	not	both,	and	it	will	always	be	called	asynchronously	(see	"Jobs"	in	Chapter	1).

	then(..)		takes	one	or	two	parameters,	the	first	for	the	fulfillment	callback,	and	the	second	for	the	rejection	callback.	If
either	is	omitted	or	is	otherwise	passed	as	a	non-function	value,	a	default	callback	is	substituted	respectively.	The	default
fulfillment	callback	simply	passes	the	message	along,	while	the	default	rejection	callback	simply	rethrows	(propagates)	the
error	reason	it	receives.

	catch(..)		takes	only	the	rejection	callback	as	a	parameter,	and	automatically	substitutes	the	default	fulfillment	callback,	as
just	discussed.	In	other	words,	it's	equivalent	to		then(null,..)	:

p.then(	fulfilled	);

p.then(	fulfilled,	rejected	);

p.catch(	rejected	);	//	or	`p.then(	null,	rejected	)`

	then(..)		and		catch(..)		also	create	and	return	a	new	promise,	which	can	be	used	to	express	Promise	chain	flow	control.
If	the	fulfillment	or	rejection	callbacks	have	an	exception	thrown,	the	returned	promise	is	rejected.	If	either	callback	returns
an	immediate,	non-Promise,	non-thenable	value,	that	value	is	set	as	the	fulfillment	for	the	returned	promise.	If	the	fulfillment
handler	specifically	returns	a	promise	or	thenable	value,	that	value	is	unwrapped	and	becomes	the	resolution	of	the
returned	promise.

Promise.resolve(..)	and	Promise.reject(..)
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The	static	helpers		Promise.all([	..	])		and		Promise.race([	..	])		on	the	ES6		Promise		API	both	create	a	Promise	as	their
return	value.	The	resolution	of	that	promise	is	controlled	entirely	by	the	array	of	promises	that	you	pass	in.

For		Promise.all([	..	])	,	all	the	promises	you	pass	in	must	fulfill	for	the	returned	promise	to	fulfill.	If	any	promise	is
rejected,	the	main	returned	promise	is	immediately	rejected,	too	(discarding	the	results	of	any	of	the	other	promises).	For
fulfillment,	you	receive	an		array		of	all	the	passed	in	promises'	fulfillment	values.	For	rejection,	you	receive	just	the	first
promise	rejection	reason	value.	This	pattern	is	classically	called	a	"gate":	all	must	arrive	before	the	gate	opens.

For		Promise.race([	..	])	,	only	the	first	promise	to	resolve	(fulfillment	or	rejection)	"wins,"	and	whatever	that	resolution	is
becomes	the	resolution	of	the	returned	promise.	This	pattern	is	classically	called	a	"latch":	first	one	to	open	the	latch	gets
through.	Consider:

var	p1	=	Promise.resolve(	42	);

var	p2	=	Promise.resolve(	"Hello	World"	);

var	p3	=	Promise.reject(	"Oops"	);

Promise.race(	[p1,p2,p3]	)

.then(	function(msg){

				console.log(	msg	);								//	42

}	);

Promise.all(	[p1,p2,p3]	)

.catch(	function(err){

				console.error(	err	);				//	"Oops"

}	);

Promise.all(	[p1,p2]	)

.then(	function(msgs){

				console.log(	msgs	);				//	[42,"Hello	World"]

}	);

Warning:	Be	careful!	If	an	empty		array		is	passed	to		Promise.all([	..	])	,	it	will	fulfill	immediately,	but		Promise.race([	..
])		will	hang	forever	and	never	resolve.

The	ES6		Promise		API	is	pretty	simple	and	straightforward.	It's	at	least	good	enough	to	serve	the	most	basic	of	async
cases,	and	is	a	good	place	to	start	when	rearranging	your	code	from	callback	hell	to	something	better.

But	there's	a	whole	lot	of	async	sophistication	that	apps	often	demand	which	Promises	themselves	will	be	limited	in
addressing.	In	the	next	section,	we'll	dive	into	those	limitations	as	motivations	for	the	benefit	of	Promise	libraries.

Many	of	the	details	we'll	discuss	in	this	section	have	already	been	alluded	to	in	this	chapter,	but	we'll	just	make	sure	to
review	these	limitations	specifically.

We	covered	Promise-flavored	error	handling	in	detail	earlier	in	this	chapter.	The	limitations	of	how	Promises	are	designed	--
how	they	chain,	specifically	--	creates	a	very	easy	pitfall	where	an	error	in	a	Promise	chain	can	be	silently	ignored
accidentally.

But	there's	something	else	to	consider	with	Promise	errors.	Because	a	Promise	chain	is	nothing	more	than	its	constituent
Promises	wired	together,	there's	no	entity	to	refer	to	the	entire	chain	as	a	single	thing,	which	means	there's	no	external	way
to	observe	any	errors	that	may	occur.

If	you	construct	a	Promise	chain	that	has	no	error	handling	in	it,	any	error	anywhere	in	the	chain	will	propagate	indefinitely
down	the	chain,	until	observed	(by	registering	a	rejection	handler	at	some	step).	So,	in	that	specific	case,	having	a
reference	to	the	last	promise	in	the	chain	is	enough	(	p		in	the	following	snippet),	because	you	can	register	a	rejection
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handler	there,	and	it	will	be	notified	of	any	propagated	errors:

//	`foo(..)`,	`STEP2(..)`	and	`STEP3(..)`	are

//	all	promise-aware	utilities

var	p	=	foo(	42	)

.then(	STEP2	)

.then(	STEP3	);

Although	it	may	seem	sneakily	confusing,		p		here	doesn't	point	to	the	first	promise	in	the	chain	(the	one	from	the		foo(42)	
call),	but	instead	from	the	last	promise,	the	one	that	comes	from	the		then(STEP3)		call.

Also,	no	step	in	the	promise	chain	is	observably	doing	its	own	error	handling.	That	means	that	you	could	then	register	a
rejection	error	handler	on		p	,	and	it	would	be	notified	if	any	errors	occur	anywhere	in	the	chain:

p.catch(	handleErrors	);

But	if	any	step	of	the	chain	in	fact	does	its	own	error	handling	(perhaps	hidden/abstracted	away	from	what	you	can	see),
your		handleErrors(..)		won't	be	notified.	This	may	be	what	you	want	--	it	was,	after	all,	a	"handled	rejection"	--	but	it	also
may	not	be	what	you	want.	The	complete	lack	of	ability	to	be	notified	(of	"already	handled"	rejection	errors)	is	a	limitation
that	restricts	capabilities	in	some	use	cases.

It's	basically	the	same	limitation	that	exists	with	a		try..catch		that	can	catch	an	exception	and	simply	swallow	it.	So	this
isn't	a	limitation	unique	to	Promises,	but	it	is	something	we	might	wish	to	have	a	workaround	for.

Unfortunately,	many	times	there	is	no	reference	kept	for	the	intermediate	steps	in	a	Promise-chain	sequence,	so	without
such	references,	you	cannot	attach	error	handlers	to	reliably	observe	the	errors.

Promises	by	definition	only	have	a	single	fulfillment	value	or	a	single	rejection	reason.	In	simple	examples,	this	isn't	that	big
of	a	deal,	but	in	more	sophisticated	scenarios,	you	may	find	this	limiting.

The	typical	advice	is	to	construct	a	values	wrapper	(such	as	an		object		or		array	)	to	contain	these	multiple	messages.	This
solution	works,	but	it	can	be	quite	awkward	and	tedious	to	wrap	and	unwrap	your	messages	with	every	single	step	of	your
Promise	chain.

Sometimes	you	can	take	this	as	a	signal	that	you	could/should	decompose	the	problem	into	two	or	more	Promises.

Imagine	you	have	a	utility		foo(..)		that	produces	two	values	(	x		and		y	)	asynchronously:

function	getY(x)	{

				return	new	Promise(	function(resolve,reject){

								setTimeout(	function(){

												resolve(	(3	*	x)	-	1	);

								},	100	);

				}	);

}

function	foo(bar,baz)	{

				var	x	=	bar	*	baz;

				return	getY(	x	)

				.then(	function(y){

								//	wrap	both	values	into	container

								return	[x,y];

				}	);

}

foo(	10,	20	)
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.then(	function(msgs){

				var	x	=	msgs[0];

				var	y	=	msgs[1];

				console.log(	x,	y	);				//	200	599

}	);

First,	let's	rearrange	what		foo(..)		returns	so	that	we	don't	have	to	wrap		x		and		y		into	a	single		array		value	to	transport
through	one	Promise.	Instead,	we	can	wrap	each	value	into	its	own	promise:

function	foo(bar,baz)	{

				var	x	=	bar	*	baz;

				//	return	both	promises

				return	[

								Promise.resolve(	x	),

								getY(	x	)

				];

}

Promise.all(

				foo(	10,	20	)

)

.then(	function(msgs){

				var	x	=	msgs[0];

				var	y	=	msgs[1];

				console.log(	x,	y	);

}	);

Is	an		array		of	promises	really	better	than	an		array		of	values	passed	through	a	single	promise?	Syntactically,	it's	not
much	of	an	improvement.

But	this	approach	more	closely	embraces	the	Promise	design	theory.	It's	now	easier	in	the	future	to	refactor	to	split	the
calculation	of		x		and		y		into	separate	functions.	It's	cleaner	and	more	flexible	to	let	the	calling	code	decide	how	to
orchestrate	the	two	promises	--	using		Promise.all([	..	])		here,	but	certainly	not	the	only	option	--	rather	than	to	abstract
such	details	away	inside	of		foo(..)	.

The		var	x	=	..		and		var	y	=	..		assignments	are	still	awkward	overhead.	We	can	employ	some	functional	trickery	(hat	tip
to	Reginald	Braithwaite,	@raganwald	on	Twitter)	in	a	helper	utility:

function	spread(fn)	{

				return	Function.apply.bind(	fn,	null	);

}

Promise.all(

				foo(	10,	20	)

)

.then(

				spread(	function(x,y){

								console.log(	x,	y	);				//	200	599

				}	)

)

That's	a	bit	nicer!	Of	course,	you	could	inline	the	functional	magic	to	avoid	the	extra	helper:

Promise.all(

				foo(	10,	20	)

)

.then(	Function.apply.bind(

				function(x,y){

								console.log(	x,	y	);				//	200	599

				},

				null

)	);

Unwrap/Spread	Arguments



These	tricks	may	be	neat,	but	ES6	has	an	even	better	answer	for	us:	destructuring.	The	array	destructuring	assignment
form	looks	like	this:

Promise.all(

				foo(	10,	20	)

)

.then(	function(msgs){

				var	[x,y]	=	msgs;

				console.log(	x,	y	);				//	200	599

}	);

But	best	of	all,	ES6	offers	the	array	parameter	destructuring	form:

Promise.all(

				foo(	10,	20	)

)

.then(	function([x,y]){

				console.log(	x,	y	);				//	200	599

}	);

We've	now	embraced	the	one-value-per-Promise	mantra,	but	kept	our	supporting	boilerplate	to	a	minimum!

Note:	For	more	information	on	ES6	destructuring	forms,	see	the	ES6	&	Beyond	title	of	this	series.

One	of	the	most	intrinsic	behaviors	of	Promises	is	that	a	Promise	can	only	be	resolved	once	(fulfillment	or	rejection).	For
many	async	use	cases,	you're	only	retrieving	a	value	once,	so	this	works	fine.

But	there's	also	a	lot	of	async	cases	that	fit	into	a	different	model	--	one	that's	more	akin	to	events	and/or	streams	of	data.
It's	not	clear	on	the	surface	how	well	Promises	can	fit	into	such	use	cases,	if	at	all.	Without	a	significant	abstraction	on	top
of	Promises,	they	will	completely	fall	short	for	handling	multiple	value	resolution.

Imagine	a	scenario	where	you	might	want	to	fire	off	a	sequence	of	async	steps	in	response	to	a	stimulus	(like	an	event)	that
can	in	fact	happen	multiple	times,	like	a	button	click.

This	probably	won't	work	the	way	you	want:

//	`click(..)`	binds	the	`"click"`	event	to	a	DOM	element

//	`request(..)`	is	the	previously	defined	Promise-aware	Ajax

var	p	=	new	Promise(	function(resolve,reject){

				click(	"#mybtn",	resolve	);

}	);

p.then(	function(evt){

				var	btnID	=	evt.currentTarget.id;

				return	request(	"http://some.url.1/?id="	+	btnID	);

}	)

.then(	function(text){

				console.log(	text	);

}	);

The	behavior	here	only	works	if	your	application	calls	for	the	button	to	be	clicked	just	once.	If	the	button	is	clicked	a	second
time,	the		p		promise	has	already	been	resolved,	so	the	second		resolve(..)		call	would	be	ignored.

Instead,	you'd	probably	need	to	invert	the	paradigm,	creating	a	whole	new	Promise	chain	for	each	event	firing:
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click(	"#mybtn",	function(evt){

				var	btnID	=	evt.currentTarget.id;

				request(	"http://some.url.1/?id="	+	btnID	)

				.then(	function(text){

								console.log(	text	);

				}	);

}	);

This	approach	will	work	in	that	a	whole	new	Promise	sequence	will	be	fired	off	for	each		"click"		event	on	the	button.

But	beyond	just	the	ugliness	of	having	to	define	the	entire	Promise	chain	inside	the	event	handler,	this	design	in	some
respects	violates	the	idea	of	separation	of	concerns/capabilities	(SoC).	You	might	very	well	want	to	define	your	event
handler	in	a	different	place	in	your	code	from	where	you	define	the	response	to	the	event	(the	Promise	chain).	That's	pretty
awkward	to	do	in	this	pattern,	without	helper	mechanisms.

Note:	Another	way	of	articulating	this	limitation	is	that	it'd	be	nice	if	we	could	construct	some	sort	of	"observable"	that	we
can	subscribe	a	Promise	chain	to.	There	are	libraries	that	have	created	these	abstractions	(such	as	RxJS	--
http://rxjs.codeplex.com/),	but	the	abstractions	can	seem	so	heavy	that	you	can't	even	see	the	nature	of	Promises	anymore.
Such	heavy	abstraction	brings	important	questions	to	mind	such	as	whether	(sans	Promises)	these	mechanisms	are	as
trustable	as	Promises	themselves	have	been	designed	to	be.	We'll	revisit	the	"Observable"	pattern	in	Appendix	B.

One	concrete	barrier	to	starting	to	use	Promises	in	your	own	code	is	all	the	code	that	currently	exists	which	is	not	already
Promise-aware.	If	you	have	lots	of	callback-based	code,	it's	far	easier	to	just	keep	coding	in	that	same	style.

"A	code	base	in	motion	(with	callbacks)	will	remain	in	motion	(with	callbacks)	unless	acted	upon	by	a	smart,	Promises-
aware	developer."

Promises	offer	a	different	paradigm,	and	as	such,	the	approach	to	the	code	can	be	anywhere	from	just	a	little	different	to,	in
some	cases,	radically	different.	You	have	to	be	intentional	about	it,	because	Promises	will	not	just	naturally	shake	out	from
the	same	ol'	ways	of	doing	code	that	have	served	you	well	thus	far.

Consider	a	callback-based	scenario	like	the	following:

function	foo(x,y,cb)	{

				ajax(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y,

								cb

				);

}

foo(	11,	31,	function(err,text)	{

				if	(err)	{

								console.error(	err	);

				}

				else	{

								console.log(	text	);

				}

}	);

Is	it	immediately	obvious	what	the	first	steps	are	to	convert	this	callback-based	code	to	Promise-aware	code?	Depends	on
your	experience.	The	more	practice	you	have	with	it,	the	more	natural	it	will	feel.	But	certainly,	Promises	don't	just	advertise
on	the	label	exactly	how	to	do	it	--	there's	no	one-size-fits-all	answer	--	so	the	responsibility	is	up	to	you.

As	we've	covered	before,	we	definitely	need	an	Ajax	utility	that	is	Promise-aware	instead	of	callback-based,	which	we	could
call		request(..)	.	You	can	make	your	own,	as	we	have	already.	But	the	overhead	of	having	to	manually	define	Promise-
aware	wrappers	for	every	callback-based	utility	makes	it	less	likely	you'll	choose	to	refactor	to	Promise-aware	coding	at	all.

Promises	offer	no	direct	answer	to	that	limitation.	Most	Promise	libraries	do	offer	a	helper,	however.	But	even	without	a
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library,	imagine	a	helper	like	this:

//	polyfill-safe	guard	check

if	(!Promise.wrap)	{

				Promise.wrap	=	function(fn)	{

								return	function()	{

												var	args	=	[].slice.call(	arguments	);

												return	new	Promise(	function(resolve,reject){

																fn.apply(

																				null,

																				args.concat(	function(err,v){

																								if	(err)	{

																												reject(	err	);

																								}

																								else	{

																												resolve(	v	);

																								}

																				}	)

																);

												}	);

								};

				};

}

OK,	that's	more	than	just	a	tiny	trivial	utility.	However,	although	it	may	look	a	bit	intimidating,	it's	not	as	bad	as	you'd	think.	It
takes	a	function	that	expects	an	error-first	style	callback	as	its	last	parameter,	and	returns	a	new	one	that	automatically
creates	a	Promise	to	return,	and	substitutes	the	callback	for	you,	wired	up	to	the	Promise	fulfillment/rejection.

Rather	than	waste	too	much	time	talking	about	how	this		Promise.wrap(..)		helper	works,	let's	just	look	at	how	we	use	it:

var	request	=	Promise.wrap(	ajax	);

request(	"http://some.url.1/"	)

.then(	..	)

..

Wow,	that	was	pretty	easy!

	Promise.wrap(..)		does	not	produce	a	Promise.	It	produces	a	function	that	will	produce	Promises.	In	a	sense,	a	Promise-
producing	function	could	be	seen	as	a	"Promise	factory."	I	propose	"promisory"	as	the	name	for	such	a	thing	("Promise"	+
"factory").

The	act	of	wrapping	a	callback-expecting	function	to	be	a	Promise-aware	function	is	sometimes	referred	to	as	"lifting"	or
"promisifying".	But	there	doesn't	seem	to	be	a	standard	term	for	what	to	call	the	resultant	function	other	than	a	"lifted
function",	so	I	like	"promisory"	better	as	I	think	it's	more	descriptive.

Note:	Promisory	isn't	a	made-up	term.	It's	a	real	word,	and	its	definition	means	to	contain	or	convey	a	promise.	That's
exactly	what	these	functions	are	doing,	so	it	turns	out	to	be	a	pretty	perfect	terminology	match!

So,		Promise.wrap(ajax)		produces	an		ajax(..)		promisory	we	call		request(..)	,	and	that	promisory	produces	Promises	for
Ajax	responses.

If	all	functions	were	already	promisories,	we	wouldn't	need	to	make	them	ourselves,	so	the	extra	step	is	a	tad	bit	of	a
shame.	But	at	least	the	wrapping	pattern	is	(usually)	repeatable	so	we	can	put	it	into	a		Promise.wrap(..)		helper	as	shown
to	aid	our	promise	coding.

So	back	to	our	earlier	example,	we	need	a	promisory	for	both		ajax(..)		and		foo(..)	:

//	make	a	promisory	for	`ajax(..)`

var	request	=	Promise.wrap(	ajax	);

//	refactor	`foo(..)`,	but	keep	it	externally

//	callback-based	for	compatibility	with	other



//	parts	of	the	code	for	now	--	only	use

//	`request(..)`'s	promise	internally.

function	foo(x,y,cb)	{

				request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				)

				.then(

								function	fulfilled(text){

												cb(	null,	text	);

								},

								cb

				);

}

//	now,	for	this	code's	purposes,	make	a

//	promisory	for	`foo(..)`

var	betterFoo	=	Promise.wrap(	foo	);

//	and	use	the	promisory

betterFoo(	11,	31	)

.then(

				function	fulfilled(text){

								console.log(	text	);

				},

				function	rejected(err){

								console.error(	err	);

				}

);

Of	course,	while	we're	refactoring		foo(..)		to	use	our	new		request(..)		promisory,	we	could	just	make		foo(..)		a
promisory	itself,	instead	of	remaining	callback-based	and	needing	to	make	and	use	the	subsequent		betterFoo(..)	
promisory.	This	decision	just	depends	on	whether		foo(..)		needs	to	stay	callback-based	compatible	with	other	parts	of	the
code	base	or	not.

Consider:

`foo(..)`	is	now	also	a	promisory	because	it

delegates	to	the	`request(..)`	promisory

function	foo(x,y)	{

				return	request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				);

}

foo(	11,	31	)

.then(	..	)

..

While	ES6	Promises	don't	natively	ship	with	helpers	for	such	promisory	wrapping,	most	libraries	provide	them,	or	you	can
make	your	own.	Either	way,	this	particular	limitation	of	Promises	is	addressable	without	too	much	pain	(certainly	compared
to	the	pain	of	callback	hell!).

Once	you	create	a	Promise	and	register	a	fulfillment	and/or	rejection	handler	for	it,	there's	nothing	external	you	can	do	to
stop	that	progression	if	something	else	happens	to	make	that	task	moot.

Note:	Many	Promise	abstraction	libraries	provide	facilities	to	cancel	Promises,	but	this	is	a	terrible	idea!	Many	developers
wish	Promises	had	natively	been	designed	with	external	cancelation	capability,	but	the	problem	is	that	it	would	let	one
consumer/observer	of	a	Promise	affect	some	other	consumer's	ability	to	observe	that	same	Promise.	This	violates	the
future-value's	trustability	(external	immutability),	but	morever	is	the	embodiment	of	the	"action	at	a	distance"	anti-pattern
(http://en.wikipedia.org/wiki/Action_at_a_distance_%28computer_programming%29).	Regardless	of	how	useful	it	seems,	it
will	actually	lead	you	straight	back	into	the	same	nightmares	as	callbacks.

Consider	our	Promise	timeout	scenario	from	earlier:
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var	p	=	foo(	42	);

Promise.race(	[

				p,

				timeoutPromise(	3000	)

]	)

.then(

				doSomething,

				handleError

);

p.then(	function(){

				//	still	happens	even	in	the	timeout	case	:(

}	);

The	"timeout"	was	external	to	the	promise		p	,	so		p		itself	keeps	going,	which	we	probably	don't	want.

One	option	is	to	invasively	define	your	resolution	callbacks:

var	OK	=	true;

var	p	=	foo(	42	);

Promise.race(	[

				p,

				timeoutPromise(	3000	)

				.catch(	function(err){

								OK	=	false;

								throw	err;

				}	)

]	)

.then(

				doSomething,

				handleError

);

p.then(	function(){

				if	(OK)	{

								//	only	happens	if	no	timeout!	:)

				}

}	);

This	is	ugly.	It	works,	but	it's	far	from	ideal.	Generally,	you	should	try	to	avoid	such	scenarios.

But	if	you	can't,	the	ugliness	of	this	solution	should	be	a	clue	that	cancelation	is	a	functionality	that	belongs	at	a	higher	level
of	abstraction	on	top	of	Promises.	I'd	recommend	you	look	to	Promise	abstraction	libraries	for	assistance	rather	than
hacking	it	yourself.

Note:	My	asynquence	Promise	abstraction	library	provides	just	such	an	abstraction	and	an		abort()		capability	for	the
sequence,	all	of	which	will	be	discussed	in	Appendix	A.

A	single	Promise	is	not	really	a	flow-control	mechanism	(at	least	not	in	a	very	meaningful	sense),	which	is	exactly	what
cancelation	refers	to;	that's	why	Promise	cancelation	would	feel	awkward.

By	contrast,	a	chain	of	Promises	taken	collectively	together	--	what	I	like	to	call	a	"sequence"	--	is	a	flow	control	expression,
and	thus	it's	appropriate	for	cancelation	to	be	defined	at	that	level	of	abstraction.

No	individual	Promise	should	be	cancelable,	but	it's	sensible	for	a	sequence	to	be	cancelable,	because	you	don't	pass
around	a	sequence	as	a	single	immutable	value	like	you	do	with	a	Promise.

This	particular	limitation	is	both	simple	and	complex.

Comparing	how	many	pieces	are	moving	with	a	basic	callback-based	async	task	chain	versus	a	Promise	chain,	it's	clear

Promise	Performance



Promises	have	a	fair	bit	more	going	on,	which	means	they	are	naturally	at	least	a	tiny	bit	slower.	Think	back	to	just	the
simple	list	of	trust	guarantees	that	Promises	offer,	as	compared	to	the	ad	hoc	solution	code	you'd	have	to	layer	on	top	of
callbacks	to	achieve	the	same	protections.

More	work	to	do,	more	guards	to	protect,	means	that	Promises	are	slower	as	compared	to	naked,	untrustable	callbacks.
That	much	is	obvious,	and	probably	simple	to	wrap	your	brain	around.

But	how	much	slower?	Well...	that's	actually	proving	to	be	an	incredibly	difficult	question	to	answer	absolutely,	across	the
board.

Frankly,	it's	kind	of	an	apples-to-oranges	comparison,	so	it's	probably	the	wrong	question	to	ask.	You	should	actually
compare	whether	an	ad-hoc	callback	system	with	all	the	same	protections	manually	layered	in	is	faster	than	a	Promise
implementation.

If	Promises	have	a	legitimate	performance	limitation,	it's	more	that	they	don't	really	offer	a	line-item	choice	as	to	which
trustability	protections	you	want/need	or	not	--	you	get	them	all,	always.

Nevertheless,	if	we	grant	that	a	Promise	is	generally	a	little	bit	slower	than	its	non-Promise,	non-trustable	callback
equivalent	--	assuming	there	are	places	where	you	feel	you	can	justify	the	lack	of	trustability	--	does	that	mean	that
Promises	should	be	avoided	across	the	board,	as	if	your	entire	application	is	driven	by	nothing	but	must-be-utterly-the-
fastest	code	possible?

Sanity	check:	if	your	code	is	legitimately	like	that,	is	JavaScript	even	the	right	language	for	such	tasks?	JavaScript	can
be	optimized	to	run	applications	very	performantly	(see	Chapter	5	and	Chapter	6).	But	is	obsessing	over	tiny	performance
tradeoffs	with	Promises,	in	light	of	all	the	benefits	they	offer,	really	appropriate?

Another	subtle	issue	is	that	Promises	make	everything	async,	which	means	that	some	immediately	(synchronously)
complete	steps	still	defer	advancement	of	the	next	step	to	a	Job	(see	Chapter	1).	That	means	that	it's	possible	that	a
sequence	of	Promise	tasks	could	complete	ever-so-slightly	slower	than	the	same	sequence	wired	up	with	callbacks.

Of	course,	the	question	here	is	this:	are	these	potential	slips	in	tiny	fractions	of	performance	worth	all	the	other	articulated
benefits	of	Promises	we've	laid	out	across	this	chapter?

My	take	is	that	in	virtually	all	cases	where	you	might	think	Promise	performance	is	slow	enough	to	be	concerned,	it's
actually	an	anti-pattern	to	optimize	away	the	benefits	of	Promise	trustability	and	composability	by	avoiding	them	altogether.

Instead,	you	should	default	to	using	them	across	the	code	base,	and	then	profile	and	analyze	your	application's	hot	(critical)
paths.	Are	Promises	really	a	bottleneck,	or	are	they	just	a	theoretical	slowdown?	Only	then,	armed	with	actual	valid
benchmarks	(see	Chapter	6)	is	it	responsible	and	prudent	to	factor	out	the	Promises	in	just	those	identified	critical	areas.

Promises	are	a	little	slower,	but	in	exchange	you're	getting	a	lot	of	trustability,	non-Zalgo	predictability,	and	composability
built	in.	Maybe	the	limitation	is	not	actually	their	performance,	but	your	lack	of	perception	of	their	benefits?

Promises	are	awesome.	Use	them.	They	solve	the	inversion	of	control	issues	that	plague	us	with	callbacks-only	code.

They	don't	get	rid	of	callbacks,	they	just	redirect	the	orchestration	of	those	callbacks	to	a	trustable	intermediary	mechanism
that	sits	between	us	and	another	utility.

Promise	chains	also	begin	to	address	(though	certainly	not	perfectly)	a	better	way	of	expressing	async	flow	in	sequential
fashion,	which	helps	our	brains	plan	and	maintain	async	JS	code	better.	We'll	see	an	even	better	solution	to	that	problem	in
the	next	chapter!
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In	Chapter	2,	we	identified	two	key	drawbacks	to	expressing	async	flow	control	with	callbacks:

Callback-based	async	doesn't	fit	how	our	brain	plans	out	steps	of	a	task.
Callbacks	aren't	trustable	or	composable	because	of	inversion	of	control.

In	Chapter	3,	we	detailed	how	Promises	uninvert	the	inversion	of	control	of	callbacks,	restoring	trustability/composability.

Now	we	turn	our	attention	to	expressing	async	flow	control	in	a	sequential,	synchronous-looking	fashion.	The	"magic"	that
makes	it	possible	is	ES6	generators.

In	Chapter	1,	we	explained	an	expectation	that	JS	developers	almost	universally	rely	on	in	their	code:	once	a	function	starts
executing,	it	runs	until	it	completes,	and	no	other	code	can	interrupt	and	run	in	between.

As	bizarre	as	it	may	seem,	ES6	introduces	a	new	type	of	function	that	does	not	behave	with	the	run-to-completion	behavior.
This	new	type	of	function	is	called	a	"generator."

To	understand	the	implications,	let's	consider	this	example:

var	x	=	1;

function	foo()	{

				x++;

				bar();																//	<--	what	about	this	line?

				console.log(	"x:",	x	);

}

function	bar()	{

				x++;

}

foo();																				//	x:	3

In	this	example,	we	know	for	sure	that		bar()		runs	in	between		x++		and		console.log(x)	.	But	what	if		bar()		wasn't	there?
Obviously	the	result	would	be		2		instead	of		3	.

Now	let's	twist	your	brain.	What	if		bar()		wasn't	present,	but	it	could	still	somehow	run	between	the		x++		and
	console.log(x)		statements?	How	would	that	be	possible?

In	preemptive	multithreaded	languages,	it	would	essentially	be	possible	for		bar()		to	"interrupt"	and	run	at	exactly	the	right
moment	between	those	two	statements.	But	JS	is	not	preemptive,	nor	is	it	(currently)	multithreaded.	And	yet,	a
cooperative	form	of	this	"interruption"	(concurrency)	is	possible,	if		foo()		itself	could	somehow	indicate	a	"pause"	at	that
part	in	the	code.

Note:	I	use	the	word	"cooperative"	not	only	because	of	the	connection	to	classical	concurrency	terminology	(see	Chapter
1),	but	because	as	you'll	see	in	the	next	snippet,	the	ES6	syntax	for	indicating	a	pause	point	in	code	is		yield		--	suggesting
a	politely	cooperative	yielding	of	control.

Here's	the	ES6	code	to	accomplish	such	cooperative	concurrency:

var	x	=	1;
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function	*foo()	{

				x++;

				yield;	//	pause!

				console.log(	"x:",	x	);

}

function	bar()	{

				x++;

}

Note:	You	will	likely	see	most	other	JS	documentation/code	that	will	format	a	generator	declaration	as		function*	foo()	{	..
}		instead	of	as	I've	done	here	with		function	*foo()	{	..	}		--	the	only	difference	being	the	stylistic	positioning	of	the		*	.
The	two	forms	are	functionally/syntactically	identical,	as	is	a	third		function*foo()	{	..	}		(no	space)	form.	There	are
arguments	for	both	styles,	but	I	basically	prefer		function	*foo..		because	it	then	matches	when	I	reference	a	generator	in
writing	with		*foo()	.	If	I	said	only		foo()	,	you	wouldn't	know	as	clearly	if	I	was	talking	about	a	generator	or	a	regular
function.	It's	purely	a	stylistic	preference.

Now,	how	can	we	run	the	code	in	that	previous	snippet	such	that		bar()		executes	at	the	point	of	the		yield		inside	of
	*foo()	?

//	construct	an	iterator	`it`	to	control	the	generator

var	it	=	foo();

//	start	`foo()`	here!

it.next();

x;																								//	2

bar();

x;																								//	3

it.next();																//	x:	3

OK,	there's	quite	a	bit	of	new	and	potentially	confusing	stuff	in	those	two	code	snippets,	so	we've	got	plenty	to	wade
through.	But	before	we	explain	the	different	mechanics/syntax	with	ES6	generators,	let's	walk	through	the	behavior	flow:

1.	 The		it	=	foo()		operation	does	not	execute	the		*foo()		generator	yet,	but	it	merely	constructs	an	iterator	that	will
control	its	execution.	More	on	iterators	in	a	bit.

2.	 The	first		it.next()		starts	the		*foo()		generator,	and	runs	the		x++		on	the	first	line	of		*foo()	.
3.	 	*foo()		pauses	at	the		yield		statement,	at	which	point	that	first		it.next()		call	finishes.	At	the	moment,		*foo()		is	still

running	and	active,	but	it's	in	a	paused	state.
4.	 We	inspect	the	value	of		x	,	and	it's	now		2	.
5.	 We	call		bar()	,	which	increments		x		again	with		x++	.
6.	 We	inspect	the	value	of		x		again,	and	it's	now		3	.
7.	 The	final		it.next()		call	resumes	the		*foo()		generator	from	where	it	was	paused,	and	runs	the		console.log(..)	

statement,	which	uses	the	current	value	of		x		of		3	.

Clearly,		foo()		started,	but	did	not	run-to-completion	--	it	paused	at	the		yield	.	We	resumed		foo()		later,	and	let	it	finish,
but	that	wasn't	even	required.

So,	a	generator	is	a	special	kind	of	function	that	can	start	and	stop	one	or	more	times,	and	doesn't	necessarily	ever	have	to
finish.	While	it	won't	be	terribly	obvious	yet	why	that's	so	powerful,	as	we	go	throughout	the	rest	of	this	chapter,	that	will	be
one	of	the	fundamental	building	blocks	we	use	to	construct	generators-as-async-flow-control	as	a	pattern	for	our	code.

A	generator	function	is	a	special	function	with	the	new	processing	model	we	just	alluded	to.	But	it's	still	a	function,	which
means	it	still	has	some	basic	tenets	that	haven't	changed	--	namely,	that	it	still	accepts	arguments	(aka	"input"),	and	that	it
can	still	return	a	value	(aka	"output"):

function	*foo(x,y)	{

				return	x	*	y;

}
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var	it	=	foo(	6,	7	);

var	res	=	it.next();

res.value;								//	42

We	pass	in	the	arguments		6		and		7		to		*foo(..)		as	the	parameters		x		and		y	,	respectively.	And		*foo(..)		returns	the
value		42		back	to	the	calling	code.

We	now	see	a	difference	with	how	the	generator	is	invoked	compared	to	a	normal	function.		foo(6,7)		obviously	looks
familiar.	But	subtly,	the		*foo(..)		generator	hasn't	actually	run	yet	as	it	would	have	with	a	function.

Instead,	we're	just	creating	an	iterator	object,	which	we	assign	to	the	variable		it	,	to	control	the		*foo(..)		generator.	Then
we	call		it.next()	,	which	instructs	the		*foo(..)		generator	to	advance	from	its	current	location,	stopping	either	at	the	next
	yield		or	end	of	the	generator.

The	result	of	that		next(..)		call	is	an	object	with	a		value		property	on	it	holding	whatever	value	(if	anything)	was	returned
from		*foo(..)	.	In	other	words,		yield		caused	a	value	to	be	sent	out	from	the	generator	during	the	middle	of	its	execution,
kind	of	like	an	intermediate		return	.

Again,	it	won't	be	obvious	yet	why	we	need	this	whole	indirect	iterator	object	to	control	the	generator.	We'll	get	there,	I
promise.

In	addition	to	generators	accepting	arguments	and	having	return	values,	there's	even	more	powerful	and	compelling
input/output	messaging	capability	built	into	them,	via		yield		and		next(..)	.

Consider:

function	*foo(x)	{

				var	y	=	x	*	(yield);

				return	y;

}

var	it	=	foo(	6	);

//	start	`foo(..)`

it.next();

var	res	=	it.next(	7	);

res.value;								//	42

First,	we	pass	in		6		as	the	parameter		x	.	Then	we	call		it.next()	,	and	it	starts	up		*foo(..)	.

Inside		*foo(..)	,	the		var	y	=	x	..		statement	starts	to	be	processed,	but	then	it	runs	across	a		yield		expression.	At	that
point,	it	pauses		*foo(..)		(in	the	middle	of	the	assignment	statement!),	and	essentially	requests	the	calling	code	to	provide
a	result	value	for	the		yield		expression.	Next,	we	call		it.next(	7	)	,	which	is	passing	the		7		value	back	in	to	be	that	result
of	the	paused		yield		expression.

So,	at	this	point,	the	assignment	statement	is	essentially		var	y	=	6	*	7	.	Now,		return	y		returns	that		42		value	back	as	the
result	of	the		it.next(	7	)		call.

Notice	something	very	important	but	also	easily	confusing,	even	to	seasoned	JS	developers:	depending	on	your
perspective,	there's	a	mismatch	between	the		yield		and	the		next(..)		call.	In	general,	you're	going	to	have	one	more
	next(..)		call	than	you	have		yield		statements	--	the	preceding	snippet	has	one		yield		and	two		next(..)		calls.

Why	the	mismatch?

Iteration	Messaging



Because	the	first		next(..)		always	starts	a	generator,	and	runs	to	the	first		yield	.	But	it's	the	second		next(..)		call	that
fulfills	the	first	paused		yield		expression,	and	the	third		next(..)		would	fulfill	the	second		yield	,	and	so	on.

Actually,	which	code	you're	thinking	about	primarily	will	affect	whether	there's	a	perceived	mismatch	or	not.

Consider	only	the	generator	code:

var	y	=	x	*	(yield);

return	y;

This	first		yield		is	basically	asking	a	question:	"What	value	should	I	insert	here?"

Who's	going	to	answer	that	question?	Well,	the	first		next()		has	already	run	to	get	the	generator	up	to	this	point,	so
obviously	it	can't	answer	the	question.	So,	the	second		next(..)		call	must	answer	the	question	posed	by	the	first		yield	.

See	the	mismatch	--	second-to-first?

But	let's	flip	our	perspective.	Let's	look	at	it	not	from	the	generator's	point	of	view,	but	from	the	iterator's	point	of	view.

To	properly	illustrate	this	perspective,	we	also	need	to	explain	that	messages	can	go	in	both	directions	--		yield	..		as	an
expression	can	send	out	messages	in	response	to		next(..)		calls,	and		next(..)		can	send	values	to	a	paused		yield	
expression.	Consider	this	slightly	adjusted	code:

function	*foo(x)	{

				var	y	=	x	*	(yield	"Hello");				//	<--	yield	a	value!

				return	y;

}

var	it	=	foo(	6	);

var	res	=	it.next();				//	first	`next()`,	don't	pass	anything

res.value;																//	"Hello"

res	=	it.next(	7	);								//	pass	`7`	to	waiting	`yield`

res.value;																//	42

	yield	..		and		next(..)		pair	together	as	a	two-way	message	passing	system	during	the	execution	of	the	generator.

So,	looking	only	at	the	iterator	code:

var	res	=	it.next();				//	first	`next()`,	don't	pass	anything

res.value;																//	"Hello"

res	=	it.next(	7	);								//	pass	`7`	to	waiting	`yield`

res.value;																//	42

Note:	We	don't	pass	a	value	to	the	first		next()		call,	and	that's	on	purpose.	Only	a	paused		yield		could	accept	such	a
value	passed	by	a		next(..)	,	and	at	the	beginning	of	the	generator	when	we	call	the	first		next()	,	there	is	no	paused
	yield		to	accept	such	a	value.	The	specification	and	all	compliant	browsers	just	silently	discard	anything	passed	to	the	first
	next()	.	It's	still	a	bad	idea	to	pass	a	value,	as	you're	just	creating	silently	"failing"	code	that's	confusing.	So,	always	start	a
generator	with	an	argument-free		next()	.

The	first		next()		call	(with	nothing	passed	to	it)	is	basically	asking	a	question:	"What	next	value	does	the		*foo(..)	
generator	have	to	give	me?"	And	who	answers	this	question?	The	first		yield	"hello"		expression.

See?	No	mismatch	there.

Depending	on	who	you	think	about	asking	the	question,	there	is	either	a	mismatch	between	the		yield		and		next(..)		calls,
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or	not.

But	wait!	There's	still	an	extra		next()		compared	to	the	number	of		yield		statements.	So,	that	final		it.next(7)		call	is	again
asking	the	question	about	what	next	value	the	generator	will	produce.	But	there's	no	more		yield		statements	left	to	answer,
is	there?	So	who	answers?

The		return		statement	answers	the	question!

And	if	there	is	no		return		in	your	generator	--		return		is	certainly	not	any	more	required	in	generators	than	in	regular
functions	--	there's	always	an	assumed/implicit		return;		(aka		return	undefined;	),	which	serves	the	purpose	of	default
answering	the	question	posed	by	the	final		it.next(7)		call.

These	questions	and	answers	--	the	two-way	message	passing	with		yield		and		next(..)		--	are	quite	powerful,	but	it's	not
obvious	at	all	how	these	mechanisms	are	connected	to	async	flow	control.	We're	getting	there!

It	may	appear	from	the	syntactic	usage	that	when	you	use	an	iterator	to	control	a	generator,	you're	controlling	the	declared
generator	function	itself.	But	there's	a	subtlety	that	easy	to	miss:	each	time	you	construct	an	iterator,	you	are	implicitly
constructing	an	instance	of	the	generator	which	that	iterator	will	control.

You	can	have	multiple	instances	of	the	same	generator	running	at	the	same	time,	and	they	can	even	interact:

function	*foo()	{

				var	x	=	yield	2;

				z++;

				var	y	=	yield	(x	*	z);

				console.log(	x,	y,	z	);

}

var	z	=	1;

var	it1	=	foo();

var	it2	=	foo();

var	val1	=	it1.next().value;												//	2	<--	yield	2

var	val2	=	it2.next().value;												//	2	<--	yield	2

val1	=	it1.next(	val2	*	10	).value;								//	40		<--	x:20,		z:2

val2	=	it2.next(	val1	*	5	).value;								//	600	<--	x:200,	z:3

it1.next(	val2	/	2	);																				//	y:300

																																								//	20	300	3

it2.next(	val1	/	4	);																				//	y:10

																																								//	200	10	3

Warning:	The	most	common	usage	of	multiple	instances	of	the	same	generator	running	concurrently	is	not	such
interactions,	but	when	the	generator	is	producing	its	own	values	without	input,	perhaps	from	some	independently
connected	resource.	We'll	talk	more	about	value	production	in	the	next	section.

Let's	briefly	walk	through	the	processing:

1.	 Both	instances	of		*foo()		are	started	at	the	same	time,	and	both		next()		calls	reveal	a		value		of		2		from	the		yield	2	
statements,	respectively.

2.	 	val2	*	10		is		2	*	10	,	which	is	sent	into	the	first	generator	instance		it1	,	so	that		x		gets	value		20	.		z		is	incremented
from		1		to		2	,	and	then		20	*	2		is		yield	ed	out,	setting		val1		to		40	.

3.	 	val1	*	5		is		40	*	5	,	which	is	sent	into	the	second	generator	instance		it2	,	so	that		x		gets	value		200	.		z		is
incremented	again,	from		2		to		3	,	and	then		200	*	3		is		yield	ed	out,	setting		val2		to		600	.

4.	 	val2	/	2		is		600	/	2	,	which	is	sent	into	the	first	generator	instance		it1	,	so	that		y		gets	value		300	,	then	printing	out
	20	300	3		for	its		x	y	z		values,	respectively.

5.	 	val1	/	4		is		40	/	4	,	which	is	sent	into	the	second	generator	instance		it2	,	so	that		y		gets	value		10	,	then	printing
out		200	10	3		for	its		x	y	z		values,	respectively.
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That's	a	"fun"	example	to	run	through	in	your	mind.	Did	you	keep	it	straight?

Recall	this	scenario	from	the	"Run-to-completion"	section	of	Chapter	1:

var	a	=	1;

var	b	=	2;

function	foo()	{

				a++;

				b	=	b	*	a;

				a	=	b	+	3;

}

function	bar()	{

				b--;

				a	=	8	+	b;

				b	=	a	*	2;

}

With	normal	JS	functions,	of	course	either		foo()		can	run	completely	first,	or		bar()		can	run	completely	first,	but		foo()	
cannot	interleave	its	individual	statements	with		bar()	.	So,	there	are	only	two	possible	outcomes	to	the	preceding	program.

However,	with	generators,	clearly	interleaving	(even	in	the	middle	of	statements!)	is	possible:

var	a	=	1;

var	b	=	2;

function	*foo()	{

				a++;

				yield;

				b	=	b	*	a;

				a	=	(yield	b)	+	3;

}

function	*bar()	{

				b--;

				yield;

				a	=	(yield	8)	+	b;

				b	=	a	*	(yield	2);

}

Depending	on	what	respective	order	the	iterators	controlling		*foo()		and		*bar()		are	called,	the	preceding	program	could
produce	several	different	results.	In	other	words,	we	can	actually	illustrate	(in	a	sort	of	fake-ish	way)	the	theoretical
"threaded	race	conditions"	circumstances	discussed	in	Chapter	1,	by	interleaving	the	two	generator	interations	over	the
same	shared	variables.

First,	let's	make	a	helper	called		step(..)		that	controls	an	iterator:

function	step(gen)	{

				var	it	=	gen();

				var	last;

				return	function()	{

								//	whatever	is	`yield`ed	out,	just

								//	send	it	right	back	in	the	next	time!

								last	=	it.next(	last	).value;

				};

}

	step(..)		initializes	a	generator	to	create	its		it		iterator,	then	returns	a	function	which,	when	called,	advances	the	iterator
by	one	step.	Additionally,	the	previously		yield	ed	out	value	is	sent	right	back	in	at	the	next	step.	So,		yield	8		will	just
become		8		and		yield	b		will	just	be		b		(whatever	it	was	at	the	time	of		yield	).
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Now,	just	for	fun,	let's	experiment	to	see	the	effects	of	interleaving	these	different	chunks	of		*foo()		and		*bar()	.	We'll	start
with	the	boring	base	case,	making	sure		*foo()		totally	finishes	before		*bar()		(just	like	we	did	in	Chapter	1):

//	make	sure	to	reset	`a`	and	`b`

a	=	1;

b	=	2;

var	s1	=	step(	foo	);

var	s2	=	step(	bar	);

//	run	`*foo()`	completely	first

s1();

s1();

s1();

//	now	run	`*bar()`

s2();

s2();

s2();

s2();

console.log(	a,	b	);				//	11	22

The	end	result	is		11		and		22	,	just	as	it	was	in	the	Chapter	1	version.	Now	let's	mix	up	the	interleaving	ordering	and	see
how	it	changes	the	final	values	of		a		and		b	:

//	make	sure	to	reset	`a`	and	`b`

a	=	1;

b	=	2;

var	s1	=	step(	foo	);

var	s2	=	step(	bar	);

s2();								//	b--;

s2();								//	yield	8

s1();								//	a++;

s2();								//	a	=	8	+	b;

												//	yield	2

s1();								//	b	=	b	*	a;

												//	yield	b

s1();								//	a	=	b	+	3;

s2();								//	b	=	a	*	2;

Before	I	tell	you	the	results,	can	you	figure	out	what		a		and		b		are	after	the	preceding	program?	No	cheating!

console.log(	a,	b	);				//	12	18

Note:	As	an	exercise	for	the	reader,	try	to	see	how	many	other	combinations	of	results	you	can	get	back	rearranging	the
order	of	the		s1()		and		s2()		calls.	Don't	forget	you'll	always	need	three		s1()		calls	and	four		s2()		calls.	Recall	the
discussion	earlier	about	matching		next()		with		yield		for	the	reasons	why.

You	almost	certainly	won't	want	to	intentionally	create	this	level	of	interleaving	confusion,	as	it	creates	incredibly	difficult	to
understand	code.	But	the	exercise	is	interesting	and	instructive	to	understand	more	about	how	multiple	generators	can	run
concurrently	in	the	same	shared	scope,	because	there	will	be	places	where	this	capability	is	quite	useful.

We'll	discuss	generator	concurrency	in	more	detail	at	the	end	of	this	chapter.

In	the	previous	section,	we	mentioned	an	interesting	use	for	generators,	as	a	way	to	produce	values.	This	is	not	the	main
focus	in	this	chapter,	but	we'd	be	remiss	if	we	didn't	cover	the	basics,	especially	because	this	use	case	is	essentially	the
origin	of	the	name:	generators.
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We're	going	to	take	a	slight	diversion	into	the	topic	of	iterators	for	a	bit,	but	we'll	circle	back	to	how	they	relate	to	generators
and	using	a	generator	to	generate	values.

Imagine	you're	producing	a	series	of	values	where	each	value	has	a	definable	relationship	to	the	previous	value.	To	do	this,
you're	going	to	need	a	stateful	producer	that	remembers	the	last	value	it	gave	out.

You	can	implement	something	like	that	straightforwardly	using	a	function	closure	(see	the	Scope	&	Closures	title	of	this
series):

var	gimmeSomething	=	(function(){

				var	nextVal;

				return	function(){

								if	(nextVal	===	undefined)	{

												nextVal	=	1;

								}

								else	{

												nextVal	=	(3	*	nextVal)	+	6;

								}

								return	nextVal;

				};

})();

gimmeSomething();								//	1

gimmeSomething();								//	9

gimmeSomething();								//	33

gimmeSomething();								//	105

Note:	The		nextVal		computation	logic	here	could	have	been	simplified,	but	conceptually,	we	don't	want	to	calculate	the
next	value	(aka		nextVal	)	until	the	next		gimmeSomething()		call	happens,	because	in	general	that	could	be	a	resource-leaky
design	for	producers	of	more	persistent	or	resource-limited	values	than	simple		number	s.

Generating	an	arbitrary	number	series	isn't	a	terribly	realistic	example.	But	what	if	you	were	generating	records	from	a	data
source?	You	could	imagine	much	the	same	code.

In	fact,	this	task	is	a	very	common	design	pattern,	usually	solved	by	iterators.	An	iterator	is	a	well-defined	interface	for
stepping	through	a	series	of	values	from	a	producer.	The	JS	interface	for	iterators,	as	it	is	in	most	languages,	is	to	call
	next()		each	time	you	want	the	next	value	from	the	producer.

We	could	implement	the	standard	iterator	interface	for	our	number	series	producer:

var	something	=	(function(){

				var	nextVal;

				return	{

								//	needed	for	`for..of`	loops

								[Symbol.iterator]:	function(){	return	this;	},

								//	standard	iterator	interface	method

								next:	function(){

												if	(nextVal	===	undefined)	{

																nextVal	=	1;

												}

												else	{

																nextVal	=	(3	*	nextVal)	+	6;

												}

												return	{	done:false,	value:nextVal	};

								}

				};

})();

something.next().value;								//	1

something.next().value;								//	9

something.next().value;								//	33
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something.next().value;								//	105

Note:	We'll	explain	why	we	need	the		[Symbol.iterator]:	..		part	of	this	code	snippet	in	the	"Iterables"	section.
Syntactically	though,	two	ES6	features	are	at	play.	First,	the		[	..	]		syntax	is	called	a	computed	property	name	(see	the
this	&	Object	Prototypes	title	of	this	series).	It's	a	way	in	an	object	literal	definition	to	specify	an	expression	and	use	the
result	of	that	expression	as	the	name	for	the	property.	Next,		Symbol.iterator		is	one	of	ES6's	predefined	special		Symbol	
values	(see	the	ES6	&	Beyond	title	of	this	book	series).

The		next()		call	returns	an	object	with	two	properties:		done		is	a		boolean		value	signaling	the	iterator's	complete	status;
	value		holds	the	iteration	value.

ES6	also	adds	the		for..of		loop,	which	means	that	a	standard	iterator	can	automatically	be	consumed	with	native	loop
syntax:

for	(var	v	of	something)	{

				console.log(	v	);

				//	don't	let	the	loop	run	forever!

				if	(v	>	500)	{

								break;

				}

}

//	1	9	33	105	321	969

Note:	Because	our		something		iterator	always	returns		done:false	,	this		for..of		loop	would	run	forever,	which	is	why	we
put	the		break		conditional	in.	It's	totally	OK	for	iterators	to	be	never-ending,	but	there	are	also	cases	where	the	iterator	will
run	over	a	finite	set	of	values	and	eventually	return	a		done:true	.

The		for..of		loop	automatically	calls		next()		for	each	iteration	--	it	doesn't	pass	any	values	in	to	the		next()		--	and	it	will
automatically	terminate	on	receiving	a		done:true	.	It's	quite	handy	for	looping	over	a	set	of	data.

Of	course,	you	could	manually	loop	over	iterators,	calling		next()		and	checking	for	the		done:true		condition	to	know	when
to	stop:

for	(

				var	ret;

				(ret	=	something.next())	&&	!ret.done;

)	{

				console.log(	ret.value	);

				//	don't	let	the	loop	run	forever!

				if	(ret.value	>	500)	{

								break;

				}

}

//	1	9	33	105	321	969

Note:	This	manual		for		approach	is	certainly	uglier	than	the	ES6		for..of		loop	syntax,	but	its	advantage	is	that	it	affords
you	the	opportunity	to	pass	in	values	to	the		next(..)		calls	if	necessary.

In	addition	to	making	your	own	iterators,	many	built-in	data	structures	in	JS	(as	of	ES6),	like		array	s,	also	have	default
iterators:

var	a	=	[1,3,5,7,9];

for	(var	v	of	a)	{

				console.log(	v	);

}

//	1	3	5	7	9

The		for..of		loop	asks		a		for	its	iterator,	and	automatically	uses	it	to	iterate	over		a	's	values.



Note:	It	may	seem	a	strange	omission	by	ES6,	but	regular		object	s	intentionally	do	not	come	with	a	default	iterator	the	way
	array	s	do.	The	reasons	go	deeper	than	we	will	cover	here.	If	all	you	want	is	to	iterate	over	the	properties	of	an	object	(with
no	particular	guarantee	of	ordering),		Object.keys(..)		returns	an		array	,	which	can	then	be	used	like		for	(var	k	of
Object.keys(obj))	{	..	.	Such	a		for..of		loop	over	an	object's	keys	would	be	similar	to	a		for..in		loop,	except	that
	Object.keys(..)		does	not	include	properties	from	the		[[Prototype]]		chain	while		for..in		does	(see	the	this	&	Object
Prototypes	title	of	this	series).

The		something		object	in	our	running	example	is	called	an	iterator,	as	it	has	the		next()		method	on	its	interface.	But	a
closely	related	term	is	iterable,	which	is	an		object		that	contains	an	iterator	that	can	iterate	over	its	values.

As	of	ES6,	the	way	to	retrieve	an	iterator	from	an	iterable	is	that	the	iterable	must	have	a	function	on	it,	with	the	name	being
the	special	ES6	symbol	value		Symbol.iterator	.	When	this	function	is	called,	it	returns	an	iterator.	Though	not	required,
generally	each	call	should	return	a	fresh	new	iterator.

	a		in	the	previous	snippet	is	an	iterable.	The		for..of		loop	automatically	calls	its		Symbol.iterator		function	to	construct	an
iterator.	But	we	could	of	course	call	the	function	manually,	and	use	the	iterator	it	returns:

var	a	=	[1,3,5,7,9];

var	it	=	a[Symbol.iterator]();

it.next().value;				//	1

it.next().value;				//	3

it.next().value;				//	5

..

In	the	previous	code	listing	that	defined		something	,	you	may	have	noticed	this	line:

[Symbol.iterator]:	function(){	return	this;	}

That	little	bit	of	confusing	code	is	making	the		something		value	--	the	interface	of	the		something		iterator	--	also	an	iterable;
it's	now	both	an	iterable	and	an	iterator.	Then,	we	pass		something		to	the		for..of		loop:

for	(var	v	of	something)	{

				..

}

The		for..of		loop	expects		something		to	be	an	iterable,	so	it	looks	for	and	calls	its		Symbol.iterator		function.	We	defined
that	function	to	simply		return	this	,	so	it	just	gives	itself	back,	and	the		for..of		loop	is	none	the	wiser.

Let's	turn	our	attention	back	to	generators,	in	the	context	of	iterators.	A	generator	can	be	treated	as	a	producer	of	values
that	we	extract	one	at	a	time	through	an	iterator	interface's		next()		calls.

So,	a	generator	itself	is	not	technically	an	iterable,	though	it's	very	similar	--	when	you	execute	the	generator,	you	get	an
iterator	back:

function	*foo(){	..	}

var	it	=	foo();

We	can	implement	the		something		infinite	number	series	producer	from	earlier	with	a	generator,	like	this:
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function	*something()	{

				var	nextVal;

				while	(true)	{

								if	(nextVal	===	undefined)	{

												nextVal	=	1;

								}

								else	{

												nextVal	=	(3	*	nextVal)	+	6;

								}

								yield	nextVal;

				}

}

Note:	A		while..true		loop	would	normally	be	a	very	bad	thing	to	include	in	a	real	JS	program,	at	least	if	it	doesn't	have	a
	break		or		return		in	it,	as	it	would	likely	run	forever,	synchronously,	and	block/lock-up	the	browser	UI.	However,	in	a
generator,	such	a	loop	is	generally	totally	OK	if	it	has	a		yield		in	it,	as	the	generator	will	pause	at	each	iteration,		yield	ing
back	to	the	main	program	and/or	to	the	event	loop	queue.	To	put	it	glibly,	"generators	put	the		while..true		back	in	JS
programming!"

That's	a	fair	bit	cleaner	and	simpler,	right?	Because	the	generator	pauses	at	each		yield	,	the	state	(scope)	of	the	function
	*something()		is	kept	around,	meaning	there's	no	need	for	the	closure	boilerplate	to	preserve	variable	state	across	calls.

Not	only	is	it	simpler	code	--	we	don't	have	to	make	our	own	iterator	interface	--	it	actually	is	more	reason-able	code,
because	it	more	clearly	expresses	the	intent.	For	example,	the		while..true		loop	tells	us	the	generator	is	intended	to	run
forever	--	to	keep	generating	values	as	long	as	we	keep	asking	for	them.

And	now	we	can	use	our	shiny	new		*something()		generator	with	a		for..of		loop,	and	you'll	see	it	works	basically
identically:

for	(var	v	of	something())	{

				console.log(	v	);

				//	don't	let	the	loop	run	forever!

				if	(v	>	500)	{

								break;

				}

}

//	1	9	33	105	321	969

But	don't	skip	over		for	(var	v	of	something())	..	!	We	didn't	just	reference		something		as	a	value	like	in	earlier	examples,
but	instead	called	the		*something()		generator	to	get	its	iterator	for	the		for..of		loop	to	use.

If	you're	paying	close	attention,	two	questions	may	arise	from	this	interaction	between	the	generator	and	the	loop:

Why	couldn't	we	say		for	(var	v	of	something)	..	?	Because		something		here	is	a	generator,	which	is	not	an	iterable.
We	have	to	call		something()		to	construct	a	producer	for	the		for..of		loop	to	iterate	over.
The		something()		call	produces	an	iterator,	but	the		for..of		loop	wants	an	iterable,	right?	Yep.	The	generator's	iterator
also	has	a		Symbol.iterator		function	on	it,	which	basically	does	a		return	this	,	just	like	the		something		iterable	we
defined	earlier.	In	other	words,	a	generator's	iterator	is	also	an	iterable!

In	the	previous	example,	it	would	appear	the	iterator	instance	for	the		*something()		generator	was	basically	left	in	a
suspended	state	forever	after	the		break		in	the	loop	was	called.

But	there's	a	hidden	behavior	that	takes	care	of	that	for	you.	"Abnormal	completion"	(i.e.,	"early	termination")	of	the
	for..of		loop	--	generally	caused	by	a		break	,		return	,	or	an	uncaught	exception	--	sends	a	signal	to	the	generator's
iterator	for	it	to	terminate.

Note:	Technically,	the		for..of		loop	also	sends	this	signal	to	the	iterator	at	the	normal	completion	of	the	loop.	For	a
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generator,	that's	essentially	a	moot	operation,	as	the	generator's	iterator	had	to	complete	first	so	the		for..of		loop
completed.	However,	custom	iterators	might	desire	to	receive	this	additional	signal	from		for..of		loop	consumers.

While	a		for..of		loop	will	automatically	send	this	signal,	you	may	wish	to	send	the	signal	manually	to	an	iterator;	you	do
this	by	calling		return(..)	.

If	you	specify	a		try..finally		clause	inside	the	generator,	it	will	always	be	run	even	when	the	generator	is	externally
completed.	This	is	useful	if	you	need	to	clean	up	resources	(database	connections,	etc.):

function	*something()	{

				try	{

								var	nextVal;

								while	(true)	{

												if	(nextVal	===	undefined)	{

																nextVal	=	1;

												}

												else	{

																nextVal	=	(3	*	nextVal)	+	6;

												}

												yield	nextVal;

								}

				}

				//	cleanup	clause

				finally	{

								console.log(	"cleaning	up!"	);

				}

}

The	earlier	example	with		break		in	the		for..of		loop	will	trigger	the		finally		clause.	But	you	could	instead	manually
terminate	the	generator's	iterator	instance	from	the	outside	with		return(..)	:

var	it	=	something();

for	(var	v	of	it)	{

				console.log(	v	);

				//	don't	let	the	loop	run	forever!

				if	(v	>	500)	{

								console.log(

												//	complete	the	generator's	iterator

												it.return(	"Hello	World"	).value

								);

								//	no	`break`	needed	here

				}

}

//	1	9	33	105	321	969

//	cleaning	up!

//	Hello	World

When	we	call		it.return(..)	,	it	immediately	terminates	the	generator,	which	of	course	runs	the		finally		clause.	Also,	it
sets	the	returned		value		to	whatever	you	passed	in	to		return(..)	,	which	is	how		"Hello	World"		comes	right	back	out.	We
also	don't	need	to	include	a		break		now	because	the	generator's	iterator	is	set	to		done:true	,	so	the		for..of		loop	will
terminate	on	its	next	iteration.

Generators	owe	their	namesake	mostly	to	this	consuming	produced	values	use.	But	again,	that's	just	one	of	the	uses	for
generators,	and	frankly	not	even	the	main	one	we're	concerned	with	in	the	context	of	this	book.

But	now	that	we	more	fully	understand	some	of	the	mechanics	of	how	they	work,	we	can	next	turn	our	attention	to	how
generators	apply	to	async	concurrency.

What	do	generators	have	to	do	with	async	coding	patterns,	fixing	problems	with	callbacks,	and	the	like?	Let's	get	to
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answering	that	important	question.

We	should	revisit	one	of	our	scenarios	from	Chapter	3.	Let's	recall	the	callback	approach:

function	foo(x,y,cb)	{

				ajax(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y,

								cb

				);

}

foo(	11,	31,	function(err,text)	{

				if	(err)	{

								console.error(	err	);

				}

				else	{

								console.log(	text	);

				}

}	);

If	we	wanted	to	express	this	same	task	flow	control	with	a	generator,	we	could	do:

function	foo(x,y)	{

				ajax(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y,

								function(err,data){

												if	(err)	{

																//	throw	an	error	into	`*main()`

																it.throw(	err	);

												}

												else	{

																//	resume	`*main()`	with	received	`data`

																it.next(	data	);

												}

								}

				);

}

function	*main()	{

				try	{

								var	text	=	yield	foo(	11,	31	);

								console.log(	text	);

				}

				catch	(err)	{

								console.error(	err	);

				}

}

var	it	=	main();

//	start	it	all	up!

it.next();

At	first	glance,	this	snippet	is	longer,	and	perhaps	a	little	more	complex	looking,	than	the	callback	snippet	before	it.	But	don't
let	that	impression	get	you	off	track.	The	generator	snippet	is	actually	much	better!	But	there's	a	lot	going	on	for	us	to
explain.

First,	let's	look	at	this	part	of	the	code,	which	is	the	most	important:

var	text	=	yield	foo(	11,	31	);

console.log(	text	);

Think	about	how	that	code	works	for	a	moment.	We're	calling	a	normal	function		foo(..)		and	we're	apparently	able	to	get
back	the		text		from	the	Ajax	call,	even	though	it's	asynchronous.

How	is	that	possible?	If	you	recall	the	beginning	of	Chapter	1,	we	had	almost	identical	code:



var	data	=	ajax(	"..url	1.."	);

console.log(	data	);

And	that	code	didn't	work!	Can	you	spot	the	difference?	It's	the		yield		used	in	a	generator.

That's	the	magic!	That's	what	allows	us	to	have	what	appears	to	be	blocking,	synchronous	code,	but	it	doesn't	actually
block	the	whole	program;	it	only	pauses/blocks	the	code	in	the	generator	itself.

In		yield	foo(11,31)	,	first	the		foo(11,31)		call	is	made,	which	returns	nothing	(aka		undefined	),	so	we're	making	a	call	to
request	data,	but	we're	actually	then	doing		yield	undefined	.	That's	OK,	because	the	code	is	not	currently	relying	on	a
	yield	ed	value	to	do	anything	interesting.	We'll	revisit	this	point	later	in	the	chapter.

We're	not	using		yield		in	a	message	passing	sense	here,	only	in	a	flow	control	sense	to	pause/block.	Actually,	it	will	have
message	passing,	but	only	in	one	direction,	after	the	generator	is	resumed.

So,	the	generator	pauses	at	the		yield	,	essentially	asking	the	question,	"what	value	should	I	return	to	assign	to	the	variable
	text	?"	Who's	going	to	answer	that	question?

Look	at		foo(..)	.	If	the	Ajax	request	is	successful,	we	call:

it.next(	data	);

That's	resuming	the	generator	with	the	response	data,	which	means	that	our	paused		yield		expression	receives	that	value
directly,	and	then	as	it	restarts	the	generator	code,	that	value	gets	assigned	to	the	local	variable		text	.

Pretty	cool,	huh?

Take	a	step	back	and	consider	the	implications.	We	have	totally	synchronous-looking	code	inside	the	generator	(other	than
the		yield		keyword	itself),	but	hidden	behind	the	scenes,	inside	of		foo(..)	,	the	operations	can	complete	asynchronously.

That's	huge!	That's	a	nearly	perfect	solution	to	our	previously	stated	problem	with	callbacks	not	being	able	to	express
asynchrony	in	a	sequential,	synchronous	fashion	that	our	brains	can	relate	to.

In	essence,	we	are	abstracting	the	asynchrony	away	as	an	implementation	detail,	so	that	we	can	reason
synchronously/sequentially	about	our	flow	control:	"Make	an	Ajax	request,	and	when	it	finishes	print	out	the	response."	And
of	course,	we	just	expressed	two	steps	in	the	flow	control,	but	this	same	capabililty	extends	without	bounds,	to	let	us
express	however	many	steps	we	need	to.

Tip:	This	is	such	an	important	realization,	just	go	back	and	read	the	last	three	paragraphs	again	to	let	it	sink	in!

But	the	preceding	generator	code	has	even	more	goodness	to	yield	to	us.	Let's	turn	our	attention	to	the		try..catch		inside
the	generator:

try	{

				var	text	=	yield	foo(	11,	31	);

				console.log(	text	);

}

catch	(err)	{

				console.error(	err	);

}

How	does	this	work?	The		foo(..)		call	is	asynchronously	completing,	and	doesn't		try..catch		fail	to	catch	asynchronous
errors,	as	we	looked	at	in	Chapter	3?

We	already	saw	how	the		yield		lets	the	assignment	statement	pause	to	wait	for		foo(..)		to	finish,	so	that	the	completed
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response	can	be	assigned	to		text	.	The	awesome	part	is	that	this		yield		pausing	also	allows	the	generator	to		catch		an
error.	We	throw	that	error	into	the	generator	with	this	part	of	the	earlier	code	listing:

if	(err)	{

				//	throw	an	error	into	`*main()`

				it.throw(	err	);

}

The		yield	-pause	nature	of	generators	means	that	not	only	do	we	get	synchronous-looking		return		values	from	async
function	calls,	but	we	can	also	synchronously		catch		errors	from	those	async	function	calls!

So	we've	seen	we	can	throw	errors	into	a	generator,	but	what	about	throwing	errors	out	of	a	generator?	Exactly	as	you'd
expect:

function	*main()	{

				var	x	=	yield	"Hello	World";

				yield	x.toLowerCase();				//	cause	an	exception!

}

var	it	=	main();

it.next().value;												//	Hello	World

try	{

				it.next(	42	);

}

catch	(err)	{

				console.error(	err	);				//	TypeError

}

Of	course,	we	could	have	manually	thrown	an	error	with		throw	..		instead	of	causing	an	exception.

We	can	even		catch		the	same	error	that	we		throw(..)		into	the	generator,	essentially	giving	the	generator	a	chance	to
handle	it	but	if	it	doesn't,	the	iterator	code	must	handle	it:

function	*main()	{

				var	x	=	yield	"Hello	World";

				//	never	gets	here

				console.log(	x	);

}

var	it	=	main();

it.next();

try	{

				//	will	`*main()`	handle	this	error?	we'll	see!

				it.throw(	"Oops"	);

}

catch	(err)	{

				//	nope,	didn't	handle	it!

				console.error(	err	);												//	Oops

}

Synchronous-looking	error	handling	(via		try..catch	)	with	async	code	is	a	huge	win	for	readability	and	reason-ability.

In	our	previous	discussion,	we	showed	how	generators	can	be	iterated	asynchronously,	which	is	a	huge	step	forward	in
sequential	reason-ability	over	the	spaghetti	mess	of	callbacks.	But	we	lost	something	very	important:	the	trustability	and
composability	of	Promises	(see	Chapter	3)!
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Don't	worry	--	we	can	get	that	back.	The	best	of	all	worlds	in	ES6	is	to	combine	generators	(synchronous-looking	async
code)	with	Promises	(trustable	and	composable).

But	how?

Recall	from	Chapter	3	the	Promise-based	approach	to	our	running	Ajax	example:

function	foo(x,y)	{

				return	request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				);

}

foo(	11,	31	)

.then(

				function(text){

								console.log(	text	);

				},

				function(err){

								console.error(	err	);

				}

);

In	our	earlier	generator	code	for	the	running	Ajax	example,		foo(..)		returned	nothing	(	undefined	),	and	our	iterator	control
code	didn't	care	about	that		yield	ed	value.

But	here	the	Promise-aware		foo(..)		returns	a	promise	after	making	the	Ajax	call.	That	suggests	that	we	could	construct	a
promise	with		foo(..)		and	then		yield		it	from	the	generator,	and	then	the	iterator	control	code	would	receive	that	promise.

But	what	should	the	iterator	do	with	the	promise?

It	should	listen	for	the	promise	to	resolve	(fulfillment	or	rejection),	and	then	either	resume	the	generator	with	the	fulfillment
message	or	throw	an	error	into	the	generator	with	the	rejection	reason.

Let	me	repeat	that,	because	it's	so	important.	The	natural	way	to	get	the	most	out	of	Promises	and	generators	is	to		yield	
a	Promise,	and	wire	that	Promise	to	control	the	generator's	iterator.

Let's	give	it	a	try!	First,	we'll	put	the	Promise-aware		foo(..)		together	with	the	generator		*main()	:

function	foo(x,y)	{

				return	request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				);

}

function	*main()	{

				try	{

								var	text	=	yield	foo(	11,	31	);

								console.log(	text	);

				}

				catch	(err)	{

								console.error(	err	);

				}

}

The	most	powerful	revelation	in	this	refactor	is	that	the	code	inside		*main()		did	not	have	to	change	at	all!	Inside	the
generator,	whatever	values	are		yield	ed	out	is	just	an	opaque	implementation	detail,	so	we're	not	even	aware	it's
happening,	nor	do	we	need	to	worry	about	it.

But	how	are	we	going	to	run		*main()		now?	We	still	have	some	of	the	implementation	plumbing	work	to	do,	to	receive	and
wire	up	the		yield	ed	promise	so	that	it	resumes	the	generator	upon	resolution.	We'll	start	by	trying	that	manually:

var	it	=	main();



var	p	=	it.next().value;

//	wait	for	the	`p`	promise	to	resolve

p.then(

				function(text){

								it.next(	text	);

				},

				function(err){

								it.throw(	err	);

				}

);

Actually,	that	wasn't	so	painful	at	all,	was	it?

This	snippet	should	look	very	similar	to	what	we	did	earlier	with	the	manually	wired	generator	controlled	by	the	error-first
callback.	Instead	of	an		if	(err)	{	it.throw..	,	the	promise	already	splits	fulfillment	(success)	and	rejection	(failure)	for	us,
but	otherwise	the	iterator	control	is	identical.

Now,	we've	glossed	over	some	important	details.

Most	importantly,	we	took	advantage	of	the	fact	that	we	knew	that		*main()		only	had	one	Promise-aware	step	in	it.	What	if
we	wanted	to	be	able	to	Promise-drive	a	generator	no	matter	how	many	steps	it	has?	We	certainly	don't	want	to	manually
write	out	the	Promise	chain	differently	for	each	generator!	What	would	be	much	nicer	is	if	there	was	a	way	to	repeat	(aka
"loop"	over)	the	iteration	control,	and	each	time	a	Promise	comes	out,	wait	on	its	resolution	before	continuing.

Also,	what	if	the	generator	throws	out	an	error	(intentionally	or	accidentally)	during	the		it.next(..)		call?	Should	we	quit,	or
should	we		catch		it	and	send	it	right	back	in?	Similarly,	what	if	we		it.throw(..)		a	Promise	rejection	into	the	generator,	but
it's	not	handled,	and	comes	right	back	out?

The	more	you	start	to	explore	this	path,	the	more	you	realize,	"wow,	it'd	be	great	if	there	was	just	some	utility	to	do	it	for
me."	And	you're	absolutely	correct.	This	is	such	an	important	pattern,	and	you	don't	want	to	get	it	wrong	(or	exhaust
yourself	repeating	it	over	and	over),	so	your	best	bet	is	to	use	a	utility	that	is	specifically	designed	to	run	Promise-	yield	ing
generators	in	the	manner	we've	illustrated.

Several	Promise	abstraction	libraries	provide	just	such	a	utility,	including	my	asynquence	library	and	its		runner(..)	,	which
will	be	discussed	in	Appendix	A	of	this	book.

But	for	the	sake	of	learning	and	illustration,	let's	just	define	our	own	standalone	utility	that	we'll	call		run(..)	:

//	thanks	to	Benjamin	Gruenbaum	(@benjamingr	on	GitHub)	for

//	big	improvements	here!

function	run(gen)	{

				var	args	=	[].slice.call(	arguments,	1),	it;

				//	initialize	the	generator	in	the	current	context

				it	=	gen.apply(	this,	args	);

				//	return	a	promise	for	the	generator	completing

				return	Promise.resolve()

								.then(	function	handleNext(value){

												//	run	to	the	next	yielded	value

												var	next	=	it.next(	value	);

												return	(function	handleResult(next){

																//	generator	has	completed	running?

																if	(next.done)	{

																				return	next.value;

																}

																//	otherwise	keep	going

																else	{

																				return	Promise.resolve(	next.value	)

																								.then(

																												//	resume	the	async	loop	on

																												//	success,	sending	the	resolved

																												//	value	back	into	the	generator
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																												handleNext,

																												//	if	`value`	is	a	rejected

																												//	promise,	propagate	error	back

																												//	into	the	generator	for	its	own

																												//	error	handling

																												function	handleErr(err)	{

																																return	Promise.resolve(

																																				it.throw(	err	)

																																)

																																.then(	handleResult	);

																												}

																								);

																}

												})(next);

								}	);

}

As	you	can	see,	it's	a	quite	a	bit	more	complex	than	you'd	probably	want	to	author	yourself,	and	you	especially	wouldn't
want	to	repeat	this	code	for	each	generator	you	use.	So,	a	utility/library	helper	is	definitely	the	way	to	go.	Nevertheless,	I
encourage	you	to	spend	a	few	minutes	studying	that	code	listing	to	get	a	better	sense	of	how	to	manage	the
generator+Promise	negotiation.

How	would	you	use		run(..)		with		*main()		in	our	running	Ajax	example?

function	*main()	{

				//	..

}

run(	main	);

That's	it!	The	way	we	wired		run(..)	,	it	will	automatically	advance	the	generator	you	pass	to	it,	asynchronously	until
completion.

Note:	The		run(..)		we	defined	returns	a	promise	which	is	wired	to	resolve	once	the	generator	is	complete,	or	receive	an
uncaught	exception	if	the	generator	doesn't	handle	it.	We	don't	show	that	capability	here,	but	we'll	come	back	to	it	later	in
the	chapter.

The	preceding	pattern	--	generators	yielding	Promises	that	then	control	the	generator's	iterator	to	advance	it	to	completion	-
-	is	such	a	powerful	and	useful	approach,	it	would	be	nicer	if	we	could	do	it	without	the	clutter	of	the	library	utility	helper
(aka		run(..)	).

There's	probably	good	news	on	that	front.	At	the	time	of	this	writing,	there's	early	but	strong	support	for	a	proposal	for	more
syntactic	addition	in	this	realm	for	the	post-ES6,	ES7-ish	timeframe.	Obviously,	it's	too	early	to	guarantee	the	details,	but
there's	a	pretty	decent	chance	it	will	shake	out	similar	to	the	following:

function	foo(x,y)	{

				return	request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				);

}

async	function	main()	{

				try	{

								var	text	=	await	foo(	11,	31	);

								console.log(	text	);

				}

				catch	(err)	{

								console.error(	err	);

				}

}

main();

ES7:		async		and		await	?



As	you	can	see,	there's	no		run(..)		call	(meaning	no	need	for	a	library	utility!)	to	invoke	and	drive		main()		--	it's	just	called
as	a	normal	function.	Also,		main()		isn't	declared	as	a	generator	function	anymore;	it's	a	new	kind	of	function:		async
function	.	And	finally,	instead	of		yield	ing	a	Promise,	we		await		for	it	to	resolve.

The		async	function		automatically	knows	what	to	do	if	you		await		a	Promise	--	it	will	pause	the	function	(just	like	with
generators)	until	the	Promise	resolves.	We	didn't	illustrate	it	in	this	snippet,	but	calling	an	async	function	like		main()	
automatically	returns	a	promise	that's	resolved	whenever	the	function	finishes	completely.

Tip:	The		async		/		await		syntax	should	look	very	familiar	to	readers	with	experience	in	C#,	because	it's	basically	identical.

The	proposal	essentially	codifies	support	for	the	pattern	we've	already	derived,	into	a	syntactic	mechanism:	combining
Promises	with	sync-looking	flow	control	code.	That's	the	best	of	both	worlds	combined,	to	effectively	address	practically	all
of	the	major	concerns	we	outlined	with	callbacks.

The	mere	fact	that	such	a	ES7-ish	proposal	already	exists	and	has	early	support	and	enthusiasm	is	a	major	vote	of
confidence	in	the	future	importance	of	this	async	pattern.

So	far,	all	we've	demonstrated	is	a	single-step	async	flow	with	Promises+generators.	But	real-world	code	will	often	have
many	async	steps.

If	you're	not	careful,	the	sync-looking	style	of	generators	may	lull	you	into	complacency	with	how	you	structure	your	async
concurrency,	leading	to	suboptimal	performance	patterns.	So	we	want	to	spend	a	little	time	exploring	the	options.

Imagine	a	scenario	where	you	need	to	fetch	data	from	two	different	sources,	then	combine	those	responses	to	make	a	third
request,	and	finally	print	out	the	last	response.	We	explored	a	similar	scenario	with	Promises	in	Chapter	3,	but	let's
reconsider	it	in	the	context	of	generators.

Your	first	instinct	might	be	something	like:

function	*foo()	{

				var	r1	=	yield	request(	"http://some.url.1"	);

				var	r2	=	yield	request(	"http://some.url.2"	);

				var	r3	=	yield	request(

								"http://some.url.3/?v="	+	r1	+	","	+	r2

				);

				console.log(	r3	);

}

//	use	previously	defined	`run(..)`	utility

run(	foo	);

This	code	will	work,	but	in	the	specifics	of	our	scenario,	it's	not	optimal.	Can	you	spot	why?

Because	the		r1		and		r2		requests	can	--	and	for	performance	reasons,	should	--	run	concurrently,	but	in	this	code	they	will
run	sequentially;	the		"http://some.url.2"		URL	isn't	Ajax	fetched	until	after	the		"http://some.url.1"		request	is	finished.
These	two	requests	are	independent,	so	the	better	performance	approach	would	likely	be	to	have	them	run	at	the	same
time.

But	how	exactly	would	you	do	that	with	a	generator	and		yield	?	We	know	that		yield		is	only	a	single	pause	point	in	the
code,	so	you	can't	really	do	two	pauses	at	the	same	time.

The	most	natural	and	effective	answer	is	to	base	the	async	flow	on	Promises,	specifically	on	their	capability	to	manage
state	in	a	time-independent	fashion	(see	"Future	Value"	in	Chapter	3).

The	simplest	approach:
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function	*foo()	{

				//	make	both	requests	"in	parallel"

				var	p1	=	request(	"http://some.url.1"	);

				var	p2	=	request(	"http://some.url.2"	);

				//	wait	until	both	promises	resolve

				var	r1	=	yield	p1;

				var	r2	=	yield	p2;

				var	r3	=	yield	request(

								"http://some.url.3/?v="	+	r1	+	","	+	r2

				);

				console.log(	r3	);

}

//	use	previously	defined	`run(..)`	utility

run(	foo	);

Why	is	this	different	from	the	previous	snippet?	Look	at	where	the		yield		is	and	is	not.		p1		and		p2		are	promises	for	Ajax
requests	made	concurrently	(aka	"in	parallel").	It	doesn't	matter	which	one	finishes	first,	because	promises	will	hold	onto
their	resolved	state	for	as	long	as	necessary.

Then	we	use	two	subsequent		yield		statements	to	wait	for	and	retrieve	the	resolutions	from	the	promises	(into		r1		and
	r2	,	respectively).	If		p1		resolves	first,	the		yield	p1		resumes	first	then	waits	on	the		yield	p2		to	resume.	If		p2		resolves
first,	it	will	just	patiently	hold	onto	that	resolution	value	until	asked,	but	the		yield	p1		will	hold	on	first,	until		p1		resolves.

Either	way,	both		p1		and		p2		will	run	concurrently,	and	both	have	to	finish,	in	either	order,	before	the		r3	=	yield	request..	
Ajax	request	will	be	made.

If	that	flow	control	processing	model	sounds	familiar,	it's	basically	the	same	as	what	we	identified	in	Chapter	3	as	the	"gate"
pattern,	enabled	by	the		Promise.all([	..	])		utility.	So,	we	could	also	express	the	flow	control	like	this:

function	*foo()	{

				//	make	both	requests	"in	parallel,"	and

				//	wait	until	both	promises	resolve

				var	results	=	yield	Promise.all(	[

								request(	"http://some.url.1"	),

								request(	"http://some.url.2"	)

				]	);

				var	r1	=	results[0];

				var	r2	=	results[1];

				var	r3	=	yield	request(

								"http://some.url.3/?v="	+	r1	+	","	+	r2

				);

				console.log(	r3	);

}

//	use	previously	defined	`run(..)`	utility

run(	foo	);

Note:	As	we	discussed	in	Chapter	3,	we	can	even	use	ES6	destructuring	assignment	to	simplify	the		var	r1	=	..	var	r2	=
..		assignments,	with		var	[r1,r2]	=	results	.

In	other	words,	all	of	the	concurrency	capabilities	of	Promises	are	available	to	us	in	the	generator+Promise	approach.	So	in
any	place	where	you	need	more	than	sequential	this-then-that	async	flow	control	steps,	Promises	are	likely	your	best	bet.

As	a	word	of	stylistic	caution,	be	careful	about	how	much	Promise	logic	you	include	inside	your	generators.	The	whole
point	of	using	generators	for	asynchrony	in	the	way	we've	described	is	to	create	simple,	sequential,	sync-looking	code,	and
to	hide	as	much	of	the	details	of	asynchrony	away	from	that	code	as	possible.
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For	example,	this	might	be	a	cleaner	approach:

//	note:	normal	function,	not	generator

function	bar(url1,url2)	{

				return	Promise.all(	[

								request(	url1	),

								request(	url2	)

				]	);

}

function	*foo()	{

				//	hide	the	Promise-based	concurrency	details

				//	inside	`bar(..)`

				var	results	=	yield	bar(

								"http://some.url.1",

								"http://some.url.2"

				);

				var	r1	=	results[0];

				var	r2	=	results[1];

				var	r3	=	yield	request(

								"http://some.url.3/?v="	+	r1	+	","	+	r2

				);

				console.log(	r3	);

}

//	use	previously	defined	`run(..)`	utility

run(	foo	);

Inside		*foo()	,	it's	cleaner	and	clearer	that	all	we're	doing	is	just	asking		bar(..)		to	get	us	some		results	,	and	we'll
	yield	-wait	on	that	to	happen.	We	don't	have	to	care	that	under	the	covers	a		Promise.all([	..	])		Promise	composition
will	be	used	to	make	that	happen.

We	treat	asynchrony,	and	indeed	Promises,	as	an	implementation	detail.

Hiding	your	Promise	logic	inside	a	function	that	you	merely	call	from	your	generator	is	especially	useful	if	you're	going	to	do
a	sophisticated	series	flow-control.	For	example:

function	bar()	{

				Promise.all(	[

								baz(	..	)

								.then(	..	),

								Promise.race(	[	..	]	)

				]	)

				.then(	..	)

}

That	kind	of	logic	is	sometimes	required,	and	if	you	dump	it	directly	inside	your	generator(s),	you've	defeated	most	of	the
reason	why	you	would	want	to	use	generators	in	the	first	place.	We	should	intentionally	abstract	such	details	away	from	our
generator	code	so	that	they	don't	clutter	up	the	higher	level	task	expression.

Beyond	creating	code	that	is	both	functional	and	performant,	you	should	also	strive	to	make	code	that	is	as	reason-able
and	maintainable	as	possible.

Note:	Abstraction	is	not	always	a	healthy	thing	for	programming	--	many	times	it	can	increase	complexity	in	exchange	for
terseness.	But	in	this	case,	I	believe	it's	much	healthier	for	your	generator+Promise	async	code	than	the	alternatives.	As
with	all	such	advice,	though,	pay	attention	to	your	specific	situations	and	make	proper	decisions	for	you	and	your	team.

In	the	previous	section,	we	showed	calling	regular	functions	from	inside	a	generator,	and	how	that	remains	a	useful
technique	for	abstracting	away	implementation	details	(like	async	Promise	flow).	But	the	main	drawback	of	using	a	normal

Generator	Delegation



function	for	this	task	is	that	it	has	to	behave	by	the	normal	function	rules,	which	means	it	cannot	pause	itself	with		yield		like
a	generator	can.

It	may	then	occur	to	you	that	you	might	try	to	call	one	generator	from	another	generator,	using	our		run(..)		helper,	such	as:

function	*foo()	{

				var	r2	=	yield	request(	"http://some.url.2"	);

				var	r3	=	yield	request(	"http://some.url.3/?v="	+	r2	);

				return	r3;

}

function	*bar()	{

				var	r1	=	yield	request(	"http://some.url.1"	);

				//	"delegating"	to	`*foo()`	via	`run(..)`

				var	r3	=	yield	run(	foo	);

				console.log(	r3	);

}

run(	bar	);

We	run		*foo()		inside	of		*bar()		by	using	our		run(..)		utility	again.	We	take	advantage	here	of	the	fact	that	the		run(..)	
we	defined	earlier	returns	a	promise	which	is	resolved	when	its	generator	is	run	to	completion	(or	errors	out),	so	if	we
	yield		out	to	a		run(..)		instance	the	promise	from	another		run(..)		call,	it	automatically	pauses		*bar()		until		*foo()	
finishes.

But	there's	an	even	better	way	to	integrate	calling		*foo()		into		*bar()	,	and	it's	called		yield	-delegation.	The	special
syntax	for		yield	-delegation	is:		yield	*	__		(notice	the	extra		*	).	Before	we	see	it	work	in	our	previous	example,	let's	look
at	a	simpler	scenario:

function	*foo()	{

				console.log(	"`*foo()`	starting"	);

				yield	3;

				yield	4;

				console.log(	"`*foo()`	finished"	);

}

function	*bar()	{

				yield	1;

				yield	2;

				yield	*foo();				//	`yield`-delegation!

				yield	5;

}

var	it	=	bar();

it.next().value;				//	1

it.next().value;				//	2

it.next().value;				//	`*foo()`	starting

																				//	3

it.next().value;				//	4

it.next().value;				//	`*foo()`	finished

																				//	5

Note:	Similar	to	a	note	earlier	in	the	chapter	where	I	explained	why	I	prefer		function	*foo()	..		instead	of		function*	foo()
..	,	I	also	prefer	--	differing	from	most	other	documentation	on	the	topic	--	to	say		yield	*foo()		instead	of		yield*	foo()	.
The	placement	of	the		*		is	purely	stylistic	and	up	to	your	best	judgment.	But	I	find	the	consistency	of	styling	attractive.

How	does	the		yield	*foo()		delegation	work?

First,	calling		foo()		creates	an	iterator	exactly	as	we've	already	seen.	Then,		yield	*		delegates/transfers	the	iterator
instance	control	(of	the	present		*bar()		generator)	over	to	this	other		*foo()		iterator.

So,	the	first	two		it.next()		calls	are	controlling		*bar()	,	but	when	we	make	the	third		it.next()		call,	now		*foo()		starts	up,
and	now	we're	controlling		*foo()		instead	of		*bar()	.	That's	why	it's	called	delegation	--		*bar()		delegated	its	iteration



control	to		*foo()	.

As	soon	as	the		it		iterator	control	exhausts	the	entire		*foo()		iterator,	it	automatically	returns	to	controlling		*bar()	.

So	now	back	to	the	previous	example	with	the	three	sequential	Ajax	requests:

function	*foo()	{

				var	r2	=	yield	request(	"http://some.url.2"	);

				var	r3	=	yield	request(	"http://some.url.3/?v="	+	r2	);

				return	r3;

}

function	*bar()	{

				var	r1	=	yield	request(	"http://some.url.1"	);

				//	"delegating"	to	`*foo()`	via	`yield*`

				var	r3	=	yield	*foo();

				console.log(	r3	);

}

run(	bar	);

The	only	difference	between	this	snippet	and	the	version	used	earlier	is	the	use	of		yield	*foo()		instead	of	the	previous
	yield	run(foo)	.

Note:		yield	*		yields	iteration	control,	not	generator	control;	when	you	invoke	the		*foo()		generator,	you're	now		yield	-
delegating	to	its	iterator.	But	you	can	actually		yield	-delegate	to	any	iterable;		yield	*[1,2,3]		would	consume	the	default
iterator	for	the		[1,2,3]		array	value.

The	purpose	of		yield	-delegation	is	mostly	code	organization,	and	in	that	way	is	symmetrical	with	normal	function	calling.

Imagine	two	modules	that	respectively	provide	methods		foo()		and		bar()	,	where		bar()		calls		foo()	.	The	reason	the	two
are	separate	is	generally	because	the	proper	organization	of	code	for	the	program	calls	for	them	to	be	in	separate
functions.	For	example,	there	may	be	cases	where		foo()		is	called	standalone,	and	other	places	where		bar()		calls
	foo()	.

For	all	these	exact	same	reasons,	keeping	generators	separate	aids	in	program	readability,	maintenance,	and
debuggability.	In	that	respect,		yield	*		is	a	syntactic	shortcut	for	manually	iterating	over	the	steps	of		*foo()		while	inside	of
	*bar()	.

Such	manual	approach	would	be	especially	complex	if	the	steps	in		*foo()		were	asynchronous,	which	is	why	you'd
probably	need	to	use	that		run(..)		utility	to	do	it.	And	as	we've	shown,		yield	*foo()		eliminates	the	need	for	a	sub-
instance	of	the		run(..)		utility	(like		run(foo)	).

You	may	wonder	how	this		yield	-delegation	works	not	just	with	iterator	control	but	with	the	two-way	message	passing.
Carefully	follow	the	flow	of	messages	in	and	out,	through	the		yield	-delegation:

function	*foo()	{

				console.log(	"inside	`*foo()`:",	yield	"B"	);

				console.log(	"inside	`*foo()`:",	yield	"C"	);

				return	"D";

}

function	*bar()	{

				console.log(	"inside	`*bar()`:",	yield	"A"	);
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				//	`yield`-delegation!

				console.log(	"inside	`*bar()`:",	yield	*foo()	);

				console.log(	"inside	`*bar()`:",	yield	"E"	);

				return	"F";

}

var	it	=	bar();

console.log(	"outside:",	it.next().value	);

//	outside:	A

console.log(	"outside:",	it.next(	1	).value	);

//	inside	`*bar()`:	1

//	outside:	B

console.log(	"outside:",	it.next(	2	).value	);

//	inside	`*foo()`:	2

//	outside:	C

console.log(	"outside:",	it.next(	3	).value	);

//	inside	`*foo()`:	3

//	inside	`*bar()`:	D

//	outside:	E

console.log(	"outside:",	it.next(	4	).value	);

//	inside	`*bar()`:	4

//	outside:	F

Pay	particular	attention	to	the	processing	steps	after	the		it.next(3)		call:

1.	 The		3		value	is	passed	(through	the		yield	-delegation	in		*bar()	)	into	the	waiting		yield	"C"		expression	inside	of
	*foo()	.

2.	 	*foo()		then	calls		return	"D"	,	but	this	value	doesn't	get	returned	all	the	way	back	to	the	outside		it.next(3)		call.
3.	 Instead,	the		"D"		value	is	sent	as	the	result	of	the	waiting		yield	*foo()		expression	inside	of		*bar()		--	this		yield	-

delegation	expression	has	essentially	been	paused	while	all	of		*foo()		was	exhausted.	So		"D"		ends	up	inside	of
	*bar()		for	it	to	print	out.

4.	 	yield	"E"		is	called	inside	of		*bar()	,	and	the		"E"		value	is	yielded	to	the	outside	as	the	result	of	the		it.next(3)		call.

From	the	perspective	of	the	external	iterator	(	it	),	it	doesn't	appear	any	differently	between	controlling	the	initial	generator
or	a	delegated	one.

In	fact,		yield	-delegation	doesn't	even	have	to	be	directed	to	another	generator;	it	can	just	be	directed	to	a	non-generator,
general	iterable.	For	example:

function	*bar()	{

				console.log(	"inside	`*bar()`:",	yield	"A"	);

				//	`yield`-delegation	to	a	non-generator!

				console.log(	"inside	`*bar()`:",	yield	*[	"B",	"C",	"D"	]	);

				console.log(	"inside	`*bar()`:",	yield	"E"	);

				return	"F";

}

var	it	=	bar();

console.log(	"outside:",	it.next().value	);

//	outside:	A

console.log(	"outside:",	it.next(	1	).value	);

//	inside	`*bar()`:	1

//	outside:	B

console.log(	"outside:",	it.next(	2	).value	);

//	outside:	C

console.log(	"outside:",	it.next(	3	).value	);

//	outside:	D

console.log(	"outside:",	it.next(	4	).value	);



//	inside	`*bar()`:	undefined

//	outside:	E

console.log(	"outside:",	it.next(	5	).value	);

//	inside	`*bar()`:	5

//	outside:	F

Notice	the	differences	in	where	the	messages	were	received/reported	between	this	example	and	the	one	previous.

Most	strikingly,	the	default		array		iterator	doesn't	care	about	any	messages	sent	in	via		next(..)		calls,	so	the	values		2	,
	3	,	and		4		are	essentially	ignored.	Also,	because	that	iterator	has	no	explicit		return		value	(unlike	the	previously	used
	*foo()	),	the		yield	*		expression	gets	an		undefined		when	it	finishes.

In	the	same	way	that		yield	-delegation	transparently	passes	messages	through	in	both	directions,	errors/exceptions	also
pass	in	both	directions:

function	*foo()	{

				try	{

								yield	"B";

				}

				catch	(err)	{

								console.log(	"error	caught	inside	`*foo()`:",	err	);

				}

				yield	"C";

				throw	"D";

}

function	*bar()	{

				yield	"A";

				try	{

								yield	*foo();

				}

				catch	(err)	{

								console.log(	"error	caught	inside	`*bar()`:",	err	);

				}

				yield	"E";

				yield	*baz();

				//	note:	can't	get	here!

				yield	"G";

}

function	*baz()	{

				throw	"F";

}

var	it	=	bar();

console.log(	"outside:",	it.next().value	);

//	outside:	A

console.log(	"outside:",	it.next(	1	).value	);

//	outside:	B

console.log(	"outside:",	it.throw(	2	).value	);

//	error	caught	inside	`*foo()`:	2

//	outside:	C

console.log(	"outside:",	it.next(	3	).value	);

//	error	caught	inside	`*bar()`:	D

//	outside:	E

try	{

				console.log(	"outside:",	it.next(	4	).value	);

}

catch	(err)	{

				console.log(	"error	caught	outside:",	err	);

}

Exceptions	Delegated,	Too!



//	error	caught	outside:	F

Some	things	to	note	from	this	snippet:

1.	 When	we	call		it.throw(2)	,	it	sends	the	error	message		2		into		*bar()	,	which	delegates	that	to		*foo()	,	which	then
	catch	es	it	and	handles	it	gracefully.	Then,	the		yield	"C"		sends		"C"		back	out	as	the	return		value		from	the
	it.throw(2)		call.

2.	 The		"D"		value	that's	next		throw	n	from	inside		*foo()		propagates	out	to		*bar()	,	which		catch	es	it	and	handles	it
gracefully.	Then	the		yield	"E"		sends		"E"		back	out	as	the	return		value		from	the		it.next(3)		call.

3.	 Next,	the	exception		throw	n	from		*baz()		isn't	caught	in		*bar()		--	though	we	did		catch		it	outside	--	so	both		*baz()	
and		*bar()		are	set	to	a	completed	state.	After	this	snippet,	you	would	not	be	able	to	get	the		"G"		value	out	with	any
subsequent		next(..)		call(s)	--	they	will	just	return		undefined		for		value	.

Let's	finally	get	back	to	our	earlier		yield	-delegation	example	with	the	multiple	sequential	Ajax	requests:

function	*foo()	{

				var	r2	=	yield	request(	"http://some.url.2"	);

				var	r3	=	yield	request(	"http://some.url.3/?v="	+	r2	);

				return	r3;

}

function	*bar()	{

				var	r1	=	yield	request(	"http://some.url.1"	);

				var	r3	=	yield	*foo();

				console.log(	r3	);

}

run(	bar	);

Instead	of	calling		yield	run(foo)		inside	of		*bar()	,	we	just	call		yield	*foo()	.

In	the	previous	version	of	this	example,	the	Promise	mechanism	(controlled	by		run(..)	)	was	used	to	transport	the	value
from		return	r3		in		*foo()		to	the	local	variable		r3		inside		*bar()	.	Now,	that	value	is	just	returned	back	directly	via	the
	yield	*		mechanics.

Otherwise,	the	behavior	is	pretty	much	identical.

Of	course,		yield	-delegation	can	keep	following	as	many	delegation	steps	as	you	wire	up.	You	could	even	use		yield	-
delegation	for	async-capable	generator	"recursion"	--	a	generator		yield	-delegating	to	itself:

function	*foo(val)	{

				if	(val	>	1)	{

								//	generator	recursion

								val	=	yield	*foo(	val	-	1	);

				}

				return	yield	request(	"http://some.url/?v="	+	val	);

}

function	*bar()	{

				var	r1	=	yield	*foo(	3	);

				console.log(	r1	);

}

run(	bar	);

Delegating	Asynchrony

Delegating	"Recursion"



Note:	Our		run(..)		utility	could	have	been	called	with		run(	foo,	3	)	,	because	it	supports	additional	parameters	being
passed	along	to	the	initialization	of	the	generator.	However,	we	used	a	parameter-free		*bar()		here	to	highlight	the
flexibility	of		yield	*	.

What	processing	steps	follow	from	that	code?	Hang	on,	this	is	going	to	be	quite	intricate	to	describe	in	detail:

1.	 	run(bar)		starts	up	the		*bar()		generator.
2.	 	foo(3)		creates	an	iterator	for		*foo(..)		and	passes		3		as	its		val		parameter.
3.	 Because		3	>	1	,		foo(2)		creates	another	iterator	and	passes	in		2		as	its		val		parameter.
4.	 Because		2	>	1	,		foo(1)		creates	yet	another	iterator	and	passes	in		1		as	its		val		parameter.
5.	 	1	>	1		is		false	,	so	we	next	call		request(..)		with	the		1		value,	and	get	a	promise	back	for	that	first	Ajax	call.
6.	 That	promise	is		yield	ed	out,	which	comes	back	to	the		*foo(2)		generator	instance.
7.	 The		yield	*		passes	that	promise	back	out	to	the		*foo(3)		generator	instance.	Another		yield	*		passes	the	promise

out	to	the		*bar()		generator	instance.	And	yet	again	another		yield	*		passes	the	promise	out	to	the		run(..)		utility,
which	will	wait	on	that	promise	(for	the	first	Ajax	request)	to	proceed.

8.	 When	the	promise	resolves,	its	fulfillment	message	is	sent	to	resume		*bar()	,	which	passes	through	the		yield	*		into
the		*foo(3)		instance,	which	then	passes	through	the		yield	*		to	the		*foo(2)		generator	instance,	which	then	passes
through	the		yield	*		to	the	normal		yield		that's	waiting	in	the		*foo(3)		generator	instance.

9.	 That	first	call's	Ajax	response	is	now	immediately		return	ed	from	the		*foo(3)		generator	instance,	which	sends	that
value	back	as	the	result	of	the		yield	*		expression	in	the		*foo(2)		instance,	and	assigned	to	its	local		val		variable.

10.	 Inside		*foo(2)	,	a	second	Ajax	request	is	made	with		request(..)	,	whose	promise	is		yield	ed	back	to	the		*foo(1)	
instance,	and	then		yield	*		propagates	all	the	way	out	to		run(..)		(step	7	again).	When	the	promise	resolves,	the
second	Ajax	response	propagates	all	the	way	back	into	the		*foo(2)		generator	instance,	and	is	assigned	to	its	local
	val		variable.

11.	 Finally,	the	third	Ajax	request	is	made	with		request(..)	,	its	promise	goes	out	to		run(..)	,	and	then	its	resolution	value
comes	all	the	way	back,	which	is	then		return	ed	so	that	it	comes	back	to	the	waiting		yield	*		expression	in		*bar()	.

Phew!	A	lot	of	crazy	mental	juggling,	huh?	You	might	want	to	read	through	that	a	few	more	times,	and	then	go	grab	a	snack
to	clear	your	head!

As	we	discussed	in	both	Chapter	1	and	earlier	in	this	chapter,	two	simultaneously	running	"processes"	can	cooperatively
interleave	their	operations,	and	many	times	this	can	yield	(pun	intended)	very	powerful	asynchrony	expressions.

Frankly,	our	earlier	examples	of	concurrency	interleaving	of	multiple	generators	showed	how	to	make	it	really	confusing.
But	we	hinted	that	there's	places	where	this	capability	is	quite	useful.

Recall	a	scenario	we	looked	at	in	Chapter	1,	where	two	different	simultaneous	Ajax	response	handlers	needed	to
coordinate	with	each	other	to	make	sure	that	the	data	communication	was	not	a	race	condition.	We	slotted	the	responses
into	the		res		array	like	this:

function	response(data)	{

				if	(data.url	==	"http://some.url.1")	{

								res[0]	=	data;

				}

				else	if	(data.url	==	"http://some.url.2")	{

								res[1]	=	data;

				}

}

But	how	can	we	use	multiple	generators	concurrently	for	this	scenario?

//	`request(..)`	is	a	Promise-aware	Ajax	utility

var	res	=	[];

function	*reqData(url)	{
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				res.push(

								yield	request(	url	)

				);

}

Note:	We're	going	to	use	two	instances	of	the		*reqData(..)		generator	here,	but	there's	no	difference	to	running	a	single
instance	of	two	different	generators;	both	approaches	are	reasoned	about	identically.	We'll	see	two	different	generators
coordinating	in	just	a	bit.

Instead	of	having	to	manually	sort	out		res[0]		and		res[1]		assignments,	we'll	use	coordinated	ordering	so	that
	res.push(..)		properly	slots	the	values	in	the	expected	and	predictable	order.	The	expressed	logic	thus	should	feel	a	bit
cleaner.

But	how	will	we	actually	orchestrate	this	interaction?	First,	let's	just	do	it	manually,	with	Promises:

var	it1	=	reqData(	"http://some.url.1"	);

var	it2	=	reqData(	"http://some.url.2"	);

var	p1	=	it1.next();

var	p2	=	it2.next();

p1

.then(	function(data){

				it1.next(	data	);

				return	p2;

}	)

.then(	function(data){

				it2.next(	data	);

}	);

	*reqData(..)	's	two	instances	are	both	started	to	make	their	Ajax	requests,	then	paused	with		yield	.	Then	we	choose	to
resume	the	first	instance	when		p1		resolves,	and	then		p2	's	resolution	will	restart	the	second	instance.	In	this	way,	we	use
Promise	orchestration	to	ensure	that		res[0]		will	have	the	first	response	and		res[1]		will	have	the	second	response.

But	frankly,	this	is	awfully	manual,	and	it	doesn't	really	let	the	generators	orchestrate	themselves,	which	is	where	the	true
power	can	lie.	Let's	try	it	a	different	way:

//	`request(..)`	is	a	Promise-aware	Ajax	utility

var	res	=	[];

function	*reqData(url)	{

				var	data	=	yield	request(	url	);

				//	transfer	control

				yield;

				res.push(	data	);

}

var	it1	=	reqData(	"http://some.url.1"	);

var	it2	=	reqData(	"http://some.url.2"	);

var	p1	=	it.next();

var	p2	=	it.next();

p1.then(	function(data){

				it1.next(	data	);

}	);

p2.then(	function(data){

				it2.next(	data	);

}	);

Promise.all(	[p1,p2]	)

.then(	function(){

				it1.next();

				it2.next();

}	);



OK,	this	is	a	bit	better	(though	still	manual!),	because	now	the	two	instances	of		*reqData(..)		run	truly	concurrently,	and	(at
least	for	the	first	part)	independently.

In	the	previous	snippet,	the	second	instance	was	not	given	its	data	until	after	the	first	instance	was	totally	finished.	But
here,	both	instances	receive	their	data	as	soon	as	their	respective	responses	come	back,	and	then	each	instance	does
another		yield		for	control	transfer	purposes.	We	then	choose	what	order	to	resume	them	in	the		Promise.all([	..	])	
handler.

What	may	not	be	as	obvious	is	that	this	approach	hints	at	an	easier	form	for	a	reusable	utility,	because	of	the	symmetry.	We
can	do	even	better.	Let's	imagine	using	a	utility	called		runAll(..)	:

//	`request(..)`	is	a	Promise-aware	Ajax	utility

var	res	=	[];

runAll(

				function*(){

								var	p1	=	request(	"http://some.url.1"	);

								//	transfer	control

								yield;

								res.push(	yield	p1	);

				},

				function*(){

								var	p2	=	request(	"http://some.url.2"	);

								//	transfer	control

								yield;

								res.push(	yield	p2	);

				}

);

Note:	We're	not	including	a	code	listing	for		runAll(..)		as	it	is	not	only	long	enough	to	bog	down	the	text,	but	is	an
extension	of	the	logic	we've	already	implemented	in		run(..)		earlier.	So,	as	a	good	supplementary	exercise	for	the	reader,
try	your	hand	at	evolving	the	code	from		run(..)		to	work	like	the	imagined		runAll(..)	.	Also,	my	asynquence	library
provides	a	previously	mentioned		runner(..)		utility	with	this	kind	of	capability	already	built	in,	and	will	be	discussed	in
Appendix	A	of	this	book.

Here's	how	the	processing	inside		runAll(..)		would	operate:

1.	 The	first	generator	gets	a	promise	for	the	first	Ajax	response	from		"http://some.url.1"	,	then		yield	s	control	back	to
the		runAll(..)		utility.

2.	 The	second	generator	runs	and	does	the	same	for		"http://some.url.2"	,		yield	ing	control	back	to	the		runAll(..)	
utility.

3.	 The	first	generator	resumes,	and	then		yield	s	out	its	promise		p1	.	The		runAll(..)		utility	does	the	same	in	this	case
as	our	previous		run(..)	,	in	that	it	waits	on	that	promise	to	resolve,	then	resumes	the	same	generator	(no	control
transfer!).	When		p1		resolves,		runAll(..)		resumes	the	first	generator	again	with	that	resolution	value,	and	then
	res[0]		is	given	its	value.	When	the	first	generator	then	finishes,	that's	an	implicit	transfer	of	control.

4.	 The	second	generator	resumes,		yield	s	out	its	promise		p2	,	and	waits	for	it	to	resolve.	Once	it	does,		runAll(..)	
resumes	the	second	generator	with	that	value,	and		res[1]		is	set.

In	this	running	example,	we	use	an	outer	variable	called		res		to	store	the	results	of	the	two	different	Ajax	responses	--
that's	our	concurrency	coordination	making	that	possible.

But	it	might	be	quite	helpful	to	further	extend		runAll(..)		to	provide	an	inner	variable	space	for	the	multiple	generator
instances	to	share,	such	as	an	empty	object	we'll	call		data		below.	Also,	it	could	take	non-Promise	values	that	are		yield	ed
and	hand	them	off	to	the	next	generator.

Consider:



//	`request(..)`	is	a	Promise-aware	Ajax	utility

runAll(

				function*(data){

								data.res	=	[];

								//	transfer	control	(and	message	pass)

								var	url1	=	yield	"http://some.url.2";

								var	p1	=	request(	url1	);	//	"http://some.url.1"

								//	transfer	control

								yield;

								data.res.push(	yield	p1	);

				},

				function*(data){

								//	transfer	control	(and	message	pass)

								var	url2	=	yield	"http://some.url.1";

								var	p2	=	request(	url2	);	//	"http://some.url.2"

								//	transfer	control

								yield;

								data.res.push(	yield	p2	);

				}

);

In	this	formulation,	the	two	generators	are	not	just	coordinating	control	transfer,	but	actually	communicating	with	each	other,
both	through		data.res		and	the		yield	ed	messages	that	trade		url1		and		url2		values.	That's	incredibly	powerful!

Such	realization	also	serves	as	a	conceptual	base	for	a	more	sophisticated	asynchrony	technique	called	CSP
(Communicating	Sequential	Processes),	which	we	will	cover	in	Appendix	B	of	this	book.

So	far,	we've	made	the	assumption	that		yield	ing	a	Promise	from	a	generator	--	and	having	that	Promise	resume	the
generator	via	a	helper	utility	like		run(..)		--	was	the	best	possible	way	to	manage	asynchrony	with	generators.	To	be	clear,
it	is.

But	we	skipped	over	another	pattern	that	has	some	mildly	widespread	adoption,	so	in	the	interest	of	completeness	we'll
take	a	brief	look	at	it.

In	general	computer	science,	there's	an	old	pre-JS	concept	called	a	"thunk."	Without	getting	bogged	down	in	the	historical
nature,	a	narrow	expression	of	a	thunk	in	JS	is	a	function	that	--	without	any	parameters	--	is	wired	to	call	another	function.

In	other	words,	you	wrap	a	function	definition	around	function	call	--	with	any	parameters	it	needs	--	to	defer	the	execution
of	that	call,	and	that	wrapping	function	is	a	thunk.	When	you	later	execute	the	thunk,	you	end	up	calling	the	original
function.

For	example:

function	foo(x,y)	{

				return	x	+	y;

}

function	fooThunk()	{

				return	foo(	3,	4	);

}

//	later

console.log(	fooThunk()	);				//	7

Thunks



So,	a	synchronous	thunk	is	pretty	straightforward.	But	what	about	an	async	thunk?	We	can	essentially	extend	the	narrow
thunk	definition	to	include	it	receiving	a	callback.

Consider:

function	foo(x,y,cb)	{

				setTimeout(	function(){

								cb(	x	+	y	);

				},	1000	);

}

function	fooThunk(cb)	{

				foo(	3,	4,	cb	);

}

//	later

fooThunk(	function(sum){

				console.log(	sum	);								//	7

}	);

As	you	can	see,		fooThunk(..)		only	expects	a		cb(..)		parameter,	as	it	already	has	values		3		and		4		(for		x		and		y	,
respectively)	pre-specified	and	ready	to	pass	to		foo(..)	.	A	thunk	is	just	waiting	around	patiently	for	the	last	piece	it	needs
to	do	its	job:	the	callback.

You	don't	want	to	make	thunks	manually,	though.	So,	let's	invent	a	utility	that	does	this	wrapping	for	us.

Consider:

function	thunkify(fn)	{

				var	args	=	[].slice.call(	arguments,	1	);

				return	function(cb)	{

								args.push(	cb	);

								return	fn.apply(	null,	args	);

				};

}

var	fooThunk	=	thunkify(	foo,	3,	4	);

//	later

fooThunk(	function(sum)	{

				console.log(	sum	);								//	7

}	);

Tip:	Here	we	assume	that	the	original	(	foo(..)	)	function	signature	expects	its	callback	in	the	last	position,	with	any	other
parameters	coming	before	it.	This	is	a	pretty	ubiquitous	"standard"	for	async	JS	function	standards.	You	might	call	it
"callback-last	style."	If	for	some	reason	you	had	a	need	to	handle	"callback-first	style"	signatures,	you	would	just	make	a
utility	that	used		args.unshift(..)		instead	of		args.push(..)	.

The	preceding	formulation	of		thunkify(..)		takes	both	the		foo(..)		function	reference,	and	any	parameters	it	needs,	and
returns	back	the	thunk	itself	(	fooThunk(..)	).	However,	that's	not	the	typical	approach	you'll	find	to	thunks	in	JS.

Instead	of		thunkify(..)		making	the	thunk	itself,	typically	--	if	not	perplexingly	--	the		thunkify(..)		utility	would	produce	a
function	that	produces	thunks.

Uhhhh...	yeah.

Consider:

function	thunkify(fn)	{

				return	function()	{

								var	args	=	[].slice.call(	arguments	);

								return	function(cb)	{

												args.push(	cb	);



												return	fn.apply(	null,	args	);

								};

				};

}

The	main	difference	here	is	the	extra		return	function()	{	..	}		layer.	Here's	how	its	usage	differs:

var	whatIsThis	=	thunkify(	foo	);

var	fooThunk	=	whatIsThis(	3,	4	);

//	later

fooThunk(	function(sum)	{

				console.log(	sum	);								//	7

}	);

Obviously,	the	big	question	this	snippet	implies	is	what	is		whatIsThis		properly	called?	It's	not	the	thunk,	it's	the	thing	that
will	produce	thunks	from		foo(..)		calls.	It's	kind	of	like	a	"factory"	for	"thunks."	There	doesn't	seem	to	be	any	kind	of
standard	agreement	for	naming	such	a	thing.

So,	my	proposal	is	"thunkory"	("thunk"	+	"factory").	So,		thunkify(..)		produces	a	thunkory,	and	a	thunkory	produces
thunks.	That	reasoning	is	symmetric	to	my	proposal	for	"promisory"	in	Chapter	3:

var	fooThunkory	=	thunkify(	foo	);

var	fooThunk1	=	fooThunkory(	3,	4	);

var	fooThunk2	=	fooThunkory(	5,	6	);

//	later

fooThunk1(	function(sum)	{

				console.log(	sum	);								//	7

}	);

fooThunk2(	function(sum)	{

				console.log(	sum	);								//	11

}	);

Note:	The	running		foo(..)		example	expects	a	style	of	callback	that's	not	"error-first	style."	Of	course,	"error-first	style"	is
much	more	common.	If		foo(..)		had	some	sort	of	legitimate	error-producing	expectation,	we	could	change	it	to	expect	and
use	an	error-first	callback.	None	of	the	subsequent		thunkify(..)		machinery	cares	what	style	of	callback	is	assumed.	The
only	difference	in	usage	would	be		fooThunk1(function(err,sum){..	.

Exposing	the	thunkory	method	--	instead	of	how	the	earlier		thunkify(..)		hides	this	intermediary	step	--	may	seem	like
unnecessary	complication.	But	in	general,	it's	quite	useful	to	make	thunkories	at	the	beginning	of	your	program	to	wrap
existing	API	methods,	and	then	be	able	to	pass	around	and	call	those	thunkories	when	you	need	thunks.	The	two	distinct
steps	preserve	a	cleaner	separation	of	capability.

To	illustrate:

//	cleaner:

var	fooThunkory	=	thunkify(	foo	);

var	fooThunk1	=	fooThunkory(	3,	4	);

var	fooThunk2	=	fooThunkory(	5,	6	);

//	instead	of:

var	fooThunk1	=	thunkify(	foo,	3,	4	);

var	fooThunk2	=	thunkify(	foo,	5,	6	);

Regardless	of	whether	you	like	to	deal	with	the	thunkories	explicitly	or	not,	the	usage	of	thunks		fooThunk1(..)		and
	fooThunk2(..)		remains	the	same.



So	what's	all	this	thunk	stuff	have	to	do	with	generators?

Comparing	thunks	to	promises	generally:	they're	not	directly	interchangable	as	they're	not	equivalent	in	behavior.	Promises
are	vastly	more	capable	and	trustable	than	bare	thunks.

But	in	another	sense,	they	both	can	be	seen	as	a	request	for	a	value,	which	may	be	async	in	its	answering.

Recall	from	Chapter	3	we	defined	a	utility	for	promisifying	a	function,	which	we	called		Promise.wrap(..)		--	we	could	have
called	it		promisify(..)	,	too!	This	Promise-wrapping	utility	doesn't	produce	Promises;	it	produces	promisories	that	in	turn
produce	Promises.	This	is	completely	symmetric	to	the	thunkories	and	thunks	presently	being	discussed.

To	illustrate	the	symmetry,	let's	first	alter	the	running		foo(..)		example	from	earlier	to	assume	an	"error-first	style"	callback:

function	foo(x,y,cb)	{

				setTimeout(	function(){

								//	assume	`cb(..)`	as	"error-first	style"

								cb(	null,	x	+	y	);

				},	1000	);

}

Now,	we'll	compare	using		thunkify(..)		and		promisify(..)		(aka		Promise.wrap(..)		from	Chapter	3):

//	symmetrical:	constructing	the	question	asker

var	fooThunkory	=	thunkify(	foo	);

var	fooPromisory	=	promisify(	foo	);

//	symmetrical:	asking	the	question

var	fooThunk	=	fooThunkory(	3,	4	);

var	fooPromise	=	fooPromisory(	3,	4	);

//	get	the	thunk	answer

fooThunk(	function(err,sum){

				if	(err)	{

								console.error(	err	);

				}

				else	{

								console.log(	sum	);								//	7

				}

}	);

//	get	the	promise	answer

fooPromise

.then(

				function(sum){

								console.log(	sum	);								//	7

				},

				function(err){

								console.error(	err	);

				}

);

Both	the	thunkory	and	the	promisory	are	essentially	asking	a	question	(for	a	value),	and	respectively	the	thunk		fooThunk	
and	promise		fooPromise		represent	the	future	answers	to	that	question.	Presented	in	that	light,	the	symmetry	is	clear.

With	that	perspective	in	mind,	we	can	see	that	generators	which		yield		Promises	for	asynchrony	could	instead		yield	
thunks	for	asynchrony.	All	we'd	need	is	a	smarter		run(..)		utility	(like	from	before)	that	can	not	only	look	for	and	wire	up	to
a		yield	ed	Promise	but	also	to	provide	a	callback	to	a		yield	ed	thunk.

Consider:

function	*foo()	{

				var	val	=	yield	request(	"http://some.url.1"	);

				console.log(	val	);

s/promise/thunk/



}

run(	foo	);

In	this	example,		request(..)		could	either	be	a	promisory	that	returns	a	promise,	or	a	thunkory	that	returns	a	thunk.	From
the	perspective	of	what's	going	on	inside	the	generator	code	logic,	we	don't	care	about	that	implementation	detail,	which	is
quite	powerful!

So,		request(..)		could	be	either:

//	promisory	`request(..)`	(see	Chapter	3)

var	request	=	Promise.wrap(	ajax	);

//	vs.

//	thunkory	`request(..)`

var	request	=	thunkify(	ajax	);

Finally,	as	a	thunk-aware	patch	to	our	earlier		run(..)		utility,	we	would	need	logic	like	this:

//	..

//	did	we	receive	a	thunk	back?

else	if	(typeof	next.value	==	"function")	{

				return	new	Promise(	function(resolve,reject){

								//	call	the	thunk	with	an	error-first	callback

								next.value(	function(err,msg)	{

												if	(err)	{

																reject(	err	);

												}

												else	{

																resolve(	msg	);

												}

								}	);

				}	)

				.then(

								handleNext,

								function	handleErr(err)	{

												return	Promise.resolve(

																it.throw(	err	)

												)

												.then(	handleResult	);

								}

				);

}

Now,	our	generators	can	either	call	promisories	to		yield		Promises,	or	call	thunkories	to		yield		thunks,	and	in	either	case,
	run(..)		would	handle	that	value	and	use	it	to	wait	for	the	completion	to	resume	the	generator.

Symmetry	wise,	these	two	approaches	look	identical.	However,	we	should	point	out	that's	true	only	from	the	perspective	of
Promises	or	thunks	representing	the	future	value	continuation	of	a	generator.

From	the	larger	perspective,	thunks	do	not	in	and	of	themselves	have	hardly	any	of	the	trustability	or	composability
guarantees	that	Promises	are	designed	with.	Using	a	thunk	as	a	stand-in	for	a	Promise	in	this	particular	generator
asynchrony	pattern	is	workable	but	should	be	seen	as	less	than	ideal	when	compared	to	all	the	benefits	that	Promises	offer
(see	Chapter	3).

If	you	have	the	option,	prefer		yield	pr		rather	than		yield	th	.	But	there's	nothing	wrong	with	having	a		run(..)		utility	which
can	handle	both	value	types.

Note:	The		runner(..)		utility	in	my	asynquence	library,	which	will	be	discussed	in	Appendix	A,	handles		yield	s	of
Promises,	thunks	and	asynquence	sequences.
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You're	hopefully	convinced	now	that	generators	are	a	very	important	addition	to	the	async	programming	toolbox.	But	it's	a
new	syntax	in	ES6,	which	means	you	can't	just	polyfill	generators	like	you	can	Promises	(which	are	just	a	new	API).	So
what	can	we	do	to	bring	generators	to	our	browser	JS	if	we	don't	have	the	luxury	of	ignoring	pre-ES6	browsers?

For	all	new	syntax	extensions	in	ES6,	there	are	tools	--	the	most	common	term	for	them	is	transpilers,	for	trans-compilers	--
which	can	take	your	ES6	syntax	and	transform	it	into	equivalent	(but	obviously	uglier!)	pre-ES6	code.	So,	generators	can
be	transpiled	into	code	that	will	have	the	same	behavior	but	work	in	ES5	and	below.

But	how?	The	"magic"	of		yield		doesn't	obviously	sound	like	code	that's	easy	to	transpile.	We	actually	hinted	at	a	solution
in	our	earlier	discussion	of	closure-based	iterators.

Before	we	discuss	the	transpilers,	let's	derive	how	manual	transpilation	would	work	in	the	case	of	generators.	This	isn't	just
an	academic	exercise,	because	doing	so	will	actually	help	further	reinforce	how	they	work.

Consider:

//	`request(..)`	is	a	Promise-aware	Ajax	utility

function	*foo(url)	{

				try	{

								console.log(	"requesting:",	url	);

								var	val	=	yield	request(	url	);

								console.log(	val	);

				}

				catch	(err)	{

								console.log(	"Oops:",	err	);

								return	false;

				}

}

var	it	=	foo(	"http://some.url.1"	);

The	first	thing	to	observe	is	that	we'll	still	need	a	normal		foo()		function	that	can	be	called,	and	it	will	still	need	to	return	an
iterator.	So,	let's	sketch	out	the	non-generator	transformation:

function	foo(url)	{

				//	..

				//	make	and	return	an	iterator

				return	{

								next:	function(v)	{

												//	..

								},

								throw:	function(e)	{

												//	..

								}

				};

}

var	it	=	foo(	"http://some.url.1"	);

The	next	thing	to	observe	is	that	a	generator	does	its	"magic"	by	suspending	its	scope/state,	but	we	can	emulate	that	with
function	closure	(see	the	Scope	&	Closures	title	of	this	series).	To	understand	how	to	write	such	code,	we'll	first	annotate
different	parts	of	our	generator	with	state	values:

//	`request(..)`	is	a	Promise-aware	Ajax	utility

function	*foo(url)	{

				//	STATE	*1*

				try	{

								console.log(	"requesting:",	url	);
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								var	TMP1	=	request(	url	);

								//	STATE	*2*

								var	val	=	yield	TMP1;

								console.log(	val	);

				}

				catch	(err)	{

								//	STATE	*3*

								console.log(	"Oops:",	err	);

								return	false;

				}

}

Note:	For	more	accurate	illustration,	we	split	up	the		val	=	yield	request..		statement	into	two	parts,	using	the	temporary
	TMP1		variable.		request(..)		happens	in	state		*1*	,	and	the	assignment	of	its	completion	value	to		val		happens	in	state
	*2*	.	We'll	get	rid	of	that	intermediate		TMP1		when	we	convert	the	code	to	its	non-generator	equivalent.

In	other	words,		*1*		is	the	beginning	state,		*2*		is	the	state	if	the		request(..)		succeeds,	and		*3*		is	the	state	if	the
	request(..)		fails.	You	can	probably	imagine	how	any	extra		yield		steps	would	just	be	encoded	as	extra	states.

Back	to	our	transpiled	generator,	let's	define	a	variable		state		in	the	closure	we	can	use	to	keep	track	of	the	state:

function	foo(url)	{

				//	manage	generator	state

				var	state;

				//	..

}

Now,	let's	define	an	inner	function	called		process(..)		inside	the	closure	which	handles	each	state,	using	a		switch	
statement:

//	`request(..)`	is	a	Promise-aware	Ajax	utility

function	foo(url)	{

				//	manage	generator	state

				var	state;

				//	generator-wide	variable	declarations

				var	val;

				function	process(v)	{

								switch	(state)	{

												case	1:

																console.log(	"requesting:",	url	);

																return	request(	url	);

												case	2:

																val	=	v;

																console.log(	val	);

																return;

												case	3:

																var	err	=	v;

																console.log(	"Oops:",	err	);

																return	false;

								}

				}

				//	..

}

Each	state	in	our	generator	is	represented	by	its	own		case		in	the		switch		statement.		process(..)		will	be	called	each	time
we	need	to	process	a	new	state.	We'll	come	back	to	how	that	works	in	just	a	moment.

For	any	generator-wide	variable	declarations	(	val	),	we	move	those	to	a		var		declaration	outside	of		process(..)		so	they
can	survive	multiple	calls	to		process(..)	.	But	the	"block	scoped"		err		variable	is	only	needed	for	the		*3*		state,	so	we
leave	it	in	place.



In	state		*1*	,	instead	of		yield	resolve(..)	,	we	did		return	resolve(..)	.	In	terminal	state		*2*	,	there	was	no	explicit
	return	,	so	we	just	do	a		return;		which	is	the	same	as		return	undefined	.	In	terminal	state		*3*	,	there	was	a		return
false	,	so	we	preserve	that.

Now	we	need	to	define	the	code	in	the	iterator	functions	so	they	call		process(..)		appropriately:

function	foo(url)	{

				//	manage	generator	state

				var	state;

				//	generator-wide	variable	declarations

				var	val;

				function	process(v)	{

								switch	(state)	{

												case	1:

																console.log(	"requesting:",	url	);

																return	request(	url	);

												case	2:

																val	=	v;

																console.log(	val	);

																return;

												case	3:

																var	err	=	v;

																console.log(	"Oops:",	err	);

																return	false;

								}

				}

				//	make	and	return	an	iterator

				return	{

								next:	function(v)	{

												//	initial	state

												if	(!state)	{

																state	=	1;

																return	{

																				done:	false,

																				value:	process()

																};

												}

												//	yield	resumed	successfully

												else	if	(state	==	1)	{

																state	=	2;

																return	{

																				done:	true,

																				value:	process(	v	)

																};

												}

												//	generator	already	completed

												else	{

																return	{

																				done:	true,

																				value:	undefined

																};

												}

								},

								"throw":	function(e)	{

												//	the	only	explicit	error	handling	is	in

												//	state	*1*

												if	(state	==	1)	{

																state	=	3;

																return	{

																				done:	true,

																				value:	process(	e	)

																};

												}

												//	otherwise,	an	error	won't	be	handled,

												//	so	just	throw	it	right	back	out

												else	{

																throw	e;

												}

								}

				};

}

How	does	this	code	work?



1.	 The	first	call	to	the	iterator's		next()		call	would	move	the	generator	from	the	unitialized	state	to	state		1	,	and	then	call
	process()		to	handle	that	state.	The	return	value	from		request(..)	,	which	is	the	promise	for	the	Ajax	response,	is
returned	back	as	the		value		property	from	the		next()		call.

2.	 If	the	Ajax	request	succeeds,	the	second	call	to		next(..)		should	send	in	the	Ajax	response	value,	which	moves	our
state	to		2	.		process(..)		is	again	called	(this	time	with	the	passed	in	Ajax	response	value),	and	the		value		property
returned	from		next(..)		will	be		undefined	.

3.	 However,	if	the	Ajax	request	fails,		throw(..)		should	be	called	with	the	error,	which	would	move	the	state	from		1		to		3	
(instead	of		2	).	Again		process(..)		is	called,	this	time	with	the	error	value.	That		case		returns		false	,	which	is	set	as
the		value		property	returned	from	the		throw(..)		call.

From	the	outside	--	that	is,	interacting	only	with	the	iterator	--	this		foo(..)		normal	function	works	pretty	much	the	same	as
the		*foo(..)		generator	would	have	worked.	So	we've	effectively	"transpiled"	our	ES6	generator	to	pre-ES6	compatibility!

We	could	then	manually	instantiate	our	generator	and	control	its	iterator	--	calling		var	it	=	foo("..")		and		it.next(..)	
and	such	--	or	better,	we	could	pass	it	to	our	previously	defined		run(..)		utility	as		run(foo,"..")	.

The	preceding	exercise	of	manually	deriving	a	transformation	of	our	ES6	generator	to	pre-ES6	equivalent	teaches	us	how
generators	work	conceptually.	But	that	transformation	was	really	intricate	and	very	non-portable	to	other	generators	in	our
code.	It	would	be	quite	impractical	to	do	this	work	by	hand,	and	would	completely	obviate	all	the	benefit	of	generators.

But	luckily,	several	tools	already	exist	that	can	automatically	convert	ES6	generators	to	things	like	what	we	derived	in	the
previous	section.	Not	only	do	they	do	the	heavy	lifting	work	for	us,	but	they	also	handle	several	complications	that	we
glossed	over.

One	such	tool	is	regenerator	(https://facebook.github.io/regenerator/),	from	the	smart	folks	at	Facebook.

If	we	use	regenerator	to	transpile	our	previous	generator,	here's	the	code	produced	(at	the	time	of	this	writing):

//	`request(..)`	is	a	Promise-aware	Ajax	utility

var	foo	=	regeneratorRuntime.mark(function	foo(url)	{

				var	val;

				return	regeneratorRuntime.wrap(function	foo$(context$1$0)	{

								while	(1)	switch	(context$1$0.prev	=	context$1$0.next)	{

								case	0:

												context$1$0.prev	=	0;

												console.log(	"requesting:",	url	);

												context$1$0.next	=	4;

												return	request(	url	);

								case	4:

												val	=	context$1$0.sent;

												console.log(	val	);

												context$1$0.next	=	12;

												break;

								case	8:

												context$1$0.prev	=	8;

												context$1$0.t0	=	context$1$0.catch(0);

												console.log("Oops:",	context$1$0.t0);

												return	context$1$0.abrupt("return",	false);

								case	12:

								case	"end":

												return	context$1$0.stop();

								}

				},	foo,	this,	[[0,	8]]);

});

There's	some	obvious	similarities	here	to	our	manual	derivation,	such	as	the		switch		/		case		statements,	and	we	even	see
	val		pulled	out	of	the	closure	just	as	we	did.

Of	course,	one	trade-off	is	that	regenerator's	transpilation	requires	a	helper	library		regeneratorRuntime		that	holds	all	the
reusable	logic	for	managing	a	general	generator	/	iterator.	A	lot	of	that	boilerplate	looks	different	than	our	version,	but	even
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then,	the	concepts	can	be	seen,	like	with		context$1$0.next	=	4		keeping	track	of	the	next	state	for	the	generator.

The	main	takeaway	is	that	generators	are	not	restricted	to	only	being	useful	in	ES6+	environments.	Once	you	understand
the	concepts,	you	can	employ	them	throughout	your	code,	and	use	tools	to	transform	the	code	to	be	compatible	with	older
environments.

This	is	more	work	than	just	using	a		Promise		API	polyfill	for	pre-ES6	Promises,	but	the	effort	is	totally	worth	it,	because
generators	are	so	much	better	at	expressing	async	flow	control	in	a	reason-able,	sensible,	synchronous-looking,	sequential
fashion.

Once	you	get	hooked	on	generators,	you'll	never	want	to	go	back	to	the	hell	of	async	spaghetti	callbacks!

Generators	are	a	new	ES6	function	type	that	does	not	run-to-completion	like	normal	functions.	Instead,	the	generator	can
be	paused	in	mid-completion	(entirely	preserving	its	state),	and	it	can	later	be	resumed	from	where	it	left	off.

This	pause/resume	interchange	is	cooperative	rather	than	preemptive,	which	means	that	the	generator	has	the	sole
capability	to	pause	itself,	using	the		yield		keyword,	and	yet	the	iterator	that	controls	the	generator	has	the	sole	capability
(via		next(..)	)	to	resume	the	generator.

The		yield		/		next(..)		duality	is	not	just	a	control	mechanism,	it's	actually	a	two-way	message	passing	mechanism.	A
	yield	..		expression	essentially	pauses	waiting	for	a	value,	and	the	next		next(..)		call	passes	a	value	(or	implicit
	undefined	)	back	to	that	paused		yield		expression.

The	key	benefit	of	generators	related	to	async	flow	control	is	that	the	code	inside	a	generator	expresses	a	sequence	of
steps	for	the	task	in	a	naturally	sync/sequential	fashion.	The	trick	is	that	we	essentially	hide	potential	asynchrony	behind
the		yield		keyword	--	moving	the	asynchrony	to	the	code	where	the	generator's	iterator	is	controlled.

In	other	words,	generators	preserve	a	sequential,	synchronous,	blocking	code	pattern	for	async	code,	which	lets	our	brains
reason	about	the	code	much	more	naturally,	addressing	one	of	the	two	key	drawbacks	of	callback-based	async.

Review



This	book	so	far	has	been	all	about	how	to	leverage	asynchrony	patterns	more	effectively.	But	we	haven't	directly
addressed	why	asynchrony	really	matters	to	JS.	The	most	obvious	explicit	reason	is	performance.

For	example,	if	you	have	two	Ajax	requests	to	make,	and	they're	independent,	but	you	need	to	wait	on	them	both	to	finish
before	doing	the	next	task,	you	have	two	options	for	modeling	that	interaction:	serial	and	concurrent.

You	could	make	the	first	request	and	wait	to	start	the	second	request	until	the	first	finishes.	Or,	as	we've	seen	both	with
promises	and	generators,	you	could	make	both	requests	"in	parallel,"	and	express	the	"gate"	to	wait	on	both	of	them	before
moving	on.

Clearly,	the	latter	is	usually	going	to	be	more	performant	than	the	former.	And	better	performance	generally	leads	to	better
user	experience.

It's	even	possible	that	asynchrony	(interleaved	concurrency)	can	improve	just	the	perception	of	performance,	even	if	the
overall	program	still	takes	the	same	amount	of	time	to	complete.	User	perception	of	performance	is	every	bit	--	if	not	more!	-
-	as	important	as	actual	measurable	performance.

We	want	to	now	move	beyond	localized	asynchrony	patterns	to	talk	about	some	bigger	picture	performance	details	at	the
program	level.

Note:	You	may	be	wondering	about	micro-performance	issues	like	if		a++		or		++a		is	faster.	We'll	look	at	those	sorts	of
performance	details	in	the	next	chapter	on	"Benchmarking	&	Tuning."

If	you	have	processing-intensive	tasks	but	you	don't	want	them	to	run	on	the	main	thread	(which	may	slow	down	the
browser/UI),	you	might	have	wished	that	JavaScript	could	operate	in	a	multithreaded	manner.

In	Chapter	1,	we	talked	in	detail	about	how	JavaScript	is	single	threaded.	And	that's	still	true.	But	a	single	thread	isn't	the
only	way	to	organize	the	execution	of	your	program.

Imagine	splitting	your	program	into	two	pieces,	and	running	one	of	those	pieces	on	the	main	UI	thread,	and	running	the
other	piece	on	an	entirely	separate	thread.

What	kinds	of	concerns	would	such	an	architecture	bring	up?

For	one,	you'd	want	to	know	if	running	on	a	separate	thread	meant	that	it	ran	in	parallel	(on	systems	with	multiple
CPUs/cores)	such	that	a	long-running	process	on	that	second	thread	would	not	block	the	main	program	thread.	Otherwise,
"virtual	threading"	wouldn't	be	of	much	benefit	over	what	we	already	have	in	JS	with	async	concurrency.

And	you'd	want	to	know	if	these	two	pieces	of	the	program	have	access	to	the	same	shared	scope/resources.	If	they	do,
then	you	have	all	the	questions	that	multithreaded	languages	(Java,	C++,	etc.)	deal	with,	such	as	needing	cooperative	or
preemptive	locking	(mutexes,	etc.).	That's	a	lot	of	extra	work,	and	shouldn't	be	undertaken	lightly.

Alternatively,	you'd	want	to	know	how	these	two	pieces	could	"communicate"	if	they	couldn't	share	scope/resources.

All	these	are	great	questions	to	consider	as	we	explore	a	feature	added	to	the	web	platform	circa	HTML5	called	"Web
Workers."	This	is	a	feature	of	the	browser	(aka	host	environment)	and	actually	has	almost	nothing	to	do	with	the	JS
language	itself.	That	is,	JavaScript	does	not	currently	have	any	features	that	support	threaded	execution.

You	Don't	Know	JS:	Async	&	Performance

Chapter	5:	Program	Performance

Web	Workers



But	an	environment	like	your	browser	can	easily	provide	multiple	instances	of	the	JavaScript	engine,	each	on	its	own
thread,	and	let	you	run	a	different	program	in	each	thread.	Each	of	those	separate	threaded	pieces	of	your	program	is
called	a	"(Web)	Worker."	This	type	of	parallelism	is	called	"task	parallelism,"	as	the	emphasis	is	on	splitting	up	chunks	of
your	program	to	run	in	parallel.

From	your	main	JS	program	(or	another	Worker),	you	instantiate	a	Worker	like	so:

var	w1	=	new	Worker(	"http://some.url.1/mycoolworker.js"	);

The	URL	should	point	to	the	location	of	a	JS	file	(not	an	HTML	page!)	which	is	intended	to	be	loaded	into	a	Worker.	The
browser	will	then	spin	up	a	separate	thread	and	let	that	file	run	as	an	independent	program	in	that	thread.

Note:	The	kind	of	Worker	created	with	such	a	URL	is	called	a	"Dedicated	Worker."	But	instead	of	providing	a	URL	to	an
external	file,	you	can	also	create	an	"Inline	Worker"	by	providing	a	Blob	URL	(another	HTML5	feature);	essentially	it's	an
inline	file	stored	in	a	single	(binary)	value.	However,	Blobs	are	beyond	the	scope	of	what	we'll	discuss	here.

Workers	do	not	share	any	scope	or	resources	with	each	other	or	the	main	program	--	that	would	bring	all	the	nightmares	of
theaded	programming	to	the	forefront	--	but	instead	have	a	basic	event	messaging	mechanism	connecting	them.

The		w1		Worker	object	is	an	event	listener	and	trigger,	which	lets	you	subscribe	to	events	sent	by	the	Worker	as	well	as
send	events	to	the	Worker.

Here's	how	to	listen	for	events	(actually,	the	fixed		"message"		event):

w1.addEventListener(	"message",	function(evt){

				//	evt.data

}	);

And	you	can	send	the		"message"		event	to	the	Worker:

w1.postMessage(	"something	cool	to	say"	);

Inside	the	Worker,	the	messaging	is	totally	symmetrical:

//	"mycoolworker.js"

addEventListener(	"message",	function(evt){

				//	evt.data

}	);

postMessage(	"a	really	cool	reply"	);

Notice	that	a	dedicated	Worker	is	in	a	one-to-one	relationship	with	the	program	that	created	it.	That	is,	the		"message"		event
doesn't	need	any	disambiguation	here,	because	we're	sure	that	it	could	only	have	come	from	this	one-to-one	relationship	--
either	it	came	from	the	Worker	or	the	main	page.

Usually	the	main	page	application	creates	the	Workers,	but	a	Worker	can	instantiate	its	own	child	Worker(s)	--	known	as
subworkers	--	as	necessary.	Sometimes	this	is	useful	to	delegate	such	details	to	a	sort	of	"master"	Worker	that	spawns
other	Workers	to	process	parts	of	a	task.	Unfortunately,	at	the	time	of	this	writing,	Chrome	still	does	not	support
subworkers,	while	Firefox	does.

To	kill	a	Worker	immediately	from	the	program	that	created	it,	call		terminate()		on	the	Worker	object	(like		w1		in	the
previous	snippets).	Abruptly	terminating	a	Worker	thread	does	not	give	it	any	chance	to	finish	up	its	work	or	clean	up	any
resources.	It's	akin	to	you	closing	a	browser	tab	to	kill	a	page.



If	you	have	two	or	more	pages	(or	multiple	tabs	with	the	same	page!)	in	the	browser	that	try	to	create	a	Worker	from	the
same	file	URL,	those	will	actually	end	up	as	completely	separate	Workers.	Shortly,	we'll	discuss	a	way	to	"share"	a	Worker.

Note:	It	may	seem	like	a	malicious	or	ignorant	JS	program	could	easily	perform	a	denial-of-service	attack	on	a	system	by
spawning	hundreds	of	Workers,	seemingly	each	with	their	own	thread.	While	it's	true	that	it's	somewhat	of	a	guarantee	that
a	Worker	will	end	up	on	a	separate	thread,	this	guarantee	is	not	unlimited.	The	system	is	free	to	decide	how	many	actual
threads/CPUs/cores	it	really	wants	to	create.	There's	no	way	to	predict	or	guarantee	how	many	you'll	have	access	to,
though	many	people	assume	it's	at	least	as	many	as	the	number	of	CPUs/cores	available.	I	think	the	safest	assumption	is
that	there's	at	least	one	other	thread	besides	the	main	UI	thread,	but	that's	about	it.

Inside	the	Worker,	you	do	not	have	access	to	any	of	the	main	program's	resources.	That	means	you	cannot	access	any	of
its	global	variables,	nor	can	you	access	the	page's	DOM	or	other	resources.	Remember:	it's	a	totally	separate	thread.

You	can,	however,	perform	network	operations	(Ajax,	WebSockets)	and	set	timers.	Also,	the	Worker	has	access	to	its	own
copy	of	several	important	global	variables/features,	including		navigator	,		location	,		JSON	,	and		applicationCache	.

You	can	also	load	extra	JS	scripts	into	your	Worker,	using		importScripts(..)	:

//	inside	the	Worker

importScripts(	"foo.js",	"bar.js"	);

These	scripts	are	loaded	synchronously,	which	means	the		importScripts(..)		call	will	block	the	rest	of	the	Worker's
execution	until	the	file(s)	are	finished	loading	and	executing.

Note:	There	have	also	been	some	discussions	about	exposing	the		<canvas>		API	to	Workers,	which	combined	with	having
canvases	be	Transferables	(see	the	"Data	Transfer"	section),	would	allow	Workers	to	perform	more	sophisticated	off-thread
graphics	processing,	which	can	be	useful	for	high-performance	gaming	(WebGL)	and	other	similar	applications.	Although
this	doesn't	exist	yet	in	any	browsers,	it's	likely	to	happen	in	the	near	future.

What	are	some	common	uses	for	Web	Workers?

Processing	intensive	math	calculations
Sorting	large	data	sets
Data	operations	(compression,	audio	analysis,	image	pixel	manipulations,	etc.)
High-traffic	network	communications

You	may	notice	a	common	characteristic	of	most	of	those	uses,	which	is	that	they	require	a	large	amount	of	information	to
be	transferred	across	the	barrier	between	threads	using	the	event	mechanism,	perhaps	in	both	directions.

In	the	early	days	of	Workers,	serializing	all	data	to	a	string	value	was	the	only	option.	In	addition	to	the	speed	penalty	of	the
two-way	serializations,	the	other	major	negative	was	that	the	data	was	being	copied,	which	meant	a	doubling	of	memory
usage	(and	the	subsequent	churn	of	garbage	collection).

Thankfully,	we	now	have	a	few	better	options.

If	you	pass	an	object,	a	so-called	"Structured	Cloning	Algorithm"	(https://developer.mozilla.org/en-
US/docs/Web/Guide/API/DOM/The_structured_clone_algorithm)	is	used	to	copy/duplicate	the	object	on	the	other	side.	This
algorithm	is	fairly	sophisticated	and	can	even	handle	duplicating	objects	with	circular	references.	The	to-string/from-string
performance	penalty	is	not	paid,	but	we	still	have	duplication	of	memory	using	this	approach.	There	is	support	for	this	in
IE10	and	above,	as	well	as	all	the	other	major	browsers.

An	even	better	option,	especially	for	larger	data	sets,	is	"Transferable	Objects"
(http://updates.html5rocks.com/2011/12/Transferable-Objects-Lightning-Fast).	What	happens	is	that	the	object's
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"ownership"	is	transferred,	but	the	data	itself	is	not	moved.	Once	you	transfer	away	an	object	to	a	Worker,	it's	empty	or
inaccessible	in	the	the	originating	location	--	that	eliminates	the	hazards	of	threaded	programming	over	a	shared	scope.	Of
course,	transfer	of	ownership	can	go	in	both	directions.

There	really	isn't	much	you	need	to	do	to	opt	into	a	Transferable	Object;	any	data	structure	that	implements	the
Transferable	interface	(https://developer.mozilla.org/en-US/docs/Web/API/Transferable)	will	automatically	be	transferred
this	way	(support	Firefox	&	Chrome).

For	example,	typed	arrays	like		Uint8Array		(see	the	ES6	&	Beyond	title	of	this	series)	are	"Transferables."	This	is	how	you'd
send	a	Transferable	Object	using		postMessage(..)	:

//	`foo`	is	a	`Uint8Array`	for	instance

postMessage(	foo.buffer,	[	foo.buffer	]	);

The	first	parameter	is	the	raw	buffer	and	the	second	parameter	is	a	list	of	what	to	transfer.

Browsers	that	don't	support	Transferable	Objects	simply	degrade	to	structured	cloning,	which	means	performance
reduction	rather	than	outright	feature	breakage.

If	your	site	or	app	allows	for	loading	multiple	tabs	of	the	same	page	(a	common	feature),	you	may	very	well	want	to	reduce
the	resource	usage	of	their	system	by	preventing	duplicate	dedicated	Workers;	the	most	common	limited	resource	in	this
respect	is	a	socket	network	connection,	as	browsers	limit	the	number	of	simultaneous	connections	to	a	single	host.	Of
course,	limiting	multiple	connections	from	a	client	also	eases	your	server	resource	requirements.

In	this	case,	creating	a	single	centralized	Worker	that	all	the	page	instances	of	your	site	or	app	can	share	is	quite	useful.

That's	called	a		SharedWorker	,	which	you	create	like	so	(support	for	this	is	limited	to	Firefox	and	Chrome):

var	w1	=	new	SharedWorker(	"http://some.url.1/mycoolworker.js"	);

Because	a	shared	Worker	can	be	connected	to	or	from	more	than	one	program	instance	or	page	on	your	site,	the	Worker
needs	a	way	to	know	which	program	a	message	comes	from.	This	unique	identification	is	called	a	"port"	--	think	network
socket	ports.	So	the	calling	program	must	use	the		port		object	of	the	Worker	for	communication:

w1.port.addEventListener(	"message",	handleMessages	);

//	..

w1.port.postMessage(	"something	cool"	);

Also,	the	port	connection	must	be	initialized,	as:

w1.port.start();

Inside	the	shared	Worker,	an	extra	event	must	be	handled:		"connect"	.	This	event	provides	the	port		object		for	that
particular	connection.	The	most	convenient	way	to	keep	multiple	connections	separate	is	to	use	closure	(see	Scope	&
Closures	title	of	this	series)	over	the		port	,	as	shown	next,	with	the	event	listening	and	transmitting	for	that	connection
defined	inside	the	handler	for	the		"connect"		event:

//	inside	the	shared	Worker

addEventListener(	"connect",	function(evt){

				//	the	assigned	port	for	this	connection
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				var	port	=	evt.ports[0];

				port.addEventListener(	"message",	function(evt){

								//	..

								port.postMessage(	..	);

								//	..

				}	);

				//	initialize	the	port	connection

				port.start();

}	);

Other	than	that	difference,	shared	and	dedicated	Workers	have	the	same	capabilities	and	semantics.

Note:	Shared	Workers	survive	the	termination	of	a	port	connection	if	other	port	connections	are	still	alive,	whereas
dedicated	Workers	are	terminated	whenever	the	connection	to	their	initiating	program	is	terminated.

Web	Workers	are	very	attractive	performance-wise	for	running	JS	programs	in	parallel.	However,	you	may	be	in	a	position
where	your	code	needs	to	run	in	older	browsers	that	lack	support.	Because	Workers	are	an	API	and	not	a	syntax,	they	can
be	polyfilled,	to	an	extent.

If	a	browser	doesn't	support	Workers,	there's	simply	no	way	to	fake	multithreading	from	the	performance	perspective.
Iframes	are	commonly	thought	of	to	provide	a	parallel	environment,	but	in	all	modern	browsers	they	actually	run	on	the
same	thread	as	the	main	page,	so	they're	not	sufficient	for	faking	parallelism.

As	we	detailed	in	Chapter	1,	JS's	asynchronicity	(not	parallelism)	comes	from	the	event	loop	queue,	so	you	can	force	faked
Workers	to	be	asynchronous	using	timers	(	setTimeout(..)	,	etc.).	Then	you	just	need	to	provide	a	polyfill	for	the	Worker
API.	There	are	some	listed	here	(https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills#web-
workers),	but	frankly	none	of	them	look	great.

I've	written	a	sketch	of	a	polyfill	for		Worker		here	(https://gist.github.com/getify/1b26accb1a09aa53ad25).	It's	basic,	but	it
should	get	the	job	done	for	simple		Worker		support,	given	that	the	two-way	messaging	works	correctly	as	well	as		"onerror"	
handling.	You	could	probably	also	extend	it	with	more	features,	such	as		terminate()		or	faked	Shared	Workers,	as	you	see
fit.

Note:	You	can't	fake	synchronous	blocking,	so	this	polyfill	just	disallows	use	of		importScripts(..)	.	Another	option	might
have	been	to	parse	and	transform	the	Worker's	code	(once	Ajax	loaded)	to	handle	rewriting	to	some	asynchronous	form	of
an		importScripts(..)		polyfill,	perhaps	with	a	promise-aware	interface.

Single	instruction,	multiple	data	(SIMD)	is	a	form	of	"data	parallelism,"	as	contrasted	to	"task	parallelism"	with	Web
Workers,	because	the	emphasis	is	not	really	on	program	logic	chunks	being	parallelized,	but	rather	multiple	bits	of	data
being	processed	in	parallel.

With	SIMD,	threads	don't	provide	the	parallelism.	Instead,	modern	CPUs	provide	SIMD	capability	with	"vectors"	of	numbers
--	think:	type	specialized	arrays	--	as	well	as	instructions	that	can	operate	in	parallel	across	all	the	numbers;	these	are	low-
level	operations	leveraging	instruction-level	parallelism.

The	effort	to	expose	SIMD	capability	to	JavaScript	is	primarily	spearheaded	by	Intel	(https://01.org/node/1495),	namely	by
Mohammad	Haghighat	(at	the	time	of	this	writing),	in	cooperation	with	Firefox	and	Chrome	teams.	SIMD	is	on	an	early
standards	track	with	a	good	chance	of	making	it	into	a	future	revision	of	JavaScript,	likely	in	the	ES7	timeframe.

SIMD	JavaScript	proposes	to	expose	short	vector	types	and	APIs	to	JS	code,	which	on	those	SIMD-enabled	systems
would	map	the	operations	directly	through	to	the	CPU	equivalents,	with	fallback	to	non-parallelized	operation	"shims"	on
non-SIMD	systems.
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The	performance	benefits	for	data-intensive	applications	(signal	analysis,	matrix	operations	on	graphics,	etc.)	with	such
parallel	math	processing	are	quite	obvious!

Early	proposal	forms	of	the	SIMD	API	at	the	time	of	this	writing	look	like	this:

var	v1	=	SIMD.float32x4(	3.14159,	21.0,	32.3,	55.55	);

var	v2	=	SIMD.float32x4(	2.1,	3.2,	4.3,	5.4	);

var	v3	=	SIMD.int32x4(	10,	101,	1001,	10001	);

var	v4	=	SIMD.int32x4(	10,	20,	30,	40	);

SIMD.float32x4.mul(	v1,	v2	);				//	[	6.597339,	67.2,	138.89,	299.97	]

SIMD.int32x4.add(	v3,	v4	);								//	[	20,	121,	1031,	10041	]

Shown	here	are	two	different	vector	data	types,	32-bit	floating-point	numbers	and	32-bit	integer	numbers.	You	can	see	that
these	vectors	are	sized	exactly	to	four	32-bit	elements,	as	this	matches	the	SIMD	vector	sizes	(128-bit)	available	in	most
modern	CPUs.	It's	also	possible	we	may	see	an		x8		(or	larger!)	version	of	these	APIs	in	the	future.

Besides		mul()		and		add()	,	many	other	operations	are	likely	to	be	included,	such	as		sub()	,		div()	,		abs()	,		neg()	,
	sqrt()	,		reciprocal()	,		reciprocalSqrt()		(arithmetic),		shuffle()		(rearrange	vector	elements),		and()	,		or()	,		xor()	,
	not()		(logical),		equal()	,		greaterThan()	,		lessThan()		(comparison),		shiftLeft()	,		shiftRightLogical()	,
	shiftRightArithmetic()		(shifts),		fromFloat32x4()	,	and		fromInt32x4()		(conversions).

Note:	There's	an	official	"prollyfill"	(hopeful,	expectant,	future-leaning	polyfill)	for	the	SIMD	functionality	available
(https://github.com/johnmccutchan/ecmascript_simd),	which	illustrates	a	lot	more	of	the	planned	SIMD	capability	than	we've
illustrated	in	this	section.

"asm.js"	(http://asmjs.org/)	is	a	label	for	a	highly	optimizable	subset	of	the	JavaScript	language.	By	carefully	avoiding
certain	mechanisms	and	patterns	that	are	hard	to	optimize	(garbage	collection,	coercion,	etc.),	asm.js-styled	code	can	be
recognized	by	the	JS	engine	and	given	special	attention	with	aggressive	low-level	optimizations.

Distinct	from	other	program	perfomance	mechanisms	discussed	in	this	chapter,	asm.js	isn't	necessarily	something	that
needs	to	be	adopted	into	the	JS	language	specification.	There	is	an	asm.js	specification	(http://asmjs.org/spec/latest/),	but
it's	mostly	for	tracking	an	agreed	upon	set	of	candidate	inferences	for	optimization	rather	than	a	set	of	requirements	of	JS
engines.

There's	not	currently	any	new	syntax	being	proposed.	Instead,	asm.js	suggests	ways	to	recognize	existing	standard	JS
syntax	that	conforms	to	the	rules	of	asm.js	and	let	engines	implement	their	own	optimizations	accordingly.

There's	been	some	disagreement	between	browser	vendors	over	exactly	how	asm.js	should	be	activated	in	a	program.
Early	versions	of	the	asm.js	experiment	required	a		"use	asm";		pragma	(similar	to	strict	mode's		"use	strict";	)	to	help	clue
the	JS	engine	to	be	looking	for	asm.js	optimization	opportunities	and	hints.	Others	have	asserted	that	asm.js	should	just	be
a	set	of	heuristics	that	engines	automatically	recognize	without	the	author	having	to	do	anything	extra,	meaning	that
existing	programs	could	theoretically	benefit	from	asm.js-style	optimizations	without	doing	anything	special.

The	first	thing	to	understand	about	asm.js	optimizations	is	around	types	and	coercion	(see	the	Types	&	Grammar	title	of	this
series).	If	the	JS	engine	has	to	track	multiple	different	types	of	values	in	a	variable	through	various	operations,	so	that	it	can
handle	coercions	between	types	as	necessary,	that's	a	lot	of	extra	work	that	keeps	the	program	optimization	suboptimal.

Note:	We're	going	to	use	asm.js-style	code	here	for	illustration	purposes,	but	be	aware	that	it's	not	commonly	expected	that
you'll	author	such	code	by	hand.	asm.js	is	more	intended	to	a	compliation	target	from	other	tools,	such	as	Emscripten
(https://github.com/kripken/emscripten/wiki).	It's	of	course	possible	to	write	your	own	asm.js	code,	but	that's	usually	a	bad
idea	because	the	code	is	very	low	level	and	managing	it	can	be	very	time	consuming	and	error	prone.	Nevertheless,	there
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may	be	cases	where	you'd	want	to	hand	tweak	your	code	for	asm.js	optimization	purposes.

There	are	some	"tricks"	you	can	use	to	hint	to	an	asm.js-aware	JS	engine	what	the	intended	type	is	for
variables/operations,	so	that	it	can	skip	these	coercion	tracking	steps.

For	example:

var	a	=	42;

//	..

var	b	=	a;

In	that	program,	the		b	=	a		assignment	leaves	the	door	open	for	type	divergence	in	variables.	However,	it	could	instead	be
written	as:

var	a	=	42;

//	..

var	b	=	a	|	0;

Here,	we've	used	the		|		("binary	OR")	with	value		0	,	which	has	no	effect	on	the	value	other	than	to	make	sure	it's	a	32-bit
integer.	That	code	run	in	a	normal	JS	engine	works	just	fine,	but	when	run	in	an	asm.js-aware	JS	engine	it	can	signal	that
	b		should	always	be	treated	as	a	32-bit	integer,	so	the	coercion	tracking	can	be	skipped.

Similarly,	the	addition	operation	between	two	variables	can	be	restricted	to	a	more	performant	integer	addition	(instead	of
floating	point):

(a	+	b)	|	0

Again,	the	asm.js-aware	JS	engine	can	see	that	hint	and	infer	that	the		+		operation	should	be	32-bit	integer	addition
because	the	end	result	of	the	whole	expression	would	automatically	be	32-bit	integer	conformed	anyway.

One	of	the	biggest	detractors	to	performance	in	JS	is	around	memory	allocation,	garbage	collection,	and	scope	access.
asm.js	suggests	one	of	the	ways	around	these	issues	is	to	declare	a	more	formalized	asm.js	"module"	--	do	not	confuse
these	with	ES6	modules;	see	the	ES6	&	Beyond	title	of	this	series.

For	an	asm.js	module,	you	need	to	explicitly	pass	in	a	tightly	conformed	namespace	--	this	is	referred	to	in	the	spec	as
	stdlib	,	as	it	should	represent	standard	libraries	needed	--	to	import	necessary	symbols,	rather	than	just	using	globals	via
lexical	scope.	In	the	base	case,	the		window		object	is	an	acceptable		stdlib		object	for	asm.js	module	purposes,	but	you
could	and	perhaps	should	construct	an	even	more	restricted	one.

You	also	must	declare	a	"heap"	--	which	is	just	a	fancy	term	for	a	reserved	spot	in	memory	where	variables	can	already	be
used	without	asking	for	more	memory	or	releasing	previously	used	memory	--	and	pass	that	in,	so	that	the	asm.js	module
won't	need	to	do	anything	that	would	cause	memory	churn;	it	can	just	use	the	pre-reserved	space.

A	"heap"	is	likely	a	typed		ArrayBuffer	,	such	as:

var	heap	=	new	ArrayBuffer(	0x10000	);				//	64k	heap

Using	that	pre-reserved	64k	of	binary	space,	an	asm.js	module	can	store	and	retrieve	values	in	that	buffer	without	any
memory	allocation	or	garbage	collection	penalties.	For	example,	the		heap		buffer	could	be	used	inside	the	module	to	back
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an	array	of	64-bit	float	values	like	this:

var	arr	=	new	Float64Array(	heap	);

OK,	so	let's	make	a	quick,	silly	example	of	an	asm.js-styled	module	to	illustrate	how	these	pieces	fit	together.	We'll	define	a
	foo(..)		that	takes	a	start	(	x	)	and	end	(	y	)	integer	for	a	range,	and	calculates	all	the	inner	adjacent	multiplications	of	the
values	in	the	range,	and	then	finally	averages	those	values	together:

function	fooASM(stdlib,foreign,heap)	{

				"use	asm";

				var	arr	=	new	stdlib.Int32Array(	heap	);

				function	foo(x,y)	{

								x	=	x	|	0;

								y	=	y	|	0;

								var	i	=	0;

								var	p	=	0;

								var	sum	=	0;

								var	count	=	((y|0)	-	(x|0))	|	0;

								//	calculate	all	the	inner	adjacent	multiplications

								for	(i	=	x	|	0;

												(i	|	0)	<	(y	|	0);

												p	=	(p	+	8)	|	0,	i	=	(i	+	1)	|	0

								)	{

												//	store	result

												arr[	p	>>	3	]	=	(i	*	(i	+	1))	|	0;

								}

								//	calculate	average	of	all	intermediate	values

								for	(i	=	0,	p	=	0;

												(i	|	0)	<	(count	|	0);

												p	=	(p	+	8)	|	0,	i	=	(i	+	1)	|	0

								)	{

												sum	=	(sum	+	arr[	p	>>	3	])	|	0;

								}

								return	+(sum	/	count);

				}

				return	{

								foo:	foo

				};

}

var	heap	=	new	ArrayBuffer(	0x1000	);

var	foo	=	fooASM(	window,	null,	heap	).foo;

foo(	10,	20	);								//	233

Note:	This	asm.js	example	is	hand	authored	for	illustration	purposes,	so	it	doesn't	represent	the	same	code	that	would	be
produced	from	a	compilation	tool	targeting	asm.js.	But	it	does	show	the	typical	nature	of	asm.js	code,	especially	the	type
hinting	and	use	of	the		heap		buffer	for	temporary	variable	storage.

The	first	call	to		fooASM(..)		is	what	sets	up	our	asm.js	module	with	its		heap		allocation.	The	result	is	a		foo(..)		function	we
can	call	as	many	times	as	necessary.	Those		foo(..)		calls	should	be	specially	optimized	by	an	asm.js-aware	JS	engine.
Importantly,	the	preceding	code	is	completely	standard	JS	and	would	run	just	fine	(without	special	optimization)	in	a	non-
asm.js	engine.

Obviously,	the	nature	of	restrictions	that	make	asm.js	code	so	optimizable	reduces	the	possible	uses	for	such	code
significantly.	asm.js	won't	necessarily	be	a	general	optimization	set	for	any	given	JS	program.	Instead,	it's	intended	to
provide	an	optimized	way	of	handling	specialized	tasks	such	as	intensive	math	operations	(e.g.,	those	used	in	graphics
processing	for	games).
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The	first	four	chapters	of	this	book	are	based	on	the	premise	that	async	coding	patterns	give	you	the	ability	to	write	more
performant	code,	which	is	generally	a	very	important	improvement.	But	async	behavior	only	gets	you	so	far,	because	it's
still	fundamentally	bound	to	a	single	event	loop	thread.

So	in	this	chapter	we've	covered	several	program-level	mechanisms	for	improving	performance	even	further.

Web	Workers	let	you	run	a	JS	file	(aka	program)	in	a	separate	thread	using	async	events	to	message	between	the	threads.
They're	wonderful	for	offloading	long-running	or	resource-intensive	tasks	to	a	different	thread,	leaving	the	main	UI	thread
more	resposive.

SIMD	proposes	to	map	CPU-level	parallel	math	operations	to	JavaScript	APIs	for	high-performance	data-parallel
operations,	like	number	processing	on	large	data	sets.

Finally,	asm.js	describes	a	small	subset	of	JavaScript	that	avoids	the	hard-to-optimize	parts	of	JS	(like	garbage	collection
and	coercion)	and	lets	the	JS	engine	recognize	and	run	such	code	through	aggressive	optimizations.	asm.js	could	be	hand
authored,	but	that's	extremely	tedious	and	error	prone,	akin	to	hand	authoring	assembly	language	(hence	the	name).
Instead,	the	main	intent	is	that	asm.js	would	be	a	good	target	for	cross-compilation	from	other	highly	optimized	program
languages	--	for	example,	Emscripten	(https://github.com/kripken/emscripten/wiki)	transpiling	C/C++	to	JavaScript.

While	not	covered	explicitly	in	this	chapter,	there	are	even	more	radical	ideas	under	very	early	discussion	for	JavaScript,
including	approximations	of	direct	threaded	functionality	(not	just	hidden	behind	data	structure	APIs).	Whether	that	happens
explicitly,	or	we	just	see	more	parallelism	creep	into	JS	behind	the	scenes,	the	future	of	more	optimized	program-level
performance	in	JS	looks	really	promising.
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As	the	first	four	chapters	of	this	book	were	all	about	performance	as	a	coding	pattern	(asynchrony	and	concurrency),	and
Chapter	5	was	about	performance	at	the	macro	program	architecture	level,	this	chapter	goes	after	the	topic	of	performance
at	the	micro	level,	focusing	on	single	expressions/statements.

One	of	the	most	common	areas	of	curiosity	--	indeed,	some	developers	can	get	quite	obsessed	about	it	--	is	in	analyzing
and	testing	various	options	for	how	to	write	a	line	or	chunk	of	code,	and	which	one	is	faster.

We're	going	to	look	at	some	of	these	issues,	but	it's	important	to	understand	from	the	outset	that	this	chapter	is	not	about
feeding	the	obsession	of	micro-performance	tuning,	like	whether	some	given	JS	engine	can	run		++a		faster	than		a++	.	The
more	important	goal	of	this	chapter	is	to	figure	out	what	kinds	of	JS	performance	matter	and	which	ones	don't,	and	how	to
tell	the	difference.

But	even	before	we	get	there,	we	need	to	explore	how	to	most	accurately	and	reliably	test	JS	performance,	because	there's
tons	of	misconceptions	and	myths	that	have	flooded	our	collective	cult	knowledge	base.	We've	got	to	sift	through	all	that
junk	to	find	some	clarity.

OK,	time	to	start	dispelling	some	misconceptions.	I'd	wager	the	vast	majority	of	JS	developers,	if	asked	to	benchmark	the
speed	(execution	time)	of	a	certain	operation,	would	initially	go	about	it	something	like	this:

var	start	=	(new	Date()).getTime();				//	or	`Date.now()`

//	do	some	operation

var	end	=	(new	Date()).getTime();

console.log(	"Duration:",	(end	-	start)	);

Raise	your	hand	if	that's	roughly	what	came	to	your	mind.	Yep,	I	thought	so.	There's	a	lot	wrong	with	this	approach,	but
don't	feel	bad;	we've	all	been	there.

What	did	that	measurement	tell	you,	exactly?	Understanding	what	it	does	and	doesn't	say	about	the	execution	time	of	the
operation	in	question	is	key	to	learning	how	to	appropriately	benchmark	performance	in	JavaScript.

If	the	duration	reported	is		0	,	you	may	be	tempted	to	believe	that	it	took	less	than	a	millisecond.	But	that's	not	very
accurate.	Some	platforms	don't	have	single	millisecond	precision,	but	instead	only	update	the	timer	in	larger	increments.
For	example,	older	versions	of	windows	(and	thus	IE)	had	only	15ms	precision,	which	means	the	operation	has	to	take	at
least	that	long	for	anything	other	than		0		to	be	reported!

Moreover,	whatever	duration	is	reported,	the	only	thing	you	really	know	is	that	the	operation	took	approximately	that	long	on
that	exact	single	run.	You	have	near-zero	confidence	that	it	will	always	run	at	that	speed.	You	have	no	idea	if	the	engine	or
system	had	some	sort	of	interference	at	that	exact	moment,	and	that	at	other	times	the	operation	could	run	faster.

What	if	the	duration	reported	is		4	?	Are	you	more	sure	it	took	about	four	milliseconds?	Nope.	It	might	have	taken	less	time,
and	there	may	have	been	some	other	delay	in	getting	either		start		or		end		timestamps.

More	troublingly,	you	also	don't	know	that	the	circumstances	of	this	operation	test	aren't	overly	optimistic.	It's	possible	that
the	JS	engine	figured	out	a	way	to	optimize	your	isolated	test	case,	but	in	a	more	real	program	such	optimization	would	be
diluted	or	impossible,	such	that	the	operation	would	run	slower	than	your	test.
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So...	what	do	we	know?	Unfortunately,	with	those	realizations	stated,	we	know	very	little.	Something	of	such	low
confidence	isn't	even	remotely	good	enough	to	build	your	determinations	on.	Your	"benchmark"	is	basically	useless.	And
worse,	it's	dangerous	in	that	it	implies	false	confidence,	not	just	to	you	but	also	to	others	who	don't	think	critically	about	the
conditions	that	led	to	those	results.

"OK,"	you	now	say,	"Just	put	a	loop	around	it	so	the	whole	test	takes	longer."	If	you	repeat	an	operation	100	times,	and	that
whole	loop	reportedly	takes	a	total	of	137ms,	then	you	can	just	divide	by	100	and	get	an	average	duration	of	1.37ms	for
each	operation,	right?

Well,	not	exactly.

A	straight	mathematical	average	by	itself	is	definitely	not	sufficient	for	making	judgments	about	performance	which	you	plan
to	extrapolate	to	the	breadth	of	your	entire	application.	With	a	hundred	iterations,	even	a	couple	of	outliers	(high	or	low)	can
skew	the	average,	and	then	when	you	apply	that	conclusion	repeatedly,	you	even	further	inflate	the	skew	beyond	credulity.

Instead	of	just	running	for	a	fixed	number	of	iterations,	you	can	instead	choose	to	run	the	loop	of	tests	until	a	certain
amount	of	time	has	passed.	That	might	be	more	reliable,	but	how	do	you	decide	how	long	to	run?	You	might	guess	that	it
should	be	some	multiple	of	how	long	your	operation	should	take	to	run	once.	Wrong.

Actually,	the	length	of	time	to	repeat	across	should	be	based	on	the	accuracy	of	the	timer	you're	using,	specifically	to
minimize	the	chances	of	inaccuracy.	The	less	precise	your	timer,	the	longer	you	need	to	run	to	make	sure	you've	minimized
the	error	percentage.	A	15ms	timer	is	pretty	bad	for	accurate	benchmarking;	to	minimize	its	uncertainty	(aka	"error	rate")	to
less	than	1%,	you	need	to	run	your	each	cycle	of	test	iterations	for	750ms.	A	1ms	timer	only	needs	a	cycle	to	run	for	50ms
to	get	the	same	confidence.

But	then,	that's	just	a	single	sample.	To	be	sure	you're	factoring	out	the	skew,	you'll	want	lots	of	samples	to	average	across.
You'll	also	want	to	understand	something	about	just	how	slow	the	worst	sample	is,	how	fast	the	best	sample	is,	how	far
apart	those	best	and	worse	cases	were,	and	so	on.	You'll	want	to	know	not	just	a	number	that	tells	you	how	fast	something
ran,	but	also	to	have	some	quantifiable	measure	of	how	trustable	that	number	is.

Also,	you	probably	want	to	combine	these	different	techniques	(as	well	as	others),	so	that	you	get	the	best	balance	of	all
the	possible	approaches.

That's	all	bare	minimum	just	to	get	started.	If	you've	been	approaching	performance	benchmarking	with	anything	less
serious	than	what	I	just	glossed	over,	well...	"you	don't	know:	proper	benchmarking."

Any	relevant	and	reliable	benchmark	should	be	based	on	statistically	sound	practices.	I	am	not	going	to	write	a	chapter	on
statistics	here,	so	I'll	hand	wave	around	some	terms:	standard	deviation,	variance,	margin	of	error.	If	you	don't	know	what
those	terms	really	mean	--	I	took	a	stats	class	back	in	college	and	I'm	still	a	little	fuzzy	on	them	--	you	are	not	actually
qualified	to	write	your	own	benchmarking	logic.

Luckily,	smart	folks	like	John-David	Dalton	and	Mathias	Bynens	do	understand	these	concepts,	and	wrote	a	statistically
sound	benchmarking	tool	called	Benchmark.js	(http://benchmarkjs.com/).	So	I	can	end	the	suspense	by	simply	saying:	"just
use	that	tool."

I	won't	repeat	their	whole	documentation	for	how	Benchmark.js	works;	they	have	fantastic	API	Docs
(http://benchmarkjs.com/docs)	you	should	read.	Also	there	are	some	great	(http://calendar.perfplanet.com/2010/bulletproof-
javascript-benchmarks/)	writeups	(http://monsur.hossa.in/2012/12/11/benchmarkjs.html)	on	more	of	the	details	and
methodology.

But	just	for	quick	illustration	purposes,	here's	how	you	could	use	Benchmark.js	to	run	a	quick	performance	test:

function	foo()	{
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				//	operation(s)	to	test

}

var	bench	=	new	Benchmark(

				"foo	test",																//	test	name

				foo,																				//	function	to	test	(just	contents)

				{

								//	..																//	optional	extra	options	(see	docs)

				}

);

bench.hz;																				//	number	of	operations	per	second

bench.stats.moe;												//	margin	of	error

bench.stats.variance;								//	variance	across	samples

//	..

There's	lots	more	to	learn	about	using	Benchmark.js	besides	this	glance	I'm	including	here.	But	the	point	is	that	it's	handling
all	of	the	complexities	of	setting	up	a	fair,	reliable,	and	valid	performance	benchmark	for	a	given	piece	of	JavaScript	code.	If
you're	going	to	try	to	test	and	benchmark	your	code,	this	library	is	the	first	place	you	should	turn.

We're	showing	here	the	usage	to	test	a	single	operation	like	X,	but	it's	fairly	common	that	you	want	to	compare	X	to	Y.	This
is	easy	to	do	by	simply	setting	up	two	different	tests	in	a	"Suite"	(a	Benchmark.js	organizational	feature).	Then,	you	run
them	head-to-head,	and	compare	the	statistics	to	conclude	whether	X	or	Y	was	faster.

Benchmark.js	can	of	course	be	used	to	test	JavaScript	in	a	browser	(see	the	"jsPerf.com"	section	later	in	this	chapter),	but
it	can	also	run	in	non-browser	environments	(Node.js,	etc.).

One	largely	untapped	potential	use-case	for	Benchmark.js	is	to	use	it	in	your	Dev	or	QA	environments	to	run	automated
performance	regression	tests	against	critical	path	parts	of	your	application's	JavaScript.	Similar	to	how	you	might	run	unit
test	suites	before	deployment,	you	can	also	compare	the	performance	against	previous	benchmarks	to	monitor	if	you	are
improving	or	degrading	application	performance.

In	the	previous	code	snippet,	we	glossed	over	the	"extra	options"		{	..	}		object.	But	there	are	two	options	we	should
discuss:		setup		and		teardown	.

These	two	options	let	you	define	functions	to	be	called	before	and	after	your	test	case	runs.

It's	incredibly	important	to	understand	that	your		setup		and		teardown		code	does	not	run	for	each	test	iteration.	The	best
way	to	think	about	it	is	that	there's	an	outer	loop	(repeating	cycles),	and	an	inner	loop	(repeating	test	iterations).		setup		and
	teardown		are	run	at	the	beginning	and	end	of	each	outer	loop	(aka	cycle)	iteration,	but	not	inside	the	inner	loop.

Why	does	this	matter?	Let's	imagine	you	have	a	test	case	that	looks	like	this:

a	=	a	+	"w";

b	=	a.charAt(	1	);

Then,	you	set	up	your	test		setup		as	follows:

var	a	=	"x";

Your	temptation	is	probably	to	believe	that		a		is	starting	out	as		"x"		for	each	test	iteration.

But	it's	not!	It's	starting		a		at		"x"		for	each	test	cycle,	and	then	your	repeated		+	"w"		concatenations	will	be	making	a
larger	and	larger		a		value,	even	though	you're	only	ever	accessing	the	character		"w"		at	the		1		position.

Where	this	most	commonly	bites	you	is	when	you	make	side	effect	changes	to	something	like	the	DOM,	like	appending	a
child	element.	You	may	think	your	parent	element	is	set	as	empty	each	time,	but	it's	actually	getting	lots	of	elements	added,
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and	that	can	significantly	sway	the	results	of	your	tests.

Don't	forget	to	check	the	context	of	a	particular	performance	benchmark,	especially	a	comparison	between	X	and	Y	tasks.
Just	because	your	test	reveals	that	X	is	faster	than	Y	doesn't	mean	that	the	conclusion	"X	is	faster	than	Y"	is	actually
relevant.

For	example,	let's	say	a	performance	test	reveals	that	X	runs	10,000,000	operations	per	second,	and	Y	runs	at	8,000,000
operations	per	second.	You	could	claim	that	Y	is	20%	slower	than	X,	and	you'd	be	mathematically	correct,	but	your
assertion	doesn't	hold	as	much	water	as	you'd	think.

Let's	think	about	the	results	more	critically:	10,000,000	operations	per	second	is	10,000	operations	per	millisecond,	and	10
operations	per	microsecond.	In	other	words,	a	single	operation	takes	0.1	microseconds,	or	100	nanoseconds.	It's	hard	to
fathom	just	how	small	100ns	is,	but	for	comparison,	it's	often	cited	that	the	human	eye	isn't	generally	capable	of
distinguishing	anything	less	than	100ms,	which	is	one	million	times	slower	than	the	100ns	speed	of	the	X	operation.

Even	recent	scientific	studies	showing	that	maybe	the	brain	can	process	as	quick	as	13ms	(about	8x	faster	than	previously
asserted)	would	mean	that	X	is	still	running	125,000	times	faster	than	the	human	brain	can	perceive	a	distinct	thing
happening.	X	is	going	really,	really	fast.

But	more	importantly,	let's	talk	about	the	difference	between	X	and	Y,	the	2,000,000	operations	per	second	difference.	If	X
takes	100ns,	and	Y	takes	80ns,	the	difference	is	20ns,	which	in	the	best	case	is	still	one	650-thousandth	of	the	interval	the
human	brain	can	perceive.

What's	my	point?	None	of	this	performance	difference	matters,	at	all!

But	wait,	what	if	this	operation	is	going	to	happen	a	whole	bunch	of	times	in	a	row?	Then	the	difference	could	add	up,	right?

OK,	so	what	we're	asking	then	is,	how	likely	is	it	that	operation	X	is	going	to	be	run	over	and	over	again,	one	right	after	the
other,	and	that	this	has	to	happen	650,000	times	just	to	get	a	sliver	of	a	hope	the	human	brain	could	perceive	it.	More	likely,
it'd	have	to	happen	5,000,000	to	10,000,000	times	together	in	a	tight	loop	to	even	approach	relevance.

While	the	computer	scientist	in	you	might	protest	that	this	is	possible,	the	louder	voice	of	realism	in	you	should	sanity	check
just	how	likely	or	unlikely	that	really	is.	Even	if	it	is	relevant	in	rare	occasions,	it's	irrelevant	in	most	situations.

The	vast	majority	of	your	benchmark	results	on	tiny	operations	--	like	the		++x		vs		x++		myth	--	are	just	totally	bogus	for
supporting	the	conclusion	that	X	should	be	favored	over	Y	on	a	performance	basis.

You	simply	cannot	reliably	extrapolate	that	if	X	was	10	microseconds	faster	than	Y	in	your	isolated	test,	that	means	X	is
always	faster	than	Y	and	should	always	be	used.	That's	not	how	performance	works.	It's	vastly	more	complicated.

For	example,	let's	imagine	(purely	hypothetical)	that	you	test	some	microperformance	behavior	such	as	comparing:

var	twelve	=	"12";

var	foo	=	"foo";

//	test	1

var	X1	=	parseInt(	twelve	);

var	X2	=	parseInt(	foo	);

//	test	2

var	Y1	=	Number(	twelve	);

var	Y2	=	Number(	foo	);

If	you	understand	what		parseInt(..)		does	compared	to		Number(..)	,	you	might	intuit	that		parseInt(..)		potentially	has
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"more	work"	to	do,	especially	in	the		foo		case.	Or	you	might	intuit	that	they	should	have	the	same	amount	of	work	to	do	in
the		foo		case,	as	both	should	be	able	to	stop	at	the	first	character		"f"	.

Which	intuition	is	correct?	I	honestly	don't	know.	But	I'll	make	the	case	it	doesn't	matter	what	your	intuition	is.	What	might
the	results	be	when	you	test	it?	Again,	I'm	making	up	a	pure	hypothetical	here,	I	haven't	actually	tried,	nor	do	I	care.

Let's	pretend	the	test	comes	back	that		X		and		Y		are	statistically	identical.	Have	you	then	confirmed	your	intuition	about	the
	"f"		character	thing?	Nope.

It's	possible	in	our	hypothetical	that	the	engine	might	recognize	that	the	variables		twelve		and		foo		are	only	being	used	in
one	place	in	each	test,	and	so	it	might	decide	to	inline	those	values.	Then	it	may	realize	that		Number(	"12"	)		can	just	be
replaced	by		12	.	And	maybe	it	comes	to	the	same	conclusion	with		parseInt(..)	,	or	maybe	not.

Or	an	engine's	dead-code	removal	heuristic	could	kick	in,	and	it	could	realize	that	variables		X		and		Y		aren't	being	used,	so
declaring	them	is	irrelevant,	so	it	doesn't	end	up	doing	anything	at	all	in	either	test.

And	all	that's	just	made	with	the	mindset	of	assumptions	about	a	single	test	run.	Modern	engines	are	fantastically	more
complicated	than	what	we're	intuiting	here.	They	do	all	sorts	of	tricks,	like	tracing	and	tracking	how	a	piece	of	code	behaves
over	a	short	period	of	time,	or	with	a	particularly	constrained	set	of	inputs.

What	if	the	engine	optimizes	a	certain	way	because	of	the	fixed	input,	but	in	your	real	program	you	give	more	varied	input
and	the	optimization	decisions	shake	out	differently	(or	not	at	all!)?	Or	what	if	the	engine	kicks	in	optimizations	because	it
sees	the	code	being	run	tens	of	thousands	of	times	by	the	benchmarking	utility,	but	in	your	real	program	it	will	only	run	a
hundred	times	in	near	proximity,	and	under	those	conditions	the	engine	determines	the	optimizations	are	not	worth	it?

And	all	those	optimizations	we	just	hypothesized	about	might	happen	in	our	constrained	test	but	maybe	the	engine	wouldn't
do	them	in	a	more	complex	program	(for	various	reasons).	Or	it	could	be	reversed	--	the	engine	might	not	optimize	such
trivial	code	but	may	be	more	inclined	to	optimize	it	more	aggressively	when	the	system	is	already	more	taxed	by	a	more
sophisticated	program.

The	point	I'm	trying	to	make	is	that	you	really	don't	know	for	sure	exactly	what's	going	on	under	the	covers.	All	the	guesses
and	hypothesis	you	can	muster	don't	amount	to	hardly	anything	concrete	for	really	making	such	decisions.

Does	that	mean	you	can't	really	do	any	useful	testing?	Definitely	not!

What	this	boils	down	to	is	that	testing	not	real	code	gives	you	not	real	results.	In	so	much	as	is	possible	and	practical,	you
should	test	actual	real,	non-trivial	snippets	of	your	code,	and	under	as	best	of	real	conditions	as	you	can	actually	hope	to.
Only	then	will	the	results	you	get	have	a	chance	to	approximate	reality.

Microbenchmarks	like		++x		vs		x++		are	so	incredibly	likely	to	be	bogus,	we	might	as	well	just	flatly	assume	them	as	such.

While	Benchmark.js	is	useful	for	testing	the	performance	of	your	code	in	whatever	JS	environment	you're	running,	it	cannot
be	stressed	enough	that	you	need	to	compile	test	results	from	lots	of	different	environments	(desktop	browsers,	mobile
devices,	etc.)	if	you	want	to	have	any	hope	of	reliable	test	conclusions.

For	example,	Chrome	on	a	high-end	desktop	machine	is	not	likely	to	perform	anywhere	near	the	same	as	Chrome	mobile
on	a	smartphone.	And	a	smartphone	with	a	full	battery	charge	is	not	likely	to	perform	anywhere	near	the	same	as	a
smartphone	with	2%	battery	life	left,	when	the	device	is	starting	to	power	down	the	radio	and	processor.

If	you	want	to	make	assertions	like	"X	is	faster	than	Y"	in	any	reasonable	sense	across	more	than	just	a	single	environment,
you're	going	to	need	to	actually	test	as	many	of	those	real	world	environments	as	possible.	Just	because	Chrome	executes
some	X	operation	faster	than	Y	doesn't	mean	that	all	browsers	do.	And	of	course	you	also	probably	will	want	to	cross-
reference	the	results	of	multiple	browser	test	runs	with	the	demographics	of	your	users.

There's	an	awesome	website	for	this	purpose	called	jsPerf	(http://jsperf.com).	It	uses	the	Benchmark.js	library	we	talked
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about	earlier	to	run	statistically	accurate	and	reliable	tests,	and	makes	the	test	on	an	openly	available	URL	that	you	can
pass	around	to	others.

Each	time	a	test	is	run,	the	results	are	collected	and	persisted	with	the	test,	and	the	cumulative	test	results	are	graphed	on
the	page	for	anyone	to	see.

When	creating	a	test	on	the	site,	you	start	out	with	two	test	cases	to	fill	in,	but	you	can	add	as	many	as	you	need.	You	also
have	the	ability	to	set	up		setup		code	that	is	run	at	the	beginning	of	each	test	cycle	and		teardown		code	run	at	the	end	of
each	cycle.

Note:	A	trick	for	doing	just	one	test	case	(if	you're	benchmarking	a	single	approach	instead	of	a	head-to-head)	is	to	fill	in
the	second	test	input	boxes	with	placeholder	text	on	first	creation,	then	edit	the	test	and	leave	the	second	test	blank,	which
will	delete	it.	You	can	always	add	more	test	cases	later.

You	can	define	the	initial	page	setup	(importing	libraries,	defining	utility	helper	functions,	declaring	variables,	etc.).	There
are	also	options	for	defining	setup	and	teardown	behavior	if	needed	--	consult	the	"Setup/Teardown"	section	in	the
Benchmark.js	discussion	earlier.

jsPerf	is	a	fantastic	resource,	but	there's	an	awful	lot	of	tests	published	that	when	you	analyze	them	are	quite	flawed	or
bogus,	for	any	of	a	variety	of	reasons	as	outlined	so	far	in	this	chapter.

Consider:

//	Case	1

var	x	=	[];

for	(var	i=0;	i<10;	i++)	{

				x[i]	=	"x";

}

//	Case	2

var	x	=	[];

for	(var	i=0;	i<10;	i++)	{

				x[x.length]	=	"x";

}

//	Case	3

var	x	=	[];

for	(var	i=0;	i<10;	i++)	{

				x.push(	"x"	);

}

Some	observations	to	ponder	about	this	test	scenario:

It's	extremely	common	for	devs	to	put	their	own	loops	into	test	cases,	and	they	forget	that	Benchmark.js	already	does
all	the	repetition	you	need.	There's	a	really	strong	chance	that	the		for		loops	in	these	cases	are	totally	unnecessary
noise.
The	declaring	and	initializing	of		x		is	included	in	each	test	case,	possibly	unnecessarily.	Recall	from	earlier	that	if		x	=
[]		were	in	the		setup		code,	it	wouldn't	actually	be	run	before	each	test	iteration,	but	instead	once	at	the	beginning	of
each	cycle.	That	means		x		would	continue	growing	quite	large,	not	just	the	size		10		implied	by	the		for		loops.

So	is	the	intent	to	make	sure	the	tests	are	constrained	only	to	how	the	JS	engine	behaves	with	very	small	arrays	(size
	10	)?	That	could	be	the	intent,	but	if	it	is,	you	have	to	consider	if	that's	not	focusing	far	too	much	on	nuanced	internal
implementation	details.

On	the	other	hand,	does	the	intent	of	the	test	embrace	the	context	that	the	arrays	will	actually	be	growing	quite	large?
Is	the	JS	engines'	behavior	with	larger	arrays	relevant	and	accurate	when	compared	with	the	intended	real	world
usage?

Is	the	intent	to	find	out	how	much		x.length		or		x.push(..)		add	to	the	performance	of	the	operation	to	append	to	the
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	x		array?	OK,	that	might	be	a	valid	thing	to	test.	But	then	again,		push(..)		is	a	function	call,	so	of	course	it's	going	to
be	slower	than		[..]		access.	Arguably,	cases	1	and	2	are	fairer	than	case	3.

Here's	another	example	that	illustrates	a	common	apples-to-oranges	flaw:

//	Case	1

var	x	=	["John","Albert","Sue","Frank","Bob"];

x.sort();

//	Case	2

var	x	=	["John","Albert","Sue","Frank","Bob"];

x.sort(	function	mySort(a,b){

				if	(a	<	b)	return	-1;

				if	(a	>	b)	return	1;

				return	0;

}	);

Here,	the	obvious	intent	is	to	find	out	how	much	slower	the	custom		mySort(..)		comparator	is	than	the	built-in	default
comparator.	But	by	specifying	the	function		mySort(..)		as	inline	function	expression,	you've	created	an	unfair/bogus	test.
Here,	the	second	case	is	not	only	testing	a	custom	user	JS	function,	but	it's	also	testing	creating	a	new	function
expression	for	each	iteration.

Would	it	surprise	you	to	find	out	that	if	you	run	a	similar	test	but	update	it	to	isolate	only	for	creating	an	inline	function
expression	versus	using	a	pre-declared	function,	the	inline	function	expression	creation	can	be	from	2%	to	20%	slower!?

Unless	your	intent	with	this	test	is	to	consider	the	inline	function	expression	creation	"cost,"	a	better/fairer	test	would	put
	mySort(..)	's	declaration	in	the	page	setup	--	don't	put	it	in	the	test		setup		as	that's	unnecessary	redeclaration	for	each
cycle	--	and	simply	reference	it	by	name	in	the	test	case:		x.sort(mySort)	.

Building	on	the	previous	example,	another	pitfall	is	in	opaquely	avoiding	or	adding	"extra	work"	to	one	test	case	that	creates
an	apples-to-oranges	scenario:

//	Case	1

var	x	=	[12,-14,0,3,18,0,2.9];

x.sort();

//	Case	2

var	x	=	[12,-14,0,3,18,0,2.9];

x.sort(	function	mySort(a,b){

				return	a	-	b;

}	);

Setting	aside	the	previously	mentioned	inline	function	expression	pitfall,	the	second	case's		mySort(..)		works	in	this	case
because	you	have	provided	it	numbers,	but	would	have	of	course	failed	with	strings.	The	first	case	doesn't	throw	an	error,
but	it	actually	behaves	differently	and	has	a	different	outcome!	It	should	be	obvious,	but:	a	different	outcome	between
two	test	cases	almost	certainly	invalidates	the	entire	test!

But	beyond	the	different	outcomes,	in	this	case,	the	built	in		sort(..)	's	comparator	is	actually	doing	"extra	work"	that
	mySort()		does	not,	in	that	the	built-in	one	coerces	the	compared	values	to	strings	and	does	lexicographic	comparison.	The
first	snippet	results	in		[-14,	0,	0,	12,	18,	2.9,	3]		while	the	second	snippet	results	(likely	more	accurately	based	on
intent)	in		[-14,	0,	0,	2.9,	3,	12,	18]	.

So	that	test	is	unfair	because	it's	not	actually	doing	the	same	task	between	the	cases.	Any	results	you	get	are	bogus.

These	same	pitfalls	can	even	be	much	more	subtle:

//	Case	1

var	x	=	false;

var	y	=	x	?	1	:	2;

//	Case	2

var	x;



var	y	=	x	?	1	:	2;

Here,	the	intent	might	be	to	test	the	performance	impact	of	the	coercion	to	a	Boolean	that	the		?	:		operator	will	do	if	the		x	
expression	is	not	already	a	Boolean	(see	the	Types	&	Grammar	title	of	this	book	series).	So,	you're	apparently	OK	with	the
fact	that	there	is	extra	work	to	do	the	coercion	in	the	second	case.

The	subtle	problem?	You're	setting		x	's	value	in	the	first	case	and	not	setting	it	in	the	other,	so	you're	actually	doing	work	in
the	first	case	that	you're	not	doing	in	the	second.	To	eliminate	any	potential	(albeit	minor)	skew,	try:

//	Case	1

var	x	=	false;

var	y	=	x	?	1	:	2;

//	Case	2

var	x	=	undefined;

var	y	=	x	?	1	:	2;

Now	there's	an	assignment	in	both	cases,	so	the	thing	you	want	to	test	--	the	coercion	of		x		or	not	--	has	likely	been	more
accurately	isolated	and	tested.

Let	me	see	if	I	can	articulate	the	bigger	point	I'm	trying	to	make	here.

Good	test	authoring	requires	careful	analytical	thinking	about	what	differences	exist	between	two	test	cases	and	whether
the	differences	between	them	are	intentional	or	unintentional.

Intentional	differences	are	of	course	normal	and	OK,	but	it's	too	easy	to	create	unintentional	differences	that	skew	your
results.	You	have	to	be	really,	really	careful	to	avoid	that	skew.	Moreover,	you	may	intend	a	difference	but	it	may	not	be
obvious	to	other	readers	of	your	test	what	your	intent	was,	so	they	may	doubt	(or	trust!)	your	test	incorrectly.	How	do	you	fix
that?

Write	better,	clearer	tests.	But	also,	take	the	time	to	document	(using	the	jsPerf.com	"Description"	field	and/or	code
comments)	exactly	what	the	intent	of	your	test	is,	even	to	the	nuanced	detail.	Call	out	the	intentional	differences,	which	will
help	others	and	your	future	self	to	better	identify	unintentional	differences	that	could	be	skewing	the	test	results.

Isolate	things	which	aren't	relevant	to	your	test	by	pre-declaring	them	in	the	page	or	test	setup	settings	so	they're	outside
the	timed	parts	of	the	test.

Instead	of	trying	to	narrow	in	on	a	tiny	snippet	of	your	real	code	and	benchmarking	just	that	piece	out	of	context,	tests	and
benchmarks	are	better	when	they	include	a	larger	(while	still	relevant)	context.	Those	tests	also	tend	to	run	slower,	which
means	any	differences	you	spot	are	more	relevant	in	context.

OK,	until	now	we've	been	dancing	around	various	microperformance	issues	and	generally	looking	disfavorably	upon
obsessing	about	them.	I	want	to	take	just	a	moment	to	address	them	directly.

The	first	thing	you	need	to	get	more	comfortable	with	when	thinking	about	performance	benchmarking	your	code	is	that	the
code	you	write	is	not	always	the	code	the	engine	actually	runs.	We	briefly	looked	at	that	topic	back	in	Chapter	1	when	we
discussed	statement	reordering	by	the	compiler,	but	here	we're	going	to	suggest	the	compiler	can	sometimes	decide	to	run
different	code	than	you	wrote,	not	just	in	different	orders	but	different	in	substance.

Let's	consider	this	piece	of	code:

var	foo	=	41;
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(function(){

				(function(){

								(function(baz){

												var	bar	=	foo	+	baz;

												//	..

								})(1);

				})();

})();

You	may	think	about	the		foo		reference	in	the	innermost	function	as	needing	to	do	a	three-level	scope	lookup.	We	covered
in	the	Scope	&	Closures	title	of	this	book	series	how	lexical	scope	works,	and	the	fact	that	the	compiler	generally	caches
such	lookups	so	that	referencing		foo		from	different	scopes	doesn't	really	practically	"cost"	anything	extra.

But	there's	something	deeper	to	consider.	What	if	the	compiler	realizes	that		foo		isn't	referenced	anywhere	else	but	that
one	location,	and	it	further	notices	that	the	value	never	is	anything	except	the		41		as	shown?

Isn't	it	quite	possible	and	acceptable	that	the	JS	compiler	could	decide	to	just	remove	the		foo		variable	entirely,	and	inline
the	value,	such	as	this:

(function(){

				(function(){

								(function(baz){

												var	bar	=	41	+	baz;

												//	..

								})(1);

				})();

})();

Note:	Of	course,	the	compiler	could	probably	also	do	a	similar	analysis	and	rewrite	with	the		baz		variable	here,	too.

When	you	begin	to	think	about	your	JS	code	as	being	a	hint	or	suggestion	to	the	engine	of	what	to	do,	rather	than	a	literal
requirement,	you	realize	that	a	lot	of	the	obsession	over	discrete	syntactic	minutia	is	most	likely	unfounded.

Another	example:

function	factorial(n)	{

				if	(n	<	2)	return	1;

				return	n	*	factorial(	n	-	1	);

}

factorial(	5	);								//	120

Ah,	the	good	ol'	fashioned	"factorial"	algorithm!	You	might	assume	that	the	JS	engine	will	run	that	code	mostly	as	is.	And	to
be	honest,	it	might	--	I'm	not	really	sure.

But	as	an	anecdote,	the	same	code	expressed	in	C	and	compiled	with	advanced	optimizations	would	result	in	the	compiler
realizing	that	the	call		factorial(5)		can	just	be	replaced	with	the	constant	value		120	,	eliminating	the	function	and	call
entirely!

Moreover,	some	engines	have	a	practice	called	"unrolling	recursion,"	where	it	can	realize	that	the	recursion	you've
expressed	can	actually	be	done	"easier"	(i.e.,	more	optimally)	with	a	loop.	It's	possible	the	preceding	code	could	be
rewritten	by	a	JS	engine	to	run	as:

function	factorial(n)	{

				if	(n	<	2)	return	1;

				var	res	=	1;

				for	(var	i=n;	i>1;	i--)	{

								res	*=	i;

				}

				return	res;

}



factorial(	5	);								//	120

Now,	let's	imagine	that	in	the	earlier	snippet	you	had	been	worried	about	whether		n	*	factorial(n-1)		or		n	*=	factorial(--
n)		runs	faster.	Maybe	you	even	did	a	performance	benchmark	to	try	to	figure	out	which	was	better.	But	you	miss	the	fact
that	in	the	bigger	context,	the	engine	may	not	run	either	line	of	code	because	it	may	unroll	the	recursion!

Speaking	of		--	,		--n		versus		n--		is	often	cited	as	one	of	those	places	where	you	can	optimize	by	choosing	the		--n	
version,	because	theoretically	it	requires	less	effort	down	at	the	assembly	level	of	processing.

That	sort	of	obsession	is	basically	nonsense	in	modern	JavaScript.	That's	the	kind	of	thing	you	should	be	letting	the	engine
take	care	of.	You	should	write	the	code	that	makes	the	most	sense.	Compare	these	three		for		loops:

//	Option	1

for	(var	i=0;	i<10;	i++)	{

				console.log(	i	);

}

//	Option	2

for	(var	i=0;	i<10;	++i)	{

				console.log(	i	);

}

//	Option	3

for	(var	i=-1;	++i<10;	)	{

				console.log(	i	);

}

Even	if	you	have	some	theory	where	the	second	or	third	option	is	more	performant	than	the	first	option	by	a	tiny	bit,	which
is	dubious	at	best,	the	third	loop	is	more	confusing	because	you	have	to	start	with		-1		for		i		to	account	for	the	fact	that
	++i		pre-increment	is	used.	And	the	difference	between	the	first	and	second	options	is	really	quite	irrelevant.

It's	entirely	possible	that	a	JS	engine	may	see	a	place	where		i++		is	used	and	realize	that	it	can	safely	replace	it	with	the
	++i		equivalent,	which	means	your	time	spent	deciding	which	one	to	pick	was	completely	wasted	and	the	outcome	moot.

Here's	another	common	example	of	silly	microperformance	obsession:

var	x	=	[	..	];

//	Option	1

for	(var	i=0;	i	<	x.length;	i++)	{

				//	..

}

//	Option	2

for	(var	i=0,	len	=	x.length;	i	<	len;	i++)	{

				//	..

}

The	theory	here	goes	that	you	should	cache	the	length	of	the		x		array	in	the	variable		len	,	because	ostensibly	it	doesn't
change,	to	avoid	paying	the	price	of		x.length		being	consulted	for	each	iteration	of	the	loop.

If	you	run	performance	benchmarks	around		x.length		usage	compared	to	caching	it	in	a		len		variable,	you'll	find	that	while
the	theory	sounds	nice,	in	practice	any	measured	differences	are	statistically	completely	irrelevant.

In	fact,	in	some	engines	like	v8,	it	can	be	shown	(http://mrale.ph/blog/2014/12/24/array-length-caching.html)	that	you	could
make	things	slightly	worse	by	pre-caching	the	length	instead	of	letting	the	engine	figure	it	out	for	you.	Don't	try	to	outsmart
your	JavaScript	engine,	you'll	probably	lose	when	it	comes	to	performance	optimizations.

The	different	JS	engines	in	various	browsers	can	all	be	"spec	compliant"	while	having	radically	different	ways	of	handling
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code.	The	JS	specification	doesn't	require	anything	performance	related	--	well,	except	ES6's	"Tail	Call	Optimization"
covered	later	in	this	chapter.

The	engines	are	free	to	decide	that	one	operation	will	receive	its	attention	to	optimize,	perhaps	trading	off	for	lesser
performance	on	another	operation.	It	can	be	very	tenuous	to	find	an	approach	for	an	operation	that	always	runs	faster	in	all
browsers.

There's	a	movement	among	some	in	the	JS	dev	community,	especially	those	who	work	with	Node.js,	to	analyze	the	specific
internal	implementation	details	of	the	v8	JavaScript	engine	and	make	decisions	about	writing	JS	code	that	is	tailored	to	take
best	advantage	of	how	v8	works.	You	can	actually	achieve	a	surprisingly	high	degree	of	performance	optimization	with	such
endeavors,	so	the	payoff	for	the	effort	can	be	quite	high.

Some	commonly	cited	examples	(https://github.com/petkaantonov/bluebird/wiki/Optimization-killers)	for	v8:

Don't	pass	the		arguments		variable	from	one	function	to	any	other	function,	as	such	"leakage"	slows	down	the	function
implementation.
Isolate	a		try..catch		in	its	own	function.	Browsers	struggle	with	optimizing	any	function	with	a		try..catch		in	it,	so
moving	that	construct	to	its	own	function	means	you	contain	the	de-optimization	harm	while	letting	the	surrounding
code	be	optimizable.

But	rather	than	focus	on	those	tips	specifically,	let's	sanity	check	the	v8-only	optimization	approach	in	a	general	sense.

Are	you	genuinely	writing	code	that	only	needs	to	run	in	one	JS	engine?	Even	if	your	code	is	entirely	intended	for	Node.js
right	now,	is	the	assumption	that	v8	will	always	be	the	used	JS	engine	reliable?	Is	it	possible	that	someday	a	few	years
from	now,	there's	another	server-side	JS	platform	besides	Node.js	that	you	choose	to	run	your	code	on?	What	if	what	you
optimized	for	before	is	now	a	much	slower	way	of	doing	that	operation	on	the	new	engine?

Or	what	if	your	code	always	stays	running	on	v8	from	here	on	out,	but	v8	decides	at	some	point	to	change	the	way	some
set	of	operations	works	such	that	what	used	to	be	fast	is	now	slow,	and	vice	versa?

These	scenarios	aren't	just	theoretical,	either.	It	used	to	be	that	it	was	faster	to	put	multiple	string	values	into	an	array	and
then	call		join("")		on	the	array	to	concatenate	the	values	than	to	just	use		+		concatenation	directly	with	the	values.	The
historical	reason	for	this	is	nuanced,	but	it	has	to	do	with	internal	implementation	details	about	how	string	values	were
stored	and	managed	in	memory.

As	a	result,	"best	practice"	advice	at	the	time	disseminated	across	the	industry	suggesting	developers	always	use	the	array
	join(..)		approach.	And	many	followed.

Except,	somewhere	along	the	way,	the	JS	engines	changed	approaches	for	internally	managing	strings,	and	specifically	put
in	optimizations	for		+		concatenation.	They	didn't	slow	down		join(..)		per	se,	but	they	put	more	effort	into	helping		+	
usage,	as	it	was	still	quite	a	bit	more	widespread.

Note:	The	practice	of	standardizing	or	optimizing	some	particular	approach	based	mostly	on	its	existing	widespread	usage
is	often	called	(metaphorically)	"paving	the	cowpath."

Once	that	new	approach	to	handling	strings	and	concatenation	took	hold,	unfortunately	all	the	code	out	in	the	wild	that	was
using	array		join(..)		to	concatenate	strings	was	then	sub-optimal.

Another	example:	at	one	time,	the	Opera	browser	differed	from	other	browsers	in	how	it	handled	the	boxing/unboxing	of
primitive	wrapper	objects	(see	the	Types	&	Grammar	title	of	this	book	series).	As	such,	their	advice	to	developers	was	to
use	a		String		object	instead	of	the	primitive		string		value	if	properties	like		length		or	methods	like		charAt(..)		needed	to
be	accessed.	This	advice	may	have	been	correct	for	Opera	at	the	time,	but	it	was	literally	completely	opposite	for	other
major	contemporary	browsers,	as	they	had	optimizations	specifically	for	the		string		primitives	and	not	their	object	wrapper
counterparts.

I	think	these	various	gotchas	are	at	least	possible,	if	not	likely,	for	code	even	today.	So	I'm	very	cautious	about	making	wide
ranging	performance	optimizations	in	my	JS	code	based	purely	on	engine	implementation	details,	especially	if	those
details	are	only	true	of	a	single	engine.

https://github.com/petkaantonov/bluebird/wiki/Optimization-killers


The	reverse	is	also	something	to	be	wary	of:	you	shouldn't	necessarily	change	a	piece	of	code	to	work	around	one	engine's
difficulty	with	running	a	piece	of	code	in	an	acceptably	performant	way.

Historically,	IE	has	been	the	brunt	of	many	such	frustrations,	given	that	there	have	been	plenty	of	scenarios	in	older	IE
versions	where	it	struggled	with	some	performance	aspect	that	other	major	browsers	of	the	time	seemed	not	to	have	much
trouble	with.	The	string	concatenation	discussion	we	just	had	was	actually	a	real	concern	back	in	the	IE6	and	IE7	days,
where	it	was	possible	to	get	better	performance	out	of		join(..)		than		+	.

But	it's	troublesome	to	suggest	that	just	one	browser's	trouble	with	performance	is	justifcation	for	using	a	code	approach
that	quite	possibly	could	be	sub-optimial	in	all	other	browsers.	Even	if	the	browser	in	question	has	a	large	market	share	for
your	site's	audience,	it	may	be	more	practical	to	write	the	proper	code	and	rely	on	the	browser	to	update	itself	with	better
optimizations	eventually.

"There	is	nothing	more	permanent	than	a	temporary	hack."	Chances	are,	the	code	you	write	now	to	work	around	some
performance	bug	will	probably	outlive	the	performance	bug	in	the	browser	itself.

In	the	days	when	a	browser	only	updated	once	every	five	years,	that	was	a	tougher	call	to	make.	But	as	it	stands	now,
browsers	across	the	board	are	updating	at	a	much	more	rapid	interval	(though	obviously	the	mobile	world	still	lags),	and
they're	all	competing	to	optimize	web	features	better	and	better.

If	you	run	across	a	case	where	a	browser	does	have	a	performance	wart	that	others	don't	suffer	from,	make	sure	to	report	it
to	them	through	whatever	means	you	have	available.	Most	browsers	have	open	public	bug	trackers	suitable	for	this
purpose.

Tip:	I'd	only	suggest	working	around	a	performance	issue	in	a	browser	if	it	was	a	really	drastic	show-stopper,	not	just	an
annoyance	or	frustration.	And	I'd	be	very	careful	to	check	that	the	performance	hack	didn't	have	noticeable	negative	side
effects	in	another	browser.

Instead	of	worrying	about	all	these	microperformance	nuances,	we	should	instead	be	looking	at	big-picture	types	of
optimizations.

How	do	you	know	what's	big	picture	or	not?	You	have	to	first	understand	if	your	code	is	running	on	a	critical	path	or	not.	If
it's	not	on	the	critical	path,	chances	are	your	optimizations	are	not	worth	much.

Ever	heard	the	admonition,	"that's	premature	optimization!"?	It	comes	from	a	famous	quote	from	Donald	Knuth:	"premature
optimization	is	the	root	of	all	evil.".	Many	developers	cite	this	quote	to	suggest	that	most	optimizations	are	"premature"	and
are	thus	a	waste	of	effort.	The	truth	is,	as	usual,	more	nuanced.

Here	is	Knuth's	quote,	in	context:

Programmers	waste	enormous	amounts	of	time	thinking	about,	or	worrying	about,	the	speed	of	noncritical	parts	of
their	programs,	and	these	attempts	at	efficiency	actually	have	a	strong	negative	impact	when	debugging	and
maintenance	are	considered.	We	should	forget	about	small	efficiencies,	say	about	97%	of	the	time:	premature
optimization	is	the	root	of	all	evil.	Yet	we	should	not	pass	up	our	opportunities	in	that	critical	3%.	[emphasis	added]

(http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf,	Computing
Surveys,	Vol	6,	No	4,	December	1974)

I	believe	it's	a	fair	paraphrasing	to	say	that	Knuth	meant:	"non-critical	path	optimization	is	the	root	of	all	evil."	So	the	key	is
to	figure	out	if	your	code	is	on	the	critical	path	--	you	should	optimize	it!	--	or	not.

I'd	even	go	so	far	as	to	say	this:	no	amount	of	time	spent	optimizing	critical	paths	is	wasted,	no	matter	how	little	is	saved;
but	no	amount	of	optimization	on	noncritical	paths	is	justified,	no	matter	how	much	is	saved.

If	your	code	is	on	the	critical	path,	such	as	a	"hot"	piece	of	code	that's	going	to	be	run	over	and	over	again,	or	in	UX	critical
places	where	users	will	notice,	like	an	animation	loop	or	CSS	style	updates,	then	you	should	spare	no	effort	in	trying	to
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employ	relevant,	measurably	significant	optimizations.

For	example,	consider	a	critical	path	animation	loop	that	needs	to	coerce	a	string	value	to	a	number.	There	are	of	course
multiple	ways	to	do	that	(see	the	Types	&	Grammar	title	of	this	book	series),	but	which	one	if	any	is	the	fastest?

var	x	=	"42";				//	need	number	`42`

//	Option	1:	let	implicit	coercion	automatically	happen

var	y	=	x	/	2;

//	Option	2:	use	`parseInt(..)`

var	y	=	parseInt(	x,	0	)	/	2;

//	Option	3:	use	`Number(..)`

var	y	=	Number(	x	)	/	2;

//	Option	4:	use	`+`	unary	operator

var	y	=	+x	/	2;

//	Option	5:	use	`|`	unary	operator

var	y	=	(x	|	0)	/	2;

Note:	I	will	leave	it	as	an	exercise	to	the	reader	to	set	up	a	test	if	you're	interested	in	examining	the	minute	differences	in
performance	among	these	options.

When	considering	these	different	options,	as	they	say,	"One	of	these	things	is	not	like	the	others."		parseInt(..)		does	the
job,	but	it	also	does	a	lot	more	--	it	parses	the	string	rather	than	just	coercing.	You	can	probably	guess,	correctly,	that
	parseInt(..)		is	a	slower	option,	and	you	should	probably	avoid	it.

Of	course,	if		x		can	ever	be	a	value	that	needs	parsing,	such	as		"42px"		(like	from	a	CSS	style	lookup),	then
	parseInt(..)		really	is	the	only	suitable	option!

	Number(..)		is	also	a	function	call.	From	a	behavioral	perspective,	it's	identical	to	the		+		unary	operator	option,	but	it	may	in
fact	be	a	little	slower,	requiring	more	machinery	to	execute	the	function.	Of	course,	it's	also	possible	that	the	JS	engine
recognizes	this	behavioral	symmetry	and	just	handles	the	inlining	of		Number(..)	's	behavior	(aka		+x	)	for	you!

But	remember,	obsessing	about		+x		versus		x	|	0		is	in	most	cases	likely	a	waste	of	effort.	This	is	a	microperformance
issue,	and	one	that	you	shouldn't	let	dictate/degrade	the	readability	of	your	program.

While	performance	is	very	important	in	critical	paths	of	your	program,	it's	not	the	only	factor.	Among	several	options	that	are
roughly	similar	in	performance,	readability	should	be	another	important	concern.

As	we	briefly	mentioned	earlier,	ES6	includes	a	specific	requirement	that	ventures	into	the	world	of	performance.	It's	related
to	a	specific	form	of	optimization	that	can	occur	with	function	calls:	tail	call	optimization.

Briefly,	a	"tail	call"	is	a	function	call	that	appears	at	the	"tail"	of	another	function,	such	that	after	the	call	finishes,	there's
nothing	left	to	do	(except	perhaps	return	its	result	value).

For	example,	here's	a	non-recursive	setup	with	tail	calls:

function	foo(x)	{

				return	x;

}

function	bar(y)	{

				return	foo(	y	+	1	);				//	tail	call

}

function	baz()	{

				return	1	+	bar(	40	);				//	not	tail	call

}

Tail	Call	Optimization	(TCO)



baz();																								//	42

	foo(y+1)		is	a	tail	call	in		bar(..)		because	after		foo(..)		finishes,		bar(..)		is	also	finished	except	in	this	case	returning	the
result	of	the		foo(..)		call.	However,		bar(40)		is	not	a	tail	call	because	after	it	completes,	its	result	value	must	be	added	to
	1		before		baz()		can	return	it.

Without	getting	into	too	much	nitty-gritty	detail,	calling	a	new	function	requires	an	extra	amount	of	reserved	memory	to
manage	the	call	stack,	called	a	"stack	frame."	So	the	preceding	snippet	would	generally	require	a	stack	frame	for	each	of
	baz()	,		bar(..)	,	and		foo(..)		all	at	the	same	time.

However,	if	a	TCO-capable	engine	can	realize	that	the		foo(y+1)		call	is	in	tail	position	meaning		bar(..)		is	basically
complete,	then	when	calling		foo(..)	,	it	doesn't	need	to	create	a	new	stack	frame,	but	can	instead	reuse	the	existing	stack
frame	from		bar(..)	.	That's	not	only	faster,	but	it	also	uses	less	memory.

That	sort	of	optimization	isn't	a	big	deal	in	a	simple	snippet,	but	it	becomes	a	much	bigger	deal	when	dealing	with	recursion,
especially	if	the	recursion	could	have	resulted	in	hundreds	or	thousands	of	stack	frames.	With	TCO	the	engine	can	perform
all	those	calls	with	a	single	stack	frame!

Recursion	is	a	hairy	topic	in	JS	because	without	TCO,	engines	have	had	to	implement	arbitrary	(and	different!)	limits	to	how
deep	they	will	let	the	recursion	stack	get	before	they	stop	it,	to	prevent	running	out	of	memory.	With	TCO,	recursive
functions	with	tail	position	calls	can	essentially	run	unbounded,	because	there's	never	any	extra	usage	of	memory!

Consider	that	recursive		factorial(..)		from	before,	but	rewritten	to	make	it	TCO	friendly:

function	factorial(n)	{

				function	fact(n,res)	{

								if	(n	<	2)	return	res;

								return	fact(	n	-	1,	n	*	res	);

				}

				return	fact(	n,	1	);

}

factorial(	5	);								//	120

This	version	of		factorial(..)		is	still	recursive,	but	it's	also	optimizable	with	TCO,	because	both	inner		fact(..)		calls	are	in
tail	position.

Note:	It's	important	to	note	that	TCO	only	applies	if	there's	actually	a	tail	call.	If	you	write	recursive	functions	without	tail
calls,	the	performance	will	still	fall	back	to	normal	stack	frame	allocation,	and	the	engines'	limits	on	such	recursive	call
stacks	will	still	apply.	Many	recursive	functions	can	be	rewritten	as	we	just	showed	with		factorial(..)	,	but	it	takes	careful
attention	to	detail.

One	reason	that	ES6	requires	engines	to	implement	TCO	rather	than	leaving	it	up	to	their	discretion	is	because	the	lack	of
TCO	actually	tends	to	reduce	the	chances	that	certain	algorithms	will	be	implemented	in	JS	using	recursion,	for	fear	of	the
call	stack	limits.

If	the	lack	of	TCO	in	the	engine	would	just	gracefully	degrade	to	slower	performance	in	all	cases,	it	wouldn't	probably	have
been	something	that	ES6	needed	to	require.	But	because	the	lack	of	TCO	can	actually	make	certain	programs	impractical,
it's	more	an	important	feature	of	the	language	than	just	a	hidden	implementation	detail.

ES6	guarantees	that	from	now	on,	JS	developers	will	be	able	to	rely	on	this	optimization	across	all	ES6+	compliant
browsers.	That's	a	win	for	JS	performance!

Effectively	benchmarking	performance	of	a	piece	of	code,	especially	to	compare	it	to	another	option	for	that	same	code	to
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see	which	approach	is	faster,	requires	careful	attention	to	detail.

Rather	than	rolling	your	own	statistically	valid	benchmarking	logic,	just	use	the	Benchmark.js	library,	which	does	that	for
you.	But	be	careful	about	how	you	author	tests,	because	it's	far	too	easy	to	construct	a	test	that	seems	valid	but	that's
actually	flawed	--	even	tiny	differences	can	skew	the	results	to	be	completely	unreliable.

It's	important	to	get	as	many	test	results	from	as	many	different	environments	as	possible	to	eliminate	hardware/device
bias.	jsPerf.com	is	a	fantastic	website	for	crowdsourcing	performance	benchmark	test	runs.

Many	common	performance	tests	unfortunately	obsess	about	irrelevant	microperformance	details	like		x++		versus		++x	.
Writing	good	tests	means	understanding	how	to	focus	on	big	picture	concerns,	like	optimizing	on	the	critical	path,	and
avoiding	falling	into	traps	like	different	JS	engines'	implementation	details.

Tail	call	optimization	(TCO)	is	a	required	optimization	as	of	ES6	that	will	make	some	recursive	patterns	practical	in	JS
where	they	would	have	been	impossible	otherwise.	TCO	allows	a	function	call	in	the	tail	position	of	another	function	to
execute	without	needing	any	extra	resources,	which	means	the	engine	no	longer	needs	to	place	arbitrary	restrictions	on
call	stack	depth	for	recursive	algorithms.



Chapters	1	and	2	went	into	quite	a	bit	of	detail	about	typical	asynchronous	programming	patterns	and	how	they're
commonly	solved	with	callbacks.	But	we	also	saw	why	callbacks	are	fatally	limited	in	capability,	which	led	us	to	Chapters	3
and	4,	with	Promises	and	generators	offering	a	much	more	solid,	trustable,	and	reason-able	base	to	build	your	asynchrony
on.

I	referenced	my	own	asynchronous	library	asynquence	(http://github.com/getify/asynquence)	--	"async"	+	"sequence"	=
"asynquence"	--	several	times	in	this	book,	and	I	want	to	now	briefly	explain	how	it	works	and	why	its	unique	design	is
important	and	helpful.

In	the	next	appendix,	we'll	explore	some	advanced	async	patterns,	but	you'll	probably	want	a	library	to	make	those
palatable	enough	to	be	useful.	We'll	use	asynquence	to	express	those	patterns,	so	you'll	want	to	spend	a	little	time	here
getting	to	know	the	library	first.

asynquence	is	obviously	not	the	only	option	for	good	async	coding;	certainly	there	are	many	great	libraries	in	this	space.
But	asynquence	provides	a	unique	perspective	by	combining	the	best	of	all	these	patterns	into	a	single	library,	and
moreover	is	built	on	a	single	basic	abstraction:	the	(async)	sequence.

My	premise	is	that	sophisticated	JS	programs	often	need	bits	and	pieces	of	various	different	asynchronous	patterns	woven
together,	and	this	is	usually	left	entirely	up	to	each	developer	to	figure	out.	Instead	of	having	to	bring	in	two	or	more	different
async	libraries	that	focus	on	different	aspects	of	asynchrony,	asynquence	unifies	them	into	variated	sequence	steps,	with
just	one	core	library	to	learn	and	deploy.

I	believe	the	value	is	strong	enough	with	asynquence	to	make	async	flow	control	programming	with	Promise-style
semantics	super	easy	to	accomplish,	so	that's	why	we'll	exclusively	focus	on	that	library	here.

To	begin,	I'll	explain	the	design	principles	behind	asynquence,	and	then	we'll	illustrate	how	its	API	works	with	code
examples.

Understanding	asynquence	begins	with	understanding	a	fundamental	abstraction:	any	series	of	steps	for	a	task,	whether
they	separately	are	synchronous	or	asynchronous,	can	be	collectively	thought	of	as	a	"sequence".	In	other	words,	a
sequence	is	a	container	that	represents	a	task,	and	is	comprised	of	individual	(potentially	async)	steps	to	complete	that
task.

Each	step	in	the	sequence	is	controlled	under	the	covers	by	a	Promise	(see	Chapter	3).	That	is,	every	step	you	add	to	a
sequence	implicitly	creates	a	Promise	that	is	wired	to	the	previous	end	of	the	sequence.	Because	of	the	semantics	of
Promises,	every	single	step	advancement	in	a	sequence	is	asynchronous,	even	if	you	synchronously	complete	the	step.

Moreover,	a	sequence	will	always	proceed	linearly	from	step	to	step,	meaning	that	step	2	always	comes	after	step	1
finishes,	and	so	on.

Of	course,	a	new	sequence	can	be	forked	off	an	existing	sequence,	meaning	the	fork	only	occurs	once	the	main	sequence
reaches	that	point	in	the	flow.	Sequences	can	also	be	combined	in	various	ways,	including	having	one	sequence	subsumed
by	another	sequence	at	a	particular	point	in	the	flow.

A	sequence	is	kind	of	like	a	Promise	chain.	However,	with	Promise	chains,	there	is	no	"handle"	to	grab	that	references	the
entire	chain.	Whichever	Promise	you	have	a	reference	to	only	represents	the	current	step	in	the	chain	plus	any	other	steps
hanging	off	it.	Essentially,	you	cannot	hold	a	reference	to	a	Promise	chain	unless	you	hold	a	reference	to	the	first	Promise
in	the	chain.
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There	are	many	cases	where	it	turns	out	to	be	quite	useful	to	have	a	handle	that	references	the	entire	sequence
collectively.	The	most	important	of	those	cases	is	with	sequence	abort/cancel.	As	we	covered	extensively	in	Chapter	3,
Promises	themselves	should	never	be	able	to	be	canceled,	as	this	violates	a	fundamental	design	imperative:	external
immutability.

But	sequences	have	no	such	immutability	design	principle,	mostly	because	sequences	are	not	passed	around	as	future-
value	containers	that	need	immutable	value	semantics.	So	sequences	are	the	proper	level	of	abstraction	to	handle
abort/cancel	behavior.	asynquence	sequences	can	be		abort()	ed	at	any	time,	and	the	sequence	will	stop	at	that	point	and
not	go	for	any	reason.

There's	plenty	more	reasons	to	prefer	a	sequence	abstraction	on	top	of	Promise	chains,	for	flow	control	purposes.

First,	Promise	chaining	is	a	rather	manual	process	--	one	that	can	get	pretty	tedious	once	you	start	creating	and	chaining
Promises	across	a	wide	swath	of	your	programs	--	and	this	tedium	can	act	counterproductively	to	dissuade	the	developer
from	using	Promises	in	places	where	they	are	quite	appropriate.

Abstractions	are	meant	to	reduce	boilerplate	and	tedium,	so	the	sequence	abstraction	is	a	good	solution	to	this	problem.
With	Promises,	your	focus	is	on	the	individual	step,	and	there's	little	assumption	that	you	will	keep	the	chain	going.	With
sequences,	the	opposite	approach	is	taken,	assuming	the	sequence	will	keep	having	more	steps	added	indefinitely.

This	abstraction	complexity	reduction	is	especially	powerful	when	you	start	thinking	about	higher-order	Promise	patterns
(beyond		race([..])		and		all([..])	.

For	example,	in	the	middle	of	a	sequence,	you	may	want	to	express	a	step	that	is	conceptually	like	a		try..catch		in	that	the
step	will	always	result	in	success,	either	the	intended	main	success	resolution	or	a	positive	nonerror	signal	for	the	caught
error.	Or,	you	might	want	to	express	a	step	that	is	like	a	retry/until	loop,	where	it	keeps	trying	the	same	step	over	and	over
until	success	occurs.

These	sorts	of	abstractions	are	quite	nontrivial	to	express	using	only	Promise	primitives,	and	doing	so	in	the	middle	of	an
existing	Promise	chain	is	not	pretty.	But	if	you	abstract	your	thinking	to	a	sequence,	and	consider	a	step	as	a	wrapper
around	a	Promise,	that	step	wrapper	can	hide	such	details,	freeing	you	to	think	about	the	flow	control	in	the	most	sensible
way	without	being	bothered	by	the	details.

Second,	and	perhaps	more	importantly,	thinking	of	async	flow	control	in	terms	of	steps	in	a	sequence	allows	you	to	abstract
out	the	details	of	what	types	of	asynchronicity	are	involved	with	each	individual	step.	Under	the	covers,	a	Promise	will
always	control	the	step,	but	above	the	covers,	that	step	can	look	either	like	a	continuation	callback	(the	simple	default),	or
like	a	real	Promise,	or	as	a	run-to-completion	generator,	or	...	Hopefully,	you	get	the	picture.

Third,	sequences	can	more	easily	be	twisted	to	adapt	to	different	modes	of	thinking,	such	as	event-,	stream-,	or	reactive-
based	coding.	asynquence	provides	a	pattern	I	call	"reactive	sequences"	(which	we'll	cover	later)	as	a	variation	on	the
"reactive	observable"	ideas	in	RxJS	("Reactive	Extensions"),	that	lets	a	repeatable	event	fire	off	a	new	sequence	instance
each	time.	Promises	are	one-shot-only,	so	it's	quite	awkward	to	express	repetitious	asynchrony	with	Promises	alone.

Another	alternate	mode	of	thinking	inverts	the	resolution/control	capability	in	a	pattern	I	call	"iterable	sequences".	Instead	of
each	individual	step	internally	controlling	its	own	completion	(and	thus	advancement	of	the	sequence),	the	sequence	is
inverted	so	the	advancement	control	is	through	an	external	iterator,	and	each	step	in	the	iterable	sequence	just	responds	to
the		next(..)		iterator	control.

We'll	explore	all	of	these	different	variations	as	we	go	throughout	the	rest	of	this	appendix,	so	don't	worry	if	we	ran	over
those	bits	far	too	quickly	just	now.

The	takeaway	is	that	sequences	are	a	more	powerful	and	sensible	abstraction	for	complex	asynchrony	than	just	Promises
(Promise	chains)	or	just	generators,	and	asynquence	is	designed	to	express	that	abstraction	with	just	the	right	level	of
sugar	to	make	async	programming	more	understandable	and	more	enjoyable.

asynquence	API



To	start	off,	the	way	you	create	a	sequence	(an	asynquence	instance)	is	with	the		ASQ(..)		function.	An		ASQ()		call	with	no
parameters	creates	an	empty	initial	sequence,	whereas	passing	one	or	more	values	or	functions	to		ASQ(..)		sets	up	the
sequence	with	each	argument	representing	the	initial	steps	of	the	sequence.

Note:	For	the	purposes	of	all	code	examples	here,	I	will	use	the	asynquence	top-level	identifier	in	global	browser	usage:
	ASQ	.	If	you	include	and	use	asynquence	through	a	module	system	(browser	or	server),	you	of	course	can	define	whichever
symbol	you	prefer,	and	asynquence	won't	care!

Many	of	the	API	methods	discussed	here	are	built	into	the	core	of	asynquence,	but	others	are	provided	through	including
the	optional	"contrib"	plug-ins	package.	See	the	documentation	for	asynquence	for	whether	a	method	is	built	in	or	defined
via	plug-in:	http://github.com/getify/asynquence

If	a	function	represents	a	normal	step	in	the	sequence,	that	function	is	invoked	with	the	first	parameter	being	the
continuation	callback,	and	any	subsequent	parameters	being	any	messages	passed	on	from	the	previous	step.	The	step
will	not	complete	until	the	continuation	callback	is	called.	Once	it's	called,	any	arguments	you	pass	to	it	will	be	sent	along	as
messages	to	the	next	step	in	the	sequence.

To	add	an	additional	normal	step	to	the	sequence,	call		then(..)		(which	has	essentially	the	exact	same	semantics	as	the
	ASQ(..)		call):

ASQ(

				//	step	1

				function(done){

								setTimeout(	function(){

												done(	"Hello"	);

								},	100	);

				},

				//	step	2

				function(done,greeting)	{

								setTimeout(	function(){

												done(	greeting	+	"	World"	);

								},	100	);

				}

)

//	step	3

.then(	function(done,msg){

				setTimeout(	function(){

								done(	msg.toUpperCase()	);

				},	100	);

}	)

//	step	4

.then(	function(done,msg){

				console.log(	msg	);												//	HELLO	WORLD

}	);

Note:	Though	the	name		then(..)		is	identical	to	the	native	Promises	API,	this		then(..)		is	different.	You	can	pass	as	few
or	as	many	functions	or	values	to		then(..)		as	you'd	like,	and	each	is	taken	as	a	separate	step.	There's	no	two-callback
fulfilled/rejected	semantics	involved.

Unlike	with	Promises,	where	to	chain	one	Promise	to	the	next	you	have	to	create	and		return		that	Promise	from	a
	then(..)		fulfillment	handler,	with	asynquence,	all	you	need	to	do	is	call	the	continuation	callback	--	I	always	call	it		done()	
but	you	can	name	it	whatever	suits	you	--	and	optionally	pass	it	completion	messages	as	arguments.

Each	step	defined	by		then(..)		is	assumed	to	be	asynchronous.	If	you	have	a	step	that's	synchronous,	you	can	either	just
call		done(..)		right	away,	or	you	can	use	the	simpler		val(..)		step	helper:

//	step	1	(sync)

ASQ(	function(done){

				done(	"Hello"	);				//	manually	synchronous

}	)

//	step	2	(sync)

.val(	function(greeting){
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				return	greeting	+	"	World";

}	)

//	step	3	(async)

.then(	function(done,msg){

				setTimeout(	function(){

								done(	msg.toUpperCase()	);

				},	100	);

}	)

//	step	4	(sync)

.val(	function(msg){

				console.log(	msg	);

}	);

As	you	can	see,		val(..)	-invoked	steps	don't	receive	a	continuation	callback,	as	that	part	is	assumed	for	you	--	and	the
parameter	list	is	less	cluttered	as	a	result!	To	send	a	message	along	to	the	next	step,	you	simply	use		return	.

Think	of		val(..)		as	representing	a	synchronous	"value-only"	step,	which	is	useful	for	synchronous	value	operations,
logging,	and	the	like.

One	important	difference	with	asynquence	compared	to	Promises	is	with	error	handling.

With	Promises,	each	individual	Promise	(step)	in	a	chain	can	have	its	own	independent	error,	and	each	subsequent	step
has	the	ability	to	handle	the	error	or	not.	The	main	reason	for	this	semantic	comes	(again)	from	the	focus	on	individual
Promises	rather	than	on	the	chain	(sequence)	as	a	whole.

I	believe	that	most	of	the	time,	an	error	in	one	part	of	a	sequence	is	generally	not	recoverable,	so	the	subsequent	steps	in
the	sequence	are	moot	and	should	be	skipped.	So,	by	default,	an	error	at	any	step	of	a	sequence	throws	the	entire
sequence	into	error	mode,	and	the	rest	of	the	normal	steps	are	ignored.

If	you	do	need	to	have	a	step	where	its	error	is	recoverable,	there	are	several	different	API	methods	that	can	accomodate,
such	as		try(..)		--	previously	mentioned	as	a	kind	of		try..catch		step	--	or		until(..)		--	a	retry	loop	that	keeps	attempting
the	step	until	it	succeeds	or	you	manually		break()		the	loop.	asynquence	even	has		pThen(..)		and		pCatch(..)		methods,
which	work	identically	to	how	normal	Promise		then(..)		and		catch(..)		work	(see	Chapter	3),	so	you	can	do	localized	mid-
sequence	error	handling	if	you	so	choose.

The	point	is,	you	have	both	options,	but	the	more	common	one	in	my	experience	is	the	default.	With	Promises,	to	get	a
chain	of	steps	to	ignore	all	steps	once	an	error	occurs,	you	have	to	take	care	not	to	register	a	rejection	handler	at	any	step;
otherwise,	that	error	gets	swallowed	as	handled,	and	the	sequence	may	continue	(perhaps	unexpectedly).	This	kind	of
desired	behavior	is	a	bit	awkward	to	properly	and	reliably	handle.

To	register	a	sequence	error	notification	handler,	asynquence	provides	an		or(..)		sequence	method,	which	also	has	an
alias	of		onerror(..)	.	You	can	call	this	method	anywhere	in	the	sequence,	and	you	can	register	as	many	handlers	as	you'd
like.	That	makes	it	easy	for	multiple	different	consumers	to	listen	in	on	a	sequence	to	know	if	it	failed	or	not;	it's	kind	of	like
an	error	event	handler	in	that	respect.

Just	like	with	Promises,	all	JS	exceptions	become	sequence	errors,	or	you	can	programmatically	signal	a	sequence	error:

var	sq	=	ASQ(	function(done){

				setTimeout(	function(){

								//	signal	an	error	for	the	sequence

								done.fail(	"Oops"	);

				},	100	);

}	)

.then(	function(done){

				//	will	never	get	here

}	)

.or(	function(err){

				console.log(	err	);												//	Oops

}	)

.then(	function(done){

				//	won't	get	here	either

}	);
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//	later

sq.or(	function(err){

				console.log(	err	);												//	Oops

}	);

Another	really	important	difference	with	error	handling	in	asynquence	compared	to	native	Promises	is	the	default	behavior
of	"unhandled	exceptions".	As	we	discussed	at	length	in	Chapter	3,	a	rejected	Promise	without	a	registered	rejection
handler	will	just	silently	hold	(aka	swallow)	the	error;	you	have	to	remember	to	always	end	a	chain	with	a	final		catch(..)	.

In	asynquence,	the	assumption	is	reversed.

If	an	error	occurs	on	a	sequence,	and	it	at	that	moment	has	no	error	handlers	registered,	the	error	is	reported	to	the
	console	.	In	other	words,	unhandled	rejections	are	by	default	always	reported	so	as	not	to	be	swallowed	and	missed.

As	soon	as	you	register	an	error	handler	against	a	sequence,	it	opts	that	sequence	out	of	such	reporting,	to	prevent
duplicate	noise.

There	may,	in	fact,	be	cases	where	you	want	to	create	a	sequence	that	may	go	into	the	error	state	before	you	have	a
chance	to	register	the	handler.	This	isn't	common,	but	it	can	happen	from	time	to	time.

In	those	cases,	you	can	also	opt	a	sequence	instance	out	of	error	reporting	by	calling		defer()		on	the	sequence.	You
should	only	opt	out	of	error	reporting	if	you	are	sure	that	you're	going	to	eventually	handle	such	errors:

var	sq1	=	ASQ(	function(done){

				doesnt.Exist();												//	will	throw	exception	to	console

}	);

var	sq2	=	ASQ(	function(done){

				doesnt.Exist();												//	will	throw	only	a	sequence	error

}	)

//	opt-out	of	error	reporting

.defer();

setTimeout(	function(){

				sq1.or(	function(err){

								console.log(	err	);				//	ReferenceError

				}	);

				sq2.or(	function(err){

								console.log(	err	);				//	ReferenceError

				}	);

},	100	);

//	ReferenceError	(from	sq1)

This	is	better	error	handling	behavior	than	Promises	themselves	have,	because	it's	the	Pit	of	Success,	not	the	Pit	of	Failure
(see	Chapter	3).

Note:	If	a	sequence	is	piped	into	(aka	subsumed	by)	another	sequence	--	see	"Combining	Sequences"	for	a	complete
description	--	then	the	source	sequence	is	opted	out	of	error	reporting,	but	now	the	target	sequence's	error	reporting	or	lack
thereof	must	be	considered.

Not	all	steps	in	your	sequences	will	have	just	a	single	(async)	task	to	perform;	some	will	need	to	perform	multiple	steps	"in
parallel"	(concurrently).	A	step	in	a	sequence	in	which	multiple	substeps	are	processing	concurrently	is	called	a		gate(..)		--
there's	an		all(..)		alias	if	you	prefer	--	and	is	directly	symmetric	to	native		Promise.all([..])	.

If	all	the	steps	in	the		gate(..)		complete	successfully,	all	success	messages	will	be	passed	to	the	next	sequence	step.	If
any	of	them	generate	errors,	the	whole	sequence	immediately	goes	into	an	error	state.

Consider:
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ASQ(	function(done){

				setTimeout(	done,	100	);

}	)

.gate(

				function(done){

								setTimeout(	function(){

												done(	"Hello"	);

								},	100	);

				},

				function(done){

								setTimeout(	function(){

												done(	"World",	"!"	);

								},	100	);

				}

)

.val(	function(msg1,msg2){

				console.log(	msg1	);				//	Hello

				console.log(	msg2	);				//	[	"World",	"!"	]

}	);

For	illustration,	let's	compare	that	example	to	native	Promises:

new	Promise(	function(resolve,reject){

				setTimeout(	resolve,	100	);

}	)

.then(	function(){

				return	Promise.all(	[

								new	Promise(	function(resolve,reject){

												setTimeout(	function(){

																resolve(	"Hello"	);

												},	100	);

								}	),

								new	Promise(	function(resolve,reject){

												setTimeout(	function(){

																//	note:	we	need	a	[	]	array	here

																resolve(	[	"World",	"!"	]	);

												},	100	);

								}	)

				]	);

}	)

.then(	function(msgs){

				console.log(	msgs[0]	);				//	Hello

				console.log(	msgs[1]	);				//	[	"World",	"!"	]

}	);

Yuck.	Promises	require	a	lot	more	boilerplate	overhead	to	express	the	same	asynchronous	flow	control.	That's	a	great
illustration	of	why	the	asynquence	API	and	abstraction	make	dealing	with	Promise	steps	a	lot	nicer.	The	improvement	only
goes	higher	the	more	complex	your	asynchrony	is.

There	are	several	variations	in	the	contrib	plug-ins	on	asynquence's		gate(..)		step	type	that	can	be	quite	helpful:

	any(..)		is	like		gate(..)	,	except	just	one	segment	has	to	eventually	succeed	to	proceed	on	the	main	sequence.
	first(..)		is	like		any(..)	,	except	as	soon	as	any	segment	succeeds,	the	main	sequence	proceeds	(ignoring
subsequent	results	from	other	segments).
	race(..)		(symmetric	with		Promise.race([..])	)	is	like		first(..)	,	except	the	main	sequence	proceeds	as	soon	as	any
segment	completes	(either	success	or	failure).
	last(..)		is	like		any(..)	,	except	only	the	latest	segment	to	complete	successfully	sends	its	message(s)	along	to	the
main	sequence.
	none(..)		is	the	inverse	of		gate(..)	:	the	main	sequence	proceeds	only	if	all	the	segments	fail	(with	all	segment	error
message(s)	transposed	as	success	message(s)	and	vice	versa).

Let's	first	define	some	helpers	to	make	illustration	cleaner:

function	success1(done)	{
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				setTimeout(	function(){

								done(	1	);

				},	100	);

}

function	success2(done)	{

				setTimeout(	function(){

								done(	2	);

				},	100	);

}

function	failure3(done)	{

				setTimeout(	function(){

								done.fail(	3	);

				},	100	);

}

function	output(msg)	{

				console.log(	msg	);

}

Now,	let's	demonstrate	these		gate(..)		step	variations:

ASQ().race(

				failure3,

				success1

)

.or(	output	);								//	3

ASQ().any(

				success1,

				failure3,

				success2

)

.val(	function(){

				var	args	=	[].slice.call(	arguments	);

				console.log(

								args								//	[	1,	undefined,	2	]

				);

}	);

ASQ().first(

				failure3,

				success1,

				success2

)

.val(	output	);								//	1

ASQ().last(

				failure3,

				success1,

				success2

)

.val(	output	);								//	2

ASQ().none(

				failure3

)

.val(	output	)								//	3

.none(

				failure3

				success1

)

.or(	output	);								//	1

Another	step	variation	is		map(..)	,	which	lets	you	asynchronously	map	elements	of	an	array	to	different	values,	and	the
step	doesn't	proceed	until	all	the	mappings	are	complete.		map(..)		is	very	similar	to		gate(..)	,	except	it	gets	the	initial
values	from	an	array	instead	of	from	separately	specified	functions,	and	also	because	you	define	a	single	function	callback
to	operate	on	each	value:

function	double(x,done)	{



				setTimeout(	function(){

								done(	x	*	2	);

				},	100	);

}

ASQ().map(	[1,2,3],	double	)

.val(	output	);																				//	[2,4,6]

Also,		map(..)		can	receive	either	of	its	parameters	(the	array	or	the	callback)	from	messages	passed	from	the	previous
step:

function	plusOne(x,done)	{

				setTimeout(	function(){

								done(	x	+	1	);

				},	100	);

}

ASQ(	[1,2,3]	)

.map(	double	)												//	message	`[1,2,3]`	comes	in

.map(	plusOne	)												//	message	`[2,4,6]`	comes	in

.val(	output	);												//	[3,5,7]

Another	variation	is		waterfall(..)	,	which	is	kind	of	like	a	mixture	between		gate(..)	's	message	collection	behavior	but
	then(..)	's	sequential	processing.

Step	1	is	first	executed,	then	the	success	message	from	step	1	is	given	to	step	2,	and	then	both	success	messages	go	to
step	3,	and	then	all	three	success	messages	go	to	step	4,	and	so	on,	such	that	the	messages	sort	of	collect	and	cascade
down	the	"waterfall".

Consider:

function	double(done)	{

				var	args	=	[].slice.call(	arguments,	1	);

				console.log(	args	);

				setTimeout(	function(){

								done(	args[args.length	-	1]	*	2	);

				},	100	);

}

ASQ(	3	)

.waterfall(

				double,																				//	[	3	]

				double,																				//	[	6	]

				double,																				//	[	6,	12	]

				double																				//	[	6,	12,	24	]

)

.val(	function(){

				var	args	=	[].slice.call(	arguments	);

				console.log(	args	);				//	[	6,	12,	24,	48	]

}	);

If	at	any	point	in	the	"waterfall"	an	error	occurs,	the	whole	sequence	immediately	goes	into	an	error	state.

Sometimes	you	want	to	manage	errors	at	the	step	level	and	not	let	them	necessarily	send	the	whole	sequence	into	the
error	state.	asynquence	offers	two	step	variations	for	that	purpose.

	try(..)		attempts	a	step,	and	if	it	succeeds,	the	sequence	proceeds	as	normal,	but	if	the	step	fails,	the	failure	is	turned	into
a	success	message	formated	as		{	catch:	..	}		with	the	error	message(s)	filled	in:

ASQ()

.try(	success1	)

.val(	output	)												//	1
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.try(	failure3	)

.val(	output	)												//	{	catch:	3	}

.or(	function(err){

				//	never	gets	here

}	);

You	could	instead	set	up	a	retry	loop	using		until(..)	,	which	tries	the	step	and	if	it	fails,	retries	the	step	again	on	the	next
event	loop	tick,	and	so	on.

This	retry	loop	can	continue	indefinitely,	but	if	you	want	to	break	out	of	the	loop,	you	can	call	the		break()		flag	on	the
completion	trigger,	which	sends	the	main	sequence	into	an	error	state:

var	count	=	0;

ASQ(	3	)

.until(	double	)

.val(	output	)																				//	6

.until(	function(done){

				count++;

				setTimeout(	function(){

								if	(count	<	5)	{

												done.fail();

								}

								else	{

												//	break	out	of	the	`until(..)`	retry	loop

												done.break(	"Oops"	);

								}

				},	100	);

}	)

.or(	output	);																				//	Oops

If	you	would	prefer	to	have,	inline	in	your	sequence,	Promise-style	semantics	like	Promises'		then(..)		and		catch(..)		(see
Chapter	3),	you	can	use	the		pThen		and		pCatch		plug-ins:

ASQ(	21	)

.pThen(	function(msg){

				return	msg	*	2;

}	)

.pThen(	output	)																//	42

.pThen(	function(){

				//	throw	an	exception

				doesnt.Exist();

}	)

.pCatch(	function(err){

				//	caught	the	exception	(rejection)

				console.log(	err	);												//	ReferenceError

}	)

.val(	function(){

				//	main	sequence	is	back	in	a

				//	success	state	because	previous

				//	exception	was	caught	by

				//	`pCatch(..)`

}	);

	pThen(..)		and		pCatch(..)		are	designed	to	run	in	the	sequence,	but	behave	as	if	it	was	a	normal	Promise	chain.	As	such,
you	can	either	resolve	genuine	Promises	or	asynquence	sequences	from	the	"fulfillment"	handler	passed	to		pThen(..)	
(see	Chapter	3).

One	feature	that	can	be	quite	useful	about	Promises	is	that	you	can	attach	multiple		then(..)		handler	registrations	to	the
same	promise,	effectively	"forking"	the	flow-control	at	that	promise:
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var	p	=	Promise.resolve(	21	);

//	fork	1	(from	`p`)

p.then(	function(msg){

				return	msg	*	2;

}	)

.then(	function(msg){

				console.log(	msg	);								//	42

}	)

//	fork	2	(from	`p`)

p.then(	function(msg){

				console.log(	msg	);								//	21

}	);

The	same	"forking"	is	easy	in	asynquence	with		fork()	:

var	sq	=	ASQ(..).then(..).then(..);

var	sq2	=	sq.fork();

//	fork	1

sq.then(..)..;

//	fork	2

sq2.then(..)..;

The	reverse	of		fork()	ing,	you	can	combine	two	sequences	by	subsuming	one	into	another,	using	the		seq(..)		instance
method:

var	sq	=	ASQ(	function(done){

				setTimeout(	function(){

								done(	"Hello	World"	);

				},	200	);

}	);

ASQ(	function(done){

				setTimeout(	done,	100	);

}	)

//	subsume	`sq`	sequence	into	this	sequence

.seq(	sq	)

.val(	function(msg){

				console.log(	msg	);								//	Hello	World

}	)

	seq(..)		can	either	accept	a	sequence	itself,	as	shown	here,	or	a	function.	If	a	function,	it's	expected	that	the	function	when
called	will	return	a	sequence,	so	the	preceding	code	could	have	been	done	with:

//	..

.seq(	function(){

				return	sq;

}	)

//	..

Also,	that	step	could	instead	have	been	accomplished	with	a		pipe(..)	:

//	..

.then(	function(done){

				//	pipe	`sq`	into	the	`done`	continuation	callback

				sq.pipe(	done	);

}	)

//	..
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When	a	sequence	is	subsumed,	both	its	success	message	stream	and	its	error	stream	are	piped	in.

Note:	As	mentioned	in	an	earlier	note,	piping	(manually	with		pipe(..)		or	automatically	with		seq(..)	)	opts	the	source
sequence	out	of	error-reporting,	but	doesn't	affect	the	error	reporting	status	of	the	target	sequence.

If	any	step	of	a	sequence	is	just	a	normal	value,	that	value	is	just	mapped	to	that	step's	completion	message:

var	sq	=	ASQ(	42	);

sq.val(	function(msg){

				console.log(	msg	);								//	42

}	);

If	you	want	to	make	a	sequence	that's	automatically	errored:

var	sq	=	ASQ.failed(	"Oops"	);

ASQ()

.seq(	sq	)

.val(	function(msg){

				//	won't	get	here

}	)

.or(	function(err){

				console.log(	err	);								//	Oops

}	);

You	also	may	want	to	automatically	create	a	delayed-value	or	a	delayed-error	sequence.	Using	the		after		and		failAfter	
contrib	plug-ins,	this	is	easy:

var	sq1	=	ASQ.after(	100,	"Hello",	"World"	);

var	sq2	=	ASQ.failAfter(	100,	"Oops"	);

sq1.val(	function(msg1,msg2){

				console.log(	msg1,	msg2	);								//	Hello	World

}	);

sq2.or(	function(err){

				console.log(	err	);																//	Oops

}	);

You	can	also	insert	a	delay	in	the	middle	of	a	sequence	using		after(..)	:

ASQ(	42	)

//	insert	a	delay	into	the	sequence

.after(	100	)

.val(	function(msg){

				console.log(	msg	);								//	42

}	);

I	think	asynquence	sequences	provide	a	lot	of	value	on	top	of	native	Promises,	and	for	the	most	part	you'll	find	it	more
pleasant	and	more	powerful	to	work	at	that	level	of	abstration.	However,	integrating	asynquence	with	other	non-
asynquence	code	will	be	a	reality.

You	can	easily	subsume	a	promise	(e.g.,	thenable	--	see	Chapter	3)	into	a	sequence	using	the		promise(..)		instance
method:
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var	p	=	Promise.resolve(	42	);

ASQ()

.promise(	p	)												//	could	also:	`function(){	return	p;	}`

.val(	function(msg){

				console.log(	msg	);				//	42

}	);

And	to	go	the	opposite	direction	and	fork/vend	a	promise	from	a	sequence	at	a	certain	step,	use	the		toPromise		contrib
plug-in:

var	sq	=	ASQ.after(	100,	"Hello	World"	);

sq.toPromise()

//	this	is	a	standard	promise	chain	now

.then(	function(msg){

				return	msg.toUpperCase();

}	)

.then(	function(msg){

				console.log(	msg	);								//	HELLO	WORLD

}	);

To	adapt	asynquence	to	systems	using	callbacks,	there	are	several	helper	facilities.	To	automatically	generate	an	"error-first
style"	callback	from	your	sequence	to	wire	into	a	callback-oriented	utility,	use		errfcb	:

var	sq	=	ASQ(	function(done){

				//	note:	expecting	"error-first	style"	callback

				someAsyncFuncWithCB(	1,	2,	done.errfcb	)

}	)

.val(	function(msg){

				//	..

}	)

.or(	function(err){

				//	..

}	);

//	note:	expecting	"error-first	style"	callback

anotherAsyncFuncWithCB(	1,	2,	sq.errfcb()	);

You	also	may	want	to	create	a	sequence-wrapped	version	of	a	utility	--	compare	to	"promisory"	in	Chapter	3	and	"thunkory"
in	Chapter	4	--	and	asynquence	provides		ASQ.wrap(..)		for	that	purpose:

var	coolUtility	=	ASQ.wrap(	someAsyncFuncWithCB	);

coolUtility(	1,	2	)

.val(	function(msg){

				//	..

}	)

.or(	function(err){

				//	..

}	);

Note:	For	the	sake	of	clarity	(and	for	fun!),	let's	coin	yet	another	term,	for	a	sequence-producing	function	that	comes	from
	ASQ.wrap(..)	,	like		coolUtility		here.	I	propose	"sequory"	("sequence"	+	"factory").

The	normal	paradigm	for	a	sequence	is	that	each	step	is	responsible	for	completing	itself,	which	is	what	advances	the
sequence.	Promises	work	the	same	way.

The	unfortunate	part	is	that	sometimes	you	need	external	control	over	a	Promise/step,	which	leads	to	awkward	"capability
extraction".
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Consider	this	Promises	example:

var	domready	=	new	Promise(	function(resolve,reject){

				//	don't	want	to	put	this	here,	because

				//	it	belongs	logically	in	another	part

				//	of	the	code

				document.addEventListener(	"DOMContentLoaded",	resolve	);

}	);

//	..

domready.then(	function(){

				//	DOM	is	ready!

}	);

The	"capability	extraction"	anti-pattern	with	Promises	looks	like	this:

var	ready;

var	domready	=	new	Promise(	function(resolve,reject){

				//	extract	the	`resolve()`	capability

				ready	=	resolve;

}	);

//	..

domready.then(	function(){

				//	DOM	is	ready!

}	);

//	..

document.addEventListener(	"DOMContentLoaded",	ready	);

Note:	This	anti-pattern	is	an	awkward	code	smell,	in	my	opinion,	but	some	developers	like	it,	for	reasons	I	can't	grasp.

asynquence	offers	an	inverted	sequence	type	I	call	"iterable	sequences",	which	externalizes	the	control	capability	(it's	quite
useful	in	use	cases	like	the		domready	):

//	note:	`domready`	here	is	an	*iterator*	that

//	controls	the	sequence

var	domready	=	ASQ.iterable();

//	..

domready.val(	function(){

				//	DOM	is	ready

}	);

//	..

document.addEventListener(	"DOMContentLoaded",	domready.next	);

There's	more	to	iterable	sequences	than	what	we	see	in	this	scenario.	We'll	come	back	to	them	in	Appendix	B.

In	Chapter	4,	we	derived	a	utility	called		run(..)		which	can	run	generators	to	completion,	listening	for		yield	ed	Promises
and	using	them	to	async	resume	the	generator.	asynquence	has	just	such	a	utility	built	in,	called		runner(..)	.

Let's	first	set	up	some	helpers	for	illustration:

function	doublePr(x)	{

				return	new	Promise(	function(resolve,reject){

								setTimeout(	function(){
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												resolve(	x	*	2	);

								},	100	);

				}	);

}

function	doubleSeq(x)	{

				return	ASQ(	function(done){

								setTimeout(	function(){

												done(	x	*	2)

								},	100	);

				}	);

}

Now,	we	can	use		runner(..)		as	a	step	in	the	middle	of	a	sequence:

ASQ(	10,	11	)

.runner(	function*(token){

				var	x	=	token.messages[0]	+	token.messages[1];

				//	yield	a	real	promise

				x	=	yield	doublePr(	x	);

				//	yield	a	sequence

				x	=	yield	doubleSeq(	x	);

				return	x;

}	)

.val(	function(msg){

				console.log(	msg	);												//	84

}	);

You	can	also	create	a	self-packaged	generator	--	that	is,	a	normal	function	that	runs	your	specified	generator	and	returns	a
sequence	for	its	completion	--	by		ASQ.wrap(..)	ing	it:

var	foo	=	ASQ.wrap(	function*(token){

				var	x	=	token.messages[0]	+	token.messages[1];

				//	yield	a	real	promise

				x	=	yield	doublePr(	x	);

				//	yield	a	sequence

				x	=	yield	doubleSeq(	x	);

				return	x;

},	{	gen:	true	}	);

//	..

foo(	8,	9	)

.val(	function(msg){

				console.log(	msg	);												//	68

}	);

There's	a	lot	more	awesome	that		runner(..)		is	capable	of,	but	we'll	come	back	to	that	in	Appendix	B.

asynquence	is	a	simple	abstraction	--	a	sequence	is	a	series	of	(async)	steps	--	on	top	of	Promises,	aimed	at	making
working	with	various	asynchronous	patterns	much	easier,	without	any	compromise	in	capability.

There	are	other	goodies	in	the	asynquence	core	API	and	its	contrib	plug-ins	beyond	what	we	saw	in	this	appendix,	but	we'll
leave	that	as	an	exercise	for	the	reader	to	go	check	the	rest	of	the	capabilities	out.

You've	now	seen	the	essence	and	spirit	of	asynquence.	The	key	take	away	is	that	a	sequence	is	comprised	of	steps,	and
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those	steps	can	be	any	of	dozens	of	different	variations	on	Promises,	or	they	can	be	a	generator-run,	or...	The	choice	is	up
to	you,	you	have	all	the	freedom	to	weave	together	whatever	async	flow	control	logic	is	appropriate	for	your	tasks.	No	more
library	switching	to	catch	different	async	patterns.

If	these	asynquence	snippets	have	made	sense	to	you,	you're	now	pretty	well	up	to	speed	on	the	library;	it	doesn't	take	that
much	to	learn,	actually!

If	you're	still	a	little	fuzzy	on	how	it	works	(or	why!),	you'll	want	to	spend	a	little	more	time	examining	the	previous	examples
and	playing	around	with	asynquence	yourself,	before	going	on	to	the	next	appendix.	Appendix	B	will	push	asynquence	into
several	more	advanced	and	powerful	async	patterns.



Appendix	A	introduced	the	asynquence	library	for	sequence-oriented	async	flow	control,	primarily	based	on	Promises	and
generators.

Now	we'll	explore	other	advanced	asynchronous	patterns	built	on	top	of	that	existing	understanding	and	functionality,	and
see	how	asynquence	makes	those	sophisticated	async	techniques	easy	to	mix	and	match	in	our	programs	without	needing
lots	of	separate	libraries.

We	introduced	asynquence's	iterable	sequences	in	the	previous	appendix,	but	we	want	to	revisit	them	in	more	detail.

To	refresh,	recall:

var	domready	=	ASQ.iterable();

//	..

domready.val(	function(){

				//	DOM	is	ready

}	);

//	..

document.addEventListener(	"DOMContentLoaded",	domready.next	);

Now,	let's	define	a	sequence	of	multiple	steps	as	an	iterable	sequence:

var	steps	=	ASQ.iterable();

steps

.then(	function	STEP1(x){

				return	x	*	2;

}	)

.steps(	function	STEP2(x){

				return	x	+	3;

}	)

.steps(	function	STEP3(x){

				return	x	*	4;

}	);

steps.next(	8	).value;				//	16

steps.next(	16	).value;				//	19

steps.next(	19	).value;				//	76

steps.next().done;								//	true

As	you	can	see,	an	iterable	sequence	is	a	standard-compliant	iterator	(see	Chapter	4).	So,	it	can	be	iterated	with	an	ES6
	for..of		loop,	just	like	a	generator	(or	any	other	iterable)	can:

var	steps	=	ASQ.iterable();

steps

.then(	function	STEP1(){	return	2;	}	)

.then(	function	STEP2(){	return	4;	}	)

.then(	function	STEP3(){	return	6;	}	)

.then(	function	STEP4(){	return	8;	}	)

.then(	function	STEP5(){	return	10;	}	);
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for	(var	v	of	steps)	{

				console.log(	v	);

}

//	2	4	6	8	10

Beyond	the	event	triggering	example	shown	in	the	previous	appendix,	iterable	sequences	are	interesting	because	in
essence	they	can	be	seen	as	a	stand-in	for	generators	or	Promise	chains,	but	with	even	more	flexibility.

Consider	a	multiple	Ajax	request	example	--	we've	seen	the	same	scenario	in	Chapters	3	and	4,	both	as	a	Promise	chain
and	as	a	generator,	respectively	--	expressed	as	an	iterable	sequence:

//	sequence-aware	ajax

var	request	=	ASQ.wrap(	ajax	);

ASQ(	"http://some.url.1"	)

.runner(

				ASQ.iterable()

				.then(	function	STEP1(token){

								var	url	=	token.messages[0];

								return	request(	url	);

				}	)

				.then(	function	STEP2(resp){

								return	ASQ().gate(

												request(	"http://some.url.2/?v="	+	resp	),

												request(	"http://some.url.3/?v="	+	resp	)

								);

				}	)

				.then(	function	STEP3(r1,r2){	return	r1	+	r2;	}	)

)

.val(	function(msg){

				console.log(	msg	);

}	);

The	iterable	sequence	expresses	a	sequential	series	of	(sync	or	async)	steps	that	looks	awfully	similar	to	a	Promise	chain	-
-	in	other	words,	it's	much	cleaner	looking	than	just	plain	nested	callbacks,	but	not	quite	as	nice	as	the		yield	-based
sequential	syntax	of	generators.

But	we	pass	the	iterable	sequence	into		ASQ#runner(..)	,	which	runs	it	to	completion	the	same	as	if	it	was	a	generator.	The
fact	that	an	iterable	sequence	behaves	essentially	the	same	as	a	generator	is	notable	for	a	couple	of	reasons.

First,	iterable	sequences	are	kind	of	a	pre-ES6	equivalent	to	a	certain	subset	of	ES6	generators,	which	means	you	can
either	author	them	directly	(to	run	anywhere),	or	you	can	author	ES6	generators	and	transpile/convert	them	to	iterable
sequences	(or	Promise	chains	for	that	matter!).

Thinking	of	an	async-run-to-completion	generator	as	just	syntactic	sugar	for	a	Promise	chain	is	an	important	recognition	of
their	isomorphic	relationship.

Before	we	move	on,	we	should	note	that	the	previous	snippet	could	have	been	expressed	in	asynquence	as:

ASQ(	"http://some.url.1"	)

.seq(	/*STEP	1*/	request	)

.seq(	function	STEP2(resp){

				return	ASQ().gate(

								request(	"http://some.url.2/?v="	+	resp	),

								request(	"http://some.url.3/?v="	+	resp	)

				);

}	)

.val(	function	STEP3(r1,r2){	return	r1	+	r2;	}	)

.val(	function(msg){

				console.log(	msg	);

}	);

Moreover,	step	2	could	have	even	been	expressed	as:



.gate(

				function	STEP2a(done,resp)	{

								request(	"http://some.url.2/?v="	+	resp	)

								.pipe(	done	);

				},

				function	STEP2b(done,resp)	{

								request(	"http://some.url.3/?v="	+	resp	)

								.pipe(	done	);

				}

)

So,	why	would	we	go	to	the	trouble	of	expressing	our	flow	control	as	an	iterable	sequence	in	a		ASQ#runner(..)		step,	when
it	seems	like	a	simpler/flatter	asyquence	chain	does	the	job	well?

Because	the	iterable	sequence	form	has	an	important	trick	up	its	sleeve	that	gives	us	more	capability.	Read	on.

Generators,	normal	asynquence	sequences,	and	Promise	chains,	are	all	eagerly	evaluated	--	whatever	flow	control	is
expressed	initially	is	the	fixed	flow	that	will	be	followed.

However,	iterable	sequences	are	lazily	evaluated,	which	means	that	during	execution	of	the	iterable	sequence,	you	can
extend	the	sequence	with	more	steps	if	desired.

Note:	You	can	only	append	to	the	end	of	an	iterable	sequence,	not	inject	into	the	middle	of	the	sequence.

Let's	first	look	at	a	simpler	(synchronous)	example	of	that	capability	to	get	familiar	with	it:

function	double(x)	{

				x	*=	2;

				//	should	we	keep	extending?

				if	(x	<	500)	{

								isq.then(	double	);

				}

				return	x;

}

//	setup	single-step	iterable	sequence

var	isq	=	ASQ.iterable().then(	double	);

for	(var	v	=	10,	ret;

				(ret	=	isq.next(	v	))	&&	!ret.done;

)	{

				v	=	ret.value;

				console.log(	v	);

}

The	iterable	sequence	starts	out	with	only	one	defined	step	(	isq.then(double)	),	but	the	sequence	keeps	extending	itself
under	certain	conditions	(	x	<	500	).	Both	asynquence	sequences	and	Promise	chains	technically	can	do	something	similar,
but	we'll	see	in	a	little	bit	why	their	capability	is	insufficient.

Though	this	example	is	rather	trivial	and	could	otherwise	be	expressed	with	a		while		loop	in	a	generator,	we'll	consider
more	sophisticated	cases.

For	instance,	you	could	examine	the	response	from	an	Ajax	request	and	if	it	indicates	that	more	data	is	needed,	you
conditionally	insert	more	steps	into	the	iterable	sequence	to	make	the	additional	request(s).	Or	you	could	conditionally	add
a	value-formatting	step	to	the	end	of	your	Ajax	handling.

Consider:

var	steps	=	ASQ.iterable()
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.then(	function	STEP1(token){

				var	url	=	token.messages[0].url;

				//	was	an	additional	formatting	step	provided?

				if	(token.messages[0].format)	{

								steps.then(	token.messages[0].format	);

				}

				return	request(	url	);

}	)

.then(	function	STEP2(resp){

				//	add	another	Ajax	request	to	the	sequence?

				if	(/x1/.test(	resp	))	{

								steps.then(	function	STEP5(text){

												return	request(

																"http://some.url.4/?v="	+	text

												);

								}	);

				}

				return	ASQ().gate(

								request(	"http://some.url.2/?v="	+	resp	),

								request(	"http://some.url.3/?v="	+	resp	)

				);

}	)

.then(	function	STEP3(r1,r2){	return	r1	+	r2;	}	);

You	can	see	in	two	different	places	where	we	conditionally	extend		steps		with		steps.then(..)	.	And	to	run	this		steps	
iterable	sequence,	we	just	wire	it	into	our	main	program	flow	with	an	asynquence	sequence	(called		main		here)	using
	ASQ#runner(..)	:

var	main	=	ASQ(	{

				url:	"http://some.url.1",

				format:	function	STEP4(text){

								return	text.toUpperCase();

				}

}	)

.runner(	steps	)

.val(	function(msg){

				console.log(	msg	);

}	);

Can	the	flexibility	(conditional	behavior)	of	the		steps		iterable	sequence	be	expressed	with	a	generator?	Kind	of,	but	we
have	to	rearrange	the	logic	in	a	slightly	awkward	way:

function	*steps(token)	{

				//	**STEP	1**

				var	resp	=	yield	request(	token.messages[0].url	);

				//	**STEP	2**

				var	rvals	=	yield	ASQ().gate(

								request(	"http://some.url.2/?v="	+	resp	),

								request(	"http://some.url.3/?v="	+	resp	)

				);

				//	**STEP	3**

				var	text	=	rvals[0]	+	rvals[1];

				//	**STEP	4**

				//	was	an	additional	formatting	step	provided?

				if	(token.messages[0].format)	{

								text	=	yield	token.messages[0].format(	text	);

				}

				//	**STEP	5**

				//	need	another	Ajax	request	added	to	the	sequence?

				if	(/foobar/.test(	resp	))	{

								text	=	yield	request(

												"http://some.url.4/?v="	+	text

								);

				}



				return	text;

}

//	note:	`*steps()`	can	be	run	by	the	same	`ASQ`	sequence

//	as	`steps`	was	previously

Setting	aside	the	already	identified	benefits	of	the	sequential,	synchronous-looking	syntax	of	generators	(see	Chapter	4),
the		steps		logic	had	to	be	reordered	in	the		*steps()		generator	form,	to	fake	the	dynamicism	of	the	extendable	iterable
sequence		steps	.

What	about	expressing	the	functionality	with	Promises	or	sequences,	though?	You	can	do	something	like	this:

var	steps	=	something(	..	)

.then(	..	)

.then(	function(..){

				//	..

				//	extending	the	chain,	right?

				steps	=	steps.then(	..	);

				//	..

})

.then(	..	);

The	problem	is	subtle	but	important	to	grasp.	So,	consider	trying	to	wire	up	our		steps		Promise	chain	into	our	main
program	flow	--	this	time	expressed	with	Promises	instead	of	asynquence:

var	main	=	Promise.resolve(	{

				url:	"http://some.url.1",

				format:	function	STEP4(text){

								return	text.toUpperCase();

				}

}	)

.then(	function(..){

				return	steps;												//	hint!

}	)

.val(	function(msg){

				console.log(	msg	);

}	);

Can	you	spot	the	problem	now?	Look	closely!

There's	a	race	condition	for	sequence	steps	ordering.	When	you		return	steps	,	at	that	moment		steps		might	be	the
originally	defined	promise	chain,	or	it	might	now	point	to	the	extended	promise	chain	via	the		steps	=	steps.then(..)		call,
depending	on	what	order	things	happen.

Here	are	the	two	possible	outcomes:

If		steps		is	still	the	original	promise	chain,	once	it's	later	"extended"	by		steps	=	steps.then(..)	,	that	extended	promise
on	the	end	of	the	chain	is	not	considered	by	the		main		flow,	as	it's	already	tapped	the		steps		chain.	This	is	the
unfortunately	limiting	eager	evaluation.
If		steps		is	already	the	extended	promise	chain,	it	works	as	we	expect	in	that	the	extended	promise	is	what		main		taps.

Other	than	the	obvious	fact	that	a	race	condition	is	intolerable,	the	first	case	is	the	concern;	it	illustrates	eager	evaluation
of	the	promise	chain.	By	contrast,	we	easily	extended	the	iterable	sequence	without	such	issues,	because	iterable
sequences	are	lazily	evaluated.

The	more	dynamic	you	need	your	flow	control,	the	more	iterable	sequences	will	shine.

Tip:	Check	out	more	information	and	examples	of	iterable	sequences	on	the	asynquence	site
(https://github.com/getify/asynquence/blob/master/README.md#iterable-sequences).
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It	should	be	obvious	from	(at	least!)	Chapter	3	that	Promises	are	a	very	powerful	tool	in	your	async	toolbox.	But	one	thing
that's	clearly	lacking	is	in	their	capability	to	handle	streams	of	events,	as	a	Promise	can	only	be	resolved	once.	And	frankly,
this	exact	same	weakness	is	true	of	plain	asynquence	sequences,	as	well.

Consider	a	scenario	where	you	want	to	fire	off	a	series	of	steps	every	time	a	certain	event	is	fired.	A	single	Promise	or
sequence	cannot	represent	all	occurrences	of	that	event.	So,	you	have	to	create	a	whole	new	Promise	chain	(or	sequence)
for	each	event	occurrence,	such	as:

listener.on(	"foobar",	function(data){

				//	create	a	new	event	handling	promise	chain

				new	Promise(	function(resolve,reject){

								//	..

				}	)

				.then(	..	)

				.then(	..	);

}	);

The	base	functionality	we	need	is	present	in	this	approach,	but	it's	far	from	a	desirable	way	to	express	our	intended	logic.
There	are	two	separate	capabilities	conflated	in	this	paradigm:	the	event	listening,	and	responding	to	the	event;	separation
of	concerns	would	implore	us	to	separate	out	these	capabilities.

The	carefully	observant	reader	will	see	this	problem	as	somewhat	symmetrical	to	the	problems	we	detailed	with	callbacks
in	Chapter	2;	it's	kind	of	an	inversion	of	control	problem.

Imagine	uninverting	this	paradigm,	like	so:

var	observable	=	listener.on(	"foobar"	);

//	later

observable

.then(	..	)

.then(	..	);

//	elsewhere

observable

.then(	..	)

.then(	..	);

The		observable		value	is	not	exactly	a	Promise,	but	you	can	observe	it	much	like	you	can	observe	a	Promise,	so	it's	closely
related.	In	fact,	it	can	be	observed	many	times,	and	it	will	send	out	notifications	every	time	its	event	(	"foobar"	)	occurs.

Tip:	This	pattern	I've	just	illustrated	is	a	massive	simplification	of	the	concepts	and	motivations	behind	reactive
programming	(aka	RP),	which	has	been	implemented/expounded	upon	by	several	great	projects	and	languages.	A	variation
on	RP	is	functional	reactive	programming	(FRP),	which	refers	to	applying	functional	programming	techniques	(immutability,
referential	integrity,	etc.)	to	streams	of	data.	"Reactive"	refers	to	spreading	this	functionality	out	over	time	in	response	to
events.	The	interested	reader	should	consider	studying	"Reactive	Observables"	in	the	fantastic	"Reactive	Extensions"
library	("RxJS"	for	JavaScript)	by	Microsoft	(http://reactive-extensions.github.io/RxJS/);	it's	much	more	sophisticated	and
powerful	than	I've	just	shown.	Also,	Andre	Staltz	has	an	excellent	write-up
(https://gist.github.com/staltz/868e7e9bc2a7b8c1f754)	that	pragmatically	lays	out	RP	in	concrete	examples.

At	the	time	of	this	writing,	there's	an	early	ES7	proposal	for	a	new	data	type	called	"Observable"
(https://github.com/jhusain/asyncgenerator#introducing-observable),	which	in	spirit	is	similar	to	what	we've	laid	out	here,	but
is	definitely	more	sophisticated.
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The	notion	of	this	kind	of	Observable	is	that	the	way	you	"subscribe"	to	the	events	from	a	stream	is	to	pass	in	a	generator	--
actually	the	iterator	is	the	interested	party	--	whose		next(..)		method	will	be	called	for	each	event.

You	could	imagine	it	sort	of	like	this:

//	`someEventStream`	is	a	stream	of	events,	like	from

//	mouse	clicks,	and	the	like.

var	observer	=	new	Observer(	someEventStream,	function*(){

				while	(var	evt	=	yield)	{

								console.log(	evt	);

				}

}	);

The	generator	you	pass	in	will		yield		pause	the		while		loop	waiting	for	the	next	event.	The	iterator	attached	to	the
generator	instance	will	have	its		next(..)		called	each	time		someEventStream		has	a	new	event	published,	and	so	that	event
data	will	resume	your	generator/iterator	with	the		evt		data.

In	the	subscription	to	events	functionality	here,	it's	the	iterator	part	that	matters,	not	the	generator.	So	conceptually	you
could	pass	in	practically	any	iterable,	including		ASQ.iterable()		iterable	sequences.

Interestingly,	there	are	also	proposed	adapters	to	make	it	easy	to	construct	Observables	from	certain	types	of	streams,
such	as		fromEvent(..)		for	DOM	events.	If	you	look	at	a	suggested	implementation	of		fromEvent(..)		in	the	earlier	linked
ES7	proposal,	it	looks	an	awful	lot	like	the		ASQ.react(..)		we'll	see	in	the	next	section.

Of	course,	these	are	all	early	proposals,	so	what	shakes	out	may	very	well	look/behave	differently	than	shown	here.	But	it's
exciting	to	see	the	early	alignments	of	concepts	across	different	libraries	and	language	proposals!

With	that	crazy	brief	summary	of	Observables	(and	F/RP)	as	our	inspiration	and	motivation,	I	will	now	illustrate	an
adaptation	of	a	small	subset	of	"Reactive	Observables,"	which	I	call	"Reactive	Sequences."

First,	let's	start	with	how	to	create	an	Observable,	using	an	asynquence	plug-in	utility	called		react(..)	:

var	observable	=	ASQ.react(	function	setup(next){

				listener.on(	"foobar",	next	);

}	);

Now,	let's	see	how	to	define	a	sequence	that	"reacts"	--	in	F/RP,	this	is	typically	called	"subscribing"	--	to	that		observable	:

observable

.seq(	..	)

.then(	..	)

.val(	..	);

So,	you	just	define	the	sequence	by	chaining	off	the	Observable.	That's	easy,	huh?

In	F/RP,	the	stream	of	events	typically	channels	through	a	set	of	functional	transforms,	like		scan(..)	,		map(..)	,
	reduce(..)	,	and	so	on.	With	reactive	sequences,	each	event	channels	through	a	new	instance	of	the	sequence.	Let's	look
at	a	more	concrete	example:

ASQ.react(	function	setup(next){

				document.getElementById(	"mybtn"	)

				.addEventListener(	"click",	next,	false	);

}	)

.seq(	function(evt){

				var	btnID	=	evt.target.id;

				return	request(
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								"http://some.url.1/?id="	+	btnID

				);

}	)

.val(	function(text){

				console.log(	text	);

}	);

The	"reactive"	portion	of	the	reactive	sequence	comes	from	assigning	one	or	more	event	handlers	to	invoke	the	event
trigger	(calling		next(..)	).

The	"sequence"	portion	of	the	reactive	sequence	is	exactly	like	the	sequences	we've	already	explored:	each	step	can	be
whatever	asynchronous	technique	makes	sense,	from	continuation	callback	to	Promise	to	generator.

Once	you	set	up	a	reactive	sequence,	it	will	continue	to	initiate	instances	of	the	sequence	as	long	as	the	events	keep	firing.
If	you	want	to	stop	a	reactive	sequence,	you	can	call		stop()	.

If	a	reactive	sequence	is		stop()	'd,	you	likely	want	the	event	handler(s)	to	be	unregistered	as	well;	you	can	register	a
teardown	handler	for	this	purpose:

var	sq	=	ASQ.react(	function	setup(next,registerTeardown){

				var	btn	=	document.getElementById(	"mybtn"	);

				btn.addEventListener(	"click",	next,	false	);

				//	will	be	called	once	`sq.stop()`	is	called

				registerTeardown(	function(){

								btn.removeEventListener(	"click",	next,	false	);

				}	);

}	)

.seq(	..	)

.then(	..	)

.val(	..	);

//	later

sq.stop();

Note:	The		this		binding	reference	inside	the		setup(..)		handler	is	the	same		sq		reactive	sequence,	so	you	can	use	the
	this		reference	to	add	to	the	reactive	sequence	definition,	call	methods	like		stop()	,	and	so	on.

Here's	an	example	from	the	Node.js	world,	using	reactive	sequences	to	handle	incoming	HTTP	requests:

var	server	=	http.createServer();

server.listen(8000);

//	reactive	observer

var	request	=	ASQ.react(	function	setup(next,registerTeardown){

				server.addListener(	"request",	next	);

				server.addListener(	"close",	this.stop	);

				registerTeardown(	function(){

								server.removeListener(	"request",	next	);

								server.removeListener(	"close",	request.stop	);

				}	);

});

//	respond	to	requests

request

.seq(	pullFromDatabase	)

.val(	function(data,res){

				res.end(	data	);

}	);

//	node	teardown

process.on(	"SIGINT",	request.stop	);

The		next(..)		trigger	can	also	adapt	to	node	streams	easily,	using		onStream(..)		and		unStream(..)	:



ASQ.react(	function	setup(next){

				var	fstream	=	fs.createReadStream(	"/some/file"	);

				//	pipe	the	stream's	"data"	event	to	`next(..)`

				next.onStream(	fstream	);

				//	listen	for	the	end	of	the	stream

				fstream.on(	"end",	function(){

								next.unStream(	fstream	);

				}	);

}	)

.seq(	..	)

.then(	..	)

.val(	..	);

You	can	also	use	sequence	combinations	to	compose	multiple	reactive	sequence	streams:

var	sq1	=	ASQ.react(	..	).seq(	..	).then(	..	);

var	sq2	=	ASQ.react(	..	).seq(	..	).then(	..	);

var	sq3	=	ASQ.react(..)

.gate(

				sq1,

				sq2

)

.then(	..	);

The	main	takeaway	is	that		ASQ.react(..)		is	a	lightweight	adaptation	of	F/RP	concepts,	enabling	the	wiring	of	an	event
stream	to	a	sequence,	hence	the	term	"reactive	sequence."	Reactive	sequences	are	generally	capable	enough	for	basic
reactive	uses.

Note:	Here's	an	example	of	using		ASQ.react(..)		in	managing	UI	state	(http://jsbin.com/rozipaki/6/edit?js,output),	and
another	example	of	handling	HTTP	request/response	streams	with		ASQ.react(..)	
(https://gist.github.com/getify/bba5ec0de9d6047b720e).

Hopefully	Chapter	4	helped	you	get	pretty	familiar	with	ES6	generators.	In	particular,	we	want	to	revisit	the	"Generator
Concurrency"	discussion,	and	push	it	even	further.

We	imagined	a		runAll(..)		utility	that	could	take	two	or	more	generators	and	run	them	concurrently,	letting	them
cooperatively		yield		control	from	one	to	the	next,	with	optional	message	passing.

In	addition	to	being	able	to	run	a	single	generator	to	completion,	the		ASQ#runner(..)		we	discussed	in	Appendix	A	is	a
similar	implementation	of	the	concepts	of		runAll(..)	,	which	can	run	multiple	generators	concurrently	to	completion.

So	let's	see	how	we	can	implement	the	concurrent	Ajax	scenario	from	Chapter	4:

ASQ(

				"http://some.url.2"

)

.runner(

				function*(token){

								//	transfer	control

								yield	token;

								var	url1	=	token.messages[0];	//	"http://some.url.1"

								//	clear	out	messages	to	start	fresh

								token.messages	=	[];

								var	p1	=	request(	url1	);

								//	transfer	control

								yield	token;
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								token.messages.push(	yield	p1	);

				},

				function*(token){

								var	url2	=	token.messages[0];	//	"http://some.url.2"

								//	message	pass	and	transfer	control

								token.messages[0]	=	"http://some.url.1";

								yield	token;

								var	p2	=	request(	url2	);

								//	transfer	control

								yield	token;

								token.messages.push(	yield	p2	);

								//	pass	along	results	to	next	sequence	step

								return	token.messages;

				}

)

.val(	function(res){

				//	`res[0]`	comes	from	"http://some.url.1"

				//	`res[1]`	comes	from	"http://some.url.2"

}	);

The	main	differences	between		ASQ#runner(..)		and		runAll(..)		are	as	follows:

Each	generator	(coroutine)	is	provided	an	argument	we	call		token	,	which	is	the	special	value	to		yield		when	you
want	to	explicitly	transfer	control	to	the	next	coroutine.
	token.messages		is	an	array	that	holds	any	messages	passed	in	from	the	previous	sequence	step.	It's	also	a	data
structure	that	you	can	use	to	share	messages	between	coroutines.
	yield	ing	a	Promise	(or	sequence)	value	does	not	transfer	control,	but	instead	pauses	the	coroutine	processing	until
that	value	is	ready.
The	last		return	ed	or		yield	ed	value	from	the	coroutine	processing	run	will	be	forward	passed	to	the	next	step	in	the
sequence.

It's	also	easy	to	layer	helpers	on	top	of	the	base		ASQ#runner(..)		functionality	to	suit	different	uses.

One	example	that	may	be	familiar	to	many	programmers	is	state	machines.	You	can,	with	the	help	of	a	simple	cosmetic
utility,	create	an	easy-to-express	state	machine	processor.

Let's	imagine	such	a	utility.	We'll	call	it		state(..)	,	and	will	pass	it	two	arguments:	a	state	value	and	a	generator	that
handles	that	state.		state(..)		will	do	the	dirty	work	of	creating	and	returning	an	adapter	generator	to	pass	to
	ASQ#runner(..)	.

Consider:

function	state(val,handler)	{

				//	make	a	coroutine	handler	for	this	state

				return	function*(token)	{

								//	state	transition	handler

								function	transition(to)	{

												token.messages[0]	=	to;

								}

								//	set	initial	state	(if	none	set	yet)

								if	(token.messages.length	<	1)	{

												token.messages[0]	=	val;

								}

								//	keep	going	until	final	state	(false)	is	reached

								while	(token.messages[0]	!==	false)	{

												//	current	state	matches	this	handler?

												if	(token.messages[0]	===	val)	{

																//	delegate	to	state	handler

																yield	*handler(	transition	);
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												}

												//	transfer	control	to	another	state	handler?

												if	(token.messages[0]	!==	false)	{

																yield	token;

												}

								}

				};

}

If	you	look	closely,	you'll	see	that		state(..)		returns	back	a	generator	that	accepts	a		token	,	and	then	it	sets	up	a		while	
loop	that	will	run	until	the	state	machine	reaches	its	final	state	(which	we	arbitrarily	pick	as	the		false		value);	that's	exactly
the	kind	of	generator	we	want	to	pass	to		ASQ#runner(..)	!

We	also	arbitrarily	reserve	the		token.messages[0]		slot	as	the	place	where	the	current	state	of	our	state	machine	will	be
tracked,	which	means	we	can	even	seed	the	initial	state	as	the	value	passed	in	from	the	previous	step	in	the	sequence.

How	do	we	use	the		state(..)		helper	along	with		ASQ#runner(..)	?

var	prevState;

ASQ(

				/*	optional:	initial	state	value	*/

				2

)

//	run	our	state	machine

//	transitions:	2	->	3	->	1	->	3	->	false

.runner(

				//	state	`1`	handler

				state(	1,	function	*stateOne(transition){

								console.log(	"in	state	1"	);

								prevState	=	1;

								yield	transition(	3	);				//	goto	state	`3`

				}	),

				//	state	`2`	handler

				state(	2,	function	*stateTwo(transition){

								console.log(	"in	state	2"	);

								prevState	=	2;

								yield	transition(	3	);				//	goto	state	`3`

				}	),

				//	state	`3`	handler

				state(	3,	function	*stateThree(transition){

								console.log(	"in	state	3"	);

								if	(prevState	===	2)	{

												prevState	=	3;

												yield	transition(	1	);	//	goto	state	`1`

								}

								//	all	done!

								else	{

												yield	"That's	all	folks!";

												prevState	=	3;

												yield	transition(	false	);	//	terminal	state

								}

				}	)

)

//	state	machine	complete,	so	move	on

.val(	function(msg){

				console.log(	msg	);				//	That's	all	folks!

}	);

It's	important	to	note	that	the		*stateOne(..)	,		*stateTwo(..)	,	and		*stateThree(..)		generators	themselves	are	reinvoked
each	time	that	state	is	entered,	and	they	finish	when	you		transition(..)		to	another	value.	While	not	shown	here,	of	course
these	state	generator	handlers	can	be	asynchronously	paused	by		yield	ing	Promises/sequences/thunks.

The	underneath	hidden	generators	produced	by	the		state(..)		helper	and	actually	passed	to		ASQ#runner(..)		are	the	ones
that	continue	to	run	concurrently	for	the	length	of	the	state	machine,	and	each	of	them	handles	cooperatively		yield	ing



control	to	the	next,	and	so	on.

Note:	See	this	"ping	pong"	example	(http://jsbin.com/qutabu/1/edit?js,output)	for	more	illustration	of	using	cooperative
concurrency	with	generators	driven	by		ASQ#runner(..)	.

"Communicating	Sequential	Processes"	(CSP)	was	first	described	by	C.	A.	R.	Hoare	in	a	1978	academic	paper
(http://dl.acm.org/citation.cfm?doid=359576.359585),	and	later	in	a	1985	book	(http://www.usingcsp.com/)	of	the	same
name.	CSP	describes	a	formal	method	for	concurrent	"processes"	to	interact	(aka	"communicate")	during	processing.

You	may	recall	that	we	examined	concurrent	"processes"	back	in	Chapter	1,	so	our	exploration	of	CSP	here	will	build	upon
that	understanding.

Like	most	great	concepts	in	computer	science,	CSP	is	heavily	steeped	in	academic	formalism,	expressed	as	a	process
algebra.	However,	I	suspect	symbolic	algebra	theorems	won't	make	much	practical	difference	to	the	reader,	so	we	will	want
to	find	some	other	way	of	wrapping	our	brains	around	CSP.

I	will	leave	much	of	the	formal	description	and	proof	of	CSP	to	Hoare's	writing,	and	to	many	other	fantastic	writings	since.
Instead,	we	will	try	to	just	briefly	explain	the	idea	of	CSP	in	as	un-academic	and	hopefully	intuitively	understandable	a	way
as	possible.

The	core	principle	in	CSP	is	that	all	communication/interaction	between	otherwise	independent	processes	must	be	through
formal	message	passing.	Perhaps	counter	to	your	expectations,	CSP	message	passing	is	described	as	a	synchronous
action,	where	the	sender	process	and	the	receiver	process	have	to	mutually	be	ready	for	the	message	to	be	passed.

How	could	such	synchronous	messaging	possibly	be	related	to	asynchronous	programming	in	JavaScript?

The	concreteness	of	relationship	comes	from	the	nature	of	how	ES6	generators	are	used	to	produce	synchronous-looking
actions	that	under	the	covers	can	indeed	either	be	synchronous	or	(more	likely)	asynchronous.

In	other	words,	two	or	more	concurrently	running	generators	can	appear	to	synchronously	message	each	other	while
preserving	the	fundamental	asynchrony	of	the	system	because	each	generator's	code	is	paused	(aka	"blocked")	waiting	on
resumption	of	an	asynchronous	action.

How	does	this	work?

Imagine	a	generator	(aka	"process")	called	"A"	that	wants	to	send	a	message	to	generator	"B."	First,	"A"		yield	s	the
message	(thus	pausing	"A")	to	be	sent	to	"B."	When	"B"	is	ready	and	takes	the	message,	"A"	is	then	resumed	(unblocked).

Symmetrically,	imagine	a	generator	"A"	that	wants	a	message	from	"B."	"A"		yield	s	its	request	(thus	pausing	"A")	for	the
message	from	"B,"	and	once	"B"	sends	a	message,	"A"	takes	the	message	and	is	resumed.

One	of	the	more	popular	expressions	of	this	CSP	message	passing	theory	comes	from	ClojureScript's	core.async	library,
and	also	from	the	go	language.	These	takes	on	CSP	embody	the	described	communication	semantics	in	a	conduit	that	is
opened	between	processes	called	a	"channel."

Note:	The	term	channel	is	used	in	part	because	there	are	modes	in	which	more	than	one	value	can	be	sent	at	once	into	the
"buffer"	of	the	channel;	this	is	similar	to	what	you	may	think	of	as	a	stream.	We	won't	go	into	depth	about	it	here,	but	it	can
be	a	very	powerful	technique	for	managing	streams	of	data.

In	the	simplest	notion	of	CSP,	a	channel	that	we	create	between	"A"	and	"B"	would	have	a	method	called		take(..)		for
blocking	to	receive	a	value,	and	a	method	called		put(..)		for	blocking	to	send	a	value.

This	might	look	like:
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var	ch	=	channel();

function	*foo()	{

				var	msg	=	yield	take(	ch	);

				console.log(	msg	);

}

function	*bar()	{

				yield	put(	ch,	"Hello	World"	);

				console.log(	"message	sent"	);

}

run(	foo	);

run(	bar	);

//	Hello	World

//	"message	sent"

Compare	this	structured,	synchronous(-looking)	message	passing	interaction	to	the	informal	and	unstructured	message
sharing	that		ASQ#runner(..)		provides	through	the		token.messages		array	and	cooperative		yield	ing.	In	essence,		yield
put(..)		is	a	single	operation	that	both	sends	the	value	and	pauses	execution	to	transfer	control,	whereas	in	earlier
examples	we	did	those	as	separate	steps.

Moreover,	CSP	stresses	that	you	don't	really	explicitly	"transfer	control,"	but	rather	you	design	your	concurrent	routines	to
block	expecting	either	a	value	received	from	the	channel,	or	to	block	expecting	to	try	to	send	a	message	on	the	channel.
The	blocking	around	receiving	or	sending	messages	is	how	you	coordinate	sequencing	of	behavior	between	the	coroutines.

Note:	Fair	warning:	this	pattern	is	very	powerful	but	it's	also	a	little	mind	twisting	to	get	used	to	at	first.	You	will	want	to
practice	this	a	bit	to	get	used	to	this	new	way	of	thinking	about	coordinating	your	concurrency.

There	are	several	great	libraries	that	have	implemented	this	flavor	of	CSP	in	JavaScript,	most	notably	"js-csp"
(https://github.com/ubolonton/js-csp),	which	James	Long	(http://twitter.com/jlongster)	forked	(https://github.com/jlongster/js-
csp)	and	has	written	extensively	about	(http://jlongster.com/Taming-the-Asynchronous-Beast-with-CSP-in-JavaScript).	Also,
it	cannot	be	stressed	enough	how	amazing	the	many	writings	of	David	Nolen	(http://twitter.com/swannodette)	are	on	the
topic	of	adapting	ClojureScript's	go-style	core.async	CSP	into	JS	generators	(http://swannodette.github.io/2013/08/24/es6-
generators-and-csp/).

Because	we've	been	discussing	async	patterns	here	in	the	context	of	my	asynquence	library,	you	might	be	interested	to
see	that	we	can	fairly	easily	add	an	emulation	layer	on	top	of		ASQ#runner(..)		generator	handling	as	a	nearly	perfect	porting
of	the	CSP	API	and	behavior.	This	emulation	layer	ships	as	an	optional	part	of	the	"asynquence-contrib"	package	alongside
asynquence.

Very	similar	to	the		state(..)		helper	from	earlier,		ASQ.csp.go(..)		takes	a	generator	--	in	go/core.async	terms,	it's	known	as
a	goroutine	--	and	adapts	it	to	use	with		ASQ#runner(..)		by	returning	a	new	generator.

Instead	of	being	passed	a		token	,	your	goroutine	receives	an	initially	created	channel	(	ch		below)	that	all	goroutines	in	this
run	will	share.	You	can	create	more	channels	(which	is	often	quite	helpful!)	with		ASQ.csp.chan(..)	.

In	CSP,	we	model	all	asynchrony	in	terms	of	blocking	on	channel	messages,	rather	than	blocking	waiting	for	a
Promise/sequence/thunk	to	complete.

So,	instead	of		yield	ing	the	Promise	returned	from		request(..)	,		request(..)		should	return	a	channel	that	you		take(..)	
a	value	from.	In	other	words,	a	single-value	channel	is	roughly	equivalent	in	this	context/usage	to	a	Promise/sequence.

Let's	first	make	a	channel-aware	version	of		request(..)	:

function	request(url)	{

				var	ch	=	ASQ.csp.channel();

				ajax(	url	).then(	function(content){
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								//	`putAsync(..)`	is	a	version	of	`put(..)`	that

								//	can	be	used	outside	of	a	generator.	It	returns

								//	a	promise	for	the	operation's	completion.	We

								//	don't	use	that	promise	here,	but	we	could	if

								//	we	needed	to	be	notified	when	the	value	had

								//	been	`take(..)`n.

								ASQ.csp.putAsync(	ch,	content	);

				}	);

				return	ch;

}

From	Chapter	3,	"promisory"	is	a	Promise-producing	utility,	"thunkory"	from	Chapter	4	is	a	thunk-producing	utility,	and
finally,	in	Appendix	A	we	invented	"sequory"	for	a	sequence-producing	utility.

Naturally,	we	need	to	coin	a	symmetric	term	here	for	a	channel-producing	utility.	So	let's	unsurprisingly	call	it	a	"chanory"
("channel"	+	"factory").	As	an	exercise	for	the	reader,	try	your	hand	at	defining	a		channelify(..)		utility	similar	to
	Promise.wrap(..)	/	promisify(..)		(Chapter	3),		thunkify(..)		(Chapter	4),	and		ASQ.wrap(..)		(Appendix	A).

Now	consider	the	concurrent	Ajax	example	using	asyquence-flavored	CSP:

ASQ()

.runner(

				ASQ.csp.go(	function*(ch){

								yield	ASQ.csp.put(	ch,	"http://some.url.2"	);

								var	url1	=	yield	ASQ.csp.take(	ch	);

								//	"http://some.url.1"

								var	res1	=	yield	ASQ.csp.take(	request(	url1	)	);

								yield	ASQ.csp.put(	ch,	res1	);

				}	),

				ASQ.csp.go(	function*(ch){

								var	url2	=	yield	ASQ.csp.take(	ch	);

								//	"http://some.url.2"

								yield	ASQ.csp.put(	ch,	"http://some.url.1"	);

								var	res2	=	yield	ASQ.csp.take(	request(	url2	)	);

								var	res1	=	yield	ASQ.csp.take(	ch	);

								//	pass	along	results	to	next	sequence	step

								ch.buffer_size	=	2;

								ASQ.csp.put(	ch,	res1	);

								ASQ.csp.put(	ch,	res2	);

				}	)

)

.val(	function(res1,res2){

				//	`res1`	comes	from	"http://some.url.1"

				//	`res2`	comes	from	"http://some.url.2"

}	);

The	message	passing	that	trades	the	URL	strings	between	the	two	goroutines	is	pretty	straightforward.	The	first	goroutine
makes	an	Ajax	request	to	the	first	URL,	and	that	response	is	put	onto	the		ch		channel.	The	second	goroutine	makes	an
Ajax	request	to	the	second	URL,	then	gets	the	first	response		res1		off	the		ch		channel.	At	that	point,	both	responses		res1	
and		res2		are	completed	and	ready.

If	there	are	any	remaining	values	in	the		ch		channel	at	the	end	of	the	goroutine	run,	they	will	be	passed	along	to	the	next
step	in	the	sequence.	So,	to	pass	out	message(s)	from	the	final	goroutine,		put(..)		them	into		ch	.	As	shown,	to	avoid	the
blocking	of	those	final		put(..)	s,	we	switch		ch		into	buffering	mode	by	setting	its		buffer_size		to		2		(default:		0	).

Note:	See	many	more	examples	of	using	asynquence-flavored	CSP	here
(https://gist.github.com/getify/e0d04f1f5aa24b1947ae).

Promises	and	generators	provide	the	foundational	building	blocks	upon	which	we	can	build	much	more	sophisticated	and
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capable	asynchrony.

asynquence	has	utilities	for	implementing	iterable	sequences,	reactive	sequences	(aka	"Observables"),	concurrent
coroutines,	and	even	CSP	goroutines.

Those	patterns,	combined	with	the	continuation-callback	and	Promise	capabilities,	gives	asynquence	a	powerful	mix	of
different	asynchronous	functionalities,	all	integrated	in	one	clean	async	flow	control	abstraction:	the	sequence.
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