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PREFACE

The purpose of this book is to outline a diverse range of commonly used approaches
to making and communicating decisions from data, using data visualization, cluster-
ing, and predictive analytics. The book relates these topics to how they can be used in
practice in a variety of ways. First, the methods outlined in the book are discussed
within the context of a data mining process that starts with defining the problem
and ends with deployment of the results. Second, each method is outlined in
detail, including a discussion of when and how they should be used. Third, examples
are provided throughout to further illustrate how the methods operate. Fourth, there is
a detailed discussion of applications in which these approaches are being applied
today. Finally, software called TraceisTM, which can be used with the examples in
the book or with data sets of interest to the reader, is available for downloading
from a companion website.

The book is aimed towards professionals in any discipline who are interested in
making decisions from data in addition to understanding how data mining can be
used. Undergraduate and graduate students taking courses in data mining through a
Bachelors, Masters, or MBA program could use the book as a resource. The approaches
have been outlined to an extent that software professionals could use the book to gain
insight into the principles of data visualization and advanced data mining algorithms
in order to help in the development of new software products.

The book is organized into five chapters and two appendices.

† Chapter 1 Introduction: The first chapter reviews the material in the book
within the context of the overall data mining process. Defining the problem,
preparing the data, performing the analysis, and deploying any results are criti-
cal steps. When and how each of the methods described in the book can be
applied to this process are described.

† Chapter 2 Data Visualization: The second chapter reviews principles and
methods for understanding and communicating data through the use of data
visualizations. The chapter outlines ways of visualizing single variables, the
relationships between two or more variables, groupings in the data, along
with dynamic approaches to interacting with the data through graphical user
interfaces.

† Chapter 3 Clustering: Chapter 3 outlines in detail common approaches to
clustering data sets and includes a detailed explanation of methods for deter-
mining the distance between observations and techniques for clustering obser-
vations. Three popular clustering approaches are discussed: agglomerative
hierarchical clustering, partitioned-based clustering, and fuzzy clustering.
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† Chapter 4 Predictive Analytics: The ability to calculate estimates and
forecasts or assign observations to specific classes using models is discussed.
The chapter discusses how to build and assess models, along with a series
of methods that can be used in a variety of situations to build models:
multiple linear regression, discriminant analysis, logistic regression, and
naive Bayes.

† Chapter 5 Applications: This chapter provides a snapshot of some of the cur-
rent uses of data mining in a variety of industries. It also offers an overview of
how data mining can be applied to topics where the primary focus is not tables
of data, such as the processing of text documents and chemicals. A number of
case studies illustrating the use of data mining are outlined.

† Appendix A Matrices: This section provides an overview of matrices to use in
connection with Chapters 3 and 4.

† Appendix B Software: This appendix provides a detailed explanation of the
capabilities of the Traceis software, along with a discussion of how to
access, run, and use the software.

It is assumed that the reader of the book has a basic understanding of the
principles of data mining. An overview has been given in a previously published
book called Making Sense of Data: A Practical Guide to Exploratory Data
Analysis and Data Mining, which outlines a simple process along with a core set
of data analysis and data mining methods to use, explores additional and
more advanced data mining methods, and describes the application of data mining
in different areas.

Data mining issues and approaches from a number of perspectives are
discussed in this book. The visualization and exploration of data is an essential com-
ponent and the principles of graphics design and visualization of data are outlined to
most effectively see and communicate the contents of the data. The methods outlined
in Chapters 3 and 4 are described in such a way as to be used immediately in connec-
tion with any problem. The software provides a complementary tool, since one of the
best ways to understand how these methods works is to use them on data, especially
your own data. The Further Readings section of each chapter suggests material for
further reading on topics related to the chapter.

Companion Website

Accompanying this book is a website:

http://www.makingsenseofdata.com/

containing additional resources to help in understanding how to implement the
topics covered in this book. Included on the website is a software download for
the Traceis software.
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C H A P T E R1
INTRODUCTION

1.1 OVERVIEW

A growing number of fields, in particular the fields of business and science, are
turning to data mining to make sense of large volumes of data. Financial institutions,
manufacturing companies, and government agencies are just a few of the types of
organizations using data mining. Data mining is also being used to address a wide
range of problems, such as managing financial portfolios, optimizing marketing
campaigns, and identifying insurance fraud. The adoption of data mining techniques
is driven by a combination of competitive pressure, the availability of large amounts
of data, and ever increasing computing power. Organizations that apply it to critical
operations achieve significant returns. The use of a process helps ensure that the
results from data mining projects translate into actionable and profitable business
decisions. The following chapter summarizes four steps necessary to complete a
data mining project: (1) definition, (2) preparation, (3) analysis, and (4) deployment.
The methods discussed in this book are reviewed within this context. This chapter
concludes with an outline of the book’s content and suggestions for further reading.

1.2 DEFINITION

The first step in any data mining process is to define and plan the project. The follow-
ing summarizes issues to consider when defining a project:

† Objectives: Articulating the overriding business or scientific objective of
the data mining project is an important first step. Based on this objective, it
is also important to specify the success criteria to be measured upon delivery.
The project should be divided into a series of goals that can be achieved using
available data or data acquired from other sources. These objectives and goals
should be understood by everyone working on the project or having an interest
in the project’s results.

† Deliverables: Specifying exactly what is going to be delivered sets the correct
expectation for the project. Examples of deliverables include a report outlining
the results of the analysis or a predictive model (a mathematical model that esti-
mates critical data) integrated within an operational system. Deliverables also
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identify who will use the results of the analysis and how they will be delivered.
Consider criteria such as the accuracy of the predictive model, the time required
to compute, or whether the predictions must be explained.

† Roles and Responsibilities: Most data mining projects involve a cross-
disciplinary team that includes (1) experts in data analysis and data mining, (2)
experts in the subject matter, (3) information technology professionals, and
(4) representatives from the community who will make use of the analysis.
Including interested parties will help overcome any potential difficulties
associated with user acceptance or deployment.

† Project Plan: An assessment should be made of the current situation, including
the source and quality of the data, any other assumptions relating to the data
(such as licensing restrictions or a need to protect the confidentiality of the
data), any constraints connected to the project (such as software, hardware,
or budget limitations), or any other issues that may be important to the final
deliverables. A timetable of events should be implemented, including the
different stages of the project, along with deliverables at each stage. The plan
should allot time for cross-team education and progress reviews.
Contingencies should be built into the plan in case unexpected events arise.
The timetable can be used to generate a budget for the project. This budget,
in conjunction with any anticipated financial benefits, can form the basis for
a cost benefit analysis.

1.3 PREPARATION

1.3.1 Overview

Preparing the data for a data mining exercise can be one of the most time-consuming
activities; however, it is critical to the project’s success. The quality of the data accu-
mulated and prepared will be the single most influential factor in determining the
quality of the analysis results. In addition, understanding the contents of the data
set in detail will be invaluable when it comes to mining the data. The following sec-
tion outlines issues to consider when accessing and preparing a data set. The format
of different sources is reviewed and includes data tables and nontabular information
(such as text documents). Methods to categorize and describe any variables are out-
lined, including a discussion regarding the scale the data is measured on. A variety of
descriptive statistics are discussed for use in understanding the data. Approaches to
handling inconsistent or problematic data values are reviewed. As part of the prep-
aration of the data, methods to reduce the number of variables in the data set
should be considered, along with methods for transforming the data that match the
problem more closely or to use with the analysis methods. These methods are
reviewed. Finally, only a sample of the data set may be required for the analysis,
and techniques for segmenting the data are outlined.
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1.3.2 Accessing Tabular Data

Tabular information is often used directly in the data mining project. This data can be
taken directly from an operational database system, such as an ERP (enterprise
resource planning) system, a CRM (customer relationship management) system,
SCM (supply chain management) system, or databases containing various trans-
actions. Other common sources of data include surveys, results from experiments,
or data collected directly from devices. Where internal data is not sufficient for
the objective of the data mining exercise, data from other sources may need to be
acquired and carefully integrated with existing data. In all of these situations, the
data would be formatted as a table of observations with information on different
variables of interest. If not, the data should be processed into a tabular format.

Preparing the data may include joining separate relational tables, or concatenat-
ing data sources; for example, combining tables that cover different periods in time.
In addition, each row in the table should relate to the entity of the project, such as a
customer. Where multiple rows relate to this entity of interest, generating a summary
table may help in the data mining exercise. Generating this table may involve calcu-
lating summarized data from the original data, using computations such as sum, mode
(most common value), average, or counts (number of observations). For example,
a table may comprise individual customer transactions, yet the focus of the data
mining exercise is the customer, as opposed to the individual transactions. Each
row in the table should refer to a customer, and additional columns should be gener-
ated by summarizing the rows from the original table, such as total sales per product.
This summary table will now replace the original table in the data mining exercise.

Many organizations have invested heavily in creating a high-quality, consoli-
dated repository of information necessary for supporting decision-making. These
repositories make use of data from operational systems or other sources. Data ware-
houses are an example of an integrated and central corporate-wide repository of
decision-support information that is regularly updated. Data marts are generally smal-
ler in scope than data warehouses and usually contain information related to a single
business unit. An important accompanying component is a metadata repository,
which contains information about the data. Examples of metadata include where
the data came from and what units of measurements were used.

1.3.3 Accessing Unstructured Data

In manysituations, the data to be used in the data mining project may not be represented as
a table. For example, the data to analyze may be a collection of documents or a sequence
of page clicks on a particular web site. Converting this type of data into a tabular format
will be necessary in order to utilize many of the data mining approaches described later in
this book. Chapter 5 describes the use of nontabular data in more detail.

1.3.4 Understanding the Variables and Observations

Once the project has been defined and the data acquired, the first step is usually to
understand the content in more detail. Consulting with experts who have knowledge
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about how the data was collected as well as the meaning of the data is invaluable.
Certain assumptions may have been built into the data, for example specific values
may have particular meanings. Or certain variables may have been derived from
others, and it will be important to understand how they were derived. Having a
thorough understanding of the subject matter pertaining to the data set helps to
explain why specific relationships are present and what these relationships mean.

(As an aside, throughout this book variables are presented in italics.)
An important initial categorization of the variables is the scale on which they

are measured. Nominal and ordinal scales refer to variables that are categorical,
that is, they have a limited number of possible values. The difference is that ordinal
variables are ordered. The variable color which could take values black, white, red,
and so on, would be an example of a nominal variable. The variable sales, whose
values are low, medium, and high, would be an example of an ordinal scale, since
there is an order to the values. Interval and ratio scales refer to variables that can
take any continuous numeric value; however, ratio scales have a natural zero value,
allowing for a calculation of a ratio. Temperature measured in Fahrenheit or Celsius
is an example of an interval scale, as it can take any continuous value within a
range. Since a zero value does not represent the absence of temperature, it is classified
as an interval scale. However, temperatures measured in degrees Kelvin would be an
example of a ratio scale, since zero is the lowest temperature. In addition, a bank balance
would be an example of a ratio scale, since zero means no value.

In addition to describing the scale on which the individual variables were
measured, it is also important to understand the frequency distribution of the variable
(in the case of interval or ratio scaled variables) or the various categories that a nom-
inal or ordinal scaled variable may take. Variables are usually examined to understand
the following:

† Central Tendency: A number of measures for the central tendency of a variable
can be calculated, including the mean or average value, the median or the
middle number based on an ordering of all values, and the mode or the most
common value. Since the mean is sensitive to outliers, the trimmed mean
may be considered which refers to a mean calculated after excluding extreme
values. In addition, median values are often used to best represent a central
value in situations involving outliers or skewed data.

† Variation: Different numbers show the variation of the data set’s distribution.
The minimum and maximum values describe the entire range of the variable.
Calculating the values for the different quartiles is helpful, and the calculation
determines the points at which 25% (Q1), 50% (Q2), and 75% (Q3) are found
in the ordered values. The variance and standard deviation are usually calculated
to quantify the data distribution. Assuming a normal distribution, in the case of
standard deviation, approximately 68% of all observations fall within one stan-
dard deviation of the mean, and approximately 95% of all observations fall
within two standard deviations of the mean.

† Shape: There are a number of metrics that define the shape and symmetry
of the frequency distribution, including skewness, a measure of whether a vari-
able is skewed to the left or right, and kurtosis, a measure of whether a variable
has a flat or pointed central peak.
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Graphs help to visualize the central tendency, the distribution, and the shape of
the frequency distribution, as well as to identify any outliers. A number of graphs
that are useful in summarizing variables include: frequency histograms, bar charts,
frequency polygrams, and box plots. These visualizations are covered in detail in
the section on univariate visualizations in Chapter 2.

Figure 1.1 illustrates a series of statistics calculated for a particular variable
( percentage body fat). In this example, the variable contains 251 observations, and
the most commonly occurring value is 20.4 (mode), the median is 19.2, and the aver-
age or mean value is 19.1. The variable ranges from 0 to 47.5, with the point at which
25% of the ordered values occurring at 12.4, 50% at 19.2 (or median), and 75%
at 25.3. The variance is calculated to be 69.6, and the standard deviation at 8.34,
that is, approximately 68% of observations occur +8.34 from the mean (10.76
28.44), and approximately 95% of observations occur +16.68 from the mean
(2.42 35.78).

At this point it is worthwhile taking a digression to explain terms used for
the different roles variables play in building a prediction model. The response vari-
able, also referred to as the dependent variable, the outcome, or y-variable, is the vari-
able any model will attempt to predict. Independent variables, also referred to as
descriptors, predictors, or x-variables, are the fields that will be used in building
the model. Labels, also referred to as record identification, or primary key, is a
unique value corresponding to each individual row in the table. Other variables
may be present in the table that will not be used in any model, but which can still
be used in explanations.

During this stage it is also helpful to begin exploring the data to better under-
stand its features. Summary tables, matrices of different graphs, along with interactive
techniques such as brushing, are critical data exploration tools. These tools are
described in Chapter 2 on data visualization. Grouping the data is also helpful to
understand the general categories of observations present in the set. The visualization
of groups is presented in Chapter 2, and an in-depth discussion of clustering and
grouping methods is provided in Chapter 3.

Figure 1.1 Descriptive statistics and a histogram
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1.3.5 Data Cleaning

Having extracted a table containing observations (represented as rows) and variables
(represented as columns), the next step is to clean the data table, which often takes a
considerable amount of time. Some common cleaning operations include identifying
(1) errors, (2) entries with no data, and (3) entries with missing data. Errors and
missing values may be attributable to the original collection, the transmission of
the information, or the result of the preparation process.

Values are often missing from the data table, but a data mining approach cannot
proceed until this issue is resolved. There are five options: (1) remove the entire
observation from the data table; (2) remove the variable (containing the missing
values) from the data table; (3) replace the missing value manually; (4) replace the
value with a computed value, for example, the variable’s mean or mode value; and
(5) replace the entry with a predicted value based on a generated model using
other fields in the data table. Different approaches for generating predictions are
described in Chapter 4 on Predictive Analytics. The choice depends on the data set
and the problem being addressed. For example, if most of the missing values are
found in a single variable, then removing this variable may be a better option than
removing the individual observations.

A similar situation to missing values occurs when a variable that is intended to
be treated as a numeric variable contains text values, or specific numbers that have
specific meanings. Again, the five choices previously outlined above may be used;
however, the text or the specific number value may suggest numeric values to replace
them with. Another example is a numeric variable where values below a threshold
value are assigned a text string such as “,10�� 9.” A solution for this case
might be to replace the string with the number 0.000000001.

Another problem occurs when values within the data tables are incorrect. The
value may be problematic as a result of an equipment malfunction or a data entry
error. There are a number of ways to help identify errors in the data. Outliers in
the data may be errors and can be found using a variety of methods based on the vari-
able, for example, calculating a z-score for each value that represents the number of
standard deviations the value is away from the mean. Values greater than plus or
minus three may be considered outliers. In addition, plotting the data using a box
plot or a frequency histogram can often identify data values that significantly deviate
from the mean. For variables that are particularly noisy, that is they contain some
degree of errors, replacing the variable with a binned version that more accurately rep-
resents the variation of the data may be necessary. This process is called data smooth-
ing. Other methods, such as data visualization, clustering, and regression models
(described in Chapters 2 4) can also be useful to identify anomalous observations
that do not look similar to other observations or that do not fit a trend observed for
the majority of the variable’s observations.

Looking for values that deviate from the mean works well for numeric variables;
however, a different strategy is required to handle categorical data, especially where all
data values are nonnumeric. Looking at the list of all possible values a variable can take
helps to eliminate and/or consolidate values where more than one value has the same
meaning, which might happen, for example, in a categorical variable. Even though a
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data value may look different from other values in the variable, the data may, in fact, be
correct, so it is important to consult with an expert.

Problems can also arise when data from multiple sources is integrated and incon-
sistencies are introduced. Different sources may have values for the same variables;
however, the values may have been recorded using different units of measurement
and hence must be standardized to a single unit of measurement. Different sources
of data may contain the same observation. Where the same observation has the same
values for all variables, removing one of the observations is the most straightforward
approach. Where the observations have different values, choosing which observation
to keep is more challenging and best decided by someone who is able to assess the most
trusted source. Other common problems when dealing with integrated data concern
assessing how up-to-date the observations are and whether the quality is the same
across different sources of data. Where observations are taken from different sources,
retaining information on the source for future reference is prudent.

1.3.6 Transformation

In many situations, it is necessary to create new variables from existing columns of
data to reflect more closely the purpose of the project or to enhance the quality of
the predictions. For example, creating a new column age from an existing column
date of birth, or computing an average from a series of experimental runs might be
helpful. The data may also need to be transformed in order to be used with a particular
analysis technique. There are six common transformations:

1. Creating Dummy Variables: A variable measured on a nominal or ordinal scale
is usually converted into a series of dummy variables for use within data mining
methods that require numbers. Each category is usually converted to a variable
with one of two values: a one when the value is present in the observation and
a zero when it is absent. Since this method would generate a new variable for
each category, care should be taken when using all these columns with various
methods, such as multiple linear regression or logistic regression (discussed in
Chapter 4). These methods are sensitive to issues relating to colinearity (a
high degree of correlation between variables), and hence including all variables
would introduce a problem for these methods. When a final variable can be
deduced from the other variables, there is no need to include the final variable.
For example, the variable color whose values are black, white, and red could
be translated into three dummy variables, one for each of the three values.
Each observation would have a value one for the color corresponding to the
row, and zero corresponding to the other two colors. Since the red column can
be derived from the other two columns, only black and white columns are
needed. The use of dummy variables is illustrated in the case studies in
Chapter 5.

2. Reducing the Number of Categories: A categorical variable may be comprised
of many different values, and using the variable directly may not draw any
meaningful conclusions; however, generalizing the values may generate
useful conclusions. This can be achieved through a manual definition of a
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concept hierarchy or assisted using automated approaches. References in the
further readings section of this chapter discuss this further, along with
Appendix B (Software). For example, a variable comprising street names
may be more valuable if it is generalized to the town containing those streets.
This may be achieved through the construction of a concept hierarchy, where
individual street names map on to the town names. In this case, there will be
more observations for a particular town which hopefully result in more
interesting conclusions.

3. Create Bins for Continuous Variables: To facilitate the use of a continuous
variable within methods that require categorical variables (such as the associ-
ation rules method), or to perform data smoothing, a continuous variable
could be divided into a series of contiguous ranges or bins. Each of the obser-
vation’s values would then be assigned to a specific bin, and potentially assigned
a value such as the bin’s mean. For example, a variable temperature with values
ranging from 0 to 100, may be divided into a series of bins: 0 10, 10 20, and so
on. A value could be assigned as each bin’s mid-point. There are a variety of
manual or automated approaches, and references to them are provided in the
further readings section of this chapter, as well as in cases in Chapter 5
(Applications) and Appendix B (Software).

4. Mapping the Data to a Normal Distribution: Certain modeling approaches
require that the frequency distribution of the variables approximate a normal
distribution, or a bell-shaped curve. There are a number of common transform-
ations that can be applied to a variable to achieve this. For example, a Box-Cox
transformation or a log transformation may be used to generate a new variable
where the data more closely follows the bell-shaped curve of a normal
distribution. The Further Reading section, as well as Appendix B, provide
more details related to this subject.

5. Standardizing the Variables to a Consistent Range: In order to treat different
variables with the same weight, a scheme for normalizing the variables to the
same range is often used, such as between zero and one. Min max, z-score,
and decimal scaling are examples of approaches to normalizing data to a specific,
common range. As an example, a data set containing the variables age and bank
account balance may be standardized using the min max normalization to a
consistent range of zero to one. These new variables make possible the consistent
treatment of variables within methods, such as clustering, which utilizes dis-
tances between variables. If these two variables were not on a standard range,
the bank account balance variable would, for the most part, be more influential
than the age variable.

6. Calculating Terms to Enhance Prediction: To improve prediction, certain vari-
ables may be combined, or the variables may be transformed using some sort of
mathematical operation. This may, for example, allow the more accurate mod-
eling of nonlinear relationships. Some commonly used mathematical operations
include square, cube, and square root. Appendix B and the Further Reading sec-
tion of this chapter provide more details and references on this subject.

8 CHAPTER 1 INTRODUCTION



1.3.7 Variable Reduction

A data set with a large number of variables can present a number of issues within data
mining techniques, including the problems of over fitting and model reliability, as
well as potential computational problems. In this situation, selecting a subset of
the variables will be important. This is sometimes referred to as feature selection.
An expert with knowledge of the subject matter may be able to identify easily the
variables that are not relevant to the problem. Variables that contain the same
value for almost all observations do not provide much value and could be removed
at this stage. In addition, categorical variables where the majority of observations
have different values might not be useful within the analysis, but they may be
useful to define the individual observations.

Understanding how the data will be used in a deployment scenario can also be
useful in determining which variables to use. For example, the same independent
variables must be gathered within a deployment scenario. However, it may be not
practical to collect all the necessary data values, so it may be best to eliminate
these variables at the beginning. For example, when developing a model to estimate
hypertension propensity within a large patient population, a training set may include a
variable percentage body fat as a relevant variable. The accurate measurement of this
variable, however, is costly, and collecting it for the target patient population would
be prohibitive. Surrogates, such as a skin-fold measurement, may be collected more
easily and could be used instead of percentage body fat.

Additionally, examining the relationships between the variables is important.
When building predictive models, there should be little relationship between the vari-
ables used to build the model. Strong relationships between the independent variables
and the response variables are important and can be used to prioritize the independent
variables. Bivariate data visualizations, such as scatterplot matrices, are important
tools, and they are described in greater detail in Chapter 2. Calculating a correlation
coefficient for each pair of continuous variables and presenting these calculations in
a table can also be helpful in understanding the linear relationships between all pairs
of variables, as shown in Fig. 1.2. For example, there is a strong negative linear
relationship between percentage body fat and density ( 0.988), a strong positive
linear relationship between abdomen (cm) and chest (cm) (0.916), and a lack of a
clear linear relationship between height (inches) and percentage body fat since it is
close to zero.

Figure 1.2 Matrix of correlation coefficients
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Other techniques, such as principal component analysis, can also be used to
reduce the number of continuous variables. The relationships between categorical inde-
pendent variables can be assessed using statistical tests, such as the chi-square test.
Decision trees are also useful for understanding important variables. Those chosen
by the method that generates the tree are likely to be important variables to retain.
Subsets of variables can also be assessed when optimizing the parameters to a data
mining algorithm. For example, different combinations of independent variables
can be used to build models, and those giving the best results should be retained.
Methods for selecting variables are discussed in Chapter 4 on Predictive Analytics.

1.3.8 Segmentation

Using the entire data set is not always necessary, or even practical, especially when the
number of observations is large. It may be possible to draw the same conclusions more
quickly using a subset. There are a number of ways of selecting subsets. For example,
using a random selection is often a good approach. Another method is to partition the
data, using methods such as clustering, and then select an observation from each partition.
This ensures the selection is representative of the entire collection of observations.

In situations where the objective of the project is to model a rare event, it is
often useful to bias the selection of observations towards incorporating examples
of this rare event in combination with random observations of the remaining collec-
tion. This method is called balanced sampling, where the response variable is used to
drive how the partitioning of the data set takes place. For example, when building a
model to predict insurance fraud, an initial training data set may only contain 0.1%
fraudulent vs 99.9% nonfraudulent claims. Since the objective is the identification
of fraudulent claims, a new training set may be constructed containing a better bal-
ance of fraudulent to nonfraudulent examples. This approach would result in
improved models for identifying fraudulent claims; however, it may reduce the over-
all accuracy of the model. This is an acceptable compromise in this situation.

When samples are pulled from a larger set of data, comparing statistics of the sample
to the original set is important. The minimum and maximum values, along with mean,
median, and mode value, as well as variance and standard deviations, are a good start
for comparing continuous variables. Statistical tests, such as the t-test, can also be used
to assess the significance of any difference. When looking at categorical variables, the dis-
tribution across the different values should be similar. Generating a contingency table for
the two sets can also provide insight into the distribution across different categories, and
the chi-square test can be useful to quantify the differences.

Chapter 3 details methods for dividing a data set into groups, Chapter 5
discusses applications where this segmentation is needed, and Appendix B outlines
software used to accomplish this.

1.3.9 Preparing Data to Apply

Having spent considerable effort preparing a data set ready to be modeled, it is also
important to prepare the data set that will be scored by the prediction model in the
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same manner. The steps used to access, clean, and transform the training data should
be repeated for those variables that will be applied to the model.

1.4 ANALYSIS

1.4.1 Data Mining Tasks

Once a data set is acquired and prepared for analysis, the next step is to select the
methods to use for data mining. These methods should match the problem outlined
earlier and the type of data available. The preceding exploratory data analysis will
be especially useful in prioritizing different approaches, as information relating to
data set size, level of noise, and a preliminary understanding of any patterns in the
data can help to prioritize different approaches. Data mining tasks primarily fall
into two categories:

† Descriptive: This refers to the ability to identify interesting facts, patterns,
trends, relationships, or anomalies in the data. These findings should be nontri-
vial and novel, as well as valuable and actionable, that is, the information can be
used directly in taking an action that makes a difference to the organization.
Identifying patterns or rules associated with fraudulent insurance claims
would be an example of a descriptive data mining task.

† Predictive: This refers to the development of a model of some phenomena that
will enable the estimation of values or prediction of future events with confi-
dence. For example, a prediction model could be generated to predict whether
a cell phone subscriber is likely to change service providers in the near future. A
predictive model is typically a mathematical equation that is able to calculate a
value of interest (response) based on a series of independent variables.

Descriptive data mining usually involves grouping the data and making assessments
of the groups in various ways. Some common descriptive data mining tasks are:

† Associations: Finding associations between multiple items of interest within a
data set is used widely in a variety of situations, including data mining retail or
marketing data. For example, online retailers determine product combinations pur-
chased by the same set of customers. These associations are subsequently used
when a shopper purchases specific products, and alternatives are then suggested
(based on the identified associations). Techniques such as association rules or
decision trees are useful in identifying associations within the data. These
approaches are covered in Myatt (2007).

† Segmentation: Dividing a data set into multiple groups that share some
common characteristic is useful in many situations, such as partitioning the
market for a product based on customer profiles. These partitions help in devel-
oping targeted marketing campaigns directed towards these groups. Clustering
methods are widely used to divide data sets into groups of related observations,
and different approaches are described in Chapter 3.
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† Outliers: In many situations, identifying unusual observations is the primary
focus of the data mining exercise. For example, the problem may be defined
as identifying fraudulent credit card activity; that is, transactions that do not
follow an established pattern. Again, clustering methods may be employed to
identify groups of observations; however, smaller groups would now be
considered more interesting, since they are a reflection of unusual patterns of
activity. Clustering methods are discussed in Chapter 3.

The two primary predictive tasks are:

† Classification: This is when a model is built to predict a categorical variable.
For example, the model may predict whether a customer will or will not buy
a particular product. Methods such as logistic regression, discriminant analysis,
and naive Bayes classifiers are often used and these methods are outlined in
Chapter 4 on Predictive Analytics.

† Regression: This is also referred to as estimation, forecasting, or prediction,
and it refers to building models that generate an estimation or prediction for
a continuous variable. A model that predicts the sales for a given quarter
would be an example of a regression predictive task. Methods such as multiple
linear regression are often used for this task and are discussed in Chapter 4.

1.4.2 Optimization

Any data mining analysis, whether it is finding patterns and trends or building a pre-
dictive model, will involve an iterative process of trial-and-error in order to find an
optimal solution. This optimization process revolves around adjusting the following
in a controlled manner:

† Methods: To accomplish a data mining task, many potential approaches may
be applied; however, it is not necessarily known in advance which method
will generate an optimal solution. It is therefore common to try different
approaches and select the one that produces the best results according to the
success criteria established at the start of the project.

† Independent Variables: Even though the list of possible independent variables
may have been selected in the data preparation step, one way to optimize any
data mining exercise is to use different combinations of independent variables.
The simplest combinations of independent variables that produced the optimal
predictive accuracy should be used in the final model.

† Parameters: Many data mining methods require parameters to be set that adjust
exactly how the approach operates. Adjusting these parameters can often result
in an improvement in the quality of the results.

1.4.3 Evaluation

In order to assess which data mining approach is the most promising, it is important to
objectively and consistently assess the various options. Evaluating the different
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approaches also helps set expectations concerning possible performance levels during
deployment. In evaluating a predictive model, different data sets should be used to
build the model and to test the performance of the model, thus ensuring that the
model has not overfitted the data set from which it is learning. Chapter 4 on
Predictive Analytics outlines methods for assessing generated models. Assessment
of the results from descriptive data mining approaches should reflect the objective
of the data mining exercise.

1.4.4 Model Forensics

Spending time looking at a working model to understand when or why a model does or
does not work is instructive, especially looking at the false positives and false negatives.
Clustering, pulling out rules associated with these errors, and visualizing the data, may be
useful in understanding when and why the model failed. Exploring this data may also
help to understand whether additional data should be collected. Data visualizations
and clustering approaches, described in Chapters 2 and 3, are useful tools to accomplish
model forensics as well as to help communicate the results.

1.5 DEPLOYMENT

The discussion so far has focused on defining and planning the project, acquiring and
preparing the data, and performing the analysis. The results from any analysis then
need to be translated into tangible actions that impact the organization, as described
at the start of the project. Any report resulting from the analysis should make its case
and present the evidence clearly. Including the user of the report as an interested party
to the analysis will help ensure that the results are readily understandable and usable
by the final recipient.

One effective method of deploying the solution is to incorporate the analysis
within existing systems, such as ERP or CRM systems, that are routinely used by
the targeted end-users. Examples include using scores relating to products specific
customers are likely to buy within a CRM system or using an insurance risk model
within online insurance purchasing systems to provide instant insurance quotes.
Integrating any externally developed models into the end-user system may require
adoption of appropriate standards such as Object Linking and Embedding,
Database for Data Mining (Data Mining OLE DB) which is an application program-
ming interface for relational databases (described in Netz et al., 2001), Java Data
Mining application programming interface standard (JSR-73 API; discussed in
Hornick et al., 2006), and Predictive Model Markup Language (PMML; also
reviewed in Hornick et al., 2006). In addition, the models may need to be integrated
with current systems that are able to extract data from the current database and build
the models automatically.

Other issues to consider when planning a deployment include:

† Model Life Time: A model may have a limited lifespan. For example, a model
that predicts stock performance may only be useful for a limited time period,
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and it will need to be rebuilt regularly with current data in order to remain
useful.

† Privacy Issues: The underlying data used to build models or identify trends may
contain sensitive data, such as information identifying specific customers.
These identities should not be made available to end users of the analysis,
and only aggregated information should be provided.

† Training: Training end-users on how to interpret the results of any analysis may
be important. The end-user may also require help in using the results in the most
effective manner.

† Measuring and Monitoring: The models or analysis generated as a result of the
project may have met specific evaluation metrics. When these models are
deployed into practical situations, the results may be different for other
unanticipated reasons. Measuring the success of the project in the field
may expose an issue unrelated to the model performance that impacts the
deployed results.

1.6 OUTLINE OF BOOK

1.6.1 Overview

The remainder of this book outlines methods for visual data mining, clustering, and
predictive analytics. It also discusses how data mining is being used and describes
a software application that can be used to get direct experience with the methods
in the book.

1.6.2 Data Visualization

Visualization is a central part of exploratory data analysis. Data analysts use visual-
ization to examine, scrutinize, and validate their analysis before they report their find-
ings. Decision makers use visualization to explore and question the findings before
they develop action plans. Each group of people using the data needs different
graphics and visualization tools to do its work.

Producing high quality data graphics or creating interactive exploratory
software requires an understanding of the design principles of graphics and user
interfaces. Words, numbers, typography, color, and graphical shapes must be com-
bined and embedded in an interactive system in particular ways to show the data
simply, clearly, and honestly.

There are a variety of tables and data graphics for presenting quantitative data.
These include histograms and box plots for displaying one variable (univariate data),
scatterplots for displaying two variables (bivariate data), and a variety of multipanel
graphics for displaying many variables (multivariate data). Visualization tools like
dendrograms and cluster image maps provide views of data that has been clustered
into groups. Finally, these tools become more powerful when they include advances
from interactive visualization.
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1.6.3 Clustering

Clustering is a commonly used approach for segmenting a data set into groups of
related observations. It is used to understand the data set and to generate groups in
situations where the primary objective of the analysis is segmentation. A critical com-
ponent in any data clustering exercises is an assessment of the distance between two
observations. Numerous methods exist for making this determination of distance.
These methods are based on the type of data being clustered; that is, whether the
data set contains continuous variables, binary variables, nonbinary categorical
variables, or a mixture of these variable types. A series of distance calculations are
described in detail in Chapter 3.

There are a number of approaches to forming groups of observations.
Hierarchical approaches organize the individual observations based on their
relationship to other observations and groups within the data set. There are differ-
ent ways of generating this hierarchy based on the method in which observations
and groups in the data are combined. The approach provides a detailed hierarch-
ical outline of the relationships in the data, usually presented as a dendrogram. It
also provides a flexible way of generating groups directly from this dendrogram.
Despite its flexibility, hierarchical approaches are limited in the number of obser-
vations they are able to process, and the processing is often time consuming.
Partitioned-based approaches are a faster method for identifying clusters; how-
ever, they do not hierarchically organize the data set. The number of clusters to
generate must be known prior to clustering. An alternative method, referred to
as fuzzy clustering, does not partition the data into mutually exclusive groups,
as with a hierarchical or partitioned approach. Instead, all observations belong
to all groups to varying degrees. A score is associated with each observation
reflecting the degree to which the observation belongs in each group. Like parti-
tioned-based methods, fuzzy clustering approaches require that the number of
groups be set prior to clustering.

1.6.4 Predictive Analytics

The focus of many data mining projects is making predictions to support decisions.
There are numerous approaches to building these models, and all can be customized
to varying degrees. It is important to understand what types of models, as well as what
parameter changes, improve or decrease the performance of the predictions. This
assessment should account for how well the different models operate using data
separate from the data used to build the model. Dividing the data into sets for
building and testing the model is important, and common approaches are outlined
in Chapter 4. Metrics for assessment of both regression and classification models
are described.

Building models from the fewest number of independent variables is often
ideal. Principal component analysis is one method to understand the contribution
of a series of variables to the total variation in the data set. A number of popular
classification and regression methods are described in Chapter 4, including multiple
linear regression, discriminant analysis, logistic regression, and naive Bayes. Multiple
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linear regression identifies the linear relationship between a series of independent
variables and a single response variable. Discriminant analysis is a classification
approach that assigns observations to classes using the linear boundaries between
the classes. Logistic regression can be used to build models where the response is
a binary variable. In addition, the method calculates the probability that a response
value is positive. Finally, naive Bayes is a classification approach that only works
with categorical variables and it is particularly useful when applied to large data
sets. These methods are described in detail, including an analysis of when they
work best and what assumptions are required for each.

1.6.5 Applications

Data mining is being applied to a diverse range of applications and industries.
Chapter 5 outlines a number of common uses for data mining, along with specific
applications in the following industries: finance, insurance, retail, telecommunica-
tions, manufacturing, entertainment, government, and healthcare. A number of case
studies are outlined and the process is described in more detail for two projects: a
data set related to genes and a data set related to automobile loans. This chapter
also outlines a number of approaches to data mining some commonly used nontabular
sources, including text documents as well as chemicals. The chapter includes a
description of how to extract information from this content, along with how to
organize the content for decision-making.

1.6.6 Software

A software program called Traceis (available from http://www.makingsenseofdata.
com/) has been created for use in combination with the descriptions of the various
methods provided in the book. It is described in Appendix B. The software provides mul-
tiple tools for preparing the data, generating statistics, visualizing variables, and grouping
observations, as well as building prediction models. The software can be used to gain
hands-on experience on a range of data mining techniques in one package.

1.7 SUMMARY

The preceding chapter described a data mining process that includes the following
steps:

1. Definition: This step includes defining the objectives of the exercise, the deli-
verables, the roles and responsibilities of the team members, and producing a
plan to execute.

2. Preparation: The data set to be analyzed needs to be collected from potentially
different sources. It is important to understand the content of the variables and
define how the data will be used in the final analysis. The data should be
cleaned and transformations applied that will improve the quality of the final
results. Efforts should be made to reduce the number of variables in the set
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to analyze. A subset of observations may also be needed to streamline the
analysis.

3. Analysis: Based on an understanding of the problem and the data available,
a series of data mining options should be investigated, such as those
summarized in Table 1.1. Experiments to optimize the different approaches,
through a variety of parameter settings and variable selections, should be inves-
tigated and the most promising one should be selected.

4. Deployment: Having implemented the analysis, carefully planning deployment
to ensure the results are translated into benefits to the business is the final step.

1.8 FURTHER READING

A number of published process models outline the data mining steps, including
CRISP DM (http://www.crisp-dm.org/) and SEMMA (http://www.sas.com/
technologies/analytics/datamining/miner/semma.html). In addition, a number of
books discuss the data mining process further, including Shumueli et al. (2007)
and Myatt (2007). The following resources provide more information on preparing
a data set for data mining: Han and Kamber (2006), Refaat (2007), Pyle (1999,
2003), Dasu and Johnson (2003), Witten and Frank (2003), Hoaglin et al. (2000),
and Shumueli et al. (2007). A discussion concerning technology standards for
deployment of data mining applications can be found in Hornick et al. (2006).

TABLE 1.1 Data Mining Tasks

Type of task Specific task Description Example methods

Descriptive Association Finding associations between
multiple items of interest

Association rules, decision
trees, data visualization

Segmentation Dividing a data set into groups
that share common
characteristics

Clustering, decision trees

Outliers Identifying usual observations Clustering, data visualization

Predictive Classification A predictive model that predicts a
categorical variable

Discriminant analysis,
logistic regression, naive
Bayes

Regression A predictive model that predicts a
continuous variable

Multiple linear regression
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C H A P T E R 2
DATA VISUALIZATION

2.1 OVERVIEW

Data visualization is critical to understanding the content of the data. Data analysts
use visualization to examine, scrutinize, and validate their analysis before they report
their findings. People making decisions use visualization to explore and question
the findings before they develop action plans. Each group needs different graphics
and visualization tools to do its work.

Data sets often come from a file and are typically displayed as a table or
spreadsheet of rows and columns. If the data set is small and all the data can be dis-
played on a single page, it can be analyzed or the results presented as a table. But as
the number of rows (observations) and columns (variables) increase, long lists of
numbers and statistical summarizations of them do not tell us all we need to know.
Data graphics help us understand the context and the detail together. They help us
think visually and provide a powerful way to reason about large data sets.

While data graphics are centuries old, the graphical user interfaces available
today on every computer enable interactive visualization tools to be included in
information software products. For example, online newspapers contain interactive
graphics that allow the reader to interactively explore data, such as the demographics
of voters in elections, or the candidates’ source of income. Visualization tools for data
sets with many variables, in particular, must display relationships of three or more
variables on paper or display screens that are two-dimensional surfaces. An under-
standing of the basic design principles of data graphics and user interfaces will help
to use and customize data graphics to support decision-making. This chapter reviews
these principles.

Organizing graphics and visualization tools is not easy. They depict a variety
of data types including numbers and categories. Different tools are used in different
ways throughout the data analysis process: to look at summary statistics, examine the
shapes of distributions, identify outliers, look for relationships, find groups of similar
objects, and communicate results. They are used in different application areas to
display, for example, the results of document searches in information retrieval or the
correlation of patterns of gene expression with chemical structure activity in genomic
research. The use of data visualization within software programs enable interactive
techniques such as data brushing, which is the ability to simultaneously highlight the
same data in several data graphics to allow an open-ended exploration of the data set.

Making Sense of Data II. By Glenn J. Myatt and Wayne P. Johnson
Copyright # 2009 John Wiley & Sons, Inc.
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In this chapter, a section on the principles of graphics design and graph construc-
tion is initially presented. The next section looks at tables, an old and refined graphical
form. The next three sections focus on graphical visualization tools for quantitative
data. These tools are classified by the number of variables they display, and tools
for one variable (univariate data), two variables (bivariate data), or many variables
(multivariate data) are discussed. The sections on quantitative data are followed by a
section on tools to visualize groups of observations. Finally, there is a section that
discusses techniques for interacting with data visualizations to explore the data.

Data graphics and visualization tools can be easily found in print or on the
internet. Many are examples of how not to communicate your statistical analysis or
results, but some deserve careful study. Those commonly used by data analysts are
included, in addition to some that are not well known but are effective in niche areas
or written about by well-known statisticians and scientists: John Tukey, William
Cleveland, Edward Tufte, Howard Wainer, and John Weinstein. These less well-
known graphics illustrate certain design principles and provide examples from specific
application areas of how easily visualization can reveal structure hidden within data
or generate ideas for new designs.

2.2 VISUALIZATION DESIGN PRINCIPLES

Good design begins by asking who will use the results, why, and how? Since this
chapter is about the visualization of data, it will focus only on those performing
the analysis and the consumers of their analysis who are people making critical
decisions. Data graphics help make arguments, but if essential details are left out,
distorted, or hard to see, the consequences can be catastrophic. Before examining
specific data graphics and visualization tools, the construction of a commonly used
graph, the scatterplot will be reviewed. Some general principles will be described,
along with the basics of graphics design.

2.2.1 General Principles

There are several general principles to keep in mind when designing data graphics.

Show the Data Edward Tufte emphasizes that “data graphics should draw the
viewer’s attention to the sense and substance of data, not to something else” (Tufte,
1983). The representations of the data through plots of symbols that represent
values, categorical labels, lines, or shaded areas that show the change in the data,
and the numbers on scales are what is important. The grids, tick marks on scales,
reference lines that point out key events, legend keys, or explanatory text adjacent to
outliers should never get in the way of seeing the data.

Simplify Choose the graphic that most efficiently communicates the information
and draw it as simply as possible. You will know your drawing is done when you
can take nothing more away points, lines, words, symbols, shading, and grids
without losing information. For small data sets, tables or dot plots are preferable to

20 CHAPTER 2 DATA VISUALIZATION



graphics. They are easier to understand and communicate the most information. Avoid
what William Cleveland calls pop charts: pie charts, divided bar charts, and area charts
that are widely used in mass media but carry little information (Cleveland, 1994). The
same information is communicated in three ways in Fig. 2.1. Notice that the table,
which displays the same information in a form more easily read and compared than
the pie chart, takes up about half the space.

Reduce Clutter Clutter comes from two sources. The first source is the marks on
the drawing that simply crowd the space or obscure the data. If grid lines are needed at
all, draw thin lines in a light shade of gray. Remove unnecessary tick marks. Look for
redundant marks or shading representing the same number. For example, the height
of the line and the use of the number above the bar in Fig. 2.2 restate the number 32.5.
The second source of clutter is decorations and artistic embellishments.

Revise Any good writer will tell you that the hard work of writing is rewriting.
Graphic designers also revise to increase the amount of ink devoted to the data.
The panels in Fig. 2.3 show the redesign of a scatterplot. In the second panel, we
removed the grid. In the third panel, we removed unnecessary tick marks.

Figure 2.1 Presenting data as a table, a pie chart, and a dot plot. The pie chart was generated
by Microsoft Excel 2007. Source: NACDS Foundation Chain Pharmacy Industry Profile,
Table 130, 2006
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Be Honest A graphic tells the truth when “the visual representation of the data is
consistent with the numerical representation” (Tufte, 1998). Here are some ways that
graphics can distort data:

† Adjust the aspect ratio of the graph to overstate or understate trends. The
aspect ratio is the height of the data rectangle, the rectangle just inside the hori-
zontal and vertical scales in which the points are plotted, divided by the width.
By increasing or decreasing the height while keeping the width constant, one
can make dramatic changes to the perceived slope of a line. In Fig. 2.4, note
how much more the curve in the panel on the right appears to rise compared
to the panel on the left.

† Manipulate the scale. This distortion is achieved through the use of a scale
with irregular intervals. For example, consider the histograms in Fig. 2.5 of
the income distribution, which shows the percentage of families with incomes
in each class interval. In the panel on the left, a unit of the horizontal scale means
two different things: a class interval size of $1,000 or a class interval size of
$5,000. When the scale is corrected, as in the panel on the right, the percentage
of families with incomes between $5,000 and $10,000 is now being fairly com-
pared with the other class intervals. Another example of distortion is a large scale
range that hides important variation in the data, as in Fig. 2.6.

Figure 2.3 Revising graphs to show more data

Figure 2.2 Histogram bar that redundantly encodes its height
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2.2.2 Graphics Design

Data graphics show measured quantities and categories using a variety of graphical
elements: points, lines, numbers, symbols, words, shading, and color. The designers
of data graphics rely on knowledge from the field of graphics design. In this section
the principles of page layout which help us structure the legend, scales, title, caption,

Figure 2.4 Making a more dramatic statement by adjusting only the aspect ratio

Figure 2.5 An irregular scale distorts magnitudes of unit values

Figure 2.6 Increasing the range of a scale may hide important detail
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and other parts of the graph are discussed. Discoveries about our visual systems that
give us insight into ways to encode the data are examined. Finally, aspects of color
and typography that are important in drawing graphics are discussed.

When designing the graph layout, it is important to be aware of the visual hier-
archy, the visual flow, and the grouping of elements.

Visual Hierarchy Every page has a visual hierarchy. A visual hierarchy makes
some content appear more important than other content. This can be done by:
(1) moving the content to the upper-left corner; (2) separating different components
with white space; (3) using larger and bolder fonts; (4) using contrasting foreground
and background colors; (5) aligning it with other elements; and (6) indenting it, which
logically moves the indented content to a deeper level in the hierarchy than the
element above it.

Visual Flow Visual flow describes the path the eye follows as it scans the page. It is
typical to read top-to-bottom and left-to-right (in Western cultures), but this can be
controlled by creating focal points. Just as underlined words are used for emphasis,
focal points are a graphical way of identifying what is important. Focal points attract
the eye and the eye follows them from strongest to weakest. Some ways to create focal
points include larger and bolder fonts, spots of contrasting color, and separation by
white space.

Grouping Graphical elements are perceived as being part of a group when they
are close together ( proximity), have similar color or shading (similarity), are aligned
along an invisible line or curve (continuity), or are positioned so that they appear to be
within a closed form (closure). These Gestalt principles (named after the psychologi-
cal theory which held that perception is influenced not only by the elements but also
by context) can be applied to create a visual hierarchy or focal points in a graph with-
out adding additional graphical elements. Figure 2.7 illustrates these four principles.
In the top-left panel (proximity), although the shapes are irregularly sized, the eye
sees two groups because the shapes in each group are close together with plenty of
white space between the groups. In the top-right panel (similarity), the eye separates
into two groups the shapes with similar color: the three light gray shapes and the two
dark gray shapes. In the bottom-left panel (continuity), the eye separates the left group
of shapes from the right by tracing the continuous edge along the left side of the right
group and along the right side of the left group of shapes. In the bottom-right panel
(closure), the eye traces the implicit rectangle that encloses the group of shapes in the
right half of the panel.

In addition to the Gestalt principles which help us design layout, experimental
psychologists have discovered other things about our visual systems that are useful in
deciding how to graphically encode data values. Certain visual features such as color,
texture, position and alignment, orientation, and size are processed almost instan-
taneously. These features are called preattentive variables and they give us options
for encoding data so that we can find, compare, and group them without much
mental effort.
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Before illustrating preattentive variables, let us do two experiments that show pre-
attentive processing in action. First, in Fig. 2.8, count the number of dark gray circles.

Now do the same in Fig. 2.9, which has twice as many circles.
This first experiment compared the search time it took you to find target circles

encoded with the color preattentive variable in sets of circles. The time for each
search should be more or less constant, because the searching is done in the
brain’s visual system in a preattentive stage when it is processing what you see.

In the second experiment shown in Fig. 2.10 of monotonous text, try to find all
the numbers greater than or equal to 1.

Now try this again for Fig. 2.11.

Figure 2.8 Graph with dark circles

Figure 2.7 Illustrating Gestalt principles

Figure 2.9 Graph with additional dark circles
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The first experiment measured the time it took you to search unencoded data;
the second measured the time to search encoded data. The search through monoto-
nous text took longer because you needed to look at and consider each number.
With the target text encoded as texture (bold font) and size (larger font), the search
was almost instantaneous. Figure 2.12 graphically summarizes six preattentive
variables.

Color Color is used to encode the data, to shade the bars or plotting symbols, and
to color the background of different parts of a graph, reference lines, or grids. The
most important rule in choosing color is to never do anything that makes it impossible
to read.

† Use contrasting colors for foregrounds and backgrounds. Light on dark or
dark on light colors should be used. User interface designers use white back-
grounds to indicate areas that can be edited. Dark backgrounds are rarely
used because user interface controls such as text fields or buttons are usually
not visually pleasing when overlaid on a dark background.

† Never use red or green if these two colors must be compared. People who are
colorblind will not see the difference. Those colors affect about 10% of men
and 1% of women.

Figure 2.10 Graph of unencoded random numbers

Figure 2.11 Graph of random numbers that encodes critical numbers with font size and
texture
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† Never put small blue text on red or orange backgrounds or vice versa. In fact,
text cannot be read that is in a color complementary (on opposite sides of the
color wheel) to the color of its background.

† Use bold colors sparingly. Bold colors, as well as highly saturated colors such
as red, yellow, or green, tire the eye when you look at them for long periods of
time. Use them sparingly. Light, muted colors are preferred for large areas like
backgrounds.

Typography In graphs, small text is used for labels alongside tick marks, legend
keys, and plotted symbols; normal text is used in titles and captions. As with
color, choose fonts (the technical term is typefaces) that are easy to read. Text in
small point sizes are easiest to read on computer displays when drawn in sans-serif
fonts. Computer displays lack the resolution of the printed medium. In print, serif
fonts look better. The more letters are differentiated from each other, the easier

Figure 2.12 Six preattentive variables. If color figures were used, color would be broken into
three variables: hue, brightness, and saturation
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they are to read; therefore avoid using words in all caps except for headlines and
short text.

2.2.3 Anatomy of a Graph

Show the data and reduce clutter are helpful principles but it helps to know how to
apply them when drawing a graph. This section describes the graphical elements and
the characteristics of a graph that clearly and succinctly show the important features
of the data.

Figure 2.13 shows the annotated graph introduced by William Cleveland
(Cleveland, 1994). It defines the terminology that will be used throughout this chap-
ter. The following discussion explains each element along with aspects of good graph
design. It starts with the data rectangle, the innermost element, and works outward to
the edges of the graph.

Data Rectangle This is the canvas on which data is plotted and the lines fitted to
the data are drawn. It should be noted that the data rectangle seen in Fig. 2.13 is never

Figure 2.13 Anatomy of a graph
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drawn but is only shown to identify the drawing area for plotting the graph. If the data
values have labels that cannot be drawn adjacent to the plotted symbols without
obscuring the data, consider using a different graphic. Reference lines and grids, if
they are used at all, should be light and thin lines colored in a shade of gray that
do not draw attention to themselves. If two data sets are superimposed in the data
rectangle, it should be easy to visually separate the plotting symbols and connecting
lines that belong to each set.

Plotting Symbol and Data Label The choice of plotting symbol affects how con-
spicuous the point will be especially if lines connect the points and how easily
points can be visually found and grouped into categories if different symbols have
been used to encode a value’s category as well as its magnitude. Filled circles
make a good choice unless more than one datum has the same value and they will
be plotted on top of each other. For this case, an unfilled circle can be combined
with a jittering technique that randomly offsets each circle from its normal position
to help single out data with the same value.

Scale-line Rectangle The data rectangle and its surrounding margin is the scale-
line rectangle, or everything just inside the frame. As discussed in the graphics design
section above, white space is important for separation. The margins separate the data
from the scales and keep the data points particularly outliers in the corners or points
that might otherwise fall on the horizontal and vertical scales from getting lost. The
data labels in the interior should not interfere with the quantitative data. Keys should
be kept outside and usually above the frame; notes should be put in the caption or in
the text outside this rectangle.

Reference Lines To note important values, use a reference line or reference grid
but do not allow it to interfere with the data. If the graph consists of multiple panels,
be sure the line or grid is repeated in the same position in every panel.

Scales and Scale Labels Choose the scales so that the data rectangle fills up as
much of the scale-line rectangle as possible, but always allow for small margins.
Zero need not be included on a scale showing magnitude. If the scale is logarithmic,
make sure to mention it in the scale label. If the scales represent quantitative
values, the horizontal scale, read left-to-right, should have lower values to the left
of higher values; the vertical scale, read bottom-to-top, should have lower values
below higher values.

When scatterplots are used to see if one variable is dependent on another, the
graph is drawn in a certain way. By convention, the response or dependent variable
is plotted on the vertical scale and the independent variable is plotted against the
horizontal scale. Pairs of scale lines should be used for each variable. The vertical
scale on the left should be reflected on the right; the horizontal scale below should
be reflected above.

Sometimes there are large intervals with no data and it is necessary to break the
scale to conserve space. This should be done by breaking the graph into separate
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panels that have a gap between; the numerical values on two sides of a break should
not be connected.

It is sometimes useful to use two different scales above and below, or to the
left and the right in order to visually index a data point by either scale. For example,
the horizontal scale above might be a person’s age while the one below might be the
person’s birth year.

Tick Marks and Labels Tick marks should include the range of data. They should
point outwards so that they do not encroach on the margin inside the scale-line
rectangle and get entangled with data. A few tick marks and labels go a long way
to providing a sense for the range and magnitude of the scale.

Key and Data Label Sometimes when displaying multivariate data in scatterplots,
values for two quantitative variables are encoded using the position of a symbol along
the horizontal and vertical scales. If a third variable contains categorical data, each
symbol may further encode that category’s value using a different shape or color.
The keys and associated data labels that explain which category is associated with
which shape or color should be generated. The set of keys and their labels comprise
the legend. Place legends outside but close to the scale-line rectangle, preferably
above the rectangle since the eye, in a top-down visual flow, naturally stops first
on the legend before it moves into the data rectangle.

Title and Caption The title provides the headline. The caption explains and the
explanation should be comprehensive and informative.

Aspect Ratio The aspect ratio is not a graphical element you will find in Fig. 2.13
but it is an important topic in the design of graphs. The aspect ratio is the height of the
data rectangle not the scale-line rectangle divided by the width.

The aspect ratio determines how well our eye can detect the rate of change of
a curved line fitted to the data in a graph. Experiments in visual perception show
that our ability to see changes as our eye moves along the line is greatest when the
aspect ratio of the curve is “banked to 458” (Cleveland, 1993). “Banking to 458” is
a technique that adjusts the aspect ratio in order to optimize your ability to perceive
the changes in a curve. Like the banking of a road as it curves in a new direction,
“banking” adjusts the aspect ratio so that subtle changes can be more easily seen
as the eye travels along the fitted lines within. Figure 2.14 illustrates the idea,
and further explanations can be found in William Cleveland’s books (Cleveland,
1993, 1994).

Panels A goal of graphing is to make comparisons. If the data are not too complex,
this may be done by plotting the data points of several data sets in the data rectangle
of the same panel. However, to avoid clutter, it may be necessary to split the graph
into separate panels. In Fig. 2.15, the graph we started with has been split into two
panels that show each set of points and their connected lines as juxtaposed panels
rather than superimposed in one panel as in Fig. 2.13.
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Figure 2.14 The top left panel is banked to 458

Figure 2.15 The graph in Fig. 2.13 redrawn as separate panels
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Finally, it is important to keep in mind whether the purpose of the design is to
communicate and illustrate results or explore the data. There are no rules that can be
rigidly applied and it may take several iterations and some experimentation before
getting it right.

2.3 TABLES

Tables are not graphics but they are effective in many situations: for showing exact
numerical values, for small data sets, and “when the data presentation requires
many localized comparisons” (Tufte, 1983).

2.3.1 Simple Tables

Simple data are often best presented by a simple table. However, especially when
working with spreadsheets, the temptation is to reach for a pie chart to add to a
Powerpoint presentation. Sorted tables communicate more information, more quickly,
than pie charts. Pie charts force the viewer to find unaligned categorical labels inside
or outside of irregularly spaced sectors within a circle, or decode colors of sectors
using a legend. Carefully consider which alternatives best communicates what the
data shows.

A good table should make the patterns and exceptions of the data obvious. It
should summarize and explain the main features. Howard Wainer provides an
example of how even a simple table can be transformed to reveal hidden structure
in the data (Wainer, 2005). His example starts with a table of how nine Supreme
Court justices voted on six important cases that was printed in The New York
Times in July 2000. Both the rows and the columns in the table were sorted alphabe-
tically by topic and justice. Except for Justice O’Connor, who voted with the majority
on every case, no other pattern is apparent. Figure 2.16 shows the progression of
rearranging a table of voting records of the Supreme Court justices.

Rearranging the columns and rows reveals something more in this data. To
rearrange the table, start by cutting it into columns and then rearranging the columns
in an order that gives highest priority to placing gray squares as far left as possible,
starting with the top row and working to the bottom. The table will eventually look
like the third panel in Fig. 2.16. Similarly, the table can be reassembled and cut into
rows. Repeating the same procedure as for the columns, rearrange the rows in an order
that gives highest priority to placing gray squares as high as possible, starting with the
left column and working to the right. The last panel in Fig. 2.16 makes the pattern and
exception obvious. Two groups of justices tend to vote together on certain kinds of
cases. The exception is O’Connor who, as the swing justice, votes with the majority.

Something else to notice in the final table of Fig. 2.16 is that it is no longer
sorted alphabetically. Ordering a table alphabetically may provide an index to the
table, but almost always reveals nothing more. Even for a simple table with labels
in the first column, the table should be ordered by the variable with the most
important data values, as in Fig. 2.17.
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2.3.2 Summary Tables

A summary table displays summary statistics for observations that have been grouped
by a single variable. A common format for a summary table is shown in Table 2.1.

Each row is a group of observations. The variable used to group observations in
the table is in the first column; the number of observations grouped, or the count, is in
the second column. Each remaining column contains the values of a summary statistic

Figure 2.16 Rearranging the columns and rows of a table of U.S. Supreme Court justice
rulings reveals groups of judicial orientation

Figure 2.17 A table ordered by its most important content, not alphabetically
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applied to each group of observations for some variable in the data set. Common
statistics used to summarize the values of a variable for the observations in a group
are the mean, median, sum, minimum, maximum, or standard deviation. The value of
a cell for example, Statistic (x) for group a1 in Table 2.1 is the descriptive statistic
calculated over the values in the group, for the selected variable. Table 2.2 summar-
izes the mpg for vehicles (observations) grouped by the number of cylinders in the
vehicle’s engine. Summary tables are discussed in more detail in the first book in
this series (Myatt, 2007).

2.3.3 Two-Way Contingency Tables

It is often important to view how frequencies of observations are distributed across the
categories or ranges of numeric values in two variables. For example, suppose two vari-
ables are being analyzed in a data set of car types: number of cylinders and miles per
gallon. You may want to know how many types of cars with four cylinders travel less
than 30 miles per gallon of gas or how many types of cars with more than four cylinders
meet the new 35 miles per gallon standards. A two-way contingency table helps answer
these kinds of questions. The general format of a contingency table is shown in
Table 2.3 and a contingency table for this example in Table 2.4. Two-way contingency
tables are discussed in more detail in the first book of this series (Myatt, 2007).

2.3.4 Supertables

Elaborate, carefully designed tables that Edward Tufte calls supertables can summarize
and show detail, and be as engaging as a well-written news article. A good example

TABLE 2.1 Format for a Summary Table

Variable a Count Variable x summary Variable y summary . . .

a1 Count (a1) Statistic (x) for group a1 Statistic ( y) for group a1 . . .

a2 Count (a2) Statistic (x) for group a2 Statistic ( y) for group a2 . . .

a3 Count (a3) Statistic (x) for group a3 Statistic ( y) for group a3 . . .

. . . . . . . . . . . . . . .

an Count (an) Statistic (x) for group an Statistic ( y) for group an . . .

TABLE 2.2 Summary Table Showing Average mpg for Different
Cylinder Vehicles

Cylinders Count Mean, mpg

3.0 4 20.55

4.0 199 29.28

5.0 3 27.37

6.0 83 19.97

8.0 103 14.96
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Figure 2.18 Portion of supertable showing voter profiles for the 1976 and 1980 U.S. elections

TABLE 2.3 Contingency Table Format

Variable x Totals

Variable y

Value 1 Value 2
Value 1 Count11 Count21 Count1þ
Value 2 Count12 Count22 Count2þ

Countþ1 Countþ2 Total count

TABLE 2.4 Contingency Table Summarizing Counts of Cars Based on the Number of
Cylinders and Ranges of Fuel Efficiency (mpg)

Cylinders ¼ 3 Cylinders ¼ 4 Cylinders ¼ 5 Cylinders ¼ 6 Cylinders ¼ 8 Totals

mpg (5.0 10.0) 0 0 0 0 1 1

mpg (10.0 15.0) 0 0 0 0 52 52

mpg (15.0 20.0) 2 4 0 47 45 98

mpg (20.0 25.0) 2 39 1 29 4 75

mpg (25.0 30.0) 0 70 1 4 1 76

mpg (30.0 35.0) 0 53 0 2 0 55

mpg (35.0 40.0) 0 25 1 1 0 27

mpg (40.0 45.0) 0 7 0 0 0 7

mpg (45.0 50.0) 0 1 0 0 0 1

Totals 4 199 3 83 103 392
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of this is a table designed by Tufte for The New York Times that shows a profile
of voters in the 1976 and 1980 U.S. presidential elections. Portions of this table
are shown in Fig. 2.18 (Tufte, 1983). In the original table, 410 numbers are shown
in 20 clusters of tabular paragraphs. You can learn how the vote split across various
demographic categories and how the voting patterns changed between 1976 and 1980
by reading across the line or down within each cluster of three to seven lines.

2.4 UNIVARIATE DATA VISUALIZATION

2.4.1 Bar Chart

A bar chart is simply a graphical way to quickly make qualitative comparisons of a
set of values by drawing each value in the set as a rectangular bar with a length pro-
portional to the value it represents. A bar twice as long has twice the value; a bar just a
little longer than the next one represents a value just a little higher.

The bar chart in Fig. 2.19 shows part of a profile from sections of a con-
gressional report on the membership of the 110th U.S. Congress. A member of
congress senator, representative, or delegate is an observation. Each bar represents

Figure 2.19 Partial profile of members of the 110th U.S. Congress. Members include
senators, representatives, and delegates. Source: CRS Report for Congress, #RS22555; http://
www.senate.gov/reference/resources/pdf/RS22555.pdf
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the number of members in a specific category. Related categories are grouped and
separated with white space. For a general bar chart, the bars may be presented in
any order. The bars are ordered within each group from most to least members.
They are drawn horizontally to make it easy to read the categories labeling the
bars. Only six tick marks are included at intervals of 50, which makes for round num-
bers with few digits. The tick marks are far enough apart so that the white reference
lines that cut through the longer bars can be seen distinctly and aligned with the
horizontal scale.

With a quick scan of the chart, a number of facts can be easily deduced, such as
that the independents break ties in the senate, the Democrats have a sizeable majority
in the house, there are just under 200 house Republicans, and there are about twice as
many women as African Americans.

2.4.2 Histograms

Histograms, when used for presentation, address questions like how many different
car models could I choose to buy that travel over 30 miles per gallon of gas? Or
how many inefficient models are being offered compared with highly efficient
models? Histograms help answer these kinds of questions by displaying a frequency
distribution of a data set’s variables. Before histograms are discussed, it will be
necessary to describe frequency distributions and how to create them.

A frequency distribution groups the data values into classes or categories. The
number of observations in each class is the class frequency a count of how many
observations are in the class. A class for all but continuous variables is easy to
identify. It is a category for nominal or ordinal variables, such as product names or
the list low, medium, high. It is an integer for discrete quantitative variables, such
as 2, 3 or 4 for the variable family size. But for continuous variables, a class
means something different.

Consider a data set of cars with the variable mpg that has values from 9.0, the
smallest, to 44.6, the largest. The difference between the smallest and the largest is the
range. Some of the values within the range are spread out but others are tightly clus-
tered around a specific value, such as 32.0, 32.1, 32.2, 32.4, 32.7, 32.8, and 32.9.
Trying to display each of these as separate bars in a histogram would not be effective,
since seven bars of almost imperceptible height would have to be placed side-by-side.
This is solved by dividing the range into class intervals and assigning each value that
falls within the interval to that class.

The number of class intervals you choose affects the width of the interval and,
when the histogram is drawn, the length of the bars. With too many intervals the bars
become so narrow that the histogram’s contour may be too ragged to see. Fewer inter-
vals lose some detail but the wider bars make it easier to see the histogram’s shape.
You can see the differences in Fig. 2.20.

How many to use is determined largely through trial and error by watching how
the histogram changes shape after each adjustment. Consider starting with somewhere
between 5 and 20 intervals, depending on the data set. When choosing the number of
intervals, also consider the endpoint values. For the mpg variable, nine were selected
so that the labels at the scale’s tick marks, which mark the boundaries of each

2.4 UNIVARIATE DATA VISUALIZATION 37



interval, were divisible by 5. It is easy to read 5, 10, 15, . . . , 50; less so if the labels
are 9, 13, 17, . . . , 45.

Once the number of intervals has been determined, along with the endpoint values,
you need to adopt an endpoint convention for values that fall on the boundary between
two intervals. In Fig. 2.21, to which class should 15.0 be added: the “10 15” or the
“15 20” class? The choice depends on the selected endpoint convention. For endpoint
conventions where the left endpoint, for example, 10, is included in the interval but the
right endpoint, 15, is excluded, you add the observation to the “15 20” class.

There is a family of histograms that are commonly used: (1) the frequency
histogram, (2) the relative frequency histogram, (3) the density histogram, and (4) the
cumulative frequency histogram.

The frequency histogram displays the frequency of each class. The height of
the bar represents the size of each class and is an absolute number. The vertical
scale shows the count of the number of observations. Figure 2.22 shows frequency
histograms for categorical and continuous variables.

The relative frequency histogram in Fig. 2.23 shows the fraction of times the
values in the class appear. The height of the bar represents the ratio of the class
size to the total size of the set, where the vertical scale is the relative frequency,
that is a number from 0 to 1.

relative frequency of class ¼ class size=size of total set

The sum of the heights, or the relative frequencies, of all classes in this histogram is 1
(0.1 þ 0.2 þ 0.4 þ 0.3 1).

The density histogram in Fig. 2.24, closely related to the relative frequency,
allows comparison of unit distributions across class intervals that vary in width
(Freedman et al., 1998). The height of a bar represents the density, or how many

Figure 2.20 Histogram contours with more or fewer class intervals

Figure 2.21 Effect of class interval endpoint convention
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observations are in each unit of the histogram within the class represented by the bar.
The area of the bar its density per unit width times the width of the interval
represents the relative frequency of the class. The vertical scale is a density scale.

density of class ¼ relative frequency
width of class

¼ class size
class width � size of total set

The sum of the areas is 1:

(0:02 � 5) þ (0:04 � 5) þ (0:07 � 10) ¼ 0:1 þ 0:2 þ 0:7 ¼ 1

The cumulative frequency histogram shows the frequency of elements below a certain
value. In this histogram, each bar represents the cumulative count of its class size
added to the class sizes of all classes with smaller values. In Fig. 2.25, the income
of 70 of 100 units, people or families, is less than $15,000. The size of the last
class equals the count of all observations in the set.

Figure 2.22 Frequency histograms of categorical and continuous variables

Figure 2.23 Relative frequency histogram
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While a histogram helps see the frequency of the categories for a nominal or
ordinal variable, it is most helpful for discrete and continuous quantitative variables,
such as family size or income. During data exploration and analysis it is important
to see other aspects of the frequency distribution and descriptive statistics of the
variable: its shape, the location of its center, whether it is skewed toward one side or
the other, peaks in the distribution, and any outliers. The first book of the series, in
the section on descriptive statistics, shows how the frequency histogram is used for
this kind of analysis (Myatt, 2007).

Figure 2.25 Cumulative frequency histogram

Figure 2.24 Density histogram
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2.4.3 Frequency Polygram

A frequency polygram displays identical information to the frequency histogram. The
histogram bars are replaced by connected points, as in Fig. 2.26.

2.4.4 Box Plots

The box plot is an analyst’s tool used only for interval and ratio variables that graphi-
cally displays a five-number summary of a batch of numbers. To illustrate the box
plot, we use a data set, shown in Table 2.5, of the population of the 21 largest metro-
politan statistical areas of the United States in 2006. It is taken from a spreadsheet
downloaded from the U.S. Census Bureau.

In Fig. 2.27, an annotated box plot, shown in the middle of the figure, summar-
izes the population of the largest metropolitan areas. Above the box plot is a list of the
values ordered from smallest to largest. In the list of numbers at the top of the graphic,
the important five values, highlighted in bold, are labeled and indexed to mark the
corresponding vertical bars in the box plot.

Below the plot is part of the horizontal scale on which the population sizes have
been plotted. Ordinarily the horizontal scale would lie empty below the box plot, but
here the plotted values help to understand how the shape of the box, the position of
the vertical bars, and the length of its extensions give the analyst a feel for the features
of the data.

The five vertical bars mark the location on the horizontal scale of key markers
in the ordered set of values for the variable. The two that lie on the outermost
fringes mark the location of the smallest and the largest values. The other three
form part of a box that defines the region containing the central half, or midspread,
of the data. This region is known as the fourth-spread because it contains the
lower and upper fourths. The width of the box shows the spread. The crossbar of
the box, or the median, is a measure of the location of the center of the distribution.
The position of the median relative to the lower and upper quartiles gives an indi-
cation of skewness: the symmetry or balance of the distribution curve around the
center. In our example, the median’s position to the right indicates that those data

Figure 2.26 Frequency polygram showing the distribution of body fat
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TABLE 2.5 Population of the 21 Largest Metropolitan Statistical
Areas in the United States

New York Northern New Jersey Long Island, NY NJ PA 18,818,536

Los Angeles Long Beach Santa Ana, CA 12,950,129

Chicago Naperville Joliet, IL IN WI 9,505,748

Dallas Fort Worth Arlington, TX 6,003,967

Philadelphia Camden Wilmington, PA NJ DE MD 5,826,742

Houston Sugar Land Baytown, TX 5,539,949

Miami Fort Lauderdale Miami Beach, FL 5,463,857

Washington Arlington Alexandria, DC VA MD WV 5,290,400

Atlanta Sandy Springs Marietta, GA 5,138,223

Detroit Warren Livonia, MI 4,468,966

Boston Cambridge Quincy, MA NH 4,455,217

San Francisco Oakland Fremont, CA 4,180,027

Phoenix Mesa Scottsdale, AZ 4,039,182

Riverside San Bernardino Ontario, CA 4,026,135

Seattle Tacoma Bellevue, WA 3,263,497

Minneapolis St Paul Bloomington, MN WI 3,175,041

San Diego Carlsbad San Marcos, CA 2,941,454

St Louis, MO IL 2,796,368

Tampa St Petersburg Clearwater, FL 2,697,731

Baltimore Towson, MD 2,658,405

Denver Aurora, CO 2,408,750

Source: http://www.census.gov/population/www/estimates/metro general/2006/CBSA-
EST2006-02.xls

Figure 2.27 An annotated box plot of the 21 largest metropolitan statistical areas in the
United States in 2006. Source: http://www.census.gov/compendia/statab/tables/
08s0020.xls
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values in the upper fourth are gathered together more so than the ones in the lower
fourth, moving them upwards.

The horizontal lines that stretch toward the horizons on the left and right show
how the tails of the distribution curve taper off. In our example, the horizontal lines
extend to the smallest and largest value; in more advanced analysis, outlier cutoffs
may be imposed to limit their reach. Sometimes, values too far out throw off statistical
calculations. If so, it is helpful to define outlier cutoff limits. For example, one
definition might be to use the closest values on either end just within the cutoffs,
where the cutoffs are defined as:

upper outlier cutoff ¼ upper quartile þ (1:5 � box width)

lower outlier cutoff ¼ lower quartile � (1:5 � box width)

The revised box plot based on that definition for our example would be redrawn as
shown in Fig. 2.28.

Notice that although we excluded two values from the box plot range, the pos-
ition of the box and the median did not change. That is because the fourths and the
median resist the impact of the outliers. In contrast, the dot, which represents the
mean, shifted far to the left because the recalculation of the mean was significantly
influenced by just two elements, New York and Los Angeles, which are no longer
included in the recalculation.

2.4.5 Dot Plot

When the measurements of a quantitative variable are labeled and the data set is
small, a dot plot displays the labeled data better than bar charts, divided bar charts,
or pie charts. Not only are the long bars of a bar chart visually imposing, but they
only work when the baseline of the graph is zero, otherwise the length of the bar
is meaningless. Because the labels and scales of a dot plot flow horizontally, they
can easily be read from left-to-right. If the rows are ordered by the values rather
than alphabetically, patterns and trends can be identified. Figure 2.29 shows the
population of the fifteen largest metropolitan statistical areas from Table 2.5.

There are other ways to extend dot plots. For example, to compare the
population from the previous decade, superimpose different plotting symbols to
show the values from each set.

Figure 2.28 The revised box plot after imposing outlier cut off limits
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2.4.6 Stem-and-Leaf Plot

The stem-and-leaf plot displays a histogram of a batch of numbers using digits in the
numbers to form the tick mark label and the bar. By splitting the digits of each
number into a stem and a leaf, and using the leaf a single digit to help draw the histo-
gram bar, the numeric values can be seen along with their distribution. No information is
lost. It is used during exploratory analysis to see the batch of numbers as a whole and to
notice the same features: symmetry, spread, outliers, concentrations, and gaps.

The construction of the plot is best explained with an example. The data in
Table 2.6 is extracted from a spreadsheet produced by the FBI and shows homicide
rates in 2005 by state, ordered by homicide rate.

Figure 2.29 A dot plot of the 15 largest metropolitan statistical areas in the United States

TABLE 2.6 Homicide Rates per 100,000 by U.S. State in 2005, Ordered by Rate

North Dakota 1.1 Massachusetts 2.7 New Jersey 4.8 Arizona 6.9

Iowa 1.3 Wyoming 2.7 Florida 5.0 California 6.9

Vermont 1.3 Colorado 2.9 Ohio 5.1 Missouri 6.9

Maine 1.4 Connecticut 2.9 Oklahoma 5.3 Tennessee 7.2

New Hampshire 1.4 Rhode Island 3.2 Indiana 5.7 Mississippi 7.3

Hawaii 1.9 Washington 3.3 Illinois 6.0 New Mexico 7.4

Montana 1.9 Wisconsin 3.5 Michigan 6.1 South Carolina 7.4

Minnesota 2.2 Kansas 3.7 Pennsylvania 6.1 Alabama 8.2

Oregon 2.2 Delaware 4.4 Virginia 6.1 Nevada 8.5

South Dakota 2.3 West 4.4 Georgia 6.2 Louisiana 9.9
Utah 2.3 New York 4.5 Texas 6.2 Maryland 9.9
Idaho 2.4 Kentucky 4.6 Arkansas 6.7

Nebraska 2.5 Alaska 4.8 North
Carolina

6.7

Source: http://www.fbi.gov/ucr/05cius/data/table 05.html
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First start by noting the lowest and highest values: 1.1 in North Dakota and 9.9
in Louisiana and Maryland. To create the stem-and-leaf plot, each value between 1.1
and 9.9 will be split into two parts: a stem and a leaf. The stem will become the base
of the histogram and each leaf will be added to the histogram bar. But, looking at the
numbers as strings of digits, between which place-values should the numbers
be split? The digits to the left of the selected place-value will become the stem; the
digit, just one, to the right becomes the leaf. It should be noted that, by choosing
to have more than one digit to the right of the split, the leaf number should be rounded
so that only one digit remains. In our example, values between the ones and the tenths
place-values are split, as shown in Fig. 2.30.

Next create the bases for the histogram bars by writing all integers between the
lowest and highest stem numbers to the left of the splitting bar as shown in the left
panel of Fig. 2.31. Then traverse the list of states, adding each leaf digit to its corre-
sponding stem. So for North Dakota, add 1 next to stem 1; for Iowa, add 3 next to
stem 1; for Vermont, add 3 next to stem 1; and so on. Since the homicide rates
were ordered, the leaf digits will naturally be ordered from 0 to 9 as they are added

Figure 2.30 Splitting the values of homicide rates between the ones place and tenths place

Figure 2.31 Constructing a stem and leaf plot
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to the histogram bar. The middle panel of Fig. 2.31 shows the results after adding the
homicide rates for North Dakota, Iowa, and Vermont; the right panel shows the
results after adding all 50 states. The result is a histogram where digits are both con-
tent and building material for the histogram bars. The shape of the homicide rates for
all 50 states and specific values can be seen in this graphic.

2.4.7 Quantile Plot

The quantile plot, or q-plot, helps visualize the distribution of a variable through the
use of a scatterplot. Scatterplots are discussed in the next section. q-plots also set the
stage for quantile quantile plots, or q q plots, used to compare distributions of
different groups of the same variable or of two different variables.

We illustrate the q-plot by looking at a variable, X, of 15 randomly generated
numbers, as seen in Table 2.7. The values of X are ordered from smallest to largest.

One way to see the distribution would be to plot each value on the vertical scale
against some function of the index of X on the horizontal scale. In Fig. 2.32, two
scales are shown. The first scale is based on i, where i ranges from 1 to N and N
is the size of the variable, or 15 in our example. However, using the index for the
horizontal scale will not enable the distributions of two variables to be compared.

Instead of a scale based on the index values, a normalized scale called an
f-value scale is created. An f quantile of a distribution is a number, q, where approxi-
mately a fraction f of the values of the distribution is less than or equal to q; f is the
f-value of q. f-values based on i are calculated by the following equation:

fi ¼ (i � 0:5)=N

In this example the equation is:

fi ¼ (i � 0:5)=15

When f-values other than fi are needed, it is necessary to linearly interpolate
and extrapolate the Xi and fi values. Figure 2.33 magnifies the lower left corner
of Fig. 2.32.

TABLE 2.7 A Table of the Indices and the Corresponding
Values of a Variable X of Random Numbers

i Xi i Xi i Xi

1 0.6 6 4.2 11 5.8

2 1.1 7 4.8 12 6.6

3 2.6 8 5.3 13 8.4

4 2.6 9 5.5 14 8.6

5 4.0 10 5.7 15 9.5
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Figure 2.32 Quantile plot showing the index and f value scales on the horizontal scale

Figure 2.33 Interpolating and extrapolating the v and q values
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Notice that 0.25 has no fi-value because it falls between f4 and f5. A value of v is
required such that:

(v� 0:5)=n ¼ f

Solving for v results in:

v ¼ nf þ 0:5

To compute v in this example:

v ¼ (15)(0:25) þ 0:5 ¼ 4:25

Now it is necessary to linearly extrapolate to find the quantile q on the vertical scale.
Let k be the integer part of v and p be the fractional part. For this example k is 4 and
p is 0.25. It is known that q will fall between Xk and Xkþ1. The following general
equation uses the integer and fractional parts of v to compute q:

q ¼ (1 � p)Xk þ pXkþ1

In this example, q falls between X4 and X5, k is 4, and p is 0.25. The following
equation solves for q:

q ¼ (1 � 0:25)X4 þ 0:25X5 ¼ (0:75)(2:6) þ (0:25)(4:0) ¼ 2:95

So the f-value 0.25 has the quantile value 2.95. For more details see William
Cleveland’s books on graphing and visualizing data (Cleveland, 1993, 1994).

2.4.8 Quantile–Quantile Plot

The quantile quantile plot, or q q plot, is used to compare distributions. This is
done by plotting the quantiles of each variable or group against each other in a scat-
terplot. To illustrate a q q plot, two plots are compared that use randomly generated
numbers. To keep the example simple, both variables are of equal size. It becomes
more complicated if one set is larger and the details for handling the general case
can be found in William Cleveland’s book on graphing data (Cleveland, 1994).

The first set of 15 random numbers was shown in Table 2.7 and plotted in
Fig. 2.32. The second set is shown in Table 2.8.

TABLE 2.8 A Table of the Indices of Y and the
Corresponding Values of 15 Randomly Generated
Values Sorted from Smallest to Largest

i Yi i Yi i Yi

1 2.4 6 5.6 11 7.2

2 3.5 7 5.7 12 7.5

3 3.5 8 5.8 13 8.3

4 4.0 9 6.4 14 8.7

5 5.0 10 6.8 15 9.3
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Figure 2.34 graphs the quantiles of numbers from two columns of 15 randomly
generated numbers in an Excel spreadsheet. To plot this graph, plot the value (X1, Y1),
then (X2, Y2), and so on through (X15, Y15). A reference line with a slope of 1 has been
drawn from (0, 0) to (10, 10) to allow comparison against the ideal. If one found that
the points that lay on this line were evenly spread along it, it would likely indicate that
the random number generator was not random.

Quantile quantile plots are also used to compare the distribution of a variable
against the normal distribution. By convention, the normal distribution is plotted on
the horizontal scale and the variable’s distribution is plotted on the vertical scale.

2.5 BIVARIATE DATA VISUALIZATION

2.5.1 Scatterplot

Scatterplots are widely used for comparing one variable with another. The first book
in the series described scatterplots and showed how they provide a first look at the
data to see if there are linear or nonlinear relationships between two continuous vari-
ables, or if there is any relationship at all. The patterns of the plotted symbols on the
graph leave an impression of correlation. A computed correlation coefficient commu-
nicates information about the linear relationship of two variables: the direction of the
relationship and how strongly they relate. Figure 2.35 shows some examples.

When the pattern of points moves upward from lower-left to upper-right, the
correlation is positive; when the pattern of points moves downward from upper-left

Figure 2.34 A q q plot graphing the quantiles of 15 randomly generated numbers from data
sets 1 and 2
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to lower-right, it is negative. When the points move more or less along an imagined
straight line, the variables likely have a linear relationship; if not, the variables may
have a nonlinear relationship defined by a more complex mathematical function, or
have no relationship at all. When the points cluster tightly around an imagined
line, the correlation is likely closer to 1.0 or 1.0; the more they spread out, the
closer to 0 the correlation is likely to be.

2.6 MULTIVARIATE DATA VISUALIZATION

It is often desirable to visualize a data set with more than two variables, or multi-
variate data. The graphic that represents this data must still be drawn in print or on
computer display in two dimensions. Somehow the complexity of many dimensions
must be condensed to just two. There are a variety of ways to do this and they are
mentioned in this introduction even though most will not be covered in this book.

First snapshots within multidimensional space can be taken and organized into
a matrix of plots so that many pictures can be seen at one time. Multiple panels, such
as those found in histogram or scatterplot matrices, organize these snapshots effec-
tively. This section focuses primarily on tools like these.

A second way is to add to the two dimensions of the display or writing surface
encodings of more dimensions using preattentive variables, such as color or texture.
For example, a plotted point on a graph which has a position on a horizontal and
vertical scale might also use several different symbols and color to allow it to

Figure 2.35 Examples showing correlation relationships of two variables
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encode two more categorical variables. This is a straightforward application of the
design principles discussed in the section above.

A third way, particularly if working with three variables, is to encode the values
in a three-dimensional cartesian space with x, y, and z coordinates and leave the
responsibility of drawing the three-dimensional shapes and surfaces to software.
Three-dimensional visualization is a complex subject with its own issues and it is
not covered in this book.

Fourth, a highly dimensional space can be flattened into two dimensions in
ways that preserve geodesic distances like a cartographer who takes the Earth’s sur-
face and flattens it into maps for an atlas or contour maps for hikers. Methods such as
multidimensional scaling can be used to create two-dimensional maps that maintain
some abstract notion of distance: They use mappings from the high to low dimen-
sional space where observations that were close in high dimension space remain
close in low dimension space, and observations that were far away are still far
away. These methods also are beyond the scope of this book.

Finally, there are creative ways to encode several dimensions. The most famous
of these is an abstract map drawn by Charles Joseph Minard (1781 1870) of
Napolean’s Russian campaign of 1812 (Tufte, 1983). His drawing encodes six
variables: the position of the troops latitude and longitude in Cartesian coordi-
nates and troop size as it advanced and retreated, distance between geographical
areas, the temperature throughout the march, and dates of important events.
However, graphics like these begin to drift from data visualization into information
visualization and are not covered here.

The focus of this section is on methods to capture and see the structure of
spaces beyond two dimensions. To visualize the breadth and depth of the data’s struc-
ture, a handful of widely used multipanel tools use techniques that juxtapose multiple
panels by placing them side-by-side, or superpose data by integrating them into the
same panel.

Before discussing each tool, two design issues relevant to multipanel displays
are considered: how to organize the panels and how to compare across panels to see
subtle variation and changes between them.

Organizing Panels in a Matrix The matrix, a two-dimensional structure, is the
container for panels in multipanel displays. Sometimes panels are created that have
no relationship to each other. They are like photographs from different scenes. They
may be arranged in any order without impacting our understanding of the content.
At other times, multipanel displays are created where the panels represent subsets
that have been grouped by some ordered variable. They are like a series of related photo-
graphs taken of a panoramic view. In these cases, the convention is to use the columns
and rows as a coordinate system and to place the panels in order from left-to-right and
from bottom-to-top. These panels will be referred to by column and row number. In
Fig. 2.36, panel (1, 2) is marked 3 while panel (2, 1) is marked 2.

A data set of a choral group of sopranos, altos, tenors, and basses is used
to illustrate the multipanel coordinates system. The data includes measurements of
the heights of these singers. To compare the distributions of the singers for each of
the voice parts we create a histogram panel of the singers in each section. Because
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each panel is now associated with a pitch interval, an ordered variable which
increases from low to high, we place each panel in a cell of the matrix left-to-right
and bottom-to-top. In Fig. 2.36, the panels were ordered by this convention.

Visual Reference Grids Reference grids regularly spaced vertical and horizon-
tal gray lines that overlay the graph were historically used to plot points on a graph
or look up their values against horizontal and vertical scales. They tell us nothing
about the data. When the graphs are small and being used to summarize data, as
they are in multipanel displays, the tick marks are just as effective for look-up.
However, in some multipanel displays to be discussed in later sections where
the panels are alike in all respects, including their vertical and horizontal scales
will enhance comparison of patterns.

Grids, when used as common references across identical panels, let us see small
movements or changes that would be difficult to detect without them. For example, in
Fig. 2.37, graph B is a replicate of graph A, with the exception that a reference grid
has been superposed on it. Because the outer frame serves as its own reference point,
one might be able to detect that the bar in panel 2 compared with the bar in panel 1
shifted to the right, but it would be hard to see, without the grid, that it has also
increased in height.

2.6.1 Histogram Matrix

The histogram matrix is a tool for seeing the distribution of many variables in a data
set. Because the types and ranges of each variable differ, each panel stands on its

Figure 2.36 Distributions of heights of singers. A multipanel display of histograms where
each panel shows the distribution of the heights of the singers in each section of bass, tenor,
alto, and soprano

52 CHAPTER 2 DATA VISUALIZATION



own. Reorganizing them has no impact on being able to compare them. Figure 2.38
shows the distributions of measured properties of shell fish.

The histogram matrix can also be used to look at the distributions of one
variable over subsets of the data set, where the subsets have been grouped using
the classes of a second variable in the set, see Fig. 2.39. The distribution of each
subset is displayed in a separate panel. Because groups of the same measurement

Figure 2.37 Reference grids. An example showing the value of reference grids in comparing
small variations between panels in multipanel displays

Figure 2.38 Distribution of properties of shell fish. An example showing a histogram matrix
of measured properties of shell fish. Source: http://archive.ics.uci.edu/ml/datasets/Abalone
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are being compared, shared scales can be used, allowing us to see the shifts to the left
in distribution from bass to alto and tenor to soprano.

That the groups in the bottom row, all men, are taller than the groups in the top
row, all women, states the obvious, because histograms are not the best way to com-
pare the distributions of groups. The relationship of height and voice range cannot be
clearly seen. However, the point of this example is to illustrate the value of shared
scales and coordinated panels in providing different and useful views of the data.

Only looking at the distribution of the entire set would not have revealed the
shift in distribution across groups. The panels provide views of the same variable
taken from different angles. Although in this case just one variable was considered,
in later sections shared scales and coordinated panels will be discussed, as used in
scatterplot matrices, coplots, and small multiples, to help unravel the complexity
of data sets with many dimensions.

2.6.2 Scatterplot Matrix

A scatterplot matrix efficiently displays scatterplots of pairs of continuous variables
in a square matrix by taking advantage of economies of scale. By placing the labels
in the cells along the diagonal and moving shared scales to the edges of the matrix as
shown in graph B of Fig. 2.40, the scatterplot matrix visually links a row or column of
scatterplots. Notice that here are two scatterplots for each unique pair of variables, one
on either side of the diagonal. Although this is redundant, it allows you to compare all
the pairs that include the variable of interest by looking at just one row or one column
without needing to rotate the scale. When reading across, the variable of interest is

Figure 2.39 A histogram matrix illustrating shared scales and coordinated panels
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Figure 2.40 Constructing a scatterplot matrix with shared scales

Figure 2.41 Scatterplot matrix
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plotted on the vertical axis and the other variables are plotted on the horizontal axis;
when reading down, it is plotted on the horizontal axis and the other variables are
plotted on the vertical axis.

A complete scatterplot matrix of five variables is shown in Fig. 2.41.

2.6.3 Multiple Box Plot

Multiple box plots allow efficient comparison of distributions for groups of univariate
data. The essential five-number summary can be easily compared for each group:
center, spread, skewness, tail length, and outlying data points (as discussed in Section
2.4.4). Figure 2.42 shows the box plots for the distributions of groups over the variable
miles-per-gallon (mpg), where the cars in the data set have been grouped by model year.

2.6.4 Trellis Plot

The trellis plot, also known as small multiple graphs, is another multipanel display.
An example will be used to explain terminology and how it is used. The data set used
in this example is a set of 77 breakfast cereal products available in many grocery
stores. A simple example is used to illustrate what could be learned through a

Figure 2.42 A multiple box plot showing a summary of the distribution of groups of cars by
year over the variable mpg. Source: http://archive.ics.uci.edu/ml/datasets/AutoþMPG
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trellis plot about manufacturers’ marketing behavior by looking at just three variables
from each cold cereal product: the manufacturer, the amount of protein an
indication of the product’s nutritional value, and the amount of sugar an indication
of the marketing lure. (Source: http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.
html). Figure 2.43 illustrates its use.

In a trellis plot, panels are laid out in rows, columns, and pages. This simple
example has a single column of three rows. For other data sets, it could be a
matrix that flows from page to page. Each panel displays a subset of the data using
a display method such as a scatterplot, dot plot, or a multiple box plot. A multiple
box plot is used here to show the relationship of two panel variables: the manufac-
turer along the vertical scale and the protein content of the cereal along a shared
horizontal scale. The box plot summaries in each panel were conditional on the
values of the subset of products selected for that panel.

Figure 2.43 An annotated trellis plot
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The cereal products were selected for each subset by the conditioning variable:
the sugar content in the product. In this example just one variable was used, only
because using several would have produced many more panels. Each manufacturer’s
products are divided into three class intervals of low sugar content (0 5 g), medium
sugar content (6 10 g), and high sugar content (11 15 g). Each panel focuses on
one of these three classes as identified by the strip label at the top of the panel.
The panels are ordered by the convention of multipanel displays from the lowest
values of the conditioning variable at the bottom to the highest at the top in
order to more easily compare what happens to the panel variables as the sugar content
progressively changes. The dark bar inside the strip label of the conditioning variable
indicates the values covered by the panel and shows how the variable changes over
the trellis.

The ordering of the manufacturers impacts our ability to visually decode the
graphic and make comparisons across panels. For example, in Fig. 2.44, the only
bar that moved stands out more clearly when comparing the lower and upper panel
in the right column, where the bars are ordered by the position of the left edge,
than in the left column, where the bars are randomly placed.

The manufacturers are ordered from bottom to top using the median of the
subset of each manufacturer’s products, starting with the manufacturer with the
lowest median. When the medians were the same, the mean was used to break

Figure 2.44 An illustration showing the how ordered content in panels impacts the ability to
perceive differences between them
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the tie. The ordered results quickly reveal some information: Nabisco sells no high
sugar content products and its remaining products tend to be relatively high in
protein; products higher in protein tend to have less sugar; there are very few products
very high in protein with low sugar; a couple of companies, General Mills and
Kellog’s, have a wide range of products. This is not very profound, but imagine
the power a trellis plot could have if it were used to analyze the main and interaction
effects of several explanatory variables on response variables using a variety of
display methods.

2.7 VISUALIZING GROUPS

2.7.1 Dendrograms

Certain methods for grouping the observations in a data set, such as hierarchical
agglomerative clustering, which will be discussed in the next chapter, produce a hier-
archy of clusters. A dendrogram is a graphic that displays the hierarchy as a tree.
Figure 2.45 shows two different ways of drawing a dendrogram. The dendrogram
on the right is often used in molecular biology to organize genes and a later section
will show how this form can be combined with image maps to construct a cluster
image map.

The visual form on the right communicates more than the one on the left. In
addition to seeing the groups, you can also see how similar one cluster in the group
is to another. If you imagine the vertical line that connects the clusters in a group to
be a reference line that extends down to the horizontal scale, you can determine how
similar its children clusters are by seeing where the reference line intersects the horizon-
tal scale, see Fig. 2.46. Reference lines closer to the base line are more similar than
reference lines farther away. In Fig. 2.46, the group connected at R1, M to N, are
more similar to each other than the group connected at R2, H to the cluster A and B.

Figure 2.45 Two ways of drawing a dendrogram
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2.7.2 Decision Trees

A decision tree is generated through a series of decisions based on certain variables
about how to divide a group of observations. The result is a tree, as shown in
Fig. 2.47. The process starts with the entire set of observations, or some subset of
interest, and uses a scoring function to determine how to split the initial set into two
groups. It repeats this process for each of the two resulting groups, and so on until
some terminating condition is met. Chapter 5 and Appendix B discusses decision trees.

2.7.3 Cluster Image Maps

A cluster image map is a graphic that combines image maps with dendrograms to
display complex, high density data. It is widely used in molecular biology, for
example, to look at gene expression patterns in different states of a cell cycle or
across different cancer cell lines. Figure 2.48 shows the display of a cluster image
map after the data from a microarray of genes has been read and the resulting data
set clustered. Each row represents the gene expression levels a pattern of
activity for a particular gene across multiple experiments.

The image map, also referred to as a heat map, is a table of colored cells. Each
row represents a gene and each column an experiment. The color of each cell, shown
in a gray scale in Fig. 2.48, represents the range of values containing the measured
value, where the value is mapped onto a spectrum of a color scale that changes
from bright green to black to bright red. (To see the figure in color, navigate to the
hyperlink http://en.wikipedia.org/wiki/Image:Heatmap.png in your web browser.)

Figure 2.46 An annotated dendrogram

60 CHAPTER 2 DATA VISUALIZATION



F
ig

ur
e

2.
47

D
ec

is
io

n
tr

ee

61



The measured values across each row indicate how much a gene has been expressed
relative to some normal expression level within the target cell of the corresponding
experiment. In the colored version of Fig. 2.48, the value is mapped to a shade of
green if it is lower than expected or to a shade of red if it is higher; black indicates
the gene was not expressed at all.

Labels along the left and bottom edges of the image map provide meaningful
descriptions of the location of the value in the two-dimensional image. Dendrograms
along the right and top edges show the results of clustering the rows and columns, respect-
ively. If a column is a carefully designed experiment that measures, for example, the
changes of state in the life of a cell or which genes are expressed within a cancer cell
line, then the set of values across a row are a pattern of activity for a gene or, if reading
down a column, for a cell state or cancer cell line. Clustering rearranges the rows and col-
umns into groups of similar genes (rows), or states or cancer cell lines (columns) that
bring together similar patterns of activity. Because the patterns are color-coded, one
can easily see variations within and across the groups that give insight into, for example,
the function of genes across cell states or cancer cell lines.

Figure 2.48 An annotated cluster image map showing the results from gene microarray
experiments. Original image source: http://en.wikipedia.org/wiki/Image:Heatmap.png
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To prepare the data for display in a cluster image map you need to:

† create a data matrix that contains the data values;

† choose a method for determining the distance between a pair of rows or
columns in the matrix;

† cluster the rows and cluster the columns;

† rearrange the rows and columns to match the order imposed by their respective
hierarchies produced by the clustering.

The distance between a pair of rows or columns for the map above is computed by the
correlation coefficient distance measure discussed in Section 3.2. The clustering
method used to rearrange the data matrix from which the image map is generated is
typically generated by the hierarchical agglomerative clustering method introduced
in the first book in the series (Myatt, 2007) and discussed in more detail in Section 3.3.

2.8 DYNAMIC TECHNIQUES

2.8.1 Overview

Software that generates good data graphics to describe and summarize a set of num-
bers eliminates many activities that are mainly clerical or mechanical drawing
graphs, plotting, transforming, and redrawing and provides a foundation for the
analysis and exploration of data. In this context, the computer is used to do what is
already being done by hand, but does it much faster. This kind of software is infor-
mation software and its essence is presentation. The important design questions of
information software relate to appearance: What information should be presented and
how? It requires, in addition to other things, an understanding of graphics design
and what has been learned about good design for the print medium. Interaction
with information software is primarily navigation. Manipulation software extends
information software.

The heart of manipulation software is the design of the interaction between the
user and the computer. It is the interaction that turns visualization into a compu-
tational tool at the center of exploratory data analysis. The interaction can be
active, where a single action such as the selection of a command from a menu
causes a result. Or it can be dynamic, where the software responds continuously to
interaction with user interface controls. But designing good manipulation software
is much harder than designing good information software.

In the physical world, industrial designers shape material into tools paper
clips or hammers, or knives so that we know how to manipulate them. In the virtual
world made possible by computers, software designers of manipulation software
software that lets us use virtual tools to create virtual objects must know how to
make the graphical representation on the display understandable (What does this rep-
resent to the user?), available (how will the user distinguish between tool and objects
or determine what can be manipulated, what just informs, and what can do both?),
predictable (what will happen when the tool is manipulated?), and comfortable
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(how to make it emotionally appealing and easier to learn and use?). Through mouse
and keyboard input, the interaction designers must simulate the hand grasping and
wielding a tool. Designers must design this simulation, or direct manipulation, of
virtual tools and objects. In this section, some techniques are discussed, such as
brushing, that rely on direct manipulation.

But interaction comes at a cost to the user. For information software, the user has
to know what to ask for, how to ask it, how to navigate through complex spaces without
getting lost, and remember how to return to important places. For manipulation soft-
ware they need to know what tools are available, where to find them, and remember
in which contexts they work. An important goal of interaction design, therefore, is
to reduce interaction. Some ways of doing this are discussed.

2.8.2 Data Brushing

Data brushing, also called slicing, is a dynamic interactive technique where the selec-
tion by the user of a subset of the data in one data graphic highlights the selected data
in that graphic and any others linked to it. Brushing gives new life to histograms
which, without interaction, have limited value. The selection of objects, such as
points on a scatterplot or bars in a histogram, can be done in a variety of ways,
such as by drawing a rubber-band box around the data point to select or selecting
an individual object with a mouse click. The highlighting provides feedback that
an action has been taken and typically uses color or texture to show the highlighted
objects. The panels that respond to highlight in one panel are referred to as being
linked. Figure 2.49 shows an example of data brushing across linked panels that
include histograms and a dendrogram.

Figure 2.49 Various views of the data set can be linked to allow brushing in one view to be
highlighted in other views. The views can be a heterogeneous collection of data graphics
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2.8.3 Nearness Selection

The nearness engine proposed by Howard Wainer (Wainer, 2005) allows the user to
initiate a search in multivariate data by specifying a point and a distance, or just a dis-
tance. For the first case, the selection of a point could be made, for example, on a
scatterplot. The result would highlight all points on that scatterplot within the specified
distance. If just a distance is provided, the system would identify all groups of points
where the points within the group are within the specified distance of each other.

2.8.4 Sorting and Rearranging

As discussed in the section on tables, being able to reorder rows and columns in a
table often reveals unexpected relationships. Allowing the user to interact with the
data graphic to reorder the data, for example to sort rows by the values in a specific
column, is common in spreadsheets and sortable data tables provided by graphical
user interface software libraries. Methods include sorting alphabetically, numerically,
by date or time, by physical location, and by category or tag.

2.8.5 Searching and Filtering

Searching and filtering are different techniques for narrowing the data to only
what is of interest. Searching includes only the data that satisfies a query. Filtering
excludes everything that falls outside the constraints specified by filters. The simplest
filters and query techniques give users a choice of which aspects of the data to
view. Single-click user interface controls such as checkboxes or radio buttons are
interpreted by software as query or filter commands, and the software modifies
the graphic in response. Dynamic queries are a logical extension of these simpler
controls. User interface controls such as sliders generate a stream of commands
to the application software, which continuously adjusts the views in response to
these commands.

The best filtering and querying interfaces are highly interactive and iterative,
and show the results in context with the surrounding data. Everything in a data
graphic becomes a candidate for interaction: Labels of points can be displayed or
hidden; legends can reveal more or less explanation on demand; axes, rulers, and
scales can show the data for a point or range of values. However, carefully designed
graphics can often reduce the need for interaction by answering anticipated questions
straightforwardly. Just as with graphics design, simplify and revise; but also be sure to
test your ideas with those who will use the tools.

2.9 SUMMARY

Data visualization is a medium for communicating the subtleties and complexities of
what is hidden in large sets of measured data. The initial sections of this chapter dis-
cussed the general principles of good design: showing the data, simplifying, reducing
clutter, revising, and being honest. It showed how ideas borrowed from cognitive
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psychology, such as the Gestalt principles, and graphics design guide the layout and
encoding of data. It described the architecture of a basic graph and the terminology
used when referring to its components.

The remaining sections discussed specific graphics and visualization tools for
looking at univariate, bivariate, and multivariate data, and groups of data. Tables,
various kinds of charts, plots, graphics, and multidisplay panels were described
along with examples of their use. Finally, dynamic techniques found in software
user interfaces, such as brushing, showed how interaction can extend the reach of
visualization for exploratory data analysis.

2.10 FURTHER READING

The following books provide an in-depth analysis of the design and use of data
graphics and are essential reading on data visualization: Cleveland (1993, 1994),
Tufte (1983), and Hoaglin (2000). Wainer (2005) is an entertaining and serious
history of graphical data display from the seventeenth century forward. Wainer
(1997) provides insight into the methods and history of presenting data visually. It
explains what distinguishes bad design from good and how graphics have been
used to distort the truth. Victor (2006) distinguishes between information software
(software that helps us learn) and manipulation software (software that helps us
create). He argues that most of the software we use is information software and
that the long-standing focus on interaction is misguided. Instead, we should focus
on the design of context-sensitive information graphics that reduce the need for
interaction. We have presented graphs that are commonly used and classified them
in large part on the number of dimensions present in the data being displayed.
Wilkinson (2005) takes a different approach. He examines the basic elements and
structure of graphics, and defines grammatical rules for creating perceivable graphs.
His work builds on Bertin (1983).
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C H A P T E R 3
CLUSTERING

3.1 OVERVIEW

When needing to make sense of a large set of data, the data can be broken down into
smaller groups of observations that share something in common. Knowing the
contents of these smaller groups helps in understanding the entire data set.
Clustering is a widely used and flexible approach to analyzing data, in which
observations are automatically organized into groups. Those observations within a
particular group are more similar to each other than to observations in other
groups. This approach has been successfully utilized in a variety of scientific and
commercial applications, including medical diagnosis, insurance underwriting, finan-
cial portfolio management, organizing search results, and marketing. For example,
clustering has been used by retail organizations to analyze customer data based on
historical purchases, along with information about the customer, such as their age
or where they live. Customers are grouped using clustering approaches, and specific
marketing campaigns are then formulated based on the identified market segments.

A data set of animals will be used to illustrate clustering. Table 3.1 describes a
series of animal observations (taken from http://archive.ics.uci.edu/ml/datasets/
Zoo; Murphy and Aha, 1994). Each animal is characterized by a number of
variables, including several binary variables, such as whether the animal has hair
(hair) or produces milk (milk). The data set also includes a count of the number of
animal legs (legs). Cluster analysis organizes the data into groups of similar animals.
Using the numeric variables shown in Table 3.1, the data set can be clustered in a
number of ways. Figure 3.1 shows one possible grouping of this data. A description
of how this particular set was clustered will be discussed later in the chapter. In
Fig. 3.1 the animals have been organized into four groups representing the following
general categories: (1) mammals, (2) fish and amphibians, (3) invertebrates, and
(4) birds. Each group represents a series of similar animals, with the mammals
group primarily representing a group of four-legged animals that produce milk, the
fish and amphibians group primarily representing a group of aquatic animals, the
invertebrates group primarily representing a set of six-legged animals with no
backbone, and the birds group primarily representing a set of two-legged airborne
animals with feathers.

Based on an initial inspection of the clusters, the grouping may not appear to
adequately represent the different types of animals. For example, in Fig. 3.1, an

Making Sense of Data II. By Glenn J. Myatt and Wayne P. Johnson
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octopus is clustered in the same group as a honeybee. To remedy this problem, the set
has been organized into 10 groups instead of four, as seen in Fig. 3.2. The number of
animals within each of the groups is generally smaller, and the homogeneity among
the animals in each group is greater. In Fig. 3.2, the land-living mammals group, the
aquatic mammals group, and the platypus are subsets of the previous, larger

Figure 3.1 Four groups of animals in the data set

Figure 3.2 Ten groups generated from the animal data set
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mammals group. The platypus is in a group of its own, since it is both aquatic and lays
eggs. Similarly, the fish and amphibians group and the invertebrates group have been
divided into smaller groups. The original group of birds remains the same since it
already represented a set of similar animals. Figure 3.3 shows the two different group-
ings superimposed.

Cluster analysis requires neither a prior understanding of the data nor
assumptions to be made about it. For example, it is not necessary that the variables
follow a normal distribution, nor is it necessary to identify independent and
response variables, as is the case when building predictive models. However, care
should be taken to select the appropriate variables, including only those relevant
to the grouping exercise.

The results from a cluster analysis are groups of observations that share
common characteristics. To make cluster analysis useful in many practical situations,
these groupings should be analyzed and characterized further. Common approaches
to characterizing the clusters include:

† Summary of cluster: One approach is to generate a summary for each cluster,
such as the mean or mode values for all selected variables. For example,
Table 3.2 shows the most common, or mode, values for each variable over
the four groups shown in Fig. 3.1. Over all observations in the mammals
group, the mode value for hair is 1, the mode value for feathers is 0, and so
on. The table summarizes the contents of each cluster. Alternatively, a represen-
tative example from each of the four groups could be used as the summary or a
description of the general characteristics of the members. It should be noted that

Figure 3.3 The two groupings superimposed
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there could be members of a group that are not well characterized by a repre-
sentative or a generic class description, such as the clam in the invertebrates
groups.

† Data visualization: Summarizing the data within a cluster as a series of graphs
can also be informative to understanding the contents of the clusters. For
example, Fig. 3.4 shows a histogram matrix presenting the variables used for
clustering. The outline of the individual histograms represents the entire data
set, and the darker shaded regions indicate those observations in the mammals
group. Once the graphs are generated, the fact that the mammals cluster gener-
ally contains animals with hair, without feathers, that do not lay eggs, which
produce milk, and so on, becomes obvious.

† Naming the clusters: Manually naming each cluster can be instructive. In the
retail example discussed earlier, customer groups could be named according
to the characteristics of the interesting groups, such as “Suburban, affluent,
and price-sensitive.” Naming the clusters is a beneficial exercise because it
helps in understanding the results of the clustering and in communicating the
results of the clustering to others.

† Prioritizing value: In many situations clustering is performed to identify and
annotate groupings with certain desired characteristics. Returning to the retail
example, historical customer information, such as the products purchased, cus-
tomer occupations, lifestyle information, and so on, is often clustered for mar-
keting purposes. In this example, a common factor used to assess or prioritize
any clusters is the profitability of the customers in the group. Calculating the
average profitability for each market segment can be used to direct attention
to the most interesting groups.

A useful by-product of cluster analysis is the identification of outliers in the
data, or those observations that do not appear similar to others in the data set.
These outliers are derived from groups containing a single or a small number of
observations. For example, in Fig. 3.2, seasnake, platypus, and scorpion could be

Figure 3.4 Histogram matrix for the animals in the mammals groups compared to the total
data set

72 CHAPTER 3 CLUSTERING



considered outliers according to the groupings because each belongs to a cluster of
one observation. No other animal is considered similar enough to belong in a
group with this set at this particular clustering level. In many data mining situations,
these unusual observations may be the most interesting. For example, in analyzing
customer credit card transactions, these unusual observations may be a result of the
use of a stolen credit card. The identification of outliers is also helpful when preparing
data, as these observations may be errors warranting further attention.

Another use of clustering is to enable the selection of a smaller number of
representatives from the entire data set, a technique known as the selection of diverse
observations. One approach to selecting 10 diverse observations from the animals
grouped in Fig. 3.2 would be to select a single animal from each group, for example:
boar, platypus, seal, crayfish, and so on. These examples serve as representatives of
all animals in the data set.

In data sets with many variables, clustering can also be used to eliminate
highly related variables. Highly related variables are redundant and negatively
impact the performance of a predictive model. Grouping the variables and choosing
a representative from each group gets rid of the unneeded variables.

Finally, aside from its use in segmenting, clustering is an important tool for
learning about the data set during exploration. In addition to identifying groups
or outliers, as mentioned above, it helps to see the detail in different contexts.
Further, the groups generated by clustering often identify local neighborhoods
around which better predictive models can be built (although these models only
provide reliable predictions for observations similar to the ones from the model’s
training set).

A requirement for any clustering exercise is calculating the distance between
two observations. There are numerous methods for determining this distance.
Practical considerations, such as the type of variables (continuous, binary, and so
on), dictate the method along with an assessment of how well it matches the problem
being addressed. The following chapter outlines different measures for determining
these distances.

There are many different types of clustering methods. The selection of a
method is influenced by its complexity, the time it takes to generate the clusters,
and the number of observations it can process. Certain methods require that a
choice be made about the number of clusters to generate prior to the analysis; in
other methods this number is determined based on an analysis of the results.
Clustering is dependent on the data set being analyzed, and clustering different
data sets will invariably result in different groups of observations, even if the data
sets contain similar content. In some cases, adding a single new observation to an
existing set can have a substantial affect on the groupings. Ties in similarity scores
can affect the groupings, and reordering the observations may give different results.
There are a number of different types of clustering methods, the most common of
which are summarized here:

† Hierarchical: These clustering methods organize observations hierarchically.
For example, the data set of animals can be organized by four high level
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categories which are then subsequently organized into sub-categories, as shown
in Fig. 3.3. Figure 3.5 shows how the animal data set can be hierarchically orga-
nized into groups and subgroups. The hierarchical organization of groups is
flexible since a particular set of groups could be selected at any level.
Figures 3.18 and 3.19 illustrate how these two sets of groupings were selected,
which will be discussed later in the chapter. After examining the hierarchical
relationships, the most useful organization (such as the four groups in level
one or the 10 groups in level two) can be chosen from a continuum of
levels. Levels at the top partition the data set into fewer, general categories
and the levels at the bottom into more, specific categories. The weakness of
this method is that it does not scale, which prevents its use in real-time appli-
cations and for very large data sets (above 10,000 observations).

† Partitioned: These clustering methods assign observations to a single cluster
and the number of clusters is set prior to any cluster analysis. For example,
Fig. 3.1 could be generated as the result of clustering the animal data set
where the number of clusters was preset to four. Although this approach
does not provide a flexible hierarchical organization, it is generally faster to
compute and can handle larger data sets.

† Fuzzy: In many situations, it may not always be easy to assign an observation
to a single group because certain observations may share strong associations
with several groups. For example, in the animal data set clustered in Fig. 3.1,
the platypus is assigned to group 1. Since the platypus lays eggs, the platypus
shares traits found in animals in the other groups. Fuzzy clustering, like parti-
tioned-based methods, is based on a predetermined number of clusters; how-
ever, it assigns all observations to every cluster. Each observation is then
assigned a numeric measure of the degree to which it belongs to each cluster.

Figure 3.5 Hierarchical relationships for the animal data set
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Hence, the platypus (as well as all animals), would be assigned a numeric value
indicating the degree of association between it and each of the groups.

Different clustering approaches are useful in different situations. It is often helpful to
run several methods in order to find an optimal clustering result for the particular pro-
blem. Changing the variables, the distance measure, or the clustering parameters can
also help create optimal clustering results. The following sections describe the differ-
ent approaches in greater detail.

3.2 DISTANCE MEASURES

3.2.1 Overview

The starting point for any cluster analysis is the data table or data matrix. For example,
suppose a retail company has gathered information about its customers, such as
addresses, income, occupations, and so on, along with information concerning
the categories of purchases made by those customers throughout the year.
Table 3.3 illustrates five customer entries.

Because cluster analysis can only operate on numerical data, any nonnumeric
values in the data tables should be converted to numbers. Table 3.3 can be easily
transformed into numeric values, as shown in Table 3.4. In this example, categorical
fields with text entries were converted into dummy variables with values of zero
or one, indicating the presence or absence of a specific category. The geographic
variable was converted to the variable urban, the variable employer was converted
to the variables technology, services, and legal, and the variable gender was con-
verted to the variable female.

It is also common to normalize the data to standard ranges, such as between zero
and one or using a z-score (the number of standard deviations above or below the mean),
to ensure a variable is not considered more important as a consequence of the range on
which it is measured. In Table 3.5 the variables income, age, children, electronics, gro-
ceries, and clothes have all been normalized such that all variables are in the range 0 1.

After deciding which variables to use, a method for determining the distance
must be selected. There are many methods to choose from such as the euclidean
distance, the Manhatten distance, and so on. The choice is based on content, that
is, which method appears to be the most appropriate to the observations being ana-
lyzed within the particular problem. Sections 3.2.2 3.2.4 describe different distance
measures that are often used.

Distance measures generally share certain properties. First, any distance measure
between two observations is greater than or equal to zero. Second, the distance
between observations A and B is the same as the distance between observations B
and A. Third, if the distance is zero, there is no difference between the two obser-
vations, that is, the two observations have the same values for all variables. Finally,
the distance between A and B (dA,B) satisfies the following assumptions with respect
to a third observation (C ), based on the distance between A and C (dA,C) and the
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distance between B and C (dB,C):

dA,B � dA,C þ dB,C

Clustering methods generally require a distance matrix or dissimilarity matrix (D) as
input. This matrix is a square n-by-n matrix, where n is the number of observations in
the data set to be clustered. This distance matrix has the following format:

D ¼

0 d1,2 d1,3 ::: d1,n

d2,1 0 d2,3 ::: d2,n

d3,1 d3,2 0 ::: d3,n

::: ::: ::: ::: :::
dn,1 dn,2 dn,3 ::: 0

2
66664

3
77775

where di, j is the distance value between pairs of observations; for example, d1,2 is the
distance between the first and second observation. The diagonal values are all zero
distances since there is no distance between two identical observations. The distance
matrix for the observations in Table 3.5, using the Gower distance (described in
Section 3.3.4) over all variables, is:

D ¼

A B C D E
A 0 0:865 0:754 0:836 0:178
B 0:865 0 0:677 0:227 0:814
C 0:754 0:677 0 0:67 0:688
D 0:836 0:227 0:67 0 0:777
E 0:178 0:814 0:688 0:777 0

2
6666664

3
7777775

The smallest distance is between A and E (0.178), which makes sense because both
observations are urban-living males working in technology who primarily purchase
electronic products. The largest distance is between A and B (0.865), which also
makes sense because these observations live in different areas, have different
income levels, work in different industries (A in technology, B in services), and so on.

3.2.2 Numeric Distance Measures

As mentioned above, a table of all numeric data can be clustered using a variety of
distance measures. Table 3.6 will be used as an example in this section and contains

TABLE 3.6 Six Numeric Variables Describing Five Customers

Customer Income Age Children Electronics Groceries Clothes

A 0.449 0 0 1 0.03 0

B 0.051 0.6 1 0 1 0.89

C 1.000 1 0.67 0.29 0 0

D 0.000 0.9 0.33 0.071 0.88 1

E 0.610 0.25 0 0.5 0 0.11
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a subset of variables over the same five observations as Table 3.5. This table is
limited to six normalized variables (income, age, children, electronic, groceries,
and clothes).

Distance measures compute a number for any pair of observations. These
measures compare the values for each of the variables in the two observations and
compute a distance based on some function relating to the differences between
these values. The following describes a number of distance measures.

Euclidean The euclidean distance is one of the most common distance functions.
If a data set only has two variables, then the euclidean distance would calculate the
physical distance between the two points plotted on a scatterplot. The following for-
mula calculates a euclidean distance between two observations ( p and q), measured
over n variables:

dp,q ¼
Xn

i¼1

(pi � qi)2
q

To demonstrate how this formula works, the euclidean distance between observations
A and B using the data in Table 3.6 is calculated as follows:

dA,B ¼ (0:449 � 0:051)2 þ (0 � 0:6)2 þ (0 � 1)2

þ (1 � 0)2 þ (0:03 � 1)2 þ (0 � 0:89)2

s

dA,B ¼ 2:061

Square euclidean The square euclidean is the sum of the squares of the difference
between the two observations, and it is calculated using the following formula:

dp,q ¼
Xn

i¼1

(pi � qi)
2

To calculate the square euclidean distance between observations A and B using the
data in Table 3.6, the following calculation is made:

dA,B ¼ (0:449 � 0:051)2 þ (0 � 0:6)2 þ (0 � 1)2 þ (1 � 0)2

þ (0:03 � 1)2 þ (0 � 0:89)2

dA,B ¼ 4:249

Manhattan The Manhattan distance, which is also called the city block distance, is
the sum of the absolute distances between the variables, which is always a positive
value representing the difference. The formula is:

dp,q ¼
Xn

i¼1

jpi � qij
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Calculating the manhattan distance between observations A and B using the data in
Table 3.6, is done as follows:

dA,B ¼ j0:449 � 0:051j þ j0 � 0:6j þ j0 � 1j þ j1 � 0j
þ j0:03 � 1j þ j0 � 0:89j

dA,B ¼ 4:856

Maximum To calculate the maximum distance between two observations, the
absolute difference between each variable is determined and the highest difference
is selected:

dp,q ¼ max jpi � qij

The maximum distance between observations A and B, using the data in Table 3.6,
is 1.0, because that is the difference between the values in the variable children
(0 minus 1), as well as electronics (1 minus 0).

Minkowski The Minkowski distance is a general distance formula, where the
order, or l, can take any positive value. When l is 1, the Minkowski distance is the
same as the maximum distance. When l is 1 the Minkowski distance is the same as
the Manhattan distance. And when l is 2 the Minkowski distance is the same as the
euclidean distance. The following formula is used to calculate the Minkowski
distance:

dp,q ¼
Xn

i¼1

jpi � qijll

s

Using the data in Table 3.6, the following example demonstrates how to calculate the
Minkowski distance between A and B, where l is equal to 3:

dA,B ¼ (0:449 � 0:051)3 þ (0 � 0:6)3 þ (0 � 1)3 þ (1 � 0)3

þ(0:03 � 1)3 þ (0 � 0:89)3

3

s

dA,B ¼ 1:573

While the above examples only compared observations A and B, Table 3.7 compares
the distances over all observations in Table 3.6 based on the distance measures out-
lined in this section. Each distance measure calculates different values, and in some
cases yields different results. For example, the fifth highest euclidean distance is
between C and D, yet the fifth highest Manhattan distance is between D and E.

3.2.3 Binary Distance Measures

A number of measures have been developed to calculate distances when the obser-
vations being compared use all binary variables; that is, variables with values of
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either zero or one. Using binary variables enables distances to be calculated for
categorical values because they can be easily converted to binary dummy variables.
For each variable, the values in the two observations are compared to determine
whether they are the same or different. Table 3.8 illustrates the four possible ways
the values between two observations ( pi, qi) can be compared.

Similarity measures how alike two observations are to each other, with high
similarity values representing situations when the two observations are alike. This
contrasts with distance (or dissimilarity) measures, where low values indicate the
observations are alike. The similarity and distance calculations for binary variables
are based on the number of common and different values in the four situations
summarized in Table 3.8 for two observations p and q, over all variables. The
following summarizes these counts:

† a: the number of variables where the value for both p and q is one (A in
Table 3.8);

† b: the number of variables where the value for p is one and the value for q
is zero (B in Table 3.8);

† c: the number of variables where the value for p is zero and the value for q
is one (C in Table 3.8);

† d: the number of variables where the value for both p and q is zero (D in
Table 3.8).

TABLE 3.7 Distances between all Pairs of Observations (from Table 3.6) Across Seven
Distance Measures

Euclidean
Square

euclidean Manhatten Maximum
Minkowski

(l ¼ 3)
Minkowski

(l ¼ 4)
Minkowski

(l ¼ 5)

A,B 2.061 4.249 4.856 1 1.573 1.383 1.284

A,C 1.502 2.258 2.962 1 1.222 1.115 1.064

A,D 1.924 3.705 4.459 1 1.484 1.312 1.223

A,E 0.593 0.351 1.052 0.5 0.526 0.509 0.503

B,C 1.744 3.043 3.857 1 1.389 1.254 1.185

B,D 0.754 0.569 1.321 0.666 0.688 0.673 0.669

B,E 1.813 3.29 4.187 1 1.411 1.262 1.188

C,D 1.714 2.939 3.526 1 1.397 1.271 1.203

C,E 1.103 1.217 2.131 0.75 0.923 0.856 0.823

D,E 1.628 2.651 3.789 0.888 1.259 1.121 1.053

TABLE 3.8 Four Alternatives (A, B, C, and D)
for Comparing Two Binary Values

qi

1 0

pi 1 A B

0 C D
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Table 3.9 will be used to illustrate binary distance measures, and this table shows the
same five observations taken from Table 3.5 over the following five binary variables:
urban, technology, services, legal, and female.

Using Table 3.9, the values for a, b, c, and d for customers B and C are calcu-
lated as:

a 1 (since female is both one in observations B and C );

b 1 (since services is one in observation B and zero in observation C );

c 1 (since legal is zero in observation B and one in observation C );

d 2 (since urban and technology are both zero in observations B and C ).

Since these four counts cover all possible situations, summing a, b, c, and d should
equal the total number of variables selected, which is five in this example.

The following section explains a selection of similarity and corresponding
distance measures that operate on binary variables. Both similarity and distance
measures are presented for completeness.

Simple matching This method calculates the number of common ones or zeros as
a proportion of all variables. The following formula is used to calculate the similarity
coefficients (sp,q):

sp,q ¼ a þ d

a þ b þ c þ d

The corresponding distance calculation is:

dp,q ¼ 1 � a þ d

a þ b þ c þ d

Using Table 3.9, the simple distance between B and C is:

dB,C ¼ 1 � 1 þ 2
1 þ 1 þ 1 þ 2

dB,C ¼ 0:4

Jaccard This method calculates the proportion of common ones against the total
number of values that are one in either or both observations. Or put another way,

TABLE 3.9 Five Customers with Data for Five Binary Variables

Customer Urban Technology Services Legal Female

A 1 1 0 0 0

B 0 0 1 0 1

C 0 0 0 1 1

D 0 0 1 0 1

E 1 1 0 0 0
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the method does not incorporate d (the number of values where the variables are both
zero). The following formula is used to calculate the similarity coefficients (sp,q):

sp,q ¼ a

a þ b þ c

The corresponding distance calculation is:

dp,q ¼ b þ c

a þ b þ c

Using Table 3.9, the Jaccard distance between B and C is:

dB,C ¼ 1 þ 1
1 þ 1 þ 1

dB,C ¼ 0:67

Russell and Rao This method calculates the proportion of variables where one is
common in both observations against the total number of variables. Whereas the
Jaccard method disregarded the count for where both values are zero (d ), the
Russell and Rao method incorporates it into the calculation. The following formula
is used to calculate the similarity coefficients (sp,q):

sp,q ¼ a

a þ b þ c þ d

The corresponding distance calculation is:

dp,q ¼ 1 � a

a þ b þ c þ d

Using Table 3.9, the Russel and Rao distance between B and C is:

dB,C ¼ 1 � 1
1 þ 1 þ 1 þ 2

dB,C ¼ 0:8

Dice The Dice method takes into account the number of variables in the two obser-
vations which have one in common and weighs this against the number of variables
with one in either or both observations. This method is similar to Jaccard; however,
the Dice formula puts greater emphasis on the common ones (a). The following for-
mula is used to calculate the similarity coefficients (sp,q):

sp,q ¼ 2a

2a þ b þ c

The corresponding distance calculation is:

dp,q ¼ b þ c

2a þ b þ c
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Using Table 3.9, the Dice distance between customer B and C is:

dB,C ¼ 1 þ 1
2 � 1 þ 1 þ 1

dB,C ¼ 0:5

Rogers and Tanimoto Unlike the methods described above, this method takes
into account when both variables have common zeros or ones. The following formula
is used to calculate the similarity coefficients (sp,q):

sp,q ¼ a þ d

a þ 2(b þ c) þ d

The corresponding distance calculation is:

dp,q ¼ 2(b þ c)
a þ 2(b þ c) þ d

Using Table 3.9, the Rogers and Tanimoto distance between B and C is:

dB,C ¼ 2(1 þ 1)
1 þ 2(1 þ 1) þ 2

dB,C ¼ 0:57

Table 3.10 compares the distance scores for all pairs of observations from Table 3.9 cal-
culated using the simple, Jaccard, Russell and Rao, Dice, and Rogers and Tanimoto
methods. The specific distance measure should be selected that most closely represents
the distance between the observations for the specific problem being addressed.

Other binary similarity and distance measures can be seen in Table 3.11.

TABLE 3.10 Comparison of Pairs of Distances for Five Customers
(from Table 3.9) Over Five Binary Distance Measures

Simple Jaccard
Russell and

Rao Dice
Rogers and
Tanimoto

A,B 0.8 1 1 1 0.89

A,C 0.8 1 1 1 0.89

A,D 0.8 1 1 1 0.89

A,E 0 0 0.6 0 0

B,C 0.4 0.67 0.8 0.5 0.57

B,D 0 0 0.6 0 0

B,E 0.8 1 1 1 0.89

C,D 0.4 0.67 1 0.5 0.57

C,E 0.8 1 1 1 0.89

D,E 0.8 1 1 1 0.89
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3.2.4 Mixed Variables

Since data sets rarely contain solely continuous variables or solely discrete variables,
additional methods are needed to cluster data sets that include this mixture of vari-
ables. This section describes the Gower distance measure used for this case.

Gower This measure is calculated with the following formula for two observations
p and q, over i variables:

dp,q ¼

Pn

i¼1
wid2

i

Pn

i¼1
wi

vuuuuut

where wi is a weight for the ith variable, and it takes the value one when both values
are known; otherwise it is zero. di

2 is the square of the distance between the ith value
of the two observations (pi and qi), where:

di ¼
jpi � qij

Ri

and Ri is the range over all values of the ith variable. For categorical variables, di is
zero if the pi and qi are the same, otherwise it is 1.

To illustrate the calculation of the Gower distance, the data in Table 3.12 will be
used, and observations B and C will be compared. Since there are no missing values
in any of the observations, the weights (wi) will all be 1. Table 3.13 shows the inter-
mediate calculations necessary to calculate the Gower distance.

Using Table 3.13
Pn

i¼1 wi is determined to be 11, and
Pn

i¼1 wid2
i to be 5.04.

The Gower distance is then calculated as:

dB,C ¼

Pn

i¼1
wid2

i

Pn

i¼1
wi

vuuuuut

dB,C ¼ 5:04
11

r
¼ 0:68

TABLE 3.11 Additional Binary Similarity and Distance Measures

Name Similarity Distance

Pearson ad bc

(a þ b)(a þ c)(d þ b)(d þ c)
p 1

2
ad bc

2 ða þ bÞða þ cÞðd þ bÞðd þ cÞ
p

Yule ad bc

ad þ bc

bc

ad þ bc

Sokal Michener a þ d

a þ b þ c þ d

2b þ 2c

a þ 2b þ 2c þ d

Kulzinsky a

b þ c
2b þ 2c þ d

a þ 2b þ 2c þ d
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3.2.5 Other Measures

There are many other measures that can be incorporated into clustering approaches.
The following section describes four additional methods: the use of the
Mahalanobis, correlation coefficients, cosine, and Canberra measures.

Mahalanobis The Mahalanobis distance takes into account correlations within a
data set between the variables. Unlike most other distance measures, this method is
not dependent upon the scale on which the variables are measured. The following for-
mula is used to calculate the Mahalanobis distance:

dp,q ¼ (p � q)S 1(p � q)T
q

The superscript “ 1” represents the inverse matrix and “T” is the transformed matrix,
described in Appendix A. S is the covariance matrix and is calculated based on all
pairs of variables using the following equation:

S j,k ¼
1

n � 1

Xn

i¼1

(Xij � Xj)(Xik � Xk)

Under this formula Sj,k are the values in the covariance matrix, X is the original data
table with Xij as the value at column j and row i, n is the number of observations, Xj

is the average for column j, and Xk is the average for row k.

Correlation coefficient Using clustering it is also possible to group variables
based on the linear relationship between pairs of variables (r). Using the following
formula, variables x and y can be compared:

r ¼

Pn

i¼1
(xi � x)(yi � y)

(n � 1)sxsy

TABLE 3.13 Intermediate Calculations for the Gower Distance

B C
d

jpi qij
Ri W wid2

i

Urban 0 0 0 1 0

Income 0.051 1 0.949 1 0.9

Technology 0 0 0 1 0

Services 1 0 1 1 1

Legal 0 1 1 1 1

Age 0.6 1 0.4 1 0.16

Children 1 0.67 0.33 1 0.11

Female 1 1 0 1 0

Electronics 0 0.29 0.29 1 0.08

Groceries 1 0 1 1 1

Clothes 0.89 0 0.89 1 0.79

11 5.04
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Under this formula, x̄ is the mean of the x variable and ȳ is the mean of the y variable.
The number of observations is n. Additionally, sx is the standard deviation for x and
sy is the standard deviation for y.

Cosine Using the cosine formula is often effective when clustering vectors of fea-
tures, such as terms or words that relate to documents, which are often sparse. The
formula for cosine (cs) where p and q represent the vectors is:

cs ¼

Pn

i¼1
(piqi)

Pn

i¼1
p2

i

Pn

i¼1
q2

i

s

Canberra The Canberra metric is the sum of the fractional differences for each
variable. This method is sensitive to changes close to zero, and it is calculated
using the following formula:

dp,q ¼
Xn

i¼1

jpi � qij
(jpij þ jqij)

3.3 AGGLOMERATIVE HIERARCHICAL CLUSTERING

3.3.1 Overview

The agglomerative hierarchical approach to clustering starts with each observation as
its own cluster and then continually groups the observations into increasingly larger
groups. This results in a hierarchical organization of the data which can be used to
characterize the data set, and from this hierarchy specific groups can be selected.
This method is useful and a widely used approach to analyzing data; however, the
analysis can be time-consuming, and it is usually limited to smaller data sets because
the method requires the complete distance matrix to be calculated.

Like all clustering approaches, the first step in performing agglomerative
hierarchical clustering is to select the variables and observations to cluster. For
reasons discussed earlier, the data should also be normalized. Table 3.14
shows five observations: A, B, C, D, and E. Each observation is measured over

TABLE 3.14 Five Observations Measured Over Five Variables

Percentage
body fat Weight Height Chest Abdomen

A 12.3 154.25 67.75 93.1 85.2

B 31.6 217 70 113.3 111.2

C 22.2 177.75 68.5 102 95

D 14.1 176 73 96.7 86.5

E 23.6 197 73.25 103.6 99.8
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five variables: percentage body fat, weight, height, chest, and abdomen. In
Table 3.15, the data is normalized to the range 0 1, using the min max normalization,
discussed in Chapter 1.

In the first stage, each observation is treated as a single cluster. The next step is
to compute a distance between each of these single-observation clusters. Section 3.2
outlined a series of methods for computing distances between pairs of observations.
Table 3.16 illustrates a distance matrix where the distance between each combination
of single-observation clusters is recorded. In this example, the euclidean distance was
selected to calculate the distance between observations.

The process of agglomerative hierarchical clustering starts with these single-
observation clusters and progressively combines pairs of clusters, forming smaller
numbers of clusters that contain more observations. The process of combining
clusters is repeated until there is a single cluster containing all observations in the
data set. There are a number of alternative approaches to joining clusters together,
such as single linkage, complete linkage, average linkage, and so on. These
approaches are described in the following sections.

3.3.2 Single Linkage

The single linkage agglomerative hierarchical clustering method joins pairs of clus-
ters together based on the shortest distance between two groups, as illustrated in
Fig. 3.6. The single linkage method allows clusters to be easily joined; however, it
may prevent the detection of clusters that are not easily separated. The single linkage
method is best used in situations where the clusters are long and tubular in shape,
since an observation will become part of a cluster with just a single nearest neighbor.
In practice, the single linkage approach is the least frequently used joining method.

TABLE 3.15 Normalized Data

Percentage
body fat Weight Height Chest Abdomen

A 0.0 0.0 0.0 0.0 0.0

B 1.0 1.0 0.409 1.0 1.0

C 0.513 0.375 0.136 0.441 0.377

D 0.00932 0.347 0.955 0.178 0.050

E 0.585 0.681 1.0 0.520 0.562

TABLE 3.16 Distance Matrix Using the Euclidean Distance

fAg fBg fCg fDg fEg

fAg 0 2.041 0.871 1.036 1.547

fBg 2.041 0 1.185 1.768 1.022

fCg 0.871 1.185 0 1.011 0.941

fDg 1.036 1.768 1.011 0 0.857

fEg 1.547 1.022 0.941 0.857 0
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The data from Table 3.16 will be used to illustrate the single linkage approach.
Because all agglomerative methods start with each observation as an individual clus-
ter, the first step is to identify a pair of clusters to combine. Since the distance between
fDg and fEg is the smallest, these single observation clusters are the first to be com-
bined into a single group fD,Eg. A new distance matrix is calculated, as shown in
Table 3.17, for the four remaining clusters: fAg, fBg, fCg, and fD,Eg. In determin-
ing the distance between the new cluster fD,Eg and the other clusters, the shortest
distance is selected. For example, the distance between fBg and fDg is 1.768, and
the distance between fBg and fEg is 1.022, and hence the distance between fD,Eg
and fBg is the smallest distance, or 1.022.

Figure 3.7 illustrates the first step in the construction of a clustering dendro-
gram. Since it was determined that fDg and fEg should be initially combined, the

Figure 3.6 Using the shortest distance to decide whether to join the two groups

TABLE 3.17 Distance Matrix for the Four Groups Using
the Single Linkage Criteria

fAg fBg fCg fD,Eg

fAg 0 2.041 0.871 1.036

fBg 2.041 0 1.185 1.022

fCg 0.871 1.185 0 0.941

fD,Eg 1.036 1.022 0.941 0

Figure 3.7 First step of dendrogram construction
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two observations are joined at 1 in Fig. 3.7. The horizontal axes represent the
distances at which the joining takes place. The vertical line joining the two observa-
tions is at a distance of 0.857.

The next step in the process is to identify the next group to combine. The smal-
lest distance in Table 3.17 is 0.871, and hence the groups fAg and fCg are combined.
The groups containing the individual observations A and C are no longer separately
considered. A new distance matrix is computed containing distances between the
three remaining groups: fBg, fD,Eg, and fA,Cg. This distance matrix is shown in
Table 3.18.

Figure 3.8 illustrates the second step in the construction of a clustering dendro-
gram. Since it was determined that fAg and fCg should be next combined, the two
observations are joined at 2 in the figure. The horizontal axes represent the distances
at which the joining takes place. The vertical line joining the two observations is at a
distance of 0.871.

Since the distance between fA,Cg and fD,Eg is the smallest, these two groups
are combined. Table 3.19 shows the distance matrix for the remaining two groups,
fBg and fA,C,D,Eg.

Figure 3.9 illustrates the next step in the construction of a clustering dendro-
gram. Since it was determined that the fA,Cg and the fD,Eg groups should be
next combined, the two groups are joined at 3 in the figure. The horizontal axes
represent the distances at which the joining takes place. The vertical line joining
the two groups is at a distance of 0.941.

TABLE 3.18 Distance Matrix for the Three Groups
Using the Single Linkage Criteria

fBg {D,E} fA,Cg

fBg 0 1.022 1.185

fD,Eg 1.022 0 0.941

fA,Cg 1.185 0.941 0

Figure 3.8 Second step in the construction of a clustering dendrogram
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Groups fBg and fA,C,D,Eg are combined in the last step at a distance of 1.022,
based on Table 3.19.

Figure 3.10 illustrates the final step in the construction of a clustering
dendrogram. The remaining groups are combined: fBg and fA,B,C,Dg at 4 on the
figure. The horizontal axes represent the distances at which the joining takes place.
The vertical line joining the two groups is at a distance of 1.022.

TABLE 3.19 Distance Matrix for the Two Groups
Using the Single Linkage Criteria

fBg fA,C,D,Eg

fBg 0 1.022

fA,C,D,Eg 1.022 0

Figure 3.9 Third step in the construction of a clustering dendrogram

Figure 3.10 Final step in the construction of the clustering dendrogram
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3.3.3 Complete Linkage

When performing an agglomerative hierarchical clustering using the complete link-
age method, the distance of the two observations that are the furthest away is used
to determine a distance between two clusters. For example, in Fig. 3.11, two clusters
of observations are evaluated and the distance between the furthest two observations
is used to establish a distance between the two clusters. This approach often results in
a smaller number of clusters and can prematurely divide larger clusters. Under this
methodology, clusters are often compact in nature, and the maximum within cluster
distance (or cluster diameter) is known.

The first step in this cluster analysis is similar to the single linkage method.
Using the original distance matrix from Table 3.16, the first new group fD,Eg is
formed since the 0.857 distance between fDg and fEg is the smallest. A new distance
matrix is now calculated, as shown in Table 3.20, using the complete linkage rule.
The distance between fAg and fDg (1.036) and the distance between fAg and fEg
(1.547) will be used for illustration. The distance between fAg and fD,Eg is deter-
mined using the complete linkage joining rule which is the farthest distance, that is
1.547. Groups fDg and fEg are no longer considered separately since they have
been combined into the new group fD,Eg.

Table 3.21 shows the next step where a new group is formed: fA,Cg.
Distances are computed using the complete linkage rules. Only three groups are
now considered: fBg, fD,Eg, and fA,Cg.

Table 3.22 presents a distance matrix for the two remaining groups: fBg and
fA,C,D,Eg. In the final step the two groups are combined at a distance of 2.041.

Figure 3.12 illustrates a dendrogram showing the hierarchical relationships
between the groups. The structure of the dendrogram is different from Fig. 3.10
since the distances at which the clusters are merged are different as a result of
using the complete linkage joining rules instead of the single linkage method. fDg

Figure 3.11 Using the farthest distance to decide whether to join the two groups

TABLE 3.20 Distance Matrix for the Four Groups Using
the Complete Linkage Criteria

fAg fBg fCg fD,Eg

fAg 0 2.041 0.871 1.546

fBg 2.041 0 1.185 1.767

fCg 0.871 1.185 0 1.01

fD,Eg 1.546 1.767 1.01 0
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and fEg are first merged at a distance 0.857. Next fAg and fCg are merged at a
distance of 0.871. Using the furthest distance between observations in fD,Eg and
fA,Cg, the two clusters are merged at a distance of 1.546 (marked at 3 on
Fig. 3.12). Finally, clusters fA,C,D,Eg are merged with fBg at distance 2.041
(marked 4 on Fig. 3.12).

3.3.4 Average Linkage

Unlike single or complete linkage methods, the average linkage method uses all
distances between observations in two clusters to calculate a distance between the

TABLE 3.21 Distance Matrix for the Three Groups
Using the Complete Linkage Criteria

fBg fD,Eg fA,Cg

fBg 0 1.767 2.041

fD,Eg 1.767 0 1.546

fA,Cg 2.041 1.546 0

TABLE 3.22 Distance Matrix for the Two Groups Using
the Complete Linkage Criteria

fBg fA,C,D,Eg

fBg 0 2.041

fA,C,D,Eg 2.041 0

Figure 3.12 Clustering dendrogram using complete linkage agglomerative hierarchical
clustering
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clusters. The average distance between all pairs of observations, where each pair con-
tains one observation from each cluster, is used to measure the distance between two
clusters. For example, in Fig. 3.13, the nine distances between each pair of obser-
vations are summed and divided by the number of distances considered, in this
case nine. The average linkage method is widely used.

Using the distance matrix in Table 3.16, it is again initially determined that the
shortest distance of 0.857 is between fDg and fEg. These two groups are discarded
and replaced by the new group fD,Eg. A new distance matrix is computed as shown
in Table 3.23. To calculate the new distance, the average distance between each pair
of observations in the two clusters is computed. For example, in computing the dis-
tance between fAg and fD,Eg, the distance of 1.036 between fAg and fDg, and the
distance of 1.547 between fAg and fEg are averaged. The distance between fAg and
fD,Eg is computed to be 1.291.

By examining the distance matrix in Table 3.23, it is determined that the next
smallest distance is between fAg and fCg. These individual groups are replaced by
the new group fA,Cg and a new distance matrix is computed using the average link-
age joining rule, as shown in Table 3.24.

Table 3.24 is then examined for the smallest distance between the remaining
groups. This results in combining groups fD,Eg and fA,Cg, generating a final dis-
tance matrix as shown in Table 3.25. In the last clustering step, the two remaining
groups are combined at a distance of 1.504.

Figure 3.14 is a dendrogram generated by clustering the five normalized obser-
vations from Table 3.15 using agglomerative hierarchical clustering with the average
linkage joining method. fDg and fEg are initially joined at a distance of 0.857, ident-
ified by the position of the vertical line marked as 1. Next, fAg and fCg are combined
at a distance of 0.871, represented by the vertical line at 2. Clusters fD,Eg and fA,Cg

Figure 3.13 Using the average distance to decide whether to join the two groups together

TABLE 3.23 Distance Matrix for the Four Groups Using
the Average Linkage Criteria

fAg fBg fCg fD,Eg

fAg 0 2.041 0.871 1.291

fBg 2.041 0 1.185 1.395

fCg 0.871 1.185 0 0.976

fD,Eg 1.291 1.395 0.976 0
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are combined at a distance of 1.133 (shown at 3) to form cluster fA,C,D,Eg. Finally
fBg is combined with fA,C,D,Eg at a distance of 1.504, shown at 4.

The three dendrograms generated using the single, complete, and average link-
age joining rules are shown back-to-back in Fig. 3.15. In this example, they
all clustered the observations in a similar manner, but at different distances. In
many situations, choosing different joining rules will result in a different clustering
of the observations.

TABLE 3.24 Distance Matrix for the Three Groups
Using the Average Linkage Criteria

fBg fD,Eg fA,Cg

fBg 0 1.394 1.612

fD,Eg 1.394 0 1.133

fA,Cg 1.612 1.133 0

TABLE 3.25 Distance Matrix for the Two Groups Using
the Average Linkage Criteria

fBg fA,C,D,Eg

fBg 0 1.504

fA,C,D,Eg 1.504 0

Figure 3.14 Clustering dendrogram using agglomerative hierarchical clustering with the
average linkage joining rule
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3.3.5 Other Methods

The following summarizes two alternative hierarchical agglomerative clustering
approaches:

† Centroid: Under this method, for each cluster, a cluster centroid is calculated as
the average value across all the variables. The distance between clusters is cal-
culated as the distance between these centroids. In Fig. 3.16, a triangle is used to
illustrate the centroid of the two clusters, and the line between the two centroids
illustrates the distance between the two clusters.

† Wards: This method for agglomerative hierarchical clustering, like the others
described so far, starts with each observation as a single cluster and progress-
ively joins pairs of clusters until only one cluster remains containing all obser-
vations. This method can operate either directly on the underlying data or on a
distance matrix. When operating directly on the data, the approach is limited to
data with continuous values. At each step, Wards’s method uses a function to
assess which two clusters to join. This function attempts to identify the cluster
which results in the least variation, and hence identifies the most homogeneous
group. The error sum of squares formula is used at each stage in the clustering
process and is applied to all possible pairs of clusters.

3.3.6 Selecting Groups

A dendrogram describing the relationships between all observations in a data
set is useful for understanding the hierarchical relationships in the data. In many
situations, a discrete number of specific clusters is needed. To convert the

Figure 3.15 Three cluster dendrograms based on the single, complete, and average joining
rules

Figure 3.16 Using the centroid distance to decide whether to join the two groups together
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dendrogram to a series of groups, a distance at which the groups are to be formed
should be specified. Once this distance is selected, a line cutting through the dendro-
gram at the determined distance can be drawn, thus dissecting the dendrogram and
forming specific clusters.

In Fig. 3.17, the same dendrogram is shown, but with three different distance
cut-offs. In the first dendrogram to the left, a large distance was selected. This results
in the cut-off line dissecting the dendrogram at point 1. All children to the right of
point 1 would be considered to belong to the same group, and hence only one
group is generated in this scenario. In the second dengrogram in the middle, a
lower distance cut-off value has been set, shown by the vertical line. This line dissects
the dendrogram at points 2, 3, and 4, resulting in three clusters. Where the line inter-
sects at point 2, child B is assigned to one cluster. Another cluster is formed where the
line intersects at point 3, and all the children of point 3 are assigned to a second clus-
ter; here that is observations D and E. Similarly, there is a cluster generated through
the intersection at point 4 containing observations A and C. The third dendrogram on
the right has the lowest cut-off distance value, resulting in all observations being
assigned to a group containing one observation. Observation B is assigned to one
cluster resulting from the intersection at point 5, observation D is assigned to another
cluster through the intersection at point 6, and so on.

Figure 3.17 Generating one, three, and five clusters at three different distance cut offs

Figure 3.18 Clustering dendrogram for the animal data set, with four groups selected
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Figures 3.18 and 3.19 show the clustering dendrogram generated for the data
set of 70 animals described in Section 3.1, using an agglomerative hierarchical clus-
ter, the Gower distance, and the average linkage joining rule. Figure 3.18 shows the
clustering dendogram for this data set when a cut-off has been set such that four
groups are selected. These four groups are the same groups as shown in Fig. 3.1.
Moving the cut-off to generate 10 groups is presented in Fig. 3.19, and these
groups correspond to the animal clusters in Fig. 3.2.

The distance at which the clusters are to be generated will be based on the
specific problem being addressed. Generally, setting higher distance cut-offs will
result in smaller numbers of clusters, with greater diversity within each individual
cluster. Setting lower distance cut-offs results in greater numbers of more
homogeneous groups.

3.4 PARTITIONED-BASED CLUSTERING

3.4.1 Overview

Partitioned-based methods generate a specified number of clusters, usually referred to
as k. This number is set prior to performing any clustering where k must be at least 2
and less than the total number of observations in the data set. Partitioned-based clus-
tering is computationally more efficient for grouping observations than agglomerative
methods and can be applied to large data sets. However, this method is somewhat
sensitive to noise and outliers in the data, and the number of clusters must be specified
at the start. Some familiarity with the data set and the problem is helpful in order to
identify a value for k. Alternatively, running the clustering multiple times with differ-
ent values for k, and then selecting the value which generates the optimal clustering,
is also used.

3.4.2 k-Means

k-Means is one partitioned-based approach to clustering a data set. Because one of the
clustering steps is to calculate means for variables across observations within clusters,
this method is limited to use with continuous variables. Having specified a number of

Figure 3.19 Clustering dendrogram for the animal data set
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clusters (k), initially k observations, referred to as seeds, are selected. This initial
assignment may be randomly generated, or it may be selected with some knowledge
of the content. Following the selection of the k cluster seeds, all other observations in
the data set are assigned to the seed closest to it, based on the distance between the
observation and each of the seeds. Any distance measure, such as those discussed in
Section 3.2.2, can be used to measure the distance between pairs of observations.
This generates an initial grouping of the data into k clusters.

The next step is to optimize the groupings. A mean value, or centroid, is
calculated for each of the groups across all the variables. All observations are then
reassigned to the cluster whose centroid they are closest to. At this point an assess-
ment should be made as to whether the grouping is optimal or not. If the assessment
is that the grouping is optimal, then the clustering is complete. If not, the process
of calculating the cluster means and then reassigning all observations is repeated.
The assessment of an optimal solution is based on whether any observations are
reassigned to a different cluster or based on an error criterion (Err):

Err ¼
Xk

i¼1

X
x[Ci

dx,m(Ci)

This criterion is based on looking at observations (x) in all k clusters, where m(Ci) is
the mean for the cluster. When the error criterion becomes less than a predetermined
value, the clustering stops.

In the following example, the normalized data shown in Table 3.26 is clustered
into three groups using k-means clustering. The euclidean distance is used to calculate
the distance between observations. Initially, one observation is assigned to each of
the three clusters. In this example, the assignment is done randomly. Observation B
is assigned to cluster 1, observation C to cluster 2, and observation E to cluster 3.
Next, all remaining observations are placed in the cluster closest to them.
Observation B is placed into cluster 1; observations A and C are placed into cluster
2; and observations D and E are placed into cluster 3. Once the initial clusters have
been populated, the mean for each cluster (centroid) is calculated, as shown in
Table 3.27. Each observation is then re-examined to determine whether it belongs
to a different group. In this example, this examination results in no changes to the
group assignment, and hence these clusters are the final grouping.

The k-means clustering, described in this section, is dependent to some extent
on the initial assignment of observations, especially if the initial assignment of

TABLE 3.26 Table of Normalized Observations

Percentage
body fat Weight Height Chest Abdomen

A 0.0 0.0 0.0 0.0 0.0

B 1.0 1.0 0.409 1.0 1.0

C 0.513 0.375 0.136 0.441 0.377

D 0.00932 0.347 0.955 0.178 0.050

E 0.585 0.681 1.0 0.520 0.562
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observations is made at random. It is therefore worthwhile repeating the clustering
and comparing the different runs, selecting the most consistent grouping.

3.4.3 Worked Example

To illustrate k-means clustering, a data set of wines will be used that are characterized
by a number of chemical properties (http://archive.ics.uci.edu/ml/datasets/Wine),
with a portion of the data shown in Table 3.28.

To quickly understand the content of the table, the data was clustered using
k-means clustering. The number of clusters (k) was set to three, and the euclidean dis-
tance was used as a distance measure between observations. Figure 3.20 summarizes
the resulting clustering. For each of the three clusters, the mean values across all vari-
ables (centroids) for the cluster are displayed in a row of the table, along with a count

TABLE 3.27 Calculated Mean Values (or Centroids) and Assignment of Observations
to the Three Clusters

Percentage
body fat Weight Height Chest Abdomen

Cluster 1

B 1.0 1.0 0.409 1.0 1.0

Mean 1.0 1.0 0.409 1.0 1.0

Cluster 2

A 0.0 0.0 0.0 0.0 0.0

C 0.513 0.375 0.136 0.441 0.377

Mean 0.256 0.187 0.0682 0.220 0.188

Cluster 3

D 0.00932 0.347 0.955 0.178 0.050

E 0.585 0.681 1.0 0.520 0.562

Mean 0.339 0.514 0.977 0.349 0.306

TABLE 3.28 Data Set of Wines

Malic
acid Ash

Alkalinity
of ash Magnesium

Total
phenols Nonflavanoids

14.23 1.71 2.43 15.6 127 3.06

13.2 1.78 2.14 11.2 100 2.76

13.16 2.36 2.67 18.6 101 3.24

14.37 1.95 2.5 16.8 113 3.49

13.24 2.59 2.87 21 118 2.69

14.2 1.76 2.45 15.2 112 3.39

14.39 1.87 2.45 14.6 96 2.52

14.06 2.15 2.61 17.6 121 2.51

14.83 1.64 2.17 14 97 2.98
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of the number of observations. Figures 3.21, 3.22, and 3.23 provide a histogram
matrix for each of the clusters, with the observations in the selected cluster displayed
as dark shaded areas on the histograms.

3.4.4 Miscellaneous Partitioned-Based Clustering

Two alternative partitioned-based clustering methods are:

† k-modes: This clustering approach can be used with categorical data, and it
operates similarly to k-means. Where k-means uses a mean function to compute
the cluster centroid, k-modes uses a mode function for this computation.

† k-medoids: This clustering approach does not use a mean centroid, but it
instead uses a representative observation as the cluster centroid. This approach
helps overcome issues with outliers that can skew results generated with the k-
means method.

Figure 3.20 Summary of three clusters generated from k means clustering

Figure 3.21 Summary of cluster 1 from the k means clustering
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Figure 3.22 Summary of cluster 2 from the k means clustering

Figure 3.23 Summary of cluster 3 from the k means clustering
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3.5 FUZZY CLUSTERING

3.5.1 Overview

With partitioned-based clustering (also referred to as “hard” or “crisp” clustering),
each observation belongs to a single cluster, there are no empty clusters, and the
number of clusters needs to be specified prior to clustering. Like partitioned-based
approaches, fuzzy clustering requires the number of clusters to be specified prior to
clustering. However, unlike partitioned-based clustering, each observation belongs
to all clusters. Accompanying each observation is a number that reflects the degree
to which the observation belongs to each cluster. This membership is calculated
using a membership function whereby the degree of association is reflected in a
number between 0 and 1. Lower numbers indicate that the observation is marginally
associated with the cluster, and higher numbers show the observation is strongly
associated with a particular cluster. The results of fuzzy clustering are a membership
matrix composed of k columns corresponding to the number of clusters, and n obser-
vations, as shown in Table 3.29. This membership matrix was calculated from the
observations in Table 3.26.

In the example in Table 3.29, five observations (A, B, C, D, and E) have been
clustered into three groups (cluster 1, cluster 2, and cluster 3). The degree of associ-
ation with each cluster is shown. Observation A has almost no association with cluster
1 and cluster 2; however, it has a strong association with cluster 3. Observation C is
most strongly associated with cluster 3, but it also has some level of association with
cluster 1 and cluster 2. For each observation, the sum of all cluster associations for
each observation is 1.

3.5.2 Fuzzy k-Means

Like k-means clustering, fuzzy k-means clustering requires that the number of clusters
must be specified prior to clustering. This number, often referred to as k, must be
greater than one and less than the total number of observations in the data set.
Another parameter is often referred to as the degree of fuzziness (q), and it also
must be specified prior to clustering. There are two important functions that are
required for fuzzy k-means clustering: the membership function and the function to
calculate the cluster centroid. These calculations are repeatedly used in the clustering
process to optimize the results.

TABLE 3.29 Example Membership Matrix

Label Cluster 1 Cluster 2 Cluster 3

A 0.0272 0.00911 0.964

B 0.00253 0.996 0.00147

C 0.336 0.179 0.485

D 0.803 0.045 0.152

E 0.705 0.199 0.0962
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The membership function defines the degree of association between an obser-
vation and a specific cluster. The function is used to calculate an entry for each
observation in each cluster in order to construct the entire membership matrix. The
following formula is used:

mij ¼
d 2=(q 1)

ij

Pk

l¼1
d 2=(q 1)

il

In this formula, a membership score (mij) is calculated that reflects the association of
observation i to cluster j. The value of i can take any value between one and the total
number of observations in the data set (n), and j can take any value between one and
the number of clusters (k). dij is the distance between observation i and cluster centroid
j, and dil is the distance between the observation i and each of the cluster centroids l.

The optimal value for the fuzziness parameter q is dependent on the specific
data set being analyzed, with typical values ranging between 1.5 and 9. Higher
values for q result in increasingly fuzzier clustering.

The formula for computing the cluster centroid is:

Cj ¼

Pn

i¼1
mq

ijxi

Pn

i¼1
mq

ij

In this formula, a value for the centroid Cj for cluster j is calculated. The formula
makes use of the membership function value for observation i, and its association
with cluster j, raised to the power of the fuzziness parameter q(mq

ij). The observation
values are incorporated (xi).

Initially, a number of centroid values are randomly assigned using random
observations or random values. Using these centroid values, an initial membership
matrix is calculated, followed by a calculation of the centroids based on this
matrix. The process of recalculating the membership matrix, followed by a recalcula-
tion of the centroid, is repeated until the matrix is determined to be optimized. The
membership matrix is considered optimized when the largest difference of any two
corresponding cells of the previous membership matrix and the newly computed
membership matrix is less than some error threshold. At that point, the clustering pro-
cess ends and the optimized matrix is used as the clustering results.

3.5.3 Worked Examples

The normalized table of values shown in Table 3.30 will be used to illustrate fuzzy
k-means clustering. In this example, the euclidean distance is used to calculate
distances between observations, the fuzziness value is given a value of 2, and three
clusters will be generated. Prior to clustering, the predefined termination value is
set to 0.005.

Initially, a centroid is randomly assigned to each of the three clusters (see
Table 3.31). Then a membership matrix is calculated based on the membership
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function. In this example, the membership matrix makes use of this assigned centroid
and uses the euclidean distances to the observations (see Table 3.32). The centroid
function is now recalculated, using this membership matrix (see Tables 3.33 and
3.34). All elements of this membership matrix are compared to the previously calcu-
lated membership matrix, and the element with the maximum difference is deter-
mined. This value is referred to as the maximum error, which here is 0.234.
Because the error is greater than the predetermined cutoff value, which is 0.005 in
this example, the process continues.

TABLE 3.30 Example Table of Normalized Data

Percentage
body fat Weight Height Chest Abdomen

A 0.0 0.0 0.0 0.0 0.0

B 1.0 1.0 0.409 1.0 1.0

C 0.513 0.375 0.136 0.441 0.377

D 0.00932 0.347 0.955 0.178 0.050

E 0.585 0.681 1.0 0.520 0.562

TABLE 3.31 Initial Random Centroids

Percentage
body fat Weight Height Chest Abdomen

Centroid 1 0.543 0.187 0.573 0.812 0.294

Centroid 2 0.922 0.482 0.903 0.551 0.197

Centroid 3 0.925 0.281 0.098 0.220 0.282

TABLE 3.32 Initial Membership Matrix

Cluster 1 Cluster 2 Cluster 3

A 0.341 0.213 0.446

B 0.349 0.365 0.286

C 0.331 0.152 0.517

D 0.405 0.368 0.228

E 0.291 0.574 0.135

TABLE 3.33 First Updated Centroid

Percentage
body fat Weight Height Chest Abdomen

Centroid 1 0.384 0.465 0.514 0.408 0.367

Centroid 2 0.509 0.620 0.774 0.509 0.502

Centroid 3 0.372 0.344 0.223 0.353 0.316
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The centroid is recalculated and a new membership function is determined,
followed by an evaluation of the maximum error. The maximum error is now
0.128, which is considerably less than the initial error, yet still greater than the
0.005 cutoff value. The process of recalculating the centroid and the membership
matrix is continued until the maximum error value is less than 0.005. On the
thirty-fifth iteration, the maximum error is recorded as 0.00465. Since the error is
now less than 0.005, the process finishes and the final centroid values and the mem-
bership matrix represent the final clustering results, as shown in Tables 3.35 and 3.36,
respectively.

The final membership matrix shows how each observation belongs to each of
the three clusters. Observation A is primarily associated with cluster 3, and obser-
vation B is primarily associated with cluster 2. Observations C, D, and E are not
as clearly associated with a single cluster. Observation C is primarily associated
with cluster 3; however, it is also associated with cluster 1. Observations D and E
are primarily associated with cluster 1, but they have levels of association with the
remaining clusters.

TABLE 3.34 First Updated Membership Matrix

Cluster 1 Cluster 2 Cluster 3

A 0.341 0.213 0.446

B 0.349 0.365 0.286

C 0.331 0.152 0.517

D 0.405 0.367 0.228

E 0.291 0.574 0.135

TABLE 3.35 Thirty-fifth Updated Centroids

Percentage
body fat Weight Height Chest Abdomen

Centroid 1 0.283 0.482 0.898 0.337 0.282

Centroid 2 0.968 0.968 0.424 0.964 0.963

Centroid 3 0.106 0.0857 0.0530 0.0941 0.0794

TABLE 3.36 Thirty-fifth Updated Membership Matrix

Cluster 1 Cluster 2 Cluster 3

A 0.0272 0.00911 0.964

B 0.00253 0.996 0.00147

C 0.336 0.179 0.485

D 0.802 0.0452 0.152

E 0.705 0.199 0.0962
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To further illustrate fuzzy clustering, the Iris data set of 150 flowers (http://
archive.ics.uci.edu/ml/datasets/Iris) is used, where sepal length, sepal width, petal
length, and petal width have been measured. Table 3.37 details a few examples
from the data set.

Fuzzy clustering is performed on the data where the number of clusters is set to
three, and the euclidean distance is used to assess the distance between observations.
Table 3.38 shows the results of the clustering, where each observation is assigned a
number between zero and one for each of the three clusters: cluster 1, cluster 2, and
cluster 3.

Figure 3.24 contains three scatterplots, where sepal length and petal length
have been plotted on identical axes. On each of the scatterplots, the 50 highest-
ranked observations for each of the clusters are highlighted. The ranking is based
on the cluster membership function shown in Table 3.38. Generally, cluster 1 is cen-
tered in the top right of the scatterplot, cluster 2 is centered in the middle, and cluster
3 is centered near the bottom left. Observations A, B, and C from Table 3.38 are
shown on the scatterplot. Observation A is located between cluster 1 and cluster 2
on Fig. 3.24, and this is reflected by the membership function values.
Observations B and C are most strongly associated with cluster 1 and cluster 3,
respectively, as shown in Table 3.38 and Fig. 3.24.

TABLE 3.37 Example Flowers from the Iris Data Set

ID Sepal length Sepal width Petal length Petal width

A 6.3 3.3 4.7 1.6

B 7.4 2.8 6.1 1.9

C 4.7 3.2 1.3 0.2

D 5.1 3.5 1.4 0.2

E 4.9 3 1.4 0.2

F 4.6 3.1 1.5 0.2

G 5 3.6 1.4 0.2

H 5.4 3.9 1.7 0.4

. . . . . . . . . . . . . . .

TABLE 3.38 Fuzzy Clustering Results from the Iris Data Set

ID
Sepal
length

Sepal
width

Petal
length

Petal
width Cluster 1 Cluster 2 Cluster 3

A 6.3 3.3 4.7 1.6 0.47 0.48 0.05

B 7.4 2.8 6.1 1.9 0.82 0.15 0.03

C 4.7 3.2 1.3 0.2 0.01 0.02 0.97

D 5.1 3.5 1.4 0.2 0.00 0.00 0.99

E 4.9 3 1.4 0.2 0.02 0.05 0.93

F 4.6 3.1 1.5 0.2 0.02 0.04 0.94

G 5 3.6 1.4 0.2 0.01 0.01 0.98

H 5.4 3.9 1.7 0.4 0.05 0.09 0.87

. . . . . . . . . . . . . . . . . . . . . . . .
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Figure 3.24 Fuzzy clustering of the Iris data set
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3.6 SUMMARY

The starting point for any clustering method is a distance matrix or dissimilarity
matrix (D), which is a square n-by-n matrix, where n is the number of observations
in the data set to be clustered. This distance matrix has the following format:

D ¼

0 d1,2 d1,3 . . . d1,n

d2,1 0 d2,3 . . . d2,n

d3,1 d3,2 0 . . . d3,n

. . . . . . . . . . . . . . .
dn,1 dn,2 dn,3 . . . 0

2
66664

3
77775

Tables 3.39 and 3.40 summarize the distance measures covered in this chapter.
Table 3.41 summarizes the clustering approaches described in this chapter.

TABLE 3.39 Distance Measures Covered in This Chapter

Numeric Binary

Euclidean: dp,q

Xn

i 1

(pi qi)2
q

Simple matching: dp,q 1
a þ d

a þ b þ c þ d

Square euclidean: dp,q

Xn

i 1

(pi qi)
2 Jaccard: dp,q

b þ c

a þ b þ c

Manhattan: dp,q

Xn

i 1

jpi qij Russell and Rao Y: dp,q 1
a

a þ b þ c þ d

Maximum: dp,q max jpi qij Dice: dp,q
b þ c

2a þ b þ c

Minkowski: dp,q

Xn

i 1

jpi qijll

s
Rogers and Tanimoto: dp,q

2(b þ c)
a þ 2(b þ c) þ d

Canberra: dp,q

Xn

i 1

jpi qij
(jpij þ jqij)

Mahalanobis: dp,q (p q)S�1(p q)T
q

TABLE 3.40 Additional Distance Measures

Mixed Variables

Gower: dp,q

Pn

i 1
wid2

i

Pn

i 1
wi

vuuuuut Correlation coefficient: r

Pn

i 1
(xi x)(yi y)

(n 1)sxsy
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3.7 FURTHER READING

The following sources provide additional general information on clustering: Gan and
Wu (2007), Mirkin (2005), Everitt et al. (2001), Kaufmann and Rousseeuw (2005),
Han and Kamber (2005), and Tan et al. (2005). A number of methods have been
developed to aid in selecting the number of clusters, which is especially useful
with clustering approaches such as k-means clustering, where a value for k must be
set prior to clustering: Milligan and Cooper (1985), Kelley et al. (1996), Kyrgyzov
et al. (2007), Salvador and Chan (2004), and Aldenderfer and Blashfield (1984).

Other clustering approaches include divisive hierarchical clustering, self-
organizing maps (SOMs), grid-based clustering, model-based clustering, and density-
based clustering. Divisive hierarchical clustering operates in the reverse direction to
agglomerative hierarchical clustering, starting with all observations in a single cluster,
and continually dividing the set until each observation is in a single cluster. For more infor-
mation on divisive hierarchical clustering, see Gan and Wu (2007) and Tan et al. (2005). A
SOM or Kohenen network is a type of neural network that is often used to take high dimen-
sional data and map it onto fewer dimensions so that it can be displayed. This method is
described in Kohonen (1990, 2001), Hastie et al. (2003), Gan and Wu (2007), and Han
and Kamber (2005). Grid-based clustering does not utilize the individual observations
for clustering, but uses a finite number of cells resulting in faster execution, see Gan
and Wu (2007), and Han and Kamber (2005). Model-based clustering attempts to generate
models from the data, with each model representing acluster (Gan and Wu, 2007; Han and
Kamber, 2005). Density-based clustering is used to identify arbitrary shaped dense clus-
ters that are separated by less dense regions. The approach handles noise and outliers well,
and there is no requirement to specify the number of clusters prior to clustering. Gan and
Wu (2007) and Tan et al. (2005) provide an overview of this approach. A number of refer-
ences provide a greater level of detail concerning methods for assessing individual clusters
such as Tan et al. (2005) and Gan and Wu (2007).

TABLE 3.41 Summary of Clustering Approaches

Advantages Disadvantages Features

Hierarchical Shows hierarchical
relationships

Does not require
selection of cluster
numbers upfront

Slow to compute
Cannot be applied to

large data sets

All observations are in a
single cluster

Partitioned Fast to compute
Works with large

data sets

Need to specify the
number of clusters
upfront

Does not show
relationship among
clusters

Each observation belongs
to a single cluster

Fuzzy Fast to compute
Works with large

data sets

Need to specify the
number of clusters
upfront

All observations are in all
clusters, but to various
degrees
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C H A P T E R 4
PREDICTIVE ANALYTICS

4.1 OVERVIEW

4.1.1 Predictive Modeling

Predictive analytics refers to a series of techniques concerned with making more
informed decisions based on an analysis of historical data. These methods are used
throughout the industries of science and business. For example, pharmaceutical
companies use these techniques to assess the safety of potential drugs before testing
them in human clinical trials, and marketing organizations use these models to predict
which customers will buy a specific product.

This section will use the following example to illustrate the process of building
and using predictive models. A telecommunications company wishes to identify and
prioritize all customers they believe are likely to change to another service provider.
In an attempt to avoid losing business, the company will offer new products or
new service options to these customers. Over the years, the organization collected
customer data monthly that included decisions to switch to another service provider.
Table 4.1 is an example of the information collected on customers, where each
observation relates to a specific customer in one month. The data includes a variable,
churn, where a 1 indicates a switch to a new service provider and a 0 indicates a
continuation of service. The table also includes the specific month the observation
was recorded (month), the age of the customer (age), the annual income of the
customer (income), the number of months they have been a customer (customer
length), the gender of the customer (gender), the number of calls made that month
(monthly calls), and the number of calls made to the customer service department
(service requests). This data will be used to build a model attempting to understand
any relationships between (1) the customer data collected and (2) whether the
customer changes service provider.

The telecommunications company would like to use the model in their market-
ing department to identify customers likely to switch. Since the company has limited
resources, it would also like to prioritize the customers most likely to switch. The
company has data for the current month, which is shown in Table 4.2. The data
for the current month is the same type of data used to build the model, except that
churn is currently unknown. The model created from the historical data can then
be used with the new data to make a series of predictions. Table 4.3 is an example
of a table where two columns have been added for the values generated by the
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model. Predicted churn indicates whether that particular customer is likely to switch
services (predicted churn 1) or not (predicted churn 0) this month. Churn prob-
ability reflects the likelihood, or probability, that a particular customer will be
assigned a predicted churn value of 1. This table can then be sorted by the probability
column, allowing the marketing team to focus on those customers most likely to switch.

Figure 4.1 illustrates the general process of generating and using a prediction
model. Data is used to generate a model that predicts a specific response variable
from a set of independent variables. In the telecommunications example, the indepen-
dent variables are age, income, gender, customer length, monthly calls, and service
requests. These independent variables are used in concert with the response variable,

TABLE 4.1 Example of Telecommunications Data Used to Build a Model

ID Month Age Income
Customer

length Gender
Monthly

calls
Service
requests Churn

A January 45 $72k 36 Female 46 1 0

B March 27 $44k 24 Male 3 5 1

C July 51 $37k 47 Male 52 0 0

D February 17 0 16 Female 62 1 1

E December 45 $63k 63 Female 52 0 0

F October 24 $36k 24 Male 72 1 0

G March 39 $48k 5 Male 36 0 0

H June 46 $62k 17 Male 1 0 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

TABLE 4.2 Data Collected on Customers for the Current Month

ID Month Age Income
Customer

length Gender
Monthly

calls
Service
requests Churn

a May 52 $84k 52 Female 52 0 ?

b May 26 $28k 14 Male 12 2 ?

c May 64 $59k 4 Male 31 1 ?

. . . . . . . . . . . . . . . . . . . . . . . . . . .

TABLE 4.3 Customers Predicted to Change Services this Month, and a Measure of the
Likelihood of Switching

ID Month Age Income
Customer

length Gender
Monthly

calls
Service
requests

Predicted
churn

Churn
probability

a May 52 $84k 52 Female 52 0 0 0.33

b May 26 $28k 14 Male 12 2 1 0.74

c May 64 $59k 4 Male 31 1 1 0.88

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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or churn in this example. The model captures relationships between the independent
variables and the response variable. Models are built in an initial training step where
the model learns from the historical data. Once a model has been built, a new data set
containing the same independent variables can be used with the model to calculate
predictions from the captured relationships. In Fig. 4.1, this is identified as the
second step, where the model is deployed and being used to predict a value for a
response variable.

Building predictive models assumes the same exploratory data analysis as
discussed in the previous chapters has been done. (The first three chapters discussed
the process and methods such as data visualization, descriptive statistics, and
clustering that help understand the content.)

For the model to capture important relationships, the data set must have a
balanced mixture of positive and negative examples. In the telecommunications
example, this means including observations where the customer did and did not
switch. It will be hard to build an objective model without a good proportion of
both cases because the model may falsely identify certain characteristics that are
merely common to all customers, not specifically to those that switch services.

Preparing and selecting which variables should be used with a model is a cri-
tical phase in the process. Prioritizing the variables to be considered is important,
especially when the data set has many variables. One way to prioritize is to look at
the relationships between the potential independent variables and the target response
variable to see if there is any relationship. Using methods such as a hypothesis test,
a chi-square test, or a matrix of correlation coefficients can help to prioritize the
variables. There should be no strong relationships between the independent variables
included in the model because related variables are redundant, or worse, they may
introduce problems when building models. Knowledge of the specific subject
matter and an understanding of how the model is going to be deployed is also
often critical to making choices about what variables to include. For example, if
collecting or measuring a particular variable’s values is too costly, then this variable
should be excluded despite its potential utility.

The next major factor that affects the model-building approach is the type
of response variable involved, that is, whether the variable is categorical or continu-
ous. If the response variable is categorical, then a classification modeling approach
should be used. These include logistic regression, discriminant analysis, naive
Bayes, k-nearest neighbors (kNN), classification trees, and neural networks. If the
response variable is continuous, then a regression modeling approach should be
considered. These include linear regression, k-nearest neighbors, regression trees,

Figure 4.1 Process of generating and using a prediction model

4.1 OVERVIEW 113



and neural networks. A few approaches may be used with categorical and continuous
responses. All approaches have advantages and disadvantages, and the different
approaches often require the data to conform to certain assumptions. The major
approaches are summarized in Table 4.4.

In selecting which approach to use, other practical considerations may need to
be considered. In the telecommunication example, the marketing department needed
a classification model to predict the binary response variable churn; however, the
department also wanted to prioritize the results so they can focus their efforts on
customers most likely to switch. In this situation, the logistic regression method
might be a good candidate since it generates a prediction for the binary variable
churn and calculates the probability of switching.

Different modeling approaches operate in different ways and selecting the best
method requires an understanding of the data and how the different methods operate.
Figure 4.2 illustrates different types of approaches. In chart A, a single independent
variable is plotted against a single response variable. Because a linear relationship
exists between the two variables, they can be modeled using a linear regression
method. In contrast, chart B indicates a nonlinear relationship where the data either
needs to be transformed or needs to be used with a method that is capable of modeling
these relationships. In chart C, the data used to build the model was divided into
regions based on specific values or ranges of the independent variables. In this
example, two independent variables are used to illustrate how the data can be divided
into regions (no response variable is shown). When making a prediction, the approach
assigns an observation into a specific region based on values or ranges for the inde-
pendent variables, and a prediction is made based on training data in the region, such

TABLE 4.4 Summary of Different Modeling Approaches

Method Model type
Independent

variables Comments

Linear
regression

Regression Any numeric Assumes a linear relationship
Easy to explain
Quick to build

Discriminant
analysis

Classification Any numeric Assumes the existence of mutually
exclusive groups with common
variances

Logistic
regression

Classification Any numeric Will calculate a probability
Easy to explain

Naive Bayes Classification Only
categorical

Requires a lot of data

Neural networks Regression or
classification

Any numeric Black box model

kNN Regression or
classification

Any numeric Difficult to explain results
Handles noise well
Handles nonlinear relationships

CART Regression or
classification

Any Explanation of reasoning through use
of a decision tree
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as the average value. Techniques such as regression trees make predictions in this
manner. Another approach is illustrated in chart D, where similar observations
from the training data to the observation to be predicted are identified and a prediction
is made based on the average response values from this set. kNN uses this approach to
make predictions.

Figure 4.3 illustrates a number of classification approaches. In chart A, the
independent variable space is characterized by grouping similar observations. A
prediction is made by deciding what similar observations are present in the training
set, and then using the mode response value from these observations as the predicted
classification. Again, the kNN method is an example of this approach. Similarly, the train-
ing data could have been divided into specific regions based on a good classification

Figure 4.2 Illustrations of different regression modeling approaches

Figure 4.3 Illustration of different classification modeling approaches
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of the data, and predictions may be made by determining where in this space a test
observation should be assigned. Classification trees are an example of this approach.
Another approach is to determine whether there are boundaries between the classes, as
illustrated in chart C. These boundaries allow for classification, and methods such as
discriminant analysis will model the data based on this type of approach.

Modeling the data using different approaches and fine-tuning the parameters
used within each method will lead to models with greater predictive accuracy.
Understanding how the individual approaches operate will help in this optimization
process. Building multiple models and assessing them with a consistent methodology
will help to select the best one for the particular problem being addressed. Care must
be taken to build the model such that the relationships are general enough to make
good predictions beyond the specific examples in the training data. In addition, the
bounds of the model should be characterized based on the types and ranges of data
used to build the model or based on general population characteristics or assumptions.

This chapter describes a series of multivariate approaches for building and test-
ing predictive models. Section 4.1.2 describes methods for dividing data sets into sets
for training and testing the model, thus ensuring objective testing of the model.
Different metrics for assessing models are provided in Sections 4.1.3 4.1.7. These
methods differ based on the type of the response variable, that is, whether the variable
is continuous, categorical, or binary. Prior to building any model, it is important
to understand and select variables to use as independent variables in the model.
In Section 4.2, a technique referred to as principal component analysis is described.
This technique helps in selecting variables or determining derived variables to use in
any model. Sections 4.3 4.7 describe a series of widely used modeling approaches,
including multiple linear regression, discriminant analysis, logistic regression, and
naive Bayes.

4.1.2 Testing Model Accuracy

In order to assess which predictive data mining approach is most promising, it is
important to assess the various options in a way that is objective and consistent.
Evaluating the different approaches also helps set expectations about performance
levels for a model ready to be deployed. In evaluating a predictive model, different
data sets should be used to build the model and to test the performance of the
model. Using different data ensures that the model has not overfitted the training
data. The following approaches are commonly used to achieve this:

† Test data: Before the data set is used to train any models, a set of data selected
randomly is set aside for the sole purpose of testing the quality of the results,
such as one-third of the data set. These observations will not be used in building
the model, but they will be used with any built model to test the model’s pre-
dictive performance. It should be noted that, in the ideal case, the test set is only
used for model assessment. However in practical situations, there may not be
enough data available.

† Cross-validation: The same set of observations can be used for both training
and testing a model, but not at the same time. In the cross-validation approach,
a percentage of the data set is assigned for test purposes. Then, multiple training
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and validation set combinations are identified to ensure that all observations
will be a member of one validation set, and hence there will be a prediction
for each observation. The assignment to the training and validation sets is
random, and all validation sets will be mutually exclusive and approximately
the same size. As an example, if the validation set size percentage is 10%,
one-tenth of the data set will be set aside for testing and the remaining nine-
tenths used for training the model. Under this scenario, 10 models must be
built to ensure that all observations will be tested.

4.1.3 Evaluating Regression Models’ Predictive Accuracy

The following section discusses methods used to assess the accuracy of a regression
model, that is, a model built to predict a continuous variable. One effective way to
visualize the accuracy of the model is to draw a scatterplot of the actual response
values against the predicted response values. In Fig. 4.4 a model was built with
the actual response values ( y) plotted against the predicted values ( ŷ). The reference
line indicates where values would lie if the model made a perfect prediction, that is,
when the predicted values are equal to the actual values. A good model has points
close to the line, like the model displayed in Fig. 4.4.

A number of methods can be used to assess the model. The error or residual
refers to the difference between the actual response value ( yi) and the predicted
response value ( ŷi). To quantify the error over the entire test set, the squared or
absolute error is used, thus avoiding using a negative number which would bias
the overall error evaluation. The mean square error and the mean absolute error
sum these errors and divide the sum by the number of observations (n). Both
values provide a good indication of the overall error level of the model.

mean square error

Pn

i¼1
( ŷi � yi)2

n

mean absolute error

Pn

i¼1
jŷi � yij

n

Figure 4.4 Scatterplot showing the actual values plotted against predicted values
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Two additional approaches, relative square error and relative absolute error, normal-
ize the overall error based on using the mean value (y) as a simple prediction:

relative square error

Pn

i¼1
( ŷi � yi)2

Pn

i¼1
( yi � y)2

relative absolute error

Pn

i¼1
jŷi � yij

Pn

i¼1
jyi � yj

The correlation coefficient is a measure of the linear relationship between two
continuous variables. In this situation, the variables are the actual values and the
predicted values. The resulting values are always between 1 and þ1 where
strong positive linear relationships are signified by values close to þ1, strong
negative linear relationships are close to 1, and values close to 0 indicate a lack
of any linear relationship. When this value is squared, the resulting range will be
between 0 and 1. The equation uses the average value of both the actual values
(y), and the predicted values ( ŷ), as well as the standard deviation of the actual
value (sy), and the standard deviation of the predicted values (sŷ).

correlation coefficient

Pn

i¼1
( yi � y)( ŷi � ŷ)

(n � 1)sysŷ

Figure 4.5 displays the results from three models: models A, B, and C. The figure
shows three different scatterplots of a model’s predictions against the actual values.
The closer the predicted values are to the actual values for the entire data set, the
better the model is. Model A is the least predictive of the three, with model B provid-
ing a greater level of prediction, and model C showing the best level of accuracy.

The metrics described for assessing predictive accuracy are calculated for the
three models and shown in Table 4.5. The first four values (mean square error,
mean absolute error, relative square error, and relative absolute error) all have
values that decrease with improved predictive accuracy. The correlation coefficient
and the square correlation coefficient have values approaching 1 as the model
accuracy improves.

Figure 4.5 Scatterplots of predicted values vs actual values for three models
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4.1.4 Evaluating Classification Models’ Predictive Accuracy

The overall accuracy of a classification prediction model can be estimated by compar-
ing the actual values against those predicted, as long as there are a reasonable number
of observations in the test set. An accuracy estimate is calculated using the number
of correctly classified observations divided by the total number observations. This
results in a number between 0 and 1, where values close to 1 indicates a high accuracy
level. The error rate or misclassification rate is calculated using the number of obser-
vations incorrectly classified or one minus accuracy. A confusion matrix, or contin-
gency table, is an effective way of viewing the accuracy of a classification model.
For example, Fig. 4.6 shows a table illustrating the results of a classification
model. The model’s response is the categorical variable cylinders which can take
five values: 3, 4, 5, 6, and 8. The actual values are shown on the x-axis and the pre-
dicted values are shown on the y-axis. In this example, four observations are predicted
as 3; however, only three values are correctly predicted. A single value is incorrectly
predicted as 3, when in fact it is 4.

The total number of correctly classified observations can be determined by
summing the counts on the diagonal. In Fig. 4.6, that would include 3, 170, 0, 45,
and 103, which equal 321. To calculate the overall accuracy, the correct 321

TABLE 4.5 Comparison of Model Accuracy for Three Models

Model A Model B Model C

Mean square error 1.42 0.622 0.176

Mean absolute error 0.874 0.579 0.333

Relative square error 0.342 0.161 0.051

Relative absolute error 0.52 0.346 0.212

Correlation coefficient 0.811 0.916 0.974

Square correlation coefficient 0.658 0.839 0.949

Figure 4.6 Contingency table showing predicted values against actual values
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observations should be divided by the 392 total number of observations, which
equals 0.82. One minus this accuracy level is the error rate, or 0.18. Good classifi-
cation models have high values along the diagonals in the contingency table.

4.1.5 Evaluating Binary Models’ Predictive Accuracy

In many situations, prediction models are built for a binary response variable. For
example, a model may be built to predict whether an insurance application is fraudu-
lent or not. The ability to predict a fraudulent case may be more important than
predicting a nonfraudulent case, so it makes sense to look at the model results in
more detail. In this situation, models that minimize false negatives should be selected
over those that maximize accuracy.

In the following section, the results from prediction models with a binary
response are assessed in greater detail. Counts for the following four properties are
initially required:

† True positive (TP): The number of observations predicted to be true (1) that are
in fact true (1).

† True negative (TN): The number of observations predicted to be false (0) that
are in fact false (0).

† False positive (FP): The number of observations that are incorrectly
predicted to be positive (1), but which are in fact negative (0).

† False negative (FN): The number of observations that are incorrectly
predicted to be negative (0), but which are in fact positive (1).

These four alternatives are illustrated in the contingency table, or confusion matrix,
shown in Table 4.6.

The following values can be calculated to assess the quality of a binary
classification prediction model:

† Accuracy: The overall accuracy of the model can be calculated based on the
number of correctly classified examples divided by the total number of
observations,

TP þ TN
TP þ FP þ FN þ TN

TABLE 4.6 Contingency Table Showing the Four Possible Situations

Actual response

Positive (1) Negative (0)

Prediction Positive (1) TP FP

Negative (0) FN TN
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† Error rate: The error rate, or misclassification rate, is 1 minus the accuracy
value,

1 � TP þ TN
TP þ FP þ FN þ TN

† Sensitivity: This is the true positive rate, also referred to as the hit rate, or
recall. It is calculated using the number of observations identified as true posi-
tives, divided by the actual number of positive observations (TP þ FN),

TP
TP þ FN

† Specificity: This is the number of negative observations that are correctly
predicted to be negative, or the true negative rate. It is calculated using the
number of correctly predicted negative observations, divided by the total
number of actual negative observations (TN þ FP),

TN
TN þ FP

† False positive rate: This value is the same as 1 minus the sensitivity and is cal-
culated using the number of incorrectly predicted negative observations divided
by the actual number of negative observations (FP þ TN),

FP
FP þ TN

† Positive predictive value: This value is also called precision, and it is the
number of correctly predicted positive observations divided by the total
number of predicted positive observations (TP þ FP),

TP
TP þ FP

† Negative predictive value: This value is the total number of correctly
predicted negative observations divided by the number of negative
predictions (TN þ FN),

TN
TN þ FN

† False discovery rate: This value is the number of incorrectly predicted positive
observations divided by the number observations predicted positive (FP þ TP),

FP
FP þ TP
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Figure 4.7 shows the results from three binary classification models: models A, B,
and C. These models show the number of correctly, as well as incorrectly, classified
observations, including false positives and false negatives.

Table 4.7 presents an assessment of the three models using the metrics detailed
in this section. The overall accuracy and error rate of the models are summarized in
the accuracy and error metric. In general, model C is most accurate, followed by
model B, and then model A. The metrics also assess how well the models specifically
predict positives, with model B performing the best based on the sensitivity score.
Model C has the highest specificity score, indicating that this model is the best of
the three at predicting negatives.

These different metrics are used in different situations, depending on the goal
of the specific project.

4.1.6 ROC Charts

A receiver operating characteristics, or ROC, curve provides an assessment of one or
more binary classification models. This chart plots the true positive rate or sensitivity
on the y-axis and the false positive rate or 1 minus specificity on the x-axis. Usually a
diagonal line is plotted as a baseline, that is, where a random prediction would lie. For
classification models that generate a single value, a single point can be plotted on the
chart. A point above the diagonal line indicates a degree of accuracy that is better than
a random prediction. Conversely, a point below the line indicates that the prediction is
worse than a random prediction. The closer the point is to the upper top left point in
the chart, the better the prediction.

Figure 4.7 Summary of three different models

TABLE 4.7 Comparison of Different Metrics Across Three Models

Model A Model B Model C

Accuracy 0.75 0.88 0.90

Error 0.26 0.13 0.10

Sensitivity 0.52 0.93 0.86

Specificity 0.88 0.84 0.93

False positive rate 0.12 0.16 0.07

Positive predictive value 0.74 0.79 0.88

Negative predictive value 0.75 0.95 0.91

False discovery rate 0.26 0.21 0.12
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Figure 4.8 ROC chart for a model

Figure 4.9 ROC chart of a good model
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When a classification model generates a numeric value, such as a probability,
then a classification can be made by specifying a cutoff threshold. Those numeric pre-
dictions above the cutoff are predicted positive, and those below are predicted to be
negative. By building multiple models using different threshold cut-offs, a curve can
be generated. For example, Fig. 4.8 presents an ROC curve for a model, and Fig. 4.9
shows an ROC curve for a model with a higher level of performance. The area under
the curve (AUC) can be used to assess the model’s accuracy.

4.1.7 Lift Chart

Many predictive analytics applications require the prediction of a binary response
variable. For example, a direct mailing company may wish to predict which house-
holds will respond to a specific direct mailing campaign. Those that respond corre-
spond to the positive outcome and those that do not respond correspond to the
negative outcome. A predictive model can be built to generate the probability that

TABLE 4.8 Ordered Table of Cumulative Percentages of Observations and Positives

Actual
Prediction
probability

Cumulative percent of
all observations

Cumulative
percentage of positives

1 1 0.3% 0.4%

1 1 0.5% 0.9%

1 1 0.8% 1.3%

1 1 1.0% 1.7%

1 1 1.3% 2.2%

. . . . . . . . . . . .

1 0.997 25.0% 42.2%

1 0.997 25.3% 42.7%

1 0.997 25.5% 43.1%

1 0.997 25.8% 43.5%

1 0.997 26.0% 44.0%

. . . . . . . . . . . .

1 0.839 50.0% 81.5%

1 0.837 50.3% 81.9%

1 0.836 50.5% 82.3%

1 0.835 50.8% 82.8%

1 0.834 51.0% 83.2%

. . . . . . . . . . . .

0 0.0507 75.0% 99.6%

0 0.0499 75.3% 99.6%

0 0.0495 75.5% 99.6%

0 0.0494 75.8% 99.6%

0 0.0478 76.0% 99.6%

. . . . . . . . . . . .
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a customer will respond. This number would allow the direct mailing company
to prioritize customers from a long list of potential households.

A lift chart can help to understand how to use a particular model. The chart is
based on the original data along with the probability of a positive event generated
from a model built from historical data. If this table is ordered according to this prob-
ability, those observations with the greatest likelihood of being positive will be at the
top of the list. For example, Table 4.8 shows part of a table where a predictive model
has been generated for a binary response variable. The actual response is in the
column actual, and the predicted probability that an observation is true is in the
column probability. The values in cumulative percentage of observations and
cumulative percentage of positives have been calculated. These last two columns
are plotted as a lift chart, as shown in Fig. 4.10. A diagonal line has been included,
representing a random outcome.

The lift chart in Fig. 4.10 shows that using the top 50% of the ranked obser-
vations will result in approximately 80% of the total positives. For example, if this
data represents the direct mailing example, then targeting only the top-ranked 50%
of households will result in reaching most of those who will respond. The lift can
be calculated at any point, using the target response and dividing it by the average
response. In this example, at 50%, the target response is 80%, with an average
response at 50%, which gives a lift of 1.6, which is 1.6 times better than not using
the model.

Figure 4.10 Lift chart
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4.2 PRINCIPAL COMPONENT ANALYSIS

4.2.1 Overview

Often, data mining projects involve a data set with a large number of continuous vari-
ables. If a data set has too many variables, it can be difficult to understand. In
addition, the use of all variables in any analysis may introduce a host of logistical
and accuracy problems. For example, using a large number of variables may increase
the time to compute a particular model beyond an acceptable threshold. Using too
many independent variables in a particular model may also impair the accuracy or
reliability of a model by overfitting the data. There may even be logistical problems
in collecting the values of many variables when the model is deployed.

Principal component analysis provides a method for understanding the mean-
ing of a data set by extracting a smaller series of important components that account
for the variability in the data. Each of these factors or principal components considers
a subset of the variables to be important. For example, a data set containing infor-
mation on home loans may contain a host of information about an individual, such
as salary information, current home price, credit card debt, credit score, and so on.
These variables could then be analyzed using principal component analysis. The
analysis may group the variables in a number of different ways. For example, vari-
ables such as current home price and salary information may be grouped together
in a larger group indicating “wealth indicators,” whereas credit card debt and
credit score may be grouped together as “credit rating” factors.

The use of principal component analysis offers the following benefits:

† Data set insight: The process of generating and interpreting the results of a
principal component analysis can play an important role in becoming familiar
with a data set, and even questioning assumptions about the data. This process
may help uncover major factors underlying the data.

† Reducing the number of variables in the model: Identifying a smaller set of
variables is often helpful, and one approach is to select variables from each
important principal component. Alternatively, new variables for each of the
important principal components can be generated from the original variables
and used as independent variables directly in any modeling exercise.

4.2.2 Principal Components

Each principal component represents a weighted combination of the observed vari-
ables. Although all variables in a dataset are combined in a specific principal com-
ponent, the weights reflect the relative importance of each variable within each
principal component. For example, Fig. 4.11 displays a series of weights for five princi-
pal components (PC1 PC5) extracted from a dataset of five variables [age ( years),
weight (lbs), height (inches), abdomen (cm), ankle (cm)]. Each weight, or loading,
within a principal component reflects the relative importance of the variable, and
these values fall within the range of 1 to þ1. For example, in the second principal
component, PC2, age ( years) has a strong negative score of 0.781 whereas weight
(lbs) is given a score close to 0.
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Principal component analysis produces the same number of components as
variables. However, each principal component accounts for a different amount of
the variation in the data set. In fact, only a small number of principal components
usually account for the majority of the variation in the data. The first principal com-
ponent accounts for the most variation in the data. The second principal component
accounts for the second highest amount of variation in the data, and so on.

Principal component analysis attempts to identify components that are indepen-
dent of one another; that is, they are not correlated. The first principal component
accounts for the largest amount of variation in the data. The second principal
component is not correlated to the first; that is, it is orthogonal to the first principal
component as well as accounting for the second largest remaining variation in the
data. The other principal components are generated using the same criteria.

4.2.3 Generating Principal Components

Like most data analysis exercises, principal component analysis starts with a data
table comprising a series of observations. Each observation is characterized by a
number of variables. The first step in generating the principal components is to con-
struct either a correlation matrix or a covariance matrix. If a covariance matrix is used,
the original data may need to be normalized to ensure all variables are on a consistent
range. If a correlation matrix is used, this matrix is generated by computing a corre-
lation coefficient (r) for each pair of variables (see Section 3.2.5). For example,
Fig. 4.12 shows a correlation matrix formed from a series of 13 variables: age
( year), weight (lbs), and so on. The variable age ( years) is correlated with each
other variable, shown in the first row and first column. For example, the correlation
coefficient between age ( years) and weight (lbs) is 0.0125.

Figure 4.11 Five principal components

Figure 4.12 Correlation matrix
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The next step is to extract the principal components from this correlation matrix
(or covariance matrix), along with the amount of variation explained by each princi-
pal component. This is achieved by extracting eigenvectors and eigenvalues from
the matrix (Strang, 2006). The eigenvector is a vector of weights or loadings. The
eigenvalues represent the amount of variation explained by each factor. The principal
components are then sorted according to the amount of variation they account for.
Figure 4.13 illustrates a complete principal component analysis for the same 13 vari-
ables as used in Fig. 4.12. An eigenvalue is shown for each principal component
along with a percentage of the variance explained by each component. The first
principal component (PC1) accounts for 61.9% of the variation in the data, the
second principal component (PC2) accounts for 11.2% of the variation in the data,
and so on. The weights are also shown for each principal component. For the first
principal component, a loading of 0.00574 is assigned to the age ( years) variable,
a loading of 0.345 is assigned to the weight (lbs) variable, and so on. The absolute
value of each of the variable’s loading values within each principal component
represents its relative importance.

Additionally, a new variable can be generated from the original variables’
values and the weights of the principal component. For each original data point,
the mean for the variable must initially be subtracted from the value (mean centered)
and then multiplied by the variable’s weight. These values are then summed to create
a new variable for each selected principal component. Figure 4.14 shows a scatterplot
representing a derived score from principal component 1 against a derived score for
principal component 2.

4.2.4 Interpretation of Principal Components

Since the objective of principal component analysis is to identify a small number of
factors, the first step is to determine the specific number of principal components to
use. Figure 4.15 shows a plot of the variance explained by each principal component,
usually referred to as a scree plot. The first principal component accounts for the
majority of the variation. The ideal number of factors is usually the number just
prior to where on the graph the tail levels off. Selecting principal components after
this point would add little additional information. In this example, the cutoff
should be either at PC2 or PC3.

Figure 4.13 Extracted principal components along with eigenvalues
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Having selected the number of principal components, a process called rotation
of the factors can help interpret them, if the original analysis is unsatisfactory. This is
achieved through a redistribution with these newly rotated principal components now
containing loadings towards either þ1 or 1, with fewer loading values in between.
This process also redistributes the amount of variance attributable to each principal
component. Methods such as varimax (Kaiser, 1958) will perform an optimization
on the principal components to accomplish factor rotation. In Fig. 4.16, three

Figure 4.15 Scree plot for the percentage of the variance explained by the principal
components

Figure 4.14 Scatterplot of two derived scores from the principal components
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principal components were selected and rotated. In this example, by comparing the
original values to the new rotated values, the second principal component, age
( years), is now closer to þ1 while the others, with the exception of wrist (cm),
are closer to 0. Once a set of selected and rotated principal components is identified,
the final step is to name them, using the weights as a guide to assist the analysis.
Section 5.5 provides an example of the use of principal component analysis.

4.3 MULTIPLE LINEAR REGRESSION

4.3.1 Overview

Multiple linear regression analysis is a popular method used in many data mining
projects for building models to predict a continuous response variable. This model defines

Figure 4.16 The original loadings along with the rotated factors

130 CHAPTER 4 PREDICTIVE ANALYTICS



the linear relationship between a series of independent variables and a single response
variable. It can be used to generate models, for example, to predict sales from transactional
data, or to predict credit scores from information in a person’s credit history.

The use of multiple linear regression analysis has a number of advantages,
including:

† Easy to understand: Multiple linear regression models are easy to understand
and interpret, because they are represented as a weighted series of independent
variables. They can be effective in predicting new data as well as explaining
what variables are influential within the data set.

† Detect outliers: In addition to this method’s use as a prediction model, it can
also help identify outliers, that is, those observations that do not follow a linear
trend observed by the other entries.

† Fast: The generation of a multiple linear regression equation is fast, and it
enables the rapid exploration of alternative variables since multiple models
can be quickly built using different combinations of variables to determine
an optimal model.

Despite being an effective method for prediction from and explanation of a data set,
multiple linear regression analysis has a number of disadvantages, including:

† Sensitivity to noise and outliers: Multiple linear regression models are sensitive
to noisy data as they try to find a solution that best fits all data, including the out-
liers. Outliers are erroneous pieces of data that can have especially undesirable
consequences as the model tries to fit the potentially erroneous values.

† Only linear relationships handled: These models cannot model nonlinear data-
sets; however, the calculation of new variables can help in modeling.
Transforming the independent and/or the response variables using mathe-
matical transformation such as log, squared, cubed, square root, and so on,
can help to incorporate variables with nonlinear relationships.

The simplest form of a linear regression is one containing a single independent vari-
able, also referred to as simple linear regression. In this situation, the model can be
drawn as a straight line through the data, plotted on a scatterplot. For example,
Fig. 4.17 shows a scatterplot of two variables A and B, and a line drawn through
them to represent a linear model. This linear model is represented by the formula
for the straight line:

A ¼ �0:27 þ 1:02 � B

Multiple linear regression analysis involves understanding the relationship between
more than one independent variable and a single response variable. The analysis
does not imply that one variable causes another variable to change; it only recognizes
the presence of a relationship. This relationship is difficult to visualize when dealing
with more than one or two independent variables. The relationship between the
response variable and the independent variables for the entire population is assumed
to be a linear equation of the form:

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxn þ 1
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In this equation, y is the response, b0 bk are constant values referred to as beta coef-
ficients, x1 xn are the input independent variables, and 1 is a random error. Since the
model will be built from a sample of the population, building a multiple linear
regression model will estimate values for the beta coefficients, and the equation gen-
erated will look like:

ŷ ¼ b̂0 þ b̂1x1 þ b̂2x2 þ � � � þ b̂kxn

In this equation, ŷ is the predicted response, x1 xn are the independent variables, and
b̂0 through b̂k are the estimated values of the beta coefficients.

For example, a multiple linear regression equation to predict a credit score,
using two variables LOANS and MISSED PAYMENTS may look like:

CREDIT SCORE ¼ 22:5 þ 0:5 � LOANS � 0:8 � MISSED PAYMENTS

A number of assumptions must be made when building a multiple linear regression
model. These assumptions can be tested once the model has been built, as described
later in this chapter. These assumptions are:

† Linear: A multiple linear regression will only generate models that describe a
linear relationship between the independent variables and the response.

† Homoscedasticity: This refers to the assumption that the variation of error
terms should be constant with respect to the independent variables; that is,
there should be no relationship between the independent variable’s variation
and the error term.

† Independence: The error values should not be a function of any adjacent
values, for example, to avoid errors that result from the passage of time.

† Normally distributed error term: The frequency distribution of the errors (pre-
dicted value minus the actual value) is assumed to follow a normal distribution.

The variables used as independent variables should not be correlated to one another.
This situation, known as multicolinearity, will cause the models to fail. A scatterplot

Figure 4.17 Illustration of a simple linear regression model, represented as a straight line
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can be used to check for multicolinearity. Correlations between continuous variables,
as well as categorical variables, should be checked. An example of a multicolinearity
situation involving continuous variables is a dataset used to predict a health con-
dition. This data set may contain two or more tests that, in fact, measure the same
phenomena, and hence only one should be included. A multicolinearity situation
involving categorical variables involves a model used to predict the success of a mar-
keting campaign. In this example, the independent variable color can take three
values: red, green and blue. To use this variable within the model, the color variable
is transformed into three dummy variables corresponding to each color, as discussed
in Chapter 1. This results in the generation of three new variables; however, an obser-
vation where blue is 1 always occurs when red and green are 0. Hence, only two vari-
ables are really needed to capture all possible scenarios. The inclusion of all three
variables would include correlations between the color variables and therefore all
three should not be used. After a model is built, multicolinearity may be observed
through interpreting the beta coefficients to look for, as an example, unexpected posi-
tive or negative numbers that do not reflect how the model is expected to behave.

The following sections discuss how a multiple linear regression model is built,
and, once built, how its assumptions are tested through an analysis of the errors. Most
statistical software packages generate a series of statistics concerning the models
built, such as the standard error and the coefficient of multiple determination,
along with metrics to assess the significance of the models and the parameters.
Finally, in building a model, alternative combinations of variables should be used
to build multiple models, and alternative data transformations (such as product of
variables or variables squared) can be considered to improve the quality of the
models built.

4.3.2 Generating Models

A multiple linear regression model is an equation describing the linear relationship
between a response variable and a series of independent variables. The equation
is a weighted sum of all variables, where b̂1 b̂k correspond to the weights and
x1 xn correspond to the independent variables. ŷ is the response variable being
predicted and b̂0 is a constant added to the equation.

ŷ ¼ b̂0 þ b̂1x1 þ b̂2x2 þ � � � þ b̂kxn

The multiple linear regression formula can be rewritten using matrix multiplication:

y ¼ Xb̂

The response variable, y, is a column vector of values, where y1 yn are the response
values for the n observations:

y ¼

y1

y2

y3

. . .
yn

0
BBBB@

1
CCCCA

4.3 MULTIPLE LINEAR REGRESSION 133



The independent variables, X, are represented as a matrix, where n is the number of
observations and k is the number of variables to be used as independent variables.
The first column is all 1s and relates to the intercept b̂0.

X ¼

1 x1,1 x1,2 . . . x1,k

1 x2,1 x2,2 . . . x2,k

1 x3,1 x3,2 . . . x3,k

. . . . . . . . . . . . . . .
1 xn,1 xn,2 . . . xn,k

0
BBBB@

1
CCCCA

The b coefficients are also described as a vector, where b̂0 b̂n are the individual
coefficients:

b̂ ¼

b̂0

b̂1
b̂2

. . .

b̂n

0
BBBB@

1
CCCCA

To generate a multiple linear regression model, estimates for the b coefficients are
derived from the training data. The objective of the process is to identify the best fit-
ting model for the data. A procedure referred to as least squares attempts to derive a
set of coefficients to minimize the model’s error (1). This error is assessed using the
sum of squares of error (SSE), such that:

SSE ¼
Xn

i¼1

12
i

The formula calculated is based on the error (1) squared. The error is squared so that
positive and negative errors do not cancel each other out. The error is calculated from
the difference between the predicted value ( ŷi) and the actual response value ( yi):

SSE ¼
Xn

i¼1

( yi � ŷi)
2

Replacing ŷi with the equation for the multiple linear regression results in the
following:

SSE ¼
Xn

i¼1

( yi � b̂0 � b̂1x1 � � � � :� b̂kxk)2

This equation is then solved using calculus, and the details of this calculation are
provided in Rencher (2002). The b coefficients can then be calculated using the
following matrix formula:

b̂ ¼ (XTX) 1XTy

In this formula the superscript T represents a transposed matrix and the superscript
1 represents an inverse matrix. This calculation is always performed with a
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computer because of the complexity of the matrix operations. See Appendix A for
more details.

In the following example, a multiple linear regression model is built to predict
the rental price of apartments in a specific neighborhood. The response variable is
RENTAL PRICE and the independent variables used are SQUARE FEET and
NOS BATHS. Table 4.9 is a data table to be used to build the model.

The independent variables, SQUARE FEET and NOS BATHS, are converted
to a matrix, with the first column all 1s (corresponding to the intercept), the
second columns SQUARE FEET and the third column NOS BATHS:

X ¼

1 789 1
1 878 1
1 939 2
. . . . . . . . .

1 1082 2

0
BBBB@

1
CCCCA

The response variable, RENTAL PRICE, is converted to a vector:

y ¼

770
880
930
. . .

809

0
BBBB@

1
CCCCA

TABLE 4.9 Table of Data Relating Rental Prices to Their
Square Footage and Number of Baths

SQUARE FEET NOS BATHS RENTAL PRICE

789 1 770

878 1 880

939 2 930

1100 2 995

1300 3 1115

1371 3 1300

1481 3 1550

750 1 560

850 1 610

2100 3 1775

1719 3 1450

1900 3 1650

1100 3 900

874 1 673

1024 2 785

1082 2 809
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The b coefficients of the model are calculated using:

b̂ ¼ (XTX) 1XTy

b̂ ¼

1 789 1

1 878 1

1 939 2

. . . . . . . . .

1 1082 2

0
BBBBBB@

1
CCCCCCA

T 1 789 1

1 878 1

1 939 2

. . . . . . . . .

1 1082 2

0
BBBBBB@

1
CCCCCCA

2
6666664

3
7777775

1
1 789 1

1 878 1

1 939 2

. . . . . . . . .

1 1082 2

0
BBBBBB@

1
CCCCCCA

T 770

880

930

. . .

809

0
BBBBBB@

1
CCCCCCA

b̂ ¼
�33:3

0:816

46:5

0
B@

1
CA

The equation for the model relating the square feet and number of baths for
apartments to the rental price is therefore:

RENTAL PRICE ¼ �33:3 þ 0:816 � SQUARE FEET þ 46:5 � NOS BATHS

4.3.3 Prediction

To make a prediction of the rental price for an apartment with 912 square feet and one
bathroom, these values are substituted into the equation, thus resulting in a prediction
of 757 for the RENTAL PRICE:

RENTAL PRICE ¼ �33:3 þ 0:816 � SQUARE FEET þ 46:5 � NOS BATHS

RENTAL PRICE ¼ �33:3 þ 0:816 � 912 þ 46:5 � 1

RENTAL PRICE ¼ 757

The coefficients define the rate at which the model’s prediction will change as the
independent variables change, when all other independent variables are kept the
same. The higher the coefficient, the greater the change. For example, increasing
the number of baths in this example to 2, while keeping the square feet the same
will increase the rental price by 46.5.

It is usual to make a prediction from data within the same range as the data used
to build the model.

4.3.4 Analysis of Residuals

Once a model has been built, a prediction can be computed for each observation by
using the actual values for the x-variables within the model and calculating a pre-
dicted value for the y variables ( ŷ). For example, in the model previously built for
the apartment rental example, a prediction has now been calculated using the
regression model and the actual x-variables, SQUARE FEET and NOS BATHS.
Table 4.10 shows the predicted values along with the residuals.
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For each predicted value, the difference between what the model predicts and
the actual value is referred to as the error or the residual. For example, in Table 4.10,
the first observation has an actual value for RENTAL PRICE of 770, and a predicted
value of 657. The difference between these two values reflects the error or residual.

residual ¼ 770 � 657 ¼ 113

A residual has been calculated for each observation in the data set, as shown in
Table 4.10. Since the regression model has been calculated to minimize errors, the
sum of all residual values should equal zero. Analysis of residuals is helpful in testing
the following underlying assumptions, also mentioned above, of multiple linear
regression, that is:

† Linear: A multiple linear regression will only generate linear models, and
hence understanding whether the relationship is in fact linear is important.
This can be seen in Fig. 4.18, where the residual is plotted against the
y-variable and a clear “U”-shape can be seen, indicating a nonlinear relationship.
Plotting the residual against the individual independent variables will help to
identify nonlinear relationship that could be rectified with a mathematical trans-
formation, such as a quadratic term.

† Homoscedasticity: This refers to the assumption that the variation of error
terms should be constant with respect to the independent variables. This can
be tested by plotting, for example, the predicted variable against the residual.
If there is a trend indicating a nonconstant variance, as shown in Fig. 4.19,
then the underlying assumption of homoscedasticity is not valid.

† Independence: The error values should not be a function of any adjacent
values, and this can easily be tested by plotting the residual values against

TABLE 4.10 Calculations of Predictions and Residuals

RENTAL PRICE, y SQUARE FEET, x1 NOS BATHS, x2 PREDICTION, ŷ RESIDUAL, ERR

770 789 1 657 113

880 878 1 729 151

930 939 2 825 105

995 1100 2 957 38

1115 1300 3 1166 51

1300 1371 3 1224 76

1550 1481 3 1314 236

560 750 1 625 65

610 850 1 706 96

1775 2100 3 1819 44

1450 1719 3 1508 58

1650 1900 3 1656 6

900 1100 3 1003 103

673 874 1 726 53

785 1024 2 895 110

809 1082 2 942 133
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the order in which the values were collected. In Fig. 4.20, the residual values
have been plotted against the order the observations were taken, and a clear
trend is discernable in both graphs, indicating that the assumption of indepen-
dence is violated. This error may have been introduced as a result of the
measurements being taken over time.

† Normally distributed error term: Examining the frequency distribution of the
residuals, for example, using a frequency histogram or a q q plot (as
discussed in Chapter 2), is helpful in assessing whether the normal distribution
assumption is violated. This assumption is usually required to enable compu-
tations of confidence intervals, which are not required in many data mining
applications.

Figure 4.18 Nonlinear relationship shown by plotting the predicted variable against the
residual

Figure 4.19 A model that violates the homoscedasticity assumption, as seen by plotting
the residual against the prediction

Figure 4.20 Plot of residual against the order the observations were collected, indicating
a violation of the assumption of independence
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There should be no discernable trend in the residual plot of any of the independent
variables against the errors, as shown in Fig. 4.21.

The analysis of residuals is helpful in determining whether there are any clear
violations in the assumptions. An analysis of the residual plots can also be helpful in
identifying observations that do not fit the model, that is, those observations with
unusually high positive or negative residual values. These outlier observations
may be attributable to errors in the data and should be examined in more detail to
determine whether to remove them.

4.3.5 Standard Error

An evaluation of the residuals in the model can help in understanding whether the
model is violating any assumptions. An overall assessment of the model error is com-
puted using the SSE. The following formula, as described earlier, is used to calculate
the SSE:

SSE ¼
Xn

i¼1

( yi � ŷi)
2

Using Table 4.10, the SSE can be calculated as:

SSE ¼
Xn

i¼1

( yi � ŷi)
2

SSE ¼ (770 � 113)2 þ (880 � 729)2 þ � � � þ (809 � 942)2

SSE ¼ 174,096

The distribution or spread of the residual values can also be useful in assessing the
model. This is achieved by calculating the standard deviation of the residual or the

Figure 4.21 Residuals plotted against the x variable with no discernable trend
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standard error of the estimate Se. Assuming that the error terms are normally distri-
buted, approximately 68% of errors will be within one standard deviation, and
approximately 95% of errors will be within two standard deviations. The formula
for the standard error of the estimate Se is:

Se ¼
SSE

n � k � 1

r

where SSE is the sum of the squares of errors, n is the number of observations, and
k is the number of independent variables.

In the example model, where SSE is 174,096, the number of observations is
16 (n), and the number of independent variables or k is 2, Se is:

Se ¼
SSE

n � k � 1

r

Se ¼
174,096

16 � 2 � 1

r

Se ¼ 112

This value can help in assessing whether the model is sufficiently accurate. Assuming
a normal distribution, approximately 68% of errors should be within one standard
deviation or +112 and approximately 95% of errors should be within two standard
deviations, that is, +224.

4.3.6 Coefficient of Multiple Determination

Most statistical software packages that perform a multiple linear regression analysis
also calculate the coefficient of multiple determination, or R2. This coefficient is
used to assess how much of the variation in the response is explained by the
model. It is determined using the difference between the variance in the data about
a naive model, where the mean response is used as the model, against the variance
attributable to the fitted model. The value for R2 varies between 0 and 1, with a
high value indicating that a significant portion of the variance in the response is
explained by the model. The formula to calculate R2 is based on the SSE and the
total sum of square (SST), or error about a naive model. To calculate SST, using
y as the mean value for y:

SST ¼
Xn

i¼1

( yi � y)2

The sum of squares of error has been previously discussed and is calculated using:

SSE ¼
Xn

i¼1

( yi � ŷi)
2
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The coefficient of determination is therefore calculated using the difference in the
variation explained by the fitted model and the naive model (explained variability)
as a proportion of the total error:

R2 ¼ SST � SSE
SST

In the apartment rental example, using a mean RENTAL PRICE value of 1047 (y),
the SST can be calculated as:

SST ¼
Xn

i¼1

( yi � y)2

SST ¼ (770 � 1047)2 þ (880 � 1047)2 þ � � � þ (809 � 1047)2

SST ¼ 2,213,566

Using Table 4.10, SSE can be calculated as:

SSE ¼
Xn

i¼1

( yi � ŷi)
2

SSE ¼ (770 � 113)2 þ (880 � 729)2 þ � � � þ (809 � 942)2

SSE ¼ 174,096

In the apartment example, the percentage of variation in the response as explained by
the model is therefore:

R2 ¼ SST � SSE
SST

R2 ¼ 2,213,566 � 174,096
2,213,566

R2 ¼ 0:92

An increasing number of independent variables result in an R2 value that is
overestimated. An adjusted R2 or R2

adj is usually calculated to more accurately reflect
the number of independent variables, as well as the number of observations:

R2
adj ¼ 1 � n � 1

n � k � 1

� �
(1 � R2)
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In the apartment rental example, there are 16 observations (n) and two independent
variables (k), and the following value of R2

adj is calculated:

R2
adj ¼ 1 � n � 1

n � k � 1

� �
(1 � R2)

R2
adj ¼ 1 � 16 � 1

16 � 2 � 1

� �
(1 � 0:92)

R2
adj ¼ 0:908

Usually, R2
adj values are slightly less than R2 values.

4.3.7 Testing the Model Significance

Assessing the significance of the relationship between the independent variables and
the response is an important step. An F-test is most often used, based on the following
hypothesis:

H0: b1 ¼ b2 ¼ � � � ¼ bK ¼ 0

Ha: At least one of the coefficients is not equal to 0

The null hypothesis states that there is no linear relationship between the response and
the independent variables. If the null hypothesis is rejected, it is determined that there
is a significant relationship. An F-test is performed using the mean square regression
(MSR) and the mean square error (MSE). The formula for MSR is:

MSR ¼ SSR
k

The formula for MSE is:

MSE ¼ SSE
n � k � 1

The F-test is calculated using the formula:

F ¼ MSR
MSE

The regression sum of squares (SSR) is calculated using the following formula:

SSR ¼
Xn

i¼1

( ŷi � yi)
2
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For the apartment example, it is calculated as 2,040,244. Using this value, the
MSR is:

MSR ¼ SSR
k

MSR ¼ 2,040,244
2

MSR ¼ 1,020,122

Using the previously calculated value for the SSE, the value for MSE is:

MSE ¼ SSE
n � k � 1

MSE ¼ 174,096
16 � 2 � 1

MSE ¼ 76

An F-value of 76 is calculated and this number is compared to the critical F-value in
order to determine whether the null hypothesis is rejected. The critical value is based
on the level of significance (a), the degrees of freedom of the regression (k), and the
degrees of freedom of the error (n k 1). Assuming a level of significance of 0.01,
the critical value for F0:01,2,14 is 6.51, using a standard F-distribution table (see
Myatt, 2007). Since the computed F-value is greater than the critical value, the
null hypothesis is rejected. A p-value is usually computed in most statistical software
packages and can also be used to make this assessment.

In addition to assessing the overall model, each individual coefficient can be
assessed. A t-test is usually performed, based on the following hypothesis:

H0: b j ¼ 0

Ha: b j = 0

The null hypothesis states that the coefficient is not significant. In the apartment rental
example, the independent variable SQUARE FEET has a calculated t-value of 6.53
and a p-value of almost 0, indicating the significance of this variable; however, the
NOS BATHS variable has a t-value of 0.803 with a p-value of 0.44, indicating that
this variable is less significant within the model for some reason.

4.3.8 Selecting and Transforming Variables

Calculating which variable combinations result in the best model is often determined
by evaluating different models built with different combinations of independent
variables. Each model may be checked against an indication of the quality of the
model, such as R2

adj. An exhaustive search of all possible variable combinations is
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one approach to identifying the optimal set of independent variables. This approach,
however, can be time-consuming and methods such as forward selection, backward
selection, and stepwise selection provide faster methods for identifying independent
variable combinations. These methods add and remove variables based on different
rules, and they will identify solutions more quickly, with the risk of overlooking
the best solution. The forward selection method adds independent variables one at
a time, building on those additions that result in an increase in the performance of
the model. The backwards selection method starts with all independent variables,
and sequentially removes variables that do not contribute to the model performance.
Finally the stepwise method can proceed in the forward or backward direction and
assesses the contribution of the variables at each step. The Further Reading section
of this chapter points to additional material on these approaches.

The following example illustrates the process of building multiple models with
different sets of independent variables. In this example, a series of models were built
to predict percentage body mass (the response variable), using up to four independent
variables: weight, chest, abdomen, and hip. The exhaustive search method is used to
generate models using all combinations of the four independent variables, and an
adjusted R2 is calculated for each model generated. It can be seen from Table 4.11
that a model built from two independent variables, weight and abdomen, yields a
model with the highest adjusted R2 value of 0.716.

When a model would violate one of the underlying assumptions, various
mathematical transformations could be applied to either the independent variables
or response variables, or both. Transformations such as the natural log, polynomials,
reciprocals, and square roots can aid in building multiple linear regression models.

TABLE 4.11 Building Different Models with All Combinations of Independent Variables

Variable 1 Variable 2 Variable 3 Variable 4 R2
adj

Weight 0.371

Chest 0.492

Abdomen 0.659

Hip 0.382

Weight Chest 0.492

Weight Abdomen 0.716

Weight Hip 0.386

Chest Abdomen 0.668

Chest Hip 0.494

Abdomen Hip 0.693

Weight Chest Abdomen 0.714

Weight Chest Hip 0.515

Weight Abdomen Hip 0.715

Chest Abdomen Hip 0.694

Weight Chest Abdomen Hip 0.713
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4.4 DISCRIMINANT ANALYSIS

4.4.1 Overview

Discriminant analysis is used to make predictions when the response variable is
categorical (a classification model). For example, an insurance company may want
to predict high or low risk customers, or a marketing department may want to predict
whether a current customer will or will not buy a particular product. Discriminant
analysis models will classify observations based on a series of independent variables.
Figure 4.22 illustrates its use with a data set. Two variables are used to show the
distribution of the data. The light circles belong to group A, and the dark circles
represent observations in group B. The objective of the modeling exercise is to clas-
sify observations into either group A or group B. A straight line has been drawn to
illustrate how, on one side of the line, the observations are assigned to group A
and on the other they are assigned to group B. Discriminant analysis attempts to
find a straight line that separates the two classes, and provides a method for assigning
new observations to one of the classes.

The analysis becomes more complex in situations when the data set contains
more independent variables, as well as when the response variable has more than
two possible outcomes. In these situations, discriminant analysis attempts to identify
hyperplanes that separate these multiple groups.

Discriminant analysis is a simple statistical technique that can be used to
identify important variables that characterize differences between groups, as well
as to build classification models. It is a useful classification method, especially for
smaller data sets. The following is a summary of the key assumptions associated
with using discriminant analysis:

† Multivariate normal distribution: The variables should have a normal
distribution within the classes.

Figure 4.22 A straight line separating two classes (group A and group B)
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† Similar group covariance matrices: In addition, correlations between and var-
iances of the independent variables in each group used in the model should be
similar.

Discriminant analysis is sensitive to outliers and will not operate well in situations
where the size of one or more of the groups is small.

4.4.2 Discriminant Function

The method relies on the calculation of a discriminant function for each group. There
will be k functions generated based on the number of unique categories the response
variable can take. If the response variable is color with possible values red, green, and
blue, then k will be 3. Predictions are made by calculating a score using each group’s
discriminant function. An observation is predicted to be a member of the group with
the highest discriminant function score.

Similar to multiple linear regression, linear discriminant analysis attempts to
identify a solution that minimizes the overall error. By making the assumptions
described earlier, that is, a normal distribution, with similar group covariance
matrices, the following formula can be used to estimate a linear discriminant function:

fk ¼ xTŜ 1m̂k �
1
2
m̂T

k Ŝ 1m̂k þ log ( p̂k)

In this formula, x is a vector of values for a single observation, Ŝ is an estimate
of the covariance matrix, m̂k is a vector of mean values for the variables correspond-
ing to group k, and p̂k is an estimate of the prior probability. The superscript 1
represents an inverse matrix and the superscript T represents a transposed matrix.
More information on how this formula was derived can be found in Hastie (2003)
and Rencher (2002).

One approach to calculating Ŝ, the estimate of the covariance, is to calculate
the covariance matrix (described in Section 3.3.5) for each of the groups and then
combine the individual matrices into a single pooled covariance matrix.

p̂k represents the prior probability and can be estimated using Nk, which is the
number of observations in category k:

p̂k ¼
Nk

N

4.4.3 Discriminant Analysis Example

As an example, a data set of wines that includes a number of their chemical pro-
perties can demonstrate these ideas (http://archive.ics.uci.edu/ml/datasets/Wine).
Each wine has an entry for the variable alcohol, which can take three values: “1,”
“2,” and “3,” that relate to the wine’s region. A discriminant analysis model will
be built to predict this response. The wines are described using a number of indepen-
dent variables: (1) malic acid, (2) alkalinity of ash, (3) nonflavanoids, and (4)
proline. There are 198 observations and Table 4.12 presents a number of example
observations, which are further summarized in Figs. 4.23 4.27. In Figs.
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4.23 4.26, the frequency distribution of the four independent variables is presented,
with highlighting indicating the three alcohol classes. Similarly, Fig. 4.27 presents a
scatterplot matrix of the four independent variables, with the three alcohol classes
highlighted.

The three classes are initially summarized as shown in Table 4.13, where a
count of the number of observations in each class is presented along with the
mean for the four independent variables, corresponding to each class.

One approach to estimating the covariance matrix, detailed in Section 3.3.5,
needed for the discriminant function is to calculate a covariance matrix for each
group and then to pool the values. This results in the following covariance matrix:

Ŝ ¼

0:67 0:048 0:19 166
0:048 0:076 0:032 19:5
0:19 0:032 1:01 157:4
166:2 19:5 157:4 100,249

2
664

3
775

This is inverted, resulting in the following matrix:

Ŝ
1 ¼

2:62 �0:56 0:23 �0:0046
�0:56 13:96 �0:070 �0:0017

0:23 �0:070 1:33 �0:0025
�0:0046 �0:0017 �0:0025 0:000022

2
664

3
775

Figure 4.23 Three alcohol groups highlighted on the variable malic acid

TABLE 4.12 Data Table Illustrating the Alcohol Classification

Alcohol
Malic
acid

Alkalinity
of ash Nonflavanoids Proline

1 14.23 2.43 3.06 1065

1 13.2 2.14 2.76 1050

1 13.16 2.67 3.24 1185

1 14.37 2.5 3.49 1480

1 13.24 2.87 2.69 735

1 14.2 2.45 3.39 1450

1 14.39 2.45 2.52 1290

1 14.06 2.61 2.51 1295

1 14.83 2.17 2.98 1045
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Figure 4.25 Three alcohol groups highlighted on the nonflavanoids variable

Figure 4.26 Three alcohol groups highlighted on the proline variable

Figure 4.27 Three scatterplot matrices showing the three alcohol classes highlighted over
a matrix of the four independent variables

TABLE 4.13 Summary Table of Different Wine Groups

Group
name Count

Mean malic
acid

Mean alkalinity of
ash

Mean
nonflavanoids

Mean
proline

“1” 59 13.7 2.46 2.98 1116

“2” 71 12.3 2.25 2.08 520

“3” 48 13.2 2.44 0.78 630

Figure 4.24 Three alcohol groups highlighted on the variable alkalinity of ash
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The value pk is the prior probability and can be estimated using Nk, which is the
number of observations in category k:

pk ¼
Nk

N

For example, to calculate the prior probability for group 1:

p1 ¼ 59
198

¼ 0:33

Using this information, a discriminant function score can be calculated for each
observation, for each class. In this example, three scores are calculated for each of
the response categories, and the values for the independent variables are shown in
Table 4.14.

The “1” group function is calculated using the following formula:

f1 ¼ xTŜ 1m̂1�
1
2
m̂T

1 Ŝ 1m̂1 þ log ( p1)

To calculate the first part of the equation, xTŜ 1m̂1:

xTŜ 1m̂1 ¼[14:23 2:43 3:06 1065]

2:62 �0:56 0:23 �0:0046

�0:56 13:96 �0:070 �0:0017

0:23 �0:070 1:33 �0:0025

�0:0046 �0:0017 �0:0025 0:000022

2
6664

3
7775

13:7

2:46

2:98

1116

2
6664

3
7775

xTŜ 1m̂1 ¼449

To calculate the second part of the equation, 1
2 m̂

T
1 Ŝ 1m̂1:

1
2
m̂T

1 Ŝ 1m̂1 ¼ 1
2

[13:7 2:46 2:98 1116]

2:62 �0:56 0:23 �0:0046

�0:56 13:96 �0:070 �0:0017

0:23 �0:070 1:33 �0:0025

�0:0046 �0:0017 �0:0025 0:000022

2
6664

3
7775

13:7

2:46

2:98

1116

2
6664

3
7775

1
2
m̂T

1 Ŝ 1m̂1 ¼432

TABLE 4.14 An Observation to be Used in the Discriminant Analysis Model

Malic acid Alkalinity of ash Nonflavanoids Proline

14.23 2.43 3.06 1065
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To calculate the final piece of the equation, log( p1):

log( p1) ¼ log(0:33) ¼ �1:10

The final score for f1 is:

f1 ¼ 449 � 432 � 1:10 ¼ 232

Similarly, scores for f2 and f3 are calculated, which are 230 and 229, respectively, and
the class corresponding to the largest score is selected as the predictive value (“1”).

Table 4.15 illustrates the calculation of the scores for a number of the observations.
The highest scoring function is assigned as the prediction. The contingency table in
Fig. 4.28 details the cross-validated (using a 5% cross-validation) predictive accuracy
of this model.

TABLE 4.15 Prediction of Alcohol Class Using the Three Membership Functions

Malic acid
Alkalinity

of ash Nonflavanoids Proline Alcohol f1 f2 f3 Prediction

14.23 2.43 3.06 1065 1 232 230 229 1

13.2 2.14 2.76 1050 1 193 192 190 1

13.16 2.67 3.24 1185 1 200 198 197 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

12.37 1.36 0.57 520 2 166 170 168 2

12.33 2.28 1.09 680 2 182 184 183 2

12.64 2.02 1.41 450 2 198 200 199 2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

13.27 2.26 0.69 835 3 200 200 202 3

13.17 2.37 0.68 840 3 200 200 202 3

14.13 2.74 0.76 560 3 252 252 255 3

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.28 Summary of the cross validated discriminant analysis model
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In the same manner as described in Section 4.3.8, different independent
variable combinations can be assessed and the most promising approach selected.
In addition, interaction terms (such as the product of variables) or other transformed
variables, such as quadratic terms, can be incorporated into the model to help in
nonlinear situations or if other assumptions are violated. Alternatively, the use of
the quadratic discriminant functions would be appropriate (Hastie, 2003).

4.5 LOGISTIC REGRESSION

4.5.1 Overview

Logistic regression is a popular method for building predictive models when the response
variable is binary. Many data mining problems fall into this category. For example, a
patient contracts or does not contract a disease or a cell phone subscriber does or does
not switch services. Logistic regression models are built from one or more independent
variables, that can be continuous, discrete, or a mixture of both. In addition to classifying
observations into these categories, logistic regression will also calculate a probability that
reflects the likelihood of a positive outcome. This is especially useful in prioritizing the
results. As an example, a marketing company may use logistic regression to predict
whether a customer will or will not buy a specific new product. While the model may pre-
dict more customers than the company has resources to pursue, the computed probability
can be used to prioritize the most promising candidates.

Unlike discriminant analysis, logistic regression does not assume that the inde-
pendent variables are normally distributed, or have similar variance in each group.
There are, however, a number of limitations that apply to logistic regression including
(1) a requirement for a large data set with sufficient examples of both categories, (2)
that the independent variables are neither additive nor collinear, and (3) that outliers
can be problematic.

4.5.2 Logistic Regression Formula

Logistic regression usually makes predictions for a response variable with two
possible outcomes, such as whether a purchase does or does not take place. This
response variable can be represented as 0 and 1, with 1 representing the class of
interest. For example, 1 would represent the “buy” class and 0 would represent the
“does not buy” class. A formula is generated to calculate a prediction from the inde-
pendent variables. Instead of predicting the response variable, the formula estimates a
probability that the response variable is 1, or P( y 1). A standard linear regression
formula would compute values outside of the 0 1 range and is not used for this and
other reasons. An alternative function is used in this situation. This function ensures
the prediction is in the 0 1 range, by following a sigmoid curve. This curve for a
single independent variable is shown in Fig. 4.29. A logistic response function has
the following formula:

P( y ¼ 1) ¼ 1
1 þ e (b0þb1x1þb2x2þ���þbkxk)
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where b0 is a constant, and b1 bk are coefficients to the k independent variables
(x1 xk).

As an example, a logistic regression model is developed to predict whether a
cereal would have a high nutritional rating using data from (http://lib.stat.cmu.
edu/DASL/Datafiles/Cereals.html). It is based on the following logistic regression
formula that uses measurements for variables calories (calories per serving), protein
(grams of protein), and carbo (grams of complex carbohydrates):

P( y ¼ 1) ¼ 1
1 þ e (11:9 0:224�caloriesþ2:69�proteinþ0:288�carbo)

For cereal A, which has calories 90, protein 3, carbo 19, the predicted
probability that this cereal would have a high nutritional rating is:

P( y ¼ 1) ¼ 1
1 þ e (11:9 0:224�90þ2:69�3þ0:288�19)

P( y ¼ 1) ¼ 0:995

For cereal B with calories 110, protein 2, carbo 12, the predicted
probability is:

P( y ¼ 1) ¼ 1
1 þ e (11:9 0:224�110þ2:69�2þ0:288�12)

P( y ¼ 1) ¼ 0:020

Figure 4.29 A sigmoid logistic response function
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A cutoff is usually set such that probabilities above this value are assigned to class 1,
and those below the cutoff are assigned to class 0. In this example, by setting a cutoff
at 0.5, cereal A is assigned to the category high nutritional value, and cereal B is not.

“Odds” is a commonly used term, particularly in gambling. The odds are
often referred to, for example, as “5 to 1” (such as to describe a bet), which translates
into a 0.20 probability. The odds ratio considers P( y 1) vs P( y 0), using the
following formula:

odds ¼ P( y ¼ 1)
1 � P( y ¼ 1)

This allows us to rewrite the logistic regression formula as:

odds ¼ eb0þb1x1þ���þbixi

This equation helps to interpret the coefficients of the equation. For an individual
independent variable (x) with corresponding beta coefficient (b), holding all other
variables constant, and increasing the value by 1 would result in the odds being
increased by eb. For example, in the cereal example, increasing the value of carbo
by 1 would result in an increase in odds of being a high nutritional value cereal of
by e0:288 which is 1.33 or 33%.

It is also helpful to consider taking the natural log, which results in the
following formula or logit function that will return a value between 1 and þ1:

log (odds) ¼ b0 þ b1x1 þ � � � þ bixi

4.5.3 Estimating Coefficients

The logistic regression coefficients are computed using a maximum likelihood
procedure (Agresti, 2002), where the coefficients are continually refined until an
optimal solution is found. The Newton Raphson method is often used. Since the
method is repeated multiple times, the estimated values for the coefficients b̂ new

are updated using the previous estimates b̂ old, based on the following formula:

b̂ new ¼ b̂ old þ (XTWX) 1XT( y � p)

where X is the matrix describing the independent variables (with the first column
assigned as 1 for calculation of the intercept), p is a vector of fitted probabilities,
W is a weight matrix where the diagonal values represent p(1 p), and y is the
response variable.

The method starts by assigning arbitrary values to the b coefficients. The b

coefficients are repeatedly calculated using the formula above. Each iteration
results in an improved coefficient estimate, and the process finishes when the beta
coefficients are not changing significantly between iterations.
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In the following example, a data set relating to diabetes is used to illustrate
the process of calculating the coefficients (http://archive.ics.uci.edu/ml/datasets/
PimaþIndiansþDiabetes). Table 4.16 illustrates some of the data used to build the
logistic regression model and Fig. 4.30 summarizes the data set. The diabetes variable
is used as the response and the other five variables used as independent variables.

The following illustrates the process of calculating the b coefficients. In the first
step, the b coefficients are initialized to an arbitrary value, in this case zero:

b̂ old ¼

0:0
0:0
0:0
0:0
0:0
0:0

2
6666664

3
7777775

The X matrix is constructed from the independent variables, again, with the first column
containing all 1s for calculation of the intercept value. The first three rows are shown:

X ¼

1 97 64 18:2 0:299 21
1 83 68 18:2 0:624 27
1 97 70 18:2 0:147 21
. . . . . . . . . . . . . . . . . .

2
664

3
775

TABLE 4.16 Data Table Concerning Diabetes Information

Plasma
glucose

Diastolic blood
pressure

Body mass
index

Diabetes pedigree
function (DPF) Age Diabetes

97 64.0 18.2 0.299 21 0

83 68 18.2 0.624 27 0

97 70 18.2 0.147 21 0

104 76 18.4 0.582 27 0

80 55 19.1 0.258 21 0

99 80 19.3 0.284 30 0

103 80 19.4 0.491 22 0

92 62 19.5 0.482 25 0

100 74 19.5 0.149 28 0

95 66 19.6 0.334 25 0

129 90 19.6 0.582 60 0

162 76 49.6 0.364 26 1

122 90 49.7 0.325 31 1

152 88 50.0 0.337 36 1

165 90 52.3 0.427 23 0

115 98 52.9 0.209 28 1

162 76 53.2 0.759 25 1

88 30 55.0 0.496 26 1

123 100 57.3 0.88 22 0

180 78 59.4 2.42 25 1

129 110 67.1 0.319 26 1
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The y matrix represents the response data, with the first three rows shown:

y ¼

0
0
0
. . .

2
664

3
775

A p matrix corresponding to the calculated probability for each observation, using the
current b coefficients, is calculated. The first three entries are shown here:

p ¼

0:5
0:5
0:5
. . .

2
664

3
775

A weight matrix, W, where the number of columns and rows both equal the number
of observations, is calculated. The diagonal represents p(1 p), and the first three
rows and columns are shown here:

W ¼

0:25 0 0 . . .
0 0:25 0 . . .
0 0 0:25 . . .
. . . . . . . . . . . .

2
664

3
775

These matrices are used to generate an updated value for the beta coefficients:

b̂ new ¼ b̂ old þ (XTWX) 1XT( y � p)

Figure 4.30 Scatterplot matrix with diabetes observations highlighted
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b̂ new ¼

�6:162

0:0247

�0:00404

0:0552

0:0552

0:0231

2
666666664

3
777777775

In Table 4.17, the first two rows illustrate the b coefficients calculated up to this
point. This process is repeated until the coefficients values converge, that is, when
the values do not change significantly between steps.

4.5.4 Assessing and Optimizing Results

Once a logistic regression formula has been generated, it can be used for prediction.
In Table 4.18, two new columns are added. The logistic regression formula will
calculate a probability, and from this value a classification can be assigned. A
cutoff value, such as 0.5, can be used with a probability higher than 0.5 assigned
to the 1 class and a probability less than or equal to 0.5 assigned to the 0 category.
These classifications can be used to assess the model, using a contingency table,
such as the one in Fig. 4.31.

The contingency table allows for the calculation of overall accuracy, error rate,
specificity, sensitivity, and so on. In addition, since the model also generates a
probability, a lift chart and an ROC chart can also be generated. Any models gener-
ated can be optimized by varying the independent variables to generate the simplest,
most predictive model, as discussed in Section 4.3.8. The cutoff value can also be
adjusted to enhance the quality of the model. References to additional methods for
assessing the logistic regression model, such as the Wald test, the likelihood ratio
test, and Hosmer and Lemeshow x2 test of goodness of fit are provided. Like
linear regression and discriminant analysis, interaction terms (such as the product
of two variables) or higher-order terms (such as a variable squared) can be computed
and used with the model to enhance prediction. Chapter 5 illustrates the application
of logistic regression to a number of case studies.

TABLE 4.17 Optimization of the b Coefficients for Logistic Regression

b0 b1 b2 b3 b4 b5

Step 1 0.0 0.0 0.0 0.0 0.0 0.0

Step 2 6.162 0.0247 0.00404 0.0552 0.550 0.0231

Step 3 8.433 0.0326 0.00654 0.0814 0.836 0.0320

Step 4 8.982 0.0344 0.00733 0.0882 0.918 0.0343

Step 5 9.009 0.0345 0.00738 0.0886 0.923 0.0344

Step 6 9.009 0.0345 0.00738 0.0886 0.923 0.0344
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4.6 NAIVE BAYES CLASSIFIERS

4.6.1 Overview

The naive Bayes (also referred to as idiot’s Bayes or simple bayesian classifier) is a
classification modeling method. It makes use of the Bayes theorem to compute
probabilities of class membership, given specific evidence. In this scenario, the

Figure 4.31 Contingency table summarizing the number of correct and incorrect predictions

TABLE 4.18 Prediction of Diabetes as Well as the Probability of Diabetes is 1

Plasma
glucose

Diastolic
blood

pressure

Body
mass
index

Diabetes
pedigree
function
(DPF) Age Diabetes Predicted Probability

97 64.0 18.2 0.299 21 0 0 0.0287

83 68 18.2 0.624 27 0 0 0.0285

97 70 18.2 0.147 21 0 0 0.0240

104 76 18.4 0.582 27 0 0 0.0530

80 55 19.1 0.258 21 0 0 0.0180

99 80 19.3 0.284 30 0 0 0.0425

103 80 19.4 0.491 22 0 0 0.0371

92 62 19.5 0.482 25 0 0 0.0365

100 74 19.5 0.149 28 0 0 0.293

95 66 19.6 0.334 25 0 0 0.0263

129 90 19.6 0.582 60 0 0 0.0416

162 76 49.6 0.364 26 1 1 0.839

122 90 49.7 0.325 31 1 1 0.577

152 88 50.0 0.337 36 1 1 0.828

165 90 52.3 0.427 23 0 1 0.863

115 98 52.9 0.209 28 1 1 0.520

162 76 53.2 0.759 25 1 1 0.909

88 30 55.0 0.496 26 1 1 0.508

123 100 57.3 0.88 22 0 1 0.759

180 78 59.4 2.42 25 1 1 0.993

129 110 67.1 0.319 26 1 1 0.854
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evidence refers to particular observations in the training set that either support or do
not support a particular prediction.

Naive Bayes models have the following restrictions:

† Only categorical variables: This method is usually applied in situations in
which the independent variables and the response variable are categorical.

† Large data sets: This method is versatile, but it is particularly effective in build-
ing models from large data sets.

This method provides a simple and efficient approach to building classification pre-
diction models. It also can compute probabilities associated with class membership,
which can be used to rank the results.

4.6.2 Bayes Theorem and the Independence Assumption

At the heart of this approach is the Bayes theorem:

P(HjE) ¼ P(EjH)P(H)
P(E)

This theorem calculates the probability of a hypothesis (H ) given some evidence (E),
or posterior probability. For example, it can calculate the probability that someone
would develop diabetes given evidence of a family history of diabetes. The hypo-
thesis corresponds to the response variable in the other methods. The theorem
makes use of this posterior probability of the evidence given the hypothesis, or
P(EjH ). Using the same example, the probability of someone having a family history
of diabetes can also be calculated given the evidence that the person has diabetes and
would be an example of P(EjH ). The formula also makes use of two prior probabilities,
the probability of the hypothesis P(H ), and the probability of the evidence P(E). These
probabilities are not predicated on the presence of any evidence. In this example, the
probability of having diabetes would be P(H ), and the probability of having a
family history of diabetes would be P(E).

4.6.3 Independence Assumption

In situations in which there is only a single independent variable, the formula is
straightforward to apply; however, models with a single independent variable would
be limited in their usefulness. Unfortunately, the strict use of the Bayes theorem for
multiple independent variables each having multiple possible values becomes challen-
ging in practical situations. Using this formula directly would result in a large number
of computations. Also, the training data would have to cover all of these situations,
which also makes its application impractical. The naive Bayes approach uses a simpli-
fication which results in a computationally feasible series of calculations. The method
assumes that the independent variables are independent despite the fact that this is
rarely the case. Even with this overly optimistic assumption, the method is useful as
a classification modeling method in many situations.
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4.6.4 Classification Process

To illustrate the naive Bayes classification process, the training set in Table 4.19 will
be used to classify the following observation (X ):

X : BP ¼ high; weight ¼ above; FH ¼ yes; age ¼ 50þ

In this example, the observation (X ) is an individual whose blood pressure is high
(BP high), whose weight is above normal (weight above), who has a family his-
tory of diabetes (FH yes), and whose age is above 50 (Age 50þ). Using the
training data in Table 4.19, the objective is to classify this individual as prone to
developing or not prone to developing diabetes given the factors described. In this
example, calculating P(diabetes 1jX ) and the P(diabetes 0jX ) is the next step.
The individual will be assigned to the class, either has (diabetes 1) or has not
(diabetes 0), based on the highest probability value.

P(diabetes ¼ 1jX) ¼ P(Xjdiabetes ¼ 1)P(diabetes ¼ 1)
P(X)

P(diabetes ¼ 0jX) ¼ P(Xjdiabetes ¼ 0)P(diabetes ¼ 0)
P(X)

TABLE 4.19 Diabetes Data Set to Illustrate the Naive Bayes Classification

Blood
pressure Weight

Family
history Age Diabetes

Average Above average Yes 50þ 1

Low Average Yes 0 50 0

High Above average No 50þ 1

Average Above average Yes 50þ 1

High Above average Yes 50þ 0

Average Above average Yes 0 50 1

Low Below average Yes 0 50 0

High Above average No 0 50 0

Low Below average No 0 50 0

Average Above average Yes 0 50 0

High Average No 50þ 0

Average Average Yes 50þ 1

High Above average No 50þ 1

Average Average No 0 50 0

Low Average No 50þ 0

Average Above average Yes 0 50 1

High Average Yes 50þ 1

Average Above average No 0 50 0

High Above average No 50þ 1

High Average No 0 50 0
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Since P(X) is the same in both equations, only P(Xjdiabetes 1)P(diabetes 1) and
P(Xjdiabetes 0)P(diabetes 0) are needed.

To calculate P(diabetes 1), the number of observations is counted in
Table 4.19 with diabetes 1, which is 9, divided by the total number of
observations, which is 20:

P(diabetes ¼ 1) ¼ 9=20 ¼ 0:45

Similarly, to calculate P(diabetes 0), the number of observations in Table 4.19
is counted where diabetes 0, which is 11, divided by the total number of
observations, which is 20:

P(diabetes ¼ 0) ¼ 11=20 ¼ 0:55

Since this approach assumes that the independent variables are independent, the
calculation of the P(Xjdiabetes 1) is the product of the conditional probability
for each of the values of X:

P(Xjdiabetes ¼ 1) ¼ P(BP ¼ highjdiabetes ¼ 1)

� P(weight ¼ abovejdiabetes ¼ 1)

� P(FH ¼ yesjdiabetes ¼ 1)

� P(age ¼ 50þjdiabetes ¼ 1)

The individual probabilities are again derived from counts of Table 4.19. For
example, P(BP highjdiabetes 1) counts all observations with BP high and
diabetes 1(4), divided by the number of observations where diabetes 1(9):

P(BP ¼ highjdiabetes ¼ 1) ¼ 4=9 ¼ 0:44

P(weight ¼ abovejdiabetes ¼ 1) ¼ 7=9 ¼ 0:78

P(FH ¼ yesjdiabetes ¼ 1) ¼ 6=9 ¼ 0:67

P(age ¼ 50þjdiabetes ¼ 1) ¼ 7=9 ¼ 0:78

Using these probabilities, the probability of X given diabetes 1 is calculated:

P(Xjdiabetes ¼ 1) ¼ P(BP ¼ highjdiabetes ¼ 1)

� P(weight ¼ abovejdiabetes ¼ 1)

� P(FH ¼ yesjdiabetes ¼ 1)

� P(age ¼50þ jdiabetes ¼ 1)

P(Xjdiabetes ¼ 1) ¼ 0:44 � 0:78 � 0:67 � 0:78

P(Xjdiabetes ¼ 1) ¼ 0:179

Using the values for P(Xjdiabetes 1) and P(diabetes 1), the product
P(Xjdiabetes 1)P(diabetes 1) can be calculated:

P(Xjdiabetes ¼ 1)P(diabetes ¼ 1) ¼ 0:179 � 0:45

P(Xjdiabetes ¼ 1)P(diabetes ¼ 1) ¼ 0:081
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Similarly, the value for P(Xjdiabetes 0)P(diabetes 0) can be calculated:

P(Xjdiabetes ¼ 0) ¼P(BP ¼ highjdiabetes ¼ 0)

� P(weight ¼ abovejdiabetes ¼ 0)

� P(FH ¼ yesjdiabetes ¼ 0)

� P(age ¼ 50 þ jdiabetes ¼ 0)

Using the following probabilities, based on counts from Table 4.19:

P(BP ¼ highjdiabetes ¼ 0) ¼ 4=11 ¼ 0:36

P(weight ¼ abovejdiabetes ¼ 0) ¼ 4=11 ¼ 0:36

P(FH ¼ yesjdiabetes ¼ 0) ¼ 4=11 ¼ 0:36

P(age ¼ 50þjdiabetes ¼ 0) ¼ 3=11 ¼ 0:27

The P(Xjdiabetes 0) can now be calculated:

P(Xjdiabetes ¼ 0) ¼ 0:36 � 0:36 � 0:36 � 0:27

P(Xjdiabetes ¼ 0) ¼ 0:0126

The final assessment of P(Xjdiabetes 0)P(diabetes 0) is computed:

P(Xjdiabetes ¼ 0)P(diabetes ¼ 0) ¼ 0:0126 � 0:55 ¼ 0:0069

Since P(Xjdiabetes 1)P(diabetes 1) is greater than P(Xjdiabetes 0)
P(diabetes 0), the observations X are assigned to class diabetes 1. A final prob-
ability that diabetes 1, given the evidence (X ), can be computed as follows:

P(diabetes ¼ 1jX) ¼ 0:081=(0:081 þ 0:0069) ¼ 0:922

The naive Bayes is a simple classification approach that works surprisingly well, par-
ticularly with large data sets as well as with larger numbers of independent variables.
The calculation of a probability is helpful in prioritizing the results. As with other
methods described in the chapter, the predictive accuracy of any naive Bayes
model can be assessed using the methods outlined in Section 4.1. Building models
with different sets of independent variables can also help.

4.7 SUMMARY

The preceding chapter has discussed two basic types of models:

† Classification: model where the response is a categorical variable;

† Regression: model where the response is a continuous variable.
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TABLE 4.20 Summary of Methods to Assess Regression
Models

Mean square error:
Pn

i 1
( ŷi yi)2

n

Mean absolute error:
Pn

i 1
jŷi yij

n

Relative square error:
Pn

i 1
( ŷi yi)2

Pn

i 1
( yi y)2

Relative absolute error:
Pn

i 1
jŷi yij

Pn

i 1
jyi yj

Correlation coefficient:
Pn

i 1
( yi y)(ŷi ŷ)

(n 1)sysŷ

TABLE 4.21 Summary of Methods to Assess Binary Classification Models

Accuracy: Error rate: Sensitivity: Specificity:

TP þ TN

TP þ FP þ FN þ TN
1

TP þ TN

TP þ FP þ FN þ TN

TP

TP þ FN

TN

TN þ FP

False positive
rate:

Positive predictive
value:

Negative predictive
value:

False discovery
rate:

FP

FP þ TN

TP

TP þ FP

TN

TN þ FN

FP

FP þ TP

TABLE 4.22 Summary of Predictive Modeling Methods Discussed in this Chapter

Method Model type
Independent

variables Comments

Multiple linear
regression

Regression Any numeric Assumes a linear relationship
Easy to explain
Quick to build

Discriminant
analysis

Classification Any numeric Assumes the existence of mutually
exclusive groups with common
variances

Logistic
regression

Classification Any numeric Will calculate a probability
Easy to explain
Limit on number of observations

to build models from

Naive Bayes Classification Only categorical Requires a lot of data
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Multiple methods have been discussed for assessing regression and classifi-
cation models, and are summarized in Tables 4.20 and 4.21. Principal component
analysis has been discussed as a method for understanding and restricting the
number of variables in a data set. Table 4.22 summarizes the methods discussed in
this chapter.

4.8 FURTHER READING

For further general discussion on the different methods for assessing models see Han
and Kamber (2005) and Witten and Frank (2005). Here additional validation methods,
such as bootstrapping, are discussed, along with methods for combining models using
techniques such as bagging and boosting. Joliffe (2002), Strang (2006), Jackson
(1991), Jobson (1992), and Johnson and Wishern (1998) provide additional detail con-
cerning principal component analysis. Additional information on multiple linear
regression can be found in Allison (1998), Draper and Smith (1998), Fox (1997),
and Rencher (2002). Discriminant analysis is also covered in more depth in Hastie
et al. (2003), McLachlan (2004), Huberty (1994), Lachenbruch (1975), and Rencher
(2002). Agresti (2002), Balakrishnan (1992), and Hosmer and Lemeshow (2000)
cover logistic regression, and Han and Kamber (2005) as well as Hand and Yu
(2001) discuss the use of the naive Bayes approach. Other commonly used methods
for building prediction models include neural networks (Hassoun, 1995; Haykin,
1998; and Myatt, 2007), classification and regression trees, rule-based classifiers, sup-
port vector machines, and k-nearest neighbors, and these are covered in a variety of
books, including Han and Kamber (2005), Witten and Frank (2005), Hastie
et al. (2003), and Shumueli et al. (2007).
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C H A P T E R 5
APPLICATIONS

5.1 OVERVIEW

Data mining is being increasingly used to solve a variety of business and scientific
problems. Ideally, its use is tied to achieving specific strategic objectives, such as
developing a more personalized relationship with existing customers. It should also
be well integrated within new or existing business processes, which are generally
accepted. Careful consideration should be given to what and how specific information
is collected, potentially utilizing a data warehouse to store this decision-support repo-
sitory. Which data mining methods are used is just one issue within a host of concerns
that need to be addressed. It is also important to address how the results are commu-
nicated and used, such as through an embedded system, the generation of reports, or
through online tools. Continually monitoring the business impact of the data mining
exercise is critical to ensuring the success of any project. Those organizations that are
using data mining within this context are seeing a significant return on their data
mining investment.

A review of how data mining is being used across a broad range of industries
indicates a number of common problems are being addressed. Data mining appli-
cations are now commonly used to accomplish the following:

† Enhanced operational efficiency: Data mining can facilitate the efficient
allocation of resources. For example, government departments are planning
future fire stations and other resources based on an analysis of historical
fire incidents.

† Improved marketing campaigns: Data mining enables organizations to build
relationships directed towards individual customer groups, allowing them to
acquire and retain customers more easily, along with planning the launch and
promotion of new or existing products.

† Management of risk: Data mining can be used to make predictions about
future events, facilitating more informed decisions. For example, insurance compa-
nies are using data mining solutions to more effectively underwrite policies.

† Detection of problems: Early detection of errors and sources of problems can
be found through the use of data mining. Telecommunications companies, for
example, are using data mining to understand and circumvent problems across
their networks.

Making Sense of Data II. By Glenn J. Myatt and Wayne P. Johnson
Copyright # 2009 John Wiley & Sons, Inc.
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† Identification of fraud: Data mining can be used to identify factors that are
related to fraudulent activity and used to improve detection. As an example,
tax collection agencies are using data mining to understand patterns associated
with individuals who do not pay.

† Support for research and development: Data mining can be used to sift through
large databases to help develop new products or advance the science. For example,
pharmaceutical companies are identifying patterns and trends in large quantities of
research data, using data mining techniques, to find new drugs.

Data mining is also being used across different functional areas within organizations.
For example, human resource departments are using data mining to model the
employee experience life cycle, and these models are used to enhance employee reten-
tion. Within planning departments, data mining is being utilized to identify new
business locations, as well as to support merger and acquisition activities. Customer
support is using data mining to initially classify incoming service requests from the
web for triage purposes.

Data mining is being increasingly used by data mining experts as well as
subject-matter specialists. Methods such as visual data mining are used to see
trends in the data without the need for data mining training. For example, production
workers are able to visually analyze data generated from a manufacturing production
and quickly take care of any issues identified.

Data mining techniques are also being embedded into other applications.
For instance, SPAM filtering makes extensive use of data mining approaches, such
as decision trees, to partition incoming emails into folders. Models are con-
tinuously built from historical data where emails have been classified as SPAM and
not SPAM. These models are then incorporated into the email system, where incoming
emails are automatically predicted, and those determined to be SPAM are set aside.

The following, while not comprehensive, illustrates the breadth of applications to
which data mining has been applied. The use of data mining for sales and marketing
activities is common to many industries, and its use is generally described. In addition,
data mining is used to solve many problems in a diverse range of industries. This chapter
outlines the use of data mining in the following industries: finance, insurance, retail, tele-
communications, manufacturing, entertainment, government, pharmaceuticals, and
healthcare. In addition, two case studies are described that outline data mining projects
in the area of microRNA analysis and scoring credit loans applications. Both case
studies use the Traceis software that is available from http://www.makingsenseofdata.
com/ and described in Appendix B. This chapter also discusses the use of data mining
in situations where the data is not in a tabular format, and such data needs to be prepro-
cessed to make the information amenable to data mining methods. The use of preproces-
sing data to facilitate data mining is described in the context of two examples: data mining
chemical information and data mining text.

5.2 SALES AND MARKETING

One of the widespread uses of data mining is in the area of sales and marketing.
Organizations are data mining information collected from customer purchases,
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supplemented with additional information such as usage, lifestyle, demographic, and
geographical data. This use has led to improvements in how new customers are ident-
ified or prioritized, how current customers are retained, and how business may be
expanded with existing clients. Data mining solutions can also help to model how
customers purchase products and services over time and how to effectively customize
online retailing. The following section summarizes some of the ways data mining has
been used to improve an organization’s sales operations:

† Acquiring new customers: Companies spend a great deal of time and money
acquiring new customers. Since these costs are high, data mining technology
is used to help ensure a return on a company’s investment in customer acqui-
sition. Predictive analytics help focus marketing outreach campaigns, such as
the promotion of a new product or a special offer towards those prospects
with the highest chance of becoming customers. Predictive models are usually
built from historical sales data and other information collected about the
target customer, such as age or location. The models attempt to understand
the relationships between specific customer attributes and the likelihood that
those types of people will become customers. These models are built to rank cus-
tomers from lists of prospective customers. Other factors relating to customer
acquisition may also be built into the model. For example, a customer may fit
the profile of a customer likely to purchase but may also be a high credit risk
or expensive to support in a long-term business relationship. In addition, pro-
spects can be targeted with specific products they are predicted to need, which
in turn further increases the chance of acquiring those customers.

† Retaining customers: Companies are at risk of losing a significant amount of
money if a profitable customer decides to switch to another institution. This
problem is often called attrition or churn, and data mining approaches are
being used to identify and prioritize “at risk” customers. Prediction models
are often built to predict the probability of losing specific customers. These
models are built from data sets containing information for given time
periods such as a month on transaction volumes, products and services uti-
lized, and personal demographics. A binary response variable is often used to
indicate whether a customer terminates an account within one of the time
periods. One problem when building these types of models is the imbalance
between the often low numbers of examples where customers changed services
compared to the majority of cases in which the customers did not. This imbal-
ance can present difficulties in building models, and hence a sampling method
to balance these two cases is commonly used. Modeling techniques, such as
logistic regression, are used to build such models. Models are also built to mini-
mize false positives because it is ultimately more costly to lose a customer as
opposed to providing a financial incentive so a customer does not considering
switching services. These models can then be used to prioritize customers
based on those with the highest probability of moving to a different
company, and the company can then target those customers with marketing
activities, such as promotional offers. Other factors, such as the profitability
of the customer, can also be built into these or other models to help focus
customer retention resources. For example, the telecommunications industry
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attempts to keep churn levels to a minimum using data mining. The problem in
this industry is particularly challenging as a result of the difficulty in customer
acquisitions because the market is somewhat saturated. This means that the cost
of retaining a customer is significantly less than the cost of acquiring a new
customer. Data concerning call details, along with billings, subscriptions, and
demographic information, collected over a given time period is used to build
the models. Understanding this behavior allows the telecommunications
company to focus marketing campaigns, offering new services that specifically
focus on customer retention.

† Increasing business from existing customers: The ability to sell new products
and services to existing customers is a significant focus in many companies’
sales and marketing divisions. It is usually more profitable to sell additional
products and services to existing customers than to acquire new customers.
Information on customer transactions is supplemented with data about customer
demographics and lifestyle, as well as geographical information. This
information may be obtained from a loyalty program application or from a
third-party supplier. Aggregated information from historical data, such as the
propensity to respond to marketing campaigns, is often added. Data transform-
ations are often applied to ensure the relevant business questions are answered,
for example, using product hierarchies that generalize individual purchases into
general categories. This rich collection of information is often data mined to
understand customer segments associated with certain buying habits and custo-
mer preferences. These groups can also help in understanding those segments
of the market that are most profitable. This segmentation enables highly focused
marketing campaigns to promote products and product combinations to specific
consumer groups in specific locations. These targeted promotions result in sig-
nificantly higher response rates than tradition blanket marketing campaigns, at a
reduced cost. Organizations often tightly integrate these analysis capabilities
within their customer relationship management (CRM) systems and the
models are continually checked to ensure they are up-to-date. These models
are often tested using smaller scale trial runs, and the results of the trial runs
can be used to determine whether the models will be used in a more expansive
marketing campaign.

† Understanding sales channels: Predictive models are also built to identify the
sales channel through which any offer should be made, such as through the
internet, the mail, through a branch office, or even through specialized consult-
ants. Models built to predict the appropriate sales channel are based on the
profile of the sales lead.

† Modeling the customer experience: Linking transaction data to the identity of a
customer is often achieved through a loyalty program, such as a loyalty card, that
the consumer uses on each visit to a retail or grocery store. This information
allows the organization to understand the buying patterns of a customer over
time, or how that individual shops, that is, whether the person shops online or
through other retail channels. Over time, companies generate profiles of how a
customer shops which allow them to model a customer’s purchasing cycle
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over time, and this makes for more effective timing of promotional activities. For
example, publishing companies are using these models to understand how
customers move from one magazine title to another over time, helping the
publishers keep customers within their product suites.

† Personalizing online retailing: Data mining has been used extensively in the
area of online retailing, capitalizing on the wealth of digital information that
is continually collected. In addition to sales transaction data, information is
collected from customer ratings and reviews, the web pages viewed, and
information on current product inventory levels. Clustering is often used to gen-
erate segments of users, and these groups are annotated with information on
product popularity and overall profitability. Association rules are also employed
to identify product combinations that are often purchased together. These
results are used to personalize web pages based on the profile of the customer
built over time. They are also matched to similar customers’ preferences. This
personalization includes products the consumer is anticipated to be interested in
and educational material, such as white papers. It also makes use of models that
prioritize profitable customers. This personalization often takes into account
inventory levels to maximize conversion rates and profits. Online retailing
offers a fertile ground for developing new and novel methods for cross- and
up-selling. Ensuring that the data mining results in profitable updates to the
online experience is easily tested in the online environment. Subscribers
are often divided into groups that make use of a new service and a control
group that does not have access to the service. The success of any new
service is based on differences recorded for the two groups, such as higher
sales or profits.

5.3 INDUSTRY-SPECIFIC DATA MINING

5.3.1 Finance

The financial industry encompasses a wide range of institutions including banks,
asset management companies, and accounting services. Data mining is used through-
out the financial industry, driven by the intense competitive pressure between financial
companies, as well as the availability of large volumes of data collected concerning
customers, transactions, and the financial markets. Data mining approaches are being
used to improve sales through more effective acquisition and retention of customers.
These methods are also used to optimize cross-selling and up-selling marketing
campaigns. In addition, the ability to manage risk is pervasive throughout the indus-
try. For example, risk assessment is necessary to make loans or manage stock port-
folios. Data mining is often used to lower risk in a wide variety of financial
situations. Finally, it is also used to help in identifying criminal activities, such as
credit card fraud.

† Sales and marketing: The financial industry’s customers are often long-stand-
ing, and profits are made from this relationship over time. The institution is at
risk of losing a significant amount of money if a profitable customer decides
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to switch to another institution. Many financial institutions offer a range of pro-
ducts and services, from loans and credit cards to wealth management and insur-
ance services. The profitability of an individual customer is driven, to a large
part, by the institution’s ability to provide that customer with additional products
and services over time. Financial companies spend a great deal of resources
acquiring, retaining, and growing new customers, using methods described in
Section 5.2 on sales and marketing.

† Managing credit risk: Financial institutions continually receive applications for
loans, credit cards, and so on. They need to make a timely risk assessment on
whether to provide these services to an applicant and under what terms.
Standard credit scores are available based on credit histories; however, additional
models are often generated that provide a higher degree of accuracy. These new
models are often tailored to an individual product. In addition, customers are
often segmented into groups, using clustering methods and specific credit assess-
ment models generated for these typical and atypical groups. Models of credit
risk are often built using methods such as logistic regression, decision trees, or
neural networks. These types of models can be used during both the application
process and the collection process. These models are often built under a general
assumption, such as the current condition of the economy, and may need to be
rebuilt should any of these assumptions change. Section 5.5 provides a case
study to illustrate this scenario.

† Identifying suspicious activity: Detecting credit card fraud is a major challenge
and various analytical approaches have been used to identify and circumvent this
suspicious activity. Predictive models are built from historical transaction data
including both fraudulent and nonfraudulent transactions, selecting observations
with a balance of the two cases. Models are often built that maximize accuracy,
and a level of false positives is tolerated. This is because, overall, the institutions
wish to be able to identify as much fraudulent activity as possible. Models for
other suspicious activities are also built and are used to detect criminal activities
such as money laundering.

† Mining trading data: Data mining approaches, such as predictive analytics, are
often applied to financial market data. Generating models and understanding
trends in the financial markets are important tools to optimize investment
profits. These data mining approaches are used to predict when to buy and
sell stocks, and other investments. Multidimensional time series data sets are
often used to build these prediction models. The data contains lots of noise
and is invariably linked to major news events, which are sometimes even built
into the model. Many different data mining approaches have been applied to
this problem. Neural networks are extensively used since they handle the inherent
noise in the data well. Although predictions over the long term are extremely dif-
ficult, predictions for short-term events are common. However, the usefulness of
these models is often short-lived, and they need to be retrained constantly to
provide effective predictions. In addition to predicting individual stock prices,
data mining methods are used to assess portfolios of products, selecting
optimal combinations.
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5.3.2 Insurance

Insurance carriers, agencies, and brokerages carry a wide range of products, including
business owner’s insurance, health insurance, automobile insurance, and general lia-
bility insurance. The industry is highly competitive and companies often compete on
price and service. Insurance providers need to make rapid assessments of risk when
they provide insurance quotes. Insurance companies are increasingly providing
quotes to potential customers in real time through internet sites. These underwriting
activities are based on the risks associated with likely future events. To support
these decisions, financial institutions have collected massive amounts of data over
the years and use data mining to facilitate sales and marketing activities, underwrite
policies, and accelerate legitimate claims processing, at the same time as avoiding
fraudulent claims.

† Growing business opportunities: Insurance companies use a variety of
channels to identify new customers, and predictive analytics have been used
to improve customer acquisition and retention using methods detailed in
Section 5.2 on sales and marketing.

† Identifying health risks: Particularly in the area of health insurance, data mining
helps identify customers at risk of a future health problem based on information
collected concerning the customer over time. These customers are approached
with disease management options with the hope that these intervention programs
avoid the onset of the predicted health issue or any complications.

† Identifying new products: Insurance companies can grow business and improve
sales and profits by supplementing existing products with new products or by
expanding into new geographical territories. Just as using segmentation and pre-
dictive models can help sell existing products, these techniques can also help
identify new products and quickly point out the associated risks. This allows
an insurance company to rapidly move into new insurance markets, which, in
turn, creates a competitive advantage. In addition, decisions concerning the
future allocation of resources, for example, which products to sell in what new
areas, can be supported with data mining approaches. Internal underwriting
data, along with external data, such as census data, industry data, economic,
and other information concerning the population, commerce, and the compe-
tition in specific geographical areas, is collected. This data is then used to deter-
mine future strategies and office locations. Models developed can help to clarify
the amount of money to invest along with specific product categories to focus on.

† Improving underwriting: An insurance underwriter must assess the risk associ-
ated with a specific policy and generate a premium based on this risk. Setting the
price too high may cost the insurance company business; setting the price too low
may undermine the insurance company’s profits. Data mining approaches have
been successfully applied to the process of underwriting, enabling more consist-
ent pricing with higher profits. This is achieved by avoiding historically subjec-
tive assessment and taking into account a larger number of factors. In addition,
customer populations are often segmented using demographic and geographical
information, along with other data from internal and external sources. Predictive
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models are then built within these individual segments to estimate the relative risk
associated with an individual policy. Understanding the factors leading to these
segmented groups allows the insurer to maximize profits in each of these areas.
Insurers offering online services also benefit from utilizing underwriting predic-
tive models, thus allowing a prospective online customer to determine on-the-
spot whether to purchase insurance based on the price, generated from the predic-
tive models.

† Identifying fraudulent activities: Insurance fraud results from a number of situ-
ations, including inflated claims, misrepresented facts, and claims for nonexistent
injuries or damages. Effective fraud detection would lead to significant financial
benefits to the industry. Successful fraud detection would avoid the costs associ-
ated with processing fraudulent claims and allow legitimate claims to be
processed faster. Today, only a small percentage of fraudulent cases are ident-
ified, and hence there is a need for more effective detection of these cases.
Historically, fraud detection is performed while processing claims using specific
rules that suggest a claim might be fraudulent. These rules were manually devel-
oped by specialists who attempt to discern factors that differentiate fraudulent
claims from legitimate claims. The rules identified were only able to identify a
small handful of cases. Data mining is now being used to improve the quality
of these rules. Rules developed in conjunction with data mining techniques
can also be constantly updated to reflect changes in illegitimate activity
over time. The improved rules help to identify more fraudulent cases, in addition
to accelerating the processing of those cases predicted to have a low probability of
fraud. Any modeling effort, however, faces a number of challenges. Since the
investigation of fraudulent claims is expensive and time-consuming, any predic-
tion must attempt to maximize detection with minimal false positives. The avail-
ability of data also presents a challenge, since the number of fraudulent cases
currently detected and prosecuted is low. Either these small data sets are used
or data sets containing significant amounts of noise need to be used. This is
because the larger number of “positive” cases has not been fully investigated,
and hence will include cases that are not fraudulent.

5.3.3 Retail

Retail companies are continually striving to understand their target market in detail.
This, in turn, enables them to offer the right mix of products to specific consumers. It
also enables them to time correctly the availability of products and price them appro-
priately. Retail companies use a wide range of methods to gather information on their
customers, and they are increasingly using data mining approaches to make decisions
based on trends identified in historical databases. They have collected an enormous
amount of information on point-of-sale, demographic, geographical, and other infor-
mation. This information is mined to optimize profits throughout all retail channels,
such as online or in stores. Information derived can be used in many situations such as
up-selling and cross-selling promotional activities, identifying new store locations,
and optimizing the entire supply chain.
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† Mining retail transactions data: Every time a customer visits a retail store and
buys something, information is collected concerning the visit and the purchased
products. This data is often supplemented with information concerning local
competitors’ pricing, and all this data can be mined in a number of ways.
Techniques, such as association rules, are used to identify combinations of pro-
ducts that are purchased together. This, then, helps with product placements, by
grouping products commonly sold together. Promotional activities, for example
using coupons to promote combinations of items, are additionally used to
encourage cross-selling. This transaction information, especially when com-
bined with competitive information, is often used to optimize prices. Using
price elasticity models, retailers can dynamically adjust prices, including
adjusting mark-downs in order to maximize profits. The transaction data is
also useful in understanding purchasing trends over time in both the local
and wider markets. This analysis will, in turn, help the retailer gain a better
understanding of any seasonal changes.

† Improving operational efficiency: Projecting demand allows retail companies
to manage inventory levels, avoiding costly overstocking while at the same
time ensuring that products are available for their customers. In addition to pre-
dicting demand, other logistic information is also incorporated into the analysis
in order to optimize the entire supply chain. This includes information on the
transportation and distribution network, as well as information concerning
the manufacturers. Models are created to optimize the entire process, resulting
in lower costs. Models that predict future demand for products can also be
useful input when negotiating with suppliers.

5.3.4 Telecommunications

The telecommunications industry refers to companies that deliver information such as
voice, data, graphics, and videos through traditional wire lines, and increasingly
through wireless services. Telecommunications companies are additionally offering
cable and satellite program distribution as well as high-speed internet services. The
combination of an increasing number of companies entering the market, coupled
with excess capacity, has led to intense competition and consolidation within the
industry. The industry generates massive amounts of data concerning its operations.
For instance, individual calling information and other customer information is
collected, and is being mined to provide a competitive advantage. These advantages
include better management of costs as well as more effective customer retention,
cross- and up-selling, and customer acquisition, as described in Section 5.2 on
sales and marketing.

† Detecting problems: The equipment making up the networks used by tele-
communications companies is complex and interrelated. The equipment
automatically generates information concerning its status, that is, whether it is
operating normally or there is a problem. The data collected concerning the func-
tioning of equipment across the entire telecommunications network is collected
and data mined to determine recurrent patterns of faults, and used to enhance the
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reliability of the network. This data is often prepared such that each observation is
based on a specific fixed-length period of time, and then used within standard
classification data mining approaches.

† Assessing credit risk: Predictive analytics are being increasingly used to make
more accurate assessments of credit risk allowing the company to focus late-
payment inquiries on those not likely to pay, while not targeting unnecessarily
those who have not paid for other reasons, such as an unresolved payment
issues.

† Detecting fraud: Data concerning calls (both fraudulent and legitimate), along
with general customer data, are also used to identify fraudulent patterns. These
patterns are used to screen for illegitimate use, and those calls deemed highly
suspicious are alerted to an investigator. A number of issues must be addressed
when preparing this type of data for use within a predictive model. Information
on individual calls is usually summarized into observations that describe infor-
mation such as the average duration of the call or average number of calls per
day. Also, data on fraudulent activity is not evenly distributed between fraudu-
lent and nonfraudulent examples, and often a stratification strategy is adopted to
even out the two cases.

5.3.5 Manufacturing

The manufacturing industry is comprised of companies that produce new products,
utilizing raw materials, substances or components. The manufacturing industry
includes companies that produce a broad range of goods including aerospace pro-
ducts, semiconductors, apparel, motor vehicles, chemicals, and electronic products,
just to name a few. As a consequence of industry consolidations, a relatively small
number of companies employ a large number of employees, and these companies
invariably compete globally. In addition, these companies have invested heavily in
complex automated manufacturing system as well as information technology in
order to stay competitive. Data is collected and analyzed concerning the operations
of the manufacturing processes as well as sales and supply-chain data. Enterprise
resource planning (ERP) systems are routinely used in this context. Data mining is
being increasingly used to enhance the development of new products, to ensure the
manufacturing process operates efficiently and with a high level of quality, as well
as to meet the demands of customers in the marketplace.

† Enhancing product design: Data mining has been applied to the product design
phase, where historical data along with data from other sources is used to
optimize design specifications and control product component costs. This
application typically involves multidimensional optimizations to identify the
optimal configuration and list of suppliers.

† Enhancing production quality: During the manufacturing process, data is col-
lected from control systems and can be mined to ensure consistency and detect
problem sources. Data mining approaches enable the monitoring of the many
systems that are common within typical manufacturing environments. These
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methods may also be embedded into the manufacturing system and used to
optimize entire production processes, as well as detect potential errors or
problems automatically. The information can also be used by production
workers, often using data visualizations, to make production assessments.

† Allocating factory resource: Manufacturing data is often used to maximize
layouts as well as to optimize the use of other resources such as energy,
human resources, and suppliers. Models are also built to identify optimal
machine settings used within the production process, as well as models that
enable the most efficient scheduling of production events. Data mining can
also be used with this enterprise information to avoid health and safety issues,
and minimize any environmental impact resulting from the production.

† Sales and maintenance: Manufacturing companies build models to forecast
product demand using customer information. These models are often integrated
with supplier and inventory information to ensure an efficient production oper-
ation that meets customer needs. Customer information is also integrated with
manufacturing data to model different configurations in order to maximize sales
at the same time as controlling configuration costs. The service records associ-
ated with products sold are also data mined to detect causes of any malfunctions
as well as aiding in the planning of maintenance schedules.

5.3.6 Entertainment

The entertainment and media industry encompasses many diverse organizations. The
generation and distribution of content from films, television and radio programs,
music, magazines and books comprise a large percentage of the market. In addition,
video gaming, sports and other events, hotels and resorts, and casinos are major
players in this industry. This industry is increasingly relying on data mining
approaches to maximize its operational efficiency, open new markets, and maximize
the customer experience.

† Optimization in entertainment: Information is critical to the allocation of
resources in the entertainment industry. For example, many sports teams are
utilizing data concerning player and team performances, strategies, and salary
costs. This data is being used to optimize the make-up of individual teams,
ensuring the best player combinations at an optimal cost. At the same time,
individual game tactics can emerge from an analysis of the data, and models
are even built to minimize athletes’ injuries. In another example, hotels and
resorts gather extensive information for analysis, generating models that help
to predict the most profitable daily room price by optimizing occupancy.
These models often take into account both historical purchasing information
and data concerning the local market.

† Maximizing advertisement effectiveness: Many factors contribute to the effec-
tiveness of an advertisement campaign. Data mining approaches are being used
to ensure the campaigns are profitable. These approaches make use of historical
data to better predict the most effective media to utilize, such as television,
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radio, print, internet, and so on. Campaigns are also targeted toward specific
types of programming, as well as particular days, timeframes, or numbers of
advertisements that result in the most effective campaign. Historical data and
survey results are often data mined to find unexpected relationships between
buying habits and different products. These associations are also used to prior-
itize advertisement placement. Online advertising now plays an important role
and decisions regarding such advertising are often made after making extensive
use of analytics. For example, the placement of the online advertisements, or
which advertisements are presented in relation to a specific search query, is
often directed based on an analysis of usage patterns, which are tracked and
logged over time. The collection of detailed information on the behavior of
individual internet users has enabled a high degree of advertisement customi-
zation, which would not be possible without this tracking.

† Media: Online content is often organized and customized through data mining
approaches. For example, when newswires are published, automated analysis of
these releases is used to categorize the contents, enabling rapid dissemination to
interested parties. The content of websites make use of data mining approaches
to maximize the delivery of the information, matching specific content or ser-
vices to the specific user, based on models built from historical usage patterns.

5.3.7 Government

National and local governments have a broad series of responsibility, including pro-
viding national security, supporting basic research and development, collecting taxes,
and ensuring local resources are available, such as fire prevention services. Data
mining approaches are used in many situations within government departments to
ensure efficient allocation of resources, to support basic research, and to help
detect criminal activities.

† Revenue collection and resource allocation: A significant amount of money is
wasted as a result of fraud related to either nonpayment of taxes or payment of
illegitimate benefits. Analysis of historical data is performed to identify rules
associated with this fraudulent activity in order to identify and prevent future
occurrences.

† Planning future needs: Data mining is also used to provide enhanced levels of
public service through more efficient resource allocation. For example, fire
departments are using historical data concerning fire emergencies, such as
when the incident occurred, how many casualties are involved, as well as the
extent and type of damage. This information is used to plan fire station
locations, develop proactive fire prevention programs, and optimize allocation
of equipment and personnel. Another example is where urban planning depart-
ments make use of historical data to plan future population needs, such as trans-
portation needs.

† Fighting crime: Solving crimes focuses on the assimilation and interpretation
of data from a variety of sources. This may include documents seized,
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information from witnesses, surveillance data, data on the weather, census data,
internet records, email messages, and telephone records. Pulling all this infor-
mation together is extraordinarily challenging; however, once it is all in a struc-
tured electronic format, it can be mined. Understanding associations between
specific events or types of events happening in time and over specific geographi-
cal areas can play an important role in solving crimes. Information on crimes and
arrests within the court system is also collected and is increasingly stored elec-
tronically. Mining this information can help in understanding how to balance
resources within the court system as well as providing information to lawmakers
that could lead to enhanced operational efficiency of the legal system.
Information on historical crimes can also aid in the allocation of resources,
such as targeting police presence, focusing on areas with the most impact.

† Research activities: The government funds a significant portion of basic
research within government agencies, universities, and the private sector. Data
mining is being used, for example, in the discovery of new materials, identifying
the biological basis for disease, and understanding astronomical databases.

5.3.8 Pharmaceuticals

The development of a new drug is a long and expensive process, often taking around
14 years to identify and bring to market a single novel pharmaceutical. Throughout
the research and development (R&D) process, data is collected and interpreted to
make decisions about the best way to move forward. The initial investigation revolves
around understanding the biological basis for a particular disease. Once the biological
basis, or target, is identified, many chemicals are then tested to see if they show any
promise of intervening in the selected disease process. This allows the pharmaceutical
researcher to identify the types of chemicals that are most promising at this stage. Many
possible variations for a particular type of chemical are tested to understand whether they
increase the potency, as well as other desirable properties of a drug. These chemicals are
also tested for undesirable properties, such as potential side-effects or safety issues, and
the most promising chemicals are taken forward and tested further. At this time, a clinical
trial is started to understand the dosage, efficacy and safety of the potential drug within
increasingly large number of patients. Once a drug has been approved based on the results
of the clinical trials, it is continually monitored in the market.

The pharmaceutical research process has changed dramatically in recent years
through the introduction of highly automated robotic testing methods that are able to
perform experiments on a small scale, and in some cases even on microchips. This
industrialization of the research process has resulted in a dramatic increase in the
volume of data generated at all stages of the process and the extensive use of data
mining is relied upon to make decisions. The volume of data, alongside the need
to handle nontraditional data, such as genes, proteins and chemicals, which is not
easily incorporated into a relational table, makes data mining pharmaceutical infor-
mation challenging.

† Mining biosequence data: Understanding the biology of diseases is the first
step in the process of discovering a new medicine. It is critical to understand
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the molecular basis of the disease, that is the genes, proteins and cells involved
in the disease processes. Automated methods of DNA sequencing, including
human and other organisms, have created large gene databases. These databases
contain a rich knowledge base for understanding diseases. Genes and proteins
are usually represented as sequences of letters that comprise their building
blocks. For gene-related sequences there are four letters (representing the
bases that make up genes) and for proteins there are 20 letters (the amino
acids that make up proteins). These sequences have no predetermined length
and so are usually represented as a single string of characters. Searching and
grouping similar sequences are extensively used. Unlike more traditional data
methods for assessing similarity based on predetermined columns of data, indi-
vidual sequences must be aligned and compared to each other in order to cluster
the sequences. Methods such as clustering and visualization of the data are used
to make sense of the vast volumes of data and enlighten the pharmaceutical
scientist concerning the biological basis for the disease. As a result of the
number of specialized methods necessary to analyze and mine biological
data, the field of bioinformatics was established. Section 5.4 provides a case
study of mining microRNA data.

† Finding patterns in chemical data: With an understanding of the biological
basis of a particular disease, it is possible to generate an experimental test
that, when used in conjunction with a candidate drug (chemical), will determine
whether there is a chance this candidate would cure the disease. Any positive
results are a very long way off from becoming a drug, but it is a starting
point. It is usual to test a large number of chemicals at this point, often hundreds
of thousands. This data is then mined to determine what types of chemicals
should be further refined in the long process of identifying a drug. The test
results can be represented as numeric values, which are cleaned and incorpor-
ated as variables into data tables. However, the primary goal at this stage is to
relate attributes of the chemicals to these biological test results, and so it is essen-
tial to generate independent variables related to the chemicals. There are very
many independent variables that describe whole chemical attributes and pieces
of the chemical. Once these independent variables have been computed, the
chemical and biological data is usually mined by methods such as decision
trees and clustering to determine the attributes of those chemicals that correspond
to promising biological test results. These attributes are used to design and select
the next batch of chemicals to test as the drug discovery process advances. There
are many unique issues associated with mining chemical data, such as represen-
tation, normalization, cleaning, and independent variable generation, and all of
these issues are encompassed into the field of chemoinformatics. An overview
of how this non tabular data is processed is provided in Section 5.6.2.

† Optimizing drugs: Based on the desired chemical attributes identified earlier,
sets of chemicals are iteratively tested, meaning that the test results are mined
and the results guide the selection of the next batch of chemicals to be
tested. In addition to the testing for potency, the chemicals are also tested for
other properties, such as to determine how easily the drug will pass through
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the lining of the stomach and into the blood. A highly potent chemical that
cannot get into the blood will never become a viable drug. There are many
different attributes that are tested for, commonly referred to as ADME (absorp-
tion, distribution, metabolism, and excretion). The process of understanding
this data is a complex multidimensional optimization problem and often
incorporates extensive predictive analytics.

† Assessing clinical data: Having selected the most promising drug to take
forward, conducting a series of human clinical trials is usually the last step
prior to taking a new drug to market. An initial assessment of the product
safety is made in healthy adults, along with a determination of the dosage
level. Once this first step is successfully completed, two controlled double
blind studies are performed in the clinic. The first study is performed on a
smaller number of patients, and then the drug is tested in a wider population
if the results from the first study are acceptable. The patient populations are
divided into two groups: one group is administered the drug and the other
group is administered a placebo. The analysis of the data will answer the question
of whether the drug is both effective and safe. Once a drug is marketed, the drug is
continually monitored for undesirable properties, and the drug may be withdrawn
if any safety issues come to light. Withdrawing a drug from the market as a result
of safety concerns, however, can be disastrous for both the patient’s health and
the financial viability of the pharmaceutical company.

† Predicting safety issues: Throughout the entire process of drug discovery, large
collections of data are generated concerning both the desirable and undesirable
properties of drugs or drug candidates. This information is gathered from within
an organization and from published information. The process of drug discovery
is accelerated by using predictive models to complement or as an alternative to
physical safety testing. These models are used to prioritize research directions
and to avoid taking drug candidates with potential problems further. Collecting
and normalizing the data is challenging since the chemicals may have been
tested using different types of experiments or experimental protocols. The
results are often collected from controlled experiments, generated for a specific
type of chemicals. To use this data to make predictions concerning the general
population of possible chemicals requires care in putting the training sets
together. This training set should ideally now represent a diverse set of chemi-
cals to increase the applicability of any predictive model generated. In reality,
the types of chemicals in the training sets limit what types of chemicals can be
provided as input to models. It is usual to make an assessment of whether a par-
ticular chemical can be used with a particular model by comparing the chemical
to be tested against the training set of the model. When the chemical to be pre-
dicted is outside this applicability domain, a prediction would not be reliable.

5.3.9 Healthcare

The healthcare industry covers organizations involved in the diagnosis, treatment, and
care of patients. Hospitals, care facilities, physicians, and dentists are the primary
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providers of healthcare, with support from industries such as pharmacies and medical
and diagnostic laboratories. Hospitals and physician offices are starting to use electronic
health or medical record systems where data is collected concerning the patient, including
clinical notes, prescriptions, and laboratory results. Hospitals also collect information on
patient workflows and available resources, as well as other data that may affect the day-to-
day operations of a hospital such as weather-related data or information on particular
community events. Data mining is being extensively used to accelerate the pace of
research and improve diagnosis, treatment, and care for patients.

† Improving care: Computer systems are being put in physicians’ offices and
hospitals to record patient data, such as clinical notes, prescriptions and labora-
tory results. These electronic health or medical record systems (EHR/EMR) are
storing information on a patient’s medical history, including symptoms,
diagnosis, treatments, and results. This information is often combined with
information on demographic and geographical patient data, along with the hos-
pital resources, such as staff, beds, equipment, and operating theaters. The data
is mined to optimize care and help with future diagnosis.

† Assessing treatment outcomes: Data that has been collected across different
patients, doctors, and facilities can be used to make assessments concerning
the effectiveness of care for various outcomes. For example, an outcome
may be patient mortality rates after treatment for a heart attack. This information
can be used to judge the effectiveness of differing diagnoses, treatment, and
care options, as well as an individual doctor’s performance. Data mining this
information can help to increase the quality of care by establishing medical
practices that result in improved care, such as decreasing mortality rates.
When preparing data for this purpose, care should be taken to ensure any
bias in patient populations within specific facilities is taken into account by nor-
malizing the data based on a model of patient risk. Models can also be built
from this data that take into account information on the patients, such as demo-
graphic data, to make predictions of the type of care that leads to the best
outcome for an individual patient.

† Improving diagnosis: Early diagnosis of problems or identification of potential
long-term side effects can positively impact the patient and can result in signifi-
cantly lower costs. Methods such as decision trees are often built from the
historical clinical data, including the patient’s symptoms, health history, and
demographics, to predict future issues, and provide an opportunity for interven-
tion. Data collected is often noisy, with many missing values, and needs to be
cleaned before building any models. This cleaning may also need to take into
account standardization of the vocabulary used and the incorporation of
concept hierarchies to map many terms into a more standardized list.
Coupling historical diagnosis data with information generated at a genetic
level, such as gene expression data, is now starting to be used to enhance diag-
nosis and enable more personalized medicine.

† Allocating resources: Data mining is also being used to optimize the
operational efficiency of hospitals. Models are built to make predictions of
demand on resources such as hospital beds, theaters, and staff. These models
help predict demand more accurately on a day-to-day basis.
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5.4 microRNA DATA ANALYSIS CASE STUDY

5.4.1 Defining the Problem

To gain insight into the molecular basis for cancer, the National Cancer Institute
(NCI), along with other institutions, has run extensive experiments on 60 human
cancer cell lines. These cell lines are summarized in Table 5.1, and are organized
by the following tissue types: breast, central nervous system (CNS), colon, lung,
leukemia, melanoma, ovarian, prostate, and renal. A variety of tests have been per-
formed on these cell lines over the years, including chemical screening and profiling
based on gene and protein expression levels. The NCI has built up an extensive col-
lection of experimental research data based on these cell lines and the associated
experiments (http://discover.nci.nih.gov/cellminer/).

microRNAs are thought to play a critical role in cancer, and recently scientists
at the Ohio State University have performed a series of tests to profile the 60 cancer
cell lines by microRNA expression levels using a custom microarray (Blower et al.,
2007). These expression levels indicate the relative abundance of each microRNA in
each of the cell lines. A total of 279 microRNAs were tested against the 60 cancer cell
lines detailed in Table 5.1.

The data has been generated to answer a number of questions, including:

1. Is it possible to use the data to classify tissue types, such as melanoma, lung,
and so on, by microRNA expression patterns?

2. Is it possible to predict the tissue type by microRNA expression level?

5.4.2 Preparing the Data

An extensive amount of transformation of the data has been performed, which is
detailed in Blower et al. (2007). A portion of the resulting data table is shown in
Table 5.2. Each row corresponds to a specific microRNA (such as let-7a-1 or
let-7a-2-precNo2), and each column is a specific cancer cell line (BR:BT-549,

TABLE 5.1 The 60 Human Cancer Cell Lines Organized by Tissue Type

Tissue Cell names

Breast BT 549, HS578T, MCF7, MDA MB 231, T47D

CNS SF.268, SF.295, SF.539, SNB19, SNB.75, U251

Colon COLO205, HCC 2998, HCT.116, HCT.15, HT29, KM12, SW 620

Lung A549 ATCC, EKVX, HOP 62, HOP 92, NCI H226, NCI H23, NCI H322M,
NCI H460, NCI H522

Leukemia CCRF CEM, HL 60, K 562, MOLT 4, RPMI 8226, SR

Melanoma LOXIMVI, M14, MALME 3M, MDA MB 435, MDA N, SK MEL 2, SK MEL 28,
SK MEL 5, UACC 257, UACC 62

Ovarian IGROV1, NCI ADR RES, OVCAR 3, OVCAR 4, OVCAR 5, OVCAR 8, SKOV3

Prostate DU 145, PC 3

Renal 786 0, A498, ACHN, CAKI 1, RXF 393, SN12C, TK 10, UO 31

5.4 microRNA DATA ANALYSIS CASE STUDY 181



TA
B

LE
5

.2
T
ab

le
Sh

o
w

in
g

th
e

Ex
p

re
ss

io
n

Le
ve

l
o

f
m

ic
ro

R
N

A
s

fo
r

th
e

6
0

H
u

m
an

C
an

ce
r

C
e

ll
Li

n
e

s

B
R

:B
T

-
54

9
B

R
:H

S
57

8T
B

R
:M

C
F

7
B

R
:M

D
A

-
M

B
-2

31
B

R
:T

47
D

C
N

S
:S

F
-

26
8

C
N

S
:S

F
-

29
5

C
N

S
:S

F
-

53
9

C
N

S
:S

N
B

-
19

C
N

S
:S

N
B

-
75

..
.

le
t-

7a
-1

-p
re

c
12

.3
9

12
.4

2
11

.3
2

12
.1

8
10

.6
2

11
.9

1
11

.9
4

11
.5

12
.4

13
.1

6
..
.

le
t-

7a
-2

-p
re

cN
o2

12
.6

6
13

.1
5

12
.0

5
12

.2
8

10
.5

5
13

.1
1

12
.8

6
12

.1
13

.6
5

13
.6

5
..
.

le
t-

7a
-3

-p
re

c
11

.7
6

12
.3

4
11

.0
5

11
.6

9.
99

12
.0

9
11

.9
8

11
.0

8
12

.6
3

12
.9

2
..
.

le
t-

7b
-p

re
c

12
.6

2
13

.2
8

11
.7

5
12

.5
8

10
.7

1
12

.8
7

12
.4

6
11

.8
13

.3
6

13
.5

8
..
.

le
t-

7c
-p

re
c

12
.5

6
13

.4
2

11
.9

6
12

.0
8

10
.4

9
12

.9
2

12
.8

5
11

.9
5

13
.8

5
13

.7
..
.

le
t-

7d
-p

re
c

11
.6

3
12

.2
8

11
.1

6
10

.9
4

9.
17

11
.9

3
11

.9
4

11
.0

1
12

.8
3

12
.6

5
..
.

le
t-

7d
-v

1-
pr

ec
10

.4
1

10
.9

5
9.

98
10

.1
2

8.
07

10
.4

9
10

.3
2

9.
91

10
.8

5
11

.4
3

..
.

le
t-

7d
-v

2-
pr

ec
N

o2
11

.1
6

11
.9

9
10

.7
4

10
.5

9
8.

14
10

.8
10

.6
10

.5
1

11
.1

3
11

.6
..
.

le
t-

7e
-p

re
c

11
.3

5
11

.7
4

11
.1

3
11

.4
3

9.
79

11
.4

6
11

.2
5

10
.9

9
11

.7
11

.9
3

..
.

le
t-

7f
-1

-p
re

cN
o2

9.
92

9.
35

9.
48

10
.0

2
7.

55
10

.3
1

9.
3

8.
97

9.
84

10
.6

2
..
.

le
t-

7f
-2

-p
re

c2
10

.5
5

10
.1

6
10

.3
2

10
.1

6
7.

94
10

.7
1

10
.1

5
10

.0
4

10
.7

1
11

.5
8

..
.

le
t-

7g
-p

re
cN

o1
11

.1
1

11
.0

6
10

.5
3

10
.8

2
8.

26
10

.5
7

10
.3

1
10

.6
7

11
.0

2
11

.7
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

182



BR:HS578T, and so on, where the prefix indicates tissue type). The data values are the
expression level of the microRNA for each of the 60 cell lines. It should be noted that
the data values have been log2 transformed.

The rows and columns are initially exchanged (matrix transpose), such that the
rows are now the 60 cancer cell lines, and the columns are the microRNA probe IDs,
as shown in Table 5.3.

Each cell line is classified according to its tissue type using Table 5.1 and this
process generates a new variable (type). This variable is also transformed into a series
of dummy variables, one for each tissue: breast, CNS, colon, and so on, as shown in
Table 5.4.

5.4.3 Analysis

The data in Table 5.4 is initially clustered using the microRNA expression patterns.
The clustering is performed to determine whether the cell lines are grouped by tissue
type. Hierarchical agglomerative clustering using the complete linkage joining rule
was performed. This clustering used the correlation coefficients of the microRNA
expression levels. The results are shown in Fig. 5.1.

The dendrogram in Fig. 5.1 is annotated with the individual cell line names.
The prefix of the name indicates its tissue type, for example, LE:K-582 is from a leu-
kemia tissue, and CO:SW-620 is from a colon tissue. The dendrogram indicates that
many of the cell lines are effectively grouped together, in particular leukemia (LE),
colon (CO), renal (RE), melanoma (ME), and CNS. Two exceptions are the breast
and lung cancer cell lines.

TABLE 5.3 Expression Data with Cell Lines as Rows and the microRNAs as the Columns

Type
let 7a
1 prec

let 7a 2
precNo2

let 7a
3 prec

let 7b
prec

let 7c
prec

let 7d
prec . . .

BR:BT 549 Breast 12.39 12.66 11.76 12.62 12.56 11.63 . . .

BR:HS578T Breast 12.42 13.15 12.34 13.28 13.42 12.28 . . .

BR:MCF7 Breast 11.32 12.05 11.05 11.75 11.96 11.16 . . .

BR:MDA MB 231 Breast 12.18 12.28 11.6 12.58 12.08 10.94 . . .

BR:T47D Breast 10.62 10.55 9.99 10.71 10.49 9.17 . . .

CNS:SF 268 CNS 11.91 13.11 12.09 12.87 12.92 11.93 . . .

CNS:SF 295 CNS 11.94 12.86 11.98 12.46 12.85 11.94 . . .

CNS:SF 539 CNS 11.5 12.1 11.08 11.8 11.95 11.01 . . .

CNS:SNB 19 CNS 12.4 13.65 12.63 13.36 13.85 12.83 . . .

CNS:SNB 75 CNS 13.16 13.65 12.92 13.58 13.7 12.65 . . .

CNS:U251 CNS 12.16 12.6 11.59 12.89 12.51 11.62 . . .

CO:COLO205 Colon 10.49 11.95 10.98 11.57 11.85 11.01 . . .

CO:HCC 2998 Colon 11.19 11.68 10.77 11.89 11.66 10.64 . . .

CO:HCT 116 Colon 11.36 12.78 11.87 11.95 12.72 11.78 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 microRNA DATA ANALYSIS CASE STUDY 183



TA
B

LE
5

.4
A

Se
ri

e
s

o
f

D
u

m
m

y
V

ar
ia

b
le

s
G

e
n

e
ra

te
d

fo
r

Ea
ch

T
is

su
e

T
yp

e

T
yp

e

T
yp

e
le

t-
7a

-
1-

pr
ec

..
.

m
ir

_3
20

_H
cd

30
6

ri
gh

t
B

re
as

t
C

N
S

C
ol

on
L

un
g

L
eu

ke
m

ia
M

el
an

om
a

O
va

ri
an

P
ro

st
at

e
R

en
al

B
R

:B
T

-5
49

B
re

as
t

12
.3

9
..
.

12
.7

1
0

0
0

0
0

0
0

0

B
R

:H
S

57
8T

B
re

as
t

12
.4

2
..
.

11
.8

9
1

0
0

0
0

0
0

0
0

B
R

:M
C

F
7

B
re

as
t

11
.3

2
..
.

10
.8

1
0

0
0

0
0

0
0

0

B
R

:M
D

A
-M

B
-2

31
B

re
as

t
12

.1
8

..
.

11
.4

6
1

0
0

0
0

0
0

0
0

B
R

:T
47

D
B

re
as

t
10

.6
2

..
.

11
.2

1
0

0
0

0
0

0
0

0

C
N

S
:S

F
-2

68
C

N
S

11
.9

1
..
.

12
.1

8
0

1
0

0
0

0
0

0
0

C
N

S
:S

F
-2

95
C

N
S

11
.9

4
..
.

11
.2

1
0

1
0

0
0

0
0

0
0

C
N

S
:S

F
-5

39
C

N
S

11
.5

..
.

11
.9

3
0

1
0

0
0

0
0

0
0

C
N

S
:S

N
B

-1
9

C
N

S
12

.4
..
.

11
.1

5
0

1
0

0
0

0
0

0
0

C
N

S
:S

N
B

-7
5

C
N

S
13

.1
6

..
.

12
0

1
0

0
0

0
0

0
0

C
N

S
:U

25
1

C
N

S
12

.1
6

..
.

11
.2

7
0

1
0

0
0

0
0

0
0

C
O

:C
O

L
O

20
5

C
ol

on
10

.4
9

..
.

10
.8

3
0

0
1

0
0

0
0

0
0

C
O

:H
C

C
-2

99
8

C
ol

on
11

.1
9

..
.

11
0

0
1

0
0

0
0

0
0

C
O

:H
C

T
-1

16
C

ol
on

11
.3

6
..
.

11
.7

1
0

0
1

0
0

0
0

0
0

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

184



The data from Table 5.4 is additionally grouped using a decision tree. The
microRNA expression levels (let-7a-1-prec, let-7a-2-precNo, and so on) are used
as independent variables. The type variable, whose values are the nine tissue
types, that is breast (BR), colon (CO), and so on, is used as the response variable.
A decision tree was generated using these variables, where the generation process
is restricted to nodes with more than four members. The results are shown in Fig. 5.2.

Each of the nodes in the tree represents a set of cell lines. Starting with the node
at the top of the tree containing all observations, the tree is continuously split. These
splits attempt to generate nodes ideally containing a single type of cell line. The cri-
teria used to split each node are shown above the node. For example, the initial split
divides all observations into those where mir-200cNo1 , 6.87, and those where

Figure 5.1 Clustering dendrogram of the human cancer cell lines by microRNA expression
patterns
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mir-200cNo � 6.87. The observations are continually split until either the minimum
node threshold has been reached or all the observations are assigned to a single class.
Nodes at the end of the branches are called terminal nodes, and the total number of
observations in each node is shown, as well as the number of observations in the most
common class.

The criteria used to generate each terminal node can be defined by tracing
the decision points back to the original node. For example, the node that classifies
the 10 melanoma cell lines is defined by the rule: mir-200cNo1 , 6.87 AND
mir-125a-precNo1 , 10.4 AND mir-010b-precNo � 8.61.

Many of the terminal nodes characterize cell lines according to their tissues
types. The tree is able to classify LE, ME, CNS, ovarian (OV), CO, and RE cell
lines well.

The second question to explore was whether a model could be generated to
predict the tissue type by microRNA expression level. Melanoma tissues will be
used to test this, using Table 5.4 (type melanoma) containing the microRNA
expression levels (let-7a-1-prec, let-71-2-precNo, and so on). The data set in
Table 5.4 contains 60 observations with 279 independent variables. The first step
is to identify a subset of variables to use in any model. There are many approaches
to reducing the number of variables prior to modeling, including principal component
analysis, decision trees, as well as clustering the variables and selecting a representa-
tive variable from each cluster.

For this exercise, a hypothesis test was performed on each variable comparing
two groups of observations, those where the variable type melanoma is 1 and those
where type melanoma is 0. Based on the mean of the two groups, a t-test is gen-
erated which can be used to prioritize the variables. Figure 5.3 is an example of a
hypothesis test performed on one of the variables (mir-509No1).

A table is generated summarizing the results for each variable. The mean for
both of the two groups is calculated where melanoma is 1 (M 1) and where mela-
noma is 0 (M 0), along with the t-statistic, which is used to prioritize the list. The
top 15 variables are shown in Table 5.5.

Figure 5.3 Hypothesis test performed on the variable mir 509No1 for two groups
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TABLE 5.5 Top 15 Variables Prioritized by the t-Test Scores

Mean (M ¼ 1) Mean (M ¼ 0) Hypothesis (t )

1 mir 509No1 7.2 2.4 12.4

2 mir 146 prec 14.4 8.5 8.3

3 mir 146bNo1 13.9 8.3 7.7

4 mir 204 precNo1 9.2 3.9 6.7

5 mir 211 precNo1 9.082 5 6.4

6 mir 147 prec 8.6 5.8 6.4

7 mir 182 precNo2 6.5 9.3 4.7

8 mir 335No1 2.3 5.5 4

9 mir 200cNo1 3 7.3 3.8

10 mir 224 prec 2.6 6 3.6

11 mir 183 precNo1 4.6 6.9 3.6

12 mir 191 prec 11 12 3.4

13 mir 200bNo1 4.5 8.5 3.4

14 mir 335No2 8.6 9.8 3.3

15 mir 200a prec 3.4 7.4 3.2

. . . . . . . . . . . . . . .

Figure 5.4 Comparison of three prioritized variables where the highlighted observations in
the first column are for melanoma ¼ 1 whereas the highlighted observations in the graphs in
the second column are for melanoma ¼ 0.
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Three of these variables from this list (mir-509No1, mir-146-prec, and mir-
211-precNo1) are shown in Fig. 5.4. The frequency distributions on the left highlight
the observations where the tissue type is melanoma, and on the right they highlight
where the tissue type is not melanoma. There is a clear differentiation of the
melanoma tissue type based on these variables.

These prioritized variables are further investigated to determine whether there
are relationships between the variables. The existence of a relationship between inde-
pendent variables would be redundant, and this colinearity could be problematic to
the model building process. A matrix of the squared correlation coefficients is
generated and shown in Fig. 5.5. It is determined that there exists a certain amount

Figure 5.6 Variables with high squared correlation coefficients

TABLE 5.6 Prioritized Variables with Highly Correlated Variables Removed

Mean (M ¼ 1) Mean (M ¼ 0) Hypothesis (z )

1 mir 509No1 7.2 2.4 12.4

2 mir 146 prec 14.4 8.5 8.3

4 mir 204 precNo1 9.2 3.9 6.7

5 mir 211 precNo1 9.082 5 6.4

6 mir 147 prec 8.6 5.8 6.4

7 mir 182 precNo2 6.5 9.3 4.7

8 mir 335No1 2.3 5.5 4

9 mir 200cNo1 3 7.3 3.8

10 mir 224 prec 2.6 6 3.6

12 mir 191 prec 11 12 3.4

13 mir 200bNo1 4.5 8.5 3.4
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TABLE 5.7 A Sample of the Logistic Regression Models Built

Accuracy Variable (1) Variable (2) Variable (3) Variable (4) Variable (5) . . .

0.95 mir 146 prec
0.917 mir 147 prec
0.833 mir 182 precNo2
0.833 mir 200cNo1

0.917 mir 204 precNo1
0.9 mir 211 precNo1
0.833 mir 335No1
0.95 mir 509No1
0.9 mir 146 prec mir 147 prec
0.883 mir 146 prec mir 182 precNo2
0.883 mir 146 prec mir 200cNo1
0.933 mir 146 prec mir 204 precNo1
1 mir 146 prec mir 211 precNo1
0.85 mir 146 prec mir 335No1
. . . . . . . . .

0.95 mir 146 prec mir 147 prec mir 182 precNo2
. . . . . . . . . . . .

0.933 mir 146 prec mir 147 prec mir 182 precNo2 mir 200cNo1
. . . . . . . . . . . . . . .

0.983 mir 146 prec mir 147 prec mir 182 precNo2 mir 200cNo1 mir 204 precNo1
. . . . . . . . . . . . . . . . . . . . .

Figure 5.7 Summary of the logistic regression model
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of overlap between some of these variables, since some of the squared correlation
coefficient values are close to 1.

Four pairs of variables with high squared correlation coefficients are also
displayed in Fig. 5.6, to illustrate the relationships between these variables.

The prioritized variables from Table 5.5 are further reduced based on the relation-
ships between them. Where two variables have a high square correlation coefficient
score, the lower ranking variable is removed. The resulting table is shown in Table 5.6.

Using the top eight variables from Table 5.6, a series of logistic regression
models were built using these variables as independent variables. The response
variable is the binary variable type melanoma, and a 5% cross-validation was per-
formed. All combinations of these eight variables were used as inputs to the models,
generating 255 different models. These models were then ranked on their level of
accuracy. A fraction of the 255 models can be seen in Table 5.7.

The simplest model with the highest cross-validated predictive accuracy
was selected. This model contains two independent variables: mir-146-prec and
mir-211-precNo1. The full logistic regression model can be seen in Fig. 5.7.

5.5 CREDIT SCORING CASE STUDY

5.5.1 Defining the Problem

A financial services company has collected data concerning automobile applications
and loans, as well other information such as their client’s credit performance. Over
the years, the company has processed many loan applications, and has recorded
those where they had to shut down the account as a result of nonpayment. The
data shows that 32% of all customers defaulted on their car loans. The company
would like to develop a prediction model for screening loan candidates in order to
understand those individuals not likely to default on any loan. Even a small increase
in the screening of candidates would be beneficial.

5.5.2 Preparing the Data

A data set has been provided by Dr Satish Nargundkar (http://www.nargund.com/
gsu/index.htm) which contains 14,042 observations concerning auto loans, credit
histories, application data, and information concerning the vehicle. Table 5.8
summarizes the variables contained in the data set.

A portion of the data table is shown in Table 5.9. The table contains a number
of different types of variables, such as text, continuous, binary, and so on.

To facilitate the analysis, a glossary of terms commonly used in the field of auto
loans has been put together, and is shown in Table 5.10.

Preliminary Assignment of Variables The objective of the modeling exercise is
to build a model to predict the variable good, which will be used as the response vari-
able. A preliminary inspection of the data indicates that the bad variable is the inverse
of good, and hence it will not be used in any further analysis. The variable acctno is a
unique number for each row, and will be used as a label for the observations. All other
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TABLE 5.8 Description of the Variables in the Credit Scoring Data Set

Variable name Description

ACCTNO Account number

AGEAVG Average age of trades

AGEOTD Age of oldest trade

AUUTIL Ratio of balance to highest credit limit for all open auto trades

BAD Performance (charged off in 12 months)

BKTIME Time since bankruptcy

BRHS2X Number of bank revolving trades ever 30 days past due

BRHS3X Number of bank revolving trades ever 60 days past due

BRHS4X Number of bank revolving trades ever 90 days past due

BRHS5X Number of bank revolving trades ever 120þ days past due

BROLDT Age of oldest bank revolving trade

BROPEN Number of open bank revolving trades

BRTRDS Number of bank revolving trades

BSRETL Base retail value

BSWHOL Base wholesale value

CBTYPE Credit bureau type

CFTRDS Number of financial trades

CONTPR Contract price paid

CURSAT Number of trades currently rated satisfactory

DWNPMT Down payment

GOOD Performance (not charged off)

HSATRT Ratio of satisfactory trades to total trades

INQ012 Number of inquiries in last 12 months

MAKE Make of automobiles

MILEAG Mileage

MNGPAY Monthly gross pay

MODEL Model of automobile

NEWUSE New or used indicator

NTTRIN Net trade in

PUBREC Number of derogatory public records

TERM Term of loan

TOTBAL Total balance

TRADES Number of trades

VAGE Customer age

VDDASAV Checking/saving accounts

VJOBMOS Time at job in months

VRESMOS Time at residence in months

AGEOTD Age of oldest trade

BKRETL Book retail value

BRBAL1 Number of open bank revolving trades with balance �$1000

CSORAT Ratio of currently satisfactory trades to open trades

HST03X Number of trades never 90 days past due

HST79X Number of trades ever rated bad debt

(Continued )
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TABLE 5.9 Portion of the Data Set Concerning Auto Loan Applications

ACCTNO AGEAVG AGEOTD AUUTIL BAD BKTIME BRHS2X BRHS3X . . .

1004596 5 5 5 0 6 5 5 . . .

1004598 46 81 6 1 6 6 6 . . .

1004599 2 2 2 0 2 2 2 . . .

1004602 39.52 216 6 1 6 0 1 . . .

1004603 30.44 107 6 0 36 6 6 . . .

1004610 3 3 3 0 3 3 3 . . .

1004614 40 62 6 0 6 0 0 . . .

1004615 39.67 79 6 1 6 6 6 . . .

1004616 13 69 6 0 6 0 1 . . .

1004619 2 2 2 0 2 2 2 . . .

1004623 27.6 109 6 0 6 1 2 . . .

1004624 37.83 93 6 0 6 6 6 . . .

1004625 46.25 79 6 1 1 6 6 . . .

1004626 79.5 246 6 1 63 0 0 . . .

1004627 30.56 80 6 0 6 0 0 . . .

1004628 1 32 6 1 6 6 6 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

TABLE 5.10 Glossary of Auto Loan Terminology

Term Description

Trade A trade is a financial contract, like a Visa card, automobile loans, or a mortgage

Revolving trades A trade, such as a credit card, with no fixed installments

Days past due Number of days a payment is late in 30 day increments

DDA Demand deposit account or basic checking account

TABLE 5.8 Continued

Variable name Description

MODLYR Automobile model year

OREVTR Number of open revolving trades

ORVTB0 Number of open revolving trades with balance . $0

REHSAT Number of retail trades ever rated satisfactory

RVOLDT Age of oldest revolving trade

RVTRDS Number of revolving trades

T2924X Number of trades rated greater than 30 days past due in the last
24 months

T3924X Number of trades rated greater than 60 days past due in last 24 months

T4924X Number of trades rated greater than 90 days past due in last 24 months

TIME29 Months since most recent greater than 30 days past due rating

TIME39 Months since most recent greater than 60 days past due rating

TIME49 Months since most recent greater than 90 days past due rating

TROP24 Number of trades opened in last 24 months



variables are candidates to be used as independent variables, to be used in building
the models.

Negative Observations Many fields contain negative values, and these values are
used to indicate a specific situation where a value cannot be easily assigned. For
example, a variable may indicate the number of trades (see glossary) that an
individual has not paid on time. A zero value would indicate that the individual
has paid all trades on time; however, a negative value is used to indicate the individ-
ual does not have any trades to report. Table 5.11 is an analysis of the variables
showing the number of negative values in each of the variables. The table reflects
that 1606 individuals have no credit history. Other negative numbers reflect
missing data concerning that particular type of trade.

TABLE 5.11 Number of negative observations for each variable

Variable name Negative observations Variable name Negative observations

ACCTNO 0 NTTRIN 0

AGEAVG 2521 PUBREC 1522

AGEOTD 1666 TERM 0

AUUTIL 12491 TOTBAL 1606

BAD 0 TRADES 0

BKTIME 11969 VAGE 0

BRHS2X 7789 VDDASAV 0

BRHS3X 7789 VJOBMOS 0

BRHS4X 7789 VRESMOS 0

BRHS5X 7789 AGEOTD 1666

BROLDT 7795 BKRETL 0

BROPEN 7789 BRBAL1 11182

BRTRDS 1606 CSORAT 6877

BSRETL 0 HST03X 1606

BSWHOL 0 HST79X 1606

CBTYPE 0 MODLYR 0

CFTRDS 1606 OREVTR 5158

CONTPR 0 ORVTB0 9097

CURSAT 1606 REHSAT 7294

DWNPMT 0 RVOLDT 5164

GOOD 0 RVTRDS 1606

HSATRT 1606 T2924X 1606

INQ012 582 T3924X 1606

MAKE 0 T4924X 1606

MILEAG 0 TIME29 2219

MNGPAY 0 TIME39 2372

MODEL 0 TIME49 2473

NEWUSE 0 TROP24 1606
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Handling Missing Data The variable VAGE contains 40 observations with
missing values. These observations are removed.

Transforming Variables There are a number of variables that contain only text
values: make, model, newuse, and VDSASAV. Make and model contain many
values, and each value has either a small number of observations, or values that do
not appear to have a strong relationship to the response variable good. These variables
are not converted to numbers, and will not be used in any model. The variables newuse
contains values “U” and “N,” and VDASAV contains values “DDA,” “none,” “both,” and
“SAV.” They are converted to dummy variables and may be used to build models. The
following new variables are generated: newuse U, newuse N, VDASAV DDA,
VDASAV none, VDDASAV both, and VDDASAV SAV.

Data Outliers In examining the frequency distribution of all the variables, a
number of values that were significantly higher than the majority of cases were identi-
fied. Figure 5.8 shows a number of examples where the frequency distribution
contained these outliers. These observations were removed from the data set.

Figure 5.8 Example frequency distributions with outliers
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Figure 5.9 Principal component analysis of the credit scoring data set
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Figure 5.9 (Continued )
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The following rules were used to eliminate outliers: CFTRDS greater than 30, mileag
greater than 300,000, MNGPAY greater than 100,000, VRESMOS greater than 1000,
and TROP24 greater than 50. An alternative approach is to cap the values, for
example, assigning all individuals with pay greater than $100,000 to a $100,000 cap.

5.5.3 Analysis

Segmentation To facilitate the analysis, a randomly generated subset of 5000
observations was generated.

Principal Component Analysis To better understand the factors associated with
the variation in the data set, a principal component analysis was performed including
a factor rotation as shown in Fig. 5.9.

From this PCA analysis, the groups shown in Table 5.12 were identified, and
given a name, in order to understand the variation in the data set. One variable from
each of the groups was selected: T4924X, BSRETL, BRHS4X, TIME39, and ORVTB0.

Creating Discrete Variables As discussed earlier, many of the variables, includ-
ing most of the five selected, contain negative values which have specific meanings.
To remove all observations with the negative values would be problematic for a
number of reasons. It would reduce the number to be used for training the models.
In addition, eliminating cases with the negative values would reduce the utility of
the model, since the deployed model could only be used with cases that have positive
values. Instead of removing the values, the variables are binned based on ranges of
values. All negative values are placed in one of the bins. The divisions are chosen
to generate groups such that (1) the groups divide observations where good 1
and good 0, and (2) will contain at least 2% of the data set. Table 5.13 illustrates
the variables selected, and the grouping of the variables.

Prioritized Variables To further understand the relationship between the potential
independent variables and the response variable, a number of statistical tests were

TABLE 5.12 Description of the First Five Principal Components

Principal
component Factor names Variables

PC 1 “Trade activity” TRADES, T2924X, T3924X, T4924X, TROP24,
HST79X

PC 2 “Auto price” BSRETL, BSWHOL, CONTR, DWNPAY, TERM,
BKRETL, MODLYR

PC 3 “Revolving trade
activity”

BRHS2X, BRHS3X, BRHS4X, BRHS5X, BROPEN,
BRBALI

PC 4 “Days past due rating” CBTYPE, TIME29, TIME39, TIME49

PC 5 “Satisfactory trade” CURSAT, HSATRT, CSORAT, HST03X, OREVTR,
ORVTB0, REHSAT
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TABLE 5.13 Binning of the Selected Variables

Variables Binning

T4924X ,0; 0; 1 2; 3 9; 9þ
BSRETL 0 4000; 4000 6000; 6000 15,000; 15,000þ
BRHS4X ,0; 0; 1þ
TIME39 ,0; 0; 1 9; 10þ
ORVTB0 ,0; 0; 1 2; 3þ

Figure 5.10 Contingency tables generated for the five selected variables
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performed and summarized in Fig. 5.10. For each variable, the chi-square assessment
is above the critical value, indicating the existence of a relationship.

Dummy Variables A dummy variable was generated from each of the binned
values of selected variables, as described in Table 5.14. For the dummy variables
derived from T4924X, BRHS4X, TIME39, and ORVTB0, the variables containing
values less than zero are not considered to avoid colinearity issues. Similarly, the
new dummy variable BSRETL (15000þ) is not used.

Building Logistic Regression Models To further facilitate the analysis, a new
random subset of 1000 observations was created. Since the response variable is
binary, the logistic regression model building approach appears appropriate.
Combinations of independent variables were used to build multiple models. A
10% cross-validation was used to ensure that no observation’s prediction was calcu-
lated from a model in which that observation was used to train the model. Where the
predicted probability is greater than 0.65, the prediction is assigned 1, otherwise it is
assigned 0. Some results are shown in Table 5.15.

The model presented in Fig. 5.11 was selected, because of its overall accuracy,
sensitivity, and specificity values.

In this model, the false discovery rate is considered important. In general, 32%
of all loan applicants will default on their loans. Using this model, the number has
been reduced to 26.5%, or the 140 false positives divided by the 529 predicted

TABLE 5.14 Dummy Variables Generated

Original variables New dummy variables

T4924X T4924X (binned) , 0
T4924X (binned) ¼ 0
T4924X (binned) ¼ 1 2
T4924X (binned) ¼ 3 9
T4924X (binned) ¼ 9þ

BSRETL BSRETL (binned) ¼ 0 4k
BSRETL (binned) ¼ 4k 6k
BSRETL (binned) ¼ 6k 15k
BSRETL (binned) ¼ 15kþ

BRHS4X BRHS4X (binned) , 0
BRHS4X (binned) ¼ 0
BRHS4X (binned) ¼ 1þ

TIME39 TIME39 (binned) , 0
TIME39 (binned) ¼ 0
TIME39 (binned) ¼ 1 9
TIME39 (binned) ¼ 10þ

ORVTB0 ORVTB0 (binned) , 0
ORVTB0 (binned) ¼ 0
ORVTB0 (binned) ¼ 1 3
ORVTB0 (binned) ¼3þ

5.5 CREDIT SCORING CASE STUDY 201



TA
B

LE
5

.1
5

B
u

il
d

in
g

M
u

lt
ip

le
Lo

g
is

ti
c

R
e

g
re

ss
io

n
M

o
d

e
ls

fr
o

m
C

o
m

b
in

at
io

n
s

o
f

In
d

e
p

e
n

d
e

n
t

V
ar

ia
b

le
s

A
C

C
S

E
N

S
S

P
E

C
V

1
V

2
V

3
V

4
V

5
V

6

0.
59

6
0.

59
7

0.
59

6
T

49
24

X
(b

in
ne

d)
¼

9
þ

B
S

R
E

T
L

(b
in

ne
d)

¼
4k

–
6k

B
S

R
E

T
L

(b
in

ne
d)

¼
0

–
4k

0.
59

6
0.

59
7

0.
59

6
T

49
24

X
(b

in
ne

d)
¼

1
–

2
T

49
24

X
(b

in
ne

d)
¼

9þ
B

S
R

E
T

L
(b

in
ne

d)
¼

4k
–

6k
B

S
R

E
T

L
(b

in
ne

d)
¼

0
–

4k

0.
59

6
0.

59
7

0.
59

6
T

49
24

X
(b

in
ne

d)
¼

9
þ

B
S

R
E

T
L

(b
in

ne
d)

¼
6k

–
9k

B
S

R
E

T
L

(b
in

ne
d)

¼
4k

–
6k

B
S

R
E

T
L

(b
in

ne
d)

¼
0

–
4k

0.
59

6
0.

59
7

0.
59

6
T

49
24

X
(b

in
ne

d)
¼

1
–

2
T

49
24

X
(b

in
ne

d)
¼

9þ
B

S
R

E
T

L
(b

in
ne

d)
¼

6k
–

9k
B

S
R

E
T

L
(b

in
ne

d)
¼

4k
–

6k
B

S
R

E
T

L
(b

in
ne

d)
¼

0
–

4k

0.
59

8
0.

58
2

0.
60

6
B

S
R

E
T

L
(b

in
ne

d)
¼

4k
–

6k
B

S
R

E
T

L
(b

in
ne

d)
¼

0
–

4k

0.
59

8
0.

58
2

0.
60

6
T

49
24

X
(b

in
ne

d)
¼

1
–

2
B

S
R

E
T

L
(b

in
ne

d)
¼

4k
–

6k
B

S
R

E
T

L
(b

in
ne

d)
¼

0
–

4k

0.
59

8
0.

58
2

0.
60

6
B

S
R

E
T

L
(b

in
ne

d)
¼

6k
–

9k
B

S
R

E
T

L
(b

in
ne

d)
¼

4k
–

6k
B

S
R

E
T

L
(b

in
ne

d)
¼

0
–

4k

0.
59

8
0.

58
2

0.
60

6
T

49
24

X
(b

in
ne

d)
¼

1
–

2
B

S
R

E
T

L
(b

in
ne

d)
¼

6k
–

9k
B

S
R

E
T

L
(b

in
ne

d)
¼

4k
–

6k
B

S
R

E
T

L
(b

in
ne

d)
¼

0
–

4k

0.
59

8
0.

58
2

0.
60

6
B

S
R

E
T

L
(b

in
ne

d)
¼

4k
–

6k
B

S
R

E
T

L
(b

in
ne

d)
¼

0
–

4k

0.
59

8
0.

58
2

0.
60

6
B

S
R

E
T

L
(b

in
ne

d)
¼

4k
–

6k
B

S
R

E
T

L
(b

in
ne

d)
¼

0
–

4k
O

R
V

T
B

0
(b

in
ne

d)
¼

0

0.
57

4
0.

54
5

0.
59

B
R

H
S

4
(b

in
ne

d)
¼

.
0

B
R

H
S

4
(b

in
ne

d)
¼

0
T

IM
E

39
(b

in
ne

d)
¼

1
–

9
T

IM
E

39
(b

in
ne

d)
¼

0
O

R
V

T
B

0
(b

in
ne

d)
¼

1
–

2
O

R
V

T
B

0
(b

in
ne

d)
¼

3
þ

0.
57

9
0.

50
7

0.
61

7
B

R
H

S
4

(b
in

ne
d)

¼
.

0
T

IM
E

39
(b

in
ne

d)
¼

1
–

9
T

IM
E

39
(b

in
ne

d)
¼

10
þ

O
R

V
T

B
0

(b
in

ne
d)

¼
1

–
2

O
R

V
T

B
0

(b
in

ne
d)

¼
3þ

O
R

V
T

B
0

(b
in

ne
d)

¼
0

0.
56

7
0.

54
5

0.
57

9
T

IM
E

39
(b

in
ne

d)
¼

1
–

9
T

IM
E

39
(b

in
ne

d)
¼

0
O

R
V

T
B

0
(b

in
ne

d)
¼

1
–

2
O

R
V

T
B

0
(b

in
ne

d)
¼

3þ
0.

55
9

0.
57

3
0.

55
1

B
R

H
S

4
(b

in
ne

d)
¼

0
T

IM
E

39
(b

in
ne

d)
¼

1
–

9
T

IM
E

39
(b

in
ne

d)
¼

10
þ

T
IM

E
39

(b
in

ne
d)

¼
0

O
R

V
T

B
0

(b
in

ne
d)

¼
1

–
2

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

202



positives. The benefits of using this model are the amount of money saved per
percentage point improvement in the false discovery rate.

5.5.4 Deployment

A number of steps were taken in preparing the training set data. These steps should be
repeated on any new data to which this model is to be applied.

5.6 DATA MINING NONTABULAR DATA

5.6.1 Overview

In many situations, the data to be mined is not in a tabular format, amenable to mining
using the methods described in this book. In order to look for trends and patterns
as well as to build predictive models from this data, the information must be pre-
processed in order to generate the required formatted data. The following section
describes two problem areas where the original data is not in a tabular format:
mining chemical data and mining text data. In both cases, the original data is first
transformed into a table of data, and then techniques detailed earlier in the book
can be used to effectively mine the data.

5.6.2 Data Mining Chemical Data

Chemical data presents a number of unique challenges when attempting to mine data
sets incorporating this information. An example of a chemical is shown in Fig. 5.12.
The picture represents the atoms and bonds of this particular chemical. The chemical

Figure 5.11 Summary of the logistic regression model selected
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can be considered a graph, with the vertices of the graph comprising the atoms and
the connections between the vertices representing the bonds of the chemicals.
Vertices with no symbols are carbons (symbol C), and vertices with letters represent
other atoms, for example, the symbol N represents a nitrogen atom, and the symbol Cl
represents a chlorine atom. The type of a bond is also shown on the drawing. In this
example, single bonds are represented as a single line between the atoms, and double
bonds are represented as two lines between the atoms.

The connections between the atoms and bonds of a single chemical are usually
represented on a computer as a connection table. Figure 5.13 illustrates the atom and
bond information that are incorporated into a connection table. One of the more
popular formats for representing chemical structures is the MDL Molfile (Dalby
et al., 1992), which includes a standardized representation of a chemical’s connection
table, as shown in Fig. 5.14. The file includes the number of atoms and bonds in the
chemical, a listing of the atoms (along with associated information), and a listing of
the bonds (along with associated information) and their connections to the atoms.

Figure 5.12 Example of a chemical

Figure 5.13 Connection table
representing the chemical
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In order to mine data sets containing chemicals, the computer representation of
the chemical structure is usually cleaned to take into account possible alternative ways
of drawing the same chemical. For example, the two chemicals in Fig. 5.15 represent
the same chemical, even though the bonds are in a different order.

Once the chemical representation has been appropriately cleaned and normal-
ized, the information can be further processed to generate numeric independent vari-
ables that describe either the whole chemical or parts of the chemical. Some of the
most popular independent variables to describe chemical structures are molecular
weight, number of rotatable bonds, logP (a prediction that relates to how well a chemi-
cal is transported throughout the body), and substructural fragments. Rotatable bonds
and substructural fragments will be used to illustrate how these independent variables
are generated.

† Number of rotatable bonds: This is a numeric property of a chemical that indi-
cates a chemical’s flexibility. It is a single count of the number of bonds about
which the chemical can freely rotate. Generally, the more bonds the chemical
can rotate around, the more flexible a chemical is. Rotatable bonds are
usually defined as bonds that are single, not part of a ring, and not on the
outer extremities of the chemical (see Fig. 5.16 for examples).

Figure 5.14 An MDL Molfile computer representation of a chemical

Figure 5.15 Different ways of
drawing the same chemical structure
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† Substructural fragments: A chemical can be characterized through an indi-
cation of the presence or absence of small chemical pieces. An example is
shown in Fig. 5.17. Here a software program systematically looks for the pre-
sence or absence of the small molecular fragments shown in the column head-
ings. A 1 in the main body indicates that particular fragment is present
somewhere in the chemical and a 0 indicates that the fragment is not present.

Figure 5.16 Calculation of number of rotatable bonds

Figure 5.17 Characterization of the chemicals by fragments
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The generation of independent variables is an important part of any exercise to
mine chemical data. The resulting data tables allow for the application of data mining
methods, such as clustering and predictive analytics, to problems involving chemicals.

Two examples will be used to illustrate how a set of chemicals along with
associated information can be processed:

† Identifying diverse chemicals: In many situations, a pharmaceutical or chemi-
cal company needs to identify a subset of chemicals from a large collection that
are diverse, meaning that they are not structurally similar to others. One
approach is to initially generate a table of independent variables similar to
Fig. 5.17 and then use clustering to group the chemicals into sets of structurally
similar chemicals. Once clustered, a representative from each cluster can be
selected. To illustrate the process, the set of seven chemicals in Fig. 5.18 is
used. These chemicals are clustered using agglomerative hierarchical clustering,
as discussed earlier in this book. Figures 5.19 and 5.20 show the clustering of
these seven chemicals, with a cutoff set to form three groups. At this point a
representative chemical may be selected from each cluster to create a diverse
set. In this example, selecting chemicals B, G, and D would represent a
subset of diverse chemicals. The seven chemicals in this example are used to
illustrate the process; however, in practice this approach is usually applied to
thousands of chemicals.

† Understanding drug discovery data: Throughout the early stages of drug
discovery, chemicals are tested, often in test tubes, to attempt to identify

Figure 5.18 Seven chemicals
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Figure 5.19 Clustering a set of seven chemicals

Figure 5.20 Seven chemicals clustered into three groups
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potential drug candidates. These experiments result in data concerning the
potential biological effects of these individual chemicals, such as their ability
to treat a particular disease. Using independent variables, such as the number
of rotatable bonds or substructural fragments, this data can be mined using
the biological data as a response variable. To illustrate, the seven molecules
in Fig. 5.18 have been tested for a specific cancer, resulting in the data table
in Table 5.16. The higher the value, the better the chemical is expected to be
at treating cancer. A set of independent variables is generated in Fig. 5.21.
This information is data mined using these dummy variables as independent
variables and the biological data as the response. Predictive models can now
be built that could be used to predict the propensity of other chemicals for treat-
ing cancer. Descriptive data mining, such as clustering and decision trees, can
be built to help understand what properties of the chemical appear to be respon-
sible for treating cancer. For example, the decision tree in Fig. 5.22 shows that
the presence of the three ring fragment is particularly important. Again, in prac-
tice these approaches are applied to large databases of chemicals and associated
biological data.

TABLE 5.16 Seven Chemicals Tested for Cancer

Structure
ID Data

A 4.44

B 3.05

C 5.21

D 5.04

E 5.23

F 9.33

G 8.71

Figure 5.21 Independent variables generated for the seven molecules
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5.6.3 Data Mining Text

Text mining takes ideas from the data mining of highly structured, mostly numeric
databases or data warehouses into the world of semistructured or unstructured
electronic documents such as email, memoranda, articles, or HTML and XML
files. Humans have an ability to read and interpret the text documents that has
been difficult to automate with machine intelligence. Computers do not easily over-
come textual barriers such as slang, synonyms, spelling variations, and contextual
meaning. However, advances in information retrieval, natural language processing,
and corpus-based computational linguistics have enabled text mining technologies
to extract information and track topics; to summarize, categorize, and cluster docu-
ments; and to conceptually link similar documents even when the words in the
documents may be different.

There is disagreement on definition and what qualifies as text mining. The dis-
cipline of information retrieval focuses on finding and retrieving what is already
known. Some argue that technologies like information extraction that identify and
tag, for example, people, places, events, and times from a passage in a document
find what is already in the text and are therefore just advanced information retrieval.
They argue that, to qualify as text mining, the technology must learn something new
about the world that is completely outside the document collection being analyzed
(knowledge creation). Others relax that requirement and argue that, although the tech-
nology may not find something completely novel, it must at least find something
unknown such as new patterns or trends (knowledge discovery). But all agree that
text mining is a close relative of data mining and you will find many similarities
throughout: from the way the text is processed to the technologies used to process
it. To build on what has been covered so far and to provide an appreciation for pro-
cessing text, the following will focus on the clustering technology. The general
architecture of a text mining system is initially discussed.

The general architecture shown in Fig. 5.23 should feel familiar. In place of a
data set you find a document collection; in place of an observation you find a

Figure 5.22 Decision tree for a set of chemical structures
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document; in place of attributes or multiple variables you find document features. At a
high level, the text processing pipeline takes as input text documents and produces as
output patterns, trends, or connections that can be visualized or browsed. Text proces-
sing is done in three major stages: The preprocessing stage creates an intermediate
representation of the documents that can be used by core mining operations. These
operations, along with refinement techniques, interact with the presentation layer to
allow the user to visualize or explore the results.

Clustering, as discussed in Chapter 3, groups things that are similar. A major
reason for its use in certain text mining applications is that documents relevant to a par-
ticular search tend to be more similar to each other than nonrelevant ones. Clustering
differs from categorization in that the grouping is done on-the-fly rather than assigning
documents to predefined topics or categories, as is done for example when filtering
spam. Some of the ways clustering can be applied are to improve search recall,
search precision, or to organize the results of a search into a concept hierarchy.

Figure 5.23 General processing pipeline for text mining
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Recall is a technical term from information retrieval. It is the proportion of all
relevant documents retrieved out of all relevant documents available. For example, if
the search query used the term “car,” documents containing terms like “auto” or
“automobile” that were not retrieved would result in a lower recall. If the search
returned 15 relevant documents but should have returned 20, the recall was 15/20
or 0.75. Clustering helps find these documents by using other words in the text,
since documents about “cars” or “autos” tend to have similar words overall.

Precision is also a technical term from information retrieval. It is the proportion
of the number of relevant documents out of all documents retrieved. For example, a
query with the term “Saturn” intended to retrieve information about cars would return
documents about the General Motors car and the planet. If the search returned 20
documents but only 10 were relevant to cars (the intent of the search), the precision
is 10/20 or 0.50. Clustering helps improve precision by grouping the documents into
smaller sets and returning only the most relevant groups.

Clustering can also be used to organize the results of a search, creating on-the-
fly a concept hierarchy or dynamic table of contents of the documents retrieved. You
can see this in action by using the clusty search engine (clusty.com). Type in the
query “chemical” and along with the results you may see something similar to the
following concept hierarchy, which provide links to the documents in the cluster
labeled by the concept:

þ Engineering (40)

þ Chemical Industry (14)

þ My Chemical Romance (13)

þ Safety (13)

þ Chemical suppliers (10)

þ Definitions, Dictionary (7)

þ Chemical Company (10)

þ Printing (9)

þ UK, Specialty Chemicals (8)

þ China (6)

A basic clustering algorithm for documents requires the following:

† a representation of the document;

† a distance metric;

† a clustering method.

Document Representation In the vector space model, documents must first be
converted into vectors in the feature space. The most common features are the
unique terms (bag of words) found across all documents in the document collection.
Each document’s vector will have a component for each feature in the space. The
component will be some positive number if the document has that feature or 0 other-
wise. The most popular weighting scheme multiplies the frequency of the term in the
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document with the inverse of the frequency of the term in the collection (tf � idf). This
metric is used because it is thought that a term that appears much more frequently in
the document than in the collection is a better discriminator. So a document di might
be represented as:

di ¼ tf1
� idf1, tf2

� idf2, . . . , tfm
� idfmð Þ

where m is the number of features in the feature space. All vectors are normalized to
the unit vector:

d0
i ¼ di=jdij

Distance Metric The most commonly used distance metric used to compare docu-
ments is the cosine measure discussed in Chapter 3. Because a document collection
can have a very large number of unique terms, steps are taken in the preprocessing to
reduce the number of terms that will be used as features in the vector model. Filtering
removes punctuation and special characters not considered important. Tokenization,
the splitting of the text into chunks, might use phrases, such as noun phrases,
rather than just individual words. Stemming reduces words to their roots so that,
for example, “state,” “states,” and “stated” all become “state.” Stopwords like
“the,” which carry no content, are eliminated. Pruning removes all terms with very
low frequency since they would likely produce clusters too small to be of use.

Clustering Method For the clustering method, one of the various clustering
algorithms discussed in Chapter 3 may be used. Historically, partitioned-based
methods such as k-means (using the cosine distance metric) or hierarchical methods
such as agglomerative clustering have been popular (Fox, 2007). Hierarchical cluster-
ing is reported not to scale well and k-means, although easy to implement are reported
to have other issues: random initialization, convergence to suboptimal local minima,
and the complexity of the algorithm, which is O(n.k.l) where n is the number of docu-
ments in the collection, k is the number of clusters, and l is the number of iterations
(Fox, 2007).

5.7 FURTHER READING

Davenport and Harris (2007) provide an overview of the use of analytics to gain a
competitive advantage across a range of industries. There are a number of publi-
cations that discuss generally the application of data mining, including Klösgen
and Żytkow (2002), Maimon and Rokach (2005), Kantardzic and Zurada (2005),
Alhaji et al. (2007), Li et al. (2005, 2006), Sumathi and Sivanandam (2006), and
Perner (2006). In addition, many software vendors discuss the application of data
mining on their websites, and a list of vendors may be found at http://www.
kdnuggets.com/companies/products.html. There are additional resources covering
data mining applications in the areas of sales and marketing (Berry and Lindoff,
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2004; Rud, 2001), finance (McNeils, 2004; Shadbolt and Taylor, 2002), manufactur-
ing (Braha, 2001), security applications (Thuraisingham, 2003; Mean, 2003; and
McCue, 2007), science and engineering (Grossman et al., 2001), and healthcare
(Fielding, 2007; Pardalos et al., 2007; Chen et al., 2005; Berner, 2006; and
Shortliffe and Cimino, 2006). General information on the fields of bioinformatics
are covered in Xiong (2006), Baxevanis and Francis Ouellette (2005), and Jones
and Pevzner (2004), and for chemoinformatics Gasteiger and Engel (2003) and
Leach and Gillet (2003). Additional case studies of data mining applications are
found in Guidici (2003). Fan et al. (2006) provides an introduction to text data
mining, Hearst (1999) defines text data mining concepts and terminology, and
Andrews and Fox (2007) provide a recent overview of research and advanced
development in document clustering.
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A P P E N D I X A
MATRICES

A.1 OVERVIEW OF MATRICES

A matrix represents a table of quantities. It is defined by the number of rows and
columns, along with the individual values. For example, the following matrix, X,
has three rows and four columns:

X ¼
3 5 2 4
7 6 8 4
5 1 3 8

2
4

3
5

The following appendix outlines a number of common matrix operations: addition,
multiplication, transpose, and inversion.

A.2 MATRIX ADDITION

It is possible to add two or more matrices together, where they have the same number
of rows and columns. This is achieved by adding together the individual elements
from each matrix. Matrices X and Y are added together in this example.

X ¼
3 5 2 4

7 6 8 4

5 1 3 8

2
64

3
75

Y ¼
2 6 3 7

9 3 8 1

4 6 9 7

2
64

3
75

Making Sense of Data II. By Glenn J. Myatt and Wayne P. Johnson
Copyright # 2009 John Wiley & Sons, Inc.
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X þ Y ¼
3 5 2 4

7 6 8 4

5 1 3 8

2
64

3
75þ

2 6 3 7

9 3 8 1

4 6 9 7

2
64

3
75

¼
3 þ 2 5 þ 6 2 þ 3 4 þ 7

7 þ 9 6 þ 3 8 þ 8 4 þ 1

5 þ 4 1 þ 6 3 þ 9 8 þ 7

2
64

3
75

¼
5 11 5 11

16 9 16 5

9 7 12 15

2
64

3
75

A.3 MATRIX MULTIPLICATION

Two matrices may be multiplied only if the number of columns in the first matrix is
the same as the number of rows in the second matrix. Two matrices will be used to
illustrate the multiplication: P and Q.

P ¼
2 6

7 4

� �

Q ¼
4 1 3

6 2 5

� �

Initially, the matrices are multiplied by taking the first row of the first matrix and
multiplying it by the first column of the second matrix. The value corresponding
to this calculation is the first element of the first matrix’s row multiplied by the
first element of the second matrix’s column, added to the second element of the
first matrix’s row multiplied by the second element of the second matrix’s column,
and so on. In this example, the first row of P (2,6) is multiplied by the first
column of Q (4,6), resulting in a value 44 (2 � 4 þ 6 � 6). This calculation is
repeated for all combinations of rows from the first matrix by columns of the
second matrix, as illustrated in the following example:

PQ ¼
2 6

7 4

� �
4 1 3

6 2 5

� �

¼
2 � 4 þ 6 � 6 2 � 1 þ 6 � 2 2 � 3 þ 6 � 5

7 � 4 þ 4 � 6 7 � 1 þ 4 � 2 7 � 3 þ 4 � 5

� �

¼
44 14 36

52 15 41

� �
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A.4 TRANSPOSE OF A MATRIX

For a matrix (A) that corresponds to m rows and n columns, a transpose will exchange
the rows and columns (AT). For example:

A ¼
7 3

8 5

2 9

2
64

3
75

AT ¼
7 8 2

3 5 9

� �

A.5 INVERSE OF A MATRIX

If a matrix A is multiplied by its inverse (A 1), the result will be the identity
matrix, where all values are 0, expect the diagonal, which is all 1s. The following
illustrates:

A 1A ¼ AA 1 ¼

1 0 . . . 0
0 1 . . . . . .
. . . . . . . . . 0
0 . . . 0 1

2
664

3
775

Calculating the inverse of a square matrix is computationally challenging, and is
always done on a computer.
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A P P E N D I X B
SOFTWARE

B.1 SOFTWARE OVERVIEW

B.1.1 Software Objectives

The Traceis Data Exploration Studio is a software tool for data analysis and data
mining. It was developed to provide a hands-on experience demonstrating many of
the techniques described in this book, as well as in the preceding book (Myatt,
2007). It incorporates a number of tools for preparing and summarizing data, as
well as tools for grouping, finding patterns, and making predictions. These tools
are integrated through a series of coordinating views on to the data. Table B.1
summarizes the methods included in the Traceis software.

The software provides tools for:

† Preparing data: Having identified a data set to mine, the preparation of the data
is often one of the most time-consuming aspects of any data mining project.
Understanding what types of data are contained in the data set is important;
after obtaining a sense of the data, cleaning, transforming, and appropriately
reducing the number of variables and observations helps ensure that the set
is ready for any subsequent analysis. Preparing the data helps develop a
more thorough understanding of the data. The Traceis software contains tools
for loading, cleaning, understanding, and reducing the number of observations
and variables, as shown in Table B.1.

† Tables and graphs: Visualizing the data can help in preparing the data, to
identify patterns and trends, as well as understanding the results of any analysis.
Tables and graphs are critical tools for use throughout any data mining project.
Table B.1 summarizes the types of data visualization tools included in the
software. The software contains a variety of visualization tools. For instance,
it includes tools for creating contingency tables that display frequency data.
With the software, summary tables that present information on groups of obser-
vations are also available. Finally, the software has tools for creating interactive
graphs (histograms, frequency polygrams, scatterplots, and box plots) that can
be displayed in any order, and it includes tools for combining any number of
these possibilities.

† Statistics: Statistics play an important role throughout all data mining projects.
The software assists in describing the variables in the data set. It also enables
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statements to be made about the data with confidence. A number of descriptive,
inferential, and comparative statistical analyses are provided, and these analyses
are summarized in Table B.1.

† Grouping: Grouping data is another essential part of many data mining
projects. It can assist in preparing the data, as well as in segmenting a data
set. Clustering is a flexible approach to grouping observations, and a variety
of clustering techniques have been implemented in the Traceis software.
Other grouping methods are available in the software, including a technique
called associative rules, which groups observations and then identifies “if . . .
then . . .” rules concerning the data. For example, if customers buy product A
and product B, then they generally buy product D as well. Another tool is
the decision tree. The decision tree method is effective for grouping obser-
vations into a hierarchical tree. At each branch of the tree, the observations
are divided into subsets based on specific criteria, such as customers who
buy product A. This division is guided using a variable of interest, such as
the profit associated with a particular customer. In this example, customers
are divided into profitable or not profitable groups, based on products they
purchased. Table B.1 summarizes the grouping methods contained in the
Traceis software.

† Prediction: The use of historical information to make future decisions is the
focus of prediction. A variety of methods have been implemented, as shown
in Table B.1, to build prediction models. These methods work in a variety of
situations; for example, some methods only predict continuous variables,
while other methods predict binary data.

The software allows exploration of these different methods. The software works with
the data sets available on the website (http://www.makingsenseofdata.com) and used
in these books. It also works on other, private data sets. The different visualization
and analysis methods provide views of the data from different angles, enabling a
person to gain insight into alternative and complementary approaches to
analyzing data.

TABLE B.1 Summary of Methods Available in the Traceis Software

Method Tools

Preparing Loading the data (open), searching the data set (search), characterizing
variables (characterize), removing observations and variables (remove),
cleaning the data (clean), transforming variables (transform), segmenting
the data set (segment), and principal component analysis (PCA)

Tables and graphs Contingency table, summary table, graphs, and graph matrices

Statistics Descriptive statistics, confidence intervals, hypothesis tests, chi square test,
ANOVA, and comparative statistics

Grouping Clustering, association rules, decision trees

Prediction Linear regression, discriminant analysis, logistic regression, naive Bayes,
k nearest neighbors (kNN), classification and regression trees (CART),
and neural networks
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B.1.2 Access and Installation

The Traceis software can be accessed from the website http://www.making-
senseofdata.com/. The software is contained in a zipped file, and once downloaded,
it can be unzipped into any folder on a computer. In addition to downloading the
zipped file, a license key to use the software can be obtained by sending an email
to software@makingsenseofdata.com. An email will be sent to you containing the
key, which is simply a number.

To run the software, double click on the Traceis.jar file, as shown in Fig. B.1.
The first time the software is run, the user will need to enter the license key number
mentioned in the email sent. Also contained in the folder with the software is a
subfolder called “Tutorial datasets,” which contains sample data sets to use with
the software, along with a description of the data sets.

The associated website (http://www.makingsenseofdata.com/) also contains the
current minimum requirements for running the software, which can be used on any com-
puter with the Java Virtual Machine (JVM) loaded. Generally, this JVM comes installed
on most computers; however, it can be downloaded from Sun’s Java website (http://
www.java.com/), if necessary. Information on updates to the software will also be
provided on the website (http://www.makingsenseofdata.com/).

B.1.3 User Interface Overview

The Traceis user interface is divided into five areas, as shown in Fig. B.2, summarized as:

† Steps: Each of the steps in the four-step process outlined in Sections 1.2 1.5 of
this book, that is, (1) definition, (2) preparation, (3) analysis, and (4) deploy-
ment, is presented on the left of the main user interface window. Any option
under each step can be selected. Figure B.2 shows an annotated screenshot
from the Traceis software, where the “Grouping” option has been selected
from the “Steps” panel.

† Analyses: The alternative analysis methods available are organized based on
the option selected in the “Steps” panel. As depicted on Fig. B.2, the
“Grouping” option was selected, and three alternative analyses are now avail-
able, as shown in the tabs “Clustering,” “Associative rules,” and “Decision
tree.” In this example, “Clustering” was selected.

† Tools: The “Tools” area of the screen shows the parameters and options for
implementing any selected analysis of the data. For example, different par-
ameters to run a cluster analysis are shown in Fig. B.2.

† Results: The “Results” area of the screen contains the results of any analysis.
Figure B.2, for example, displays the result of this cluster analysis.

Figure B.1 Contents of the folder containing the Traceis software
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Figure B.2 Overview of the Traceis software

Figure B.3 Traceis software with the “Histograms” selected to show the subset
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An interactive hierarchical dendrogram is presented, and, in this example, the
number of clusters can be adjusted, and the contents of individual clusters
can be selected. Here, 15 observations were selected.

† Selected observations: Figure B.2 also displays the selected set of observations
on the same screen. There are two options for displaying subsets: “Selected
items” and “Histograms.” Under “Selected items,” a table corresponding to
only those items selected is shown. A “Histogram” option can also be selected,
such as that shown in Fig. B.3, in which each variable is shown as a separate
histogram. The lighter shaded bars represent the frequency distribution for all
values, and the darker bars represent just the frequency for the subset selected.
The histogram view is also interactive and a single bar or multiple bars can be
selected. Single bars are selected by clicking once on a bar. Multiple bars are
selected by lassoing those bars of interest. In addition, the total number of
selected observations is shown in the bottom left-hand corner of the full user
interface, alongside the total number of observations in the data set.

B.2 DATA PREPARATION

B.2.1 Overview

Preparing data for analysis is a critical and time-consuming phase in any data mining
exercise. There are a number of tools available in Traceis to streamline and aid the
preparation of data (see Fig. B.4), including methods for asking questions of and

Figure B.4 Options for preparing the data for analysis
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understanding the data, such as searching capabilities and principal component analy-
sis. The preparation of the data may include removing observations and variables, as
well as creating new columns of data. The following section details the tools available
in the Traceis software for preparing data.

B.2.2 Reading in Data

The first step in executing any analysis is to load data into the system. The data should
contain the observations, each comprising a series of variables. The software will read
from a text file where each observation is on a separate line. As a matter of conven-
ience, many data files include the variables’ names as the first line in the file. Each
observation should be divided into a series of values corresponding to the variables.
A specific separator or delimiter should separate each individual value, such as a
comma or a tab. The following provides an example of the content of a text file
containing a data table:

Names,Cyclinders,Displacement

chevrolet chevelle malibu,8,307

buick skylark 320,8,350

plymouth satellite,8,318

The first row is the column headings, and each subsequent row is the individual
observations. The values are consistently separated using a comma.

Figure B.5 Opening a data table
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Selecting the “Open” button, as shown in Fig. B.5, starts the process of loading
a data set. The first step in loading the data is to review the data to make sure it is
formatted into the correct rows and columns. A preview window is initially displayed,
as shown in Fig. B.6. The software makes some assumptions about the data, such as
assuming that the first line in the table is the column headers (where appropriate), and
assuming that certain delimiters (such as commas or tabs) will be used to separate the
observation’s values. If these assumptions are incorrect, they can be overridden using
the options available on the “data table preview” screen, as shown on Fig. B.6. If no
header is contained in the text file, the software will automatically assign a header to
each column [Variable(1), Variable(2), and so on]. The table can be sorted in ascend-
ing order by clicking on any of the column headers, thus enabling easy review of the
highest and lowest values in each column, or viewing if the variable contains any text
values. Once the data appears to be assigned as rows and columns correctly, clicking
on the “OK” button will load the data into the Traceis software.

B.2.3 Searching the Data

Once a data set has been loaded into Traceis, it can be searched in a number of ways
by selecting the “Search” tab. The tools, as shown in Fig. B.7, are provided to search
one or more terms, where each term is comprised of the variable to search, an operator
( , ,, ., and =), as well as a value for which to search.

To search for a single term, the “Number of search terms” option should be set to
1. Searches such as “Names ford torino,” or “mpg , 20” can be initiated. When mul-
tiple search terms are chosen, a boolean operator can be set to either “AND” or “OR,”
allowing for the construction of searches such as “mpg . 20 AND mpg , 30,” which
will return observations where mpg is between 20 and 30. Alternatively, the search
terms could include different variables, such as “mpg . 30 OR Weight . 3000,”

Figure B.6 Preview window to ensure the data is correctly read in
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Figure B.7 Searching the variable mpg for observations greater than 20

Figure B.8 Multiple search terms selected
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which will return all observations where mpg is greater than 30 as well as all obser-
vations where weight is greater than 3000. These concepts are shown in Fig. B.8.

A new dummy variable can also be generated from the results, where values of
1 correspond to the presence of those observations identified in the search and 0 indi-
cates the absence. The name of this new variable is set by checking the box “Generate
variable from results,” and entering a name. This new variable is then generated once
the search is completed. This dummy variable has a number of uses, including parti-
tioning the data based on subsets generated from specific searches, creating a set of
observations to test a hypothesis, and generating new terms for use in a prediction
model. In addition, combining more than one of these dummy variables enables
more complex queries to be specified, which allows combinations of “AND” and
“OR” operations.

Once the search query has been entered, clicking on the “Search” button will
start the search. The resulting observations are displayed in the subset area, as well
as highlighted in the display area, as shown in Fig. B.9. If the “Generate variable
from results” option was selected, a new variable will be added to the data table.

B.2.4 Variable Characterization

When the data is loaded into the Traceis software, the variables are analyzed and assigned
to various categories. This assignment can be viewed for each variable, by clicking on the
“Characterization” tab. An example of this characterization is shown in Fig. B.10.

Figure B.9 New variable added to the data table generated from the search results
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The categories include type (dichotomous, continuous, and discrete), scale
(nominal, ordinal, interval, and ratio) and role (label, independent variable, and
response), as discussed in Section 1.3.4. “Labels” refers to a nominal variable
where the majority of observations are different, and hence could not be used
within a predictive model. However, labels are still useful to describe the individual
observations. For continuous variables, each observation is assigned to a range of
values or bins, which are displayed in Fig. B.10.

B.2.5 Removing Observations and Variables

The “Remove” tab provides tools to remove observations or variables from the data
table. Observations can be selected from most pages throughout the program and may
be removed by either clicking on the “Delete” button at the top of the user interface or
from the “Remove” tab. Constants or selected variables can also be removed.
Figure B.11 illustrates the “Remove” tools, and this screen allows the user to
remove selected observations, all constants, or any selected variables. The table in
the main display will be modified after the “Remove” button has been clicked in
accordance with the selected changes.

B.2.6 Cleaning the Data

For variables containing missing data or nonnumeric data, a series of cleaning options
are available from the “Clean” tab. Figure B.12 illustrates some available options.

Figure B.10 Characterization options for the selected variable

228 APPENDIX B SOFTWARE



Figure B.11 Tools for removing observations and variables

Figure B.12 Options for cleaning a variable
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Once a variable is selected, the following summaries are provided: a count of the
numeric observations, a count of nonnumeric observations, and a count of obser-
vations with missing data. Nonnumeric observations in the data can either be
removed or replaced by a numeric value. A similar set of options are available for
handling missing data. Once the variable has been updated, the changes will be
reflected in the results area of the updated table. Section 1.3.5 discusses these options
in more detail.

B.2.7 Transforming the Data

The “Transform” tab offers a number of ways for transforming one or more variables
into a new variable. These tools are summarized in Table B.2, and they can be
selected from the drop-down “Select type of transformation.” The use of these trans-
formations is discussed in Section 1.3.6. It should be noted that all transformation
options generate a new variable, and do not replace the original variable(s).

The “Normalization (new range)” option provides three alternatives for
transforming a single variable to a new range, as shown in Fig. B.13. The three trans-
formations are:

† Min max: This option will generate a new variable where the values map into
a specific range identified in the “From:” and “To:” fields.

† z-score: This option generates a new variable where the values are normalized
based on the number of standard deviations above or below the mean.

† Decimal scaling: This transformation moves the decimal to ensure the range is
between 1 and þ1.

Certain analysis options require that the frequency distribution reflects a normal, or
bell-shaped curve. The “Normalization (new distribution)” option provides a
number of transformations that generate a new frequency distribution for a variable,

TABLE B.2 Summary of Transformations Available in Traceis

Tool Options

Normalization (new range) Min max, z score, decimal scaling

Normalization (new distribution) log, log, box Cox

Normalization (text to numbers) Values for selected variable

Value mapping (dummy variables) Variables

Discretization (using ranges) Select ranges for selected variable

Discretization (using values) Select new values for existing values, for the selected
variable

General transformations Single variable: x � c, x þ c, x 4 c, c 4 x, x c, c x,
x2, x3, and

p
x

Two variables: mean, minimum, maximum, x þ y, x þ c,
x �c, x 4y, y 4 x, x y, and y x

More than two variables: mean, minimum, maximum,
sum, and product

230 APPENDIX B SOFTWARE



Figure B.13 Window illustrating the “Normalization (new range)” options

Figure B.14 Window illustrating the “Normalization (new distribution)” option
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which can be viewed in the subset window after selecting the “Histograms” tab. The
following transformations are available, and each can be selected from the tools
shown in Fig. B.14. They include:

† log: transforms the data using a log (base 10) transformation;

† log: transforms the data using a negative log (base 10) transform;

† box-Cox: transforms the data with the following formula, where a value for
lambda (l) must be specified.

value0 ¼ valuel � 1
l

Certain variables contain text values, and before these variables can be used within
numeric analyses, a conversion from the text values to numeric values must take
place. The “value mapping (text-to-number)” option provides tools to change each
value of the selected variable into a specific number, as shown in Fig. B.15.

To use nominal variables within numeric analyses, the variables are usually
converted into a series of dummy variables. Each dummy variable corresponds to
specific values for the nominal variable, where 1 indicates the presence of the
value while a 0 indicates its absence. The “Value mapping (dummy variables)”
tool can be applied to any variable containing text values, and it will automatically
generate a series of variables, as shown in Fig. B.16. It should be noted that, when
using dummy variables with certain analyses, such as linear regression or logistic

Figure B.15 Window illustrating the “Value mapping (text to numbers)” option
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Figure B.16 Window illustrating the “Value mapping (dummy variables)” option

Figure B.17 Window illustrating the “Discretization (using ranges)” option
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regression, the use of all generated variables should be avoided because of the
problem of multicolinearity. Section 4.3.1 provides more details on this concept.

The “Discretization (using ranges)” option provides tools for converting a con-
tinuous numeric variable into a series of discrete values. This conversion is based on
specified ranges, as shown in Fig. B.17. Having selected a single variable, the number
of ranges should be set, along with the lower and upper bounds for each range. Once
the ranges are set, this tool substitutes the old, continuous numeric variable with the
new values associated with the ranges in which the values falls. A value is also asso-
ciated with each range, and after the transformation any value that is greater than or
equal to the lower bound or less than the upper bound is assigned this new value.

Additionally, any categorical variable can be transformed to a smaller series of
discrete values using “Discretization (using values),” as shown in Fig. B.18. Instead of
grouping the values into ranges, as in “Discretiziation (using ranges),” this technique
involves grouping selected variables into a larger set, and assigning all of the obser-
vations within that larger set to the new value. The individual values can either be
typed in or selected from a drop-down containing the alternatives already entered.

A series of “General transformations” can be selected in order to perform mathe-
matical operations on one or more variables. These techniques may be useful, for
example, when introducing terms that incorporate nonlinear information for use
with a linear model, when a series of variables need to be averaged, or when an
aggregated variable needs to be generated. Having selected “General transformation,”
one or more variables can be selected, as shown in Fig. B.19. To select a single
variable, click once on the desired variable name, and to select multiple variables

Figure B.18 Window illustrating the “Discretization (using values)” option
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use the ,ctrl. þ click to select contiguous items and ,shift. þ click to select
continuous items.

When a single variable has been selected, the following common mathe-
matic operations are available where x refers to the selected variable and c is a
specified constant: x � c, x þ c, x 4 c, c 4 x, x c, c x, x2, x3, and

p
x.

When two variables, x and y, have been selected, in addition to the mean, mini-
mum, and maximum functions, the following mathematical transformations are avail-
able: x þ y, x þ c, x � c, x 4 y, y 4 x, x y, and y x.

When more than two variables are selected, the following operations can be
applied to the values: mean, minimum, maximum, sum, and product.

By combining the results of any of these transformations, more complex
formulas can be generated.

B.2.8 Segmentation

In some situations, generating a smaller subset of observations may be necessary to con-
duct an efficient analysis of the data, as described in Section 1.3.8. In Fig. B.20, the
“Segment” tab has been selected and the number of observations to be included in the
subset is set. The software provides two options for selecting a subset of observations:

† Random: This option will select the specified number of observations
randomly. Each observation in the original set has an equal chance of being
included in the new set.

Figure B.19 Window illustrating the “General transformation” option
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† Diverse: This option will identify the desired number of observations that are
representative of the original set. This selection is achieved by initially
clustering the observations using k-means clustering, using the euclidean
distance where k is the target number of observations in the subset. Once the
observations are clustered, a single observation is selected from each cluster
that is the closest to the center of the cluster.

At this point only the type of selection process has been selected; how the subset is
actually generated must now be set. There are two options selected from the “Select
how to create subset” drop-down: (1) generating a new set data set containing only the
subset (“Remove observations”); or (2) generating a new dummy variable where 1
represents the inclusion of the observation in the new subset, and 0 indicates its
absence (“Generate dummy variable”). If option (2) is selected, the name of this
new dummy variable should be provided.

B.2.9 Principal Component Analysis

Principal component analysis (PCA) analyzes the linear relationships between
variables and attempts to extract a smaller number of factors that represent the var-
iance in the data, as described in Section 4.2. Figure B.21 displays the software
screen after the “PCA” tab is selected, showing the tools available. To select variables
to analyze, ,ctrl. þ click will select contiguous ranges of variables, ,shift. þ
click will select continuous ranges, and ,ctrl. þ A will select all variables. Once

Figure B.20 Analysis option for creating either a random or diverse subset from the data
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Figure B.21 Tools to generate a principal component analysis

Figure B.22 Viewing the results of a principal component analysis
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selected, the number of derived factors should be specified, as well as options to
(1) rotate the factors and (2) generate a derived score. If the “Generate scores”
option is selected, a series of principal components will be generated, and these
components correspond to the number of factors identified. These new variables
will have the names “PC-1,” “PC-2,” and so on for the original principal components.
If the “Rotate factors” option is selected, the new variables will be named “PC-
1(rot),” “PC-2(rot),” and so on. Clicking the “Display” button will perform a
principal component analysis, and the analysis will be shown in the results area, as
shown in Fig. B.22.

For each of the principal components, the eigenvalues and percentage of
variance attributable to each of the principal components is listed, along with the
loadings for each of the principal components. The rotated factors are also shown,
if this option was selected.

B.3 TABLES AND GRAPHS

B.3.1 Overview

The tools to create a series of summary tables and graphs are available from the
“Tables and Graphs” option, as shown in Fig. B.23. These analyses options are avai-
lable from the tabs highlighted in the figure, and they are: “Contingency table,”
“Summary table,” “Graphs,” and “Graph matrices.” Table B.3 provides a summary

Figure B.23 Alternative tables and graphs to generate from the data
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of the graphs and tables available, along with the type of data that can be used and the
types of information that can be displayed.

B.3.2 Contingency Tables

A contingency table, as discussed in Section 2.3, can be generated from the
“Contingency table” option. The x- and y-axes of the table are both categorical
variables, and they can be selected from the tool options, as shown in Fig. B.24.

TABLE B.3 Summary of Tables and Graphs

Variables Displays

Tables

Contingency table 2 categorical Frequency counts

Summary table 1 categorical;
any numeric to summarize

Summaries of groups

Graphs

Histograms 1 variable Frequency distribution

Scatterplots 2 numeric variables Relationships

Frequency polygrams 1 variable Frequency distribution

Box plots 1 continuous variable Distribution

Graph matrices Any number of variables Multivariate analysis

Figure B.24 Tools to construct a contingency table
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Having selected the x- and y-axes, clicking on the “Display” button will generate a
contingency table in the results window, as shown in Fig. B.25.

The table shows counts corresponding to pairs of values from the selected
categorical variables. In addition, totals are presented for each row and column in
the table. Each of the cells in the table can be selected, and, once selected, those
observations will be displayed in the selected observations panel and other places
throughout the software.

B.3.3 Summary Tables

A summary table groups observations using the values from a single categorical
variable, as discussed in Section 2.3. In addition, it provides summarized information
concerning each of these groups. A summary table can be generated from the
“Summary table” tab, and the tools for building a summary table are shown in
Fig. B.26.

First, a categorical variable for grouping the observations is selected. At this
time, an optional count of the number of observations in each group can also be
selected. A number of additional columns can be added to the table, and this
number is set with the “Number of columns” counter. The form of the summary
created is based on the specific variables chosen. There are seven options for
summarizing each selected variable (“Statistics:” drop-down): (1) mean, (2) mode,
(3) minimum, (4) maximum, (5) sum, (6) variance, and (7) standard deviation.
Clicking on the “Display” button will generate a summary table corresponding to

Figure B.25 Viewing and selecting a set of observations from a contingency table

240 APPENDIX B SOFTWARE



Figure B.26 Tools for generating a summary table

Figure B.27 Viewing and selecting a row in a summary table

B.3 TABLES AND GRAPHS 241



the options selected, as shown in Fig. B.27. Individual rows can be selected, and the
resulting observations will be shown in the selected observations panel and other
places throughout the program.

B.3.4 Graphs

Multiple graphs can be shown on a single screen to summarize the data set, as
discussed in Chapter 2. These specific graphs are generated from the “Graphs” tab,
and the tools to define these graphs are shown in Fig. B.28. After selecting the desired
number of graphs, a series of options for each graph is provided. There are four types
of graphs: (1) histogram, (2) scatterplot, (3) box plot, and (4) frequency polygram.
In addition, the variable or pair of variables to display should be selected. Once
the collection of graphs to display has been determined, clicking on the “Display”
button will show these graphs selected in the results area, as shown in Fig. B.29.

In each of the graphs, any selected observations will be highlighted on all
graphs with darker shading. The histograms, frequency polygrams, and scatterplots
are all interactive, allowing for interaction with the data. For instance, observations
can be selected by clicking on a histogram bar or a point in the scatterplot or fre-
quency polygram. In addition, a lasso can be drawn around multiple bars or
points. Any selection will be updated on the other graphs in the results areas (as
shown in Fig. B.30), as well as being made available in other analysis options
throughout the program.

Figure B.28 Tools to build a variety of graphs
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Figure B.29 View of the selected graphs

Figure B.30 Selecting observations in the graphs
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Figure B.31 Tools for generating a histogram, scatterplot, or box plot matrix

Figure B.32 Histogram matrix of the selected variables
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Figure B.33 Scatterplot matrix of all the selected variables

Figure B.34 Matrix of the box plots for the selected variables

B.3 TABLES AND GRAPHS 245



B.3.5 Graph Matrices

The “Graph matrices” tab presents a series of specific graphs in a table, as discussed in
Chapter 2. The tools for generating this matrix of graphs are shown in Fig. B.31. The
tools provide options to display a histogram, scatterplot, or a box plot matrix for the
selected variables. Multiple variables can be selected using ,ctrl. þ click for contig-
uous variables, ,shift. þ click for continuous variables and ,ctrl. þ A for all
variables. Clicking on the “Display” button will show the matrix in the results area.

Figures B.32 B.34 show a histogram, scatterplot, and box plot matrix, respect-
ively. The histogram and box plot matrices present the graphs only for the selected
variables. In contrast, the scatterplot matrix shows scatterplots for all combinations
of the variables selected. The names of the scatterplot axes are shown in the boxes
where no graphs are drawn.

B.4 STATISTICS

B.4.1 Overview

The “Statistics” option provides a series of methods for describing variables, making
statements about the data, and quantifying relationships between variables, as
discussed in Myatt (2007). The software provides a number of options located in
the various tabs along the top of the main window: “Descriptive,” “Confidence
intervals,” “Hypothesis tests,” “Chi-square,” “ANOVA,” and “Comparative,” as
shown in Fig. B.35.

Figure B.35 Statistics options presented as tabs
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Figure B.36 Tools summarizing a single variable using a series of descriptive statistics

Figure B.37 Display of the descriptive statistics for the selected variable and observations
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B.4.2 Descriptive Statistics

The tools available in the “Descriptive” tab will generate a variety of descriptive
statistics for a single variable, as shown in Fig. B.36. For the selected variable,
descriptive statistics can be generated for (1) all observations, (2) the selected obser-
vations, and (3) observations not selected. Clicking on the “Display” button presents
the selected descriptive statistics in the results area, as shown in Fig. B.37.

For each of the sets of observations selected, a number of descriptive statistics
are calculated. They are organized into the following categories:

† Number of observations: The number or count of observations in each of the
sets is enumerated.

† Central tendency: Measures that quantify the central tendency of the selected
variable are provided, including the mode, medium, and mean.

† Variation: Measures that quantify variation in the data are provided, including
the minimum value, maximum value, the three quartiles (Q1, Q2, and Q3), var-
iance, and standard deviation.

† Shape: The skewness and kurtosis estimates are calculated for the selected
observations in order to quantify the shape of the frequency distribution.

B.4.3 Confidence Intervals

The “Confidence intervals” analysis calculates an interval estimate for a selected
variable that is based on a specific confidence level, as shown in Fig. B.38. In

Figure B.38 Confidence interval tools and results
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addition, confidence intervals for groups of observations, defined using a single
categorical variable, can also be displayed. The confidence intervals for the variables,
as well as any selected groups, can be seen in the results area, as shown in Fig. B.38.

B.4.4 Hypothesis Tests

The “Hypothesis tests” analysis performs a hypothesis test on a single variable. When
a categorical variable is selected, the hypothesis test takes into consideration the pro-
portion of that categorical variable with a specific value. This value must be set with
the “Where x is:” drop-down option, where x is the selected categorical variable.
When a continuous variable is selected, the hypothesis test uses the mean. The test
can take into consideration one or two groups of observations.

When the “single group” option is selected, as shown in Fig. B.39, the mem-
bers of this group should be defined. The four options are: (1) all observations in the
data table, (2) those selected observations, (3) those observations not selected, and (4)
those observations corresponding to a specific value of a categorical variable. The
confidence level, or a, should be selected, and possible options are 0.1, 0.05, or
0.01. The hypothesis test should then be described for the selected observations.
The value for the null hypothesis should be set, as well as information concerning
the alternative hypothesis, that is, whether the alternative should be greater than,
less than, or not equal to.

When two groups of observations are selected, as shown in Fig. B.40, both
groups should be defined. The three options are: (1) those selected observations,
(2) those observations not selected, and (3) those observations corresponding to a

Figure B.39 Hypothesis test tools and results for a single group of observations
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specific value of a categorical variable. As before, the confidence level, or a, should
be selected from the following list: 0.1, 0.05, or 0.01. The specific hypothesis test
should be defined for the selected observations. The null hypothesis is set such
that the two means are equal, or the two proportions of the selected variable are
the same. Again, the alternative hypothesis should be specified, and the options
are: less than, greater than, or not equal to the null hypothesis.

The results of the hypothesis test are presented in the results area, as shown in
Fig. B.40. These results include details of the variable and the observations assessed,
including the mean value or values, the actual hypothesis test with confidence level,
as well as the z-score, the critical z-score, the p-value, and whether to accept or reject
the null hypothesis.

B.4.5 Chi-Square Test

The “Chi-square” option allows for comparison between two categorical variables, as
discussed in Myatt (2007). These two variables are selected, from the two drop-down
menus, as shown in Fig. B.41. The results of the analysis are shown in two contin-
gency tables, each of which is shown simultaneously in the results area. One of
the contingency tables includes the actual data, and the second one contains expected
results. A chi-square assessment is also calculated, and its significance should be
tested against a chi-square table (Myatt, 2007).

Figure B.40 Hypothesis test tools and results for two groups of observations
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B.4.6 ANOVA

The “ANOVA” option assesses the relationship for a particular variable between
different groups. The ANOVA tools are shown in Fig. B.42. The variable to assess
and the categorical variable used to group the observations should be selected.
A confidence level, or a, should also be assigned. The resulting analysis is presented
in the results area, as shown in Fig. B.42.

The results area shows the groups identified using the selected categorical
variable, in addition to the number of observations in each group, the mean value
for each group, and the variance for each groups. The mean square within and
between is calculated, along with the F-statistic, which should be tested against the
critical F-score using an F-table (see Myatt, 2007) based on the following: a, degrees
of freedom (within), and degrees of freedom (between).

B.4.7 Comparative Statistics

The linear relationship between a series of continuous variables can be assessed using
the “Comparative” statistics option. The tools available for this option are shown in
Fig. B.43. For the selected variables, this analysis will calculate a correlation
coefficient and, if selected, a squared correlation coefficient for each pair of variables
selected. The tables are presented in the results area, as illustrated in Fig. B.43.

Figure B.41 Chi square tools and results
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Figure B.42 ANOVA tools and results

Figure B.43 Comparative statistics tools and results
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B.5 GROUPING

B.5.1 Overview

A number of analysis options are available for grouping observations into sets of
related observations, as shown in Fig. B.44. These options are: “Clustering,”
“Associative rules,” and “Decision trees,” and these options are summarized in
Table B.4.

Figure B.44 Grouping options available as tabs

TABLE B.4 Summary of the Grouping Options

Grouping option Input variables Response Options

Agglomerative
hierarchical clustering

Any numeric None Joining rule
Distance measures

k means clustering Any continuous None Number of clusters
Distance measures

Fuzzy k means
clustering

Any continuous None Number of clusters
Distance measures
Fuzziness (q)

Associative rules Any categorical None “THEN” restrictions
Value restrictions

Decision trees Any categorical
or continuous

Single numeric
or text

Minimum node size
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B.5.2 Clustering

A number of methods for clustering observations are available in the Traceis software,
including agglomerative hierarchical clustering, partitioned (k-means) clustering, and
fuzzy (fuzzy k-means) clustering. These options are selected from the clustering tools
menu, as shown in Fig. B.45.

All of these clustering methods require the selection of one or more variables,
as well as the selection of a distance measure used to compare observations.
For numeric variables (not binary), the following distance calculations are available:
euclidean, square euclidean, Manhattan, maximum, Minkowski (l 3), Minkowski
(l 4), Minkowski (l 5), Mahalanobis, Canberra, correlation coefficient, and
Gower. For binary variables, a different set of distance methods is provided, includ-
ing: simple matching, Jaccard, Russel and Rao, Dice, Rogers and Tanimoto,
and Gower. These distance options are described in Section 3.2. It should be noted
that it is not necessary to normalize the data to a standard range, as the software
will perform this step automatically.

If the “Agglomerative hierarchical clustering” option is selected, a linkage
method must be chosen from the list: average linkage, complete linkage, and
single linkage, as described in Section 3.3. For both the “Partitioned (k-means)”
and the “Fuzzy (k-means)” options, the number of clusters needs to be specified.
Finally, “Fuzzy (k-means)” clustering also requires a fuzziness parameter to be
specified. Partitioned k-means clustering is described in Section 3.4 and fuzzy
clustering is described in Section 3.5.

Figure B.45 Tools to perform a cluster analysis
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The assignment of the observations to specific clusters can be stored as a
separate column or a series of columns in the table by selecting the “Generate clusters
as column(s)” option. In the case of agglomerative hierarchical clustering and
k-means clustering, a single column will be generated, whereas for fuzzy k-means
clustering, the software will generate one column per cluster containing the member-
ship score for each cluster.

Having specified the type of clustering required, clicking on the “Cluster”
button will generate the clusters and the results will be summarized in the results
area. Figures B.46 B.48 illustrate agglomerative hierarchical clustering, k-means
clustering, and fuzzy k-means clustering, respectively.

When the agglomerative hierarchical clustering is selected, the results are dis-
played as a dendrogram describing the hierarchical organization of the data, as shown
in Fig. B.46. A vertical line dissects the dendrogram, thus creating clusters of obser-
vations to the right of the vertical line. A rectangle is placed around each cluster, and
space permitting, a number indicating the size of the cluster is annotated on the right.
When the data set has a label variable, clusters with only a single observation are
replaced by the label’s value (space permitting). The cutoff is interactive; it can be
moved by clicking on the square towards the bottom of the cutoff line and moving
it to the left or right. Moving the line changes the distance at which the clusters
are generated, and hence the number of clusters will change as the cutoff line
moves. If the “Generate clusters as column(s)” option is selected, the column in
the data table describing the cluster membership will also change.

Figure B.46 Results of a hierarchical agglomerative clustering analysis
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Figure B.47 Results of a k means cluster analysis

Figure B.48 Results of a fuzzy k means cluster analysis
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If the “Partitioned (k-means)” clustering option is selected, the results are
presented in a table, where each row represents a single cluster, as shown in
Fig. B.47. The centroid values for each cluster are presented next to the number of
observations in the cluster. This “number of observations” can be selected, and
those selected observations are displayed in the selected observations panel, as
well as throughout the program.

When “Fuzzy k-means” clustering is selected, the results are shown in a table
where each row corresponds to a single cluster, as shown in Fig. B.48. The cluster
centroid is displayed to summarize the contents of the cluster. With fuzzy clustering,
all observations belong to every cluster, and hence the final observation count column
corresponds to the total number of observations in the data table. Four additional
count columns are provided where Q1 includes observations with membership
scores between 0 and 0.25, Q2 includes observations with membership scores
between 0.25 and 0.5, Q3 includes observations with membership scores between
0.5 and 0.75, and Q4 includes observations with membership scores greater than
0.75. Counts in these four columns can also be selected, and these selected obser-
vations are shown in the selected observations panel and throughout the program.

B.5.3 Associative Rules

The “Associative rules” option will group observations into overlapping groups that
are characterized by “If . . . then . . . ” rules. This method is described in Myatt (2007).
The tools for generating the associative rules are shown in Fig. B.49. A set of

Figure B.49 Tools for performing an associative rules analysis
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categorical variables can be selected, and specific values corresponding to these
variables will be used in the generated rules. The software includes a “Restrict
rules on the THEN-part” option, which will only result in rules where the THEN-
part incorporates the selected variable. Also, the “Restrict rules by specific value”
function allows for the selection of an appropriate value from the drop-down list.
This option is particularly useful when the rules are being generated from a series
of dummy variables, and only rules with values of “1” contain useful information.
Generating rules with minimum values for support, confidence, and lift can also be
set. The resulting rules are shown as a table in the results area, as shown in Fig. B.50.

The results are displayed in a table, where the “IF-part” of the rule is shown in
the first column, and the “THEN-part” of the rule is shown in the second column. The
next column displays a count of the number of observations from which the rule is
derived. The table also displays values for support, confidence, and lift. The
table can then be sorted by any of these columns. Selecting a single row will display
the observations in the selected observations panel, and those observations will be
highlighted throughout the program.

B.5.4 Decision Trees

A decision tree can be built from a data table using the “Decision tree” option.
Decision trees are discussed in Myatt (2007). The tools for building a tree are
shown in Fig. B.51. Any number of variables can be used as independent variables

Figure B.50 The resulting rules from an associative rules analysis presented as a table

258 APPENDIX B SOFTWARE



Figure B.51 Tools for performing a decision tree analysis

Figure B.52 The results of a decision tree analysis
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and a single variable should be assigned as the response. These variables will guide
the generation of the decision tree. In addition, a minimum tree node size should be
set which prevents the tree generating any nodes less than this specified value. Once a
decision tree has been built, the results will be shown in the results area, as shown in
Fig. B.52.

A decision tree generated using a continuous response variable is shown in
Fig. B.53. The nodes on the decision tree represent sets of observations, which are sum-
marized with a count, along with the average value for the response variable. The result
of a decision tree where the response is categorical is shown in Fig. B.54. The number

Figure B.53 A decision tree generated where the response is continuous

Figure B.54 A decision tree generated where the response is categorical
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of observations in the set is shown, along with the most common value, qualified by
the number of occurrences of that value compared to the entire node size. In both
trees, the criteria used to split the trees are indicated just above the node. Oval
nodes represent nonterminal nodes, whereas rectangular nodes represent terminal
nodes. The decision trees are interactive; each node can be selected, and the selected
observations can be seen below the tree as well as throughout the program.

B.6 PREDICTION

B.6.1 Overview

A series of prediction options are also provided in the Traceis software. As shown in
Fig. B.55, the following tools are available: (1) linear regression, (2) discriminant
analysis, (3) logistic regression, (4) naive Bayes, (5) kNN, (6) CART, and (7)
neural networks. A table summarizing the different prediction options is shown in
Table B.5. The ability to do a cross-validation is common to all prediction methods.
The results of the cross-validation analysis are presented in a consistent format.
Figure B.56 illustrates a cross-validation result for a regression model where the
response variable is continuous. The software provides a series of metrics that are
calculated and presented in a table, including mean square error, mean absolute
error, relative square error, relative absolute error, correlation coefficient, and
square correlation coefficient (as described in Section 4.1.3). A scatterplot showing
the relationship between the actual response and the predicted values for the cross-
validated results is also provided.

Figure B.55 Different prediction options presented as tabs
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Figures B.57 and B.58 provide examples of cross-validation results for classi-
fication models, that is where the response variable is categorical. Figure B.57
illustrates the results for a nonbinary classification model. These results include accu-
racy and error rate metrics and a contingency table of actual response values against
predicted values for the cross-validated predictions. Figure B.58 presents an example

TABLE B.5 Summary of the Prediction Options

Method
Independent

variables Response Options

Linear regression Numeric Continuous

Discriminant
analysis

Numeric Categorical

Logistic regression Numeric Binary Threshold

Naive Bayes Categorical Binary

kNN Numeric Numeric k

CART Any Any Node size

Neural networks Numeric Numeric Number of cycles
Hidden layers
Learning rate

Figure B.56 Example of a regression cross validated results

Figure B.57 Example of categorical (nonbinary) cross validated results
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of a binary classification model where the response can take values 0 or 1. In this
example, the following metrics are calculated: accuracy, error rate, sensitivity, speci-
ficity, false positive rate, positive predictive value, negative predictive value, and false
discovery rate (as described in Section 4.1.5). A contingency table is also provided
showing the actual values compared to the cross-validated predicted values.

Another common feature to all the prediction options is the “All variable com-
binations” option. When this option is selected, all combinations of the selected vari-
ables will be used to build a number of models from which the combination that has
the highest predictive accuracy is automatically selected as the final model.

B.6.2 Linear Regression

Tools for building multiple linear regression models are found under the “Linear
regression” tab. These tools will generate a linear regression model (as discussed

Figure B.58 Example of cross validated results where the response is binary

Figure B.59 Tools and results for a linear regression analysis
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in Section 4.3) and are, illustrated in Fig. B.59. Any number of independent variables
can be selected using ,ctrl. þ click to select contiguous, and ,shift. þ click to
select a continuous ranges of variables. A single continuous response variable should
be also selected. The cross-validation percentage should be set to indicate the amount
of data to set aside for testing. To further analyze the results, a series of new variables
can be generated: “Prediction,” “CV Prediction,” and “Order.” A final multiple linear
regression model will be built from the entire data set, and the “Prediction” variable
will have a prediction for all observations from this model. “CV Prediction” rep-
resents the cross-validated prediction, where the predicted values are calculated
using a model built from other observations. “Order” contains a number for each
observation reflecting the order the observation appears in the data set.

Once a model is built, the results are displayed in the results area, as shown in
Fig. B.59. The independent variables and the response variable are initially summar-
ized, along with a summary of the cross-validated results. The software provides a
regression analysis summarizing the model accuracy, including R2, adjusted R2,
and standard error. An ANOVA analysis is generated showing the degrees of freedom
(d.f.) of the regression and the residual, along with the mean square (MS), the sum of

Figure B.60 Example of the results from a linear regression analysis
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squares (SS), and the f-statistic, which should be compared with an f-table to derive a
p-value. Finally, the coefficients of the equation are presented. This information is
presented in Fig. B.60.

To evaluate the model in more detail, a residual variable can be generated using
the “Transform” tab option under “Preparation.” To create a residual variable, first
select a “General Transformation” and select the actual response and the prediction,
and then select “Actual Prediction.” This data can be plotted in the “Graphs” tab to
analyze the model further, as shown in Fig. B.61.

Once a model is built and evaluated, it can be saved permanently. The model is
saved by clicking on the “Save model” button, as shown in Fig. B.59. A file name
should be provided and the model will be saved to a file for future use with other
data sets.

B.6.3 Discriminant Analysis

Discriminant analysis models (described in Section 4.4) can be built from the tools
available under the “Discriminant analysis” tab. Any numeric independent variables
can be selected, as well as any single categorical response variable, as shown in
Fig. B.62. The cross-validation percentage should be specified to indicate the data
necessary to be set aside when building the multiple cross-validated models. Two
variables can also be generated: (1) the prediction from the final model and (2) the
cross-validated prediction.

Figure B.61 Analysis of the residuals
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A summary of the model built is shown in Fig. B.62. This summary displays
the independent variables and the response variable, as well as metrics from the
cross-validated assessment, described earlier.

Any model generated can be saved to use later with other data sets, using the
“Save model” button shown in Fig. B.62.

B.6.4 Logistic Regression

The “Logistic regression” option tab enables the generation of a logistic regression
model (described in Section 4.5). Models can only be built for binary response
variables; however, any numeric variable can be used as an independent variable.
Figure B.63 shows an example of the tools and results of a logistic regression analysis.

A logistic regression model generates a probability, and the prediction is
generated from this probability using a specified threshold value. Observations
above this threshold value will be assigned a prediction of 1, and those below will
be assigned a prediction of 0.

In addition to the cross-validated percentage to set aside, a number of predicted
values can be optionally generated by selecting the “Generate results” option:
“Prediction,” “Prediction prob,” “CV Prediction,” and “CV Prediction prob.” They
are the predicted value along with the probability the response is 1 for the final
model (“Prediction” and “Prediction prob”) and the cross-validated models (“CV
Prediction” and “CV Prediction prob”).

Figure B.62 Tools and results from a discriminant analysis
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Once a model has been built, the results are displayed in the results area, as
shown in Fig. B.63. The independent variables and the response variable are initially
summarized, along with a summary of the cross-validated results. Finally, the
coefficients of the logistic regression equation are also presented.

Any model generated can be saved for use with other data sets, using the “Save
model” button shown in Fig. B.63.

B.6.5 Naive Bayes

The “Naive Bayes” tab allows for the generation of a naive Bayes model (see Section
4.6 for more details). Under this implementation, models can only be built for binary
response variables with any categorical variable used as an independent variable.
These should be set as shown in Fig. B.64.

In addition to the cross-validated percentage to set aside, a number of predicted
values can be optionally generated by selecting the “Generate results” option:
“Prediction,” “Prediction prob,” “CV Prediction,” and “CV Prediction prob,” as
discussed in Section B.6.4.

Once a model is built, the results are displayed in the results area, as shown in
Fig. B.64. The independent variables and the response variable are initially summar-
ized, along with a summary of the cross-validated results. Any model generated can
be saved for use with other data sets, using the “Save model” button, as shown in
Fig. B.64.

Figure B.63 Tools and results from a logistic regression analysis
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Figure B.64 Tools and results from a naive Bayes analysis

Figure B.65 Tools and result from a kNN model
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B.6.6 kNN

The “kNN” analysis tab lets you build k-nearest neighbor models (see Myatt, 2007 for
more details). Models can be built for any response variable, and any numeric
variables can be selected as independent variables, as shown in Fig. B.65. It is not
necessary to normalize the data to a standard range as the software will do this auto-
matically. The distance metric should be selected from the drop-down menu. A value
for k can be set manually. Alternatively, a range can be selected such that the Traceis
software builds all models between the lower and upper bounds and selects the model
with the smallest error.

In addition to the cross-validated percentage to set aside, a number of predicted
values can be optionally generated by selecting the “Generate results” option:
“Prediction” and “CV Prediction,” which are the predicted values for the final
model, along with the predicted values from the cross-validated models.

Once a model has been built, the results are displayed in the results area, as
shown in Fig. B.65. The independent variables and the response variable are initially
summarized, as well the value for the k-nearest neighbor parameter that was either set
manually or automatically derived. A summary of the standard cross-validated results
is presented. Any model generated can be saved for future use with other data sets,
using the “Save model” button shown in Fig. B.65.

B.6.7 CART

The “CART” analysis tab is used to build models based on either a regression tree or a
classification tree (see Myatt, 2007 for more details). Models can be built for any
response variable and any independent variables, and these variables should be set,

Figure B.66 Tools and results form a classification and regression tree model
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as shown in Fig. B.66. Decision trees are generated for the models, and the
“Minimum node size” should be set which will prune the tree generation process
based on this threshold.

In addition to the cross-validated percentage to set aside, a number of predicted
values can be optionally generated by selecting the “Generate results” option:
“Prediction” and “CV Prediction,” as discussed in Section B.6.6.

Once a model has been built, the results are displayed in the results area, as shown
in Fig. B.66. The independent variables along with the response variable are initially
summarized, as well as the value used for minimum node size. A summary of the stan-
dard cross-validated results is presented. Any model generated can be saved for later
use with other data sets, using the “Save model” button from Fig. B.66.

B.6.8 Neural Networks

The “Neural networks” analysis tab allows for the generation of a neural network
model. These models can be built for any numeric response variables, and any
numeric variable can be set as independent variables, as shown in Fig. B.67.
A number of parameters need to be set, including the number of learning cycles
the network should perform (sometimes referred to as epochs), the number of
hidden layers in the network (between the input layer and the output layer), as well
as the learning rate. It is not necessary to normalize the data to a standard range as
the software automatically does this. A more detailed description of these parameters
is given in Myatt (2007).

Figure B.67 Tools and results from a neural network model
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In addition to the cross-validated percentage to set aside, a number of predicted
values can be optionally generated by selecting the “Generate results” option:
“Prediction” and “CV prediction,” which are the predicted values for the final
model, along with the predicted values from the cross-validated models.

Once a model is built, the results are displayed in the results area, as shown in
Fig. B.67. The independent variables and the response variable are initially summar-
ized, as well as the values for the model parameters: number of cycles, number of
hidden layers, and learning rate. A summary of the standard cross-validated results
is presented. Any model generated can be saved for use with other data sets, using
the “Save model” button from Fig. B.67.

B.6.9 Apply Model

Any model built and saved can be used with a new data set by selecting the “Apply
model” option under the “4. Deployment” step. The model and the new data set
should be opened, and a summary of the model and the data is shown. Selecting
the “Apply” button will generate a prediction for the observations. The column head-
ings must match those used to build the model. Figure B.68 shows a model applied to
a data set.

Figure B.68 Model applied to a data set
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Klösgen W, Żytkow JM, Zyt J, editors (2002). Handbook of Data Mining and Knowledge
Discovery. Oxford: Oxford University Press.

Kohonen T (1990). Self Organization and Associative Memory, 3rd edn. New York: Springer.

Kohonen T (2001). Self Organizing Maps, 3rd edn. Berlin: Springer.

Kroeze JH, Matthee MC, Bothma TJ (2003). Differentiating data and text mining terminol
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3D visualizations, 51
Absorption, Distribution, Metabolism,

Excretion, 179
Active interaction, see Interaction design

techniques, active
Adjusted R2, 141 142, 264
ADME, see Absorption, Distribution,

Metabolism, Excretion
Agglomerative hierarchical clustering, 59,

87 98, 183, 185, 213, 254 255
average linkage, 88, 93 96, 254
centroid, 96
complete linkage, 88, 92 93, 95,

183, 254
distance cut off, 97 98, 255
process, 88
selecting groups, 96 98
single linkage, 88 92, 95, 254
Wards, 96

Aggregated, 234 235. See also
Transformation

Alignment, see Visual features, alignment;
Graphics design, visual grouping

Alternative hypothesis, see Hypothesis test,
alternative hypothesis

Analysis, see Data mining process, analysis
Analysis of variance, 246, 251 252,

264 265
Analytics, 213. See also Data mining
ANOVA, see Analysis of variance
Applicability domain, 179
Applications, 16, 67, 165 214

acquiring new customers, 165, 167
advertisement, 175 176
assessing credit risk, 166, 170, 174,

192 203
cross selling, 168 169, 172 173
enhancing product design, 174

entertainment, 175 176
financials, 169 170, 214
government, 176 177
growing business, 168, 171
healthcare, 179 180, 214
identifying criminal activities, 166,

169 170, 172, 174, 176 177
identifying health risks, 171, 179 180
identifying new products, 171
improving underwriting, 171 172
insurance, 145, 171 172
manufacturing, 174 175, 214
marketing campaigns, 166 169
mining trading data, 170
modeling customer experience, 168
operational efficiency, 165, 173,

175 176, 180
personalized online retailing, 169
pharmaceuticals, 177 179, 207
problem detection, 165, 173 174
quality, 174 175
R&D support, 166, 177, 214
retail, 169, 172 173
retaining customers, 167 168, 169 170
risk management, 165, 169 171
sales and marketing, 166 169, 213 214
telecommunications, 111 114, 167,

173 174
understanding sales channels, 168
up selling, 169, 172

Apply, see Model, apply
Area chart, see Graphics, area chart
Area under the curve, 124
Artistic embellishments, 21
Aspect ratio. See also Graphical element,

aspect ratio of scales
equation for, 30
optimal, 30
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Associations, see Data mining tasks,
associations

Associative rules, 13, 17, 169, 173, 220,
253, 257 258

consequence, 258
lift, 258
support, 258

Assumptions, 4
Atoms, 203 205
Attrition, 167 168
AUC, see Area under the curve
Average linkage, see Agglomerative

hierarchical clustering, average linkage
Average, see Mean

Background colors, see Graphics design,
use of color in

Backward selection, 144
Bagging, 163
Balanced sampling, 10, 113
Banking, in graphs, 30
Bar chart, 5, 36
Bayes theorem, 157 158
Beta coefficients, see Logistic regression,

beta coefficients; Multiple linear
regression, beta coefficients

Binary distance, see Distance, binary
Binning, 199. See also Transformation,

creating bins
Bioinformatics, 178, 214
Biological target, 177
Biosequences, 177 178
Bivariate data, see Data, bivariate
Bivariate data visualization, 49 50.

See also Data, bivariate
scatterplot, see Scatterplot
uses for, 49

Bold colors, see Graphics design, use of
color in

Bonds, 203 206
Boosting, 163
Bootstrapping, 163
Box plot, 5 6, 14, 41 43, 219, 242 243,

245 246
cutoffs, 43
elements of, 41

Box Cox, 8, 232
Brushing, 5, 19, 64, 66, 223, 242 246
Budget, 2
Build, see Model, build

Canberra distance, see Distance, Canberra
Caption, see Graphical element, caption
CART, see Decision trees
Case studies, 166, 181 203
Categorical, see Variables, categorical
Categorical labels, see Graphical element,

labels
Centroid, see Agglomerative hierarchical

clustering, centroid; Fuzzy k means,
cluster centroid; k means clustering,
centroid

Chemical, 177 179, 203 210
Chemical information, 166, 178, 203 210
Chemoinformatics, 178, 214
Chi square test, 10, 113, 199 201, 246,

250 251
Churn, 111 114, 167 168
Class frequency, 37
Class intervals, 37

choosing number of, 37 38
endpoint conventions for, see Endpoint

convention
Classification, see Data mining tasks,

classification
Classification cutoff, 124. See also Logistic

regression, cutoff
Classification tree, 113 114, 116, 163,

269 270. See also Decision trees
Cleaning, see Data, cleaning
Clinical data, 179
Cluster image map, 14, 60 63. See also

image maps
Clustering, 5, 12 13, 15, 17, 62, 67 110,

169 170, 178, 183 185, 187, 207,
213, 221 222, 253 257

advantages, 110
assessment, 110
data visualization, 72
density based, 110
disadvantage, 110
divisive hierarchical, 110
documents, 210 215
example, 67
fuzzy, 15, 74, 103 108, 110. See also

Fuzzy k means
grid based, 110
hierarchical, 15, 73, 87 98, 110, 213.

See also Agglomerative hierarchical
clustering

method selection, 73
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model based, 110
naming, 72
partitioned based, 15, 74, 98 102, 110,

213. See also k means clustering
prioritizing value, 72
requirements, 70
summary, 70
variable selection, 70

Clutter, see Graphics design principles,
reducing clutter

Coefficient of multiple determination,
140 142, 264

Colinearity, 7, 132 133, 190
Color complementarity, 27
Colors, 26. See also Visual features, color;

Graphics design, use of color in
background, see Graphics design, use of

color in
blue, see Graphics design, use of color in
bold, see Graphics design, use of color in
compared, see Graphics design, use of

color in
contrasting, see Graphics design, use of

color in
dark, see Graphics design, use of color in
green, see Graphics design, use of

color in
light, see Graphics design, use of

color in
red, see Graphics design, use of color in
saturated, see Graphics design, use of

color in
Comparative statistics, 220, 246, 251 252
Comparing colors, see Graphics design, use

of color in
Complete linkage, see Agglomerative

hierarchical clustering, complete
linkage

Concentrations, 44
Concept hierarchy, 8, 211 212, 234
Conditioning variables, see Variables,

conditioning
Confidence intervals, 246, 248 249
Confusion matrix, see Contingency table
Connection table, 204
Consequence, see Associative rules,

consequence
Contingencies, 2
Contingency table, 10, 119, 156 157,

191, 203, 219 220, 238 240

Continuity, see Graphics design, visual
grouping in

Continuous, see Variables, continuous
Contrasting colors, see Graphics design,

use of color in
Coordinated panels, 54
Correlation, 49
Correlation coefficient, 9, 63, 118, 162,

251 252. See also Distance,
correlation coefficient

Correlation matrix, 113, 127, 189 190
Cosine distance, see Distance, cosine
Cost/benefit analysis, 2
Covariance matrix, 86, 127, 146 147
CRIPS DM, 17
Crisp clustering, see Clustering,

partitioned based
CRM, see Customer Relationship

Management
Cross selling, see Applications, cross

selling
Cross validation, 116 117, 150, 201,

261 263
Cubed, 8, 131, 235
Cumulative frequency histogram, 38 40
Customer Relationship Management,

3, 13, 168
Cycles, see Neural networks, cycles

Data,
bivariate, 14, 20, 49, 66
cleaning, 6, 205, 219, 228 230
collection, 179
errors, 6
insight, 126
integration, 7
missing, 6, 196, 230
multivariate, 14, 20, 50, 66
non numeric, 230
normalization, 75, 230 231, 270
outliers, 6, 44, 131, 146, 196, 199
quality, 2
smoothing, 6, 8
source, 2, 3
text values, 6
univariate, 14, 20, 36, 66
unstructured, 3, 203 213

Data graphics, 5, 14, 20, 23, 66, 219,
238 246

histogram matrices, 50, 52 54
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Data graphics (Continued)
juxtaposed panels, 30
multiple boxplots, 56
panels, 30, 51, 57, 66
scatterplot matrices, 9, 50, 54 56
superimposed panels, 30

Data graphics design principles, see
Graphics design principles

Data label, see Graphical element, data label
Data marts, 3
Data mining adoption, 1
Data mining applications, see Applications
Data mining experts, 166
Data mining methods, 12
Data

mining OLE DB, 13
Data mining optimization, 12
Data mining parameters, 12, 221
Data mining process, 1, 17, 221

analysis, 1, 11 13, 17, 183 192,
199 203

definition, 1 2, 16, 181, 192
deployment, 1, 13 14, 17, 203
preparation, 1, 11, 16 17, 181 183,

192 199, 219, 223 238
Data mining software, 16, 213,

219 271
Data mining tasks, 11 12

anomalies, see Data mining tasks,
outliers

associations, 11, 17
classification, 12, 15, 17, 113 116,

119, 145, 151, 157, 161 162
descriptive, 11, 17, 209
estimation, 12
finding patterns, 219
forecasting, 12
grouping, 5, 220, 253 261. See also

Clustering
making predictions, 220, 261 271. See

also Predictive analytics; Model
outliers, 12, 17, 72, 73
predictive, 11, 17
regression, 12, 15, 17, 113 117,

130 131, 161 162
segmentation, 10, 15, 17, 72 73, 168,

170, 172, 199, 235 236
summarizing, 219

Data mining text, 166, 210 214
Data rectangle, 28

Data table, 3, 19, 215, 224 225. See also
Tables

Data values, see Graphical element, data
values

Data visualization, 13 14, 17, 19 66,
175, 219, 238 246

applications of, 19
design principals, 14, 20 23, 65
experts, 20
exploration through, 19 20
groups, 20, 59 63, 66
implemented through user interfaces, 19
interactive, 14, 19 20, 219, 242
univariate, see Univariate data

visualization
Data warehouses, 3, 165
Decimal scaling, 8, 230
Decision trees, 10, 17, 60, 170, 178,

185 187, 209 210, 220 221, 253,
258 261, 269 270

minimal node threshold, 260, 270
nodes, 185 187
process, 185 187
splitting, 185 187, 261
terminal nodes, 187, 261

Decoration, 21
Definition, see Data mining process,

definition
Deliverables, 1 2
Dendrograms, 14 15, 59, 60, 89 92,

94 98, 183, 185, 207 208, 223,
253 255

Density histogram, 38
Density based clustering, see Clustering,

density based
Deployment, see Data mining process,

deployment
Descriptive data mining, see Data mining

tasks, descriptive
Descriptive statistics, 220, 246 248
Dice distance, see Distance, Dice
Direct manipulation, see Interaction design

techniques, direct manipulation
Discrete, see variables, discrete
Discriminant analysis, 12, 15, 17, 113 114,

116, 145 151, 162 163, 265 266
assumptions, 145 146
discriminant function, 146, 149
example, 146 151
process, 146
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Discriminant function, see Discriminant
analysis, discriminant function

Display resolution, see Graphics design,
print or display resolution in

Dissimilarity, 80. See also Distance
Dissimilarity matrix, 77
Distance, 15, 73, 75 87, 212 213,

253 254
binary, 79 84
Canberra, 87, 109, 254
correlation coefficient, 86, 109, 183, 254
cosine, 87, 213
Dice, 82 83, 109, 254
euclidean, 75, 78 79, 88, 99, 100, 104,

105, 109, 236, 254
Gower, 77, 84, 98, 109, 254
Jaccard, 81 83, 109, 254
Kulzinsky, 84
Mahalanobis, 86, 109, 254
Manhattan, 75, 78 79, 109, 254
Maximum, 79, 109, 254
Minkowski, 79, 109, 254
mixed variables, 84 86
numeric, 77 79
Pearson, 84
Properties, 75
Rogers and Tanimoto, 83, 109, 254
Russell and Rao, 82 83, 109, 254
simple matching, 81, 83, 254
Sokal Michener, 84
squared euclidean, 78, 109, 254
Yule, 84

Distance matrix, 77
Diverse, 73, 207, 236
Divided pie chart, see Graphics, divided

pie chart
Divisive hierarchical clustering, see

Clustering, divisive hierarchical
Document clustering, see Clustering,

documents
Document collection, 3, 210 213
Document feature, 211
Document representation, 212
Documents, 211, 214
Dot plots, 43 44, 57. See also Graphics,

dot plot
Double bonds, 204
Dummy variables, 201, 209, 227, 232 234.

See also Transformations, dummy
variables

Dynamic interaction, see Interaction design
techniques, dynamic

Dynamic techniques, see Interaction design
techniques

Eigenvalues, 128, 238
Eigenvectors, 128
Electronic Health Records, 180
Electronic Medical Records, 180
Embedded systems, 165 166
EMR, see Electronic Medical Records
Encoding data, see Visual features,

encoding
Endpoint convention, 38
Enterprise Resource Planning systems, 3,

13, 174
Entertainment, see Applications,

entertainment
Epochs, see Neural networks, epochs
ERP, see Enterprise Resource Planning

systems
Error rate, 119, 121
Error sum of squares, 96
Errors, see Data, errors
Estimation, see Data mining tasks,

estimation
Euclidean distance, see Distance, euclidean
Evaluation, see Model, assessment
Evidence, 157 158
Exhaustive search, 143 144, 263
Explanatory text, see Graphical element,

explanatory text
Exploration, see Data, exploration
Exploratory data analysis, 2, 5, 14,

66, 73

F quantile, see Quantile plot, f quantile
False discovery rate, 121, 162, 201
False negatives, 13, 120
False positive rate, 121 122, 162
False positives, 13, 120, 172
F distribution table, 143, 251
Feature selection, 9
Feature space, 212
Filtering, 65, 213
Financials, see Applications, financials
Finding patterns, see Data mining tasks,

finding patterns
Focal points, see Graphics design,

manipulating visual focal points in
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Fonts. See also visual features, fonts;
Graphics design, use of fonts in

Forecasting, see Data mining tasks,
forecasting

Forward selection, 144
Frequency distribution, 4, 37, 138, 196

central tendency, 4, 248
shape, 4, 248
variation, 4, 248

Frequency histogram, 5, 14, 38 39, 138,
219, 242 244, 246

Frequency polygram, 5, 41, 219, 242 243
F test, 142 143, 251 252
Functional areas, 166
Fuzzy clustering, 103 108, 254 257

membership function, 103 105
Fuzzy k means, 103 108, 254 255, 257

cluster centroid, 104
cutoff value, 105
example, 104, 107
fuzziness parameter, 103 104, 254
maximum error, 105
membership function, 104, 107
membership matrix, 104 106
process, 104, 106

F value scale, see Quantile plot, f value
scale

Gaps, 44
Genes, 178
Gestalt principles, see Graphics design,

Gestalt principles
Government, see Applications, government
Gower distance, see Distance, Gower
Graph, see Data graphics
Graph anatomy, 28
Graph matrices, 5, 238, 246
Graphical element, 28 32

aspect ratio of scales, 22, 30
caption, 29 30
conserving space in scales, 29
data labels, 29 30
data rectangle, 28 29
data values, 20
direction of scales, 29
explanatory text, 20
grid lines, 20 21, 29
including zero in scales, 29
labels, 20, 29 30
legend keys, 29 30

legends, 20, 30
logarithmic scale, 29
manipulation of scales, 22
margins, 29
ordering of labels in scales, 29
plotting symbols, 29
reference grid, 29, 52
reference line, 29
reference lines, 20, 29
scale label, 29
scale line rectangle, 29
scales, 20, 29
tick marks, 20 21, 30
title, 30

Graphical user interface, see User
interfaces

Graphics, 19. See also Visualization tools;
Data graphics

area chart, 21
bivariate, see Bivariate data visualization
divided pie chart, 21
dot plot, 20 21
group visualization, see Data

visualization, groups
multivariate, see Multivariate data

visualization
pie chart, 21, 32
pop chart, 21
purpose of, 20
univariate, see Univariate data

visualization
Graphics design, 23 28

alignment of elements in, 24
Gestalt principles, 24, 66
manipulating visual focal points in, 24
page layout, 23
print or display resolution in, 27
use of color in, 24, 26 27
use of fonts in, 24, 27
use of whitespace in, 24
visual flow in, 24
visual grouping in, 24
visual hierarchy in, 24

Graphics design principles
displaying data honestly, 22
reducing clutter, 21, 28, 30
revising, 21
simplification, 20
showing data, 20

Grid lines, see Graphical element, grid lines
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Grid based clustering, see Clustering,
grid based

Grids, see Graphical element, grid lines
Group visualization, see Data visualization,

groups
Grouping, see Data mining tasks, grouping
Grouping of elements, see Graphics design,

visual grouping in

Hard clustering, see Clustering,
partitioned based

Healthcare, see Applications, healthcare
Heat map, see Image maps
Hidden layers, see Neural networks, hidden

layers
Hierarchical clustering, see Clustering,

hierarchical
Hierarchical visualization, 59. See also

Dendrograms; Decision trees
Histogram, see Frequency histogram
Histogram matrices, see Data graphics,

histogram matrices
elements of, 54

Hit rate, 121
Homogeneous groups, 98
Homoscedasticity, 132, 137
Hosmer and Lemeshow chi square test, 156
Human resources, 166
Hyperplanes, 145
Hypothesis, 158
Hypothesis tests, 113, 187, 246, 249 250

alternative hypothesis, 250
null hypothesis, 250
single group, 249
two groups, 249 250

Idiot’s Bayes, see Naive Bayes
Image maps, 60
Independence, 132, 137
Independent variables, see Variables,

independent
Inferential statistics, 220
Information extraction, 210
Information software, 63, 66
Information technology professionals, 2
Insurance, see Applications, insurance
Integration, see Data, integration
Interaction design goals, 63
Interaction design techniques

active, 63

direct manipulation, 64
dynamic, 63 66. See also Brushing

Interaction terms, 156
Interactive techniques, 5, 19
Interactive visualization, see Data

visualization, interactive
Intercept, see Multiple linear regression,

intercept
Interested parties, 2
Interval, see Scale, interval
Intervals, see Class intervals
Inverse, see Matrix, inverse

Jaccard distance, see Distance, Jaccard
Java Data Mining, 13
Jittering, see Plotting symbols, jittering

techniques
JSR 73 API, 13
Juxtaposed panels, see Data graphics,

juxtaposed panels

Keys, see Graphical element, legend keys
k means clustering, 98 101, 213, 236,

254 257
centroid, 99 100
consistent groups, 100
error criterion, 99
example, 99 100
optimal solution, 99
process, 99
repeating clustering, 100
seeds, 99

k medoid clustering, 101
k modes clustering, 101
k nearest neighbors, 113 115, 163, 269
kNN, see k nearest neighbors
Knowledge creation, 210
Knowledge discovery, 210
Kulzinsky distance, see Distance,

Kulzinsky
Kurtosis, 4, 248

Labels. See also Graphical element,
labels, 5, 29, 228

Leaf, see Stem and leaf plot, leaf
Learning rate, see Neural networks,

learning rate
Least squares, 134
Legend keys, see Graphical element,

legends, 30
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Legend, see Graphical element, legends
Lift, see Associate rules, lift
Lift chart, 124 126, 156
Likelihood ratio test, 156
Linear equation, 131 132
Linear regression, see Multiple linear

regression
Linear relationship, 49 50, 114,

131 132, 137
Linked panels, 64
Loadings, 128, 238
Local neighborhoods, 73
Log, 131, 232
Logistic regression, 12, 15, 17, 113 114,

116, 151 157, 162 163, 170, 192,
201 203, 266 267

assessment, 156
assumptions, 151
beta coefficients, 151 156, 267
cutoff, 156
estimating coefficients, 153 156
example, 155 156, 192,

201 203
formula, 151 153
limitations, 151
optimization, 156
p matrix, 153, 155
threshold, see Logistic regression,

cutoff
weight matrix, 153, 155
X matrix, 153 154
y matrix, 153, 155

Logit function, 153
Loyalty program, 168

Mahalanobis distance, see Distance,
Mahalanobis

Manhattan distance, see Distance,
Manhattan

Manipulation software, 63, 66
Manufacturing, see Applications,

manufacturing
Marketing, see Applications, sales

and marketing
Matrix, 134, 146, 153, 215 217

addition, 215 216
columns, 215
inverse, 134, 146 147,

153, 217
multiplication, 216

rows, 215
transpose, 134, 146, 153, 217

Maximum distance, see Distance,
maximum

Maximum likelihood procedure
MDL Molfile, 204 205
Mean, 3 4, 6, 10, 34, 99, 234 235,

240, 248
Mean absolute error, 117, 162
Mean square error, 117, 142 143, 162
Mean square regression, 142, 143
Median, 4, 10, 34, 41, 248
microRNA, 166, 178, 181 192
Midspread, 41
Minkowski distance, see Distance,

Minkowski
Min max, 8, 230
Minus, 235
Misclassification rate, 119, 121
Mixed variables distance, see Distance,

mixed variables
MLR, see Multiple linear regression
Mode, 3 4, 6, 10, 240, 248
Model, 111 163, 192, 201 203, 209,

261 271
accuracy, 116 122, 156, 162, 192,

201 203
apply, 10 11, 111 113
approaches, 114 116
assessment, 12, 14 15. See also

Model, accuracy
bounds, 116
build, 13, 15, 111, 113, 116
deployment, 113, 203
forensics, 13
life time, 13
overfitting, 9, 13
parameters, 12, 116
reliability, 9
testing, 13, 15, 116 122
training, 113, 116
using, 111 112

Model based clustering, see Clustering,
model based

Molecular weight, 205
MSE, see Mean square error
MSR, see Mean square regression
Multicolinearity, 132, 234
Multi dimensional scaling, 51
Multiple box plots, 56 57
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Multiple linear regression, 12, 15, 17, 114,
116, 130 144, 162 163, 263 265

Advantages, 131
Assumptions, 132, 137 139
beta coefficients, 132 134, 136, 265
constant, 133
disadvantages, 131
error analysis, 136 140
example, 135
generating models, 133 136
intercept, 134
interpretation, 131
model significance, 133, 142 143
parameter significance, 133, 143
prediction, 136
residual analysis, 136 140
speed, 131

Multiple panels, 50 51, 66
Multivariate data, see Data, multivariate
Multivariate data visualization, 50 59,

242 246
histogram matrix, see Data graphics,

histogram matrix
multiple box plots, see Data graphics,

multiple box plots
reference grids, see Graphic elements,

reference grid
scatterplot matrix, see Data graphics,

scatterplot matrix
trellis plot, see Trellis plots
use of panels, see Data graphics, panels

Naive Bayes, 12, 15, 17, 113 115,
157 163, 267

example, 159 161
independence assumption, 158
process, 159 161
restrictions, 158

Natural log, 144
Nearness selection, 65
Negative log, 232
Negative predictive value, 121, 162
Negative relationship, 118
Neural networks, 113 114, 170,

270 271
cycles, 270
epochs, 270
hidden layers, 270
learning rate, 270
parameters, 270

Newton Raphson method, 153
Nominal, see Scale, nominal
Nonlinear relationship, 8, 49 50, 114,

131, 151
Normal distribution, 132, 145
Normalization, see Data, normalization
Normally distributed error term, 132, 138
Null hypothesis, see Hypothesis test, null

hypothesis
Numeric distance, see Distance, numeric

Object Linking and Embedding, 13
Objectives, 1, 5
Observations, 3, 6, 19

removing, 6, 228
Odds, 153
Online tools, 165, 169
Operational databases, 3
Ordering a table, see Tables, reordering
Ordinal, see Scale, ordinal
Orthogonal, 127
Outlier cutoffs, 43
Outliers, see Data mining tasks, outliers

Page clicks, 3
Page layout, see Graphics design, page

layout
Panels, see Data graphics, panels
Partitioned based clustering, see

Clustering, partitioned based
PCA, see Principal component analysis
Pearson distance, see Distance, Pearson
Pie chart, see Graphics, pie chart
Plotting symbols, 29. See also Graphical

element, plotting symbols
encoding, 30
encoding values as, 29
grouping into, 29
jittering techniques, 29

PMML, see Predictive Model Markup
Language

Polygram, see Frequency polygram
Polynomials, 144
Pop chart, see Graphics, pop chart
Position, see Visual features, position
Positive predictive value, 121, 162
Positive relationship, 118
Posterior probability, 158
Preattentive variables, see Visual features,

preattentive variables

INDEX 287



Precision, 121, 211, 212
Prediction model, see Model
Predictions, see Data mining tasks,

making predictions
Predictive, see Data mining tasks,

predictive
Predictive analytics, 6, 15, 111 163

example, 111 113
Predictive data mining, see Data mining

tasks, making predictions
Predictive model, see Model
Predictive Model Markup

Language, 13
Preparation, see Data mining process,

preparation
Preparing, see Data mining process,

preparation
Price elasticity models, 173
Primary key, 5
Principal component analysis, 10, 15, 116,

126 130, 163, 187, 199,
236 238

generating, 127 128
generating scores, 128, 238
interpretation, 128 130
rotation of factors, 129, 199, 238
selection, 128

Principal components, 126 128
Print resolution, see Graphics design,

print or display resolution in
Prior probability, 146, 149, 158
Privacy issues, 14
Probability, 124 125, 151, 266
Probability cutoff, 156
Product, 133, 156, 235
Project constraints, 2
Project plans, 2
Proteins, 178
Proximity, see Graphics design, visual

grouping in
Pruning, 213
p value, 143, 250

Q plot, see Quantile plot
Q Q plot, see Quantile quantile plot
Quadratic terms, 151
Quality, see Data, quality
Quantile plot, 46 48

f quantile, 46
f value scale, 46

Quantile quantile plot, 46, 48 49, 138
use of, 49

Quartiles, 4, 248

R2, see Coefficient of multiple
determination

Random segmentation, 235
Ratio, see Scale, ratio
Rearranging columns, see Tables,

reordering
Rearranging rows, see Tables, reordering
Recall, 121, 211 212
Receiver Operating Characteristics,

122 124, 156
Reciprocals, 144
Record identification, 5
Reference grids, see Graphical element,

reference grid
Reference lines, see Graphical element,

reference lines
Regression, see Data mining tasks,

regression
Regression sum of squares, 142
Regression trees, 113 115, 163, 269 270
Related variables, 73
Relative absolute error, 118, 162
Relative frequency histogram, 38
Relative square error, 118, 162
Removing, see Observations, removing;

Variables, removing
Report, 13, 165
Residual, 117, 136 139
Response variable, see Variables,

response
Responsibilities, 2
Revision. See also Graphics design

principles, revising
ROC chart, see Receiver Operating

Characteristics
ROC curve, see Receiver Operating

Characteristics
Rogers and Tanimoto distance, see

Distance, Rogers and Tanimoto
Roles, 2
Rotatable bonds, 205 206, 209
Rotation of factors, see Principal com

ponent analysis, rotation of factors
Rule based classifiers, 163
Russell and Rao distance, see Distance,

Russell and Rao
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Sales, see Applications, sales and
marketing

Sales and marketing, see Applications,
sales and marketing

Sampling methods, 10, 73, 235 236
Sans serif fonts, 27
Saturated colors, see Graphics design,

use of color in
Scale. See also Graphical element, aspect

ratio of scales
interval, 4, 228
manipulation, 22
nominal, 4, 228
ordinal, 4, 228
ratio, 4, 228

Scale labels, see Graphical element,
scale label

Scale line rectangle, see Graphical
element, scale line rectangle

Scales, see Graphical element, scales
Scatterplot, 14, 20 21, 29, 49 50, 57,

107, 219, 242, 246
Scatterplot matrices, see Data graphics,

scatterplot matrices
Scree plot, 128 129
Searching, 65, 225 227
Segmentation, see Data mining tasks,

segmentation
Self organizing maps, 110
SEMMA, 17
Sensitivity, 121 122, 156, 162, 201
Shared scales, 54
Sigmoid curve, 151 152
Significance, 142 143
Similarity, 80
Similarity, see Graphics design, visual

grouping in
Simple linear regression, 131
Simple matching distance, see Distance,

simple matching
Simple table, see Tables, simple
Simplest model, 192
Single bonds, 204
Single linkage, see Agglomerative

hierarchical clustering, single linkage
Size. See also Visual features, size
Skewness, 4, 41, 248
Slicing, see Brushing
Small multiples, 56
Software, see Data mining software

Sokal Michener distance, see Distance,
Sokal Michener

SOM, see Self organizing maps
Sorting tables, see Tables, alphabetically

reordering
SPAM, 166
Specificity, 121 122, 156, 162, 201
Spread, 41, 44
Square, 8, 131, 156, 235
Square root, 8, 131, 144, 235
Squared euclidean distance, see Distance,

squared euclidean
SSE, see Sum squares of error
SSR, see Regression sum of squares
SST, see Total sum of squares
Standard deviation, 4, 10, 34,

240, 248
Standard error, 133, 139 140
Standard error of estimate, 140
Statistics, 219, 246 253
Stem, see Stem and leaf plot
Stem and leaf plot, 44 46

construction, 44
leaf, 45
place values, 45
plot, 44
stem, 45

Stemming, 213
Stepwise selection, 144
Stopwords, 213
Straight line, 145
Strip labels, 58
Subject matter, 2
Subject matter experts, 166
Substructural fragments, 205, 206, 209
Sum, 3, 235, 240
Sum of squares of error, 134,

139 141, 143
Summarizing, see Data mining tasks,

summarizing
Summary tables, see Tables, summary
Superimposed panels, see Data graphics,

superimposed panels
Superpose data, 51
Supertables, see Tables, super
Support, see Associative rules, support
Support vector machines, 163
Symbols, see Graphical element, plotting

symbols
Symmetry, 44
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Table ordering, see Tables, reordering
Tables, 32 36. See also Data tables

alphabetically reordering, 32
questions answered by two way

contingency, 34
reordering, 32, 65
simple, 32
summary, 3, 5, 33 34, 219, 238,

240 242
super, 34 36
two way contingency, 34
when to use, 32

Tabular data, see Data table
Telecommunications, see Applications,

telecommunications
Testing, see Model, testing
Testing set, 116 117
Text mining, see Data mining text
Text, see Graphics design, use of fonts in;

Data, text
Texture, see Visual features, texture
Tick marks, see Graphical element, tick

marks
Time series data, 170
Timetable, 2
Tokenizing, 213
Total sum of squares, 140 141
Traceis, 16, 166, 219 271

access, 221
applying models, 271
installation, 221
license key, 221
loading data, 219, 224, 225
minimum requirements, 221
running the software, 221
saving models, 265, 266 267, 269 271
user interface, 221 223

Training, see Model, training
Training sets
Training step, see Model, training
Transformation, 7 8, 133, 143 144, 151,

196, 230, 232 235
to a consistent range, 8, 230
to a normal distribution, 8, 230 232
to reduce number of categories, 7, 234
creating bins, 8, 234
dummy variables, 7, 199, 232 234
to enhance prediction, 8, 234 235

Transpose, see Matrix, transpose
Trellis plots, 56 59

Trimmed mean, 4
True negative rate, 121 122
True negatives, 120
True positives, 120
t test, 10, 143, 187, 249 250
Two way contingency table, see Tables,

two way contingency
Typography. See also Visual features,

fonts; Graphics design, use of fonts in

Univariate data, see Data, univariate
Univariate data visualization, 36 49

bar chart, see Bar chart
box plots, see Box plot
dot plots, see Dot plots
frequency polygram, see Frequency

polygram
histogram, see Frequency histogram
quantile quantile plots, see Quantile

quantile plot
quantile plots, see Quantile plot
stem and leaf plots, see Stem and leaf

plot
Unstructured data, see Data,

unstructured
Up selling, see Applications, up selling
User interfaces, 14
User training, 14

Variable selection, see Model variable
selection

Variables, 3, 6, 19
assignment of, 192 195
categorical, 4, 6, 113, 145
characterization of, 227 228
conditioning, 58
continuous, 4, 113, 228
dependent, see Variables, response
descriptors, see Variables, independent
discrete, 228
dummy, see Dummy variables
independent, 5, 9, 12, 113, 116, 134,

205, 228
outcome, see Variables, response
preattentive, see Visual features, pre

attentive variables
predictors, see Variables, response
reduction, 9, 126, 219, 228
relationships, 9, 113
removing, 6
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response, 5, 9, 113, 133, 135, 145,
228, 260

roles, 5
selection, 113, 143 144, 151, 187, 199
x , see Variables, independent
y , see Variables, response

Variance, 4, 10, 127, 240, 248
Varimax, 129
Vector space model, 212
Visual data mining, 166
Visual features, 24

alignment, 24
color, 24, 26
encoding, 24, 26
fonts, 24, 26, 27
position, 24
preattentive variables, 24, 25, 50
size, 24, 26
texture, 26

Visual flow, see Graphics design, visual
flow in

Visual hierarchy, see Graphics design,
visual hierarchy

Visualization design principles, see Data
visualization, design principles

Visualization tools. See also Graphics, 19
application of, 19
classification of, 19, 20

Visualization, see Data visualization

Wald test, 156
Wards, see Agglomerative hierarchical

clustering, Wards

Yule distance, see Distance, Yule

z score, 6, 8, 230, 250
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