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Preface

This book is intended for use in junior and senior level undergraduate courses
in power electronics. Classical analysis is used throughout. The coverage is con-
cerned exclusively with power electronic circuits. No coverage is given to the
physics and the fabrication of power electronic switches, nor to the detailed design
of power electronic circuit protection and ancillary components.

Rectifier circuits are treated in a far more comprehensive and detailed man-
ner than is customary in contemporary texts. Chapter 14 is devoted to matrix
converters, which usually receive scant attention. Chapter 13 is devoted to enve-
lope cycloconverters, which usually receive no attention at all. Features of the
text include the large number of worked numerical examples and the very large
number of end of chapter problems, with answers.

The material contained in this book has been used for classroom and exami-
nation purposes at the University of Leeds, England; the University of Bradford,
England; and Ohio University, Athens, Ohio. The authors are grateful for the
permissions to reproduce the relevant material.

Some short sections of this book are reproduced from earlier work by one
of the authors. The writers are grateful to Cambridge University Press, England,
for permission to reproduce this previously published work.

The typing of the manuscript, with its many iterations, was done by Janelle
Baney, Suzanne Vazzano, Erin Dill, Juan Echeverry, and Brad Lafferty of the
Schools of Electrical Engineering and Computer Science of Ohio University. We
are deeply grateful for their contributions.

Much of the computer transcription of the text and diagrams was undertaken
at the Instructional Media Services Unit of the Alden Library at Ohio University.
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Our thanks are due to Peggy Sattler, the head of the unit, and particularly to Lara
Neel, graduate assistant. Our deepest gratitude goes to them for their dedicated
professionalism.

At the latter end, the final transfer of the material to computer disc, with
text corrections, was performed by postgraduate students Yanling Sun and Liang-
jie Zhu of the Ohio University School of Education.

William Shepherd
Li Zhang
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Nomenclature

A1 B1 C1 Fourier coefficients of first order
an bn cn Fourier coefficients ofnth order
as bs cs Fourier coefficients of the supply point current
e instantaneous emf, V
ec instantaneous capacitor voltage, V
el instantaneous inductor voltage, V
eL instantaneous load voltage, V
er instantaneous ripple voltage, V
eab ebc eca instantaneous line supply voltages in a three-phase system, V
eaN ebN ecN instantaneous phase load voltages in a three-phase system, V
eAN eBN eCN instantaneous phase supply voltages in a three-phase system, V
f frequency, Hz
i instantaneous current, A
ia ib ic instantaneous line currents in a three-phase system, A
ic instantaneous capacitor current, A
ica icb icc instantaneous currents in the capacitor branches of a three-phase

system, A
iL instantaneous load current, A
iR instantaneous resistor current, A
is instantaneous supply current, A
isa isb isc instantaneous supply currents in the lines of a three-phase sys-

tem, A
iss instantaneous steady-state component of current, A
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it instantaneous transient component of current, A
n harmonic order
p frequency ratio
t time, s
Imin minimum value of the rms supply current, A
Isc short circuit current, A
Î peak value of the sinusoidal short-circuit current, A
L self-inductance coefficient, H
Ls self-inductance coefficient of supply line inductance, A
M modulation ratio
N number of turns
P average power, W
Pa Pb Pc average power per phase in a three-phase system, W
Pin average input power, W
PL average load power, W
Ps average supply point power, W
PF power factor
PFc power factor in the presence of compensation
PFmax maximum value of power factor
QL reactive component of load voltamperes, VA
R resistance,�
RF ripple factor
SL apparent voltamperes of the load, VA
T time constant, S
V terminal voltage of battery, V
Xc capacitive reactance,�
XL inductive reactance,�
Xsc short-circuit (inductive) reactance,�
Z impedance,�

GREEK SYMBOLS

� thyristor firing angle, radian
� � limits of conduction in a diode battery-charger circuit (Chapter

2), radian
�′ inherent delay angle caused by supply inductance, radian
� dimensionless ‘‘figure of merit’’
� instantaneous flux, Wb
� displacement angle between voltage and fundamental current,

radian
�n displacement angle between voltage andnth harmonic compo-

nent of current, radian
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�s displacement angle between voltage and supply current, radian
� overlap angle, radian
� conduction angle, radian
	 angular supply frequency, radian/s

 small value of angle, radian
� phase angle to sinusoidal currents of supply frequency, radian
�n phase angle to sinusoidal currents ofnth harmonic frequency,

radian
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1

Switching and Semiconductor
Switches

1.1 POWER FLOW CONTROL BY SWITCHES

The flow of electrical energy between a fixed voltage supply and a load is often
controlled by interposing a controller, as shown in Fig. 1.1. Viewed from the
supply, the apparent impedance of the load plus controller must be varied if
variation of the energy flow is required. Conversely, seen from the load, the
apparent properties of the supply plus controller must be adjusted. From either
viewpoint, control of the power flow can be realized by using a series-connected
controller with the desired properties. If a current source supply is used instead
of a voltage source supply, control can be realized by the parallel connection of
an appropriate controller.

The series-connected controller in Fig. 1.1 can take many different forms.
In alternating current (ac) distribution systems where continuous variability of
power flow is a secondary requirement, electrical transformers are often the preva-
lent controlling elements. The insertion of reactive elements is inconvenient be-
cause variable inductors and capacitors of appropriate size are expensive and
bulky. It is easy to use a series-connected variable resistance instead, but at the
expense of considerable loss of energy. Loads that absorb significant electric
power usually possess some form of energy ‘‘inertia.’’ This allows any amplitude
variations created by the interposed controller to be effected in an efficient
manner.
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FIG. 1

Amplitude variations of current and power flow introduced by the controller
may be realized by fractional time variation of connection and disconnection
from the supply. If the frequency of such switching is so rapid that the load
cannot track the switching events due to its electrical inertia then no energy is
expended in an ideal controller. The higher the load electrical inertia and the
switching frequency, the more the switching disturbance is reduced in signifi-
cance.

1.2 ATTRIBUTES OF AN IDEAL SWITCH

The attributes of an ideal switch may be summarized as follows:

1.2.1 Primary Attributes

1. Switching times of the state transitions between ‘‘on’’ and ‘‘off’’
should be zero.

2. ‘‘On’’ state voltage drop across the device should be zero.
3. ‘‘Off’’ state current through the device should be zero.
4. Power–control ratio (i.e., the ratio of device power handling capability

to the control electrode power required to effect the state transitions)
should be infinite.

5. ‘‘Off’’ state voltage withstand capability should be infinite.
6. ‘‘On’’ state current handling capability should be infinite.
7. Power handling capability of the switch should be infinite.
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1.2.2 Secondary Attributes

1. Complete electrical isolation between the control function and the
power flow

2. Bidirectional current and voltage blocking capability

An ideal switch is usually depicted by the diagram of Fig. 1.2. This is not a
universal diagram, and different authors use variations in an attempt to provide
further information about the switch and its action. Figure 1.2 implies that the
power flow is bidirectional and that no expenditure of energy is involved in
opening or closing the switch.

1.3 ATTRIBUTES OF A PRACTICAL SWITCH

Power electronic semiconductor switches are based on the properties of very
pure, monocrystalline silicon. This basic material is subjected to a complex indus-
trial process calleddopingto form a wafer combining a p-type (positive) semicon-
ductor with an n-type (negative) semiconductor. The dimensions of the wafer
depend on the current and voltage ratings of the semiconductor switch. Wafers
are usually circular with an area of about 1 mm2/A. A 10 A device has a diameter
of about 3.6 mm, whereas a 500 A device has a diameter of 25 mm (1 in.). The
wafer is usually embedded in a plastic or metal casing for protection and to
facilitate heat conduction away from the junction or junctions of both the p-
type and n-type materials. Junction temperature is the most critical property of
semiconductor operation.

Practical semiconductor switches are imperfect. They possess a very low
but finite on-state resistance that results in a conduction voltage drop. The off-
state resistance is very high but finite, resulting in leakage current in both the
forward and reverse directions depending on the polarity of the applied voltage.

Switching-on and switching-off (i.e., commutation) actions do not occur
instantaneously. Each transition introduces a finite time delay. Both switch-on
and switch-off are accompanied by heat dissipation, which causes the device
temperature to rise. In load control situations where the device undergoes frequent
switchings, the switch-on and switch-off power losses may be added to the steady-
state conduction loss to form the total incidental dissipation loss, which usually

FIG. 2
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manifests itself as heat. Dissipation also occurs in devices due to the control
electrode action.

Every practical switching device, from a mechanical switch to the most
modern semiconductor switch, is deficient in all of the ideal features listed in
Sec. 1.2

1.4 TYPES OF SEMICONDUCTOR CONVERTER

Semiconductor switching converters may be grouped into three main categories,
according to their functions.

1. Transfer of power from an alternating current (ac) supply to direct
current (dc) form. This type of converter is usually called arectifier.

2. Transfer of power from a direct current supply to alternating current
form. This type of converter is usually called aninverter.

3. Transfer of power from an ac supply directly into an ac load of different
frequency. This type of converter is called acycloconverteror amatrix
converter.

4. Transfer of power from a direct current supply directly into a direct
current load of different voltage level. This type of converter is called
a chopper converteror a switch-mode converter.

1.4.1 Rectifiers

The process of electrical rectification is where current from an ac supply is con-
verted to an unidirectional form before being supplied to a load (Fi. 1.3). The ac
supply current remains bidirectional, while the load current is unidirectional. With
resistive loads the load voltage polarity is fixed. With energy storage loads and
alternating supply voltage the load current is unidirectional but pulsating, and
the load voltage in series-connected load inductance elements may vary and alter-
nate in polarity during the load current cycle.

In rectifier circuits there are certain circuit properties that are of interest
irrespective of the circuit topology and impedance nature. These can be divided
into two groups of properties, (1) on the supply side and (2) on the load side of
the rectifier, respectively. When the electrical supply system has a low (ideally
zero) impedance, the supply voltages are sinusodial and remain largely undis-
torted even when the rectifier action causes nonsinusoidal pulses of current to
be drawn from the supply. For the purposes of general circuit analysis one can
assume that semiconductor rectifier elements such as diodes and silicon controlled
rectifiers are ideal switches. During conduction they are dissipationless and have
zero voltage drop. Also, when held in extinction by reverse anode voltage, they
have infinite impedance.
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FIG. 3

In order to investigate some basic properties of certain rectifier circuits, it is
convenient to consider single-phase circuits separately from three-phase circuits.
Additional classifications that are helpful are to consider diode (uncontrolled
rectifier) circuits separately from thyristor (controlled rectifier) circuits and to
also separate resistive load circuits from reactive load circuits. These practices
are followed in Chapters 2–8.

Three-phase and single-phase rectifiers are invariably commutated (i.e.,
switched off) by the natural cycling of the supply-side voltages. Normally there
is no point in using gate turn-off devices as switches. Controlled rectifiers most
usually employ silicon controlled rectifiers as switches. Only if the particular
application results in a need for the supply to accept power regenerated from the
load might the need arise to use gate turn-off switches.

1.4.2 Inverters

The process of transferring power from a direct current (dc) supply to an ac
circuit is called aprocess of inversion(Fig. 1.4). Like rectification, the operation
takes place by the controlled switching of semiconductor switching devices. Var-
ious forms of inverter circuits and relevant applications are described in Chapters
9–11.
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FIG. 4

1.4.3 Cycloconverters

Power can be transferred from an ac supply to an ac load, usually of lower
frequency, by the direct switching of semiconductor devices (Fig. 1.5). The com-
mutation takes place by natural cycling of the supply-side voltages, as in rectifiers.
A detailed discussion of cycloconverter circuits and their operation is given in
Chapters 12 and 13.

1.5 TYPES OF SEMICONDUCTOR SWITCH

The main types of semiconductor switches in common use are

1. Diodes
2. Power transistors

a. Bipolar junction transistor (BJT)
b. Metal oxide semiconductor field effect transistor (MOSFET)
c. Insulated gate bipolar transistor (IGBT)
d. Static induction transistor (SIT)

3. Thyristor devices
a. Silicon controlled rectifier (SCR)
b. Static induction thyristor (SITH)
c. Gate turn-off thyristor (GTO)
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FIG. 5

d. MOS controlled thyristor (MCT)
e. Triac

Some details of certain relevant properties of these devices are summarized in
Table 1.1.

1.5.1 Diodes
Diodes are voltage-activated switches. Current conduction is initiated by the ap-
plication of forward voltage and is unidirectional. The diode is the basic form of
rectifier circuit switch. It is regarded as an uncontrolled rectifier in the sense that
it cannot be switched on or off by external signals. During conduction (Fig. 1.6),
the forward current is limited only by the external circuit impedance. The forward
voltage drop during conduction is of the order 1–2 V and can be ignored in many
power electronics calculations.

The application of reverse voltage cuts off the forward current and results
in a very small reverse leakage current, a condition known asreverse blocking.
A very large reverse voltage would punch through the p-n junction of the wafer
and destroy the device by reverse avalanching, depicted in Fig. 1.6.

1.5.2 Power Transistors
Power transistors are three-terminal rectifier devices in which the unidirectional
main circuit current has to be maintained by the application of base or gate current
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TABLE 1.1

Type of switch Current Turn-on Turn-off Features

Ideal switch

Diode

Thyristors

Silicon controlled
rectifier (SCR)

Gate turn-off
devices State
induction
thyristor (SITH)

Gate turn-off
thyristor (GTO)

MOS controlled
thyristor (MCT)

TRIAC

Transistors

Bipolar junction
transistor (BJT)

Metal-oxide-
semiconductor
field-effect
transistor
(MOSFET)

Insulated gate
bipolar
transistor
(IGBT)

Static induction
transistor (SIT)

Bidirectional

Unidirectional

Unidirectional

Unidirectional

Unidirectional

Unidirectional

Birectional

Unidirectional

Unidirectional

Unidirectional

Unidirectional
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Low reverse
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Very fast turn-on and
turn-off
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JFET high on-state
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FIG. 6

at the control electrode. Removal of the gate or base drive results in current
extinction.

The bipolar junction transistor (BJT) is a three-terminal silicon switch. If
the base terminal B and collector terminal C are both positively biased with respect
to the emitter terminal E (Table 1.1), switch-on occurs. Conduction continues until
the base current is removed, so that the BJT is a current controlled device. It will
only reverse block up to about 20 V and needs to be used with a series diode if
higher reverse blocking is required.

The metal-oxide-semiconductor field-effect transistor (MOSFET) is a very
fast acting, three-terminal switch. For conduction the drain voltageVD and gate
voltage VG must both be greater than the source voltageVS (Table 1.1). The
device is voltage controlled, whereby removal of the gate voltage results in switch-
off. MOSFETs can be operated in parallel for current sharing. Ratings of 500 V
and 50 A are now (1999) available.

A compound device known as theinsulated gate bipolar transistor(IGBT)
combines the fast switching characteristics of the MOSFET with the power-
handling capabilities of the BJT. Single device ratings in the regions 300–1600
V and 10–400 A mean that power ratings greater than 50 kW are available. The
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switching frequency is faster than a BJT but slower than a MOSFET. A device
design that emphasizes the features of high-frequency switching or low on-state
resistance has the disadvantage of low reverse breakdown voltage. This can be
compensated by a reverse-connected diode.

The static induction transistor (SIT) has characteristics similar to a MOS-
FET with higher power levels but lower switching frequency. It is normally on,
in the absence of gate signal, and is turned off by positive gate signal. Although
not in common use, ratings of 1200 V, 300 A are available. It has the main
disadvantage of high (e.g., 15 V.) on-state voltage drop.

1.5.3 Thyristors

The silicon controlled rectifier (SCR) member of the thyristor family of three-
terminal devices is the most widely used semiconductor switch. It is used in both
ac and dc applications, and device ratings of 6000 V, 3500 A have been realized
with fast switching times and low on-state resistance. An SCR is usually switched
on by a pulse of positive gate voltage in the presence of positive anode voltage.
Once conduction begins the gate loses control and switch-on continues until
the anode–cathode current is reduced below its holding value (usually a few
milliamperes).

In addition to gate turn-on (Fig 1.7), conduction can be initiated, in the
absence of gate drive, by rapid rate of rise of the anode voltage, called thedv/
dt effect, or by slowly increasing the anode voltage until forward breakover occurs.
It is important to note that a conducting SCR cannot be switched off by gate
control. Much design ingenuity has been shown in devising safe and reliable
ways of extinguishing a conducting thyristor, a process often known asdevice
commutation.

The TRIAC switch, shown in Table 1.1, is the equivalent of two SCRs
connected in inverse parallel and permits the flow of current in either direction.
Both SCRs are mounted within an encapsulated enclosure and there is one gate
terminal. The application of positive anode voltage with positive gate pulse to
an inert device causes switch-on in the forward direction. If the anode voltage
is reversed, switch-off occurs when the current falls below its holding value, as
for an individual SCR. Voltage blocking will then occur in both directions until
the device is gated again, in either polarity, to obtain conduction in the desired
direction. Compared with individual SCRs, the TRIAC combination is a low-
voltage, lower power, and low-frequency switch with applications usually re-
stricted below 400 Hz.

Certain types of thyristor have the facility of gate turn-off, and the chief
of those is the gate turn-off thyristor (GTO). Ratings are now (1999) available
up to 4500 V, 3000 A. with switching speeds faster than an SCR. Turn-on is
realized by positive gate current in the presence of positive anode voltage. Once
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FIG. 7

ignition occurs, the anode current is retained if the gate signal is removed, as in
an SCR. Turn-on by forward breakover or bydv/dt action should be avoided. A
conducting GTO can be turned off, in the presence of forward current, by the
application of a negative pulse of current to the gate. This usually involves a
separate gating circuit of higher power rating than for switch-on. The facility of
a high power device with gate turn-off is widely used in applications requiring
forced commutation, such as dc drives.
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The static induction thyristor (SITH) acts like a diode, in the absence of
gate signal, conducting current from anode (A) to cathode (K) (Table 1.1). Nega-
tive gate voltage turns the switch off and must be maintained to give reverse
voltage blocking. The SITH is similar to the GTO in performance with higher
switching speed but lower power rating.

The MOS-controlled thyristor (MCT) can be switched on or off by negative
or positive gate voltage, respectively. With high-speed switching capability, low
conduction losses, low switching losses, and high current density it has great
potential in high-power, high-voltage applications. The gating requirements of
an MCT are easier than those of the GTO, and it seems likely that it will supplant
it at higher power levels. A peak power of 1 MW can be switched off in 2 ns
by a single MCT.
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Single-Phase Uncontrolled Rectifier
Circuits

A general representation of a rectifier or converter, with single-phase supply, is
shown in Fig. 2.1. The contents of the rectifier ‘‘box’’ can take several different
forms. For the purpose of analysis it is most helpful to consider first the simplest
form of half-wave connection and then proceed to more complicated full-wave
connections.

2.1 HALF-WAVE UNCONTROLLED RECTIFIER
CIRCUITS WITH RESISTIVE LOAD

2.1.1 Single Diode Circuit

The simplest form of uncontrolled rectifier circuit consists of a single-phase sinus-
oidal voltage source supplying power to a load resistorR through an ideal diode
D (Fig. 2.2). Conduction only occurs when the anode voltage of the diode is
positive with respect to the cathode, i.e., during positive half cycles of the supply
voltage. The load current and voltage therefore consist of the positive, half-sinu-
soidial pulses given in Fig. 2.3. By Kirchhoff’s loop law the instantaneous diode
voltage is the difference between the instantaneous values of the supply voltage
es and load voltageeL. Diode voltageeD is therefore coincident with the negative
pulses of supply voltage in Fig. 2.3.

es � Em sin	t (2.1)
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FIG. 1 General rectifier representation.
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2.1.1.1 Load-Side Quantities

The average value of any functioniL (	t) that is periodic in 2� is

I i t d tav L= ∫
1

2 0

2

π
ω ω

π
( ) (2.5)

Substituting Eq. (2.4) into Eq. (2.5) and integrating gives

FIG. 2 Single-phase, half-wave diode rectifier.
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FIG. 3 Waveforms for single-phase, half-wave diode rectifier withR load.

I
E

R

E

Rav
m m= =

π
0 318. (2.6)

Power dissipation in a series circuit can always be defined in terms of the root
means square (rms) current, whatever waveshape the periodic current may be.
For the load currentiL (	t) periodic in 2� the rms current is defined by

I i t d tL L= ∫
1

2
2

0

2

π
ω ω

π
( ) (2.7)

Substituting Eq. (2.4) into Eq. (2.7) and integrating gives

I
E

R

I
L

M m= =
2 2 (2.8)

The rms valueIL � Im/2 for half-wave operation compares with the corresponding
value IL � Im/�2 for sinusoidal operation.

The average power dissipation in the load resistorR is given by

PL � I2
L R (2.9)

Substituting Eq. (2.8) into Eq. (2.9) gives

P
E

R

E

R
PL

m S
in= = =

2 2

4 4 (2.10)
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whereES � Em/�2 is the rms value of the supply voltage andPin is the input
power. It is seen from Eq. (2.10) that the average power is one-half the value
for the continuous sinusoidal operation at the same peak voltage.

The degree of distortion in a rectified current waveform can be calculated
by combining the rms and average values in a ‘‘ripple factor.’’

Ripple factor
rmsvalueof accomponents

averagevalue
=

=
−I I

I

L

a

2 2

vv

= −I

I
L

av

1





2

av

(2.11)

For the case of half-wave rectification, substituting Eqs. (2.6) and (2.8) into Eq.
(2.11) gives

RF = 





− =π
2

1 1 21
2

.
(2.12)

The ideal value of the ripple factor is zero, for an undistorted steady dc output.
The value 1.21 for half-wave rectification is undesirably large and is unacceptable
for many applications. It is found that the Fourier series for the current waveform
of Fig. 2.3 is

i t
E

R
t t tL

m( ) sin cos cosω
π

ω
π

ω
π

ω= + − −−





1 1

2

2

3
2

2

15
4 …

(2.13)

The time average valueEm/�R in Eq. (2.13) is seen to agree with Eq. (2.6). It
is shown in Example 2.3 that the coefficients of the terms in Eq. (2.13) sum to
the rms value of the current.

2.1.1.2 Supply-Side Quantities

In the series circuit Fig. 2.2 the supply current is also the load current. Equations
(2.6) and (2.8) therefore also define the supply current. Because the diode is
presumed ideal, the input power from the supply is equal to the power dissipated
in the load resistor.

From the supply side, the circuit of Fig. 2.2 is nonlinear; that is, the imped-
ance of the diode plus resistor cannot be represented by a straight line in the
voltage-current plane. When a sinusoidal voltage supplies a nonlinear impedance
the resulting current is periodic but nonsinusoidal. Any function that is periodic
can be represented by a Fourier series, defined in the Appendix, and reproduced
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below, which enables one to calculate values for the harmonic components of
the function.

i t
a

a n t b n t

a
c t

n n
n

n n
n

( ) cos sin

sin( )

ω ω ω

ω

= + +( )

= + +

=

∞

=

∞

∑

∑

0

1

0

1

2

2
ψ (2.14)

where

c a bn n= +2 2
n

(2.15)

ψn
n

n

a

b
=









−tan 1

(2.16)

When functioni(	t) is periodic in 2� the coefficients of (2.14) are given by

a
i t d t0

0

2

2

1

2
= ( )∫π

ω ω
π

(2.17)

a i t n t d tn = ( )∫
1

0

2

π
ω ω ω

π
cos (2.18)

b i t n t d tn = ( )∫
1

0

2

π
ω ω ω

π
sin (2.19)

Comparing Eq. (2.17) with Eq. (2.5) shows that the Fourier coefficienta0/2 de-
fines the time average or dc value of the periodic function. The fundamental
(supply frequency) components are obtained whenn � 1 in Eqs. (2.16) and
(2.17). For the current of Fig. 2.3, defined in Eq. (2.4), it is found that

a i t t d t

E

R
t t d t

1

m

= ( )

=

=

∫

∫
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2
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π
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(2.20)

Similarly,

b i t t d t
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R
t d t
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1

m

m

= ( )

=
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∫

∫
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(2.21)

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 218

The peak amplitudec1 of the fundamental frequency sine wave component of
Fig. 2.3 is therefore

c a
E

R1
m= + =1

2
1
2b

2 (2.22)

Angle �1 defines the displacement angle between the fundamental component of
i(	t) and the supply current origin. In this case

ψ1
1 1

1

0=








 =−tan

a

b (2.23)

Equation (2.23) shows that the fundamental component of current is in time phase
with the supply voltage.

2.1.1.3 Power Factor

The power factor of any circuit is the factor by which the apparent voltamperes
must be multiplied to obtain the real or time average power. For the supply side
of Fig. 2.1, the power factor is given by

PF
P

EIs

=
(2.24)

whereP is the average power andE andIs are rms values of the supply voltage
and current. The universal definition of Eq. (2.24) is independent of frequency
and of waveform.

In most nonlinear circuits supplied by a sinusoidal voltage the supply cur-
rent contains a supply frequency component (or fundamental harmonic compo-
nent) of rms valueIs1 that is phase displaced from the supply voltage by angle
�1. The average input powerP can then be written

P � EIs1 cos�1 (2.25)

Combining Eqs. (2.14) and (2.15) gives

PF
I

I

s

s

= l
lcos ψ

(2.26)

The ratioIs1/Is is thecurrent distortion factorand arises chiefly, but not entirely,
because of the nonlinear load (i.e., rectifier) impedance. The term cos�1 in (2.26)
is called thecurrent displacement factorand may be partly or wholly attributable
to reactive components of the load impedance. It should be noted, however, that
in some rectifier circuits the current displacement angle�1 is nonzero even with
resistive loads.
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Although the product terms of Eq. (2.26) are entirely analytical, they are
useful because the relative values sometimes suggest the best approach to the
problem of power factor correction. The two terms of Eq. (2.26) are valid only
if the supply voltage is sinusoidal whereas Eq. (2.24) is universally true in any
passive circuit, irrespective of supply voltage waveform.

For the half-wave rectifier circuit of Fig. 2.2 the Fourier coefficients of the
fundamental current wave showed that the displacement angle�1 is zero [Eq.
(2.23)]. This means that the displacement factor, cos�1, is unity. The power
factor, in this case, is therefore equal to the distortion factor and is due entirely
to the nonlinear rectifier impedance. Substituting values from Eq. (2.1) and (2.8)
into Eq. (2.24), noting thatEs � Em �2 gives the result

PF = 1

2 (2.27)

Since�1 � 0 the power factor is neither leading nor lagging. Because of this
one would expect that the power factor could not be improved by the connection
of energy storage devices across the supply terminals. In fact, the connection of
a capacitance across the supply terminals in Fig. 2.2 is found to make the overall
power factor less (i.e., worse).

2.1.2 Single-Diode Circuit with Load-Side
Capacitor

In a half-wave diode controlled resistor circuit the load current conduction period
can be extended and its average value increased by the use of a parallel-connected
capacitor (Fig. 2.4). The capacitor stores energy while the diode is conducting
and releases it, through the load resistor, while the diode is in extinction. With
appropriate values ofR and C, the load current can be made continuous even
though the supply current remains of pulse waveform.

FIG. 4 Single-phase, half-wave diode rectifier with load-side capacitor.
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In Fig. 2.4 the instantaneous currents in the load (resistor), capacitor and
supply branches areIR, Ic, andIs, respectively.

The circuit operates in two modes, according as to whether the rectifier is
conducting. While current flows into the circuit from the supply, the following
equations are true

i
E

R
tR

m= sin ω (2.28)

i C
de

dt
CE tc m= = ω ωcos (2.29)

i i i
E

Z
ts R c

m
s= + = +( )sin ω ψ

(2.30)

where

Z
R

C R
=

+

2

2 2 21 ω (2.31)

ψ ωs CR= −( )−tan 1 (2.32)

The two analytical components of the supply current are shown in Fig. 2.5 for
the case whenR � Xc. Extinction of the supply currentis occurs when the two
componentsiR and ic are equal and opposite, at anglex radians from the origin
of the supply voltage wave. The diode conduction mode thus terminates at	t
� x. At this angle it is seen that

E

R
x CE xm

msin cos+ =ω 0 (2.33)

from which

x � tan�1 (�	CR) (2.34)

Comparison of Eqs. (2.32) and (2.34) shows that

x � � � �s � � � tan�1 (�	CR) (2.35)

At 	t � x diode conduction ceases. The instantaneous load voltage is then

eL � ec � Em sin x (2.36)

The capacitor, charged to voltageEm sinx, begins to discharge through the series
R-C circuit of the load branches. Since theR andC elements are linear the load
current decays exponentially with a time constant � RC

Therefore, in Fig. 2.5, for	t � x
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FIG. 5 Component currents in the circuit of Fig. 2.4:R � Xc, x � 135�, �c � 131�.
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i
E

R
xR

m t x

CR= − −( )sin ε ω
ω (2.37)

Since sinx � sin(� � �s) � sin �s, then

i
E

RL
m

s
ts s= = − − +( )sin cotψ ε ψ ω π ψ

(2.38)

The load voltage, during supply current extinction, is therefore

e i R E xL L m
t xs= = − −( )sin cotε ψ ω (2.39)

Ignition of the diode recommences when the supply voltage becomes instanta-
neously greater than the load voltage. In Fig. 2.5 this occurs at the instants	t
� x � �c and 2� � x � �c, where�c is the conduction angle of the diode

ω π θt xig c= + −2 (2.40)

In terms of�s, the ignition angle is

ω π ψ θt ig s c= − −3 (2.41)

The conduction angle may be found by equating the load voltageRiR from Eq.
(2.37) to the supply voltage from Eq. (2.28), putting	t � 2� � x � �c,

Em sin xε� [(2���c)/	CR] � Em sin(2� � x � �c)

or

sin xε� [(�2���c)/	CR] � sin(x � �c) (2.42)

Equation (2.42) is transcendental and must be solved by iteration. For values of
	CR less than unity (i.e.,�s � 45�) the ignition anglex � �c becomes small for
half-wave rectifier operation. Increase of the capacitance tends to shorten the
conduction angle.

The three instantaneous currents in the circuit of Fig. 2.4 are described, for
the period 0� 	t � 2�, by

i
E

R
t

E

RR
m s

s c

m
s

t s cs s=
−
− −

+
− −− − +( )sin sin

,cotω
π ψ
π ψ θ

ψ ε
π ψ θ πψ ω π ψ 2

0,,π ψ− s (2.43)

i CE t
E

Rc m
s

s c

m
s

t s cs s=
−
− −

−
− −− − +( )ω ω

π ψ
π ψ θ

ψ ε
π ψ θ πψ ω π ψcos sin

,cot 2

00,π ψ− s (2.44)
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The average value of the load current is found to be

I i t d t
E

Zav L
m c= ( ) =

−
∫

1

2

1

20

2

π
ω ω

θ
π

π cos

(2.46)

A numerical example for operation of this circuit is given in Example 2.4.

2.1.3 Single-Diode circuit for Battery Charging

A simple diode circuit containing a current limiting resistanceR can be used to
charge a battery of emfV from a single-phase supply (Fig. 2.6). The battery
opposes the unidirectional flow of current so that the net driving voltage ise �
V. Neglecting any voltage drop on the diode (which is likely to be of the order
1–2 V) the current is therefore

i
e V

R R
E t VL m= − = −( )1

sinω
β
α (2.47)

where� and � define the current pulse in Fig. 2.7. Current flows only in the
positive voltage direction whene � V � 0. Angles� and� are defined by

e � V � Em sin � � V � 0 (2.48)

Therefore,

α = −1 V

Em

sin
(2.49)

By symmetry

FIG. 6 Single-phase, half-wave diode battery charging circuit.
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FIG. 7 Voltage and current waveforms for the battery-charger circuit of Fig. 2.6:V �
0.6Em.

� � � � � (2.50)

The average valueIav of the battery charging current is defined by

I i t d tav L= ( )∫
1

2 0

2

π
ω ω

π

Substituting Eq. (2.47) into the above defining integral expression gives

I
R

E t V d t

R
E V

av m

m

= −( )

= −( ) + −( ) 

∫
1

2
1

2

π
ω ω

π
α β α β

α

β
sin

cos cos (2.51)

Eliminating � between Eqs. (2.50) and (2.51) gives

I
R

E Vav m= + −( ) 
1

2
2 2

π
α α πcos (2.52)

A relevant numerical calculation is given in Example 2.5.

2.1.4 Worked Examples

Example 2.1 An ideal single-phase source, 240 V, 60 Hz, supplies power
to a load resistorR � 100� via a single ideal diode. Calculate the average and
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rms values of the current and the power dissipation. What must be the rating of
the diode?

The circuit is shown in Fig. 2.2. The specified voltage of 240 V can be
presumed to be the rms value. The average circuit current, from Eq. (2.6), is

I
E

Rav
m= =

×
=

π π
240 2

10
1 08. A

The rms value of the current is given by Eq. (2.8)

I
E

L
m= =

×
=

2

240 2

2 100
1 7

π
. A

In the circuit of Fig. 2.2 power dissipation takes place only in the load resistor
and is given by Eq. (2.10)

PL � I2
L(1.7)2 100 � 298 W

The diode must be rated in terms of a peak reverse voltage and a mean forward
current.

From Eq. (2.3) it can be seen that the peak diode voltage is equal to the
peak supply voltage.

Diode PRV� Em � 240�2 � 339.4 V

A convenient commercial rating would be to choose a diode rated at 400 V.
Either the rms or the mean (average) current could be used as a basis of current
rating. SinceIL � 1.7 A a convenient commercial rating would be 2 A.

Example 2.2 The rms valueI of a periodic waveform that consists of an
average or dc value lay plus a sum of harmonic components with rms valuesI1,
I2, … is given by

I2 � I2
av � I2

1 � I2
2 � …

Show that the rms value of the current in the half-wave rectifier circuit, Fig. 2.2,
can be obtained in terms of its harmonic components and that the value obtained
agrees with the integration method.

In terms of the rms values of the harmonic components,

I2 � I2
av � I2

1 � I2
2 � I2

3 � …

In terms of the peak values ofÎ1, Î2, …, În of the sinusoidal harmonics, and since
the peak, average, and rms values of the dc termIav are identical, then

I I I I Iav n
2 2

1
2

2
2 21

2
= + + + +( )ˆ ˆ ˆ…
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where Î1 � I1/�2, etc. The Fourier series for this waveform is given by Eq.
(2.13).

The rms valueIL of the functioniL (	t), Eq. (2.13), for half-wave rectifiction
is seen to be

I
E

RL
m2

2 2 2 2 2
1 1

2

1

2

2

3

2

15
= 














+ 





+ 





+ 



π π π

++























…

from which

I
E

RL
m=

2

This result is seen to agree with that of Eq. (2.8).
Example 2.3 The single-phase diode resistor circuit of Fig. 2.2 is supplied

with power from an ideal voltage source of rating 240 V, 50 Hz. Calculate the
circuit power factor. If an ideal capacitorC is now connected across the supply
whereXc � R � 100 �, calculate the new value of power factor.

From Eq. (2.27), the power factor is seen to be

PF = =1

2
0 707.

Alternatively, substituting the values ofIL and PL from Example 2.1 into Eq.
(2.24) gives

PF
P

E I
L

L L

=

=
×

=289

240 1 7
0 707

.
.

If a capacitor of reactanceXc is connected across the supply, as in Fig. 2.13, the
capacitor instantaneous current is given by

i
E

X
t

X
t

c
m

c

c

= +( )

=

sin ω

ω

90

cos
Em

The resultant instantaneous supply current is therefore

i i i

X
t

E

R
t

s c L

c

m

= +

= +cosω ω
π π

π
sin

, ,

, ,

3

0 2

…

…

Em
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The rms value of the overall supply current is given, in general, by

I i t d ts s= ( )∫
1

2
2

0

2

π
ω ω

π

In the present case, sinceXc � R, eliminatingXc gives

I
E

R
t t t d t

E

R

s
m

m

2
2

2

2 22

0

2

2

2

2

= +( ) +





=

∫∫π
ω ω ω ω

π

π

ππ
cos sin cos

coss sin sin2 2

00

2

2

2

2

2 2
0

ω ω ω ω

π
π π

ππ
t d t t t

E

R
m

+ +( )





= + +





∫∫

I
E

Rs
m= = =3

2
0.866

240 2

100
2 94. A

Which compares with a load current of 1.7 A.
The load current and load power are not affected by the terminal capaci-

tance. The new power factor is therefore

PF
P

E I
L

s s

= =
×

=289

240 2 94
0 41

.
.

The introduction of the capacitor has caused a considerable reduction of the power
factor.

Example 2.4 A single-phase supply of voltagees � 380 sin 100�t sup-
plies power to a load resistorR � 40 � via on ideal diode valve. Calculate the
average current in the load. Repeat the calculation if an ideal capacitorC � 138
�F is connected across the resistor

In the absence of the capacitor, the average load current in the circuit of
Fig. 2.2 is given by Eq. (2.6)

I
E

Rav
m= =

π
3 024. A

With a capacitor of 138�F, at 50 Hz, in Fig. 2.4, the use of Eq. (2.32) gives a
value for the magnitude of the input phase angle�s.

�s � tan�1 (2� � 50 � 138 � 10�6 � 40) � tan�1 (1.734)� 60�

Therefore,

sin�s � 0.866 and cot�s � 0.577
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With the component values given,Em/R � 9.5 A and	CEm � 16.47 A. From
Eq. (2.35)

x � � � �s � 120�

Iterative solution of the transcendental equation, Eq. (2.42), gives a value for the
conduction angle�c of the supply current

�c � 115.75�

The circuit waveforms are shown in Fig. 2.5.
For the specified values ofR andC the input impedance|Z|, Eq. (2.31), is

Z =
+ ( )

= Ω40

1 1 734
20

2

2
.

The average load current, Eq. (2.46), is therefore

Iav = − °





=380

20

1 115 75

2
4 336

cos .
. A

Introduction of the capacitor filter has therefore resulted in about 43% increase
of the original average load current of 3.024 A.

Example 2.5 In the battery charger circuit, Fig. 2.6, the supply voltage
is given bye� 300 sin	t and resistorR� 10�. Calculate the average charging
current if V � 150 V. What is the operating power factor?

From Eqs. (2.49) and (2.50),

α = 





= °−sin 1 150

300
30

� � � � � � 150�

Substituting valuesEm � 300, V � 150, R � 10, � � 30� � �/6 into Eq.
(2.52) gives

Iav � 3.27 A

The rms current is given by integrating Eq. (2.47)

I i t d t

R
E t V d t

L L

m

2 2

0

2

2

2

1

2
1

2

= ( )

= −( )

∫

∫
π

ω ω

π
ω ω

π

α

β
sin

from which it is found that, with� � � � �, then
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I
R

E
V

E
E VL

m m
m

2
2

2
2

21

2 2
2

2
2 4= +









 −( ) + −











π

π α α αsin cos

Substituting numerical values gives

IL � 4.79 A

The total power delivered to the circuit from the ac supply is

P � I2
LR � IavV

In this application the power factor is therefore

PF
P

EI

I R I V

E IL

L av

m s

= =
+

( )
2

2/

Now

PL � I2
LR � 229.4 W

The total power delivered by the supply is

P � 229.4� (3.27)(150)� 720 W

The total power factor seen from the supply is given by Eq. (2.24)

PF = ( )( )
72 0.710

300 2 4 79/ .
=

2.2 FULL-WAVE DIODE CIRCUIT WITH
RESISTIVE LOAD

By the use of four diodes, Fig. 2.8a, rectifier circuit performance can be greatly
improved. All of the supply voltage wave is utilized to impress current through
the load, Fig. 2.8b, and the circuit, which is very widely used, is called asingle-
phase, full-wave diode rectifier.

The various properties of the full-wave circuit can be evaluated in precisely
the same way as those for the half-wave circuit.

2.2.1 Load-Side Quantities

The load current waveform, Fig. 2.8b is represented, for the first supply voltage
cycle, by

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 230

FIG. 8 Single-phase, full-wave diode rectifier: (a) circuit diagram and (b) load voltage
and current waveforms forR load.
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i t
E

R
t

E

R
tL

m mω ω
π

ω π
π
π

( ) = + −( )sin sin
0

2

(2.53)

The average value of functioniL (	t) is

I i t d t

E

R
t d t t d t

av L

m

= ( )

= + −( )




∫

∫∫

1

2

2

0

2

0

2

0

π
ω ω

π
ω ω ω π ω

π

ππ
sin sin



= −( ) + − −( ) 












= =

E

R
t t

E

R
E

m

m
m

2 0 0

2
0 636

π
ω

π
ω π

π

π

cos cos

. / RR (2.54)

The value of Eq. (2.54) is seen to be twice the corresponding value for the half-
wave circuit given in Eq. (2.6).

The rms value of functioniL (	t) is given by

I i t d t

E

R
t d t t d t

L L

m

2 2

0

2

2

2
2 22

0

1

2

2

= ( )

= + −( )

∫

∫

π
ω ω

π
ω ω ω π ω

π

π

ππ
sin sin∫∫





= −( ) + − −( )





=

∫∫
E

R
t d t t d t

E

m

m

2

2 0

2

0

2

2

1

2

1

2
1 2

4

π
ω ω ω π ω

ππ
cos2 cos

ππ
ω ω π

ω
ω π π

πR
t

t
t

t

E

2

2

2 0

2

2

2
−





+ −
−( )





















=

sin sin

mm

R

2

22

1

(2.55)

Therefore,

I
E

R
L

m=
2 (2.56)

Value IL in Eq. (2.56) is seen to be�2 times the corresponding value for half-
wave operation, given by Eq. (2.8). It should also be noted thatIL has the same
rms value as a sinusoidal current of the same peak value; an rms value is not
affected by the polarity of the waveform.

The load current ripple factor is
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RF
I

I
L

av

=








 − = 





− =
2 2 2

1
5 66

5 1
1 0 48

.

.
.

(2.57)

which compares with a value 1.21 for half-wave operation.
The load power is given once again by

PL � I2
LR (2.58)

Combining Eqs. (2.56) and (2.58) gives

P
E

R

E

RL
m= =1

2

2 2

(2.59)

The load power dissipation, Eq. (2.59), is twice the value obtained with half-
wave operation, Eq. (2.10), and is equal to the dissipation obtained with sinusoidal
load current of the same peak value.

2.2.2 Supply-Side Quantities

The application of sinusoidal voltage to the resistive circuit of Fig. 2.8a causes
a sinusoidal supply current in time phase with the voltage. The time average
value of the supply currentIs is therefore zero over any complete number of
cycles and its rms value equals that of the load current.

I
E

R
t d ts av

m
( ) = =∫

1

2
0

2

20

2 2π
ω ωsin (2.60)

I
E

R
t d t

E

R
s

m m= =∫
1

2 2

2

2
2

0

2

π
ω ω

π
sin

(2.61)

If the bridge diodes are ideal, the input power must be equal to the load power

P P
E

Rin L
m= =
2

2 (2.62)

For a circuit where the input voltage and current are both sinusoidal and in time
phase, the power factor is unity

PF � 1.0 (2.63)

The properties of the full-wave diode bridge with resistive load are summarized
in Table 2.1
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TABLE 2.1 Single-Phase Diode Rectifier Circuits with Resistive Load

Property Half-wave bridge Full-wave bridge

Average load current

RMS load current

Power

RMS supply current

Power factor

Ripple factor of load current

1 35.

E

R
m

2

E

R
m
2

4
E

R
m

2
1

2

1.21

2
π

E

R
m

E

R
m

2

E

R
m
2

2
E

R
m

2

1.0

0.47

2.3 HALF-WAVE DIODE CIRCUITS WITH SERIES
R-L LOAD

2.3.1 Single-Diode Circuit

The action of the seriesR-L circuit with a single-diode rectifier valve illustrates
a lot of the important features of rectifier circuit operation. In Fig. 2.9 the current
is unidirectional and the polarity of the voltage dropeR on the resistorR is always
as indicated. The polarity of the instantaneous emfeL of the series inductorL
varies cyclically as does the total load voltageeL. Where the application of sinusoi-
dal voltagees results in an instantaneous currentiL, this is given by solution of
the first-order linear differential equation [Eq. (2.65)].

e � Em sin 	t (2.64)

e i R L
di

dtL L
L= + (2.65)

Neglecting the voltage drop on the diode,e� iL during conduction. If no current
is initially present conduction begins when the anode voltage of the diode becomes
positive, that is, at the beginning of the supply voltage cycle in Fig. 2.10. An
expression for the currentiL may be thought of, at any instant, as the sum of
hypothetical steady-state and transient componentsiss and it, respectively.
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FIG. 9 Single-phase, half-wave diode rectifier with seriesR-L load.

i t i t i t

I t i t

L ss t

m t

ω ω ω

ω ω

( ) = ( ) + ( )
= −( ) + ( )sin � (2.66)

where� is the phase angle for sinusoidal currents of supply frequency

� = −tan 1 ωL

R (2.67)

At instant	t � 0 in Fig. 2.10 the total currentiL(0) � 0 but the steady-state
componentiss(0) � Im sin(0 � �) � �Im sin �, so that the instantaneous
transient current is

it(0) � Im sin� (2.68)

FIG. 10 Current waveform for the single-phase, half-wave circuit of Fig. 2.9:� � 60�.
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For	t � 0 the transient current decays exponentially through the seriesR-L load
impedance

I t i It m
t T

m
tω ε εω ω ω( ) = =−( )sin sin/ cot� � � (2.69)

where

1

ω ωt

R

L
= = cot� (2.70)

and

I
E

R L

E

Zm

m m=
+

=
2 2 2ω (2.71)

The instantaneous current at any time interval during conduction is therefore

iL (	t) � Im sin(	t � �) � Im sin �ε�cot��	t (2.72)

It is seen in Fig. 2.10 that the total currentiL consists of unidirectional, nonsinusoi-
dal pulses lying outside the envelope of the steady-state sinusoid. The conduction
angle�c when iL (	t) � 0 in Eq. (2.56) satisfies

sin(�c � �) � sin�ε-cot��c � 0 (2.73)

Equation (2.73) is transcendental and must be solved iteratively for�c. For values
of phase angle� up to about 60� one can estimate�c fairly accurately by the
relation

�c � � � � � 
 (2.74)

where
 is of the order a few degrees. With highly inductive loads the conduction
angle increases until, at� � �/2, the conduction takes the form of a continuous,
unidirectional sinusoidal oscillation of mean valueIm � Em/	L.

The instantaneous voltage dropeR on the load resistor has the valueiLR
and must have the same waveform asiL (	t) � 0. Now by Kirchhoff’s law, in
Fig. 2.9,

e t e t e t

E t

L R L

m

ω ω ω

ω

( ) = ( ) + ( )
= ( )sin during conduction (2.75)

At the value	t1, whereeL (	t) � eR (	t) in Fig. 2.11a,eL (	t) � L di/dt � 0.
The derivativedi/dt is zero at a current maximum, and therefore the crossover
of the eR (	t) curve with thee(	t) curve in Fig. 2.11b occurs wheneR (	t) has
its maximum value. Time variations of the circuit component voltages are shown
in Fig. 2.11 for a typical cycle. The polarity of the inductor voltageeL (	t) is
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such as, by Lenz’s law, to oppose the change of inductor current. While the
current is increasing, 0� 	t � 	t1, the induced emf in the inductor has its
positive point nearest the cathode. When the inductor current is decreasing,	t1
� 	t � 	t3, the induced emf in the inductor tries to sustain the falling current
by presenting its positive pole furthest from the cathode in Fig. 2.9.

The average value of the rectified current is the mean value of theiL (	t)
curve (Fig. 2.10) over 2� radians and is given by

I i t d t

E

Z

av L

m
c c

c= ( )

= −( ) − −

∫
1

2

2
1

0π
ω ω

π
θ θ

θ

cos cos sin sin
sin

cot
� �

�

�
εε θ− −( )





cot� c 1
(2.76)

Eliminating the exponential component between Eq. (2.73) and Eq. (2.76) gives,
after some manipulation,

I
E

Rav
m

c= −( )
2

1
π

θcos

E

Z
m c=

−
2

1

π
θcos

cos� (2.77)

Since the average value of the inductor voltage is zero,

E I Rav av=
Em

c−( )
2

1
π

θcos= (2.78)

The rms value of the load current is found using Eqs. (2.72) and (2.73):

I i t d t

E

Z

L L

m
c c c

c2 2

0

2

2

2

1

2

4
2

= ( )

= − −( ){

+

∫π
ω ω

π
θ θ θ

θ

sin cos

tan sin

�

� � −− −( )  + −( )}sin sin sin sin2 4θ θ θc c c� � � (2.79)

The corresponding ripple factor can be obtained by the substitution of Eqs. (2.78)
and (2.79) into Eq. (2.11). Both the average and rms values of the current increase
for increased values of phase angle.

2.3.2 Worked Examples

Example 2.6 A single-phase, full-wave diode bridge (Fig. 2.8a) is used
to supply power to a resistive load of valueR � 50 �. If the supply voltage
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FIG. 11 Component voltage waveforms for the single-phase, half-wave circuit of Fig.
2.9: � � 60�.
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remains sinusoidal and has a peak value 400 V, calculate the average and rms
values of the load current. Calculate the ripple factor for the load current and
compare this with half-wave operation.

The average value of the load current (Fig. 2.8b) is given by Eq. (2.54),
The corresponding rms valueIL is the value of a sinusoidal of the same

peak height, as given in Eq. (2.56).

I
E

RL
m

� �

�
� �����

��

The ripple factor is

RF
I

I
L

av

=








 − = 





− =
2 2 2

1
5 66

5 09
1 0 48

.

.
.

which compares with a value 1.21 for half-wave operation.
Example 2.7 For the single-phase bridge of Example 2.6 (i.e., Fig. 2.8)

evaluate the voltage and current ratings required of the bridge diodes
The diodes in Fig. 2.8a conduct current only in their respective forward

directions. When the top terminal of Fig. 2.8a is positive, current flows through
D1, R, andD4. The current of diodesD1 andD4 is therefore given by

I
E

R
tD

m

1

3

0 2
= sin

,

,
ω

π π
π
…

…

The diode rms current is 1/�2 or 0.707 of the rms supply current. A diode current
waveform consists of only the positive pulses of current and is therefore similar
to the waveform of Fig. 2.3. Because a diode current waveform contains only
one half the area of the load current its mean current rating is one half the mean
load current

I Iav avdiode load( ) = ( )1

2
E

R
m= 1

π
A= 2 55.

While current is passing throughD1, R andD4 in Fig. 2.8a, the diodesD2 and
D3 are held in extinction due to reverse anode voltage. The peak valuePRVof
this reverse voltage is the peak value of the supply voltage.

PRV� Em � 400 V

Example 2.8 A seriesR-L load with R � 10 � andXL � 20 � at f �
50 Hz and supplied from an ideal single-phase supplye � 300 sin 2�ft through
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an ideal diode. Determine the peak value of the current pulses, the conduction
angle and the average load current

� = = = °− −tan tan .1 1 2 63 4
X

R
L

cot � � 0.5, cos� � 0.447, sin� � 0.894

Conduction angle�c is determined by iterative solution of the transcendental
equation, Eq. (2.73). We start by estimating a value of�c using Eq. (2.74)

�c � 180� � 63.4� � 
 � 243.4� � 


The algebraic sum of the two parts of Eq. (2.73) is given in theRH column.
From the results obtained for the estimated values�c � 250� and 249� one can
make a linear interpolation that the actual value of�c is 249.25�. This is shown
in the final row to be almost correct.

�c � 249.25�

The maximum value of the current pulses occurs whendiL/d	t � 0. From Eq.
(2.72)

di

dt
I t IL

m m
t= −( ) − =−cos sin cotω ε ω� � � �cot 0

from which it is seen that

cos(	t � �) � cot � ε�cot � 	t

Iterative solution of this, along the lines above, yields

ωt di

dt
L =

= °
0

146 2.

Estimated value of �c

deg. rad. sin(�c��)

246° 4.294 �0.045 0.117 0.105 0.06
248° 4.33 �0.08 0.115 0.103 0.023
250° 4.363 �0.115 0.113 0.101 �0.014
249° 4.316 �0.0976 0.114 0.102 0.0044
249.25° 4.35 �0.1019 0.1136 0.1016 �0.003

ε θ− ⋅cotΦ c sin cotΦ Φε θ− ⋅ c

sin( )

sin cot

θ

ε θ

c

c

− +
− ⋅

Φ

Φ Φ
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Substituting	t � 146.2� into Eq. (2.72) gives

I IL mmax . . .= =
+

=1 2417 1 2417
300

10 20
16 7

2 2
A

Now cos�c � cos249.25� � �0.354. In Eq. (2.77) therefore,

I av =
×

+( ) =300

2 10
1 0 354 6 465

π
. . A

This compares with the valueIm/� or 9.55 A that would be obtained with only
the 10-� resistor as load.

If the load consisted of a resistor of the same value as the present load
impedance the average current would be 300/(� � 22.36)� 4.27 A.

2.4 FULL-WAVE DIODE CIRCUITS WITH SERIES
R-L LOAD

The average load current is increased and the ripple factor reduced by the introduc-
tion of a freewheel diode across the load. This provides a relaxation path for the
load current during the intervals of negative supply voltage and assists toward
continuous load current conduction even though the supply current is discontin-
uous with high harmonic content.

Consider the circuit of Fig. 2.12 in which the load now consists of induct-
anceL in series with resistanceR. This circuit is similar in action to two half-
wave circuits in series.

FIG. 12 Single-phase, full-wave diode rectifier circuit with seriesR-L load.
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During conduction one of the opposite pairs of diodes connects the supply
voltage across the load so that the load voltageeL (	t) retains the form shown
in Fig. 2.8b for resistive load. In typical steady-state operation the load current
becomes continuous, Fig. 2.13b, with identical successive portions each half cycle
as the current transfers from diodesD1 andD4 to diodesD2 andD3. The supply
currentis (	t) assumes the bidirectional (alternating) form of Fig. 2.13c. Although
the supply current is subject to abrupt transitions the load current (passing through
the inductor) remains quite smooth and large induced emfs are avoided. When
the load inductance is very large such that almost perfect smoothing is realized,
the load current assumes a constant value and the supply current becomes a
rectangular wave. These aspects of bridge operation are discussed more fully in
the following chapters.

Example 2.9 In the single-phase, full-wave bridge circuit of Fig. 2.14 the
load current is 50 A, and the maximum peak to peak ripple voltage across the
load is to be 10 V. IfEm � 240�2 V at 50 Hz, estimate suitable values forL
andC. What will be the current rating of the capacitor?

In a single-phase, full-wave rectified sinusoid (Fig. 2.8b)

E Eav m= 2

π

and

E
Em=

2

so that

E E Eav = =2 2
0 9

π
.

In this case

Eav � 0.9 � 240 � 216 V

The principal higher harmonic of a full-wave rectified waveform is the second
harmonic (since there is no fundamental component), in this case of frequency
100 Hz.

Peak 100Hz component of the ac ripple� Em � Eav � 240�2 � 216
� 123.4 V.

Peak-to-peak ripple� 246.8 V.
Ripple reduction factor required� 246.8:10.

Now the excess ripple voltage has to be filtered by the series choke. Therefore,
XL � 24.68Xc.
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FIG. 13 Waveforms for the full-wave circuit of Fig. 2.12.

The load current is 50 A. It is good practice to allow a safety factor of 2
and permit the inductor (and capacitor) current ripple to have a peak value of 25
A. The inductor ripple voltage has already been estimated as 123.4 V.

XL = = Ω123 4

25
4 84

.
.
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FIG. 14 Circuit for Example 2.9.

At the second harmonic frequency,

L = =4 84

200
7 7

.
.

π
mH

XL = = × Ω−4 84

25 68
188 103.

.

from which

C � 8460�F

Since the peak capacitor current ripple has been estimated as 25 A, the rms
capacitor current is

I c = =25

2
17 7. A

PROBLEMS
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Single-Phase Diode Rectifier Circuits with Resistive
Load

2.1 Sketch the load current waveforms of the diode rectifier circuits shown
in Fig. 2.15, with sinusoidal supply voltage and resistive load.

2.2 Obtain expressions for the average and rms currents in the circuits of
Fig. 2.2 if e � Em sin 	t. Show that the load power is one half the
value for sinusoidal operation and calculate the ripple factor.

2.3 Derive expressions for the average and rms currents in a single-phase,
full-wave diode bridge circuit with resistive load. Show that the ripple
factor is less than one-half the value for half-wave rectification. What
is the ideal value of ripple factor?

2.4 Calculate the power factor of operation for the half-wave rectifier circuit
of Fig. 2.2.

2.5 For a single-phase, half-wave diode rectifier circuit with resistive load
and supply voltagee � Em sin 	t, show that the load voltageeL (	t)
can be represented by the Fourier series

e t E t tL mω
π

ω
π

ω( ) = + − +





1 1

2

2

3
2sin cos …

2.6 A single-phase supplye � Em sin	t supplies power to a resistorR
through an ideal diode. Calculate expressions for the Fourier coefficients
a1, b1, and c1 of the fundamental component of the circuit current and
hence show that the displacement factor is unity.

2.7 A resistive loadR � 10 � is supplied with rectified current from a
single-phase ac supply through a full-wave diode bridge. The supply
voltage is given bye � Em sin 	t. Sketch the circuit arrangement and
load voltage waveform. Calculate the average and rms values of the
load voltage ifEm � 330 V. Define a ripple factor for this load voltage
and calculate its value.

2.8 A single-phase, full-wave diode bridge supplies power to a resistive
load from a sinusoidal voltage sourcee � Em sin 	t. Show that the
load current waveform created by the natural commutation of the diodes
is such that its Fourier series does not contain a term of supply frequency.

2.9 Sketch the current waveform of the rectifier circuit (Fig. 2.16) ife �
Em sin 	t and V � Em/2. If V � Em, what is the value of the average
current compared with the caseV � 0?
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FIG. 15 Circuits for Problem 2.1.
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FIG. 16 Circuit for Problem 2.9.

2.10 Sketch the current waveform for the battery charger operation shown
in Fig. 2.6 if Em �V. Derive an expression for the instantaneous current
I, and calculate the average value of charging current ifEm � 2 V,
where e � Em sin 	t. What is the value of the average current ifEm

� 100 V, R � 100 �?

2.11 In Problem 2.10 above, calculate the value of the rms current and hence
the power factor.

2.12 An ideal single-phase supply voltagee � Em sin 	t supplies energy
to a battery of terminal voltageV through the full-wave rectifier circuit
of Fig. 2.17. Sketch in proportion the waveforms ofe, V, and load
current IL if V � Em/2. Calculate the average value of the supply
current and the load current ifEm � 100 V and R � 25 �. What
effect would there be on the circuit function and average load current
if an open circuit failure occurred on (a) diodeD1 and (b) diodeD3?

2.13 Sketch typical steady-state current waveforms for the diode circuit with
capacitor smoothing shown in Fig. 2.4.

2.14 Deduce and sketch the waveforms of the voltages across the supply,
the diode, and the load for the rectifier circuit of Fig. 2.4 ifR � Xc.

2.15 An ideal supply voltagees � Em sin 	t supplies power to a resistor
R through an ideal diodeD. If an ideal capacitorC is connected across
the resistor, show that the average resistor current is given by (Em/
2�[Z]) (1 � cos�c), whereZ is the input impedance during conduction
and �c is the conduction angle of the supply current.

2.16 In the circuit of Fig. 2.4 if the resistorR is very large, the load consists
essentially of a pure capacitance. Deduce and sketch the waveforms of
the current, the capacitor voltage, and the diode voltage.
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FIG. 17 Circuit for Problem 2.12.

2.17 A half-wave diode circuit with load resistorR is supplied from an ideal
voltage sourcees � Em sin 	t. A capacitorC is connected across the
supply terminals (Fig. 2.18). What is the effect on the overall circuit
power factor if R � Xc?

Single-Phase Diode Rectifier Circuits Series R-L
Load

2.18 Show, from first principles, that the current in a seriesR-L circuit
containing a diode with sinusoidal supply is given by

i � Im sin(	t � �) � Im sin �ε�1/

where

I
E

R L

L

R

m
m=

+

= −

2 2 2

1

ω
ω

� tan

	 = L

R
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FIG. 18 Circuit for Problem 2.17.

2.19 Derive the following transcendental equation for conduction angle�c

in a seriesR-L diode circuit with sinusoidal phase angle� and a supply

e � Em sin 	t

sin(�c � �) � sin �ε�cot��c � 0

If � � 45�, solve the equation by iteration to obtain�c.

2.20 A circuit consists of a resistorR, inductor L, and diodeD in series,
supplied from an ideal sinusoidal of instantaneous valuee � Em sin
	t.

a. Derive an expression for the time variationi(	t) of the instantaneous
current in terms ofEm, |Z| (� �R2 � 	2L2), and � (� tan�1

	L/R.
b. Sketch, roughly to scale, consistent time variations ofe, i, and the

inductor-induced emfeL if � � 60�.
c. Show that with a load time constant � L/R, the instant of the

cycle when the inductor emf is zero is given by the transcendental
equation cos(	t � �) � cos � ε�t/.

2.21 Explain the basis of the equal-area criterion for a seriesR-L circuit
with diode (Fig. 2.19). Sketch the variation ofeR and eL with time
over a typical cycle, assuming switch-on occurs at a positive going
zero of the supply. Also sketch the time variation of the diode voltage.

2.22 A seriesR-L circuit of phase angle� � tan�1 	L/R is supplied with
current from an ideal voltage sourcee � Em sin 	t through an ideal
diode D. Derive or state expressions for the instantaneous currenti(	t)
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FIG. 19 Circuit for Problem 2.29.

and the conduction angle�c. Sketch waveforms ofe and i if � � 30�;
estimate the value of�c. Show that the current has a maximum value
Im at 	t � A given by

I
E

Z
Am

m= −( ) + −( ) sin tan� � �cos A

where |Z| � �R2 � 	2L2.
2.23 In the diode-controlled single-phase circuit of Fig. 2.9 the load phase

angle� � tan�1 (	L/R) and the supply voltagee � Em sin 	t. Show
that the average current is given by

I
E

Rav
m

c= −( )
2

1
π

θcos

CalculateIav if Em � 230�2 V, � � 30�, and R � 20 �.
2.24 A seriesR-L circuit of phase angle� � tan�1 (	L/R) � 45� is

supplied with current from an ideal supplye � Em sin 	t through an
ideal diodeD. Derive expressions for the instantaneous currenti(	t)
and the conduction angle�c Give an estimate for the value of�c in
this case.

Sketch in correct proportion waveforms fore, i, and the instantaneous
voltageeL (	t) across the load inductor component. Derive an expression
for eL in terms of i.

2.25 In the diode-controlled single-phase circuit. of Fig. 2.9 the load phase
angle � � tan�1 (	L/R) and the supply voltagee � Em sin 	t. If
the conduction angle of the load current is�c, show that its rms value
is given by Eq. (2.79). CalculateIL if Em � 200 V, R � 10 � and
XL � 20 � at 50 Hz.

2.26 A series resistance–inductance circuit of phase angle� � tan�1 (	L/
R) is supplied with current from an ideal single-phase voltage supply
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e � Em sin 	t through an ideal diodeD. Derive or state expressions
for the instantaneous currenti(	t) if � � 45�, and estimate (do not
calculate) the value of�c. Derive an expression for the instantaneous
emf eL (	t) induced across inductorL, and sketch the waveform of
this consistent with your waveforms ofe and i. Explain how you would
calculate the maximum positive value ofeL (	t) and show that, in this
case, it has a value (nearly) equal to 0.5Em.

2.27 Sketch the current waveform for a seriesR-L circuit controlled by a
series diode. If the load phase-angle� to fundamental currents is 30�,
what is the extinction angle?

2.28 A supply voltagee � 220�2 sin 	t is applied to the seriesR-L load
of Fig. 2.9. Calculate the average load current and the rms values of
a few harmonic current components using the Fourier series for the
load voltage ifR � 	L � 110 �. Hence, calculate the load current
and the current ripple factor.

2.29 A resistive load is supplied through a diode connected in the secondary
circuit of a single-phase transformer with low leakage reactance (Fig.
2.19). Sketch the forms of the load current, supply current, and diode
voltage over a supply voltage period.

2.30 Deduce and sketch current waveforms for the half-wave rectifier circuit
of Fig. 2.9 if L is large.

2.31 Show that the Fourier series for the full-wave rectified sinusoid of Fig.
2.8b is given by

i
E

R
t tm= − − −





2 4

3
2

4

15
4

π π
ω

π
ωcos cos …

2.32 Sketch current and load voltage waveforms for the full-wave bridge
circuit of Fig. 2.12 if inductorL is very large.

2.33 Sketch the current and voltage waveforms for a nominated diode from
the full-wave bridge circuit of Fig. 2.20 ifR � 	L.

2.34 In the full-wave diode bridge circuit of Fig. 2.20 the supply voltage
is given bye � 400 sin 100�t. The load impedance consists ofR �
	L � 25 �. Use the Fourier series method (taking the first three terms
of the series) to calculate the rms load current, the rms supply current,
and the power dissipation. Hence, calculate the bridge power factor,
seen from the supply point.

(Hint: Use the Fourier series of Problem 2.31 to calculate the coefficients
of the corresponding current terms with inductive load.)
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FIG. 20 Circuit for Problems 2.33 and 2.34
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3

Single-Phase Controlled Rectifier
Circuits

By the use of delayed triggering of a controlled rectifier the average and rms
load voltages in rectifier circuits can be smoothly adjusted.

3.1 SINGLE-PHASE CONTROLLED CIRCUITS
WITH RESISTIVE LOAD

3.1.1 Voltage and Current Relations for a Half-
Wave Controlled Rectifier

If the circuit of Fig. 3.1 is used with an arbitrary firing angle� for the SCR
switch, the waveforms obtained are shown in Fig. 3.2 for half-wave operation. The
load voltage and current consist of pieces of sinusoid defined by the relationship

e t E tL mω ω
π π
α π

( ) =
+ α

sin
, ,

, ,

3

2

…

… (3.1)

having an average value

E e t d tav L= ( )

= +( )

∫
1

2

2
1

π
ω ω

π
α

α

π

cos
Em

(3.2)
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FIG. 1 Single-phase, half-wave controlled rectifier circuit.

When� � 0, Eq. (3.2) reduces to Eq. (2.5b).
The rms valueEL of the load voltage in the circuit of Fig. 3.1 is obtained

by the use ofeL (	t) as follows

E e t d tL L
2 21

2
= ( )∫π

ω ω
α

π

(3.3)

Therefore,

I
E

R

E

RL
L m= = −( ) + 2

1

2
2 2

π
π α αsin (3.4)

Combining Eqs. (3.2) and (3.4) gives a value for the ripple factorRF

FIG. 2 Load voltage waveform for single-phase, half-wave controlled rectifier circuit
with R load and� � 60�.
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RF
E

E
L

av

=








 −

2

1

=
−( ) + ( ) 

+( )
−

π π α α1 2 2

1
1

2

/ sin

cosα (3.5)

At � � 0, the ripple factor reduces to Eq. (2.8), having a value 1.21. When�
� �/2, the ripple factor increases to 1.98. Retardation of the switching angle as
a means of controlling the average value of the load voltage therefore also results
in the undesirable effect of increasing the rms value of the ac components.

The time average power dissipation in the load is found to be

P I R

E

R

L L

m

=

= −( ) + 

2

2

4

1

2
2 2

π
π α αsin

(3.6)

The power factorPF of the single-phase, half-wave controlled rectifier circuit
can be obtained by combining Eqs. (3.1)(3.4), and (3.6):

PF
P

E I

P

S
L

s L

L

L

= =

=
−( ) +1

2

2 2

2

π α α
π

sin
(3.7)

When� � 0, Eq. (3.7) reduces to 1/�2 , which is the value for an uncontrolled
rectifier in Eq. (2.27).

Fourier coefficientsa1b1 for the fundamental or supply frequency compo-
nent of the load voltage are found to be

a e t t d t

E t t d t

E

I

bI

L

m

m

= ( )

=

=

∫

∫

1

1
α

π
ω ω ω

π
ω ω ω

cos

sin cos

π
ω ω ω

π
e t t d tL0

21
∫= ( ) sin

2αcos − 1
2π





π

2

2π

0

(3.8)
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=

=
−( ) +

∫
1

2

2 2

2

2

π
ω ω

π α α
π

α

π

E t d t

E

m

m

sin

sin
(3.9)

The peak valuec1 of the fundamental load voltage is therefore

c a b

E

I

m

= +

= −( ) + −( ) + 

1
2

1
2

2 2

4
2 1 2 2

π
α π α αcos sin

(3.10)

Correspondingly, the time phase angle�L1 between the sinusoidal supply voltage
and the fundamental component of the load voltage (and current) is

ψ

α
π α α

L

a

b1

1 1

1

1 2 1

2 2

=

= −
−( ) +

−

−

tan

tan
cos

sin (3.11)

For 0 � � � 180� the phase angle is negative. In a linear, sinusoidal circuit a
negative phase angle is associated with energy storage in a magnetic field. But
in the circuit of Fig. 3.1 no energy storage is possible. The delayed switching
causes a phase lag of the fundamental current component which represents a
power factor problem. The power factor reduction, however, is not attributable
to an energy storage phenomenon and the instantaneous voltamperes remains
positive at all times, as in any resistive circuit. Nevertheless, it is found that some
improvement of power factor can be obtained by the connection of capacitance
across the circuit terminals.

3.1.2 Power and Power Factor in Half-Wave
Rectifier Circuits

The load power can be written in the form of Eq. (2.25), using the subscriptL
for load

PL � EsIL1 cos�L1 (3.12)

Similarly, one can write an expression for the reactive voltamperesQL of the
controlled load

QL � EsIL1 sin �L1 (3.13)

where
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I
c

L1

1

2
=

(3.14)

E
E

s
m

2
=

(3.15)

The apparent voltamperesSL at the circuit terminals is given by

SL � EsIL (3.16)

But from Eqs. (3.12) and (3.13),

P Q E IL L s L
2 2 2 2

1
+ = (3.17)

It is found that (3.17) accounts for only part of the apparent voltamperesSL,
given in Eq. (3.16).

The analytical difference betweenS2
L andP2

L�Q2
L is sometimes expressed

in terms of the distortion or harmonic voltamperesDL.

S P Q DL L L L
2 2 2 2= + + (3.18)

So that

D E I IL s L L= −2 2

1 (3.19)

The power factor of this circuit can also be expressed in terms of the current
distortion factorIL1/IL and current displacement factor cos�L1. In this case, how-
ever, the expressions for distortion factor and displacement factor, in terms of
switching-angle, do not offer any advantage over Eq. (3.7).

3.1.3 Capacitance Compensation of Rectifier
Power Factor

Consider operation of the circuit with a capacitorC across the supply terminals,
Fig. 3.3. The instantaneous capacitor current is given by the continuous function

i t CE tc mω ω ω π( ) = +





sin
2 (3.20)

The instantaneous load branch current is

i t
E

R
tL

mω ω
π π
α π α

( ) =
+

sin
, ,

, ,

3

2

…

… (3.21)

By Kirchhoff’s law the instantaneous supply current is given by
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FIG. 3 Single-phase, half-wave controlled rectifier circuit with supply side capacitance.

is (	t) � iL (	t) � ic (	t) (3.22)

Because the load current and supply current are nonsinusoidal, the three branch
currents cannot be described by phasor relationships. For the capacitor compen-
sated circuit the real powerPL, terminal voltagee(	t), and the load branch current
iL (	t) are unchanged, but the power factorPF is now a function of the rms value
of the supply currentIs (not the load currentIL).

PF
P

E I
L

s s

=
(3.23)

In Fig. 3.3 the intention is that the power factorPF seen from the supply point
be improved (i.e. increased) with respect to the uncompensated valuePFL.

The rms supply currentIs is given by

I i t d ts s
2 2

0

21

2
= ( )∫π

ω ω
π

(3.24)

Substituting (3.20–3.22) into (3.23) gives

I
E

R

R

X

R

Xs
m

c c

= + − +
−( ) +









2

2 2 2 1

2

2 2

2

2

2

1 2

cos sin
/

α
π

π α α
π (3.25)

The corresponding expression for power factor is then

PF
R X R Xc c

=
−( ) + 

( ) + ( ) −( ) + −

1 2 2 2 2

2 2 2 1 2 22 2 2

/ sin /

/ / cos /

π α α π

α π π αα α π( ) + sin /2 2

( )
{ } (3.26)
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Even if the value ofC is adjusted continuously to give the best power factor for
any fixed value of�, the degree of power factor improvement realisable is only
of the order of a few percent.

Maximization of the power factor can be achieved by minimization of the
rms supply current sincePL is not affected by terminal capacitance. Differentiating
Eq. (3.25) with respect toC gives

dI

dC

E

R
R C R R

X

R

X
s m

c c

= + −





+ − +
−

2
4 2

2 1

2
2 2 2 1

2

22 2
2

2
ω α

π
α
π

πcos cos αα α
π

( ) +





















−

sin2

2

2
1

(3.27)

For Is minimum,dIs/dC � 0, which leads to the condition

1 1

2

1 2

2X
C

Rc

= = −ω α
π

cos
(3.28)

With optimum capacitance the minimum valueIsmin of Is that will supply the
specified load power is obtained by substituting the above expression forXc into
Eq. (3.25)

I
E

R

R

Xs
m

c
min

sin
= − +

−( ) +







2

2 2 2

2

2

2

π α α
π (3.29)

The optimum power factorPFmax is then given by

PF
P

E I
L

s s
max

min

=
(3.30)

3.1.4 Single-Phase Full-Wave Bridge Rectifier
Circuit

Full-wave, controlled rectification of the load voltage and current can be obtained
by use of the alternative configurations of Fig. 3.4 in which the controlled switches
are shown as thyristors. With a fixed value of switching angle and sinusoidal
supply voltage the load voltage waveform (Fig. 3.5) is defined by

e t E t E tL m mω ω π
α

ω π
π

π α
( ) = + −( )

+
sin sin

2
(3.31)
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which has an average value twice as large as Eq. (3.2) for half-wave operation

E
E

av
m= +( )

π
α1 cos (3.32)

When� � 0, Eq. (3.32) reduces to the value 2Em/� for a half sine wave. The
rms value of the load current in the circuits of Fig. 3.4 is

I
E

R R
e t d t

E

R

L
m

L

m

= = ( )

= −( ) + 

∫
1

2

2

1

2
2 2

2

0

2

π
ω ω

π
π α α

π

sin (3.33)

FIG. 4 Single-phase, full-wave controlled rectifier circuits withR load.
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FIG. 5 Load voltage (and current) waveforms for single-phase, full-wave controlled
rectifier with R load,� � 50�.

The load current waveform (Fig. 3.5) has a ripple factor obtained by substituting
Eqs. (3.32) and (3.33) into eq. (2.7)

������ ���	
� �
�

�
�

�

�
� �

�
�	 
 �
�

�

I

I
L

av

�

�



�

� �




� �  



���

�
� (3.34)

When � � 0, Eq. (3.34) reduces to the valueRF � 0.48, which was given
previously in Eq. (2.24) for uncontrolled operation.

Comparison of (3.33) with (3.4) shows that the rms value of the load current
with full-wave rectification is�2 times the value for half-wave rectification, at
any fixed firing angle. The average power dissipation in the load is given by

P P I R

E

R

s L

m

� �

� �� � ��� �	

�

�

�

�

�
� �




 � ����

L

(3.35)

which is twice the value for corresponding half-wave operation.
Operation of the rectifier circuits of Fig. 3.4 results in the supply current

waveform of Fig. 3.6, which is identical to the waveform for a single-phase ac
chopper circuit, discussed in Chapter 14. This waveform has zero average value
over any number of complete cycles and the supply current contains no dc or
even harmonic terms. The rms valueIs of the supply current is
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FIG. 6 Supply current waveforms for the single-phase, full-wave controlled rectifier with
R load,� � 50�.

I i t d ts = ( )∫
1

2 0

2

π
ω ω

π
2
s

where

i t
E

R
ts

m( ) =
+

ω ω
π π
α π α

sin
, ,

, ,

2 …

… (3.36)

The rms value is given by

I
E

R
s

m= −( ) + 2

1

2
2 2

π
π α αsin

(3.37)

The rms value of the supply current therefore has the same magnitude as the rms
value of the load current. This is to be expected since, neglecting rectifier switch
losses, the supply point power and the load power are identical.

The power factor of the full-wave, controlled rectifier circuit can be ob-
tained by substituting Eqs. (3.1)(3.35), and (3.37) into Eq. (3.16).

PF = −( ) + 
1

2
2 2

π
π α αsin (3.38)
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At � � 0, the supply point power factor is unity since the supply current is then
sinusoidal and in time phase with the supply voltage.

Comparison of Eqs. (3.35) to (3.38) shows that

PF P pu I pus s= ( ) = ( ) (3.39)

Expression (3.39) is true for any single-phase resistive circuit, irrespective of
waveform, and therefore also applies to half-wave rectifier circuits, controlled or
uncontrolled.

Because the supply voltage remains sinusoidal, the power factor of the full-
wave controlled rectifier circuit may be interpreted as a product of displacement
factor and distortion factor. This involves calculation of the Fourier components
a1b1, andc1 of the fundamental componentis1 of the supply current.

a i t t d t

E

R

b i t d

s

m

s

I
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= −( )
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∫
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2
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π
ω ω ω

π
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E

R
m

2
2 1 2 2

2 2

π
α π α αcos sin (3.42)

Coefficientc1, in (3.42), represents the peak value of the fundamental component
of the supply current. RMS supply currentIs1 therefore has the value

I
c

s1

1

2
= (3.43)

Combining Eqs. (3.18)(3.37)(3.42), and (3.43) gives a value for the current distor-
tion factor

Current distortion factor=

=
−( ) + −( ) +

I

I
s

s

1

1

2

2 1 2 2
2

π

α π α αcos sin 
−( ) + 

2

2 2π α αsin (3.44)
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The displacement factor is given by

Current displacement factor=

=










=

=

−

cos

cos tan

ψs

a

b

b

c

1

1 1

1

1

1

2 ππ α α

α π α α

−( ) +

−( ) + −( ) + 

sin

cos sin

2

2 1 2 2
2 2

(3.45)

At � � 0, both the current displacement factor and the current distortion factor
are unity resulting in unity power factor, which compares with the corresponding
value 1/�2 for uncontrolled half-wave operation in Eq. (2.27). Displacement
angle �s1 between the supply voltage and the fundamental component of the
supply current becomes progressively more lagging as the switching angle is
further retarded. The consequent displacement factor contribution to the progres-
sively decreasing power factor can be compensated by the connection of shunt
capacitance at the circuit terminals. With resistive load the current distortion
factor and current displacement factor contribute roughly equal amounts to the
circuit power factor.

An alternative to the bridge converter for producing full-wave rectification
is the push–pull converter which uses a transformer with a centre-tapped second-
ary winding, Fig. 3.7. This transformer has the same voltampere rating as the
load. If the leakage inductance of the transformer is small, the load current and
voltage, with resistive load, have the form shown in Fig. 3.5. The equations of
Sec. 3.1.3 also apply to this circuit if transformer losses are negligible. Where
an input transformer is required for isolation purposes the circuit of Fig. 3.7 is
obviously applicable. If the requirement is to effectively increase the pulse or
phase number from unity (as for single-phase, half-wave rectifiers) to two, then
a bridge circuit of the type in Fig. 3.4 is likely to be cheaper.

FIG. 7 Single-phase, full-wave rectifier circuit using a center-tapped transformer.
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3.1.5 Worked Examples

Example 3.1 A voltage supplyes � 283sin 	t is applied to a circuit
consisting of an ideal SCR, gated at� � 90�, and a 20-� resistor. Calculate the
magnitude and phase angle of the fundamental current and sketch this on the
same scale as the load current.

From Eq. (3.10) the peak value of the fundamental current is

I
E

RL
m

1 4
2 1 2 2

283

4 20
4 4 19

2 2

2

= −( ) + −( ) + 

= + =

π
α π α α

π
π

cos sin

. A

This compares with the value 14.15 A peak current for sinusoidal operation. From
Eq. (3.11) the phase angle is found to be

ψ
πL1

1 2
32 5= −





= − °−tan .

The pulses of load current with the superposed fundamental harmonic component
are given in Fig. 3.8. It should be noted that the fundamental current component
has no physical existence. It is merely an analytical concept that is found to be
useful in some aspects of circuit analysis, particularly in the consideration of
power factor. In mathematical terms the fundamental current component in Fig.
3.8 may be written

i t I t

t

L L L1 1 1

4 194 32 5

ω ω ψ

ω

( ) = +( )
= − °( )

sin

. sin .

FIG. 8 Analytical componentiL (	t) in Example 3.1;� � 90�.
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Example 3.2 A single-phase, half-wave controlled rectifier circuit has a
resistive loadR and an ideal sinusoidal supplyes � Em sin 	t. A capacitorC of
adjustable value is connected across the supply terminals. With a fixed value of
thyristor firing angle what is the value ofC that will result in maximum power
factor operation? If� � 90�, Em � 283 V, andR � 10 �, what value ofC
will give maximum power factor atf � 50 Hz? What degree of power factor
improvement is realisable by the use of capacitance compensation?

The optimum value ofC is given in Eq. (3.28). At 50 Hz,R� 10�, � � �/
2,

C =
×

=2

2000 2
50 65

π π
µ. F

With this value of capacitance,	C � 0.0159 mho andXc � 62.9�. Minimum
supply currentlsmin, from Eq. (3.29), is found to be

I smin
.= − +





=283

20

200

3956

1

2
6 36 A

In the absence of the capacitor the rms load current is obtained from Eq. (3.4)
or from Eq. (3.29), with 1/Xc � 0:

I L = =283

20
1 2 7 075/ . A

The average load power is therefore

P I RL L= = ( ) × =2 2
7 075 10 500. W

The uncompensated power factor is

PF
P

E IL
L

s L

= = ( ) ×
=500

283 2 7 075
0 353

/ .
. lagging

In the presence of optimal capacitance the power factor becomes

PF
P

E I
L

s s
max

min

.= = 0 393 lagging

The power factor has therefore been improved by 0.393/0.353, or about 11%,
due to the optimal capacitance compensation.

Example 3.3 A rectifier circuit containing two ideal diodesD and an ideal
semiconductor switch (shown as an SCR) is given in Fig. 3.9. Sketch, on squared
paper, a consistent set of waveforms for the supply voltage, the three resistor cur-
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FIG. 9 Single-phase rectifier circuit of Example 3.3.

rents, the switch currentiT, and the supply currentis if the SCR firing angle� �
60�. Write a mathematical expressionis (	t) to define the waveform of the supply
current and calculate its average value over a supply cycle in terms ofEm.

The waveforms of the various branch currents are shown in Fig. 3.10.
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( ) =
2
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1
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1
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3

2

1

20
2

2
0 0583 0 0093

π π
. .

Example 3.4 A purely resistive load is supplied with power from an ideal
single-phase supply of fixed voltage and frequency, denoted bye � Em sin 	t,
through an arrangement of four ideal diodes and an ideal SCR switch (Fig. 3.11a).
The switch is gated during every half cycle of its positive anode voltage state.
Sketch (1) the supply current waveform and (2) the load current waveform for
a switching angle� of 60�. Derive an expression for the rms value of the load
current in terms ofEm and�. What is the per-unit value of this (compared with
� � 0) when� is 60�?
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FIG. 10 Branch current waveforms for the single-phase rectifier circuit of Fig. 3.9.
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FIG. 11 Single-phase, full-wave controlled rectifier of Example 3.4;� � 50�.

The waveforms are shown in Fig. 3.11(b). Assuming ideal rectifiers

i
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m m= + − °( )
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π α
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Therefore,

I
E

R
L

m= −( ) + 2

1

2
2 2

π
π α αsin

When� � 0,

I
E

R
L

m

0 2°
=

When� � 60�,

I
E

R

E

R

E
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m m

= +( )

= =
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2
4 188 0 866

2

5 054

2 2
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π
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. .

.
.

Therefore,

I
E

R
L

m

60 2
0 897

°
= ( ).

and

and IL L Lpu
I I= =

° °60 0
0 897/ .

3.2 SINGLE-PHASE CONTROLLED RECTIFIER
CIRCUITS WITH SERIES R-L LOAD

3.2.1 Half-Wave Controlled Rectifier Circuit

An ideal sinusoidal supply voltagee� Em sin	t is applied to a seriesR-L circuit,
Fig. 3.12, in which the current level is adjusted by the controlled switching of
(for example) a thyristor. For switching angle� and phase angle� the instanta-
neous currentiL (	t) is given by

i t
E

Z
tL

m tω ω α ε α ω( ) = −( ) − −( )





+ −( )sin sin cotΦ Φ Φ

(3.46)

When� � 0, Eq. (3.46) reduces to the expression Eq. (2.72) previously deduced
for diode operation.
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FIG. 12 Single-phase, half-wave controlled rectifier with seriesR-L load.

The extinction anglex of the load current is defined by a transcendental
equation [Eq. (3.47)], obtained by puttingiL (x) � 0 in Eq. (3.46)

sin(x � �) � sin(� � �)ε�cot � (� � x) (3.47)

The conduction angle�c per cycle is given by

�c � x � � (3.48)

If x is eliminated between Eqs. (3.47) and (3.48), it is seen that

sin(�c � � � �) � sin(� � �)ε��c cot � (3.49)

Waveforms of the load voltage and current are given in Fig. 3.13 for a case when
� � �, and it may be seen that the nonsinudoidal, unidirectional current pulses
lie within the envelope of the steady-state sinusoidal component of current. A
first approximation value of�c may be obtained from the simple relation

�c � � � � � � � 
 (3.50)

where
 is of the order a few degrees for loads with� � 70�.
For 0� � � � the current pulses lie outside the sinusoidal current envelope

in a similar manner to that illustrated in Fig. 2.10. In this latter case the conduction
angle is given by the simple, approximate relation

θ π ααc < = + − + ∆Φ Φ (3.51)

Note that Eq. (3.51) is not the same as Eq. (3.50).
When� � �, the rectified current pulses become half sinusoids displaced

from the supply voltage by angle�. Calculated characteristics of the conduction
angle versus switching angle for a full range of load phase angles are given in
Fig. 3.14. The isosceles triangle at the top left-hand corner, bounded by the�
� � line and the� � 90� line, represents conditions when� � � and conduction
angles greater than� radians are realized. The scalene triangle, bounded by the
� � 0, � � 90�, and � � � lines represents the mode when� � � and
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FIG. 13 Waveforms for single-phase, half-wave controlled rectifier with seriesR-L load;
� � 90�.

conduction angles smaller than� radians are realized. For both modes of operation
the average valueIav of the rectified load current is defined in the standard manner

I i t d t

E

Z

av L

m
c c

c= ( )

= −( ) −( ) + −( )

+

∫
1

2

2
1

π
ω ω

π
θ α θ

α

θ α

cos cos sin tanΦ Φ ssin

sin tan cot

α

α ε θ

−( )

+ −( ) −

Φ

Φ Φ Φ c (3.52)
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FIG. 14 Conduction angle�c thyristor switching-angle for the single-phase, half-wave
controlled rectifier circuit.

An alternative form forIavmay be obtained by eliminating the exponential compo-
nent between Eqs. (3.52) and (3.49), but this does not appear to render any
computational advantage.

The rms valueIL of the supply current is defined by

I i t d tL L

c2 21

2
= ( )+

∫π
ω ω

α

θ α

(3.53)

The substitution of Eq. (3.46) into Eq. (3.53) yields an expression containing
exponential terms which cannot be eliminated by the use of the relationships Eq.
(3.47) or (3.49)

I
E

Z
L

m
c c c c

2
2

2
2 2

4
2 2= − − +( ) − −( )
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θ θ α θ θ ε αsin cos sin tan
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nn tan

sin sin sin sin sincot

2

4 4

α

θ θ α ε αα
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+ −( ) +( ) −−

Φ Φ

Φ Φ ΦΦ
c c ssin α −( )Φ  (3.54)
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When� � 0, Eq. (3.54) reduces to Eq. (2.63).
Conduction angle�c can be extended, and thus the average and rms load

currents increased by the use of a freewheel diode FWD across the load (Fig.
3.15). If the load is sufficiently inductive the load current will become continuous.
Instant commutation (i.e., switch-off) of the thyristor T will then occur at the
instants where the supply voltage goes negative.

In general the load current can be thought to consist of two modal elements
due to two modes of circuit operation. While the freewheel diode conducts, the
load voltage is zero and the current decays exponentially with a time constant
� L/R. Therefore, for� � 	t � 2� � �, in Fig. 3.16,

i tL

tω ε ω ω( ) =
− −R

L
cotΦ−−( )


iL 
( )
____

ε= iL 
( ) tω −−( )

(3.55)

While the switch conducts in Fig. 3.15, the diode blocks and the operation is
similar to that of Fig. 3.12. Therefore, for� � 	t � �, in Fig. 3.16, the current
is defined by the expression Eq. (3.46) plus a transient that has a valueiL (�) at
	t � � and decays exponentially thereafter.

i t
E

Z
t

i

L
m t

L
t

ω ω α ε

α ε

ω α

ω

( ) = −( ) − −( )





+ ( )

− −( )

−

sin sin cot

cot

Φ Φ Φ

Φ −−( )α (3.56)

When	t � �, the two modal current equations, Eqs. (3.55) and (3.56), are equal.
Equation (3.56) then becomes

i
E

Z
iL

m
Lπ π ε α απ α( ) = −( ) − − −( ) { }− −( )sin sincotΦ ΦΦ

(3.57)

FIG. 15 Single-phase, full-wave controlled rectifier circuit with freewheel diode.
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FIG. 16 Steady-state load current and voltage waveforms for the freewheel diode circuit
of Fig. 3.15;� � 50�.

For cyclic operationiL (�) � iL (2� � �), so that in Eq. (3.55),

iL (2� � �) � iL (�) � iL (�)ε�cot � (���) (3.58)

Equations (3.57) and (3.58) are simultaneous and can be solved to give values
for iL (�) and iL (�). For a complete supply voltage cycle� � 	t � 2� � �,
the load current is given by adding, Eqs. (3.55) and (3.56):

i t
E

Z
t

i Z

EL
m L

m

ω ω α
α

ε( ) = −( ) − −( ) −
( )














sin sinΦ Φ









+ ( ) +− −( )

α

π

ππ ε
π α

π
iL

cotΦ 2ωt

− −( )αcotΦ ωt

(3.59)

The average and rms values ofiL (	t) can be obtained from the respective defining
integrals in Eqs. (3.52) and (3.53).

3.2.2 Single-Phase, Full-Wave Controlled Circuits
Each of the circuit configurations of Fig. 3.4 can be used for full-wave rectification
of a seriesR-L load, as in Fig. 3.17. The cost of a diode switch is much less than
that of a controlled switch of the same rating, and it also does not require an
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FIG. 17 Single-phase, full-wave controlled rectifier circuits with seriesR-L load.

associated firing circuit. From the cost viewpoint therefore it is desirable to use
a circuit with few controlled switches. The single-switch circuit of Fig. 3.17b is
likely to be the most economic. For comprehensive control, however, including
the facility to act as an inverter, it is necessary to use the fully controlled bridge
circuit of Fig. 3.17d.

In the arrangement of Fig. 3.17 the two diodes freewheel the load current
when one or both of the switches is in extinction. Continuity of the load current
is enhanced, withR-L loads, by the use of a freewheel diode across the load
impedance, as shown in Fig. 3.17b–d. In many applications the load-side induct-
ance is made deliberately large to ensure a continuous flow of load current. It is
also usually desirable that the load current be largely dc (i.e., the load current
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should have the largest realizable average value) with low ripple content. The
ideal load current ripple factor, Eq. (2.11) is zero, which occurs when the load
current is pure dc.

The four-switch circuit of Fig. 3.17d has the load voltage and current wave-
forms shown in Fig. 3.18 for� � 30�, with largeL. Commutation of the two
conducting switches occurs naturally at the end of a supply voltage half cycle.
The load voltage is seen to be the full-wave equivalent of the corresponding half-
wave voltage waveform of Fig. 3.16. From Fig. 3.18 it is seen that the average
load voltage is given by

E E t d t
E

av m
m= = +( )∫

1
1

π
ω ω

π
α

α

π
sin cos (3.60)

FIG. 18 Voltage and current waveforms for the single-phase, full-wave circuit of Fig.
3.17d, largeL, � � 30�.
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Also,

Iav � Id (3.61)

The output power is dissipated in resistorR. With ideal switches and a lossless
inductorL the output power also equals the input power

Pout � Pin � I2
dR (3.62)

The input current is defined by the expression

i t I Is d dω
π
α

π
π α

( ) = −
+

2
(3.63)

The rms value of the input current is given by

I i t d t

I d t
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s s

d

d

= ( )

=

= −

∫

∫

1

2

1

2

0

2

2

π
ω ω

π
ω

π α
π

π

α

π

(3.64)

When� � 0, Is � Id. The fundamental component of the supply current is found
to have the rms magnitude

I Is d1

2 2

2
=

π
α

cos (3.65)

By inspection of the supply current waveform in Fig. 3.18, it is seen that the
displacement angle is�1 is �/2. The input power may therefore be alternatively
defined as

P EI

E I

s

d

=

=

1 1

22 2

2

cos

cos

ψ

π
α

(3.66)

Note that real or average powerP is associated only with the combinations of
voltage and current components of the same frequency. Since the supply voltage
is sinusoidal and therefore of single frequency, it combines only with the funda-
mental (supply frequency) component of the input current. The combination of
the fundamental voltage component with higher harmonic components of the
current produces time-variable voltamperes but zero average power.
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The power factor of the bridge circuit is obtained using Eqs. (3.64) and
(3.66)

PF
P

EI

E I

EI

s

d

d

=

=
−

=
−

2 2
2

2
2 2

2

2

π
α

π α

π
α

π α

cos /

cos /

π

(3.67)

When� � 0, it is seen thatPF � 2�2 /� � 0.9. The displacement factor and
distortion factor components of the power factor can be obtained via the Fourier
componentsa1b1 of is, (	t), Sec. 3.13.

When a freewheel diode is not used the symmetrical triggering of opposite
pairs of switches in Fig. 3.17d (or Fig. 3.4d) results in the waveforms of Fig.
3.19, for a highly inductive load. Compared with Fig. 3.16 the load current is
unchanged and so therefore is the power dissipation. But note that the rms value
of the supply current is increased so that the power factor is reduced. It is seen
from Fig. 3.19 that the average load voltage is given by

E E t d t
E

av m
m= =

+

∫
1 2

π
ω ω

πα

π α
sin cosα (3.68)

Also, the average voltage of the load inductor is zero so that

I I
E

Rav d
av= = (3.69)

The rms valueEL of the load voltage in Fig. 3.19 is given by

E E t d tL m
2 2 21=

+

∫π
ω ω

α

π α
sin

Or

E
E

L
m=
2 (3.70)

The harmonic nature of the load current in Fig. 3.17 could be obtained by calculat-
ing the Fourier series for the periodic functioniL (	t), for an arbitraryR-L load,
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FIG. 19 Voltage and current waveforms for the single-phase, full-wave circuit of Fig.
3.17d without freewheel diode FWD, largeL, � � 30�.

with or without the diode. Alternatively, the various harmonic terms of the Fourier
series for the periodic voltageeL (	t) (Fig. 3.18 or 3.19) can be applied since
they are valid for any load impedance. The Fourier series of the load voltage
may be written

e t E E n t

E E t E t

L av n

n

n

av

ω ω ψ

ω ψ ω

( ) = + −( )

= + −( ) + −

∑ ˆ cos

ˆ cos ˆ cos

1

2 2 42 4 ψψ

ω ψ
4

6 66

( )
+ −( ) +ˆ cosE t … (3.71)

In the case of waveformeL in Fig. 3.19a,
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When the harmonic voltage terms of Eq. (3.71) are applied to the seriesR-L load
of Fig. 3.17, the following series is obtained for the load current

i t I I n t

I I t I

L av n L L

n

av

( ) cos( )

cos( ) c

ω ω ψ

ω ψ

= + − −

= + − − +

∑ Φ

Φ
1

2 2 2 42 oos( )

cos( )

4

6

4 4

6 6 6

ω ψ

ω ψ

t

I t

− −

+ − − +

Φ

Φ …

ˆ

ˆ

ˆ

ˆ

(3.74)

whereIav is given by Eq. (3.69)
and

ˆ
ˆ

( )

ˆ
ˆ

( )

I
E

R L

I
E

R L

2

2

2 2

4

4

2 2

2
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=
+

=
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ω

ω
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…

ˆ
ˆ

( )
I

E

R n L
n

n=
+2 2ω (3.75)

Also,

Φ

Φ

2
1

4
1

2

4

=

=

−

−

tan

tan

ω

ω

L

R
L

R

…

Φn

n L

R
= −tan 1 ω

(3.76)

A close approximation to the rms currentIL for anyR-L load can be obtained by
using the square law relationship of Eq. (2.12). If the load impedance is highly in-
ductive, the harmonic terms in Eqs. (3.71)–(3.76) are negligibly small. The load
current is then constant at the valueIL or Id, which also becomes its rms valueIL.

A further application of this bridge circuit in the form of a dual converter
is described in Sec. 12.2.1.

3.2.3 Worked Examples
Example 3.5 A series semiconductor switching circuit, Fig. 3.12, has a

load in which the resistance is negligibly small. Deduce and sketch the waveforms
of the load voltage and current for a firing angle� smaller than the load phase
angle�. What are the average values of the load current and voltage?

When� � 90�, cot� � 0 and Eq. (3.46) reduces to

i t
E

Z
tL

m( ) ( cos cos )ω ω α= − +
(3.77)

The variation ofiL (	t) is shown in Fig. 3.20 for the case when� � 60�. It is
seen that the current waveform is symmetrical about� so that extinction angle
x is given by

x � 2� � �

From Eq. (3.48), therefore,

�c � 2(� � �) (3.78)

Equation (3.52) is indeterminate for� � 90�, but a solution for the time average
current can be obtained by integrating Eq. (3.77)
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FIG. 20 Voltage and current waveforms for the single-phase, full-wave controlled recti-
fier circuit with highly inductive load;� � 30�.
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When� � 0, Iav � Em/	L. The output average current is then constant at its
maximum realizable value, which represents ideal rectifier operation. The voltage
across the load inductor may be obtained by differentiating the current expression
Eq. (3.77), noting that|Z| � 	L:

e t L
di

dt
L

di

d t

E t t

L
L L

m

( )
( )

sin

ω ω
ω

ω α ω π α

= =

= < < −    for  2

The average valueEav of eL (	t) may be obtained by the usual integration method
and is found to be zero, as can be seen by inspection in Fig. 3.20.

Example 3.6 In the seriesR-L circuit of Fig. 3.12R � 25 �, L � 150
mH. The supply voltage is given bye � Em sin 	t, whereEm � 400, V at a
frequency of 50 Hz. Calculate the average load current for the SCR firing angles
(1) 30� and (2) 120�.

At 50 Hz,

ω π

ω

L

L

R

= = Ω

= = =− −

100
150

1000
47 12

47 12

25
621 1

.

tan tan
. oΦ

Z R L= + = Ω

= =
= =

2 2 2 53 34

62 0 532

62 1 88

ω .

cot cot .

tan tan .

o

o

Φ
Φ

sin(� � �) � sin(30� � 62�) � �0.53

sin(� � �) � sin(120� � 62�) � �0.85

cos(� � �) � cos(�32�) � �0.85

or

cos(� � �) � cos(58�) � �0.53

1. � � 30�: In this case� � � and an estimation of the conduction angle can
be made from Eq. (3.51)

θ π αc = + − + = + − + =Φ ∆ 180 62 30 7 219o o o o o (say)

The value�c � 219� is used as a first guess in Eq. (3.49). By iteration it is found
that �c � 216.5�. The accuracy with which�c can be read from Fig. 3.18 is
sufficient for most purposes.

cos�c � �0.804
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sin�c � �0.595

I av =
×

− − − −[ +400

2 53 34
1 804 0 85 0 595 1 88 0 53 0 85 1 88

π .
. ( . ) ( . . )( . ) . ( . ))( . )

. .

0 134

1 194 3 059

]
= ×

.3 65= A

2. � � 150�: In this case� � � and the use of Eq. (3.50) gives

θ π αc = + − −

= + − − =

Φ ∆

180 62 150 15 77o o o o o (say)

The characteristics of Fig. 3.14 suggest that this figure is high and should be
about 60�. Iteration from Eq. (3.49) gives a value�c � 64�. In Eq. (3.52),

cos�c � 0.44

sin�c � 0.9

I av =
×

+ −[ +400

2 53 34
0 56 0 53 0 9 1 88 0 85 0 85 1 88 0 5

π .
. ( . ) ( . . )( . ) . ( . )( . 552

1 194 0 346 0 413

)

. . .

]
= × = A

Example 3.7 A half-wave, controlled rectifier circuit has a seriesR-L load
in which � � tan�1 (	L/R) � 80�. The ideal single-phase supply voltage is
given bye � Em sin 	t. Explain the action for a typical steady-state cycle when
� � 60� and the circuit includes a freewheel diode (Fig. 3.15). What effect does
the diode have on circuit power factor?

The load voltage and current are shown in Fig. 3.16. The supply currentis
(	t) is given by the portions of the current curve between� → �, 2� � � →
3�, etc., noting thatis (�) � is (2� � �) � 0. The nonzero value of the load
current at	t � � is due to residual current decaying through the diode during
the extinction of the thyristor switch. In the presence of the diode, the energy
stored in the magnetic field of the inductor is dissipated in resistorR rather than
being returned to the supply. Current and power flow from the supply to the
load only occur during the conduction intervals of the thyristor. Because of the
significantly increased rms load current (compare the load currents in Figs. 3.14
and 3.16) however, the load power dissipation is significantly increased. All of
this power must come from the supply, although not at the instants of time in
which it is dissipated. The supply voltage remains sinusoidal at all times.

The power factor, seen from the supply point, is

PF
P

EI
=
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The rms supply voltageE� Em/�2 is constant. The rms supply currentI probably
increases by (say) 20%. But the power dissipation can be assessed in terms of
the rms value of the load current. ComparingiL (	t) in Figs. 3.13 and 3.16
suggests that rms valueIL is at least doubled and the power increases at least
four times. The presence of the freewheel diode therefore causes the power factor
to increase.

Example 3.8 A single-phase, full-wave bridge circuit, Fig. 3.21, has four
ideal thyristor switches and a highly inductive load. The electrical supply is ideal
and is represented bye � Em sin 	t. Sketch waveforms of the load current,
supply current and load voltage for� � 60� Calculate the rms value of the supply
current and the power factor of operation, in terms of�.

The waveforms of operation with a highly inductive load are given in Fig.
3.19. The supply current is represented by the relation

i t I Is d d( )
,

,
ω

α

π α

π α

α π
= −

+

+0

2

This has an rms value defined by

I i t d ts s= ∫
1

2
2

0

2

π
ω ω

π
( )

Therefore,

I I d t I d ts d d
2 2 2

0

1

2
= + −



+

+

∫∫π
ω ω

π α

α

α

π α
( )

,

FIG. 21 Single-phase, full-wave controlled rectifier circuit with highly inductive load.
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The rms value of the negative parts of the wave is equal to the rms value of the
positive parts so that

I I d t Is d d
2 2 21 1= = + −

+

∫π
ω

π
π α α

α

π α
( )

Therefore,

Is � Id

As � varies, the waveform ofis (	t) is unchanged and so is its rms value, but
the switchover from positive to negative value occurs at the firing points.

Power dissipation is determined by the rms value of the load current

P I R I RL d= =2 2

The power factor is found to be

PF
P

EI

I R

EI

I R

E
d

d

d= = =
2

whereE � Em �2 .
But from Eq. (3.68),

I
E

R

E

Rd
av m= =

2

π
αcos

The power factor is therefore

PF = 2 2

π
αcos

When� � 0, thePF � 2�2 /�, which agrees with the value for a full-wave
diode bridge.

Example 3.9 In the single-phase, full-wave rectifier of Fig. 3.21 the load
consists ofR � 10 � andL � 50 mH. The ideal sinusoidal supply voltage is
defined ases � 240�2 sin	t at 50 Hz. Calculate values for the average and rms
load currents, the power dissipation and the power factor at the supply terminals if
the thyristor firing angle� � 45�.

The circuit of Fig. 3.21 is seen to be a topological rearrangement of Fig.
3.17d, without the freewheel diode. The load voltage has the segmented sinusoidal
form of Fig. 3.19a for anyR-L load if the load current is continuous. The load
current will be of some waveform intermediate between that of Fig. 3.19b (which
is only valid for highly inductive loads) and the corresponding segmented sinusoi-
dal waveform (not given) obtained with purely resistive loads.
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At supply frequency the phase-angle of the load impedance is given by

�

�

=

= × ×
×

= =

−

− −

tan

tan tan . .

1

1 1100 50

1000 10
1 57 57 5

ω

π

L

R

Since� � �, the mode of operation is that of continuous load current and the
equations of the present Sec. 3.2.2 are valid.

The average load current is given by Eqs. (3.68) and (3.69):

I
E

R
Aav

m= = ×
×

× =
2 2 240 2

10
57 5 11 61

π
α

π
cos cos . .�

In order to calculate the rms load current, it is necessary to calculate its Fourier
harmonics. From Eq. (3.72), cos 2� � cos 90� � 0, and the peak values of the
lower order load voltage harmonics are

Ê2 � 56.92 V Ê4 �20.99 V Ê6 � 13.27 V

Also, in Eq. (3.62) the following impedances are offered by the load at the speci-
fied harmonic frequencies.

Z R L

Z R L

Z R L

2
2 2

4
2 2

6
2 2

2 32 97

4 63 62

6 94 78

= + ( ) =

= + ( ) =

= + ( ) =

ω

ω

ω

.

.

.

�

�

�

The peak values of the current harmonics are therefore

ˆ .

.
.I A2

56 92

32 97
1 726= =

ˆ .

.
.I A4

20 99

63 62
0 33= =

ˆ .

.
.I A6

13 27

94 78
0 14= =

From Eq. (2.12) the rms value of the load current is given by

I I I I IL av
2 2

2
2

4
2

6
21

2
= + + + +( )ˆ ˆ ˆ …

and
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I L = ( ) + ( ) + ( ) + ( )





= + =

11 61
1

2
1 726 0 33 0 14

134 79 1 554 11

2 2 2 2
. . . .

. . ..68A

It is seen that the effects of the fourth and sixth harmonic current components
on the total rms value are negligible. The load power is seen, from Eq. (3.64),
to be

P WL = ( ) × =11 68 10 1364 22
2

. .

and this is also the power entering the circuit terminals, neglecting rectifier ele-
ment losses. The rms value of the supply current is equal to the rms value of the
load current. The power factor at the supply point is, therefore,

PF
P

E Is
L

s s

= =
×

=1364 22

240 11 68
0 487

.

.
.

This compares with the value cos� � cos 57.5� � 0.537 for the load impedance
alone.

PROBLEMS

Single-Phase Controlled Rectifier Circuits: R Load

3.1 A single controlled rectifier controls the current to a resistive load in a
single-phase sinusoidal circuit (Fig. 3.1). Derive expressions for the aver-
age value and rms value of the load current at an arbitrary firing angle�
if e� Em sin	t. What is the lowest value of ripple factor for this system?
Sketch the variations ofIav and Irms versus firing angle.

3.2 Sketch the currents for the circuit of Fig. 3.22 ife � Em sin 	t; R1 � R2

and� � 60�. What is the average value of the supply current ifEm �
100 V andR1 � R2 � 10 �?

3.3 In the circuit of Fig. 3.22;R1 � R2 � 10 � and the supply voltage ise
� Em sin 	t. Sketch, roughly in proportion, corresponding waveforms of
the supply voltage and the three branch currents for a typical supply voltage
cycle if � � 90�. Calculate the power dissipation in the circuit for firing
angles of 0� and 180� and thereby estimate the dissipation when� � 90�.
What harmonic frequency components would you expect to find in the
supply current?

3.4 The circuit of Fig. 3.23 consists of identical resistorsR1 � R2 � 10 �,
an ideal diodeD, and an ideal SCR designated T supplied from an ideal
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FIG. 22 Circuit for Problem 3.3.

power supplye � Em sin 	t. Sketch, roughly to scale, corresponding
waveforms of the supply voltage and the currents inR1,R2, D, andT if the
thyristor firing angle is 90�. What is the average value of the current in
R1 for a supply cycle?

3.5 Derive expressions for the magnitude and phase angle of the fundamental
(i.e., supply frequency) component of the voltage for the circuit of Fig.
3.1.

3.6 For the half-wave rectifier circuit of Fig. 3.1 derive an expression for the
nth harmonic of the current in terms of�. If � � 90�, what are the values
of the first, second, and third harmonics?

FIG. 23 Circuit for Problem 3.4.
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3.7 Derive an expression for the average power dissipation in the half-wave
resistor circuit of Fig. 3.1. At� � 90�, what proportion of the total power
dissipation is associated with the fundamental component of current?

3.8 An ideal voltage sourcee � Em sin 	t supplies power to a single-phase,
half-wave controlled rectifier circuit with resistive load (Fig. 3.1). Obtain
an expression for the circuit power factor in terms ofEm and thyristor
switch firing angle�.

3.9 What is the effect on the supply current of connecting a capacitor across
the supply terminals of a thyristor controlled resistive circuit (Fig. 3.3)?
If Xc � R, is there a value of firing angle� that results in unity power
factor operation?

3.10 A l00 � resistor is supplied with power from an ideal voltage sourcee
� 330 sin 314t via a thyristor. At what value of firing angle� is the power
dissipation one-third of the value for sinusoidal operation?

3.11 Show that the power factor of the single-phase, half-wave rectifier circuit
of Fig. 3.1 is given by

PF =
−( ) +2 2

2

π α α
π

sin1

2

3.12 For the half-wave rectifier with resistive load (Fig. 3.1), show that the
phase-angle of the fundamental component of the current, with respect to
the supply voltage, is given by

ψ α
π α α1

1 2 1

2 2
= −

− +
−tan

cos

( ) sin

Sketch the variation of�1 with firing angle� for 0 � � � �.
3.13 The single-phase half-wave rectifier circuit of Fig. 3.1 is compensated by

a terminal capacitance as in Fig. 3.3, whereXc � R. Sketch waveforms
of the load current, capacitor current, and supply current for� � 90�. Is
it possible to assess the effect on the overall power factor from a considera-
tion of the three waveforms?

3.14 Derive expressions for the current distortion factor and current displace-
ment factor of the half-wave rectifier circuit of Fig. 3.1. Sketch the varia-
tions of these for 0� � � �. If a power factor correction capacitor is
used withXc � R, derive new expressions for the distortion factor and
displacement factor of the input current. How has the connection of the
capacitor affected (a) the distortion factor and (b) the displacement factor?
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FIG. 24 Circuit for Problem 3.15.

3.15 A thyristor switchT controls the load current in the resistor circuit of Fig.
3.24. What is the effect on the load current of connecting diodeD in the
circuit?

3.16 A resistive load is supplied through a thyristor connected in the secondary
circuit of a single-phase transformer with low leakage reactance (Fig. 3.25).
Sketch the forms of the load current, supply current, and thyristor voltage
over a supply voltage period.

3.17 A full-wave controlled rectifier (Fig. 3.11a) operates from a sinusoidal
supplye � Em sin 	t. Derive an expression for the ripple factor (RF) of
the load voltage with resistive load. Calculate values of this at the firing
angles 0, 30�, 60�, 90�, 120�, and 180�, and sketch the variation ofRF
versus�.

3.18 Show that the power factor of a single-phase, full-wave controlled bridge
rectifier circuit with resistive load is given by

FIG. 25 Circuit for Problem 3.16.
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PF = −( ) + 
1

2
2 2

π
π α αsin

Sketch the variation of PF with firing-angle� over the range 0� � � �.
3.19 Show that the distortion factor and the displacement factor of the supply

current to the full-wave bridge circuits of Fig. 3.4 are given by Eqs. (3.44)
and (3.35), respectively. What are the values of the distortion factor, dis-
placement factor, and power factor at� � 90�? What value of shunt
connected terminal capacitance would give the maximum realistic im-
provement of power factor at� � 90� if Em � 400 V, R � 100 �, and
f � 50 Hz?

3.20 The single-phase bridge rectifier circuit of Fig. 3.4b has the load current
waveform of Fig. 3.5. Calculate the average and rms values of this wave-
form and hence calculate the rms value of the ac ripple components.

3.21 In the circuit of Fig. 3.4(d) the current in load resistorR is controlled
by the switching of two ideal thyristors. The ideal power supply has an
instantaneous voltagee � Em sin 	t.

a. Sketch waveforms of the load current and supply current when each
thyristor is gated at� � 90� of its respective anode voltage.

b. If one thyristor fails by open circuit, sketch the resulting supply current
waveform, and calculate its average value at� � 90� if R � 10 �
andEm � 100 V.

3.22 The single-phase bridge circuits of Fig. 3.4 are alternative configurations
for achieving the same circuit performance. What are the advantages and
disadvantages of each circuit?

3.23 The single-phase, full-wave bridge circuit of Fig. 3.4(d) has a resistive
load. Opposite pairs of thyristors in the bridge arms are triggered symmetri-
cally at a firing-angle� � 45�. Sketch waveforms of the load current,
supply current, and load voltage.

3.24 For the single-phase, full-wave bridge of Problem 3.23, obtain expressions
for the average and rms values of the load current and hence the load
current ripple factor. Calculate the power dissipation ife � Em sin 	t,
whereEm � 400 V, R � 100 �, and� � 45�.

3.25 Calculate the Fourier coefficientsa andb for the fundamental component
of the line current in Problem 3.23. Hence calculate the fundamental supply
current and the distortion factor in terms ofEm, R and�.

3.26 Obtain an expression for the power factor of the resistively loaded, full-
wave, single-phase bridge of Problem 3.23. Sketch the variation of power
factor with firing angle for 0� � � �.
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Single-Phase Controlled Rectifier Circuits: R-L Load

3.27 Deduce and sketch waveforms of the current, inductor voltage, and rectifier
voltage when a thyristor is gated at angle� in the seriesR-L circuit of
Fig. 3.12 if � � �, where� � tan�1 (	L/R)

3.28 Derive expressions for the average and rms values of the rectified current
pulses in the circuit of Fig. 3.12 for an arbitrary value of firing angle�
(� �).

3.29 For the single-phase seriesR-L circuit (Fig. 3.12), show that if� � �,
the current extinction occurs at an angle	t � x after the supply voltage
is zero, where sin(x � �) � sin(� � �)ε�cot �(x � �). Calculate the
value ofx if � � 30� and� is (a) 60�, (b) 90�, and (c) 120�.

3.30 Sketch the current waveform for a seriesR-L circuit controlled by a series
thyristor. If the load phase angle� to fundamental currents is 60�, what
is the approximate extinction angle if� � 30�? What difference is made
to the current waveforms by the connection of freewheel diode as in Fig.
3.15?

3.31 In the circuit of Fig. 3.12,R � 10 � andL � 50 mH. If es � 240�2
sin 	t at 50 Hz, calculate (a) average and rms values of the current, (b)
ripple factor, (c) power dissipation, (d) power factor for a thyristor firing
angle� � 60�.

3.32 In Problem 3.31 a flywheel diode is now connected across the load imped-
ance, as in Fig. 3.15. Calculate the average value of the load current.

3.33 For the circuit of Fig. 3.15, sketch waveforms of the supply voltage, thyris-
tor voltage, load voltage, and the three branch currents for� � 60�, assum-
ing continuous load current.

3.34 Repeat Problem 3.33 for a case when the combination of thyristor firing
angle and load impedance phase angle are such that the load current is
discontinuous.

3.35 In the circuit of Fig. 3.15,R � 10 �, L � 50 mH ande � Em sin 	t at
50 Hz. If a capacitor is connected across the supply terminals, is this likely
to give any power factor correction?

3.36 A single-phase, full-wave bridge (Fig. 3.17d) has a highly inductive load.
Sketch waveforms of the load voltage and current (a) with the freewheel
diode and (b) without the freewheel diode. In each case derive an expres-
sion for the average load voltage in terms ofR, �, andEm if e � Em sin
	t.
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3.37 For the single-phase bridge circuit of Fig. 3.17d, with highly inductive
load, obtain an expression for the rms value of the supply current and
hence show that the power factor is given by Eq. 3.67.

3.38 For the single-phase, full-wave bridge circuit of Fig. 3.17d with highly
inductive load, calculate the Fourier coefficientsa1 andb1 of the fundamen-
tal component of the supply current. Hence calculate the distortion factor,
displacement factor, and power factor.

3.39 For the single-phase full-wave bridge circuit of Fig. 3.17d, a capacitorC
is connected across the terminals of the ideal supply. If the capacitor is of
such a value thatIc � Id, sketch waveforms of the supply currentis (	t)
with and without the capacitor. Do the waveforms indicate if any power
factor correction is likely to be obtained?

3.40 A single-phase, full-wave bridge circuit (Fig. 3.17d) has the waveforms
of Fig. 3.18 when the load is highly inductive. Obtain expressions for the
rms valueIs1 and displacement angle�1 of the fundamental component
is1 (	t) of the supply current. Sketch fundamental componentis1 (	t) onto
the waveformis (	t) in Fig. 3.18c.

3.41 Use the values ofIs1 and�1 from Problem 3.40 to obtain an expression
for the reactive voltamperesQ entering the circuit whereQ � EIs1 sin �1.

3.42 The total apparent voltamperesSentering the circuit of Fig. 3.17 from the
sinusoidal supply is given by

S2 � E2I2
s � P2 � Q2 � D2

whereP is the average power,Q is the reactive voltamperes, andD is the
distortion (or harmonic) voltamperes. Show that for a highly inductive
load the distortion voltamperes is given by

D E Id
2 2 2

2
28

2
= − −





π α
α π

α
cos

3.43 A single-phase bridge circuit (Fig. 3.21) is supplied from an ideal supply
e � Em sin 	t. If the load is highly inductive, deduce the waveform of
the supply current and calculate the Fourier componentsa1 andb1, of its
fundamental component. Hence derive expressions for the distortion factor,
displacement factor, and power factor.

3.44 Repeat Problem 3.40 for the circuit of Fig. 3.21.

3.45 Repeat Problem 3.41 for the circuit of Fig. 3.21.

3.46 Repeat Problem 3.42 for the circuit of Fig. 3.4d and hence show that
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D E Id
2 2 2
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1
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π

3.47 Calculate the Fourier coefficientsa1 and b1 for the load voltage of Fig.
3.19a. Hence show that thenth harmonic is given by Eq. (3.72) with the
phase-angle given by Eq. (3.73).

3.48 In the single-phase, full-wave rectifier of Fig. 3.17d the load impedance
elements areR � 20 � andL � 100 mH. The supply voltage ises �
240 �2 Em sin 	t at 50 Hz. If the firing angle� � 30�, calculate (a)
values of average and rms currents, (b) average power dissipation, and (c)
power factor. Use the Fourier series method.

3.49 A single-phase, full-wave bridge rectifier circuit (Fig. 3.21) has a seriesR-
L load of phase angle� � 60�. If the thyristor switches are symmetrically
triggered at� � 30�, sketch the load current and load voltage waveforms,
assuming ideal sinusoidal supply.

3.50 For Problem 3.49, how do the average and rms values of the load current
waveform compare with corresponding values obtained from the half-wave
circuit of Fig. 3.12?
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Three-Phase, Half-Wave,
Uncontrolled (Diode) Bridge
Rectifier Circuits

Three-phase electricity supplies with balanced, sinusoidal voltages are widely
available. It is found that the use of a three-phase rectifier system, in comparison
with a single-phase system, provides smoother output voltage and higher rectifier
efficiency. Also, the utilization of any supply transformers and associated equip-
ment is better with polyphase circuits. If it is necessary to use an output filter
this can be realized in a simpler and cheaper way with a polyphase rectifier.

A rectifier system with three-phase supply is illustrated by the general
representation of Fig. 4.1. The instantaneous load voltageeL (	t) may have an
amplitude ripple but is of fixed polarity. The output currentiL (	t) is unidirectional
but not necessarily continuous. In rectifier operation one seeks to obtain the
maximum realizable average values of load voltage and current. This implies
minimum load current ripple. An ideal rectifier circuit results in a continuous
load current of constant amplitude and therefore constitutes an ideal dc supply.
In order to illustrate the principles of polyphase rectifier operation some simple
cases of three-phase diode rectifiers are chosen. The diode elements are assumed
to be ideal voltage-actuated switches having zero conducting voltage drop.

4.1 RESISTIVE LOAD AND IDEAL SUPPLY

Figure 4.2a shows a three-phase, half-wave uncontrolled rectifier. The supply
phase voltages are presumed to remain sinusoidal at all times which implies an
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FIG. 1 General representation of a three-phase rectifier system.

ideal, impedanceless supply. The arrangement of Fig. 4.2a is electrically equiva-
lent to three-single-phase, half-wave diode rectifiers in parallel, with a common
load R, in which the three supply voltages are mutually displaced in time phase
by 120�.

eaN � Em sin 	t (4.1)

ebN � Em sin(	t � 120�) (4.2)

ecN � Em sin(	t � 240�) (4.3)

Since the circuit contains no inductance, it is not necessary to consider time
derivatives of the currents and the operating waveforms can be deduced by inspec-
tion.

Some waveforms for steady-state operation are given in Fig. 4.2. Consider
operation at a sequence of intervals of time. The terminologyt � 0� means the
moment of time immediately prior tot � 0. Similarly, t � 0� refers to the
instant of time immediately followingt � 0.

At t � 0, eaN andebN are negative;ia � ib � 0. DiodeDc is conducting
ic so that the common cathode has the potential of pointc. DiodesDa and Db

are reverse-biased.
At t � 0�, eaN � 0 andebN remains negative. VoltageecN remains more

positive thaneaN so that the common cathode still has higher potential than points
a andb. DiodesDa andDb remain in extinction.

At t � 30�, eaN � ebN � positive, andebN remains negative and so diode
Db remains in extinction

At t � 30��, eaN is more positive thanecN. Pointa is higher in potential
than the common cathode so thatDa switches into conduction. The common
cathode then has the potential of pointa. The cathode ofDc is then of higher
potential than the anode so thatDc switches off.

The switching sequence described above is cyclic, and a smooth transfer
is effected by which the three-phase supply lines are sequentially connected to
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FIG. 2 Three-phase, half-wave diode rectifier with resistive load: (a) circuit connection,
(b) phase voltages at the supply, (c) load current, and (d) supply currents.
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the load. Each diode is, in turn, extinguished by natural commutation due to the
cycling of the supply voltages. A supply current waveform consists of the middle
pieces of the corresponding positive half-wave with a conduction angle of 120�.
Instantaneous supply currentia(	t) (Fig. 4.2d), for example, is defined by

i
Em

R
ta =

+

+
sin

/ , / , ...

/ , / ,...
ω

π π π

π π π

5 6 5 6 2

6 6 2 (4.4)

It can be seen in Fig. 4.2c that the load current contains a ripple of three times
supply frequency, and consequently, this form of rectifier is sometimes known
as athree-pulsesystem. The average valueIav of the load current may be obtained
by taking the average value of any 120� interval in Fig. 4.2c or of certain 60�
intervals.

I i t

E

R
t

av L
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=

=

average value of 
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ω
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90oo

o

o

=

=
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∫
6

2

3 3
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0 827
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π
ω ω
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E

R
t d t

E

R
E

R

m

m

m

sin

. (4.5)

Similarly, the average load voltage is seen to be

E E E I Rav m av av= = =3 3

2 0π (4.6)

It is of interest to compare the average current value with the corresponding
values 0.318� (Em/R) for single-phase, half-wave operation [Eq. (2.6)] and
0.637� (Em/R) for single-phase, full-wave operation (Example 2.1).

The rms value of the load current is

I
E

R
t d t

E

R
E

R

L
m

m

m

=

= +

=

∫
6

2

4 3 3

8

0 841

2

2
2

30

90

π
ω ω

π
π

sin

.

o

o

(4.7)
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The load dissipation is therefore

P I R
E

R

E

RL L
m m= = +







 =2

2 24 3 3

8

1

2

π
π (4.8)

From the waveforms of Fig. 4.2d it can be seen that the rms valueIa of the supply
current is given by

I
E

R
t d ta

m2
2

230

150 21

2
= ∫π

ω ω
o

o

 sin

this gives

I
E

Ra
m= 0 485.

I I Ib c s= = = (4.9)

Comparison of Eqs. (4.7) and (4.9) shows thatIs � IL/�3.
The power factor of the three-phase, half-wave rectifier is given by

PF
P

E I
L

s s

=
3 (4.10)

Substituting (4.8)(4.9) into (4.10) gives

PF
E R

E E R

m

m m

=
( )×( )

( )× ×( )
=

1 2

3 2 0 485
0 687

2/ /

/ . /
.

(4.11)

For the line current waveformia in Fig. 4.2d it is found that the Fourier coefficients
of the fundamental component are given by

a

b
E

R

c
E

R

m

m

1

1

1

1

0

0 471

0 471

0

=

=

=

=

.

.

ψ o (4.12)

The current displacement factor cos�1 of ia (	t) is therefore unity, and the
power factor, Eq. (4.10), is entirely attributable to distortion effects rather than
displacement effects. Part of the fundamental harmonic componentia1 (	t) is
shown in Fig. 4.2d and is, because�1 � 0, in time phase with its phase voltage
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eaN. This was also true in the single-phase, half-wave diode rectifier with resistive
load described in Sec. 2.1.2. Because cos�1 � 1, no power factor correction of
this displacement factor can be realized. Any power factor improvement would
have to be sought by increasing the distortion factor (i.e., by reducing the degree
of distortion of the supply current waveform).

The ripple factor for the load current waveform of Fig. 4.2c is obtained by
substituting values of Eqs. (4.5) and (4.7) into Eq. (2.11).

RF
I

I
L

av

=








 −

= − =

2

1

1 034 1 0 185. . (4.13)

The value 0.185 in Eq. (4.13) compares very favorably with values 1.21 for the
single-phase, half-wave rectifier and 0.48 for the single-phase, full-wave rectifier,
with resistive load.

4.1.1 Worked Examples

Example 4.1 A three-phase, half-wave, uncontrolled bridge circuit with
resistive loadR � 25 � is supplied from an ideal, balanced three-phase source.
If the rms value of the supply voltage is 240 V, calculate (1) average power
dissipation, (2) average and rms load currents, and (3) rms supply current.

The circuit diagram is shown in Fig. 4.2a. It is customary to specify a three-
phase voltage supply in terms of its line-to-line rms value. In the present case
the rms voltage per phase is

Es = =240

3
138 6. V

The peak supply voltage per-phase is therefore

E Em s= = =2 240
2

3
196 V

From Eq. (4.5), the average load current is

Iav = × ×
×

=0 827 240 2

25 3

.
6.48 A

Similarly, the rms load current is given by Eq. (4.7)

I L = × ×
×

=0 841 240 2

25 3

.
6.59 A
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The load power dissipation is

PL � I2
L � 1.086-kW

In comparison, it is of interest to note that three 25-� resistors connected in
parallel across a single-phase 240 V supply would dissipate 6.912 kW. The rms
value of the supply current is obtained from Eq. (4.9).

I a = × ×
×

=0 485 240 2

25 3
8

.
.3 A

Example 4.2 For the three-phase, half-wave rectifier of Example 4.1, cal-
culate the input voltamperes and the power factor. Is any correction of the power
factor possible by energy storage devices connected at the supply terminals?

The rms supply current per phase is, from Eq. (4.9).

I s = × ×
×

=0 485 240 2

25 3
8

.
.3 A

The rms supply voltage per phase is given, in Example 4.1, byEs � 138.6 V.
For a three-phase load drawing symmetrical supply currents the input voltamperes
is therefore

S � 3EsIs � 1.580 kVA

The load power dissipated is all drawn through the supply terminals and is seen,
from Example 2.1, to be

PL � Ps � 1.086 kW

The power factor is therefore

PF
P

S
s= = =1 086

1 580
0 687

.

.
.

This value of power factor is independent ofEs andR and may also be obtained
directly from Eq. (4.11).

It is shown in Sec. 4.1.1 that the displacement factor cos�1 is unity. This
means that the displacement angle�1 is zero and that the fundamental supply
current is in time phase with its respective voltage. There is therefore no quadra-
ture component of the fundamental current and no power factor correction can
be accomplished by the use of energy storage devices (which draw compensating
quadrature current).

Example 4.3 For the three-phase, half-wave rectifier circuit of Fig. 4.2
calculate the displacement factor and distortion factor at the supply point and
hence calculate the input power factor
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Take phasea as the reference phase. Currentia (	t) is given by Eq. (4.4).
Coefficientsa1 andb1 of the fundamental component of the Fourier Series are
given by

a i t t d t
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The peak magnitudec1 of the fundamental componentia1 (	t) of ia (	t) is there-
fore

c a b
E

R
m

1 1
2

1
2 0 471= + = .

Sincea1 � 0, the phase angle�1 is also zero

ψ1
1 1

1

0=








 =−tan

a

b

= =

=

cos .ψ1 1 0

1
I

I
a

a

Displacement factor

Distortion factor

The rms value of the fundamental supply current component is given by

I
E

R

E

Ra
m m

1

0 471

2
0 333= =.
.
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The ms value of’ the total supply current per phase is given by Eq. (4.8)

I
E

Ra
m= 0 485.

Therefore, the distortion factor is given by

= =0 333

0 485
0 687

.

.
.Distortion factor

The system power factor is therefore

PF � (distortion factor)(displacement factor)� 0.687

which agrees with Example 4.2

4.2 RESISTIVE LOAD WITH TRANSFORMER
COUPLED SUPPLY

In some applications a three-phase rectifier circuit is fed from the star-connected
secondary windings of a transformer, as in Fig. 4.3.

The ratio load power/transformer secondary voltamperes is sometimes re-
ferred to as thesecondary utilization factor. But, for a star–star-connected trans-
former, the primary voltamperes is equal to the secondary voltamperes so that
the above ratio is then more familiarly seen as the power factor of the trans-

FIG. 3 Three-phase, half-wave diode rectifier fed from transformer source.
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former–rectifier–load combination. The primary windings of a rectifier trans-
former also may be connected in delta to provide a path for triplen harmonic
currents. Many different transformer connections have been used, and they are
characterized by particular waveforms, requiring relevant ratings of the trans-
former windings. For example, two three-phase, half-wave secondary connections
may be combined via an interphase transformer winding, as shown in Fig. 4.4.
This results in a performance known assix-pulse operation, described in Chapter
6.

The great disadvantage of the circuit of Fig. 4.2a is that a direct current
component is drawn through each supply line. With transformer coupling (Fig.
4.3) the dc components in the secondary windings could saturate the transformer
cores. This may be avoided by the use of a zigzag connection in which the dc
magnetomotive forces of two secondary windings on the same core cancel out.

FIG. 4 Double-star or interphase transformer connection to produce six-pulse operation.
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The half-wave bridge is of limited practical value in industry but is very useful
as an educational aid in understanding the basic operation of polyphase bridge
circuits.

4.3 HIGHLY INDUCTIVE LOAD AND IDEAL
SUPPLY

If the load resistorR in the three-phase, half-wave circuit, has a highly inductive
load impedance L in series (Fig. 4.5a), this smoothing reactor absorbs most of
the load voltage ripple. Although this ripple can never be entirely eliminated, the
load current and the voltage across the load resistor are virtually constant (Fig.
4.5d). The instantaneous load voltage retains its segmented sinusoidal form (Fig.
4.5c), as with resistive load.

For the load branch

e t e t e t

i R L di dt
L R l

L L

( ) ( ) ( )

/

ω ω ω= +
= + (4.14)

It is seen from Fig. 4.5c that

e t E t E t E tL m m m( ) sin sin( ) sin( )ω ω ω ω= + − + −
30 150 0o

o

o

o150 270
120 240

,, 270

30  

o

o o, 360

(4.15)

With a large series inductance the load current becomes very smooth with an
almost constant value I given by

I
E

R

E

R

E

Rav
av m av= = =3 3

2
0

π (4.16)

which is identical to Eq. (4.5) for resistive load. But the instantaneous load voltage
eL (	t) may be thought of as consisting of its average valueEav plus a ripple
component (i.e., a nonsinusoidal alternating component),er (	t):

eL (	t) � Eav � er (	t) (4.17)

Now with a constant load current (Fig. 4.5d), its instantaneous, average, rms, and
peak values are identical.

i t I I
E

RL av L

av
( )ω = = = 0

(4.18)

Comparing Eqs. (4.14) and (4.17), noting thatiL � Iav shows that
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FIG. 5 Three-phase, half-wave diode rectifier with highly inductive load: (a) circuit
connection, (b) supply phase voltages, (c) load voltage, (d) load current, and (e) supply
currents.
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e t L
di

dt
L

di

d tr
L L( )ω ω

ω
= = (4.19)

The time variation ofeL (	t) in Fig. 4.5c, above and below theEav value, is the
componenter (	t), and this falls entirely on the inductorL. Instantaneous ripple
voltageer (	t) can also be expressed in terms of the flux� associated with the
inductor

e t N
d

dt
L

di

dtr
L( )ω ϕ= = (4.20)

The flux is therefore given by

ϕ = ∫
1

N
e dtr (4.21)

which is the net area shaded in Fig. 4.5d. The time average values of the inductor
voltageer (	t) and flux�(	t) are zero so that the two respective shaded portions
represent equal areas and equal values in volt-seconds.

Note that the instantaneous inductor voltageer (	t) is only zero at six
instants in each supply voltage cycle and not at every instant as would be the
case if a pure direct current was injected into a pure inductor.

As with resistive load, the supply current pulses (Fig. 4.5e) have a conduc-
tion angle of 120�. The rms valueIa of the supply currents is related to the average
load current by

I I d t
I I

a av
av L= = =∫

1

2 3 3
2

30

150

π
ω

o

o

(4.22)

Combining Eqs. (4.5) and (4.22) gives

I
E

R

E

Ra
m m= =3

2
0 477

π
. (4.23)

which is about 2% lower than the value 0.485Em/R for resistive load, Eq. (4.9).
All the average power dissipation in the circuit is presumed to occur in the load
resistor. Therefore,

P I R I R
E

R

E

RL av
m m= = =









 =2 2

2
2 23 3

2
0 684

π
.L

(4.24)

The circuit power factor is therefore given by
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PF
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R

E E R

m

m m

=
( )

( )( )( )
=

3 3 2

3 2 3 2
0 675

2 2

/

/ / /
.

π

π (4.25)

which is marginally lower than the corresponding value 0.687, Eq. (4.10), with
resistive load. It should be noted that the value of the power factor is independent
of voltage level and of load impedance values. A comparative summary of some
of the properties of the three-phase, half-wave, uncontrolled bridge is given in
the top half of Table 4.1
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4.3.1 Worked Examples

Example 4.4 A three-phase, half-wave diode bridge is supplied from an
ideal three-phase voltage source. Calculate the ripple factor of the load voltage,
the supply current and load current with (1) resistive load and (2) highly inductive
load

The load voltage waveform for an ideal bridge with ideal supply voltages
is shown by Fig. 4.5c for both resistive and inductive loads. For this waveform,
from Eq. (4.16),

E I R
E

Rav av
m= = 0 827.

Also, from Eq. (4.6), the rms valueEL of the load voltage is

E
E

RL
m= 0 841.

The ripple factor of the load voltage is therefore

RF
I

I
L

av

=








 − =

2

1 0 185.

This low value is consistent with the relatively smooth waveform of Fig. 4.5c.
1. For resistive load, the load current ripple factor is also equal to 0.185.
For the supply current with resistive load, the rms value, Eq. (4.8) is

I
E

Ra
m= 0 485.

The average value of the supply current waveform (Fig. 4.2d), is one third the
average value of the load current waveform (Fig. 4.2c). From Eq. (4.5),

I
E

R

E

Ra
m m

av
= =0 827

3
0 276

.
.

With resistive load the supply current ripple factor is therefore

RF
I

I
L

aav

=








 − =

2

1 1 44.

This high value is consistent with the high value (0.471Em/R) of the fundamental
ac component ofis (	t) shown in Fig. 4.2d.
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2. With highly inductive load (Fig. 4.5), the rms supply current [Eq. (4.23)]
is

I
E

Ra
m= 0 477.

The average value of the supply current is one third the average value of the load
current [Eq. (4.16)]:

I
E

R

E

R

E

Rav
m av m= ⋅ = =3

2 3
0 2760

π
.

With highly inductive load the supply current ripple factor is therefore

RF = 





− =0 477

0 276
1 1 41

2
.

.
.

The effect of the load inductance is seen to reduce the supply current ripple
factor only marginally, because the discontinuous current waveform is mainly
attributable to natural switching by the diode elements.

Example 4.5 A three-phase, half-wave diode bridge with a highly induc-
tive load is supplied from an ideal, three-phase source. Determine the waveform
of a diode voltage and calculate the diode rms voltage rating.

Consider the circuit of Fig. 4.5a. During the conduction of currentia (	t),
the voltage drop on diodeDa is ideally zero. WhileDa is in extinction, its anode
is held at potentialeaN and its cathode is held at eitherebN or ecN depending on
whetherDb or Dc is conducting, respectively. In Fig. 4.5 the following voltages
pertain to parts of the cycle

0 30

30 150 0

150 270

< < = − =

< < =

< < =

ω

ω

ω

t e e e e

t e

t e e

D aN cN ac

D

D aN

a

a

a

o

o o

o o −− =

< < = − =

e e

t e e e e

bN ab

D aN cN aca
270 360o oω

The line voltageseac andeab are �3 times the magnitude values of the phase
voltages and result in the diode anode-cathode voltage waveform shown in Fig.
4.6, which can be deduced from the three-phase line voltage waveforms.

The rms value of waveformEDa
(	t) in Fig. 4.6c may be obtained from

E E t d tD ma
= −



∫

2

2
3 30

150

270
2

π
ω ωsin( )o

o

o
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FIG. 6 Waveforms for operation of a three-phase, half-wave diode rectifier with highly
inductive load.
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Using radian values for the angle terms, this becomes

E ED ma

2 23 3

2

1

4

3

2

3

2
= − +





















π

From which,

EDa
� 0.64Em

This value is sketched in Fig. 4.6c and looks reasonable. For design purposes a
more relevant property of the diode is the peak reverse voltage (PRV) that it is
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required to withstand. In this case, it is clear that the PRV has a magnitude of
�3Em. The reverse (i.e., cathode–anode) voltage waveform of diodeDa will be
the reverse of waveformEDa

in Fig. 4.6.

Example 4.6 A three-phase, half-wave rectifier is fed from an ideal three-
phase supply of value 400 V at 50 Hz. The load current is maintained constant
at 50 A by the use of a suitable load side inductor. If the conducting voltage drop
of the diodes is 1 V, calculate the required diode ratings and the value of the
load resistor.

The diode peak reverse voltage rating is the peak value of the line voltage.

E(PRV) � 400 �2 � 566 V

The average load current is specified as

Iav � 50 A

The supply current pulses in Fig. 4.5 have an rms value given by Eq. (4.22)

I
I

a
av= =
3

28 9. A

The conducting voltage drop on the bridge diodes has no effect on their voltage
or current ratings.

Now the average load voltage is given, from Eq. (4.16), by

E Eav m= 3 3

2π

whereEm is the peak phase voltage. In this caseEm � 400 �2/�3 so that

Eav = − =3

2
400 2 1 269

π
V

From Eq. (4.16),

R
E

I
av

av

= = = Ω269

50
5 38.

4.4 HIGHLY INDUCTIVE LOAD IN THE PRESENCE
OF SUPPLY IMPEDANCE

An electrical power supply is not usually a perfect voltage source because it
contains series impedance. The action of drawing current from the supply into a
resistive or inductive load causes the supply voltage at the terminals to reduce
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below its no-load value. In public electricity supply undertakings, the generator
voltage level is usually automatically boosted to provide constant voltage at a
consumer’s terminals when load current is drawn from the supply. The series
impedance of an electricity supply system is usually resistive-inductive, being
created by transformers, cables, and transmission supply lines. In transformer-
supplied bridge circuits the supply inductance is mainly the transformer leakage
inductance.

The magnitude of the supply inductance is typically such that not more
than about 5% reduction would occur in an unregulated supply voltage at full-
load current. Because of this inductance the instantaneous commutation of current
from one diode to another that occurs in resistive circuits, described in Sec. 4.1.1,
for example, cannot occur. When switching closure occurs in an open inductive
circuit a definite time is required for a current to build up from zero to its final
steady-state value. The instantaneous transitions in the value of the supply currents
in Fig. 4.2, for example, no longer take place.

Consider operation of the half-wave diode bridge (Fig. 4.7). The balanced
sinusoidal voltages of the generator are given byeAN, eBN, andeCN, where

eAN � Em sin 	t (4.26)

eBN � EM sin (	t � 120�) (4.27)

eCN � Em sin (	t � 240�) (4.28)

FIG. 7 Three-phase, half-wave diode rectifier with highly inductive load inductance.
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When each supply line contains an effective series inductanceLs; Fig. 4.7, the
bridge terminal voltageseAN; eBN, andeCN do not remain sinusoidal on load but
are given by

e e L
di

dtaN AN s
a= − (4.29)

e e L
di

dtbN BN s
b= − (4.30)

e e L
di

dtcN CN s
c= − (4.31)

Compared with operation with an ideal supply, as in Fig. 4.5a, the waveforms
of both the terminal voltage and current and the load voltage are affected by the
presence of supply reactance. Now the magnitude of the supply inductanceLs is
usually small compared with the value of the load inductanceL. The presence
of supply inductance therefore does not significantly affect the magnitudeIav of
the load current nor the maximum valueIav and average valueIav/3 of the supply
currents in Fig. 4.5. The magnitude of the load current at fixed supply voltage
is determined almost entirely by the value of the load resistance because the load
inductor offers no net impedance to the (hopefully predominant) direct current
component. It is also of interest that the waveform of the supply currents, at fixed
supply voltage, varies according to the level of the load current and the value of
the supply inductance. Several different modes of supply current behavior are
identifiable, depending on the particular application.

Figure 4.8 gives some detail of the waveforms due to operation of the
circuit of Fig. 4.7. DiodeDa carries the rectified current of peak magnitudeIav

up to a pointx. Since the anode voltageseAN and eBN of Da and Db are then
equal, diodeDb starts to conduct currentiL. Due to the effect of the supply
inductance, the currentia. cannot extinguish immediately as it does with ideal
supply, shown in Fig. 4.8b. Due to the supply line inductance, diodesDa andDb

then conduct simultaneously, which short circuits terminals a and b of the supply.
During this interval of simultaneous conduction, called theoverlap periodor
commutation angle u, the common cathode has a potential (eAN � eBN)/2. In the
overlap periodxy,eBN is greater thaneAN and the difference voltage can be consid-
ered to cause a circulating current in loop aPbNa (Fig. 4.7), which increasesib
and diminishesia. When currentia falls below its holding value diodeD switches
into extinction and the load voltage then jumps to the corresponding pointz on
waveeBN. Each supply current has the characteristic waveform of Fig. 4.8c, but
the load current is continuous and smooth at the valueIav, (Fig. 4.8e). Because
the presence of supply inductance does not affect the maximum valueIav nor the
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FIG. 8 Waveforms for operation of a three-phase, half-wave diode rectifier with highly
inductive load and supply inductance: (a)load voltage, (b) supply line current (with ideal
supply), (c) and (d) supply line currentsia (	t) and ib (	t), and (e) load current.
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average valueIav/3 of the supply current the total area under the current pulse
(Fig. 4.8c) is unchanged, compared with ideal supply.

Comparison of Fig. 4.8a with Fig. 4.5c shows, however, that an effect of
supply reactance is to reduce the average valueEav of the load voltage. From
Fig. 4.8a it is seen that, with overlap angleu,

E
e e

d t e d t

E

av
AN CN

ANu

u

m

=
+

+





=

+

+

∫∫
3

2 2

3 3

2

30

150

30

30

π
ω ω

π

o

o

o

o

coos

( cos )

2

2

3 3

4
1

u

E
um= +

π (4.32)

This may also be expressed

E E
u E

uav av

av= = +
0

02

2 2
1cos ( cos ) (4.33)

whereEavo
is the average load voltage with zero overlap, or ideal ac supply,

defined in Eq. (4.7).
In the circuit of Fig. 4.7, during the overlap created by the simultaneous

conduction of diodesDa andDb, there is no current in supply linec, and

e L
di

dt
e L

di

dtAN s
a

BN s
b− = − (4.34)

But the load currentIav � ia � ib is not affected by the presence ofLs. Therefore,

e L
di

dt
e L

d

dt
I iAN s

a
BN s av a− = − −( ) (4.35)

and

e e L
di

dtAN BN s
a− = 2 (4.36)

Substituting Eqs. (4.29) and (4.30) into Eq. (4.36) and integrating from 150� to
150� � u, noting thatia � Iav at 	t � 150�, gives

cosu
L I

E
s av

m

= −1
2

3

ω
(4.37)

Combining Eqs. (4.6) and (4.37) permitsu to be expressed in terms of impedance
parameters, utilizing the fact thatIav � Eav/R,
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cosu
L I

E

L

R

E

E
s av

av

s av

av

= − = −1
3

1
3

0 0

ω
π π

ω
(4.38)

Combining Eqs. (4.35) and (4.38) permits cosu to be expressed in terms of
impedance parameters

cos
/

/
u

L R

L R
s

s

=
− ( )
+ ( )

1 3 2

1 3 2

ω π
ω π (4.39)

Provided that the load inductanceL is large, the actual value ofL does not occur
in the relevant circuit equations. With a good electrical supply the ratio	Ls/R is
about 0.05 at full load and the value ofu is then about 18�. For a poor (i.e.,
relatively high inductance) supply, or with reduced load resistance such that	Ls/
R � 0.2, thenu is about 34�. A value u � 18� results in a reduction ofEav of
less than 3%, while u � 34� results in about 9% reduction. The reduction of
average load voltage can be expressed in terms of impedance parameters by
combining Eqs. (4.33) and (4.39).

E
E

L Rav

av

s

=
+ ( )

0

1 3 2ω π/ (4.40)

The supply inductance is found to modify the previously appropriate expression
Eq. (4.22), for rms supply current to

I
I

ua
av= −
3

1 3ψ( )
(4.41)

where

ψ
π

( )
( cos )sin ( cos )

( cos )
u

u u u u

u
= + − +

−
2 1 2

2 1 2 (4.42)

Function�(u) varies almost linearly withu for values up tou � 60�. At u �
34�, for example, the effect of supply reactance is found to reduceIa by about
3.5%.

The effect of gradually increased overlap, with fixed supply voltage, is
demonstrated sequentially in Figs. 4.9–4.15. Note that for values of supply induct-
ance such thatu � 90�, Figs. 4.13–4.15, the load resistance is here modified to
give the same peak value of supply current. For values ofu � 90� the performance
is usually described as mode I operation. Withu � 90� the load phase voltages
become discontinuous and the performance is referred to as mode II operation.
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It is seen that the conduction angle of the supply currents progressively increases
with overlap.

The boundary between mode I operation and mode II operation occurs at
u � 90�. Under that condition cosu is zero and it is seen from equation (4.37)
that

I
E

Lav
m

su=
=

90

3

2o ω (4.43)

But from Fig. 4.7, the right hand side of Eq. (4.43) is seen to be the peak value
of the short-circuit currentIsc in (say) loop APBN.

Therefore,

Î
E

L
Isc

m

s
av

u
= =

=

3

2 90ω o (4.44)

Combining Eqs. (4.37), (4.43), and (4.44) results in

I

I
uav

sc
ˆ

cos= −1
(4.45)

The short circuit current can be expressed in terms of the average load voltage
by eliminating cosu between Eqs. (4.38), (4.40), and (4.45).

E

E

I

I
av

av

av

sc0

1
2

= −
ˆ (4.46)

For u � 90�, which occurs in mode II operation,Iav � Îsc and the average load
voltage,Eav becomes less than one half of the valueEavo

with ideal supply.
All the energy dissipation in the circuit of Fig. 4.7 is presumed to occur in

the load resistorR. The power rating of the circuit in mode I is given in terms
of the constant valueIav of the load current.

P � I2
avR (4.47)

In mode I the supply current has the rms value denoted in Eq. (4.41). The supply
voltageeaN (	t) is seen from Figs. 4.10–12 to be given by

e t E t

e e

aN m

AN CN

u u
( ) sin

( )

, ,

, ,
ω ω=

+ +

+ +0 30 150

30 150 360

1

2

o o

o o o

330

30

150

1501

2o

o

o

ou u
e eAN BN

+ +
+ +( )

(4.48)
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FIG. 9 Waveforms for three-phase, half-wave diode bridge with highly inductive load.
Ideal supplyu � 0.
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FIG. 10 Waveforms for three-phase, half-wave diode bridge with highly inductive load.
Mode I, � � 30�, ideal supply.
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FIG. 11 Waveforms for three-phase, half-wave diode bridge with highly inductive load.
Mode I, � � 60�, ideal supply.
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FIG. 12 Waveforms for three-phase, half-wave, diode bridge with highly inductive load.
Limit mode I, � � 90�, ideal supply.
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FIG. 13 Waveforms for three-phase, half-wave diode bridge with highly inductive load.
Mode II, � � 105�, ideal supply.
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FIG. 14 Waveforms for three-phase, half-wave diode bridge with highly inductive load.
Mode II, � � 120�, ideal supply.
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FIG. 15 Waveforms for three-phase, half-wave diode bridge with highly inductive load.
� � 150�, ideal supply.
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which has the rms valueEaN, where

E e d taN aN
2 2

0

1

2
= ∫π

ω
2π

(4.49)

The substitution of Eq. (4.48) into Eq. (4.49) gives

E E
u

uaN m= − +





1

2

3

4

1

4
2

π
π sin

(4.50)

The power factor of the three-phase, half-wave bridge is given by

PF
P

E IaN a

=
3 (4.51)

Supply reactance causes both the rms voltageEaN and rms currentIa to be reduced
below their respective levels with ideal supply. The power factor is therefore
increased.

4.4.1 Worked Examples
Example 4.7 A three-phase, half-wave uncontrolled bridge circuit trans-

fers energy from a three-phase supply to a highly inductive load consisting of a
resistorR in series with inductorL. Each supply line may be considered to have
a series inductanceLs. Show that the average load voltage is given by

E
L I

av
s av= −3 3

2

3

2

ω
π

whereEm is the peak phase voltage.
The circuit diagram is shown in Fig. 4.7. From Eq. (4.33)

E
E

u
E

uav
av m= + = +0

2
1

3 3

4
1( cos ) ( cos )

π

Substituting cosu from Eq. (4.37) gives

E
E L I

E
av

m s av

m

= −










3 3

4
2

2

3π
ω

Therefore,

E L Im s av= −3 3

2

3

2π
ω
π

E L Im s av= −( )3

2
3

π
ω

Eav
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The final form of Eav above shows that this incorporates the peak line-to-line
voltage�3 Em 1ess the line voltage drop due to the supply reactance.

Example 4.8 A three-phase, half-wave diode bridge supplies power to a
load consisting of resistorR and series inductorL. Each phase of the supply has
a series inductanceLswhereLs �� L. Sketch waveforms of the per-phase voltage
and current of the supply for mode I operation whenu� 30�. Derive an expression
for the instantaneous supply currentia (	t) for the overlap period 150� � 	t �
150� � u.

Waveforms ofeaN (	t) and ia (	t) for u � 30� are given in Figs. 4.8 and
4.10. Instantaneous currentia (	t) is defined by Eq. (4.36),

e e L
di

dt
AN BN s

a− = 2

where

eAN � Em sin 	t

e E tBN m= −





sin ω π2

3

Therefore,

di

dt

e e

L

E

L
t

E

L
t

a AN BN

s

m

s

m

s

= − = −





= −

2 2
2

3 3

3

2 3

sin cos

cos

π ω π

ω π





Integrating both sides of the differential equation gives

i t
E

L
t Ka

m

s

( ) sin= −





+3

2 3ω
ω π

whereK is a constant of integration.
Now (1) at	t � 150�, ia � Iav; (2) at 	t � 150� � u,ia � 0.
Under condition (1),

K I
E

L
I Iav

m

s
av sc= − = −3

2 ω
ˆ

which is negative becauseÎsc � Iav for mode I operation.
Under condition (2),
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K
E

L
u I um

s
sc= − = −3

2 ω
cos cosˆ

Sinceu � 30�,

K I

E

L

sc

m

s

= −

= −

3

2
3

4

ˆ

ω

Equating these two values ofK between the two consistent conditions shows that

I
E

L

I

av
m

s

sc

= −










= −










3

2
1

3

2

1
3

2

ω

ˆ

which is seen to be consistent with Eq. (4.45)
Using the value ofK from condition (2) in the equation foria gives

i
E

L
t

t u

a
m

s

= −





−












< < +

3

2 3

3

2

150 150

ω
ω π

ω

sin

for o o

for 150� � 	t � 150� � u

Example 4.9 A three-phase, half-wave diode rectifier has a load resistance
R � 10 � in series with a large inductor. Each supply line contains a series
inductanceLs such that the inductive reactance in the line is 10% of the load
resistance. The generator three-phase voltages have an rms line value of 400 V.
Calculate the power factor of operation and compare this with the case of ideal
supply.

The equivalent circuit is given in Fig. 4.7. The first step of the solution is
to calculate the overlap angleu. Since

ωL

R
s = 0 1.

then from Eq. (4.39),
cosu � 0.9086
Therefore,u � 24.7� � 0.431 rad, which is mode I operation. Function

�(u), Eq. (4.42), is found to have the value

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 4130

ψ
π

( )
( . )( . ) ( . )( . )

( . )

. .

u = − +

= −

2 9086 0 418 1 1 817 0 431

2 0 0915

1 2158 1

2

22141

0 0526
0 0017

0 0526
0 032

.
.

.
.= =

The average load voltage in the presence ofL is given by Eq. (4.32) in which
Em is the peak phase voltage. In the present case,

Em = =400 2

3
326 6. V

Therefore,

V

E
E

uav
m= +( )

=
=

3 3

4
1

135 1 9085

257 7

π
cos

( . )

.

This compares with the valueEavo
� (3�3/2�) Em � 270 V obtainable with

an ideal supply.
The average load current is unchanged by the presence of the supply induct-

ance.

I
E

R
av

av= = =0
270

10
27 A

From Eq. (4.42) the rms supply current is

I
I

ua
av= −

= − =

3
1 3

27

3
1 0 096 14 82

ψ( )

. . A

This compares with the valueIa � Iav/�3 � 15.6 A with ideal supply. The
power into the bridge circuit is presumed to be dissipated entirely in the load
resistor:

P � I2
avR � (27)2 10 � 7290 W

The power factor, seen from the supply terminals, is given by Eq. (4.51), which
incorporates the rms valueEan of the terminal voltage. For a valueu � 24.7�
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the waveformeaN (	t) is very similar to that given in Fig. 4.10a and is defined
by Eq. (4.48). Inspection of the more detailed diagram (Fig. 4.8a) shows that
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This compares with the valueEL � 0.707Em for sinusoidal supply.
The power factor is therefore

PF
P

E IaN a

= =
× × × ×

=
3

7290

3 0 691 400/ 2 14 92
0 722

. .
.

3

This value is about 7% higher than the value 0.676 obtained with ideal supply.

PROBLEMS

Three-Phase, Half-Wave Bridge Circuit with
Resistive Load and Ideal Supply

4.1 A set of balanced, three-phase sinusoidal voltages from an ideal supply is
applied to a three-phase, half-wave bridge of ideal diodes with a resistive
load (Fig. 4.2a). Sketch waveforms of the load current and supply current
and show that the average load current is given by

I
E

R
av

m= 3 3

2π

whereEm is the peak value of the supply phase voltage.
4.2 For the bridge of Problem 4.1, calculate the rms valuesIL and Ia of the

load and supply currents, respectively. Hence show that

I
I

a
L=
3

4.3 Calculate the operating power factor of the resistively loaded bridge of
Problem 4.1 and show that it is independent of load resistance and supply
voltage level.

4.4 Calculate values for the Fourier coefficientsa1 andb1 of the fundamental
(supply frequency) component of the line current in the bridge of Fig. 4.2a.
Hence calculate the displacement factor.

4.5 For the bridge circuit of Fig. 4.2a calculate the rms value of the input
current and also the rms value of its fundamental component. Hence calcu-
late the supply current distortion factor. Use the value of the distortion
together with the displacement factor (Problem 4.4) to calculate the power
factor.

4.6 Derive expressions for thenth harmonic componentsan and bn of the
Fourier series representing the line current waveformia (	t) of Fig. 4.2.
Show thatan � 0 for n odd andbn � 0 for n even.
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4.7 A set of three-phase voltages of rms value 400 V at 50 Hz is applied to
a half-wave diode bridge with a resistive loadR � 40 �. Calculate the
power transferred to the load.

4.8 In the three-phase, half-wave bridge of Fig. 4.2a deduce and sketch wave-
forms of the three supply currents and the load current if diodeDa fails
to an open circuit.

4.9 Calculate the ripple factor for the supply current waveformia (	t), (Fig.
4.2d), obtained by resistive loading of a three-phase, half-wave diode
bridge.

Three-Phase Half-Wave Bridge Circuit with Highly
Inductive Load and Ideal Supply
4.10 A set of balanced, three-phase, sinusoidal voltages from an ideal supply

is applied to a three-phase, half-wave diode bridge with a highly inductive
load (Fig. 4.5a). Sketch waveforms of the supply voltages and currents
and the load voltage and current. Show that the average load current retains
the same value as with resistive load.

4.11 For the ideal, three-phase bridge of Problem 4.10, show that the rms value
of the supply currentIs is related to the rms value of the load currentIL

by

I
I

s
L=
3

4.12 Calculate the operating power factor of the inductively loaded bridge of
Fig. 4.5a. Show that with a highly inductive load, the power factor is
constant and independent of the values ofL andR. Compare the value of
the power factor with that obtained when the load is purely resistive.

4.13 For a three-phase, half-wave bridge with highly inductive load calculate
the average and rms values of the supply current. Hence show that the
ripple factor of the supply current has a valueRF � 1.41. How does this
compare with the corresponding value for resistive load?

4.14 A set of three-phase voltages of rms line value 240 V at 50 Hz is applied
to a three-phase, half-wave bridge of ideal diodes. The load consists of a
resistorR � 10 � in series with a large inductor. Calculate the power
dissipation and compare this with the corresponding value in the absence
of the (inductor) choke.

4.15 Calculate values for the Fourier coefficientsa1 andb1 of the fundamental
(supply frequency) component of the line current in the inductively loaded
bridge of Fig. 4.5a. Hence calculate the displacement factor.
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4.16 Calculate the magnitude and phase angle of the fundamental component
of the line current for the inductively loaded bridge of Fig. 4.5a. Sketch
this component for phasea together with the corresponding phase voltage
and current.

4.17 For the three-phase bridge circuit of Fig. 4.5a calculate the rms value of
the input current and also the rms value of its fundamental component.
Hence calculate the supply current distortion factor. Use this value of the
distortion factor together with the value of the displacement factor obtained
from Problem 4.15 to determine the input power factor.

4.18 Derive expressions for thenth harmonic components of the Fourier series
representing the line currentia (	t) of Fig. 4.5e. Compare the component
terms, for particular values ofn, with corresponding values obtained for
resistive load in Problem 4.6.

4.19 For an inductively loaded, three-phase, half-wave bridge the load voltage
waveform is given in Fig. 4.5c. Calculate the Fourier series for this periodic
waveform and show that its lowest ripple frequency is three times the
supply frequency.

4.20 In the three-phase, half-wave bridge circuit of Fig. 4.5a, deduce and sketch
waveforms of the three supply currents and the load current if diodeDa

fails to an open circuit.

4.21 For the three-phase bridge in Problem 4.14 calculate the rms current and
peak reverse voltage ratings required of the diodes.

Three-Phase, Half-Wave Bridge Circuit with Highly
Inductive Load in the Presence of Supply Inductance

4.22 A set of balanced three-phase voltages is applied to an uncontrolled, three-
phase, half-wave bridge with a highly inductive load. Each supply line has
a series inductanceLs such that	Ls is about 10% of load resistorR. Sketch
the waveform of the load voltage and derive an expression for the average
value in terms of the peak supply voltage per phaseEm and the overlap
angleu.

4.23 For the three-phase, half-wave diode bridge circuit with supply reactance,
state an expression for the waveform of the supply voltage per phase. Show
that the rms value of this is given by Eq. (4.50) and sketch its variation
with u for 0 � u � 90�.

4.24 The overlap function�(u) for a three-phase, half-wave, diode bridge circuit
is defined by Eq. (4.42). Sketch the variation of�(u) versusu in the range
0 � u � 90�.
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4.25 The rms valueIa of the supply current to a three-phase, half-wave, uncon-
trolled bridge rectifier with highly inductive load is related to the average
load currentIav by Eq. (4.41). Calculate the variation ofIa, assuming fixed
Iav, for a range of values of overlap function�(u). Sketch the per unit
variation of Ia with overlap angleu for the range 0� u � 90�.

4.26 A set of three-phase voltages of rms line value 240 V at 50 Hz is applied
to a three-phase, uncontrolled, half-wave bridge. The load consists of a
resistorR � 10 � in series with a large choke. Each supply line contains
a series inductorLs of such value that	Ls � 0.2R. Calculate values of
the rms voltage and current per phase at the bridge terminals and compare
these with the values obtained with ideal supply.

4.27 For the bridge circuit of Problem 4.26 calculate the power dissipation and
power factor. Compare the values with the respective values obtained with
ideal supply.

4.28 The average load voltageEav for a three-phase, half-wave uncontrolled
bridge is defined by Eq. (4.33). Calculate and sketch the variation ofEav

versusu for the range 0� u � 90�. Extend the sketch ofEav for u � 90�,
using an appropriate relationship. Does the variation ofEav versusu indi-
cate the change of mode of operation?

4.29 A three-phase, half-wave diode bridge circuit supplies power to a load
resistorR in series with a large inductor. The open-circuit supply voltages
are a balanced set of sinusoidal voltages. Each supply line contains a series
reactance	Ls, whereLs �� L. Sketch waveforms of the supply phase,
assuming mode I operation with an overlap angleu � 20�. Show that
during overlap the supply current varies sinusoidally.
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Three-Phase, Half-Wave Controlled
Bridge Rectifier Circuits

In order to achieve controlled variation of the load voltage the three-phase circuits
of Chapter 4 may be modified by replacing the diodes by controlled switches
such as the silicon controlled rectifier, as shown in Fig. 5.1.

With a supply of zero impedance the three supply voltages in Fig. 5.1 retain
a balanced sinusoidal form for any load condition. Equations (4.1) to (4.3) still
apply and are reproduced below for convenience.

eaN � Em sin 	t (5.1)

e E tbN m= −





sin ω π2

3 (5.2)

e E tcN m= −





sin ω π4

3 (5.3)

5.1 RESISTIVE LOAD AND IDEAL SUPPLY

The onset of conduction in any phase may be delayed by retarding the switching
angle of the switch connected in that phase. The initiation of conduction also
requires that the anode voltage of an SCR switch be positive with respect to its
cathode. For this reason thyristorTha in line a of Fig. 5.1 cannot be successfully
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FIG. 1 Three-phase, half-wave controlled rectifier circuit using silicon controlled rectifier
(SCR) switches.

fired until 	t � �/6 � 30�. Prior to the instant	t � 30�, shown in Fig. 5.2,
voltage eaN (	t) is less positive thanecN(	t), so that a reverse voltage exists
acrossTha. The crossover point of successive phase voltages (i.e.,	t � 30�) is
therefore taken as the zero or datum from which switching-angle retardation is
measured. The most usual form of control is to switch on each device at an
identical point on wave of its respective anode voltage. This causes equal currents
in the supply lines.

Let the three thyristors in Fig. 5.1 be fired at firing angle� � 30�. Each
phase current then begins to flow at the instant	t � � � 30� � 60� after its
positive going anode voltage zero. Phase currentia(	t), for example, then has
the form shown in Fig. 5.2e. Because of the delayed firing of thyristorThb the
potentialeaN (	t) at the anode of thyristorTha remains the most positive potential
in the circuit until	t � 180� � �. ThyristorTha therefore conducts from	t �
� � 30� to 	t � 180�, at which point thyristorThb switches on. The cathode
of Tha then acquires the potential of pointb in Fig. 5.1, so thatTha is reverse
biased. The combination of reverse anode voltage onTha, combined with zero
current, causes the commutation or switch-off of thyristorTha.

If the ignition or switch-on of the three thyristors is delayed until� � 60�
� �/3 (i.e., 90� after their respective voltage zeros) the load current becomes
discontinuous, as shown in Fig. 5.2f. At a firing angle� � 150� � 5�/6 conduc-
tion will cease.
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FIG. 2 Waveforms of three-phase, half-wave controlled rectifier,R load: (a) supply phase
voltages, (b) load voltage and current (� � 0�), (c) supply currentia (	t) (� � 0�), (d)
load voltage and current (� � 30�), (e) supply currentia (	t) (� � 30�), (f) load voltage
and current (� � 60�), and (g) supply currentia (	t) (� � 60�).

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Three-Phase, Half-Wave Controlled Circuits 139

The load voltage waveforms of Fig. 5.2 cannot be represented by a single
mathematical expression that is true for all values of�. It turns out to be necessary
to consider separately the cases for intervals 0� � � �/6 and�/6 � � � 5�/
6. These two cases distinguish between continuous and discontinuous conduction
of the load current and are often described asmodesof operation

For 0 � � � �/6,

e E t E t EL m m m= −





+ ++

+

+

+
sin sin

/ ,

, /

/

/
ω π ωα π π

α π

α π

α π

4

3

6 2

0 3 2

5 6

6
ssin

/

/
ω π α π

α π
t −





+

+

2

3

3 2

5 6
(5.4)

For �/6 � � � 5�/6,

e E t E t E tL m m m= −





+ + −
+ +

sin sin sin/ ,

, / /
ω π ω ωπ π

α π
π
α π

4

3

23 2

0 3 2 6

ππ π
α π3
5 3

5 6





 +

/

/
(5.5)

The load voltage (Fig. 5.2) is seen to have a repetitive period of one-third of the
supply voltage periodicity. This means that the ripple frequency of the load volt-
age is three times that of the supply. It also means that the average value of the
load voltage can be obtained by taking the average value of any 2�/3 slice of it.
Consider the section ofeL (	t) contributed by phasea

For 0 � � � �/6,

E E t d t

E E

av m

m av

=

= =

+

+

∫
3

2

3 3

2

6

5 6

0

π
ω ω

π
α α

α π

α π
sin

cos cos

/

/

(5.6)

For �/6 � � � 5�/6,

E E t d t

E

av m

m

=

= + +















+∫
3

2

3

2
1

6

6π
ω ω

π
α π

α π

π
sin

cos

/

(5.7)

The corresponding average load currents are given by:

For 0
6

3 3

2
0

≤ ≤

= = =

α π

π
α αI

E

R

E

R

E

R
av

av m avcos cos

,

(5.8)

For �/6 � � � 5�/6,

π
α π

cos
3

2
1

6
= = + +













I

E

R

E

R
av

av m

(5.9)
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When�� 0, Eq. (5.8) reduces to the corresponding expression Eq. (4.5) for a diode
circuit. At � � �/6 � 30�, Eqs. (5.8) and (5.9) are seen to be identical.

It is seen in Fig. 5.2 that the area under the curve of a load currentiL (	t) is
three times the area under the curve of the corresponding supply currentia (	t). The
average value of the load current is therefore three times the average value of the
supply current.

The rms valueIa of the supply current is obtained in the usual way from its
defining integral

I i t d ta a= ∫
1

2
2

0

2

π
ω ω

π
( ) (5.10)

The instantaneous supply currentia (	t) depends on the mode of operation.
For 0� � � �/6,

i t
E

R
ta

m( ) sin
/

/
ω ω

α π

α π
=

+

+

5 6

6 (5.11)

For�/6 � � � 5�/6,

i t
E

R
ta

m( ) sin
/

ω ω
π

α π
=

+ 6 (5.12)

The substitution of Eqs. (5.11) and (5.12), respectively, into Eq. (5.10) gives for 0
� � � �/6,

I
E

R
a

m= +4 3 3 2

24

π α
π
cos

(5.13)

When� � 0, Eq. (5.13) reduces to Eq. (4.9). For�/6 � � � 5�/6,

I
E

R
a

m=
( ) − + +( )5 3 2 2 3

8

π α α π
π

/ sin /
(5.14)

At � � �/6, Eqs. (5.13)(5.14) give identical results.
The supply currentia (	t) flows only through thyristorTha and the load resis-

torR. Its rms valueIacan therefore be used to define the power dissipation per phase

Pa � I2
aR� Pb � Pc (5.15)

Therefore, for 0� � � �/6,

P
E

R
a

m= +2

2

4 3 3 2

12

π α
π
cos

(5.16)

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Three-Phase, Half-Wave Controlled Circuits 141

It is seen that (5,16) is consistent with (4.7) for the case� � 0. For�/6 � � �
5�/6,

P
E

R
a

m=
− + +( )2

2

5 3 2 2 3

4

π α α π
π

/ sin /( )
(5.17)

The total power dissipation is the sum of the per-phase power dissipations and may
be used to obtain the rms load current.

PL � I2
LR� Pa � Pb � Pc (5.18)

The power factor of the half-wave controlled bridge may be obtained from Eqs.
(5.13)–(5.18).

PF
P

E I

P

E I

a

a a

a

m a

= = ( )/ 2 (5.19)

For 0� � � �/6,

PF = +4 3 3 2

12

π α
π
cos

(5.20)

For�/6 � � � 5�/6,

PF =
( ) − + +( )5 3 2 2 3

4

π α α π
π

/ sin /
(5.21)

Expressions for the related properties of distortion factor and displacement factor
are derived in Example 5.3. Certain properties of this rectifier are given in Table
5.1.

5.1.1 Worked Examples

Example 5.1 A three-phase, half-wave controlled rectifier with ideal three-
phase supply provides power for a resistive load. Calculate an expression for the
average load voltage and plot the variation of this over the entire possible range of
firing angle�.

A circuit diagram is given as Fig. 5.1. The average load voltage is given by
Eqs. (5.6) and (5.7).
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TABLE 5.1 Some Properties of the Three-Phase, Half-Wave Controlled Bridge Rectifier
with Resistive Load and Ideal Supply

Circuit property Mode I 0 �  � 30° Mode II 30° �  � 150°

Instantaneous
supply current

RMS supply
current

Average load
current

Average load
power

Power factor

RMS load
current

a1

b1
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R
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π
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It was shown in Chapter 4 that the average load voltage with a three-phase, half-
wave diode bridge is

E Eav m0
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The variation ofEav/EavO
is shown in Fig. 5.4.

Example 5.2 For the three-phase, half-wave controlled rectifier circuit of
Fig. 5.1 a 240-V/phase, 50-Hz source supplies power to a load of 100	. Calculate
the average and rms load currents and hence the load current ripple factor for (1)�
� 30� and (2)� � 90�.

For a firing angle� � 30� either set of modal equations can be used. From
Eq. (5.8),

I av = 3 3 2240

2 100
30

π
cos o

= 2.43 Α

From Eq. (5.13),

I a = +

=

=

240 2

100

4 3 3 2

24

240 2

100
0 476

1 522

π
π

/

( . )

. A

Now it may be deduced from Eq. (5.18) that

PL � I2
LR� 3I2

aR

so that

IL � �3Ia

Therefore, in this case,

IL � 2.64 A

In Eq. (4.13), therefore,

RF
I

I
L

av

=








 −

= 





− =

2

2

1

2 64

2 43
1 0 425

.

.
.

The above value for the ripple factor compares with the value 0.185 obtained with
� � 0�. The higher value is consistent with the waveforms, whereby one would
expect the waveform of Fig. 5.2d to have a greater ac ripple content than the wave-
form of Fig. 5.2b.

For� � 90�, from Eq. (5.9),
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I av = −





3 2240

2 100
1

1

2π
= 0 81. A

From Eq. (5.14)

I a =
( ) −

=

240 2

100

5 3 3 2

8

240 2

100
0 221

π
π

/ /

( . )

π−

= 0 75. A

But

IL � �3Ia � 1.3 A

The ripple factor at� � 90� therefore becomes

RF = 





− =1 3

0 81
1 1 254

2
.

.
.

Example 5.3 A three-phase, half-wave controlled rectifier is fed from an
ideal three-phase supply. Calculate the displacement factor and the distortion factor
with resistive load and show that these are consistent with the power factor Eqs.
(5.20) and (5.21)

In order to calculate the displacement factor and distortion factor, it is neces-
sary to determine the Fourier coefficients of the fundamental component of the sup-
ply current. For currentia (	t), in general,

a i t t d t

b i t t d t

a

a

1 0

2

1 0

2

1

1

=

=

∫

∫
π

ω ω ω

π
ω ω ω

π

π

( )cos

( )sin

For 0� � � �/6, the substitution of Eq. (5.11) into the two equations above yields

a
E

R

b
E

R

m

m

1

1

3

4
2

4

4 3 3 2

3

=
−

= +
π

α

π
π α

sin

cos

For �/6 � � � 5�/6, the substitution of Eq. (5.12) into the defining equation for
a1 andb1 gives
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The phase angle�1which represents the phase difference between the supply-phase
voltage and the fundamental component of the supply current is defined by

�1
1 1

1

= −tan
a

b

The displacement factor, cos�1, may therefore be expressed in terms of components
a1 andb1

Displacement factor = =








 =

+
−cos cos tan1
1 1

1

1

1
2

1
2

a

b

a

a b
�

For 0� � � �/6,
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+

+ +

4 3 3 2

27 24 3 2 16 2

π α

π α π

cos
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For�/6 � � � 5�/6,

Displacement factor =
( ) − + +( )

− +( ) 

5 3 2 2 3

1 2 3

π α α π

α π

/ sin /

cos /  + ( ) − + +( ) 
2 2

5 3 2 2 3π α α π/ sin /

The distortion factor may also be expressed in terms of the Fourier coefficientsa1

andb1.

Distortion factor =

=

=
+

I

I

c

I

a b

I

a

a

a

1

1

1
2

1
2

1

2

1

2

The rms line currentIa is obtained from Eqs. (5.13) and (5.14). Substituting fora1

andb1, andIa gives
For 0� � � �/6
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Distortion factor
9 4 4 3 2 3 2
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Now

Power factor� (distortion factor)(displacement factor)

Substituting the respectiveexpressions for displacement factorand distortion factor
into the power factor equation above gives
For 0� � � �/6

4 3 3 2

12
= +π α

π
PF

cos

For�/6 � � � 5�/6

π α α π
π

/ sin /5 3 2 2 3

4
=

− + +( )
PF

( )

These expressions for the power factor are seen to agree with those of Eqs. (5.20)
and (5.21) which were obtained from the system power dissipation.

5.2 RESISTIVE LOAD WITH IDEAL SUPPLY AND
SHUNT CAPACITOR COMPENSATION

Let the three-phase bridge circuit of Fig. 5.1 be now modified to incorporate identi-
cal capacitors at the supply point, as shown in Fig. 5.3. The supply is considered to
be ideal so that the supply voltage is not affected by connection of the capacitance.
If the three capacitors are of good quality they will not absorb any significant
amount of power so that the expressions in Eqs. (5.16) and (5.17) remain un-
changed. Because the supply voltage isunchanged there isno change in the thyristor
switch currents nor in the load current, due to the capacitors.

The capacitor currents constitute a balanced three-phase set of sinusoidal cur-
rents.

i
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X
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c
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c
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=sin cosω π ω
2 (5.22)
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FIG. 3 Three-phase, half-wave, silicon controlled rectifier with supply point capacitance.
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sin ω π π4
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The instantaneous supply currentisa (	t) entering phasea in Fig. 5.3 is therefore
given by the sum of the switch currentia, Eq. (5.11) or (5.12) and the capacitor
currentica, Eq. (5.22).
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For�/6 � � � 5�/6,
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When the above expressions are substituted into Eq. (5.10), corresponding expres-
sions for the rms current are obtained as follows:
For 0� � � �/6,
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(5.28)

WhenC � 0,Xc � � and Eqs. (5.27) and (5,28) reduce to Eqs. (5.13) and (5.14),
respectively. Now because the power and supply voltage are unchanged, compared
with uncompensated operation, the power factor will increase (i.e., improve) if the
rms value of the supply current decreases. The presence of capacitor compensation
will therefore improve the power factor if the value of the current in Eq. (5.27) is
less than the corresponding load current in Eq. (5.13).

For 0� � � �/6, power factor compensation will occur if
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(5.29)

Rearranging relation (5.29) gives as the required criterion

X
R

c > 2

3
2

π αcosec
(5.30)

When� � 0, the required inequality is thatXc � �. This is clearly impossible and
demonstrates that no power factor improvement is possible at� � 0, as was shown
in Chapter 4.

For any fixed, nonzero value of�, with any fixed loadR,Eq. (5.30) shows
that some power factor improvement may be realized if an appropriate value of
C is used. The power factor in the presence of terminal point capacitance can be
calculated by the substitution of Eqs. (5.22), (5.23), (5.27), and (5.28) into Eq.
(5.25). The appropriate expressions are shown in Table 5.1 Maximum power factor
will occur when the rms supply current is a minimum. Let the expressions for rms
currentIsa

be differentiated with respect toC and equated to zero.
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For 0� � � �/6,

2 2 3 2 2

4 3 3

2 2

2 2
=

( ) − ( )
+ +

ω ω π α

π

/ / sin

/

dI

dC

E R R C R

R X

s m

c

a

ccos / / sin2 12 3 2 2
0

α π π α( ) − ( ) =
R Xc

 

(5.31)

The bracketed term in the numerator must be zero so that, for a maximum,

X
R

C
R

c =

=

4

3 2

3 2

4

π

α

α
πω

sin

sin
(5.32)

With this value of compensating capacitance substituted into (5.27)

I
E

R
s

m
amin

cos sin= + −
2

4 3 3 2

12

3 2

16

2

2

π α
π

α
π (5.33)

FIG. 4 Average load current versus firing angle for the three-phase, half-wave controlled
rectifier.

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 5150

The uncompensated rms supply current in Eq. (5.13) is therefore reduced by the
second term of Eq. (5.33) and the power factor is therefore increased,

For 0� � � �/6, the differentiation technique results in the corresponding
expression,

I
E

R
s

m
a min

sin cos

=
− + +



 −

− +











2

5
3

2 2
3

4

1 2
3

2
π α α π

π

α π

116 2π (5.34)

5.2.1 Worked Example

Example 5.4 A resistive loadR� 100� is supplied from an ideal three-
phase 50-Hz supply via a three-phase, half-wave controlled bridge rectifier. Equal
capacitorsC are connected across each phase of the supply. Calculate the value of
capacitanceC that would result in maximum power factor at� � 30�. What is the
percentage improvement of power factor then realized by capacitance compensa-
tion?

At � � 30�, the optimum value of the compensation capacitance is given by
Eq. (5.26)

C
R

=

=
( )

( )( )( )
=

3 2

4

3 3 2

4 2 50 100

38

sin

/

α
πω

π π

µF

The new value of the rms supply current is given by Eq. (5.27)

Isamin

/ /= + −240

100

4 3 3 2

12

9 4

16 2

π
π π

= −

=

240

100
0 402 0 0142

1 495

. .

. A

In the absence of the capacitors only the first term of Eq. (5.27) is valid, so that

I sa
= =240

100
0 402 1 522. .  A

The ratio of compensated to uncompensated power factor is the inverse ratio of the
respective rms currents
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PF

PF

I

I
c s

s

a

a

= = =
min

.

.
.

1 522

1 495
1 018

The improvement of power factor at� � 30� is therefore 1.8%

5.3 HIGHLY INDUCTIVE LOAD AND IDEAL
SUPPLY

A three-phase, half-wave controlled bridge rectifier with a highly inductive load is
shown in Fig. 5.5. The purpose of the load inductor is to smooth the load current
to, as nearly as possible, an ideal direct current with no ripple at all.

The supply voltages defined by Eqs. (5.1)–(5.3) are still valid. Circuit power
dissipation is presumed to take place only in the load resistor.

If the load inductance is sufficiently high the load current becomes very
smooth as shown in Fig. 5.6c–g. The instantaneous load voltage retains the same
form as for resistive load (Fig. 5.2) until� � 30�. For� � 30�, the load voltage
now goes negative for part of its cycle as in, for example, Fig. 5.6f. At� � 90� �

FIG. 5 Three-phase, half-wave controlled rectifier with highly inductive load.
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FIG. 6 Waveforms of three-phase, half-wave controlled rectifier with highly inductive
load: (a) supply phase voltages, (b) load voltage (� � 0�), (c) load current (� � 0�), (d) load
voltage (� � 30�), (e) load current (� � 30�), (f) load voltage (� � 60�), (g) load current
(� � 60�), and (h) load current (� � 90�).

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Three-Phase, Half-Wave Controlled Circuits 153

�/2, the negative and positive alternations (not shown) are equal so that the average
load voltage and current become zero (Fig. 5.6h).

The load voltageeL (	t) in Fig. 5.6 is now described by Eq. (5.4) for both�
� 30� and� � 30�. Unlike the case with resistive load (Fig. 5.2), only one mode
of operation now occurs and this is equal to the mode 0� � � �/6 that occurred
with resistive load. The average load voltage with highly inductive load is therefore
given by Eq. (5.6), repeated below.

For 0� � � �/2,

3 3

2 0
= =

π
α αE E Eav m avcos cos (5.35)

The average load voltage is given in Fig. 5.4 and is seen to be less than the corre-
sponding value with resistive load for all values of� in the working range. The
average load current is, once again, given by

I
E

R

E

R
av

av av= = 0 cosα (5.36)

Withhighly inductive load thesmooth loadcurrentwaveformsatisfies (verynearly)
the current relationship

i t I I IL av L m( )ω = = = (5.37)

The load current ripple factor is therefore zero.
The supply current now consists of rectangular pulses of conduction angle

2�/3. Each phase carries identical pulses with a phase difference of 2�/3 or 120�
from the other two phases. In phasea, Fig. 5.7, the supply current, in the first supply
voltage cycle, is given by

i t Ia av( )
/

/

ω
π α

π α

=
( )+

( )+

5 6

5 6

(5.38)

The rms value of this supply current is therefore

I i t d t

I

a a

av

=

=

( )+

( )+

∫
1

2

3

2

6

5 6

π
ω ω

π α

π α

/

/
( )

(5.39)

Combining Eqs. (5.36) and (5.39) gives

I
E

R
a

av= 0

3
cosα

(5.40)
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FIG. 7 Supply currents of three-phase, half-wave controlled rectifier with highly inductive
load

The average value of the supply current is seen, by inspection of Fig. 5.6, to be one-
third of the average load current. From Eq. (5.36), therefore,

I I
E

R
a av

av

av
= =1

3 3
0 cosα

(5.41)

The total load power dissipation may be obtained from Eqs. (5.36) and (5.37),

P I R
E

R
L L

av= =2
2

20 cos α (5.42)

It may be assumed that the power is transferred from the supply to the load equally
by the three phases, so that

P
E

R
P Pa

av
b c= = =0

2
2

3
cos α (5.43)

The power factor may be obtained by the substitution of Eqs. (5.40) and (5.43) into
Eq. (5.19)
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PF
P

E I

P
E

I

a

a a

a

m
a

=

=

=

=

2
3

2
0 675

π
α

α

cos

. cos (5.44)

When� � 0, Eq. (5.44) reduces to Eq. (4.25) which was derived for the uncon-
trolled (diode), half-wave bridge. Some properties of the three-phase, half-wave
bridge circuit with highly inductive load are given in Table 5.2.

If the bridge is compensated by equal capacitors at the supply point in the
manner of Fig. 5.4, the supply current in phasea becomes

i t
E

X
t Is

m

c
ava

( ) cos
/

/

ω ω
π

π α

π α

= +
( )+

( )+

0

2

6

5 6

(5.45)

The substitution of Eq. (5.45) into the defining integral gives an expression for the
rms current

I i t d t

E

X

E

X
I

I

s s

m

c

m

c
av

av

a a
=

= − +

∫
1

2

2

3
2

3

2

0

2

2

2

2

π
ω ω

π
α

π
( )

cos
(5.46)

It is seen that (5.46) reduces to (5.39) when the bridge is uncompensated, and, in
effect,Xc� �. The rms supply current may be expressed in terms of the rms thyris-
tor currentIav/�3 by combining Eqs. (5.39) and (5.46).

I
E

X

E

X
I Is

m

c

m

c
a aa

= − +
2

2
2

2

3
2

π
αcos

(5.47)

The terminal voltage and load power are not affected by the connection of shunt
capacitance at the supply. The power factor is therefore improved, by reduction of
the rms supply current, if

3
2

2

2

2π
αE

X
I

E

X
m

c
a

m

c

cos >
(5.48)
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TABLE 5.2 Some Properties of the Three-Phase, Half-Wave
Controlled Bridge Rectifier with Highly Inductive Load and Ideal
Supply (0 �  � 90°)

Circuit property Expression

Instantaneous supply current

RMS supply current (Is)

Average load current

Average load power

Power factor

RMS load current (IL)

a1

b1

Displacement factor (cos �1)

Distortion factor

i ta( )
(

/ )
ω =

+
5

6

π/6) + α
(π α

I E

R
av m

3

3

2
=

π
αcos

I
E

R
av

m= 3 3

2π
αcos

3 3

2

2
2

2

π
α











E

R
m cos

I I
E

R
L av

m= = 3 3

2π
αcos

3

2π
αcos

− 3

π
αIav sin

+ 3

π
αI av cos

cos

3
π2

Rearranging Eq. (5.48) gives as the required criterion

X
E

I
c

m

a

> π α
6

2sec
(5.49)

The minimum value of rms supply current obtainable by capacitance compensation
may be obtained,as before, by differentiating Eq. (5.47) with respect toCand equat-
ing to zero. The appropriate optimum values ofXc andC then prove to be
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X
E

I

C
I

E

c
m

a

a

m

>

>

π α

π ω
α

3
2

3
2

sec

cos
(5.50)

With this value of capacitance, the value of the rms supply current minimum value
is

I Is aamin
cos= −1

9

2
2

2
2

π
α (5.51)

Both the power and the supply phase voltage are unaffected by the connection of
good qualitycapacitors across the terminals.The power factor withoptimum capac-
itor compensationPFc is therefore obtained by substituting Eq. (5.51) into Eq.
(5.44).

PF
P

E I

P

E I

c
a

a s

a

a a

a

=

=

min

−1 9 2 22 2/ cosπ α( ) ( )

=
−

PF

1 9 2 2

0 675

2 2/ cos

. cos

π α

α

( ) ( )

=
−1 9 2 22 2/ cosπ α( ) ( ) (5.52)

5.3.1 Worked Examples

Example 5.5 A three-phase, half-wave controlled rectifier supplies a highly
inductive load from an ideal three-phase supply. Derive an expression for the aver-
age load voltage and compare this with the corresponding case for resistive load at
� � 60�.

The circuit diagram is shown in Fig. 5.5. Although	L �� Rat supply fre-
quency, the inductor offers negligible impedance at the load frequency (ideally
zero). ResistorRmay well represent the only load device that is being powered.

The load voltageeL (	t) shown in Fig. 5.6 is a continuous function for all
values of� and is seen to be described by Eq. (5.4), which has an average value

E E Eav m av= =3 3

2 0π
α αcos cos (Ex. 5.5a)
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This is precisely the same expression that is pertinent to resistive loads in the mode
when 0� � � �/6. For resistive loads where� � �/6, the current becomes discon-
tinuous, the modal behavior changes, and the average load voltage is represented
by Eq. (5.7), reproduced below.

E
E

E

av
m

av

= + +















= + +









3

2
1

6

3
1

6
0

π
α π

α π

cos

cos



 (Ex. 5.5b)

At � � 60�, the average voltage with inductive load, from (Ex. 5.5a), is

E Eav av(inductive load)
1

2
=

0

Similarly, at� � 60, the average load voltage with resistive load, from (Ex. 5.5b),
is

E
E E

av

av av
( ( )resistive load)= + =0 0

3
1 0

3

Therefore, at� � 60�,

E

E
av

av

(

(
.

inductive load)

resistive load)

3

2
= = 0 866

This result is seen to be consistent with the data of Fig. 5.4.

Example 5.6 In the three-phase rectifier bridge of Fig. 5.5 a three-phase,
415-V, 50-Hz, supply transfers power to a 100-� load resistor. What is the effect
on the power transferred at (a)� � 30�, (b) � � 60�, if a large inductance is con-
nected in series with the load resistor.

With resistive load the input power per phase is given by Eqs. (5.16) and
(5.17). Assuming that each phase provides one-third of the load power, thenPL �
3Pa. At � � 30�, from Eq. (5.16), assuming that 415 V is the line voltage,

P
E

RL
m= +3

2

4 3 3 2

12

2 π α
π
cos

=
( ) +









= =

3 415 2 3

200

4 3 3 2

12

1722 0 4022 692 7
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( . ) .

π
π

  W
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At � � 60�, from Eq. (5.17),

P
E

R
L

m=
− + +























= =

3

2

5
3

2 2
3

4

1722 0 25 43

2

π α α π

π

sin

( . ) 00 5. W

With highly inductive load the load power is given by Eq. (5.42) for all�.

P
E

R

E
R

L

av

m

=

=










=

0

2

2

2

2

2

3 3

2

1

785

cos

cos

cos

α

π
α

α

    

    

At � � 30�,

PL = × =785
3

4
589 W

At � � 60�,

PL = × =785
1

4
196 W

Theeffect of the load inductor is therefore to reduce the rms loadcurrent and thereby
the load power dissipation below the value obtained with the load resistor acting
alone. If the same load power dissipation is required in the presence of a high induc-
tor filter, then the value of the load resistor must be reduced to permit more load
current to flow.

Example 5.7 A three-phase, half-wave controlled rectifier has ideal thyris-
tor elements and is fed from a lossless supply. The rectifier feeds a load consisting
of a resistor in series with a large filter inductor. Sketch the waveform of the reverse
voltage across a thyristor at� � 60� and specify its maximum value.

The circuit is shown in Fig. 5.5 with some typical load voltage and current
waveforms given in Fig. 5.6. Let the reverse voltage on thyristorTha be designated
eTa

asshown inFig. 5.5.When thyristorThc is conducting, for example, the instanta-
neous value of this reverse voltage can be written

− = −e t e eT cN aNa
( )ω (Ex. 5.7a)

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 5160

From Eqs. (5.1) and (5.3) it is seen that

− = −





−

= − −

e t E t t

E t

T m
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( ) sin sin
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ω ω π ω
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= − − +
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3
2

2

3

3
7

6

E t
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m

m

sin

sin

π ω π

ω π

Similarly, if thyristorThb is conducting, the instantaneous reverse voltage across
Tha is

− = −

= −





−

e t e e

E t t

T bN aN

m

a
( )

sin sin

ω

ω π ω              
2

3

           = −





3
5

6
E tm sin ω π

(Ex. 5.7b)

But it can be seen from the three-phase voltage waves of Fig. 5.8 that

3
7

6
E t e tm casin ( )ω π ω−





=

3
5

6
E t e tm basin ( )ω π ω−





=

Thereversevoltage�eTa
can thereforebe defined in termsof the line-to-linesupply

voltages, which is obvious from the basic expressions in Eqs. (Ex. 5.7a) and (Ex.
5.7b).

The waveform of the reverse blocking voltage at thyristorTha, for � � 60�,
is given in Fig. 5.8. Its peak value is clearly equal to�3Em, being the peak value
of the line-to-line supply voltage.

Example 5.8 Equal capacitorsC are to be used across the supply to neutral
terminals to compensate the power factor of a three-phase, half-wave, thyristor con-
trolled bridge rectifier with a highly inductive load in which the load resistorR�
100�. Calculate the value of capacitance that will give maximum power factor and
the degree of power factor improvement at (1)� � 30� and (2)� � 60� if the supply
voltage is 240 V/phase at 50 Hz.
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FIG.8 Voltagewaveformsof three-phase,half-wavecontrolled rectifierwithhighly induc-
tive load,� � 60�: (a) load voltage and (b) voltage across thyristorTha.

The appropriate circuit diagram is given in Fig. 5.3. For both of the specified
values of thyristor firing angle the optimum capacitance is given by Eq. (5.50). The
rms supply currentIa in the absence of capacitance is, from Eq. (5.40),

I
E

R
E

R

a

av

m

=

=

0

3
3

2

cos

cos

α

π
α

At � � 30�,

I a =
( )

=
3 2 240

2 100

3

2
1 4

π
.  A

At � � 60�,
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I a =
( )

( )
=

3 2 240

2 100

1

2
0 81

π
.  A

Substituting into Eq. (5.50) gives
at� � 30�

C = =3 1 4

2 50

10

2240

1

2
0 63

6

π π
µ.

.  F

at� � 60�

C = =3 0 81

2 50

10

2240

1

2
0 36

6

π π
µ.

.  F

The supply current reduction is given in Eq. (5.51).

I

I

s

a

amin cos= −1
9

2
2

2
2

π
α

At � � 30�,

I

I

s

a

amin . .= − =1 0 342 0 81

At � � 60�,

I

I

s

a

amin . .= − =1 0 114 0 941

The connection of the capacitors makes no difference to the transfer of power or to
the supply voltages. The power factor is therefore improved by the inverse ratio of
the supply current reduction. At� � 30�,

PF

PF
c = =1

0 81
1 235

.
.

At � � 60�,

PF

PF
c = =1

0 941
1 063

.
.

The actual values of power factor after compensation may be obtained from Eq.
(5.52). At� � 30�, PFc � 0.621. At� � 60�, PFc � 0.36.
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5.4 SERIES R-L LOAD AND IDEAL SUPPLY

A general case exists in which the load inductance is finite and cannot be considered
as infinitely large. In such cases the circuit can be analyzed using the appropriate
differential equations. If thyristorTha in Fig. 5.5 is conducting, for example, then
supply voltageea (	t) is impressed across the load so that

e t E t i R L
di

dta m L
L( ) sinω ω= = + (5.53)

If iL � 0 at the switching angle�, the load current consists of discontinuous, nonsi-
nusoidal current pulses described by the equation

i t
E

Z
tL

m

L
L L

tL( ) sin sin cot /ω ω φ α π φ ε φ ω π α= −( ) − + −










− − −[ ]
6

6 


 (5.54)

where

Z R L
L

RL L= + = −2 2 2 1ω φ ω
  tan (5.55)

The average valueIav and rms valueIL of the load current can be obtained by the
use of the defining integrals

I i t d tav L= ∫
1

2 0

2

π
ω ω

π
( ) (5.56)

I i t d tL L= ∫
1

2
2

0

2

π
ω ω

π
( ) (5.57)

If the load inductance is sufficiently large to maintain continuous conduction the
load current waveform is of the general type shown in Fig. 5.9. At� � 60�, the
load voltage retains the same waveform as in Fig. 5.6f and its average value is still
given by Eq. (5.35), with the average current given by Eq. (5.36).

For the load current waveform of Fig. 5.9c, the instantaneous value is given
by Eq. (5.54) plus an additional term involving current valueImin. This is obtained
by solving Eq. (5.52) foriL (	t) � Imin when	t � � � �/6.

i t
E

Z
tL

m
L L

tL( ) sin sin cot /ω ω φ α π φ ε φ ω π α= −( ) − + −










− − −[ ]
6

6 




+ − − −[ ]                I L t
min

cot /ε φ ω π α6 (5.58)

Equation (5.58) can be rearranged to give an explicit expression forImin by noting
thatiL (	t) � Imin at	t � � � �/6 � 2�/3.
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FIG. 9 Waveforms of three-phase, half-wave controlled rectifier with seriesR-L load of
arbitrary value,� � 60�.

If a bypass diodeD is connected across the load impedance, as in Fig. 5.10,
the load voltageeL (	t) cannot go negative. At� � 60�, for example, the load volt-
age then has the form of Fig. 5.2f (which is valid for a resistive load) even when
the load is highly inductive. The effect of the bypass diode is to chop off the negative
part of eL (	t) in Fig. 5.6f and thereby to increase the average load voltage and
current without affecting the supply current.

It was shown in Sec. 5.1 that average load voltage with resistive load, for�
� 30�, is given by Eq. (5.6), which compares with the corresponding expression
Eq. (5.35) for highly inductive load.

The ratio of the two average voltage expressions represents a net increase
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FIG. 10 Three-phase, half-wave controlled rectifier with bypass diode.

E

E
av

av

R

L

= 








increase of load voltage

due to bypass diode  =
+ +( )1 6

3

cos /

cos

α π

α (5.59)

At � � 60�, for example, the ratio in Eq. (5.59) has the value 1.155. In other words,
the effect of the bypass diode is to increase the average load voltage by 15.5%.

5.5 SERIES R-L LOAD PLUS A CONSTANT EMF
WITH IDEAL SUPPLY

The most general form of burden on a three-phase, half-wave controlled bridge
rectifier is shown in Fig. 5.11. In addition to a seriesR-L impedance of arbitrary
phase angle, the load current is opposed by an emfE, which is constant or which
changes in a known manner, This might arise, for example, in battery charging or
in the speed control of a separately excited dc motor. With the polarity shown in
Fig. 5.11 the average load current is reduced because emfE is in opposition to the
mean driving voltageEav created by rectification:

I
E E

R

E E

Rav
av av=

−
=

−
0
cosα

(5.60)
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FIG. 11 Three-phase, half-wave controlled rectifier with seriesR-L load, incorporating a
load-side emf.

Furtheraccounts of the applicationsofbridge rectifiers todc motorcontrol aregiven
in Refs. 10, 11, 15, 20, 25, and 27.

5.6 HIGHLY INDUCTIVE LOAD IN THE PRESENCE
OF SUPPLY IMPEDANCE

Consider that a series inductanceLs now exists in each phase of the supply. The
terminal voltageseaN,ebN, andecNat the bridge terminals (Fig. 5.12) are not sinusoi-
dal while the bridge draws current from the supply but are given by Eqs.
(4.26)–(4.28). The supply voltages at the generation point are still given by Eqs.
(4.29)–(4.31).

In a controlled rectifier the effect of delayed triggering is to delay the start of
conduction in the conductor containing the switch. Once conduction has begun the
supply reactance delays the buildup of current for a period known as theoverlap
period. Much of the discussion of Sec. 4.4, relating to the three-phase, half-wave
diode bridge rectifier is also relevant here. The effects of delayed triggering plus
overlap are illustrated in Fig. 5.13. At a firing angle� � 30� conduction com-
mences. The phase current does not reach its final valueEav/R until the overlap
period� is completed, although the load current is smooth and continuous. The
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FIG. 12 Three-phase, half-wave controlled rectifier circuit, including supply inductance.

effect of overlap removes a portion (shown dotted) from the bridge terminal volt-
ages that would be present with ideal supply. As a result, the area under the curve
of the load voltage is reduced and so is its average value.

In Fig. 5.13 the average load voltage is given by

E e d t
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+

+
+ +

+

+
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4

2
0

o

o

E

E

m

av

cos cos( )

ccos cos( )α α µ+ +[ ] (5.61)

When� � 0, Eq. (5.61) reduces to Eq. (4.33), which was derived for diode opera-
tion. Since the time average value of the voltage on the load inductor is zero, then

I
E

Rav
av= (5.62)

If it is required to supply the load with constant current, then sinceEav varies with
�and�, resistorRmostbe variedat thesame rate.During the firstoverlap interval in
Fig. 5.13, thyristorsTha andThc are conducting simultaneously. A complete circuit
therefore exists such that, starting from pointN in Fig. 5.12,
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FIG. 13 Waveforms of three-phase, half-wave controlled rectifier with highly inductive
load, in the presence of supply inductance,� � 30�, � � 20�: (a) load voltage, (b) supply
currentia (	t), (c) supply currentib (	t), and (d) load current.

− + − + =e L
di

dt
L

di

dt
eAN s

a
s

c
CN  0 (5.63)

Since thyristorThb is in extinction, currentib is zero and

i i Ia c av+ = (5.64)

Eliminatingic from Eqs. (5.63) and (5.64) gives
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e e L
di

dt
eAN CN s

a
AC− = =2 (5.65)

Note that this voltageeAC (	t), which falls across two line reactances in series, is
not the same as the corresponding instantaneous load voltage (eAN � eCN)/2 (Fig.
5.13), which is also valid during the same period of overlap.

The instantaneous time variation of currentia (	t) in the overlap period� �
30� � 	t � � � 30� � � may be obtained from Eq. (5.65).

i t
L

e t dta
s

AC( ) ( )= ∫
1

or

i t
L

e t d t

L
E t d t

a
s

AC

s
m

( ) ( )

sin( )

ω
ω

ω ω

ω
ω ω

=

= −

∫

∫

1

2

1

2
3 30o

But 1  at

o

o

= − − +

( ) = = + +

3

2
30

30

2

E

L
t K

i I t

m

s

a av

ω
ω

ω α µ

cos( )

(( ) = = + at oi ta 0 30ω α.and (5.66)

But (1) ia � Iav at	t � 30� � � � �
(2) andia � 0 at	t � 30� � �. From condition (1)

K I
E

Lav
m

s

= + +
3

2ω
α µcos( )

(5.67)

From condition (2)

K
E

L
m

s

=
3

2ω
αcos

(5.68)

The instantaneous time variationia (	t) may be written by combining Eqs. (5.66)
and (5.67).

i t I
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L
ta av
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( ) cos ( ) cos( )ω
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α µ ω
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= +

= + +
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2
30

o

o

o  (5.69)

The two expressions Eqs. (5.67) and (5.68) for constant of integrationK may be
equated to give
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I
E

Lav
m

s

= − +[ ]3

2ω
α α µcos cos( )

(5.70)

Note that the sign in the bracketed term of Eq. (5.70) is different from the corre-
sponding sign in the similar expression Eq. (5.61) for the average load voltage.
Equations (5.61) and (5.70) may be combined to give

E E
L

Iav av
s

av= −
0

3

2
cosα

ω
π (5.71)

The first term of Eq. (5.71) is seen to be equal to Eq. (5.35) and represents the aver-
age load voltage with ideal supply. The second term in Eq. (5.71) represents the
effect of voltage drop in the supply inductances.

SinceIav � Eav/R,Eq. (5.71) can be rearranged to give

E
E

L
R

av

av

s

=
+

0

1
3
2

cosα
ω
π (5.72)

It is seen that Eq. (5.72) reduces to Eq. (4.40) when� � 0.
A discussion on the effects of delayed firing and of overlap on bridge opera-

tion is given at the end of Chapter 7.

5.6.1 Worked Examples

Example 5.9 A three-phase, half-wave controlled rectifier contains induct-
anceLs in each supply line. The rectifier supplies a highly inductive load with a
load current of average valueIav. Devise an equivalent circuit to show the effect on
the average load voltageEavof the switch firing angle� and the supply inductance.

From Eq. (5.71) it can be inferred that there is an effective open-circuit volt-
ageEav0 cos� on the load side. This constitutes a dc driving voltage that is reduced
due to the effect of supply side inductance when current flows. A possible equiva-
lent circuit is given in Fig. 5.14, which also shows the effect of supply line resis-
tance.

E E
L

I R Iav av
s

av s av= − −
0

3

2
cosα

ω
π

It is often permissible to assume that resistanceRs � 0.
Example 5.10 A three-phase, half-wave rectifier uses silicon controlled

rectifier switches and supplies a highly inductive load circuit in which the current
is maintained constant at 50 A (by adjustment of the load resistance). The three-
phase supply has a line-to-line voltage of 230 V at 50 Hz, and each supply line
contains an effective series inductanceLs � 1.3 mH plus a series resistanceRs �
0.05	. Calculate the average load voltage for firing angles� � 0�, 30�, and 60�.
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FIG. 14 Load-side equivalent circuit for a three-phase, half-wave controlled rectifier with
supply impedance.

The average load-side voltage on open circuit is, from Eq. (5.35),

Eav0

3 3

2

230 2

3
155 3= =

π
.  V

Without the effects of voltage drop in the supply lines the average load voltage
would be

Eav � Eav0 cos� � 155.3 cos�

At a constant load current of 50 A there is a constant voltage drop 50� 0.05�
2.5 V in the supply line resistor. Also at a load current of 50 A the supply line induc-
tor results in a voltage drop, Eq. (5.71), of

3

2
3 2 50 1 3

2 1000
50

9 75

ω
π

π
π

L
Is

av

= × ×

=

.

.  V

Because this calculation is performed in equivalent dc side terms, no question of
phaserelationshiparises, and thevoltagedrops on thesupply line resistorand induc-
tor can be added algebraically. For all values of firing angle the voltage drop along
a supply line is 2.5� 9.75� 12.25 V.
At � � 0�,

Eav � 155.3� 12.25� 143 V
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At � � 30�,

Eav � 155.3� 0.866� 12.25� 122.2 V

At � � 0�,

Eav � 155.3� 0.5� 12.25� 65.4 V

Example 5.11 A three-phase, half-wave controlled rectifier using SCR
switches supplies power from a 415-V, 50-Hz bus with a short-circuit reactance of
0.415�/phase to a highly inductive load. The load current is 50 A when the load
voltage is maximum. Calculate the communication time of the switches at� � 30�.

The effect of commutation or simultaneous conduction between two phases
is illustrated by the waveforms in Fig. 5.13, for the case of� � 30�. The per-phase
supply reactance, (sometimes called theshort-circuit reactanceor commutation
reactance) is given as

Xsc� 	Ls � 2�50Ls � 0.415�

It can be assumed that the given value 415 V represents the rms line voltage.
Therefore,

�3 Em � peak line voltage� �2 � 415� 587 V

Now maximum average load current occurs when� � 0. In Eq. (5.70)

50
587

2 0 415
1=

×
−

.
( cos )µ

from which

� � cos�1 0.929� 21.7� � 0.378 radian

At � � 0, the average load voltage is, from (5.71),

E Eav m= − × ×

= −

= ×

3 3

2

3

2
0 415 50

3

2
587 20 75

3

2
566

π π

π

π

.

( . )

 ..25 270=  V

Constant Load Resistance.If the load resistance is kept constant at the
value R� Eav/Iav � 270/50� 5.4�, from Eq. (5.62), then the average voltage
with � � 30�, from Eq. (5.72), is
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Eav = × ×
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The load current at� � 30� will then have fallen from Eq. (5.62), to

I
E

Rav
av= = =234 1

5 4
43 35

.

.
.  A

Substituting into Eq. (5.70),

43 35
587

0 83
0 866 30.

.
. cos( )= − + 

o µ

from which

� � 6.42� � 0.112 radian

But � � 	tcom, wheretcom is the commutation time.
Therefore,

tcom  mS= =0 112

2 50
0 357

.
.

π

Constant Load Current. If the load current is kept constant at 50 A then
from Eq. (5.70), at� � 30�

50
587

0 83
0 866 30= − + .
. cos( )o µ

which gives

� � 7.32� � 0.128 radian

Therefore,

tcom  mS.= =0 128

2 50
0 41

.
.

π

With constant current of 50 A the average voltage at� � 30�, from Eq. (5.61), is

Eav = ⋅ +

=
=

1

2

3 3

2
0 866 0 795

140 14 1 661

232 8

π
( . . )

. ( . )

.

     

      V

which is achieved by reducing the load resistor from 5.4� to 232.8/50� 4.660�.
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PROBLEMS

Three-Phase, Half-Wave Controlled Rectifier with
Ideal Supply and Resistive Load

5.1 A three-phase, half-wave controlled rectifier is supplied from an ideal three-
phase, 415-V, 50-Hz source. The load is purely resistive and of value 75�.
Calculate the average and ms load voltages and the load voltage ripple factor
at� � 45�.

5.2 For the circuit of Problem 5.1 calculate the average load current at (a)� �
30�, (b) � � 60�, (c) � � 90�, and (d)� � 120�.

5.3 Calculate the power dissipation in the load for the circuit of Problem 5.1
when� � 60�.

5.4 Calculate the rms values of the supply currents for the circuit of Problem
5.1.

5.5 Calculate the value of the load current ripple factor for the circuit of Problem
5.1 at� � 0�, 30�, 60�, 90�, 120�, and 150�. Plot this function versus�.

5.6 For a three-phase, half-wave controlled bridge rectifier withR load show
that the Fourier coefficients of the fundamental component of the supply
currents are given by

a
E

R
m

1

3

4
2=

−
π

αsin

b
E

R
m

1 4

4 3 3 2

3
= +

π
π αcos

5.7 Use the expressions for the Fourier coefficientsa1 andb1 from Problem 5.6
to obtain an expression for the displacement angle�1 of the fundamental
component of the supply currents. Use this angle to obtain an expression for
the input power per phase. Calculate the value of this power for the circuit
of Problem 5.1 at� � 60� and check that the result is consistent with the
value from Problem 5.3.

5.8 For the circuit of Problem 5.1 calculate the power factor for� � 30�, 60�,
90�, 120�, and 150� Plot the results against�. Would it be correct to refer to
the results obtained as describing a ‘‘lagging’’ power factor?

5.9 Three equal ideal capacitors C are connected across the supply point of a
three-phase, half-wave bridge, as shown in Fig. 5.3. If� � 30� and the peak
values of the load and capacitor currents are equal, sketch the waveform of
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the corresponding supply current. Is it possible to tell if the supply current
is ‘‘improved’’ by examining its waveform?

5.10 Show that the expressions given in Eqs. (5.27) and (5.28) for the rms current
Isa

are correct.

5.11 A three-phase, half-wave rectifier circuit is compensated by terminal
shunt capacitanceC as shown in Fig. 5.3. For�/6 � � � 5�/6, derive
a criterion for the relationship betweenC and load resistorR that would
result in power factor improvement. [Hint: consider the derivation of
Eq. (5.30).]

5.12 For the capacitance-compensated bridge circuit of Fig. 5.3 show that
the minimum possible value of the rms supply current is given by Eq.
(5.34) if � � 30�. What is the percentage reduction of rms supply
current due to optimal capacitance compensation at� � 60�, 90�, and
120�?

5.13 Show that the reactive voltamperes of the capacitance compensated
bridge circuit of Fig. 5.3 is given by
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cos α π

π
π α π
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Is this reactive voltamperes associated with energy storage as would
be the case in a linear, sinusoidal circuit?

5.14 Derive an expression for the dc or average value of the supply current
for the circuit of Fig. 5.1. Is this value affected by the connection of
compensating capacitors across the terminals?

Three-Phase, Half-Wave Controlled Rectifier with
Ideal Supply and Highly Inductive Load

5.15 A three-phase, half-wave, silicon controlled rectifier bridge circuit is
supplied from an ideal three-phase source of 415 V, 50 Hz. The load
consists of a resistorR � 75 � in series with a high inductance filter.
Calculate the average values of the load current and the supply current
at � � 0�, 30�, 60�, and 90�.
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5.16 For the circuit of Problem 5.15, calculate the ms supply current, the
power dissipation and the power factor,

5.17 Derive expressions for the fundamental componentsa1 and b1 of the
Fourier series describing the supply current to the three-phase bridge
of Problem 5.15. Also, derive expressions for the displacement angle
�1 and the displacement factor cos�1, and calculate the values for the
data of Problem 5.15.

5.18 Show that the rms value of the supply currents to a three-phase, half-
wave controlled bridge rectifier with a high inductance in the load
circuit is given by

I
E

R
a

av= 0

3
cosα

5.19 Show that the power factor of the three-phase bridge of Problem 5.15
is given by equation (5.44)

5.20 Calculate the operating power factor of the load bridge of Problem 5.15
at � � 0�, 30�, 60� and 90� and compare the results with the correspond-
ing operation with resistive load.

5.21 A three-phase, half-wave, controlled bridge rectifier supplies power to
a load consisting of resistorR in series with a large inductor. Power
factor improvement is sought by the connection of equal capacitorsC
between the supply voltage terminals and the neutral point N. Show
that the rms value of the resulting supply current is given by (5.47)

5.22 Show that the value of capacitanceC that results in maximum power
factor operation for the bridge of Fig. 5.3, with load filter inductance,
is given by equation (5.50). Also show that the corresponding minimum
value of the supply current is given by equation (5.51)

5.23 For the circuit of Problem 5.15 calculate the maximum improvement
of operating power factor that can be realised by shunt capacitor compen-
sation. Sketch the uncompensated and compensated power factors as
functions of thyristor firing-angle.

5.24 Derive an expression for the reactive voltamperes at the terminals of
the bridge of Problem 5.15. How is this expression modified by the
connection of equal capacitorsC of arbitrary value at the terminals?
What is the value ofC that will make the reactive voltamperes equal
to zero?

5.25 Derive an expression for the average value of the supply current to a
three-phase, half-wave, controlled bridge rectifier with highly inductive
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load. Is this value affected by the connection of compensating capacitors
across the terminals? Compare the result with that obtained for resistive
load, in Problem 5.15.

5.26 Use the Fourier coefficientsa1b1 derived in Problem 5.17 to obtain an
expression for the rms fundamental componentI1 of the supply current
in Problem 5.25. Hence obtain an expression of the distortion factor
seen from the supply point.

Three-Phase, Half-Wave Controlled Rectifier with
Series R-L Load Supplied from an Ideal Three-
Phase Source

5.27 A three-phase, half-wave, silicon controlled rectifier bridge has a series
R-L load of phase angle�. For the case when the load current is
continuous, show that its instantaneous value is given by Eq. (5.58) in
which the parameterImin is given by

I
E Zm
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=
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5.28 For the three-phase, half-wave bridge of Problem 5.27 show that the
average value of the load current at a firing angle� is given by
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5.29 In the three-phase bridge circuit of Fig. 5.10 calculate the increase of
the average load voltage due to the presence of the bypass diodeD at
(a) � � 30�, (b) � � 45�, (c) � � 60�, and (d) � � 75�.

Three-Phase, Half-Wave Controlled Bridge Rectifier
with Highly Inductive Load in the Presence of
Supply Inductance

5.30 A three-phase, half-wave, silicon controlled bridge rectifier supplies
power to a load containing a large series filter inductance. Each supply
line contains series inductance that causes an overlap angle� of about
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20�. Sketch compatible waveforms of the phase voltage and current at
the bridge terminals. Explain how the reduction of the average load
voltage due to� is related to the area (in voltseconds) under the phase
voltage curve.

5.31 From the load voltage waveforms of Fig. 5.13, show that the average
load voltage is given by

E
E

av

av= + +0

2
[cos cos( )]α α µ

5.32 A three-phase supply 415 V, 50 Hz transfers power to a load resistor
R via a three-phase, half-wave controlled bridge rectifier. The load
current is smoothed by a filter inductor and maintained at a constant
level of 40 A. Each supply line contains an effective series inductance
of 1 mH. Calculate the average load voltage and the value of the load
resistance for firing angles� � 30�, 60�, 90�.

5.33 For the three-phase, half-wave bridge of Problem 5.30, sketch compatible
waveforms of the load voltage, SCR (line) currentIa, the voltage across
switch Tha and the voltage across the source inductance in line a for
� � 15�, assuming that overlap angle� � 30�.

5.34 A three-phase, half-wave, SCR bridge rectifier is operating with firing
angle � (where � � 30�) and supplying a highly inductive load. The
effect of supply line inductanceLs is to cause an overlap angle� �
20�. Show that during the overlap period when 30� � � � 	t � 30�
� � � �, the supply current in phasea is given by

i t
E

L
ta

m

s

( ) cos cos( )ω
ω

α ω= − − 
3

2
30o
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Three-Phase, Full-Wave
Uncontrolled Bridge Rectifier
Circuits

The basic full-wave uncontrolled (diode) rectifier circuit is shown in Fig. 6.1.
DiodesD1, D3, andD5 are sometimes referred to as theupper halfof the bridge,
while diodesD2, D4, and D6 constitute thelower halfof the bridge. As with half-
wave operation the voltages at the anodes of the diode valves vary periodically as
the supplyvoltages undergo cyclicexcursions. Commutationor switch-off ofa con-
ducting diode is therefore accomplished by natural cycling of the supply voltages
and is known asnatural commutation. The load currentiL is unidirectional, but the
supply currents are now bidirectional. In order to permit load current to flow, at
least one diode must conduct in each half of the bridge. When this happens, the
appropriate line-to-line supply point voltage is applied across the load. In compari-
son with the half-wave bridge (Fig. 4.2a), in which the supply-phase voltage is ap-
plied across the load, the full-wave bridge has the immediate advantage that the
peak load voltage is�3 times as great.

6.1 RESISTIVE LOAD AND IDEAL SUPPLY

With resistive load and an ideal supply of three-phase, balanced sinusoidal volt-
ages, there is an instantaneous transfer of anode voltage on each diode in sequence.
Because of the resistive load, the load current and appropriate supply current
map the waveform of the corresponding line voltage. Each diode conducts for
one-third (120�) of each 360� supply voltage cycle. With the numbering notation
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FIG. 1 Three-phase, full-wave diode rectifier circuit with resistive load.

of Fig. 6.1, which is standard for the three-phase, full-wave bridge in both its
rectifier and inverter modes of operation, the conduction pattern of the rectifier
circuit diodes is given in Fig. 6.2a in which the upper tier represents the upper
half of the bridge. In the period from 30� � 	t � 90� of the phase voltage
waveform, for example, it is seen that diodesD1 andD6 are conducting. From
Fig. 6.1 it is seen that line voltageeab is then applied across the load. An alternative
representation of the diode conduction pattern is shown in Fig. 6.2b in which the
upper and lower tiers do not represent the upper and lower halves of the bridge.
The pattern of Fig. 6.2b shows that the diodes conduct in chronological order.

The supply phase voltages in Fig. 6.2 are given, once again, by Eqs.
(4.1)–(4.3). The corresponding line-to-line voltages are

eab � eaN � eNb � eaN � ebN � �3Em sin(	t � 30�) (6.1)

ebc � �3Em sin(	t � 90�) (6.2)

eca � �3Em sin(	t � 120�) (6.3)

The load current and voltage profile (Fig. 6.2e) contains a ripple component of
six times supply frequency (i.e., the repetitive period of the ripple is one-sixth
of the periodicity of the supply-phase voltage).

The average value of the load current is the same for every 60� interval in
Fig. 6.2e
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FIG. 2 Waveforms for three-phase, full-wave diode rectifier circuit with resistive load:
(a) and (b) switching sequences, (c) supply phase voltages, (d) supply line voltages, (e)
load current and voltage, and (f) line current.
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π
= 3 33

1 654

E

R
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m

m= . (6.4)

Comparison of Eq. (6.4) with Eq. (4.5) shows that the average load current is
doubled compared with corresponding half-wave operation. One of the principal
functions of a bridge circuit is to produce the maximum possible value of the
average or mean output voltage.

From Eqs. (6.4) it is seen that

E E Eav m avo
= =3 3

π (6.5)

The valueEav in (6.5) refers to a zero impedance supply and is hereafter referred
to asEavo

to distinguish it from the more general case when the supply impedance
has to be considered. The valueEavo

for a full-wave diode bridge Eqs. (6.5) is
seen to be twice the value for the corresponding half-wave bridge, Eq. (4.6). The
rms value of the load current is also equal for every 60� interval of the waveform
of Fig. 6.2e
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This is seen to be almost double the corresponding value for half-wave operation,
Eq. (4.7). The load power dissipation is therefore

P I R
E
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E

RL
m m= = = +









2
2 2

2 74
3

2

2 3 3

2
.

π
π (6.8)

The value in Eqs. (6.8) is almost four times the corresponding value for half-
wave operation given in Eq. (4.8).

The waveform of the supply currentia (	t) is given in Fig. 6.2f. This is a
symmetrical function defined by the equation
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The rms value of every half wave is identical so that only a positive half wave
need be considered. Proceeding by use of the defining integral for the rms line
currentIa, it is found that
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(6.10)

It may be deduced by inspection of Fig. 6.2f that the fundamental Fourier compo-
nent ia1 (	t) of phase currentia (	t) is symmetrical with respect to the current
waveform, as shown. This means that fundamental currentia1 (	t) is in time
phase with its respective phase voltageeaN (	t). The current displacement angle
�1 is therefore zero, and the current displacement factor cos�1 � 1. The power
factor seen from the bridge terminals is obtained from Eqs. (6.1), (6.9), and (6.10).
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(6.11)

This compares with the corresponding value 0.686 for half-wave operation in
Eq. (4.11). The Fourier coefficients of the fundamental componentia1 (	t) of the
supply current waveform are found to be
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R
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m m
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1
1 1

1
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1 055
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= =

=

= =−

. .
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tanψ
(6.12)
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The zero value of displacement angle in Eq. (6.12) obtained by Fourier series
confirms the deduction made by inspection of Fig. 6.2f. The reduction of power
factor below unity is therefore entirely due to distortion effects, and no power
factor correction is possible by the connection of linear energy storage devices
such as capacitors at the bridge input terminals.

The rms value of the fundamental component of the supply line current
(Fig. 6.2f) is 1/�2 of the peak valuec1 in Eq. (6.12)

I
E

R

E

R

a
m

m

1

1

2
1 055

3

0 746
3

= × ×

= ×

.

. (6.13)

The distortion factor of the supply current is given by

=

=

=

I

I
a

a

1

0 746

0 78
0 956

.

.
.

Distortion factor

(6.14)

Since the displacement factor cos�1 � 1.0, Eq. (6.14) is seen to be consistent
with Eq. (6.11). It can be seen from the waveform of Fig. 6.2f that the time
average value of the supply current waveform is zero over any number of complete
cycles. This eliminates the troublesome dc components that are present in the
corresponding half-wave bridge circuit of Fig. 4.2.

Some circuit properties of the three-phase, full-wave diode bridge are given
in Table 6.1

6.1.1 Worked Examples

Example 6.1 An ideal supply of balanced sinusoidal voltages is applied
to the terminals of a three-phase, full-wave diode bridge with a pure resistance
loadR � 25 �. The supply voltages have an rms line value of 240 V at 50 Hz.
Calculate the (1) average power dissipation, (2) average and rms load currents,
and (3) the rms supply current. Compare the results with the corresponding values
for the half-wave bridge of Example 4.1.

If the rms line-to-line voltage is 240 V, the peak phase voltageEm is given
by

Em = =240 2

3
196 V
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TABLE 6.1 Some Properties of the Three-Phase, Full-Wave Uncontrolled Bridge
Rectifier with Ideal Supply

Circuit property Resistive load Highly inductive load

Average load current

RMS load current

Power dissipation

RMS supply current

RMS value of fundamental
supply current

Fourier coefficients a1

of fundamental
supply current b1

Displacement factor
Distortion factor
Power factor

3 3

π
E

R
m

3

2

2 3 3

2

+π
π
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3

2

2 3 3

2

2π
π

+
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2 3 3

2

π
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1.292
E

R
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0 0

1.827
E

R
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1.0
0.956
0.956

3 3

π
E

R
m

3 3

π
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27
2π

E

R
m

2

3

3 2=I
E

R
av

m

π
1

2

18
1 290

2π
E

R

E

R
m m= .

3 3

π
E

R
m

1.0
0.955
0.955

1. From Eq. (6.7) the rms load current is found to be

I
E

RL
m=

= ×

=

1 66

1 66
196

25
13 01

.

.

.

   

   A

The corresponding value for half-wave operation is 6.59A.
The average load power is therefore

P � I2
LR � 4.234 kW

which compares with 1.086 kW for half-wave operation.
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2. The average load current is obtained from Eq. (6.4)

I
E

Rav
m=

=

1 654

12 967

.

.     A

For the half-wave bridge the average load current is one half of this value being
6.48 A.

3. The rms supply current is given in Eq. (6.10)

I
E

Ra
m=

=

1 351

10 59

.

.    A

This compares with a corresponding value 3.8 A for half-wave operation.

Example 6.2 A full-wave, three-phase diode bridge rectifier supplies
power to a resistive load. With an ideal, three-phase power supply, the waveform
of the supply line current is shown in Fig. 6.2f. Use Fourier analysis to calculate
the magnitude of the fundamental component of this waveform. Sketch Fig. 6.2f
and also draw, on the same axes, the fundamental component of current correct
in magnitude and phase displacement. What is the time average value of the
waveform over a supply cycle?

A sketch of the current waveform is reproduced as Fig. 6.3. With the termi-
nology of this figure it is seen that

FIG. 3 Line current of three-phase, full-wave bridge rectifier with resistive load.
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Sincea1 � 0, c1 � b1. The value 1.055Im therefore represents the peak value
of the fundamental component of the supply current.

A sinusoid having this peak value and zero phase displacement is shown
in Fig. 6.3 and is correct relative to the waveform itself. The time average value
over any number of complete cycles is zero since the area under the positive half
waves is canceled out by the area under the negative half waves.

Example 6.3 The load current waveform for a three-phase, full-wave
diode bridge with resistive load is shown in Fig. 6.2e. Calculate a ripple factor
for this waveform and compare it with the corresponding value for a half-wave,
diode bridge

The use of Eq. (6.4) and (6.7) gives a value for the load current ripple
factor

RF
I

I
L

av

=








 −

= 





−

=

2

2

1

1 66

1 654
1

0 085

     

     

.

.

.

This low value compares with the value 0.185 for the corresponding half-wave
bridge, Eq. (4.13).

It should be noted that the above value for the ripple factor is determined
by the ratio of two similar figures. For this reason a small change of eitherIav

or IL makes a comparatively large change in the value of the ripple factor. The
actual valueRF� 0.085 is important only with regard to its smallness compared
with corresponding values for the single-phase bridge and the three-phase, half-
wave bridge.

Example 6.4. A three-phase, full-wave diode bridge is supplied from an
ideal three-phase source and is resistively loaded. Show that the rms value of the
supply line current is given by

I
E

Ra
m= 0 78

3
.

whereEm is the peak value of the supply phase voltage.
The circuit is shown in Fig. 6.1 and the waveform of supply currentia (	t)

is shown in Fig. 6.2e. Over a complete cycle the currentia (	t) is defined by
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The peak currentIm is seen to have the value

I
E
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3

Now, in general, the rms value of a functioni(	t) that is periodic in 2� is found
from the defining expression
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6.2 HIGHLY INDUCTIVE LOAD AND IDEAL
SUPPLY

In some bridge applications a large inductance is included on the load side to
smooth the output current. The bridge circuit then assumes the form shown in
Fig. 6.4a. The instantaneous load voltageeL (	t) is still identical to the form for
resistive load (Fig. 6.2f), but the load current is now constant.

i t I I
E

R

E

RL L av
av m( )ω

π
= = = = 3 3

(6.15)

which is twice the value for half-wave operation, given in Eq. (4.16).
It should be noted that the average value of the load current is not changed

by including the series load inductance. The inductor now absorbs any load side
voltage ripple to result in a smooth, continuous current of fixed value through
the load resistor. As with any purely direct current waveform, the instantaneous,
average, rms, and peak values are identical. When the load current is completely
smoothed, the load current ripple factor is, by definition, zero.

The average load voltage,Eav, across the output terminals in Fig. 6.4(a) is
equal to the average voltage across the load resistorR since the average inductor
voltage is zero.

E E Eav av mo
= = 3 3

π (6.16)

The load current is restrained largely by the load resistor not by the load inductor.
The average load currentIav is related to the average load voltage, as in

the half-wave case, by

I
E

Rav
av= (6.17)

If the load impedance was entirely inductive, the load current would become
destructively large and the overcurrent protection (fuses or circuit breakers) on
the supply side would operate to isolate the bridge circuit from the supply.

The load power dissipation is now 4 times the value for corresponding half-
wave operation, Eq. (4.24).

P I R
E

RL L
m= =2

2

27

π (6.18)

Supply currentia (	t) (Fig. 6.4e) has the rms value
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FIG. 4 Three-phase, full-wave diode bridge with highly inductive load (a) circuit connec-
tion: (b) supply line voltages, (c) load voltage, (d) load current, and (e) supply line current.
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which is 2�2 times the corresponding half-wave value in Eq. (4.23).
A comparison of Eq. (6.10) and (6.19) shows that the rms supply current

is, to a very good approximation, equal to the value for resistive load. The power
factor for the full-wave bridge with highly inductive loading is found to be

PF = =3
0 955

π
. (6.20)

Comparison of Eqs. (6.20) with Eqs. (6.11) shows that the use of inductive loading
makes virtually no difference to the operating power factor of a six-pulse bridge.
The fundamental Fourier harmonicia1 (	t) of ia (	t) is, as with resistive load,
in time phase with supply voltageeaN (	t) so that the current displacement factor
is again unity. Hence the reduction of the operating power factor below unity is
due entirely to distortion of the current waveform rather than displacement or
phase difference. The higher harmonics of the supply current combine with the
supply frequency voltage to produce voltamperes but zero average power. Various
features and parameters of the uncontrolled, three-phase, full-wave rectifier are
listed in Table 6.1. Values of the Fourier components of the fundamental compo-
nent of the supply current are given in Example 6.5 and in Table 6.1.

With seriesR-L load of fixed phase angle less than 90�, the supply current
waveform of a full-wave bridge assumes a shape intermediate between that of
Fig. 6.2f and the flat topped waveform of Fig. 6.4e. In a rectifier circuit the
ratings of the circuit components are an important technical and economic consid-
eration. It can be seen in Fig. 6.4 that the maximum reverse voltage across a
diode will be the peak value of the line-to-line voltage. Each diode in Fig. 6.4a
conducts one pulse of current each supply voltage cycle. DiodeD1, for example,
conducts only the positive pulses associated with currentia, as in Fig. 4.22. The
negative pulses of currentia are conducted by diodeD4.

The rms current rating of diodeD1 (Fig. 6.4a) is therefore given by

I I d tD av1

1

2
2

30

150
=

°

°

∫π
ω (6.21)

Comparison of Eq. (6.19) and (6.21) shows that

I ID a1

1

2
=

(6.22)
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The rms current rating of the diodes in a full-wave, three-phase bridge is therefore
1/�2 of the rms supply current rating.

6.2.1 Worked Examples

Example 6.5 Sketch the supply current waveforms, in correct time-phase
relation to their respective phase voltages, for a full-wave diode bridge with
highly inductive load. The three-phase supply can be considered an ideal voltage
source. Calculate the fundamental component of the supply current and compare
this with the respective value for the case of resistive load.

The waveform of the supply phase currentia (	t) is given in Fig. 6.4e. It
is seen, by inspection, that this waveform is symmetrical with respect to the phase
voltage waveformeaN (	t) � Em sin 	t, so that the fundamental displacement
angle� is

ψ1
1 1

1

0= =−tan
a

b

Because�1 � 0, then

a i t t d ta1 0

2
0= =∫π

ω ω ω
π

( )cos  

In Fig. 6.4, utilizing (6.16), the currentia (	t) can be defined as
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Comparison of this expression with the corresponding expression (6.12) for resis-
tive load shows that the magnitude of the fundamental supply current component
has decreased very slightly due to the inductive load.
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Becausea1 � 0 and�1 � 0 the fundamental component of current may
be written

i t
E

R
ta

m

1
1 053

3
( ) . sinω ω=

Sincea1 � 0, the rms value of the fundamental component of the line
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π

Therefore,

I I av1

6=
π

Example 6.6 Derive a general expression for the average load voltage of
a p pulse uncontrolled rectifier with ideal voltage supply.

One can see an obvious similarity of wave shape between the load voltage
waveforms for three-phase, half-wave rectification (Fig. 4.5c) and three-phase,
full-wave rectification (Fig. 6.4c).

If one takes the peak point of a voltage excursion as the origin, the waveform
can be represented in general by the diagram of Fig. 6.5. The pulse width of a
section is 2�/p, wherep is the effective pulse number. For the interval 0� 	t
� �/p, the waveform is given by

e(	t) � Em cos	t

Its average value is therefore given by
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FIG. 5 General representation of the load voltage waveform for a three-phase, full-wave
p pulse diode bridge rectifier.

Whenp � 3,

E Eav m= 3 3

2π

which agrees with Eq. (4.6), whereEm is the peak value of the line to neutral or
phase voltage. Whenp � 6, in the general expression, then

E
E

av
m=

3

π

But Em now refers to the peak value of the line-to-line voltage, as in Fig. 6.4c).
To be consistent with half-wave operation, the termEm is reserved for the

peak value of the phase voltage and, whenp � 6,

E Eav m= 3
3

π

which is consistent with Eq. (4.56).

Example 6.7 A three-phase, full-wave diode bridge rectifier supplies a
load current of 50 A to a load resistorR in the presence of a highly inductive
series filter. If the ideal three-phase supply provides balanced sinusoidal voltages
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of 415 V, 50 Hz, calculate the required ratings of the bridge diodes and the value
of R.

The appropriate circuit and waveforms are given in Fig. 6.4. The average
load voltage is given by Eq. (6.16)

E
E

av
m=

3 3

π

in which �3 Em is the peak value of the line voltage. It can be assumed in that
the specified value 415 V is the rms value of the line voltage so that

Eav = × × =3
2 415 560

π
 V

The value of the load resistor to sustain a current of 50 A is, from Eqs. (6.17),

R = =560

50
11 2. Ω

The rms supply current may be given in terms of the average load current, as in
Eqs. (6.19),

I Ia av= = =2

3

50 2

3
40 82.  A

From Eqs. (6.22), the rms current rating of each diode is

I
I

D
a= =
2

28 9.  A

The maximum voltage across a diode is the peak reverse value of the line voltage.

Diode PRV rating� 415 �2 � 587 V.

Example 6.8 A three-phase, full-wave uncontrolled bridge is supplied
from an ideal three-phase voltage source. The load current is filtered by a large
inductor to produce negligible ripple. Derive expressions for the power dissipation
on the dc side and on the ac side and show that these are equivalent, assuming
ideal rectifier switches.

If the bridge diodes are ideal and therefore lossless, all of the power supplied
to the ac terminals of the bridge must be dissipated in the load resistor.

Average power can only be transferred by combinations of voltage and
current of the same frequency. Since the supply voltages are of supply frequency,
the harmonic component of the line current that provides real power in watts (as
opposed to voltamperes) is the supply frequency component. The input power is
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Pin � 3 EI1 cos�1

whereE is the ms phase voltage,I1 is the rms value of the fundamental component
of phase (i.e., supply line) current and�1 is the time-phase angle between them.
From the calculations in Example 4.14 it is seen that

�1 � 0 cos�1 � 1.0

a b c
E

R
m

1 1 1 2
0

18= = =
π

The rms value ofI1 is therefore

I
c E
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m
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22

1

2
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π

On the ac side, the input power is therefore

P
E E

R

E

Rac
m m m= × × × =3
2

1

2

18 27
2 2

2

π π

This is seen to agree with Eqs. (6.18), which defines the power on the dc side.
Q.E.D.

6.3 HIGHLY INDUCTIVE LOAD IN THE PRESENCE
OF SUPPLY IMPEDANCE

Let the full-wave bridge circuit now contain an inductanceLs in each supply line.
Because of the nonsinusoidal currents drawn from the supply the voltages at the
bridge input terminalsa, b, andc of Fig. 6.6 are not sinusoidal but are given by
Eqs. (4.29) to (4.31).

If the value of the source reactance is small the theory of operation is very
similar to that previously described in Sec. 6.2 and a typical group of waveforms
are shown in Fig. 6.7. With a significant amount of source inductance, the transfer
of current from one phase to the next now occupies a finite time. For example,
suppose that current is about to be transferred from phase a to phaseb in the
circuit of Fig. 6.6 This transfer will begin when voltageseaN andebN are equal.
Conduction begins through rectifierD3. As the difference between the two instan-
taneous phase voltages increases the current increases in phase b and decreases
in phasea. Sinceia � ib � iL � Iav, currentia is zero withib � iL, at which
point the transfer of current, or commutation, is complete. While the commutation
condition exists there is a short circuit between phasesa andb via diodesD1 and
D3. The phase voltage at the common pointab (neglecting diode voltage drops)
is the average of voltageseAN andeBN
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FIG. 6 Three-phase, full-wave diode bridge rectifier with supply.

6.3.1 Mode I Operation (0 � � � 60�)

Operation that results in an overlap angle� in the range (0� � � 60�) is usually
referred to asmode I operation. Much of the analysis of Sec. 4.4 is relevant here
and overlap angle� of Eq. (4.37) is again relevant.

cosµ
ω

= −1
2

3

L I

E
s av

m
(6.23)

For the present case of full-wave bridge operation, however, the average current
in Eqs. (6.23) is twice the value for half-wave bridge operation in Eq. (4.40).

Combining Eqs. (6.16), (6.17), and (6.23) gives

cosµ
π

ω
= −1

6 L

R

E

E
s av

avo
(6.24)

which compares with Eq. (4.38) for half-wave operation. Waveforms are given
in Fig. 6.8 for mode I operation where� � 30�. It is found that

E
E E

av
m avo= + = +

3 3

2
1

2
1

π
µ µ( cos ) ( cos ) (6.25)
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FIG. 7 Waveforms for full-wave diode bridge rectifier with highly inductive load ideal
supply;� � 0�.
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FIG. 8 Waveforms for full-wave diode bridge rectifier with highly inductive load: mode
I, � � 30�, ideal supply.
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which is identical in form to Eq. (4.33) for half-wave operation, except thatEavo
is now defined by the full-wave expression. With� � 25�, it is found thatEav/
Eavo

� 0.953. This reduction ofEav on load compares withEav/Eavo
� 0.976

for corresponding half-wave operation.
Combining Eqs. (6.24) and (6.25) enables one to calculate the overlap angle

� in terms of impedance parameters.

cos
/ /

/ /
µ

π ω
π ω

=
− ( )
+ ( )

1 3

1 3

L R

L R
s

s
(6.26)

Equation (6.26) differs from the corresponding expression (4.39) for half wave
operation by a factor of 2 in the impedance ratios. Reduction of the average load
voltage due to supply reactance can also be illustrated by combining Eqs. (6.23)
and (6.25), eliminating�,

E
E L I

av
m s av= −

3 3 3

π
ω

π

or

E E
L I

av av
s av

o
= −

3ω
π (6.27)

The second term of Eq. (6.27) represents the effective voltage drop across the
supply inductor in each current loop. It is seen to be twice the corresponding
value for half-wave operation in Example 4.7. The reduction of the load average
voltage is therefore greater for a given supply inductances than with a half-wave
rectifier.

Reduction of the load average voltage can also be calculated from the area
of the phase voltage wave ‘‘missing due to overlap,’’ as, for example, in Fig.
6.8. Such a calculation of the missing voltseconds involves integration of the
instantaneous phase voltage sincei � 1/L �edt. The definite integral�T

0e dt is
the voltage–time area supported by inductanceL in the periodT and represents
some change of current level.

The average load currentIav is still related to the average load voltage by
the relation

I
E

R

E

Rav
av avo= = +( cos )1 µ (6.28)

If the load resistanceR in the circuit of Fig. 6.6 is constant, thenIav will remain
constant, and� will have a fixed value. Overlap angle� will increase only if
Iav increases, by reduction of the load resistorR, as shown in Fig. 6.9. It is seen
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in Fig. 6.7–Fig. 6.9 that the average load voltageEav reduces asIav increases. It
can therefore be deduced that reduction of load resistanceRcausesIav to increase
andEav to decrease but not in simple proportionality because of changes of the
waveform and the value of the ripple voltage content. It can also be seen in Fig.
6.7–Fig. 6.9 that the conduction angles of individual diode elements also increase
with �, attaining the value 180� at � � 60� and maintaining this value for� �
60�.

A useful ‘‘figure of merit’’ for practical rectifier circuits is the dimen-
sionless ratio� � 	Ls Iav/Eav. From Eqs. (6.26) it is found that for a full-wave
diode bridge,

δ
ω ω π µ

µ
= = = −

+
L I

E

L

R
s av

av

s

3

1

1

cos

cos (6.29)

The ideal value for� is zero, but� increases as� increases. At the limit of mode
I operation, with� � 60�, � is found to have the value�/9 � 0.35. The terminal
voltage waveformseab of Fig. 6.7–Fig. 6.12are seen to be symmetrical, compared
with the corresponding waveforms of Figs. 4.9–4.13 for a half-wave bridge
(which are asymmetrical). For phase voltageeaN (	t) (Fig. 6.8), the instantaneous
value is represented by the relation,

e t eaN AN( )
, , , ,

, , ,
ω

µ µ µ µ
=

° °+ °+ °+ °+

° ° ° °
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° °

°+ °+
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,

,

150 330

150 330µ µ

(6.30)

whereeAN, eBN, andeCN, are defined by Eq. (4.26)–(4.28). The corresponding
rms valueEaN of the supply-phase voltage is found from

E e d taN aN= ∫
1

2
2

π
ω (6.31)

The supply-phase currentia (	t) is seen, from Fig. 6.8, to have identical positive
and negative alternations. The positive half cycle ofia (	t) is identical in form
to that of Fig. 4.10e for the half-wave case, except that the maximumIav is twice
as great. Because of symmetry the rms valueIa of waveformia (	t) in Fig. 6.8
is �2 times as great as the value due to the positive half wave alone.

Now with identical loads and identical supply voltages and source imped-
ances, the use of full-wave and half-wave diode bridges would result in different
values of overlap angle. The rms value of the supply line current for the full-
wave bridge will be roughly 2�2 times the value for the half-wave bridge, with
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FIG. 9 Waveforms for full-wave diode bridge rectifier with highly inductive load: limit
of mode I,� � 60�, ideal supply.
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the same load resistor. Instantaneous currentia (	t) in Fig. 6.8 may be represented
by the expression

i t i i i i Ia a a a a( )ω
µ µ µ µ

= + + + +
°

°+

°

°+

°

°+

°

°+

30

30

150
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210

210

330

330

aav avI
30

150

210

330

°+

°

°+

°
−

µ µ (6.32)

The first of the six terms in Eqs. (6.32) is evaluated in Example 4.8. The rms
value Ia of ia (	t) is found from

I i t d ta a= ∫
1

2
2

π
ω ω( ) (6.33)

Since the load current is twice the value for the full-wave bridge as for the half-
wave bridge, the corresponding load power dissipationI2

avR is four times the
value. It can be seen from Fig. 6.8 that the rms supply-phase voltageEaN is lower
than the corresponding value (Fig. 4.10a) for half-wave operation. The bridge
power factor has a maximum value 3/� � 0.955 when� � 0 and decreases as
� increases.

The input power to the bridge may be written (see the discussion in Example
6.8) as

P EIin = 3 1 1
cos  � (6.34)

In Fig. 6.6 one may choose to calculate the input power from supply terminals
ABC or bridge terminals abc. The current is the same in both cases. At the supply
terminals one has the advantage of sinusoidal voltages but note that phase angle
�A1 betweenEA1 and Ia1 is different from phase angle�a1 betweenEa1 and Ia1.
The powerP is the same at both points because no power is lost in the inductors
Ls.

6.3.2 Mode II Operation (� � 60�)

Consider operation of the bridge when the load current is such that� � 60�
(Fig. 6.9). At the point	t � 90�, phasec has just finished conducting current
through diodeD5 and handed over to phasea. But phasec is required to immedi-
ately conduct in the opposite direction from diodeD2. If the commutation or
overlap angle had exceeded 60�, phasec would have been required to conduct
in two opposite directions simultaneously. What actually happens is that overlap
between phasesc anda, via diodesD5 andD1, continues past the instant	t �
90�. Since phasec is still conducting and is positive with respect to phaseb,
commutation between phasesb andc cannot occur until currentib in D6 falls to
zero. The additional interval of time for commutation to occur after� � 60� is
called theinherent delay angle�′. In Fig. 6.10 a value�′ � 15�, with � � 60�,
is shown. As the load current increases further the value of�′ also increases to
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FIG. 10 Waveforms for full-wave diode bridge rectifier with highly inductive load: mode
II, � � 60�, ideal supply.
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a maximum value of 30� while � remains constant at 60�. This form of bridge
action is known asmode II operation. In the mode II interval, while 0� �′ �
30�, phase voltageeaN (	t) at the bridge terminals is represented by the equation

e t E t

e e

aN m

AN B
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(6.35)

It can be shown that mode II operation satisfies the relations

E

E
av

avo

= − ′





3

2 3
sin

π α
(6.36)
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sc
ˆ

cos= − ′





π α
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where, as before,

E Eav mo
= 3 3

π (6.38)

and from Eq. (4.44),

Î
E

Lsc
m

s

=
3

2ω (6.39)

Combining Eqs. (6.35) to (6.38) gives
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I
av

av

av

sco

ˆ (6.40)

Waveforms of the rectifier for mode II operation, are given in Figs. 6.10 and
6.11.

6.3.3 Mode III Operation (60� � � � 120�)

If, when�′ � 30�, the load current is further increased, commutation will begin,
for example, between phasesb andc while the commutation between phasesc
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FIG. 11 Waveforms for full-wave diode bridge rectifier with highly inductive load: limit
of mode II,� � 60�, �′ � 30�, ideal supply.

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 6208

anda is still proceeding. During such intervals, a short circuit will exist between
all three phases. For the remaining periods two phases are undergoing commuta-
tion so that mode III operation consists of alternate two-phase and three-phase
short circuits. Current waveforms for the two-phase short-circuit condition are
shown in Fig. 6.12. During mode III operation, the inherent delay angle�′ is
fixed at 30� while � increases to a limiting value of 120� at which point there is
a full terminal (i.e., three-phase) short circuit of terminals a, b and c. At that
condition the average output voltage is zero, and the bridge currents become
sinusoidal. For a full terminal short circuit the voltage regulation characteristic
of the bridge is described by the relation

E

E

I

I
av

av

av

sco

= −3
3

2 ˆ (6.41)

For the complete range of diode bridge operation, with highly inductive load, the
load voltage–current characteristic is given in Fig. 6.13. This characteristic de-
picts the performance described by Eq. (4.44), (6.27), (6.40), and (6.41) for the
three respective modes of operation.

6.3.4 Worked Examples
Example 6.9 A three-phase, full-wave diode bridge is required to supply

load current of 50 A to a highly inductive load from a three-phase supply of 415
V, 50 Hz. Each supply line contains an effective series inductorLs � 1.3 mH.
Calculate the required value of load resistance, the average load voltage and the
overlap angle.

From Eq. (6.27) the voltage reduction due to supply line reactance is indi-
cated by the second term of the equation

E
E L I

av
m s av= −

3 3 3

π
ω

π

The specified voltage of 415 V can be assumed to be the rms line-to-line voltage
of the three-phase supply. Therefore,

Eav = × × − × × × ×

= −
=

3
2 415

3 2 50 1 3 50

1000
560 45 19 5

541

π π
π .

. .     

     V

With a load current of 50 A,

R
E

I
av

av

= = =541

50
10 82. Ω
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FIG. 12 Waveforms for full-wave diode bridge rectifier with highly inductive load: mode
III, � � 60�, �′ � 30�, ideal supply.
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FIG. 13 Voltage regulation characteristic for full-wave diode bridge rectifier with highly
inductive load.

Now

E
E

av
m

o
=

=

3 3

560 45
π

       V.

From Eqs. (6.25),

cos
.

.µ = − = × − =2 1 2
541

560 45
1 0 931

E

E
av

avo

Therefore, overlap angle� is
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� � cos�1 (0.931)� 21.41�

Example 6.10 A three-phase, full-wave diode bridge rectifier supplies a
load resistorR in the presence of a highly inductive, series load filter. Each three-
phase supply line contains a series inductanceLs. Calculate the overlap angle
and the reduction of average load voltage due to overlap for the cases (1)	Ls/
R � 0.05 and (2)	Ls/R � 0.2.

The case	Ls/R � 0.05 represents a fairly good voltage source, whereas
the case	Ls/R � 0.2 represents a poor supply. From Eq. (6.26),
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° =
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Substituting values of� into Eq. (6.25) gives
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   at 

  at 

µ
µ

A voltage regulation of 4.6% (when � � 24.7�) may be acceptable in many
applications. A voltage regulation of 16% (when � � 47.2�) is much greater
than would normally be acceptable in (say) an ac distribution system.

Example 6.11 A three-phase, full-wave diode bridge with a highly induc-
tive load is fed from a three-phase supply of balanced voltages. The combination
of load resistanceR, supply line inductanceLs, and load currentIav is such that
the bridge operates in mode I. Show that the normalized load voltage–load current
characteristic in mode I is defined by the linear relationship

E

E

I

I
av

av

av

sco

+ =
2

1
ˆ

From Eqs. (6.27),

E E
L I

av av
s av

o
= −

3ω
π

where

E Eav mo
= 3 3

π

From Eqs. (6.39) the peak value of the short-circuit current (which is not reached
in mode I operation) is
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SubstitutingÎsc into the above equation, eliminating	Ls, gives
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Q.E.D.

PROBLEMS

Three-Phase, Full-Wave Diode Bridge with Resistive
Load and Ideal Supply

6.1 A three-phase, star-connected, sinusoidal voltage supply has a peak voltage
Em per phase. This supplies power to a load resistor through a three-phase,
full-wave, diode bridge rectifier. Sketch the circuit arrangement and give
the waveform of a phase current in correct time phase to the corresponding
supply-phase voltage. Sketch the waveform of the load current for a supply
cycle and derive an expression for its average value in terms ofEm and
R. Explain what you would expect to be the lowest order of harmonic
ripple frequency in the load current.

6.2 Sketch the circuit of a full-wave, six-diode bridge rectifier to supply a
resistive load from a balanced three-phase, sinusoidal supply. Sketch also
the per-phase supply current and the load current and calculate the average
values of these.

6.3 For the full-wave, three-phase bridge of Problem 6.2 derive expressions
for the rms supply current, the load power, and hence the power factor for
operation with resistive load.

6.4 A full-wave, three-phase diode bridge rectifier supplies power to a resistive
load. With an ideal, three-phase power supply, the waveform of the supply
line current is shown in Fig. 6.3. Use Fourier analysis to calculate the
magnitude of the fundamental component of this waveform. What is the
time average value of this current waveform over a supply cycle?
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6.5 A set of balanced, sinusoidal, three-phase voltages is applied to a three-
phase, full-wave diode bridge with a resistive loadR� 50�. If the supply
voltages are 415 V, 50 Hz, calculate the load power dissipation and the
rms load current.

6.6 For the three-phase bridge of Problem 6.4 calculate the rms value of the
supply current and hence the necessary current rating of the bridge diodes.

6.7 For a three-phase, full-wave, diode bridge with resistive loadR, show that
the input power per phase is given by

P
E

R
m= +
2

4
2 3 3

π
π( )

whereEm is the peak value of the phase voltage.
6.8 For a three-phase, full-wave diode bridge rectifier with resistive loadR

and ideal supply, show that for all values ofR and supply voltage, the
power factor of operation is given by

PF = + =2 3 3

4
0 956

π
π

.

6.9 Explain why the connection of equal capacitorsCacross the input terminals
of a three-phase, full-wave diode bridge rectifier with resistive load would
cause the operating power factor of the combined load to reduce (i.e.,
become worse).

6.10 Show that the average load voltage of ap pulse, uncontrolled, three-phase
rectifier with peak load voltageEm is given by

E
p

E
pav m=

π
π

sin

6.11 In a three-phasep pulse rectifier the rms value of thenth load voltage
harmonic is denoted byELn

. The peak value of thenth load voltage har-
monic is therefore given by�2 ELn

. Show that these values of load voltage
harmonic are related to the average load voltageEavo

by the relation

2 2

12

E

E n
L

av

n

o

=
−

Note that the above relation is only true forn � p, 2p, 3p, etc.
6.12 For a three-phase, full-wave diode bridge rectifier show that the peak value

of the lowest order ac load voltage harmonic is 5.7% of the average load
voltage.
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Three-Phase, Full-Wave Diode Bridge Rectifier with
Highly Inductive Load and Ideal Supply

6.13 A three-phase, full-wave diode bridge rectifier contains a load resistorR
in series with a high inductance filter. Sketch consistent waveforms of the
voltage and current per phase on the supply side, assuming ideal smoothing.

6.14 For the three-phase bridge of Problem 6.13 show that the rms valueIa of
a supply current is related to the smooth load currentIav by relation

I Ia av= 2

3

6.15 Show that the input power per phase of the three-phase bridge circuit of
Problem 6.13 is given by

P
E

R
m= 9

2π

whereEm is the peak value of the supply phase voltage.
6.16 A three-phase, full-wave diode bridge rectifier with highly inductive load

cannot be power-factor corrected at all by the use of terminal capacitance.
Use the Fourier components of the supply line current to explain why this
is so.

6.17 A three-phase, full-wave diode bridge rectifier with highly inductive load
requires a load current of 100 A from a 240-V, 50-Hz, three-phase supply.
Calculate the required voltage and current rating of the bridge diodes.

6.18 Show that for a full-wave, three-phase diode bridge rectifier with highly
inductive load, the power factor, irrespective of voltage and current values,
is given byPF � 3/� � 0.955.

6.19 For a three-phase, full-wave diode bridge rectifier with highly inductive
load, calculate the magnitude and phase angle of the fundamental compo-
nent of the supply current per phase. Sketch the supply voltage and current
per phase and sketch, on the same diagram, the fundamental current compo-
nent.

6.20 A three-phase, full-wave diode bridge rectifier with highly inductive load
carries a load currentIav. Show that the rms current ratingID of each diode
is given by

I
I

D
av=
3
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6.21 For a full-wave, three-phase, diode, bridge rectifier with highly inductive
load, obtain the Fourier series for the supply current waveform. Use this
to deduce the magnitudes of the fundamental and principal higher harmonic
components.

Three-Phase, Full-Wave Diode Bridge Rectifier with
Highly Inductive Load in the Presence of Supply
Inductance

6.22 A three-phase supply 240 V, 50 Hz provides power to a three-phase, full-
wave uncontrolled bridge. The highly inductive load requires a constant
current of 30 A. Each supply line contains an effective series inductance
of 1 mH. Calculate the average load voltage and the overlap angle.

6.23 For the three-phase bridge of Problem 6.22 calculate the reduction of the
average load voltage due to overlap for the cases (a)	Ls/R � 0.03 and
(b) 	Ls/R � 0.25.

6.24 A three-phase, full-wave diode bridge transfers power from a balanced
three-phase supply to a highly inductive load. The supply lines each contain
series reactance	Ls such that operation occurs at overlap angle� � 30�.
Sketch consistent diagrams for the per-phase voltage and current at the
bridge terminals and calculate the per-unit reduction of average load
voltage.

6.25 For the three-phase bridge circuit of Problem 6.24 sketch the variation of
ratio 	Ls/R versus overlap angle� for 0 � � � 60�.

6.26 A three-phase, full-wave uncontrolled bridge circuit supplies power to a
variable load resistorR in series with a load inductor of constant, high
value. The supply lines contain series inductanceLs. Use appropriate equa-
tions to show that the load characteristicEav/Eavo

versusIav/Îav is repre-
sented by Fig. 6.13.
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Three-Phase, Full-Wave Controlled
Bridge Rectifier Circuits with
Passive Load Impedance

Two half-wave, three-pulse controlled rectifiers of the type shown in Fig. 7.1
can be combined in the formation of Fig. 7.1a. If the switches in the top half of
the bridge (Th1Th3Th5) are gated and fired in antiphase with the switches in the
bottom half (Th4Th6Th2) and the neutral wire N is omitted, the two half-wave
bridge effects are added. The resultant load voltageeL (	t) is then the sum of
the two individual half bridges. The average load voltageEav is then twice the
average value of either of the two half-wave bridges acting individually.

Figure 7.1b shows the basic form of a three-phase, full-wave bridge rectifier
circuit. This is the same form as the uncontrolled bridge Fig. 6.1, and the number-
ing notation is the same. Although the semiconductor switches in Fig. 7.1 are
shown as silicon controlled rectifiers, they could equally well be any of the other
three-terminal, gate-controlled switches of Table 1.1.

With a supply of zero impedance the three supply-phase voltages for the
circuit of Fig. 7.1 retain balanced sinusoidal form for any load condition. These
voltages are defined by the equations

eaN � Em sin 	t (7.1)

ebN � Em sin(	t � 120�) (7.2)

ecN � Em sin(	t � 240�) (7.3)

The corresponding line-to-line voltages at the supply point are
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FIG. 1 Three-phase, full-wave controlled bridge rectifier circuit: (a) depicted as two half-
wave bridges with neutral connection and (b) conventional formation, without neutral.
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eab � eaN � eNb � eaN � ebN � �3Em sin(	t � 30�) (7.4)

ebc � �3Em sin(	t � 90�) (7.5)

eca � �3Em sin(	t � 210�) (7.6)

Waveforms of the supply voltages are given in Figs. 6.2 and 7.2.
The device numbering notation shown in the bridge rectifier circuit of Fig.

7.1 is standard for the three-phase, full-wave controlled bridge in both its rectifier
and inverter modes of operation. To provide a current path from the supply side
to the load side requires the simultaneous conduction of at least two appropriate
switches. When one element of the upper group of switches and one of the lower
group conducts, the corresponding line-to-line voltage is applied directly to the

FIG. 2 Voltage waveforms of the three-phase, full-wave controlled bridge rectifier with
resistive load and ideal supply: (a) supply line voltages, (b) load voltage (� � 0�), (c)
load voltage (� � 30�), (d) load voltage (� � 60�), and (e) load voltage (� � 90�).
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load. In Fig. 7.1 the switches are depicted as silicon controlled rectifier types of
thyristor. For this reason the terminologyTh is used in their description. If, for
example, the switchesTh1 and Th6 conduct simultaneously, then line voltage
eab is applied across the load. There are some switch combinations that are not
permissible. If, for example, the switches in any leg conduct simultaneously from
both the top half and the bottom half of the bridge, then this would represent a
short circuit on the ac supply. To provide load current of the maximum possible
continuity and smoothness appropriate bridge switches must conduct in pairs
sequentially, for conduction intervals up to 120� or �/3 radius of the supply
voltage. The average load voltage and current are controlled by the firing-angle
of the bridge thyristors, each measured from the crossover point of its respective
phase voltages.

7.1 RESISTIVE LOAD AND IDEAL SUPPLY

When the thyristor firing-angle� is 0�, the bridge operates like a diode rectifier
circuit with the waveforms given in Fig. 4.2. The corresponding conduction se-
quence of the circuit devices is given in Fig. 6.2a, in which the upper tier repre-
sents the upper half of the bridge. Supply line currentia (	t) for the first cycle
(Fig. 6.2f) is made up of four separate components contributed by the four separate
circuits shown in Fig. 7.3. An alternative representation of the device conduction
pattern is shown in Fig. 6.2b in which the upper and lower tiers do not represent
the upper and lower halves of the bridge, but this pattern shows that the thyristor
switches conduct in chronological order. The circuit operation possesses two
different modes, depending on the value of the firing angle. In the range 0� �
� �/3 the load voltage and current are continuous (Fig. 7.2c and d ), and an
oncoming thyristor will instantly commutate an off-going thyristor. In the range
�/3 � � � 2�/3, the load current becomes discontinuous because an off-going
thyristor extinguishes before the corresponding on-coming thyristor is fired. For
resistive loads with negligible supply reactance, both the load current and the
supply current are always made up of parts of sinusoids, patterned from the line
voltages. For all firing angles the sequence order of thyristor conduction in the
circuit of Fig. 7.1 is always that shown in Fig. 6.2a. However, the onset of
conduction is delayed, after the phase voltage crossover at	t � 30�, until the
appropriate forward biassed thyristors are gated and fired.

Consider operation at� � 30�, for example. In Fig. 7.2 forward-bias voltage
occurs on thyristorsTh1 andTh6 at 	t � 30�. If the firing-angle is set at� �
30�, conduction viaTh1 andTh6 (Fig.7.3a) does not begin until	t � � � 30�
� 60� and then continues for 60�. At 	t � � � 90� � 120�, the dominant line
voltage iseac, thyristorTh6 is reverse biassed, and conduction continues via the
newly fired thyristorTh2 (Fig. 7.3b) for a further 60�. At 	t � 180�, thyristor
Th1 is commutated off by the switching in ofTh3 and line currentia (Fig. 7.4c)
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FIG. 3 Equivalent circuits of conduction with resistive load and ideal supply: (a) 30� �
	t � 90� (Th1, Th6 on), (b) 90� � 	t � 150� (Th1, Th2 on), (c) 210� � 	t � 270� (Th3,
Th4 on), and (d) 270� � 	t � 330� (Th5, Th4 on).

becomes zero so that the load current path is provided byTh2 and Th3 for a
further 60� interval. When	t � 240�, the dominant line voltage iseba. The firing
of Th4 transfers the load current fromTh2, (Fig. 7.3c), and supply current resumes
in phasea in the opposite direction. After a further 60�, at	t � 300�, line voltage
eca is dominant (Fig. 7.4a), and the switching in ofTh5 causes the commutation
of Th3. ThyristorsTh4Th5 then provide the load current path which is fed from
phasec to phasea, as shown in Fig. 7.3d.
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FIG. 4 Waveforms of the three-phase, full-wave controlled bridge rectifier with resistive
load and ideal supply: (a) supply line voltages, (b) supply line current (� � 0�), (c) supply
line current (� � 30�), and (d) supply line current (� � 60�).

7.1.1 Load-Side Quantities

The sequence of thyristor firing creates the load voltage (and current) waveforms
shown in Fig. 7.2. In mode I operation, where 0� � � 60�, the average voltage
can be obtained by taking any 60� interval of eL (	t).

For � � 30� � 	t � � � 90�,
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e t E tL m( ) sin( )ω ω
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α
= +
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(7.7)

The average value of Eq. (7.7) in terms of peak phase voltageEm is
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=
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3 3
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o
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where

E E Eav m m0

3 3
1 654= =

π
. (7.9)

The average currentIav is, therefore, a function of of�

I
E

R

E

Rav
av av= = 0 cosα (7.10)

With resistive load the instantaneous load voltage is always positive. When the
anode voltage of a thyristor goes negative extinction occurs. At a firing angle�
� 60�, the load voltage and current therefore become discontinuous, as shown
in Fig. 7.2. This represents a different mode of operation from� � 60� and the
load voltage is then described by the following equation:

For 60� � � � 120�,

e t E tL m( ) sin( )ω ω
α

= +
+

3 30
30

150
o

o

o

(7.11)

The average value of Eq. (7.11) is given by

E Eav m= + + 
3 3

1 60
π

αcos( )o

(7.12)

When � � 60�, Eq. (7.8) and (7.12) give identical results. At� � 120�, the
average load voltage becomes zero.

The waveforms of Fig. 7.2 show that the load voltage waveform has a
repetition rate six times that of the phase voltage. This means that the lowest
ripple frequency is six times fundamental frequency. If a Fourier analysis is
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performed on the load voltage waveform the two lowest order harmonics are the
dc level (i.e., the average value) followed by the sixth harmonic.

Load power dissipation can be found from the rms load current. The rms
or effective load currentIL is defined as

I i t d tL L= ∫
1

2
2

0

2

π
ω ω

π
( ) (7.13)

whereiL � eL/R from Eq. (7.7) or (7.11).
Comparing waveforms of the supply and load currents at a given firing

angle, one would anticipate thatIL � Ia becauseiL (	t) has a greater area under
the curve than doesia (	t) and thereforei2L (	t) is likely to be greater thani2a
(	t). The substitution of Eq. (7.7) or (7.11) respectively into Eq. (7.13) gives
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3
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2 3 3 2
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π α

πo
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π α α

π
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(7.15)

Power dissipation in the bridge circuit of Fig. 7.1 is assumed to occur entirely
in the load resistor. This may be obtained from the rms (not the average) load
current.

PL � I2
LR (7.16)

Combining Eqs. (7.14) and (7.15) with Eq. (7.16)
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(7.18)

The load side properties of the bridge are summarised in Table 7.1.

7.1.2 Supply-Side Quantities

Waveforms of the currents on the supply side of the bridge are shown in Fig.
7.4 for mode I operation. The instantaneous supply currents for the two modes
of operation are defined by the following: For 0� � � 60�,

i t
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(7.19)
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TABLE 7.1 Three-Phase, Full-Wave Controlled Bridge Rectifier with Ideal Supply:
Load-Side Properties

Resistive load Highly inductive load

Instantaneous load
voltage

Average load
voltage

RMS load current

Load power
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≤ ≤ °

+ °
+ °
+ °
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°

+ °

α

α
E tm sin( )ω

,

0 60

1 60

0

0

≤ ≤ °
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The rms values of the supply line currents may be obtained via the defining
integral Eq. (7.13). Substituting Eqs. (7.19) and (7.20) into the form of Eq. (7.13)
gives

I
E

R
a

m

0 60 2

2 3 3 2

≤ ≤
= +

α
π α

πo

cos
(7.21)

I
E

R
a

m

60 120 2

4 6 3 2 60
o o
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≤ ≤
= − − −

α
π α α

π
sin( )

(7.22)

At � � 60�, Eq. (7.21) and (7.22) are found to be identical.
Comparison of the rms supply and load currents gives, for both modes of

operation,

I IL a= 3

2 (7.23)

The relationship of Eq. (7.23) is found to be identical to that obtained for an
uncontrolled, full-wave bridge with resistive load (Table 6.1).

7.1.3 Operating Power Factor

With perfect switches the power dissipated at the load must be equal to the power
at the supply point. This provides a method of calculating the operating power
factor

PF
P

E I
L

a a

=
3 (7.24)

Substituting forPL, Eq. (7.17) or (7.18), and forIa, Eq. (7.21) or (7.22), into Eq.
(7.24), noting thatEa � Em/�2

PF
0 60

2 3 3 2

4≤ ≤
= +

α
π α

πo

cos
(7.25)

PF
60 120

4 6 3 2 60

4o o
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α
π α α

π
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(7.26)

When� � 0, Eq. (7.25) has the value

PF
α

π
π=

= + =
0

2 3 3

4
0 956.

(7.27)
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which agrees with Eq. (6.11) for the uncontrolled (diode) bridge. The power
factor of the three-phase bridge rectifier circuit, as for any circuit, linear or nonlin-
ear, with sinusoidal supply voltages, can be represented as the product of a distor-
tion factor and a displacement factor Thedistortion factor is largely related to
load impedance nonlinearity; in this case, the switching action of the thyristors.
Thedisplacement factoris the cosine of the phase angle between the fundamental
components of the supply voltage and current. This angle is partly due to the
load impedance phase angle but mainly due here to the delay angle of the current
introduced by the thyristors. Both the current displacement factor and the current
distortion factor are functions of the fundamental component of the supply current.
This is calculated in terms of the Fourier coefficientsa1 andb1, quoted from the
Appendix for the ordern � 1.

a i t t d t

b i t t d t

1 0

2

1 0

2

1

1

=

=

∫

∫

π
ω ω ω

π
ω ω ω

π

π

( )cos

( )sin

Expressions for the coefficientsa1 andb1 are given in Table 7.2.
The current displacement factor and current distortion factor are given by

Displacement factor of supply current  = =
 −cos cos tanψ1

1 1

1

a

b







(7.28)

Distortion factor of supply current= =
I

I

I

I
a

a

1 1

(7.29)

where

I
c a b

a1

1 1
2

1
2

2 2
= =

+
(7.30)

Expressions for the current displacement factor and current distortion factor, for
both modes of operation, are also given in Table 7.2. The product of these is
seen to satisfy the defining relation

PF � (displacement factor)(distortion factor) (7.31)

7.1.4 Shunt Capacitor Compensation

Some degree of power factor correction can be obtained by connecting equal
lossless capacitorsC across the supply terminals (Fig. 7.5). The bridge voltages
and currents are unchanged and so is the circuit power dissipation. The capacitor
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TABLE 7.2 Three-Phase, Full-Wave Controlled Bridge Rectifier with Ideal Supply: Supply-Side Properties
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currentic (	t) is a continuous function unaffected by thyristor switching. In phase
a, for example, the instantaneous capacitor currentica (	t) is given by

i t
E

X
t

E

X
tca

m

c

m

c

( ) sin( ) cosω ω ω= + =90o

(7.32)

whereXc � 1/2�fC.
The corresponding instantaneous supply currentisa (	t) in phasea is now

isa (	t) � ia (	t) � ica
(	t) (7.33)

Therefore,
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FIG. 5 Three phase-bridge circuit with supply side capacitors.
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The substitution of Eqs. (7.34) and (7.35), respectively, into Eq. (7.13) gives
modified expressions for the rms supply current,
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Since the system voltages and power are unchanged by the presence of the capaci-
tor the power factor will be improved if the ms supply current with the capacitor
is reduced below the level of the bridge rms current (which is the supply rms
current in the absence of the capacitor).

If the compensated power factor is denoted byPFc, the ratio of compensated
to uncompensated power factor is found to be

PF
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The ratioPFc/PF will be greater than unity, indicating that power factor improve-
ment has occurred, when the following inequalities are true:

For 0 � � � 60�,
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For 60� � � � 120�,

R

X

R

Xc c

− + + 








<3
2 30 1 0

π
αsin( )o

(7.41)

For the limiting values of firing angle�, being zero in Eq. (7.40) and 120� in
Eq. (7.41) it is found thatR/Xc would need to be negative to cause power factor
improvement. In other words, when� � 0, the use of capacitance does not give
improvement but actually makes the power factor worse.

The use of supply-point capacitance aims to reduce the displacement angle
�s1 to zero so that displacement factor cos�s1 � 1.0, which is its highest realizable
value. From Eq. (7.28) it is seen that�s1 � 0 whenas1 � 0. If Eqs. (7.34) and
(7.35) are substituted into Eq. (A.9) in the Appendix, it is found that
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Unity displacement factor and maximum power factor compensation are therefore
obtained by separately setting Eq. (7.42) and (7.43) to zero:

For 0 � � � 60�,
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For 60� � � � 120�,
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When the conditions of (7.44),(7.45) are realized the power factor has attained
its maximum possible value due to capacitor compensation. For 0� � � 60�,
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For 60� � � � 120�,
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The degree of power factor improvement realizable by capacitor compensation
is zero at� � 0 and is small for small firing angles. For firing angles in the mid
range, 30� � � � 60�, significant improvement is possible.

Note that the criteria of Eqs. (7.44) and (7.45) are not the same as the
criteria of Eqs. (7.40) and (7.41) because they do not refer to the same constraint.

7.1.5 Worked Examples
Example 7.1 A three-phase, full-wave controlled bridge rectifier has a

resistive load,R � 100�. The three-phase supply 415 V, 50 Hz may be consid-
ered ideal. Calculate the average load voltage and the power dissipation at (1)�
� 45� and (2)� � 90�.

At � � 45� from Eq. (7.8),

E Eav m= 3 3

π
αcos

whereEm is the peak value of the phase voltage. Assuming that 415 V represents
the rms value of the line voltage, thenEm has the value

Em = ×415
2
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The power is given by Eq. (7.17),
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At � � 90� � �/2, from Eq. (7.12),
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The power is now given by Eq. (7.18)

P
E

RL
m= − − − 

= × × − −


3

4
4 6 3 2 60

3

4

415

100

2

3
4 3

3 3

2

2

2

π
π α α

π
π π

osin( )









= − =415

200
2 589 149

2

π
π( . )  W

Example 7.2 For a three-phase, full-wave controlled bridge rectifier with
resistive load and ideal supply, obtain a value for the load current ripple factor,
when� � 60�, compared with uncontrolled operation.

The rms values of the load current in the two modes of operation are given
by Eq. (7.14) and (7.15). The average values are given in Eqs. (7.8), (7.10), and
(7.12). Taking the ratioIL/Iav it is found that for 0� � � 60�,
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and for 60� � � � 120�,
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o

o

 

= − − −

+ + 

π π α α

π α6

4 6 3 2 60

1 60
2

sin( )

cos( )

o

o
(Ex. 7.2b)

From each of the relations (Ex. 7.2a) and (Ex. 7.2b) at� � 60�, it is found that

I

I
L

av

= 1 134.

The ripple factor is, from Eq. (2.11),

RF
I

I
L

av

=








 − =

2

1 0 535.
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From ratio (Ex. 7.2a) above, at� � 0,

I

I
L

av

= + = =π π
π

π
6

2 3 3

6
1 9115 1 001( . ) .

This latter result confirms the values given in Eqs. (6.4) and (6.7). The ripple
factor at� � 0 is, therefore, zero, but it becomes significant as the firing angle
is retarded.

Example 7.3 Calculate the operating power factor for the three-phase,
full-wave, bridge rectifier of Example 7.1 at (1)� � 45� and (2)� � 90�. If
the maximum possible compensation by capacitance correction is realized, calcu-
late the new values of power factor and the values of capacitance required.

At � � 45�, from Eq. (7.25),

PF = +2 3 3 90

4

π
π
cos o

= =1

2
0 707.

At � � 90�, from Eq. (7.26),

PF = − −4 3 3 120

4

π π
π

sin o

=
−

=

3 3
2

4
0 21

π

π
.

If the maximum realizable compensation is achieved the power factor is then
given by Eqs. (7.46) and (7.47).

At � � 45�, from Eq. (7.46),

PFc = +

+ −

=
−

= =

2 3 3 90

4 2 3 3 90 27 90

2

8 27

2

7 21
0

2

2

π

π π

π

π

π

cos

( cos ) sin

.

o

o o

..87

At � � 90�, from Eq. (7.47),
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PFc = − −

− − − +

= −

4 3 3 120

4 4 3 3 120 9 1 120

3 3

2

π π

π π π

π

sin

( sin ) ( cos )

/

o

o o

22

4
3 3

2
9 1

1
2

0 544
6 83 2 25

0 254

2

.
. .

.

π π −








 − −





=
−

=

The criteria for zero displacement factor are given in Eqs. (7.44) and (7.45). At
� � 45�, from Eq. (7.44),

1
2

3 3

2
2

1

2 50

3 3

2 100
52 6

X
fC

R

C

c

= =

= =

π
π

α

π π
µ F

sin

.

At � � 90�, from Eq. (7.45),

1 3

2
1 2 60

1

2 50

3

2 100
1

1

2

15 2

X R

C

c

= + − 

= −





=

π
α

π π

µ

cos( )

.

o

F

7.2 HIGHLY INDUCTIVE LOAD AND IDEAL
SUPPLY

7.2.1 Load-Side Quantities

The three-phase, full-wave, controlled bridge rectifier is most commonly used in
applications where the load impedance is highly inductive. Load inductance is
often introduced in the form of a large inductor in series with the load resistor
(Fig. 7.6). If the load-side inductance smooths the load current to make it, very
nearly, a pure direct current as shown in Fig. 7.7b, then

iL (	t) � Iav � IL � Im (7.48)
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FIG. 6 Three-phase, full-wave controlled bridge rectifier circuit with seriesR-L load.

With a smooth load current there is zero average voltage on the smoothing
inductor and the average load voltage falls entirely on the load resistor so
that Eq. (7.10) remains true. The patterns of the load current and supply
currents are shown in Fig. 7.7 for firing angles up to� � 60�. Unlike the
case with resistive load, the load current is continuous for all values ofa in
the control range, and only one mode of operation occurs. The average
voltage, for all firing-angles, is identical to that derived in Eq. (7.7) with the
corresponding average current in Eq. (7.10).

It is seen from Eq. (7.10) that the average load current becomes zero
at � � 90�. The controlled range with highly inductive load is therefore
smaller than with resistive load, as shown in Fig. 7.8. With a smooth load
current there is no ripple component at all, and the current ripple factor has
the ideal value of zero.

For � � 60�, the instantaneous load voltage, with highly inductive load,
is the same as for resistive load. At� � 75�, eL (	t) contains a small negative
component for part of the cycle. When� 90�, the instantaneous load voltage
has positive segments identical to those in Fig. 7.3e, but these are balanced
by corresponding negative segments to give an average value of zero. Although
the load current ripple factor is zero, the load voltage ripple factor is determined
by the ratioEL/Eav. From Eqs. (7.8) and (7.14), with� � 60�,

E

E
L

av

= +π π α
π α6

2 3 3 2
2

cos

cos (7.49)

The load power dissipation is proportional to the square of the load rms current,
and therefore, substituting Eqs. (7.10) into Eq. (7.16),
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FIG. 7 Waveforms of the three-phase, full-wave controlled bridge rectifier circuit with
highly inductive load and ideal supply: (a) supply line voltages, (b) load current (� �
0�), (c) supply line currentia (� � 0�), (d) supply line currentia (� � 30�), and (e) supply
line currentia (� � 60�).

P I R I R

E

R

E

R

L L av

av m

= =

= =

2 2

2

2
2

2
20

27
cos cosα

π
α (7.50)

The load-side properties are summarized in Table 7.1.
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FIG. 8 Average load current versus SCR firing angle for the three-phase, full-wave
controlled bridge rectifier circuit with ideal supply.

7.2.2 Supply-Side Quantities
The supply currentia (	t) shown in Fig. 7.7 is defined by the equation

i t
E

R

E

Ra

av av( ) cos cosω α α
α

α

α

α
= −

+

+

+

+
0 0

30

150

210

330

o

o

o

o

(7.51)

Since the rms values of the negative and positive parts of the wave are identical,
the rms supply currentIa is given by

I
E

R
d t

E

R

a

av

av

=










=

+

+

∫

+

1

1

0

0

2

30

150

15

π
α ω

α
π

ω

α

α

α

cos

cos

o

o

00

30

o

oα +








t
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=

=

=

2

3

3 2

2

3

0
E

R

E

R

I

av

m

av

cos

cos

α

α
π

(7.52)

The value in Eq. (7.52) is found to be�2 times the corresponding value for a
half-wave rectifier, given in Eq. (5.39), and is identical to Eq. (7.23) for the case
of resistive load.

The operating power factor of the bridge can be obtained by substituting
Eqs. (7.50) and (7.51) into Eq. (7.24), noting thatEa � Em/�2.

PF
P

E I
L

a a

=
3

=

=

( / ) cos

( / )( cos /)

cos

27

3 2 3 2

3

2 2 2E R

E E R
m

m m

π α
α π

π
α (7.53)

The power factor also is found to be�2 times the value for a three-phase, half-
wave controlled bridge rectifier and has the well-known value of 3/�, or 0.955,
for � � 0 (or diode bridge) operation. A Fourier analysis of the supply current
ia (	t) shows that the coefficientsa1 andb1 below are valid for the fundamental
(supply frequency) component

a i t t d t

E

R
t

a

av

1 0

21

2
0

150

30

=

= ( )

∫

+

+

π
ω ω ω

π
α ω

π

α

α

( )cos

cos sin
o

o

= −

= −

2 3

9
2

0

2

π
α α

π
α

E

R

E

R

av

m

sin cos

sin (7.54)
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b i t t d t

E

R
t

a

av

1 0

21

2
0

150

30

=

= −( )

∫

+

+

π
ω ω ω

π
α ω

π

α

α

( )sin

cos cos
o

o

=

= +

2 3

9
1 2

0 2

2

π
α

π
α

E

R

E

R

av

m

cos

( cos ) (7.55)

Equations (7.54) and (7.55) can be used to obtain a very important relationship

a

b
1

1
1

2

1 2
= −

+
= − =sin

cos
tan tan

α
α

α ψ
(7.56)

From Eq. (7.56) it can be seen that the displacement angle�1 of the input current
is equal to the firing angle (the negative sign representing delayed firing):

� � �1 (7.57)

The displacement factor cos�1 is therefore equal to the cosine of the delayed
firing angle

cos�1 � cos� (7.58)

The relationship of Eq. (7.58) is true for both half-wave and full-wave bridges
with highly inductive load. It is not true for bridges with purely resistive loading.
The distortion factor of the input current is obtained by combining Eqs. (7.29),
(7.30), (7.52), (7.54), and (7.55).

Distortion factor of

=

I

I
a

a

1

1 2 9 2( / )( / )π (( / ) sin ( cos )

( / )cos

E R

E R
m

m

2 22 1 2

3 2

3

α α
π α

π

+ +

=

=the supply currents

(7.59)

The product of the displacement factor Eq. (7.58) and distortion factor Eq. (7.59)
is seen to give the power factor Eq. (7.53). Some of the supply-side properties
of the inductively loaded bridge are included in Table 7.2.

For any balanced three-phase load with sinusoidal supply voltage, the real
or active powerP is given by
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P � 3EI1 cos�1 (7.60)

whereI1 the rms value of the fundamental component of the supply current and
cos�1 is the displacement factor (not the power factor). Substituting Eqs. (7.52)
and (7.58) into Eq. (7.60) gives

P
E

R
m= 27

2

2
2

π
αcos (7.61)

which is seen to be equal to the powerPL dissipated in the load resistor, Eq.
(7.50).

7.2.3 Shunt Capacitor Compensation

If equal capacitors C are connected in star at the supply point (Fig. 7.5), the
instantaneous supply current is given by

i t
E

X
t

E

R

E

Rs
m

c

m m

a
( ) cos cos cosω ω

π
α

π
α

α

α

α

α
= + −

+

+

+

+3 3 3 3

30

150

210o

o

o

3330o

(7.62)

The substitution of Eq. (7.62) into Eq. (7.13) gives an expression for the rms
supply current

I
E

X
t

E

Rs
m

c

m

a
=









 +
















∫

+

+
1 3 3

0 30

150

π
ω

π
α

π

α

α

cos cos
o

o











= − +

2

2

2 2 2
2

2

18
2

36

d t

E R

X

R

X
m

c c

ω

π
α

π
αsin cos

(7.63)

When the capacitance is absent,Xc becomes infinitely large and Eq. (7.63) reduces
to Eq. (7.52). The power flow and the terminal voltage are unaffected by the
connection of the capacitors. The compensated power factor is given by combin-
ing Eqs. (7.61) and (7.63)

PF
P

E I

R X R X

c
a s

c c

a

=

=
− +

3

9

4 9 2 2 9

2 2

2 2 2 2

( / ) cos

/ ( / )( / )sin ( / )co

π α

π α π ss2 α (7.64)

The ratio of the compensated power factor to the uncompensated power factor
is given by the ratio of the load current to the supply current
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PF

PF

I

I R X R X
c a

s c ca

= =
− +

( / ) cos

/ ( / )( / )sin ( / )c

18

2 9 2 18

2 2

2 2 2 2

π α
π α π oos2 α (7.65)

The power factor is therefore improved whenPFc/PF � 1 which occurs when

R

X

R

Xc c2

18
2 0

2
−









 <

π
αsin

(7.66)

Examination of the inequality (7.66) shows that power factor improvement occurs
when 0� C � (18sin�)/	�2R
Fourier coefficientas1 for the fundamental component of the compensated

supply current is given by

a i t t d t

E

X
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∫

∫
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9
2
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o

o

(7.67)

WhenC � 0, Eq. (7.67) reduces to Eq. (7.54).
To obtain the maximum value of the displacement factor, coefficientas1

must be zero. The condition for maximum realizable capacitor compensator is
therefore, from Eq. (7.67),

C
R

= 9 1
2

2π ω
αsin (7.68)

Setting Eq. (7.67) to zero and substituting into Eq. (7.64) gives the maximum
power factor achievable by terminal capacitor compensation.

PFcmax

cos

sin

=
−

3

1
9
2

2

π
α

π
α

(7.69)

For any nonzero value of�, it is seen that the uncompensated power factor (3/
�)cos� is improved due to optimal capacitor compensation, as illustrated in Fig.
7.9. Over most of the firing-angle range, the possible degree of power factor
improvement is substantial. A disadvantage of power factor compensation by the
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FIG. 9 Power factor versus firing angle for the three-phase, full-wave controlled bridge
rectifier with highly inductive load and ideal supply.

use of capacitors is that for fixed-load resistance, the value of the optimal capacitor
varies with firing angle.

7.2.4 Worked Examples

Example 7.4 A three-phase, full-wave, controlled bridge rectifier contains
six ideal thyristor switches and is fed from an ideal three-phase voltage source
of 240 V, 50 Hz. The load resistorR � 10 � is connected in series with a large
smoothing inductor. Calculate the average load voltage and the power dissipation
at (1) � � 30� and (2)� � 60�.

If 240 V. represents the rms value of the line voltage, then the peak phase
voltageEm is given by
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Em = 2

3
240

From Eq. (7.8)

Eav = × ×3 3 2

3
240

π
αcos

= 324 αcos

At � � 30�, Eav � 280.6V
At � � 60�, Eav � 162V
The power dissipation is given by Eq. (7.50),

P I R
E

Rav
av= =2
2

At � � 30�, P � 7.863 kW. At� � 60�, P � 2.625 kW.

Example 7.5 For the three-phase bridge of Example 7.4 calculate the
displacement factor, the distortion factor, and the power factor at (1)� � 30�
and (2)� � 60�.

From Eq. (7.58) it is seen that the displacement factor is given by

Displacement factor� cos�1 � cos�

At � � 30�, cos� � 0.866� �3/2
At � � 60�, cos� � 0.5

Because the wave shape of the supply current is not affected by the firing-
angle of the bridge thyristors (although the magnitude is affected) the supply
current distortion factor is constant. From Eq. (7.59),

Distortion factor= =3
0 955

π
.

For loads with sinusoidal supply voltage the power factor, seen from the supply
point, is the product of the displacement factor and the distortion factor:

PF = 3

π
αcos

At � � 30�, PF � 0.827
At � � 60�, PF � 0.478

Example 7.6 For the three-phase bridge rectifier of Example 7.4 calculate
the required voltage and current ratings of the bridge thyristors

In a three-phase, full-wave, thyristor bridge the maximum voltage on an
individual switch is the peak value of the line voltage
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Emax � �2Eline

whereEline is the rms value of the line voltage. Therefore,

Emax � �2 � 240 � 339.4 V

(Note thatEmax is �3 times the peak valueEm of the phase voltage.)
From Eq. (7.52) the rms value of the supply current is

I I
E

Ra av
m= =2

3

3 2

π
αcos

but each thyristor conducts only one (positive) pulse of current every supply
voltage cycle. In Fig. 7.6, for example, thyristorTh1 conducts only the positive
pulses of currentia (	t) shown in Fig. 7.7. Therefore,

I i t d tTh a1

1

2
2

30

150
=

+

+

∫π
ω ω

α

α
( ) 

o

o

The defining expression forITh above is seen to have the value 1/�2 that of Ia

in Eq. (7.52),

I
I

E

R

Th

a

m

1

1

2

3
0

3 2

3
240

1

10
18 7

=

= =

= × × × =

π
α

π

at

 A

o

.

Example 7.7 The three-phase, full-wave bridge rectifier of Example 7.4
is to have its power factor compensated by the connection of equal, star-connected
capacitors at the supply point. Calculate the maximum value of capacitance that
will result in power factor improvement and the optimum capacitance that will
give the maximum realizable power factor improvement at (1)� � 30� and (2)
� � 60�. In each ease compare the compensated power factor with the correspond-
ing uncompensated value.

The criterion for power factor improvement is defined by Eq. (7.66), which
shows that

C
Rmax

sin= 18 2
2

α
ωπ

At � � 30�,

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Circuits with Passive Load I Impedance 245

Cmax � 503 �F

At � � 60�,

Cmax � 503 �F

The optimum value of capacitance that will cause unity displacement factor and
maximum power factor is given in Eq. (7.68)

C
Ropt = 9

2ωπ
αsin

Note thatCopt � Cmax/2.
For both firing angles,

Copt � 251.5�F

In the presence of optimum capacitance the power factor is obtained from Eq.
(7.69)

PFcmax
=

−

3

92 2

cos

sin

α

π α

At � � 30�, PFc � 0.941, which compares with the uncompensated valuePF
� 0.827 (Example 7.4). At� � 60�, PFc � 0.85, which compares with the
uncompensated value PF� 0.478 (Example 7.4).

7.3 HIGHLY INDUCTIVE LOAD IN THE PRESENCE
OF SUPPLY IMPEDANCE

Let the three-phase, full-wave bridge rectifier circuit now contain a series induct-
anceLs in each supply line. Because of the nonsinusoidal currents drawn from
the supply, the voltages at the bridge input terminalsabc (Fig. 7.10) are not
sinusoidal but are given by

e e L
di

dtaN AN s
a= − (7.70)

e e L
di

dtbN BN s
b= − (7.71)

e e L
di

dtcN CN s
c= − (7.72)
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FIG. 10 Three-phase, full-wave controlled bridge rectifier circuit including supply in-
ductance.

where eAN, eBN, and eCN are now defined by the form of Eqs. (7.1) to (7.3),
respectively.

The onset of ignition through any particular rectifier is delayed due both
to the firing angle�, as described in the previous sections, and also due to overlap
created by the supply inductance. For normal bridge operation at full load the
overlap angle� is typically 20� to 25� and is usually less than 60�. Operation of
the bridge can be identified in several different modes.

7.3.1 Mode I Operation (0 � � � 60�)

A common mode of operation is where two thyristors conduct for most of the
cycle, except in the commutation or overlap intervals when a third thyristor also
conducts. Referring to Fig. 7.10, the sequence of conduction is 12, 123, 23, 234,
34, 345, 45, 456, 56, 561, 61, 612. The resulting waveforms are given in Fig.
7.11.

Consider operation at the instant	t � � of the cycle. ThyristorsTh1 and
Th2 have been conducting (Fig. 7.11a and c), so that

At 	t � � � � � 150�,
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FIG. 11 Waveforms of the three-phase, full-wave controlled bridge rectifier with highly
inductive load, in the presence of supply inductance: (a) supply phase voltages, (b) supply
line voltages, (c) thyristor firing pattern, (d) supply voltages (� � 30�, � � 10�), (e) load
voltage (� � 30�, � � 10�), and (f) supply currents (� � 30�, � � 10�).
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i1 � ia � Iav (7.73)

i2 � ic � �ia � �Iav (7.74)

ib � 0 (7.75)

eL � eac � eaN �ecN � �3Em cos(	t � 120�) (7.76)

At 	t � �, thyristorTh3 is gated. Sinceeb is positive, the thyristor switches on
connecting its cathode to the positive load terminal (Fig. 7.12b). Since pointsa
and b are now joined, they have the same potential with respect to neutralN,
which is the average of the corresponding open circuit voltages, (eaN � ebN)/2
� (Em/2)sin(	t � 60�). But, simultaneously, the negative point of the load (point
c) has a potential with respect toN of Em sin (	t � 240�). Therefore, during the
overlap period

e t
E

t E t

E t

L
m

m

m

( ) sin( ) sin( )

sin( )

ω ω ω

ω

= − − −

= −

2
60 240

3

2
60

o o

o

(7.77)

This is seen to be three times the value of (eaN � ebN)/2 and is in time phase
with it.

At 	t � � � � � � � 150� � �, thyristorTh1 is extinguished by natural
commutation after its currentia has fallen to zero. Currentib, which started to
flow at 	t � � whenTh3 was fired, reaches the valueIav at 	t � � � � and
takes over the load current relinquished byTh1. Current then flows from b to c
and voltageebc is impressed upon the load. During the overlap interval� � 150�
� 	t � � � 150� � � (Fig. 7.12b), the net voltage, proceeding clockwise
around loop BNAB, is

V e e L
di

dt
L

di

dtBN AN s
a

s
b

BNAB = − + − = 0 (7.78)

But

e e E tBN AN m− = − −3 60cos( )ω o (7.79)

and

ia � ib � Iav � �ic (7.80)

Substituting Eqs. (7.79) and (7.80) into Eq. (7.78), noting thatdIav/dt � 0, gives

− − = =3 60 2 2E t L
di

dt
L

di

d tm s
b

s
bcos( )ω ω

ω
o

(7.81)
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FIG. 12 Equivalent circuits of conduction for the three-phase, full-wave controlled bridge
rectifier, including supply inductance: (a)	t � � � 150� and (b)	t � � � 150� �
�.
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The time variation of a supply line current or a thyristor switch current during
overlap can be deduced by the use of a running upper limit in the definite integra-
tion of Eq. (7.81).

For � � 150� � 	t � � � 150� � �,
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from which

ib (	t) � Îsc [cos � � sin(	t � 60�)] � Iav �ia (7.83)

whereÎsc � �3Em/2	Ls is the peak value of the circulating current in the short-
circuited section ANBN of Fig. 7.12b. The termÎsc was previously used in the
analysis of the uncontrolled rectifier in Chapter 6.

Waveforms ofib (	t) andia (	t) are given in Fig. 7.13. It is clearly illustrated
that the portions ofia (	t), ib (	t) during overlap are parts of sine waves. The
definition of ia (	t) for a complete period (not given here) would involve four
terms similar in style to Eq. (7.83) plus a term inIav.

7.3.1.1 Load-Side Quantities

Integrating both sides of Eq. (7.81),
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(7.84)

whereK is a constant of integration. At	t � � � � � 150�, ib � Iav so that
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At 	t � � � 150�, ib � 0 in Fig. 7.11 so that
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(7.86)
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FIG. 13 Waveforms of the three-phase, full-wave controlled bridge rectifier with highly
inductive load, in the presence of supply inductance� � 30�, � � 15�: (a) generator line
voltageeBC 	t and (b) supply line currentsiA and iB (	t).

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 7252

EliminatingK between Eq. (7.85) and (7.86) gives an expression for the average
load current in the presence of supply inductanceLs per phase

I
E

Lav
m

s

= − +[ ]3

2ω
α α µcos cos( )

(7.87)

Expression (7.87) is identical to the corresponding expression (5.70) for half-wave
operation The average load voltage can be found from theeL (	t) characteristic of
Fig. 7.11e. Consider the 60� section defined by 150� � 	t � 210�.
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Elucidation of Eq. (7.88) is found to give
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The average valueEav in Eq. (7.89) is seen to be twice the value obtained in Eq.
(5.61) for a half-wave bridge. The variation ofEav with � is demonstrated in Fig.
7.14.

If the term cos (� � �) is eliminated between Eqs. (7.85) and (7.87), it is
found that

E E
L

Iav av
s

av= −
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3
cosα

ω
π (7.90)

The first term of Eq. (7.90) is seen to represent the average load voltage with
ideal supply, consistent with Eq. (7.8). The second term of Eq. (7.90) represents
the reduction of average load voltage due to voltage drop in the supply line
inductances and is seen to be consistent with Eq. (6.27) for the diode bridge.
Since, as always,Iav � Eav/R, Eq. (7.90) can be rearranged to show that
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The power dissipated in the loadPL is conveniently expressed in terms of average
load quantities (since the current is smooth) andIrms � Iav
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R
I RL av av

av
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2
2

(7.92)
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FIG. 14 Effect of supply reactance on the normalized average load voltage versus firing
angle of a three-phase, full-wave controlled bridge rectifier with highly inductive load.

Substituting Eqs. (7.89) and (7.90) into Eq. (7.92) gives
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(7.93)

7.3.1.2 Supply-Side Quantities

All of the load power passes into the bridge from the supply. For a balanced
three-phase load with sinusoidal voltage of peak valueEm per phase and periodic
nonsinusoidal current with a fundamental component of rms valueI1, the input
power maybe given by

P
E

Iin
m=

3

2
1 1cos  ψ

(7.94)

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 7254

where cos�1 is the current displacement factor. Neglecting any power loss in
the conducting thyristors,PL � Pin. Equating Eqs. (7.92) and (7.9) gives
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(7.95)

The term (�6/�) Iav in Eq. (7.95) is the rms fundamental supply current with
zero overlap,I1 (0).

It is reasonable to assume that overlap makes only a small difference in
the value ofI1. In fact, for� � 30�, there is only 1.1% difference. Therefore, if

I I I av1 1 0
6≅ =( )

π (7.96)

then, very nearly,
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Combining Eqs. (7.96), (7.97), and (7.98) gives
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With an ideal supplyLs � 0 and Eq. (7.98) reduces to Eq. (7.58).
The rms value of the input current can be obtained from the defining integral
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1

2
2

0

2

π
ω ω

π
( ) (7.99)

Each cycle ofia (	t) contains six parts and the necessary mathematics to solve
Eq. (7.99) is very lengthy (see Ref. 4). It is found, after much manipulation, that
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3
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The term�2/3 Iav in Eq. (7.100) is seen, from Eq. (7.52), to be the rms supply
current with zero overlap. It should be noted that the two numerator parts of Eq.
(7.101) are very similar in value and great care is required in a numerical solution.
It is found that for� � 30� the effect of overlap reduces the rms supply current
by less than 5% for all firing angles. One can therefore make the approximation

I Ia av≅ 2

3 (7.102)

For small values of� the power factor is given by combining Eq. (7.95) with
Eq. (7.102)
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(7.103)

When� � 0, Eq. (7.103) reduces to Eq. (7.53). For any finite value of� the
power factor is reduced compared with operation from an ideal supply.

Terminal capacitance can be used to obtain some measure of power factor
improvement by reducing the displacement angle to zero. For overlap conditions
such that� � 30�, the equations of this section provide the basis for approximate
calculations. It is significant to note, however, that an important effect of supply
inductance is to render the bridge terminal voltages nonsinusoidal. Equation
(7.24), which defines the power factor, remains universally valid, but the relation-
ship of Eq. (7.31) no longer has any validity.

7.3.2 Mode II Operation (� � 60�)

In mode II operation three rectifier thyristors conduct simultaneously, which only
occurs during overload or with-short circuited load terminals. The average current
through the load is then found to be

I
E

Lav
m

s

= − − + + 2
30 30

ω
α α µcos( ) cos( )o o

(7.104)

The corresponding average load voltage is found to be
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7.3.3 Mode III Operation 60� � � � 120�

With mode III operation there is alternate conduction between three and four
rectifier thyristors. Three thyristor operation is equivalent to a line-to-line short
circuit on the supply, while four thyristor working constitutes a three-phase short
circuit. Equations (7.104) and (7.105) still apply. If the term cos(� � � � 30�)
is eliminated between these, it is found that

E

E
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av

av

av
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2
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ˆ
cos( )α o

(7.106)

7.3.4 Worked Examples

Example 7.8 A fully-controlled, three-phase bridge rectifier supplies
power to a load via a large, series filter inductor. The supply lines contain series
inductance so as to cause overlap. Sketch the variation of the average load voltage
with firing angle� for a range of overlap angle�.

The average voltage is given by Eq. (7.89)

E
E

av

av= + +[ ]0

2
cos cos( )α α µ

The range of firing angles is 0� � � 90�, and the realistic range of� is 0 �
� � 60�. Values of the ratioEav/Eavo are given in Fig. 7.14.

Example 7.9 A three-phase, full-wave controlled bridge rectifier with
highly inductive load operates from a 440-V, 50-Hz supply. The load current is
maintained constant at 25 A. If the load average voltage is 400 V when the firing
angle is 30�, calculate the load resistance, the source inductance, and the overlap
angle.

The peak phase voltageEm is

Em = =440
2

3
359 3.  V

From Eq. (7.90),

E
L

av
s= × × −

×
× =3 3
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which gives

Ls = − =514 6 400

7500
15 3

.
. mH/phase
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The load resistance is given in terms of the (presumed average values of the)
load voltage and current

R
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= = =400
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From Eq. (7.89),
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Example 7.10 For the three-phase bridge rectifier of Example 7.9 calcu-
late the reduction of the power transferred and the change of power factor due
to overlap compared with operation from an ideal supply.

The average load current and voltage are both reduced due to overlap. From
Eq. (7.92),

P E I
E

RL av av
av= =
2

and from Eq. (7.89)

E
E

av

av= + +[ ]0

2
cos cos( )α α µ

With � � 30�, it was shown in Example 7.9 that� � 31.3� whenEav � 400
V. Therefore,

PL = =400

16
10

2

 kW

This compares with operation from an ideal supply where, from Eq. (7.50),
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The large overlap angle has therefore reduced the power transferred to 60% of
its ‘‘ideal’’ value.

An accurate calculation of power factor is not possible within the present
work for an overlap angle� � 31.3�. An approximate value, from Eq. (7.103),
is
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30 61 3

0 642

π
(cos cos . )

.

o o

Example 7.11 A three-phase, full-wave controlled bridge rectifier with
highly inductive load is operated with a thyristor firing angle� � 30�. The
supply line inductance is such that overlap occurs to an extent where� � 15�.
Sketch the waveforms of the voltage across a bridge thyristor and the associated
current.

When a thyristor switch is conducting current the voltage drop across, it
can be presumed to be zero. While a thyristor is in extinction, the line-to-line
voltage occurs across it, except during overlap, so that the peak value of a thyristor
voltage is�3Em. During the overlap intervals the peak value of the load (and
thyristor) voltages is (3/2)Em, as developed in Eq. (7.77). At the end of the first
supply voltage cycle	t � �, thyristorTh1 is conducting currentia and the voltage
eTh1 is zero (Figs. 7.11 and 7.15). At	t � �, thyristorTh3 is fired andTh3 then
conducts currentib simultaneously. At	t � � � � the overlap finishes withia
� 0 andTh1 switching off. The voltageeTh1 then jumps to the appropriate value
of eab (� � �) and followseab (	t) until 	t � 240� and Th4 is switched in.
During the overlap ofTh2 andTh4, 240� � 	t � 240� � �, the voltage across
Th1 is �3ebN/2. WhenTh2 is commutated off at	t � 240� � �, a negative
currentia (	t) is flowing throughTh4, and the voltage acrossTh1 jumps back to
eab (240� � �). At 	t � 300�, thyristor Th5 is switched in and overlaps with
Th3. The anode ofTh1 is held at pointa, but the overlap ofTh3 andTh5 causes
eTh1 to jump to 3eaN/2 during overlap. WhenTh3 switches off at	t � 300� �
�, currentib falls to zero and voltageeTh1 (	t � �) follows eac and so on. The
overall waveform foreTh1 is given in Fig. 7.15 with the associated currentiTh1
also shown.

7.4 SUMMARY OF THE EFFECTS OF SUPPLY
REACTANCE ON FULL-WAVE BRIDGE
RECTIFIER OPERATION (WITH HIGHLY
INDUCTIVE LOAD)

The presence of supply line inductance inhibits the process of current commuta-
tion from one thyristor switch to the next. Instead of the instantaneous current
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FIG. 15 Waveforms of the three-phase, full-wave controlled bridge rectifier with highly
inductive load in the presence of supply inductance� � 30�, � � 15�; (a) load voltage,
(b) thyristor voltageeTh1 (	t), and (c) thyristorTh1 current.
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transfer that occurs between thyristors when the supply is ideal a finite time is
required to accomplish a complete transfer of current. The duration of the current
transfer time, usually called the overlap period, depends on the magnitude of the
supply voltage, the load resistor, the supply current level, the thyristor firing
angle, and the source inductance.

1. The average load voltageEav is reduced, Eq. (7.89).
2. The waveform of the load voltageeL (	t), (Fig. 7.11e) is modified

compared with corresponding ‘‘ideal supply’’ operation (Fig. 7.3c).
The additional piece ‘‘missing’’ from the waveform in Fig. 7.11e, for
example, can be used to calculate the reduction of the average load
voltage.

3. Because the waveformeL (	t) is changed, its harmonic properties as
well as its average value are changed. The basic ripple frequency (i.e.,
six times supply frequency) is unchanged, and therefore the order of
the harmonics ofeL (	t) remains 6n, wheren � 1, 2, 3,… Therefore,
the magnitudes of the harmonics ofeL (	t) are affected by overlap.

4. The average load currentIav is affected by the reduction of average
load voltage becauseIav � Eav/R.

5. Load power dissipation is reduced due to overlap, Eq. (7.92), since
PL � EavIav.

6. The waveform of the supply line currents are modified. Currentia
(	t) in Fig. 7.7e, for example, is modified to the waveform of Fig.
7.11f. Its conduction angle is extended from 120� to 120� � � in
each half cycle. Because of the change of waveform, the magnitudes
of its harmonic components are modified.

7. The rms value of the supply current is reduced, Eq. (7.100).
8. The rms value of the fundamental component of the supply current

is reduced.
9. The modified shape of the supply current causes the current displace-

ment angle�1 to increase and therefore the displacement factor cos�1

to decrease.
10. The power factor of operation is reduced due to overlap, Eq. (7.103),

at small values of�.
11. The waveform of the bridge terminal voltage is no longer sinusoidal

but contains ‘‘notches’’ during the overlap periods. This reduces the
rms supply voltage and also the rms value of the fundamental compo-
nent of the supply voltage.

12. The power factor relationship

PF � (displacement factor)(distortion factor)

is no longer valid because of the nonsinusoidal terminal voltage.
13. The notching of the supply voltage can give rise to the spurious firing
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of silicon controlled rectifiers by forward breakover and also to inter-
ference with electronic circuits connected at the same or adjacent
supply points.

PROBLEMS

Three-Phase, Full-Wave, Controlled Bridge with
Resistive Load and Ideal Supply
7.1 A three-phase, full-wave bridge rectifier of six ideal thyristor switches is

connected to a resistive load. The ideal three-phase supply provides bal-
anced sinusoidal voltages at the input terminals. Show that the average
load voltageEav is given by Eqs. (7.8) and (7.12) in the two respective
modes of operation. SketchEav versus firing angle� over the full operating
range.

7.2 A three-phase, full-wave bridge rectifier containing six ideal thyristors
supplies a resistive loadR � 100 �. The ideal supply 240 V, 50 Hz
provides balanced sinusoidal voltages. Calculate the average load current
and power dissipation at (a)� � 30�, (b) � � 60�, and (c)� � 90�.

7.3 For the three-phase bridge circuit of Problem 7.2 deduce and sketch the
voltage waveform across a thyristor at� � 30�.

7.4 For the three-phase bridge circuit of Problem 7.1 show that the rms values
of the supply current are given by Eqs. (7.21) and (7.22).

7.5 For a three-phase, full-wave bridge circuit with resistive load, show that
for both modes of operation, the rms supply currentIa is related to the
rms load currentIL by the relation Eq. (7.23).

7.6 Expressions for the fundamental component of the supply current into a
three-phase, full-wave controlled bridge rectifier supplying a resistive load
are given in Table 7.2. Calculate the rms values of this fundamental compo-
nent with a supply of 240 V, 50 Hz and a load resistorR � 100� at (a)
� � 30�, (b) � � 60�, and (c)� � 90�.

7.7 The power input to a three-phase, full-wave, controlled bridge rectifier is
given by the relationP � 3EIa1 cos�1, whereE is the rms phase voltage,
Ia1 is the rms value of the fundamental component of the supply current,
and cos�1 is the current displacement factor (not the power factor!). Calcu-
late P for the bridge circuit of Problem 7.6 and check that the values
obtained agree with the power dissipation calculated on the load side.

7.8 Show that the Fourier coefficientsa1 andb1 of the fundamental component
of the supply line current for a full-wave controlled bridge with resistive
load R, at firing angle�, are given by
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7.9 Derive expressions for the current displacement factor cos�1 and the
current distortion factorI1/I for a three-phase, full-wave controlled bridge
rectifier with resistive load. Show that the respective products of these are
consistent with the expressions (7.25) and (7.26) for the power factor.

7.10 Calculate and sketch the variation of the power of a three-phase, full-wave
bridge rectifier with resistive load over the operating range of thyristor
firing angles.

7.11 Use the information of Problem 7.7 to derive expressions for the reactive
voltamperesQ into a three-phase, full-wave bridge rectifier with resistive
load, whereQ � 3EIa1 sin �1. Does a knowledge of real powerP and
reactive voltamperesQ account for all the apparent voltamperesS (�
3EIa) at the bridge terminals?

7.12 Three equal capacitorsC are connected in star across the terminals of a
full-wave, three-phase bridge rectifier with resistive load. IfXc � R, sketch
waveforms of a capacitor current, a bridge input current, and the corre-
sponding supply current at� � 30�. Does the waveform of the supply
current seem to represent an improvement compared with the uncompen-
sated bridge?

7.13 For the three-phase bridge circuit of Problem 7.2 what will be the minimum
value of supply point capacitance per phase that will cause power factor
improvement at (a)� � 30�, (b) � � 60� and (c)� � 90�?

7.14 For the three-phase bridge circuit of Problem 7.2. what must be the respec-
tive values of the compensating capacitors to give the highest realizable
power factor (by capacitor correction) at the three values of firing angle?

7.15 For the three-phase bridge circuit of Problem 7.2 calculate the operating
power factor at each value of firing angle. If optimum compensation is now
achieved by the use of the appropriate values of supply point capacitance,
calculate the new values of power factor.

Three-Phase, Full-Wave Controlled Bridge Rectifier
with Highly Inductive Load and Ideal Supply

7.16 A three-phase, full-wave controlled bridge rectifier contains six ideal thy-
ristors and is fed from an ideal, three-phase supply of balanced sinusoidal
voltages. The load consists of a resistorR in series with a large filter
inductor. Show that, for all values of thyristor firing angle�, the average
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load voltage is given by Eq. (7.8). SketchEav versus� and compare the
result with that obtained for purely resistive load.

7.17 For the three-phase, inductively loaded bridge of Problem 7.16 calculate
the Fourier coefficientsa1 and b1 of the fundamental component of the
supply current. Use these to show that the current displacement angle�1

[tan�1(a1/b1)] is equal to the thyristor firing angle�.

7.18 A three-phase, full-wave controlled bridge rectifier is supplied from an
ideal three-phase voltage source of 415 V, 50 Hz. The load consists of
resistorR � 100 � in series with a very large filter inductor. Calculate
the load power dissipation at (a)� � 30� and (b)� � 60�, and compare
the values with those that would be obtained in the absence of the load
filter inductor.

7.19 Show that for the inductively loaded bridge of Problem 7.16 the distortion
factor of the supply current is independent of thyristor firing angle.

7.20 Show that the waveform of the supply current into a controlled bridge
rectifier with highly inductive load is given by

i t
I

t t tav( ) sin( ) sin ( ) sin ( ) ...ω
π

ω α ω α ω α= − − − − −





−2 3 1

5
5

1

7
7

whereIav is the average load current.
7.21 For the three-phase bridge rectifier of Problem 7.16 show that the power

input is equal to the load power dissipation.

7.22 Derive an expression for the load voltage ripple factor (RF) for a three-
phase inductively loaded bridge rectifier and show that this depends only
on the thyristor firing angle. Obtain a value for the case� � 0, and thereby
show that theRF is zero within reasonable bounds of calculation.

7.23 For the inductively loaded bridge rectifier of Problem 7.16 show that the
rms supply current is given by

I
E

R
m=

3 2

π
αcos

Calculate this value for the cases (a)� � 30� and (b)� � 60�.
7.24 For the inductively loaded bridge of Problem 7.18 calculate the rms current

and peak reverse voltage ratings required of the bridge thyristors.

7.25 Show that the average load voltage of a three-phase, full-wave controlled
bridge circuit with highly inductive load can be obtained by evaluating
the integral
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Sketch the waveform of the instantaneous load voltageeL (	t) for � �
75�, and show that it satisfies the above relationship.

7.26 A three-phase, full-wave, thyristor bridge is fed from an ideal three-phase
supply and transfers power to a load resistorR. A series inductor on the
load side gives current smoothing that may be considered ideal. Derive an
expression for the rms value of the fundamental component of the supply
current. Use this expression to show that the reactive voltamperesQ enter-
ing the bridge is given by

Q
E

R
m=

27

4
2

2

2π
αsin

7.27 For the three-phase, bridge rectifier of Problem 7.18 calculate the power
factor. If equal capacitorsC are now connected in star at the supply calcu-
late the new power factor whenXc � R. What is the minimum value of
firing angle at which compensation to the degreeXc � R renders a power
factor improvement?

7.28 For the bridge rectifier circuit of Problem 7.16 derive an expression for the
terminal capacitance that will give maximum power factor improvement.

7.29 The bridge rectifier circuit of Problem 7.18 is compensated by the use of
equal capacitorsC connected in star at the supply terminals. Calculate the
values of capacitance that will give unity displacement factor at (a)� �
30� and (b)� � 60�. In each case calculate the degree of power factor
improvement compared with uncompensated operation.

7.30 For the bridge circuit of Problem 7.28 sketch, on squared paper, consistent
waveforms of the bridge line current, the capacitor current and the supply
line current. Does the waveform of the supply current appear less distorted
than the rectangular pulse waveform of the bridge current?

7.31 A three-phase, full-wave, bridge rectifier circuit, Fig. 7.6, supplies power
to load resistor R in the presence of a large load filter inductor. Equal
capacitors are connected at the supply terminals to give power factor im-
provement by reducing the current displacement angle�1 to zero at the
fixed thyristor firing-angle�. Derive a general expression for the supply
current distortion factor in the presence of supply capacitance. For the case
whenC has its optimal value so that the displacement factor is increased
to unity is the distortion factor also increased?
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Three-Phase, Full-Wave Controlled Bridge Rectifier
with Highly Inductive Load in the Presence of Supply
Inductance

7.32 A full-wave controlled bridge rectifier circuit transfers power to a load
resistorR in series with a large filter inductor. The three-phase supply
contains a series inductanceLs in each supply line and has sinusoidal open-
circuit voltages whereEm is the peak phase voltage. Show that at thyristor
firing angle� the average load current is given by

I
E

Lav
m

s

= − +[ ]3

2ω
α α µcos cos( )

where� is the overlap angle.

7.33 For the full-wave bridge of Problem 7.32, use Eq. (7.89), or otherwise, to
show that the average load voltage is given by

E
E

av
m= + +[ ]3 3

2π
α α µcos cos( )

7.34 A three-phase, full-wave controlled bridge rectifier with highly inductive
load operates from a 240-V, 50-Hz supply. The load current is required
to remain constant at 15 A. At firing angle� � 15�, the load voltage is
found to be 200 V. Calculate the source inductance and the overlap angle.

7.35 For the three-phase rectifier of Problem 7.32 show that overlap angle�
may be obtained from

cos( )

cos

/

/

α µ
α

ω π
ω π

+ =
−
+

1 3

1 3

L R

L R
s

s

7.36 For the three-phase bridge rectifier of Problem 7.34 calculate the reduction
of the power transferred due to overlap compared with operation from an
ideal supply.

7.37 A three-phase bridge rectifier with highly inductive load operates at a
firing angle� � 30� and results in an overlap angle� � 15�. Calculate
the per-unit reduction of rms supply current compared with operation from
an ideal supply.

7.38 A resistorR � 20� is supplied from a three-phase controlled bridge
rectifier containing a large series filter on the load side. The supply is 240
V, 50 Hz, and each supply line contains a series inductanceLs � 10 mH.
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Calculate the approximate power factor of operation for (a)� � 0, (b) �
� 30�, and (c)� � 60�.

7.39 A three-phase, full-wave controlled bridge rectifier supplies a highly induc-
tive load. Show that in the overlap intervals caused by supply-line induct-
ance, the load voltage is 1.5 times the relevant phase voltage.

7.40 For a three-phase, full-wave bridge rectifier with highly inductive load, it
was shown in Eq. (7.58) that the current displacement cos�1 is related to
the thyristor firing angle� by a relationship cos�1 � cos � when the
supply is ideal. Show that in the presence of significant supply inductance
this relationship is no longer valid but that

cos cos cos( )ψ α α µ1

1

2
≅ + +[ ]
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Rectifier Power Factor and Pulse-
Width Modultion Controlled
Rectifier Circuits

8.1 POWER FACTOR AND SUPPLY CURRENT
DISTORTION IN THREE-PHASE, PHASE-
CONTROLLED BRIDGE RECTIFIERS

The three-phase controlled rectifier is a much-used circuit device with many
applications. For both passive impedance and active (motor) loads it is common
to use a dc output filter inductor to smooth the load current. In addition, a shunt-
connected filter capacitorC smooths the output to a largely ripple-free adjustable
direct voltageVdc (Fig. 8.1).

Operation of the three-phase bridge rectifier using conventional phase-delay
(i.e., phase-angle) control was extensively described in Chapter 7. For all forms
of load the method of phase-angle control has two serious drawbacks: (1) low
lagging power factor and (2) supply current distortion. Each of these features is
briefly discussed below.

8.1.1 Power Factor of Phase-controlled Bridge
Rectifiers

The supply point power factor of a three-phase bridge rectifier with conventional
phase-retardation control reduces greatly as the switch firing angle is retarded to
accomplish load voltage reduction. This is shown in Fig. 7.9, which is a graphical
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FIG. 1 Three-phase controlled rectifier with output filter.

version of Eq. (7.53). Because the current has the same waveform for all firing
angles with inductive and motor loads (Fig. 7.7) the distortion factorI1/I has the
constant value 3/�, or 0.955. But the displacement factor cos�1 is equal to the
cosine of the delayed firing angle cos�, as developed in Sec. 7.2.2. This results
in progressive reduction of the displacement factor (and hence power factor) as
firing angle� increases.

The power factor of a three-phase, phase-controlled rectifier is reproduced
here from Eq. (7.53).

Power factor   = 3

π
αcos (8.1)

Power factor improvement is a major item of industrial practice to reduce electric-
ity supply costs. From Eq. (8.1) it is seen that this can be approached in terms
of distortion factor improvement, which involves changing the supply current
waveform or in terms of reducing the input current displacement angle�1 (i.e.,
firing angle�).

8.1.2 Supply Current Distortion of Phase-
Controlled Bridge Rectifiers

Waveforms of the supply currents for three-phase bridge rectifier operation are
given in Fig. 7.4 for resistive loads and in Fig. 7.7 for inductive and motor
loads. These mathematically odd functions do not contain even order harmonic
components. Also, because of three-phase symmetry, neither do they contain the
odd triple valuesn � 3, 9, 15, 21, etc. The dominant harmonic components, in
descending order of magnitude are the componentsn � 5, 7, 11, 13, 17, 19, etc.
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Power supply utilities are operated on the basic feature that the voltages
and currents generated and transmitted are sinusoidal. Any departure from the
ideal sinusoidal waveforms causes deterioration of the supply system perfor-
mance, mostly in the form of increased losses. In addition, the operation of loads
that draw nonsinusoidal currents cause consequent nonsinusoidal voltage drops
across the series impedances of transformers and transmission lines. The result
is that the system voltages at the point of load coupling may become distorted.
This affects not only the customer with the distorting load, such as a three-phase
rectifier, but all other customers connected to the transmission system at that
point.

Because the connection of distorting loads is now so widespread, the United
States and the European Union both have guidelines governing the maximum
amount of distortion that is acceptable. These guidelines detail the levels of rms
harmonic phase currents, of all harmonic numbers up ton � 19, that are accept-
able at the various voltage levels of the system. In the United Kingdom for
example, at the standard three-phase distribution level of 415 V, the maximum
permitted harmonic phase current levels are 56 A atn � 5 and 40 A atn � 7,
for each consumer.

8.2 METHODS OF POWER FACTOR
IMPROVEMENT

Significant improvement (i.e., increase) of multiphase rectifier power factor can
be realized in several different ways.

1. Supply side capacitors or/and filter circuits
2. Tap changing transformers
3. Multiple rectifier connections with sequential operation
4. Modifying the rectifier firing strategy to achieve pulse-width modula-

tion control

Items 1, 2, 3 and above are mentioned only briefly here since they are covered
in detail in other books (see for example, References 1, 2, 3, 6, 17, 19, 23).

8.2.1 Supply-Side Capacitors

Great improvement in the displacement factor can be achieved by the use of
supply-side compensating capacitors (Fig. 7.5). For any value of rectifier firing
angle there is an optimum value of capacitance that will give the maximum
realizable value of displacement factor (and hence power factor).

In order to realize the optimum improvement shown in Fig. 7.9, it is neces-
sary to change the value of the capacitors at each different firing angle. This is
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not practicable in engineering terms and would be very expensive if a wide range
of operation was desired (i.e., if a wide range of load voltage variation is needed)

It is common with rectifiers of large rating to use a range of supply-side,
shunt-connected filters, each tuned to a particular harmonic frequency. The opera-
tion of the rectifier itself is unchanged but the filters act to prevent rectifier
generated harmonic currents from circulating in the power supply. The result is
that the rectifier plus filters, seen from the supply system, operates at increased
power factor and reduced electricity tariffs.

8.2.2 Transformer Tap Changing

Some types of industrial load, such as battery charging and electrolysis, require
only slow changes and involve relatively small variations of voltage of the order
	10%. A supply of this kind can be provided by the use of an adjustable ratio
transformer. For on-load or off-load operation variations of output voltage can
be obtained by transformer tap changing using solid-state switches. In high-power
applications silicon controlled rectifiers are usually incorporated.

The principle is illustrated in Fig. 8.2. Any output voltage between v2 and
v1 can be obtained by smooth adjustment of the switch firing-angles. The output
voltage waveform (Fig. 8.2b) is much less distorted than those of conventional
three-phase rectifier operation, such as Fig. 7.2. If waveforms such as those of
Fig. 8.2b are used to supply a three-phase diode rectifier, like that of Fig. 6.1, a
high value of displacement factor can be maintained over a wide range of output
voltage.

8.2.3 Sequential Operation of Multiple Rectifiers

The half-wave rectifiers of Chapters 4 and 5 and the full-wave rectifiers of Chap-
ters 6 and 7 can all be extended by the use of more than three phases.

In Fig. 7.1 it was shown that the full-wave, six-pulse bridge is equivalent
to two three-pulse bridges. Two six-pulse bridges, such as that of Fig. 7.1b, can
be added in series to produce what is effectively a 12-pulse bridge (Fig. 8.3).
The use of separate wye and delta secondary windings from a common primary
winding creates output phase voltages with a 30� phase displacement, which
effectively increases the pulse number. Many different transformer arrangements
are available. By dividing transformer phase windings into two sections with
different voltage phase angles or/and by the use of interphase reactor windings,
it is possible to produce 24 pulse supplies.

All of the many multiple rectifier connections, however, use phase-angle
delay as the basis of their switching. The result is still to produce reduced, lagging
power factor and supply current distortion.

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Rectifier Power Factor 271

FIG. 2 Single-phase transformer tap changer� � 60�.
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FIG. 3 Two six-pulse bridges added to produce a 12-pulse output.

8.2.4 Modification of Rectifier Firing Strategy

Waveforms obtained by the retarded triggering of controlled switches are typified
by Figs. 3.2, 3.5, 3.6, and 3.11 for single-phase operation and Figs. 7.4, 7.7, and
7.11 for three-phase operation. The reduced lagging power factor is, in all cases,
due to delayed triggering of the rectifier switches.

An alternative to delayed triggering is to notch the waveform symmetrically
in the manner shown, for example, in Fig. 8.4. Each half sine wave is notched
to give (in this case) five equal width conduction bands with respectively equal
nonconduction notches between them. Compared with the symmetrical phase-
delay waveforms of Fig. 3.6 or Figs. 14.3 and 14.4, the waveform of Fig. 8.4 is
seen to possess a very important feature—its fundamental component is symmet-
rically in phase with the waveform itself. For Fig. 8.4 the displacement angle�1

is zero, and the displacement factor cos�1 has its maximum possible value of
unity. The waveform of Fig. 8.4 does not represent unity power factor because
it has a distortion factor due to the notched wave shape. But it is reasonable to
expect that a current waveform such as that of Fig. 8.4, combined with sinusoidal
supply voltage, would represent high power factor operation.

A wide range of notched waveforms can be devised, with even or uneven
conduction bands. It is sometimes found to be advantageous to use pulse wave-
forms in which the pulse widths are not uniform but are obtained by modulation
techniques. The most versatile and useful approach is found to be in terms of
pulse-width modulation (PWM), which is described extensively in the following
section.

Notched or pulse waveforms both imply a significant engineering challenge
concerning switch commutation. All of the rectifier circuits described in Chapters
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FIG. 4 Sine wave with symmetrical uniform notching.

1 to 7 above are actuated by self- or natural commutation-conducting switches
are extinguished by natural cycling of the supply voltages. For a waveform such
as Fig. 8.4 conduction may be initiated and terminated at several arbitrary intervals
in each half cycle. The necessity to switch off the conducting element requires
forced commutation by gating or by auxiliary commutation circuits. This is a
more complicated and much bigger design challenge than a natural commutation
circuit and is much more expensive to implement.

8.3 PROPERTIES OF PULSE WAVEFORMS

8.3.1 Single-Pulse Modulation

The basic pulse waveform consists of a fixed duration single pulse in each half
wave. More flexible forms of control would permit variation of this single pulse
by (1) fixing the leading edge but varying the trailing edge, (2) fixing the trailing
edge but varying the leading edge or (3) varying the pulse width while keeping
the pulses symmetrical about�/2, 3�/2, etc. Figure 8.5a shows a single-pulse
waveform of pulse width� symmetrical about�/2 and 3�/2. This waveform has
the Fourier series

υ ω
π

δ ω δ ω δ ω( ) sin sin sin sin sin sint
V

t t t= − +


4

2

1

3

3

2
3

1

5

5

2
5     …


 (8.2)

Pulse width� has a maximum value of� radians at which the fundamental term
in Eq. (8.2) is a maximum. An individual harmonic of ordern may be eliminated
by making� � 2�/n, but this is likely also to reduce the value of the fundamental
component. The rms value of the single-pulse waveform of Fig. 8.5a is found to
be
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FIG. 5 Pulse voltages waveforms: (a) single-pulse modulation (N � 1), (b) two-pulse
modulation, (N � 2), and (c) three-pulse modulation (N � 3).

V Vrms = δ
π (8.3)

The nth-order harmonic in Eq. (8.2) is seen to have a peak value

V
V

n

n
n = 4

2π
δ

sin (8.4)

A Fourier analysis of Fig. 8.5(a) shows thatan � 0, which makes the phase
displacement angle zero. This confirms the visual impression that since the pulses
are symmetrical within their half waves, then there is no phase displacement of
the voltage harmonics.

The distortion factor of the single-pulse waveform is
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Distortion factor   = =
V

Vrms

1 2 2 2

2

/
sin

πδ
δ

(8.5)

which has a maximum value of 0.9 when� � �. This is consistent with the data
of Table 10.2.

8.3.2 Fourier Properties of a Pulse Train

When a wave consists ofN identical pulses per half cycle, symmetrically spaced,
the coefficients of thenth Fourier harmonic are found to be given by

c
V

n

n
nn

m

N

m= +



=

∑
1

4

2 2π
δ α δ

   sin sin
(8.6)

WhenN � 1, as in Fig. 8.5a, then�1 � (� � �)/� and Eq. (8.6) reduces to
Eq. (8.4). Examples are given in Fig. 8.5 forN � 2 andN � 3. In all cases
coefficient�1 � 0, which confirms the visual impression that the fundamental
component of the pulse wave is symmetrical with the pulse train itself. The
number of pulsesN and the pulse spacing greatly affect the magnitudes and orders
of the higher harmonic components. For example, withN � 3,
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 (8.7)

The greater is the number of pulses N, the higher will be the value ofcn for a
fixed value of�. Certain harmonic orders can be suppressed or totally eliminated
by the appropriate choice ofN, �, and�.

In the pulse trains of Fig. 8.5 the duty cycle isN�/�, which represents the
ratio of conduction time to total period time and is also the mean height of the
pulse train

Duty cycle 
conduction time

total period time
= = Nδ

π (8.8)

With a high duty cycle a high value of fundamental component is realizable (Fig.
8.6a). As the duty cycle reduces with the same number of pulsesN, caused by
reduction of the pulse width�, the fundamental component is also progressively
reduced (Fig. 8.6b).

The rms values of the pulse waveforms of Fig. 8.6 are given by

V V
N

rms = δ
π (8.9)

WhenN � 1, Eq. (8.9) reduces to Eq. (8.3).
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FIG. 6 Effect of duty cycle on the fundamental component amplitude: (a) high duty
cycle and (b) low duty cycle.

8.3.3 Production of a Uniformly Notched Pulse
Train by Amplitude Modulation

A train of evenly spaced identical pulses can be produced by amplitude modulat-
ing a single-sided triangular carrier wave vc (	ct) by a single-sided, square-wave
modulating signal vm (	t) of lower frequency, as shown in Fig. 8.7. The ratio of
the modulating signal peak amplitudeV to the carrier signal peak amplitudeVc

is a basic parameter of all modulated waveforms and is called the modulation
ratio or modulation indexM.

Modulation ratio = =M
V

Vc
(8.10)

The pulse heightV of the resulting modulated signal vo (	t) (Fig. 8.7) can be
adjusted in the range 0� V � Vc, and the pulse width varied in the range 0�
� � �. The width of the equal pulses is related to the signal voltages by a relation
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FIG. 7 Multiple-pulse voltage waveforms: (a) carrier signal and modulating signal and
(b) output (modulated) signal.

δ π
N

V

V Nc

= −( )1
(8.11)

or

δ
π

= − = −1 1
V

V
M

c
(8.12)

Ratio�/� in Eq. (8.11) is seen to represent the duty cycle per number of pulses.
The rms value of the multipulse waveform given by Eq. (8.9) can be com-

bined with Eq. (8.12) to give

V

V

N
N

V

V
N M

c

rms = = − = −δ
π

( ) ( )1 1
(8.13)

It is a characteristic of all modulated waves that the fundamental frequency com-
ponent of the output (modulated) wave is equal to the frequency of the modulating
wave. Frequency variation of the output signal is therefore obtained by frequency
adjustment of the modulating (control) signal.

Let the carrier pulse frequency befc and the overall cycle frequency	/2�
be f, wherefc � f, as illustrated in Figs. 8.5 and 8.7. When the number of equal,
symmetrical pulses per half cycle isN, then
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N
f

f
c c= = =

2 2

ω
ω

integer
(8.14)

A further basic property of modulated waveforms is the ratio between the carrier
frequency and the modulating frequency, known as thefrequency ratio p.

Frequency ratio = =
f

f
pc

(8.15)

Whenp is an integer this is defined as an example of synchronous modulation.
If p is an odd integer, then the modulated waveform contains half-wave

symmetry (i.e., the positive and negative half cycles are antisymmetrical), and
there are no even-order harmonics.

8.4 PROPERTIES OF SINUSOIDAL PULSE-WIDTH
MODULATION WAVEFORMS

8.4.1 Pulse-Width Modulation

An alternative to the uniformly notched waveforms of Figs. 8.6 and 8.7 is to use
a wave pattern produced by pulse-width modulation (PWM). A feature of a PWM
waveform (Fig. 8.8b) is that the on periods are not uniform but are greatest at
the desired peak of the fundamental output component wave. In this way low-
order higher harmonics, such asn � 3, 5, 7…, may be greatly reduced compared
with an evenly notched waveform having the same fundamental component value
(Fig. 8.8a).

8.4.2 Single-Phase Sinusoidal Modulation with
Natural Sampling

The principle of single-phase sinusoidal PWM is illustrated in Fig. 8.9. A sinusoi-
dal modulating signal vm (	t) � Vm sin 	t is applied to a single-sided triangular
carrier signal vc (	t) of maximum heightVc. The natural intersections of�m (	t)
and vc (	ct) determine both the onset and duration of the modulated pulses so
that the pulse pattern is described as being due to natural sampling. The circuitry
actuating the turn-on and turn-off of the converter switches also is controlled by
sensing these intersections.

In naturally sampled, sinusoidal PWM the duration of the output voltage
pulses is proportional to the instantaneous value of the sinusoidal modulating
waveform at the center of the pulse. The pulse of greatest width is coincident with
the peak of the modulating wave (Fig. 8.9). The pulse area and the fundamental
component of the output voltage are proportional to the corresponding magnitude
V of the modulating sinewave. In Fig. 8.9, reducingV proportionately reduces
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FIG. 8 Comparison of pulse patterns: (a) uniformly notched pulse train and (b) PWM
wave.

the modulation index M and the peak value of the fundamental output (i.e.,
modulated) component.

There are several other different pulse-width modulation techniques used
in power electronics applications in electrical engineering. For example, a method
widely used in the variable-frequency inverter control of ac motors is described
extensively in Chapter 11.

8.4.3 Harmonic Elimination in PWM Waveforms

A double-sided PWM waveform with several arbitrary switching angles is shown
in Fig. 8.10. Switchings occur at angles defined as�1, �2, …, �n over the repetitive
period of 2� radians. Because the waveform contains both half-wave and quarter-
wave symmetry, a complete cycle can be fully defined by the switching angles
for only a quarter cycle of the waveform.
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FIG. 9 Principle of sinusoidal modulation: (a)M � V/Vc � 1.0 and (b)M � V/Vc �
0.5.

The switching angles in Fig. 8.10 can be calculated in order that the PWM
waveform possesses a fundamental component of a desired magnitude while,
simultaneously, optimizing a certain performance criterion. For example, the cri-
terion might be to eliminate certain selected harmonics, such as the fifth and/or
the seventh, from the waveform. Alternatively, the criterion might be to minimize
the total harmonic content and thereby maximize the distortion factor.

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Rectifier Power Factor 281

FIG. 10 PWM voltage waveform with eight arbitrary switchings per half cycle.

From the Fourier equations of the Appendix it can be inferred, for the
quarter-cycle range, that coefficient�n � 0 and thatbn is given by

b t n t d tn = ∫
4

0

2

π
v ω ω ω

π
sin ( )sin

/

(8.16)

For the example in Fig. 8.10 containing two notches (four switchings) per quarter
cycle, the waveform is defined by
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Combining Eqs. (8.16) and (8.17) gives

b
V

n n n nn
dc= − + − +

4
1 2 2 2 21 2 3 4π

α α α α( cos cos cos cos )    (8.18)

The pattern of Eq. (8.18) can be extended to accommodate any desired number
of notches or switchings per quarter wave. Each switching angle in the quarter
wave represents an unknown to be determined.

A generalized from of Eq. (8.18) is given by

V
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n
nn

dc

i

m
i

i= + −( )



=

∑4
1 2 1

1π
αcos

(8.19)

wherem is the number of switchings per quarter cycle. The solution of Eq. (8.19)
requiresm independent, simultaneous equations; the particular case of Fig. 8.10
and Eq. (8.18), for example, hasm � 4. This means that with two notches per
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quarter wave it is possible to limit or eliminate four harmonics, one of which
may be the fundamental component. In balanced three-phase systems the triplen
harmonics are suppressed naturally. It may therefore be logical to suppress the
5-, 7-, 11- and 13-order harmonics, which results in the following equations:

b
Vdc

5 1 2 3 4

4

5
1 2 5 2 5 2 5 2 5 0= − + − +( ) =

π
α α α αcos cos cos cos    (8.20)

b
Vdc

7 1 2 3 4

4

7
1 2 7 2 7 2 7 2 7 0= − + − +( ) =

π
α α α αcos cos cos cos    (8.21)

b
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π
α α α αcos cos cos cos    (8.22)

b
Vdc

13 1 2 3 4
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13
1 2 13 2 13 2 13 2 13 0= − + − +( ) =

π
α α α αcos cos cos cos    (8.23)

Solution of the four simultaneous equations [Eqs. (8.20)–(8.23)] gives the results
�1 � 10.55�, �2 � 16.09�, �3 � 30.91�, and �4 � 32.87�. Increase of the
number of notches per quarter cycle increases the number of harmonics that
may be suppressed, but has the concurrent effects of reducing the fundamental
component and increasing the switching losses.

In general, the set of simultaneous, nonlinear equations describing particular
performance criteria need to be solved or optimized using numerical methods.
Precomputed values of switching angle may be stored in a ROM-based lookup
table from which they are accessed by a microprocessor in order to generate the
necessary switching pulses. It would not be possible to solve numerically the set
of equations in real time, as would be needed in a motor control application. The
larger the number of notchings per quarter cycle, the more refined becomes the
waveform. This may entail solving a large set of nonlinear equations for which
a solution is not always practicable. Furthermore, these equations need to be
solved repetitively, once for each desired level of output.

8.5 THREE-PHASE BRIDGE RECTIFIER IN PWM
MODE

The general arrangement of a three-phase, full-wave bridge rectifier is shown in
Fig. 8.11. For PWM operation the switching elements must be capable of reverse
voltage blocking, such as a MOSFET or a power transistor in series with a fast
recovery diode. The reverse connected diodes across the switches facilitate regen-
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erative action when there is an appropriate dc source and also participate in the
rectifier action.

Power enters the bridge from the three-phase sinusoidal supply. Reference
modulating sine waves (Fig. 8.12) map the supply voltages and intersect a double-
sided triangular carrier wave. Natural sampling PWM is used to produce phase
voltages (relative to a hypothetical mid-load point)VA, VB, andVC at the bridge
entry terminals. It can be seen in Fig. 8.12 that the fundamental harmonic compo-
nents of the phase voltages will be in phase with the waveforms themselves.

The profile of the dc output voltage follows the form of the six-pulse wave-
forms of Fig. 6.2c and Fig. 7.3c. With notched or PWM operation, however, the
profile will be built up using the middle 60� sections of the line-to-line voltages
represented by (say) waveformVAB of Fig. 8.12. Note that the d.c. output voltage
level is controlled by adjustment of the modulation ratioM. The ripple frequency
on the dc voltage is determined by the frequency ratiop. Since the modulating
voltages are of supply frequency the ripple frequency is, in effect, determined
by the selected carrier frequency. CapacitorC in Fig. 8.11 acts to filter the ripple
component of voltage leaving a very smooth output voltage.

It is possible to devise switch firing strategies to reduce or eliminate particu-
lar harmonics. Because the voltage waveforms have sinusoidal profiles, rather
than the fixed levels of Figs. 8.7–8.10, however, the harmonic elimination method
described in Sec. 8.4.3 does not apply.

Because the supply voltages at pointsa, b, andc in Fig. 8.11 are sinusoidal
but the bridge terminal voltagesVAVB, andVC are either evenly notched or pulse-

FIG. 11 Power circuit diagram of a three-phase PWM bridge rectifier.
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FIG. 12 PWM waveforms of a three-phase rectifierM � 0.65,p � 12. (Adapted from
Ref. 11.)
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width modulated, the difference voltages lie across the line reactorsLa, Lb, Lc.
The action is very similar, in principle, to a line-commutated rectifier–inverter,
as described in Chapter 9.

If high-frequency harmonics are disregarded the bridge operation, for the
fundamental frequency component, may be approximated by the equivalent cir-
cuit of Fig. 8.13a. With a high value of frequency ratio, (say)p � 27, the input
current waveforms are close to being sinusoidal. At some values of the dc output
voltage and switching conditions these currents will be in time phase with the
fundamental components of the PWM phase voltages, to result in unity displace-
ment factor (not unity power factor). The fundamental frequency components
can be represented by a phasor diagram (Fig. 8.13b). Some types of device known
asboost rectifiershave a dc output voltage greater than the line-to-line voltages
at the entry terminals. IfVA � Va, the resulting input currentIa leads its phase
voltage in time phase (Fig. 8.13c).

FIG. 13 Operation of a PWM rectifier: (a) equivalent circuit for fundamental compo-
nents, (b) phase diagram for unity displacement factor (buck operation), and (c) leading
displacement factor (boost operation).
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The design and implementation of a PWM rectifier system would be com-
plex and expensive. Each rectifier would probably need a unique base drive logic,
depending on the application. This would need to be interfaced to the switches
from a microcontroller and backup protection systems incorporated. Currently
the available switches do not possess an adequate combination of power handling
capability, switching speed and cost to make the PWM rectifier commercially
attractive.

8.6 WORKED EXAMPLES
Example 8.1 A double-pulse notched voltage waveform of the type shown

in Fig. 8.5b has a peak amplitudeV. Calculate the fundamental component and
compare with this the value obtained by the use of a single-pulse waveform of
the same total area.

In the waveform v(	t) in Fig. 8.5b,N � 2 and the instantaneous value is
therefore

v ω
α α

α δ α δ

π α π α

π α δ π α δ
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+ + + +
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Since the waveform is anti-symmetrical about	t � 0 the fundamental component
v1(	t) passes through the origin,�1 � 0 and�1 � 0. Fourier coefficientb1 is
given by
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This equation is seen to be valid for the fundamental frequencyn � 1, whenN
� 2, from Eq. (8.6). If the condition is one of symmetry with�1 � � � �/5
� 36�, then�2 � 3� � 108� and
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b
V V

1

4
0 05

2
0 637= × = =

π π
. . ( ) V peak value

In comparison, for a single-pulse waveform of the same area, Eq. (8.4) gives

V
V

1

4
36=

π
sin o

The use of two pulses per half cycle, with the same total area therefore results
in reduction of the fundamental component, even though the rms value is un-
changed. The distortion factor in therefore also reduced proportionately.

Example 8.2 A double-pulse, single-sided notched voltage waveform has
the pattern of Fig. 8.5b. What restriction would require to be imposed on the
design parameters�1, �2, and� so that the third harmonic component was com-
pletely suppressed?

The Fourier coefficientbn for the waveform of Fig. 8.5b was shown in the
previous example to be

b
V

n

n
n nn = +





+ +















4

2 2 21 2π
δ α δ α δ

sin sin sin

The may be expressed, alternatively, as
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To makebn � 0 for the casen � 3
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π
δ α α δ α αsin sin cos

Three options arise:

1. sin(3�/2) � 0.
2. sin 3 (�1 � �2)/2 � �/2) � 0.
3. cos(3/2)(�1 � �3) � 0.

This leads to the following restrictions:

1. � � 0, (2/3)�, (4/3)�, etc.
2. 3 [(�1 � �2)/2 � �/2] � 0, �, 2�, …, or �1 � �2 � ��, 2�/3 ��,

…,
3. (3/2) (�1 � �2) � �/2, 3�/2, 5�/2, …, or �1 � �2 � �/3, �, 5�/3,

….
Condition 1 is not admissible. From 2 and 3 it is seen that, for example,

4. �1 � �2 � ��.
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5. �1 � �2 � �/3.

Combining 4 and 5 gives

6 21

2

α π δ

α

= −

== − −π δ
6 2

Other combinations are possible showing that there is no unique solution. For
example, if

α α π δ

α α π

1 2

1 2

2

3
+ = −

− =

then

α π δ α π δ
1 2

5

6 2 6 2
= − = − −

PROBLEMS

8.1 Show that the rms value of the single-pulse waveform of Fig. 8.5a is given
by Eq. (8.3).

8.2 Calculate the values of the fundamental components of the pulse wave-
forms of Fig. 8.5a and b if� � 108�

8.3 The voltage waveform in Fig. 8.14 contains three single-sided pulses in
each half cycle, spaced symmetrically with respect to�/2. Obtain an
expression for the amplitude of thenth harmonic if�1 � �/6 and�2 �
�/3, and compare this with the corresponding expression for a single-pulse
waveform of the same area. What are the respective fundamental values?

8.4 For the waveform of Fig. 8.14, calculate the values of�1 and�2 that will
permit the 3rd and 5th harmonic components to be eliminated.

8.5 For the voltage waveform of Fig. 8.10 show that the Fourier coefficent
bn, in terms of the switching angles�1 and�2, is given by

b
V

n
n nn = − +4

1 1 2π
α α( cos cos )
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FIG. 14 Voltage waveform for Problem 8.3.

8.6 Define relationships for the switching angles that need to be satisfied if
the 3rd and 5th harmonic components are to be eliminated from the wave-
form of Fig. 8.15. Calculate appropriate values of�1 and�2.

8.7 A single-sided triangular carrier wave of peak heightVc contains six pulses
per half cycle and is modulated by a sine wave vm (	t) � Vm sin 	t
synchronized to the origin of a triangular pulse. Sketch waveforms of the
resultant modulated wave if (a)Vm � 0.5Vc, (b) Vm � Vc and (c)Vm �
1.5 Vc. Which of these waveforms appears to contain the greatest funda-
mental (i.e, modulating frequency) value?

8.8 For the waveforms described in Problem 8.7 estimate, graphically, the
values of	t at which intersections occur between vc (	ct) and vm (	t)
when Vm � Vc. Use these to calculate values of the harmonics of the
modulated wave up ton � 21 and thereby calculate the rms value.

FIG. 15 PWM voltage waveform with two arbitrary switchings per quarter cycle.
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9

Three-Phase, Naturally
Commutated, Controlled Bridge
Rectifier–Inverter

9.1 THEORY OF OPERATION

The process of transferring power from a dc supply to an ac load is known as
inversion, and the necessary form of converter is usually known as aninverter.
Inverters can be classed according to their manner of commutation, that is, by
the process by which conducting switches are extinguished.

In a small number of applications the inverter feeds directly into an estab-
lished three-phase voltage source (Fig. 9.1(a). The commutation function is then
performed by natural cycling of the ac voltages, as in the rectifier circuits de-
scribed in chapters 1-8. Naturally commutated inverters, described in Chapter 9,
invariably use silicon controlled rectifiers as switching elements, and the output
frequency is maintained constant by the three-phase busbars.

The three-phase bridge rectifier of Fig. 7.1b can be used as an inverter if
the passive load is replaced by a dc supply with reversed polarity voltage, as
shown in Fig. 9.1. The current direction on the dc side is unchanged—direct
current enters the common anodes of Th4, Th6, Th2 and leaves the common
cathodes of Th1, Th3, Th5. With inverter operation the battery acts as a power
source, and current leaves the positive plate of the battery. This is unlike rectifier
operation (Fig. 7.1b), where direct current enters the positive terminal of the load.

For inverter operation the voltage level, frequency and waveform on the
ac side are set by the three-phase bus and cannot be changed. As with rectifier
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FIG. 1 Basic forms of inverters: (a) naturally commutated and (b) artificially commutated
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operation, described in Sec. 7.1., the anode voltages of the switches undergo
cyclic variation and are therefore switched off by natural commutation. There is
no advantage to be gained here by the use of gate turn-off devices. But it is a
requirement that the switches can be turned on at controlled switching angles.
An inverter cannot therefore operate using uncontrolled (diode) switches.

In the operation of the inverter circuit of Fig. 9.2 certain restrictions must
be imposed on the switching sequences of the switches. For example, both
switches of any inverter arm, such as Th1 and Th4, cannot conduct simultaneously.
Similarly, only one switch of the lower bridge (Th2, Th4, Th6) and one switch
of the upper bridge (Th1, Th3, Th5) can conduct simultaneously. If sequential
firing is applied to the six SCRs, the three phase currents are identical in form
but mutually displaced in phase by 120�. The detailed operation of the circuit for
rectifier operation, described in Sec. 7.1, is again relevant here, except that the
range of firing angles is now 90� � � � 180�.

The waveform of the instantaneous voltageeL (	t) on the dc side of the
bridge, with ideal ac supply, is shown in Fig. 9.3 for both rectifier and inverter
operation. This waveform is derived from the line-to-line ac-side voltages. The
level of the dc-side currentIdc, and hence the power transfer, is determined by
the relation betweenVdc and the magnitude and polarity of the equivalent average
value ofeL (	t).

In the circuit of Fig. 9.2 the source voltageVdc is of such polarity as to
forward bias the SCR switches, whereas during inversion, the instantaneous polar-
ities of the ac-side voltages act to reverse bias them. When the dc-side current
Idc tends to decrease, the induced voltage of the filter inductor will assume a
polarity that acts to sustain it and hence to forward bias the switches. The net

FIG. 2 Three-phase, naturally commutated, bridge rectifier–inverter [20]
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FIG. 3 Instantaneous voltageeL (	t) on the dc side of a bridge rectifier–inverter circuit,
assuming ideal ac supply (no overlap) [20]

effect is to maintain an SCR in conduction even during segments of the phase
voltage waveform when the polarity is such as to reverse bias it. The voltage
presented by the ac side is derived from negative segments of individual voltages
and has negative average polarity which opposes the flow of current injected by
the dc sourceVdc, If the ac-side effective voltage is smaller thanVdc, then Idc

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 9294

will flow as indicated in Fig. 9.2, and power is transferred from the dc side to
the ac side in inverter action.

VoltageeL (	t) in Fig. 9.2 is time varying and does not, in general, coincide
with the constant voltageVdc from the dc source. For this reason a filter inductor
Lf must be included to absorb the difference or ripple voltageeLf

.

e V e t L
dI

dt
R IL dc L f

dc
f dcf

= − = +( )ω (9.1)

If the dc-side current is very smooth, which occurs whenLf is large, thendIdc/
dt → 0, and the ripple voltage falls largely on the resistanceRf of the filter
inductor.

The waveform of the current on the ac side of the bridge depends largely
on the magnitude of the filter inductor. If this inductor is large, the line current
assumes a rectangular waveform similar to that obtained for rectifier operation
with a highly inductive load (Fig. 7.7). The line current pulses have a conduction
period of 120� followed by a dwell period of 60�. In the circuit of Fig. 9.2 the
average value of the bridge voltage is, from Eq. (7.8),
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2
1 335Ecosα (9.2)

whereEm is the peak phase voltage and E is the rms line voltage.
The average value of the current on the dc side is seen, from Fig. 9.2, to

be satisfied by the relation for rectifier operation.

I
V E

R R
V Edc

dc av

f f
dc=

+
= +1

1 35( . cos )α
(9.3)

For inverter operation� � 90� and cos� is negative, so that the filter inductor
voltage isVdc � Eav. At � � 90�, Eav � 0 and the inverter presents a short
circuit to the direct current. In order to maintain constantIdc in the presence of
adjustable SCR firing angle�, it is necessary to simultaneously varyRf or Vdc

or both. If direct voltageVdc is constant, then increase of the retardation angle
� would result in a decrease ofIdc due to growth of the bucking voltageEav.
CurrentIdc in Fig. 9.2 will become zero, from Eq. (9.3), when

cos
.

α
π

= =
V

E

V

E
dc

m

dc

3 3 1 35 (9.4)
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Since the switches of the rectifier–inverter bridge are presumed to be lossless,
there must be a power balance on each side of the circuit. If the rms value of
the fundamental component of the inverter in phasea line current isIa1 and the
displacement angle is�1, then

P
E

I

E I

m
a

av dc

=

=

3
2 1 1cos )

(

ψ (ac side

dc side) (9.5)

The power dissipationI2
dcRf in the filter comes from the battery, but this is external

to the bridge. The real powerP becomes zero ifEav � 0 or Idc � 0 or both. To
makeP � 0, the SCR firing conditions are therefore that� � 90�, from Eq.
(9.2), or� � cos�1 (Vdc/1.35E), from Eq. (9.4).

Now the important relationship� � �1 of Eq. (7.58) remains true and
combining this with Eqs. (9.2) and (9.4) gives

I I I Iav dc dc dc= = =2 3 6
0 78

π π
. (9.6)

The fundamental line current therefore has a peak value�2 � 0.78Idc � 1.1Idc

and is, by inspection, in time phase with (	t). An example of this is shown in
Fig. 9.4a.

Although the real power in watts transferred through the inverter comes
from the dc source, the reactive voltamperes has to be provided by the ac supply.
The ac-side current can be thought of as a fundamental frequency component
lagging its corresponding phase voltage by�1 (� �) radians plus a series of
higher odd harmonics. In terms of the fundamental frequency component, the
inverter action can be interpreted either as drawing lagging current from the ac
system or, alternatively, as delivering leading current to the ac system. Rectifier
action and inverter action of the bridge circuit are depicted in the equivalent
circuits of Fig. 9.5. A notationI1 is used (rather thanIa1) because the circuits are
true for any phase.

The fundamental ac-side components may be represented in phasor form
as, for example, in Fig. 9.6. With rectifier operation, both the in-phase component
of currentI1 cos� and the quadrature componentI1 sin � are drawn from the
ac bus. With inverter operation, the in-phase component of current is opposite
in sign to the case of rectifier operation and represents active or real power
delivered to the ac bus, but the quadrature component still represents reactive
voltamperes drawn from the ac bus. As� increases from 90�, with constant
current, an increased amount of power is transferred to the ac system and the
reactive voltampere requirement is reduced.

Even for the condition of zero power transfer there may still be currents
flowing in the inverter. At� � 90�, (Fig. 9.4d), the inverter current is in quadra-
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FIG. 4 Instantaneous phase voltage and current on the ac side of a bridge rectifier–in-
verter assuming ideal ac supply [20]. (Note: It is assumed thatVdc is adjusted proportion-
ately to cos� to maintainIdc constant.)

ture lagging its respective phase voltage. The in-phase component of currentI1

sin � is finite, and therefore, from Eq. (9.6), a component of the inverter phase
current acts as a ‘‘magnetizing’’ current even though there is no magnetic field
and no capability of storing energy. In Fig. 7.4, the reactive voltamperesQ is
given by an expression complementary to the expression for real powerP,

Q
E

I
E

Im
a

m
a= =

3

2
3

21 1 1sin sinα ψ
(9.7)
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FIG. 5 Per-phase equivalent circuits for the three-phase bridge rectifier–inverter: (a)
rectifier operation and (b) inverter operation [20]

Combining Eqs. (9.2) and (9.6) with Eq. (9.7) gives

Q � EavoIdc sin � (9.8)

The combination of voltampere componentsP andQ thus gives

�P2 � Q2 � EavoIdc (9.9)

Since only fundamental components are being considered, the ratio

P

P Q

E

E
av

avo
2 2+

= = =cosα displacement factor
(9.10)

It can be seen that Eq. (9.10) confirms the earlier result of Eq. (7.58). The rms
value of the total ac-side line current is given by Eq. (7.52) if the filter inductance
is large. Combining Eq. (9.6) with Eq. (7.52) shows that the ac-side line current
distortion factorIa1/I, has the value 3/� as in (7.59).

Applications of the use of the fixed-frequency bridge inverter include solar
energy systems, wind energy systems and high-voltage direct current (HVDC)
interconnections between ac and dc systems.
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FIG. 6 Phase diagrams for the fundamental frequency components of the ac-side voltage
and current: (a) rectifier operation and (b) inverter operation [20]

9.2 THE EFFECT OF AC SYSTEM INDUCTANCE

The average values of the load side currentIav and voltageEav in a three-phase
controlled rectifier, in the presence of supply-side reactance	Ls �/phase, are
given by Eq. (7.87) and (7.89). These equations remain true for inverter operation,
except that the polarity of the voltage is reversed, and are reproduced below.

I
E

av
m= − +[ ]3

2ωLs
α α µcos cos( ) (9.11)

E
E

E

av
m

av

= − + +[ ]

= − + +[ ]

3 3

2

2
0

π
α α µ

α α µ

cos cos( )

cos cos( ) (9.12)

whereEm is the peak value of the ac-side phase voltage,� is the switch firing
angle, and� is the overlap angle. The line inductanceLs is usually of the order
of a few millihenries, and the line reactance	Ls, or commutating reactance, is
usually a few ohms. For inverter operation, Eq. (9.11) and (9.12) are sometimes
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rearranged in terms of an extinction angle� � � � � � �, but this does not
render any advantage here.

As with rectifier operation, the inverter action can be interpreted in equiva-
lent circuit terms. The form of Eq. (7.90) is still valid but can be most conveniently
expressed in terms of extinction angle�

E E L Iav av s av= −
0

3
cosα

π
ω (9.13)

In the presence of overlap

� � � � � � � (9.14)

But

cos(� � � � �) � �cos(� � �) (9.15)

Combining Eqs. (9.13)–(9.15) gives

E E L Iav av s av= − + −
0

3
cos( )α µ

π
ω (9.16)

For inverter operation (� � �) � 90� and the first term of Eq. (9.16) becomes
positive.

The current equation can be written in terms of extinction angle� by com-
bining Eqs. (9.11), (9.14), and (9.15).

I
E

Lav
m

s

= +( )3

2ω
α γcos cos

(9.17)

9.3 WORKED EXAMPLES

Example 9.1 Power is transferred from a 300-V battery to a three-phase,
230-V, 50-Hz ac bus via a controlled SCR inverter. The inverter switches may
be considered lossless and a large filter inductor with resistance 10� is included
on the dc side. Calculate the power transferred and the power factor if (1)� �
90�, (2) � � 120�, and (3)� � 150�.

The circuit is represented in Fig. 9.2 with the ac-side current waveform
shown in Fig. 9.4. The average voltage on the dc side of the inverter is given by
Eq. (7.22),

E
E

av
m=

3 3

π
αcos

In this case the peak phase voltageEm is
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The negative sign indicates thatEav opposes the current flow that is created by
the connection ofVdc. The current on the dc side is given by Eq. (9.3).

I
V E

R

V E

Rdc
dc av

f

dc av

f

=
+

=
−

At � � 90�,

A= =300

10
30I dc

At � � 120�

A= − =300 1553

10
14 47.I dc

At � � 150�,

A= − =300 269

10
3 1I dc .

The power transferred through the inverter into the ac system is the battery power
minus the loss inRf.

P � VdcIdc � I2
dcRf

At � 90�,

P � 300 � 30 � (30)2 � 10 � 0

At � � 120�,

P � 300 � 14.47� (14.47)2 � 10

� 4341� 2093.8� 2247.2 W

At � � 150�,
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P � 300 � 3.1 � (3.1)2 � 10

� 930 � 96.1� 833.9 W

The peak height of the ac-side current is also the battery currentIdc. The funda-
mental ac-side current has an rms value given by Eq. (9.6).

I1 � 0.78Idc

At � � 90�,

I1 � 23.4 A

At � � 120�,

I1 � 11.3 A

At � � 150�

I1 � 2.42 A

At � � 120�, for example, the power given by the ac-side equation, Eq. (9.5),
is

P = × × = −3
230

3
11 3 120 2251. cos W°

This agrees very nearly with the calculated power (2247.2 W) on the dc side.
The displacement factorDF is defined directly from Eqs. (7.58) and (9.10):

Displacement factor� |cos�1| � |cos�|
At � � 90�,

DF � 0

At � � 120�,

DF � |cos 120�| � 0.5

At � � 150�,

DF � |cos 150�| � 0.866

The distortion factor for a waveform such as the current in Fig. 9.4 was shown
in Eq. (7.59) to have the value 3/�. Now the power factor PF is given by

PF � displacement factor� distortion factor

At � � 90�,

PF � 0

AT � � 120�,
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π
= × =3

0 5 0 477PF . .

At � � 150�,

π
= × =3

0 866 0 827PF . .

Example 9.2 Calculate the switch ratings for the operation of the inverter
in Example 9.1

Operation of the inverter of Fig. 9.2 requires that the peak line voltage fall
sequentially on each SCR

VTmax� �2 � 230 � 325.3 V

Each SCR currentIT has one rectangular pulse (positive going only), as in Fig.
9.3, per cycle. This has an rms value

I I d t
I

T dc
dc= =∫

1

2 3
2

6

5 6 2

π
ω

π

π

/

/

Therefore,

I
I

T
dc=
3

The maximum value ofIdc occurs at� � 90�, which corresponds to

IT = =30

3
17 32. A

The expression above forIT is confirmed by Eq. (7.52) which defines the rms
value of the line current as�2IT.

Practically selected devices might be rated at 400 V, 20 A.

Example 9.3 The current-firing-angle characteristics of Fig. 9.7 were mea-
sured from a battery-powered SCR inverter feeding into a three-phase trans-
former. Deduce the transformer terminal voltage.

A point on one of the characteristics is chosen arbitrarily. Consider the
point Vdc � 70 V, Idc � 6 A, when� � 130�. The power leaving the battery
is P � 70 � 6 � 420 W. Neglecting any power loss in the filter inductor all
of this power reappears on the ac side of the inverter. The rms value of the
fundamental inverter current is, from Eq. (9.6).

I1 � 0.78Idc � 4.68 A

In Eq. (9.5),
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FIG. 7 Measured dc-side current (amperes) versus firing angle� for a three-phase recti-
fier–inverter [20]

420
3

2
4 68 130= × ×

Em . cos °

which gives

Em � 65.8 V

The rms line voltage on the ac side was therefore

E = × =3
65 8

2
80

.
V

Example 9.4 The ac line voltage output of a three-phase inverter is 6.6
kV. A dc supply voltage of 7 kV is found to require an ignition angle of 140�.
Calculate the associated overlap angle.

The base valueEav0 of the dc-side voltage is given by

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 9304

E
E

av
m

0

3 3
=

π

But Em is the peak value of the ac-side phase voltage

Em = 6600 2

3

so that

Eav0

3 3 6600 2

3
8913= =

π
V

Substituting values into Eq. (9.12) gives

7500
8913

2
140 140 140 0 9169

140

= − + +



 + = −

+

cos cos( ) cos( ) .µ µ

µµ = − = − =−cos ( . ) . .1 0 9169 180 23 52 156 4

° ° °

° ° °°

Therefore,

� � 16.4�

Example 9.5 The current and voltage on the dc side of a three-phase
bridge inverter are 100 A and 30 kV respectively. If the ac line reactance is 15
� and the ac bus voltage is 36 kV, calculate the firing angle and the overlap
angle.

Base value Eavo
of the dc-side voltage is given by

E
E

kav
m

0

3 3 3
3

36 2

3
48 62= = =

π π
. V

Substituting numerical values into Eq. (9.13) gives

30000 48620
3

15 100

30000 1432 4

48620
0 6465

= − × ×

= + =

=

cos

cos
.

.

co

γ
π

γ

γ ss . .− =1 0 6465 49 72°

Utilizing Eq. (9.14) it is seen that

� � � � � � � � 130.28�
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A further, independent, relationship is needed to separate� and �, and this is
provided by Eq. (9.12).

30000
48620

2
= − + +[ ]cos cos( )α α µ

cos cos . . . .

cos (

α

α

= − − = − + = −

= −−

60000

48620
130 28 1 23 0 6465 0 5835

01 .. ) . .5835 180 54 3 125 7= − =

°

° ° °

Overlap angle� is therefore

� � 130.28� � 125.7� � 4.58�

PROBLEMS

9.1 A naturally commutated, three-phase inverter contains six ideal SCRs and
transfers energy into a 440-V, 50-Hz, three-phase supply from an 800-V
dc battery. The battery and the inverter are linked by a smoothing inductor
with a resistance of 12.4�. Calculate the power transferred at� � 90�,
120�, 150�, and 170�.

9.2 For the inverter application of Problem 9.1 calculate the voltage and rms
current ratings required of the switches.

9.3 A large solar energy installation utilizes a naturally commutated, three-
phase SCR inverter to transfer energy into a power system via a 660-V
transformer. The collected solar energy is initially stored in an 800-V
battery that is linked to the inverter through a large filter choke of resistance
14.2 �. What is the maximum usable value of the SCR firing angle?
Calculate the power transferred at the firing angle of 165�. What is the
necessary transformer rating?

9.4 Calculate the necessary SCR voltage and rms current ratings for the in-
verter application of Problem 9.3.

9.5 Use the inverter characteristics of Fig. 9.7 to deduce the form of the corre-
spondingVdc � Idc characteristics with cos� as the parameter. If the
maximum dc-side voltage is 100 V, what is the firing angle required to
give a direct current of 10 A ifR � 1 �?

9.6 Sketch the main circuit of a naturally commutated, three-phase, controlled
bridge inverter. If the ac-side rms line voltageV is fixed, sketch the varia-
tion of inverter power transfer with SCR firing angle� and dc-side voltage
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Vdc. If � � 120�, what is the minimum value of ratioVdc/V that will permit
inversion?

Sketch the waveform of the current passing between the inverter and the
supply and give a phasor diagram interpretation to explain the inverter
operation. Why is it often necessary to connect capacitance across the
terminals of a naturally commutated inverter of high kVA rating?

9.7 A three-phase, bridge inverter feeds power into an ac supply of 175 kV
in which the line reactance is 20�. When the power transferred from the
dc side is 50 MW, the extinction angle is 19.2�. Calculate the dc current
and voltage. A three-phase bridge inverter delivers power into a 50 kV
three-phase bus from a dc supply of 40 kV. Calculate the overlap angle
when the switch firing angle is 120�.

9.8 What value of switch firing angle would result in the power transfer speci-
fied in Problem 9.7?

9.9 A three-phase bridge inverter delivers power into a 50-kV three-phase bus
from a dc supply of 40 kV. Calculate the overlap angle when the switch
firing angle is 120�.

Most inverter applications, however, have passive, three-phase loads requir-
ing an adjustable frequency supply. The most common form of load is a three-
phase ac motor, which is essentially passive even though the windings contain
speed related induced voltages. With passive loads the inverter switches have to
be commutated by methods designed into the inverter.

For high power inverters, above 500 kW, the switches are silicon controlled
rectifiers (SCRs), and commutation has to be realized by the use of auxiliary
commutation circuits, known here ascircuit commutation. Inverters up to about
500 kW usually use three-terminal, switch-off devices such as power transistors
and can be commutated by gate control or extinguished using resonant circuit
methods.

Most dc power supplies are good voltage sources characterized by low
internal impedance, in which the voltage level is largely maintained in the
presence of variable current output. Typical examples are a battery, a dc
generator, and a full-wave rectified ac power source. If the direct voltage
remains substantially constant, this constitutes an ideal or nearly ideal source,
and the associated inverter is known as avoltage-source inverter(VSI). In
order to maintain a high degree of dc source voltage stability or stiffness a
large electrolytic capacitor, of size 2000�F to 20,000�F, is connected across
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the input terminals (Fig. 9.8(a). This item is both bulky and significantly
expensive.

There are a few forms of dc power supply in which the source impedance
is high and that deliver a direct current of constant level, regardless of the
load. These can be used as power supplies for the current-source inverter
(CSI), which is completely different in operation and commutation from the
VSI. A supply of constant or almost constant current can be approximated
by using a voltage source and a large series inductance (Fig. 9.8(b).

Both the VSI and CSI are used in applications where the inverter output
frequency needs to be adjustable, such as ac motor speed control. One of the
two basic forms of inverter switching action results in output voltage waveforms

FIG. 8 (a) Voltage and (b) current stiff systems [32]
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that have the form of square waves or stepped waves, described in Chapter
10. The other basic switching action is known as pulse width modulation
(PWM), described in Chapters 8 and 11. For both step-wave and PWM voltage-
source inverters the commutation action has to be performed either in the
inverter itself, known asself-commutation, or by the action of the associated
circuitry, known ascircuit commutation.
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Three-Phase, Step-Wave Inverter
Circuits

10.1 SKELETON INVERTER CIRCUIT

The form of voltage-source inverter (VSI) most commonly used consists of a
three-phase, naturally commutated, controlled rectifier providing adjustable direct
voltageVdc as input to a three-phase, force-commutated inverter (Fig. 10.1). The
rectifier output–inverter input section is known as thedc link. In addition to a
shunt capacitor to aid direct voltage stiffness the link usually contains series
inductance to limit any transient current that may arise.

Figure 10.2a shows the skeleton inverter in which the semiconductor recti-
fier devices are shown as generalized switches S. The notation of the switching
devices in Fig. 10.2 is exactly the same as for the controlled rectifier in Fig. 7.1
and the naturally commutated inverter of Fig. 9.1. In high-power applications the
switches are most likely to be SCRs, in which case they must be switched off
by forced quenching of the anode voltages. This adds greatly to the complexity
and cost of the inverter design and reduces the reliability of its operation.

If the inverter devices are GTOs (Fig. 10.2b), they can be extinguished
using negative gate current. Various forms of transistor switches such as BJTs
(Fig. 10.2c), and IGBTs (Fig. 10.2d) can be extinguished by control of their base
currents, as briefly discussed in Chapter 1. In Fig. 10.2 the commutating circuitry
is not shown. It is assumed in the following analysis that each switch can be
opened or closed freely.
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FIG. 1 Basic form of voltage-source inverter (VSI) [20].

From the power circuit point of view all versions of the skeleton inverter
of Fig. 10.2 are identical. In each case the frequency of the generated voltages
depends on the frequency of gating of the switches and the waveforms of the
generated voltages depend on the inverter switching mode.The waveforms of the
associated circuit currents depend on the load impedances.

Many different voltage waveforms can be generated by the use of appropriate
switching patterns in the circuit of Fig. 10.2. An invariable requirement in three-
phase systems is that the three-phase output voltages be identical in form but phase
displaced by 120� electrical from each other. This does not necessarily create a bal-
anced set of load voltages, in the sinusoidal sense of summing to zero at every in-
stant of the cycle, but it reduces the possibility of gross voltage unbalance.

A voltage source inverter is best suited to loads that have a high impedance
to harmonic currents, such as a series tuned circuit or an induction motor. The
series inductance of such loads often results in operation at low power factors.

10.2 STEP-WAVE INVERTER VOLTAGE
WAVEFORMS

For the purpose of voltage waveform fabrication it is convenient to switch the
devices of Fig. 10.2 sequentially at intervals of 60� electrical or one-sixth of a
period. The use of a dc supply having equal positive and negative voltage values
	Vdc is common. The zero point of the dc supply is known as thesupply zero
pole but is not grounded.

10.2.1 Two Simultaneously Conducting Switches

If two switches conduct at any instant, a suitable switching pattern is defined in
Fig. 10.3 for no-load operation. The devices are switched in numerical order, and
each remains in conduction for 120� electrical. Phase voltagesvAN, vBC, andvCN
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FIG. 2 Skeleton switching circuit of voltage source inverter: (a) general switches, (b)
GTO switches, (c) BJT switches, and (d) IGBT switches [20].
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FIG. 3 Load voltage waveforms with two simultaneously conducting switches. No load
and resistive load [20].
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consist of rectangular pulses of height	Vdc. If equal resistorsR are now con-
nected in star to the load terminals A, B, and C of Fig. 10.2, the conduction
pattern of Fig. 10.4 ensues for the first half period.

In interval 0� 	t � �/3,

2

2
0

2

2

= − = − = −

=

= = = +

v I R
V

R
R V

v

v I R
V

R
R V

v

AN L
dc

dc

BN

CN L
dc

dc

AB == + = − = −v v v v VAN NB AN BN dc (10.1)

In the interval�/3 � 	t � 2�/3,

0=
= = +
= = +
= +

v

v I R V

v I R V

v V

AN

BN L dc

CN L dc

AB dc (10.2)

In the interval 2�/3 � 	t � �,

0

2

= = +
= = −
=
=

v I R V

v I R V

v

v V

AN L dc

BN L dc

CN

AB dc (10.3)

For each interval it is seen that the load current during conduction is

I
V

R

V

RL
dc dc=

±
= ±

2

2 (10.4)

The results of Eqs. (10.1)–(10.4) are seen to be represented by the waveforms
of Fig. 10.3. For this particular mode of switching the load voltage and current
waveforms with star-connected resistive load are therefore identical with the
pattern of the open-circuit voltages. The potential of load neutral pointN is always
midway between�Vdc and�Vdc and therefore coincides with the potential of
the supply midpoint 0.

Phase voltage waveformvAN in Fig. 10.3 is given by an expression

v ωAN dc dct V V= = −( )
,

,

240

120

60 360

0 300

°

° ° °

° °

(10.5)

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 10314

FIG. 4 Current conduction pattern for the case of two simultaneously conducting
switches: (a) 0� � 	t � 60�, (b) 60� � 	t � 120�, and (c) 120� � 	t � 180� [20].

This has the rms value

V t d t V VAN AN dc dc= = =∫
1

2

2

3
0 8162

0

2

π
v ω ω

π
( ) . (10.6)

The fundamental Fourier coefficients of waveformvAN (	t) are found to be

a t t d t VAN dc1 0

21 2 3= = −∫π
v ω ω ω

π
π

( )cos (10.7)

b t t d tAN1 0

21
0= =∫π

v ω ω ω
π

( )sin (10.8)

c a b a Vdc1 1
2

1
2

1
2 3= + = = −

π (10.9)

ψ1
1 1

1

1 90= = −∞ = −− −tan tan ( )
a

b
°

(10.10)
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It is seen from Eqs. (10.9) and (10.10) that the fundamental (supply frequency)
component of the phase voltages has a peak value (2�3/�) Vdc, or 1.1Vdc with
its origin delayed by 90�. This (2�3/�)Vdc fundamental component waveform
is sketched in Fig. 10.3.

The distortion factor of the phase voltage is given by

= = =
V

V

c

V

AN

AN AN

1 1 2 3/

π
Distortion factor

(10.11)

Line voltagevAB (	t) in Fig. 10.3 is defined by the relation

v ωAB dc dc dct V V V( )
,

,

,

,
= − +

° °

° °

° °

°

120 240

60 180

60 300

0 240

180
2

°

°

°

°
−

120

360

300
2Vdc (10.12)

This is found to have fundamental frequency Fourier coefficients of value

a V

b V

c V

dc

dc

dc

1

1

1 1
1

3 3

3

6
3 60

= −

= +

= = − = −−

π

π

π
ψTherefore,   °tan

(10.13)

The fundamental component ofvAB (	t) is therefore given by

v ω
π

ωAB dct V t
1

6
60( ) sin( )= − °

(10.14)

It is seen in Fig. 10.3 thatvAB1 (	t) leadsvAN1 (	t) by 30�, as in a balanced three-
phase system, and comparing Eqs. (10.9) and (10.13), the magnitude|VAB1| is
�3 times the magnitude|VAN1|.

With a firing pattern of two simultaneously conducting switches the load
voltages of Fig. 10.3 are not retained with inductive load. Instead, the load volt-
ages become irregular with dwell periods that differ with load phase-angle. Be-
cause of this, the pattern of two simultaneously conducting switches has only
limited application.

10.2.2 Three Simultaneously Conducting Switches

A different load voltage waveform is generated if a mode of switching is used
whereby three switches conduct at any instant. Once again the switching devices
conduct in numerical sequence but now each with a conduction angle of 180�
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electrical. At any instant of the cycle three switches with consecutive numbering
are in conduction simultaneously. The pattern of waveforms obtained on no load
is shown in Fig. 10.5. With equal star-connected resistors the current conduction
patterns of Fig. 10.6 are true for the first three 60� intervals of the cycle, if the
load neutralN is isolated.

For each interval,

I
V

R R

V

R
dc dc=

+
=

2

2

4

3/ (10.15)

FIG. 5 Output voltage waveforms with three simultaneously conducting switches. No
load [20].
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FIG. 6 Current conduction pattern for the case of three simultaneously conducting
switches. Star-connectedR load: (a) 0� � 	t � 60�, (b) 60� � 	t � 120�, and (c) 120�
� 	t � 180� [20].

In the interval 0� 	t � �/3,

2

2

3
4

3
2

= = =

= − = −

= − =

v v
I

R V

v IR V

v v v V

AN CN dc

BN dc

AB AN BN dc
(10.16)
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In the interval�/3 � 	t � �,

1

2

2

3
4

3
2

= = =

= − = −

=

v v R V

v IR V

v V

AN BN dc

CN dc

AB dc
(10.17)

In the interval 2�/3 � 	t � �,

1

2

2

3
4

3
0

= = =

= = −

=

v v R V

v IR V

v

AN BN dc

CN dc

AB
(10.18)

The load voltage waveforms obtained with star-connected resistive load are plot-
ted in Fig. 10.7. The phase voltages are seen to be different from the corresponding
no-load values (shown as dashed lines), but the line voltages remain unchanged.
Although the no-load phase voltages do not sum to zero, the load currents, with
three-wire star connection, must sum to zero at every instant of the cycle. In Fig.
10.7 the phase voltagevAN is given by

v ωAN dc dct V V( )
,

,

,

,
= − +

° °

°

° °

° °

2

3

2

3

4

3

60 180

0 120

240 360

180 300
VV Vdc dc

120

60

300

240

4

3

°

°

°

°
−

(10.19)
It can be seen by inspection in Fig. 10.7 that the fundamental frequency compo-
nent ofvAN (	t) is in time phase with it, so that

α

ψ
α

1

1
1 1

1

0

0

=

= =−tan
b (10.20)

Fundamental frequency Fourier coefficient b1 for the load peak phase voltage is
found to be

b c Vdc1 1
4= =
π (10.21)

The corresponding fundamental (supply) frequency Fourier coefficients for line
voltagevAB (	t) are given by

a
π

π

1

1

2 3

6

=

=

V

b V

dc

dc
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FIG. 7 Output voltage waveforms with three simultaneously conducting switches. Star-
connectedR load, isolated neutral. No-load waveforms [20].

π

ψ

1

1
1

4
3 3

1

3
30

= = ×

= =−

c Vdc the phase value

°tan
(10.22)

The positive value�30� for �1 implies that its origin lies to the left of the zero
on the scale of Fig. 10.7. Line voltage component�AB (	t) is plotted in Fig. 10.7,
consistent with Eq. (10.22).
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The fundamental components of the load voltages, plotted in Fig. 10.7
show that, as with a three-phase sinusoidal system, the line voltage leads its
corresponding phase voltage by 30�. The rms value of phase voltagevAN (	t) is
found to be

V t d t V VAN AN dc dc= = =∫
1 2 2

3
0 9432

0π
v ω ω

π
( ) . (10.23)

Combining Eqs. (10.21) and (10.23) gives the distortion factor of the phase
voltage,

= = =
V

V

c

V
AN

AN AN

1

1

2 3

π
Distortion factor

(10.24)

This is seen to be identical to the value obtained in Eq. (10.11) for the phase
voltage waveform of Fig. 10.3 obtained with two simultaneously conducting
switches. Although the distortion factors are identical, waveform�AN (	t) of Fig.
10.7 has a slightly greater fundamental value (4/�)Vdc than the corresponding
value (2�3/�)Vdc for �AN (	t) of Fig. 10.3, given by Eq. (10.7). The switching
mode that utilizes three simultaneously conducting switches is therefore poten-
tially more useful for motor speed control applications. The properties of relevant
step waves and square waves are summarized in Table 10.1.

It can be deduced from the waveforms of Fig. 10.7 that load neutral point
N is not at the same potential as the supply neutral point 0. While these points
remain isolated, a difference voltageVNO exists that is square wave in form, with
amplitude	 Vdc/3 and of frequency three times the inverter switching frequency.
If the two neutral points are joined, a neutral current will flow that is square wave
in form, of amplitude	Vdc/R, and of three times the inverter switching frequency.

10.3 MEASUREMENT OF HARMONIC
DISTORTION

The extent of waveform distortion for an alternating waveform can be defined
in a number of different ways. The best known of the these, the distortion factor
defined by Eq. (10.24), was used in connection with the rectifier circuits of
Chapters 2–9.

An alternative measure of the amount of distortion is by means of a property
known as thetotal harmonic distortion(THD), which is defined as

THD
V V

V

V

V

AN AN

AN

AN

AN

h=
−

=
2 2

2
1

1 1 (10.25)
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TABLE 10.1 Properties of Step Waves [20]

Phase voltage 
Properties of the phase voltage waveform

Total Distortion Corresponding line
wave form Peak RMS rms factor THD voltage waveform
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For a pure sinusoidVAN1 � VAN, and theTHD then has the ideal value of zero.
The numerator of Eq. (10.25) is seen to represent the effective sum of the nonfun-
damental or higher harmonic componentsVANh

.
A comparison of Eqs. (10.24) and (10.25) shows that for any wave,

= =
+

V

V THD

AN

AN

1 1

1 2( )
Distortion factor

(10.26)

10.4 HARMONIC PROPERTIES OF THE SIX-STEP
VOLTAGE WAVE

The six-step phase voltage waveforms of Fig. 10.7 are defined by the Fourier
series

v ω
π

ω ω ω

ω

AN dct V t t t

t

( ) = + +





+ +

4 1

5
5

1

7
7

1

11
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1

13

sin sin sin

sin siin13ωt +…
(10.27)

It is seen from Eq. (10.27) that the waveformvAN (	t) of Fig. 10.7 contains no
triplen harmonics and its lowest higher harmonic is of order five with an amplitude
equal to 20% of the fundamental. The rms value of the function in Eq. (10.27)
is given by

V
V
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V
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dc

dc

= + + + + +

= × +

=

4

2
1

1

5

1

7

1

11

1

13

1

17
1

2

4
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2 2 2 2 2π

π

…

….

. ddc +… (10.28)

which confirms the value obtained by integration in Eq. (10.23).
For the step wave of Fig. 10.7, substituting Eqs. (10.21) and (10.23) into

Eq. (10.25) gives

THD
V

V

dc

dc

=
( ) − ( )

( )

= − =

2 2 3 4 2

4 1 2

9
1 0 311

2 2

2

/ /

/ /

.

π

π

π
(10.29)
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From Eq. (10.25) harmonic voltageVANh
is therefore 31.1% of the rms value of

the fundamental component and 29.7% of the total rms value. Values ofTHD
for other waveforms are given in Table 10.1. In general, if there are N steps/
cycle, each occupying 2�/N radians, the only harmonics present are of the order
h � nN 	 1, where n� 1, 2, 3,… For a six-step waveform Fig. 10.7, for
example,N � 6 so thath � 5, 7, 11, 13, etc., as depicted in Eq. (10.27).

10.5 HARMONIC PROPERTIES OF THE OPTIMUM
12-STEP WAVEFORM

A reduction of the harmonic content can be realized by increase of the number
of steps in the phase voltage wave. If a 12-step waveform is used,N � 12 and
h � 11, 13, 23, 15,… Example 10.4 gives some detail of a certain 12-step
waveform calculation. It is found that the optimum 12-step waveform, shown in
Fig. 10.8, is represented by the Fourier expression

v ω π ω ω ω ω( ) (sin sin sin sin )t V t t t t= + + + +
3

1

11
11

1

13
13

1

23
23 …

(10.30)

In each interval of the optimum waveform of Fig. 10.8 the step height corresponds
to the average value of the sinusoidal segment. For 0� 	t � �/6, for example,
the average value is

FIG. 8 Twelve-step voltage waveform [20].
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= =∫
π

π
ω ω

πV
t d t

3

6
0 268

0

6
sin .

/
VStep height (10.31)

A 12-step waveform can be fabricated by the use of two six-step inverters with
their outputs displaced by 30� or by the series addition of square-wave or PWM
voltages.

10.6 SIX-STEP VOLTAGE INVERTER WITH
SERIES R-L LOAD

When a reactive load is connected to a step-wave inverter, it becomes necessary
to include a set of reverse-connected diodes in the circuit to carry return current
(Fig. 10.9). The presence of the diodes immediately identifies the circuit as a
VSI rather than a current-source inverter (CSI) for which return diodes are unnec-
essary. In the presence of load inductance with rectifier supply, a shunt capacitor
must be connected in the dc link to absorb the reactive voltamperes because there
is no path for reverse current in the supply.

10.6.1 Star-Connected Load

In the switching mode where three switches conduct simultaneously, the no-load
voltages are given by Fig. 10.5. Let these voltages now be applied to the star-
connectedR-L loads, as in Fig. 10.9. The resulting current undergoes an exponen-
tial increase of value. Consider the instant	t � 0 in the typical steady-state

FIG. 9 Voltage-source transistor inverter incorporating return current diodes [20].
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cycle shown in Fig. 10.10. TransistorT1 has been in conduction for 180� and has
just switched off. TransistorT2 has been in conduction for 120� passing positive
currentIc. TransistorT3 is 60� into its conduction cycle resulting in currentiB that
is increasing negatively. TransistorT4 has just switched on, connecting terminalA
to � Vdc, which will attempt to create positiveIA. The negative currentiA(0) at
	t � 0 is diverted from its previous path throughT1 and passes through diode
D4 to circulate through capacitorC. As soon asiA � 0, diodeD4 switches off,
at point t in Fig. 10.10 andT4 takes up the positive currentIA.

For each interval in Fig. 10.10 the current can be described mathematically
by a constant term plus a decaying exponential component. Even if the load is
highly inductive the load phase voltages and line voltages largely retain the forms
of Fig. 10.7. For example, the diagram of Fig. 10.11 is reproduced from oscillo-
grams of waveforms when a three-phase induction motor is driven from a step-
wave, voltage-source inverter. The motor phase voltage is the classical six-step

FIG. 10 Current waveforms for voltage-source six-step inverter with star-connected se-
ries R-L load [20].
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FIG. 11 Waveforms with six-step VSI applied to an induction motor load [20].

waveform. At each switching there is an abrupt change of current slope. A motor
input impedance is much more complex than the passiveR-L load of Fig. 10.9
since the resistance value is speed related and there are magnetically induced
voltages in the windings. It can be seen in Fig. 10.11 that the fundamental compo-
nent of the very ‘‘spiky’’ current lags the voltage by about 60� of phase angle,
which is typical of low-speed operation of an induction motor.
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10.6.2 Delta-Connected Load

Let the voltages of Fig. 10.7, for the case of three simultaneously conducting
switches be applied to a balanced, three-phase, delta-connected load, as in Fig.
10.12. Since the star-connected load of Fig. 10.9 can be replaced by an equivalent
delta-connected load, the line current waveforms of Fig. 10.10 remain true. The
phase current waveforms can be deduced by the application of classical mathe-
matical analysis or transform methods.

In the interval 0� 	t � 120� of Fig. 10.10 a voltage 2Vdc is impressed
across terminalsAB so that, with cot� � R/	L,

i t
V

R
iAB

dc t
AB

t

t
( ) ( ) ( )cot cotω ε ε

ω
φω φω

 0 120

2
1 0

< < °
= − +− −

(10.32)

In the interval 120� � 	t � 180� of Fig. 10.10 terminals A and B are coincident
and load branch AB is short-circuited so that

i t
V

R

i

AB
dc

AB

t
( ) ( )

( )

cot /

cot /

ω ε

ε
ω

φ π

φ π
° °120 180

2
1

0

2 3

2 3

< <
= −

+

 −

−





− −ε φ ω πcot ( / )t 2 3

(10.33)

Since the current wave possesses half-wave inverse symmetry,iAB(0) � iAB(�)
� iAB (2�). Putting	t � � in Eq. (10.33) and utilizing the inverse-symmetry
identity give

i
V

RAB
dc( )

cot / cot

cot
0

2

1

3

= − −
+

− −

−
ε ε

ε

φπ φπ

φπ (10.34)

FIG. 12 Delta-connected seriesR-L load [20].
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Combining Eq. (10.34) with Eqs. (10.32) and (10.33), respectively, gives

i t
V

RAB
dc t

t
( )

cot /

cot
cotω ε

ε
ε

ω

φπ

φπ
φω

 0 120

2
1

1

1
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−
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 (10.35)

i t
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dc t
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2 3π / )

(10.36)

CurrentiCA (	t) in Fig. 10.12 is given by expressions corresponding to those of
Eqs. (10.35) and (10.36) but with the time delayed by 4�/3 radians. The rms
value of the branch current is defined by the expression

I i t d tAB AB= ∫
1

2
2

0

2

π
ω ω

π
( ) (10.37)

In elucidating Eq. (10.37) it is convenient to use the substitutions

K K1

3

2

2 31

1

1

1
= +

+
= −

+

−

−

−

−
ε
ε

ε
ε

φπ

φπ

φ π

φπ
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cot

cot /

cot (10.38)

An examination ofK1 andK2 above shows that

K2 � 1� K1ε�cot�2�/3 (10.39)

Substituting Eqs. (10.35) and (10.36) into Eq. (10.37) gives

I
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K d t
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φ (10.40)
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Eliminating the explicit exponential terms between Eqs. (10.38) and (10.40) gives

I
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R
K K

K K

KAB
dc2
2

2 2 1
1
2

2
2

1

4 2

3

1 3

2
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(10.41)

Line currentiA (	t) in Fig. 10.12 changes in each 60� interval of conduction. In
general,iA (	t) � iAB (	t), so that

i t
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(10.44)

A typical pattern of waves consistent with Eqs. (10.42) to (10.44) is shown in
Fig. 10.13. At any instant the currentiA (	t) must be flowing through one of the
devicesT1, T4, D1, or D4 in the inverter of Fig. 10.9. In the interval 0� 	t �
60�, the negative part ofiA (	t), up to 	t � �, is conducted via transistorT4.
For 	t � 180�, the positive currentiA (	t) reduces to zero through diodeD1 and
then goes negative viaT1. The properties of both the transistor and the diode
currents can be calculated by use of the appropriate parts of Eqs. (10.35)–(10.44).
The oscillating unidirectional current in the dc link (Fig. 10.13) consists of a
repetition of the currentiA (	t) in the interval 60� � 	t � 120�. For the interval,
0 � 	t � 60�, idc (	t) is defined by

i t
V

R
Kdc

dc t( ) cotω ε φω= −( )−2
2 3 (10.45)

where

K3

3 21

1
= +

+

−

−
( )cot /

cot

ε
ε

φπ

φπ (10.46)

This link current will become negative for part of the cycle if the load is suffi-
ciently inductive. The boundary condition for the start of negative link current
is idc (	t) � 0 at 	t � 0, which occurs whenK3 � 2. This happens for loads
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FIG. 13 Current waveforms for six-step VSI with delta-connected, seriesR-L load [20].

with a power factor smaller than 0.525 lagging. The average value ofIdc (	t) in
the interval 0� 	t � 60� and therefore in all the intervals is given by

I
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K d t
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R
t
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dc
dc t

dc

= −( )
= +

∫ −
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3 2
2

3 2
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−
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3 2 2

3
13 3

π
π

φ
ε φπ

cot
cot /

(10.47)

10.7 WORKED EXAMPLES
Example 10.1 An ideal dc supply of constant voltageV supplies power

to a three-phase force-commutated inverter consisting of six ideal transistor
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switches. Power is thence transferred to a delta-connected resistive load ofR �
per branch. The mode of inverter switching is such that two transistors are in
conduction at any instant of the cycle. Deduce and sketch waveforms of the phase
and line currents.

The load is connected so that the system currents have the notation shown
in Fig. 10.12. The triggering sequence is given at the top of Fig. 10.5. At any
instant of the cycle two of the three terminalsA, B, andC will be connected to
the supply, which has a positive rail�V while the other rail is zero potential.
The load effectively consists of two resistorsR in series shunted by another
resistorR. In the interval 0� 	t � �/3, for example, transistorsT1 andT2 are
conducting so that

i i
V

R

V

R
i

i i
V

R

i i i
V

R

C A

B

CA C

BC AB C

= − = =

=

= =

= = − = −

2 3

3

2
0

2

3
1

3

1

2

/

In the interval� � 	t � 2�/3, transistorsT2 andT3 are conducting, resulting in
the isolation of terminalA so that

i i
V

R
i

i
V

R

i i
V
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C B
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= −
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3

2
0

1

2

In the interval 2�/3 � 	t � �, transistorsT3 andT4 are in conduction so that
terminalB has the negative rail potential of zero while terminalA is connected
to the�V rail, so that

i
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The pattern of waveforms so produced (Fig. 10.14) is that of a six-step phase (i.e.,
branch) current but a square-wave line current. In fact, the pattern of waveforms is
identical in form, but with different amplitude scaling, to that obtained with a
star-connected load ofR �/phase in Fig. 10.7 when three transistors conduct
simultaneously.

FIG. 14 Voltage waveforms of VSI with delta-connectedR load (Example 10.1) [20].
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Example 10.2 The voltage waveform of a certain type of 12-step inverter
is given in Fig. 10.15. For this waveform calculate the fundamental value, the
total rms value, and the distortion factor.

The waveform of Fig. 10.15 is defined by the relation

e t
E E

Em m
m

/
( )

,

/ , /

/ ,

/

/
ω

π

π π

π π

π π

π

π
= + +

3

2

34 5 5 5

2 5

2 5

3 5

0, 

 5

 3

 4 /5
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FIG. 15 Voltage waveform of 12-step VSI in Example 10.2 [20].
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It is obvious that the fundamental component of waveforme(	t) in Fig. 10.15
is symmetrical with respect to the waveform itself. Therefore,
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Example 10.3 A six-step voltage source inverter is supplied with power
from an ideal battery of constant voltageV � 150 V. The inverter has a delta-
connected seriesR-L load, whereR � 15�, XL � 25� at 50 Hz. Calculate the
rms current in the load, the power transferred, and the average value of the supply
current at 50 Hz.

In this example an inverter of the form of Fig. 10.9 supplies power to a
load with the connection of Fig. 10.12. The pattern of phase or branch currents
iAB(	t), iBC(	t), iCA (	t) is similar in form to the load currents with star-connected
load shown in Fig. 10.10. The line currents have the typical formiA (	t) given
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in Fig. 10.13. The branch currentiAB (	t) is defined by Eqs. (10.35) and (10.36),
where the voltage is nowV (rather than 2Vdc)
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The total power dissipation is

P � 3I2R � 3 � (4.014)2 � 15 � 725 W

The average value of the link current may be obtained by integrating Eq. (10.45)
between the limits 0 and�/3:
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In this case, from Eq. (10.38),
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Therefore,

Idc = + −( )
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The power entering the inverter through the link is

Pin � VIdc � 150 � 4.83� 725 W

which agrees with the value of the load power.

PROBLEMS

10.1 Sketch the circuit diagram of a three-phase, force-commutated inverter
incorporating six SCRs and six diodes. The commutation system should
not be shown. Two SCRs only conduct at any instant, and power is
transferred from the dc source voltage	 V into a balanced three-phase
resistive load. Explain the sequence of SCR firing over a complete cycle
and sketch a resulting per-phase load voltage waveform consistent with
your firing pattern.

10.2 Sketch the skeleton circuit of the basic six-switch, force-commutated
inverter with direct supply voltage	V. The switching mode to be used
is that where three switches conduct simultaneously at every instant of
the cycle. Deduce and sketch consistent waveforms of the output phase
voltagesvAN, vBN, vCN (assuming phase sequenceABC) and the line volt-
agevAB on open circuit over a complete time cycle, indicating which
switches are conducting through each 60� interval. What is the phase
difference between the fundamental componentvAB1 of the line voltage
vAB and the fundamental componentvAN1 of the phase voltagevAN? In
what ways would a phasor diagram of the fundamental, open-circuit
phase voltages give a misleading impression of the actual operation?

10.3 The basic circuit of a six-switch, force-commutated inverter with supply
voltage	V is shown in Fig. 10.2. The triggering mode to be used is
where three switches conduct simultaneously. Deduce and sketch wave-
forms of the instantaneous phase voltagesvAN, vBN, vCN and the instanta-
neous line voltagevAB for open-circuit operation with phase sequence
ABC. Indicate which of the six switches are conducting during each 60�
interval of the cyclic period. If equal resistorsR are connected to termi-
nalsA, B, Cas a star-connected load, deduce and sketch the waveform
of phase currentiAN.
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10.4 In the inverter circuit of Fig. 10.2 the triggering mode to be used is
where three switches conduct simultaneously. The load consists of three
identical resistorsR connected in wye (star).

1. If the load neutral pointN is electrically isolated from the supply
neutral pointO, deduce the magnitude, frequency, and waveform of
the neutral–neutral voltageVNO.

2. If the two neutral pointsN andO are joined, deduce the magnitude,
frequency, and waveform of the neutral current.

10.5 The stepped waveform of Fig. 10.16 is typical of the phase voltage wave-
form of a certain type of inverter. Use Fourier analysis to calculate the
magnitude and phase angle of the fundamental component of this wave-
form. Sketch in correct proportion, the waveform and its fundamental
component. What is the half-wave average value of the stepped wave
compared with the half-wave average value of its fundamental compo-
nent?

10.6 A set of no-load, phase voltage waveformsvAN, vBN, vCN produced by a
certain type of inverter is given in Fig. 10.5. Sketch, on squared paper,
the corresponding no-load line voltagesvAN, vBN, vCA. Calculate the mag-
nitude and phase-angle of the fundamental componentvAN1 of the line
voltagevAN and sketchvAN1 in correct proportion tovAN. What is the
half-wave average value ofvAN compared with the corresponding half-
wave average value ofvAN1? The set of voltages in Fig. 10.5 is applied
to a set of equal star-connected resistors of resistancer. Deduce and

FIG. 16 Motor phase voltage waveform in Problem 10.5 [20].
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sketch the waveform of the current in phaseA with respect to the open-
circuit voltagevAN.

10.7 An ideal dc supply of constant voltageV supplies power to a three-phase,
force-commutated inverter consisting of six ideal transistors. Power is
then transferred to a delta-connected resistive load ofR � per branch
(Fig. 10.17). The mode of inverter switching is such that three transistors
are conducting simultaneously at every instant of the cycle. Show that
the line current waveforms are of six-step form with a peak height of
2V/R. Further show that the phase (branch) currents are square waves of
heightV/R.

10.8 For the periodic voltage waveform of Fig. 10.18 calculate the fundamental
component, the total rms value, the distortion factor, and the displacement
factor.

10.9 For the 12-step waveform of Fig. 10.8 show that the step height for the
interval�/6 � 	t � �/3 is given by 0.732 V. Also show that the funda-
mental component of this waveform has a peak height of�/3 V and a
displacement angle�1 � 0.

10.10 For the 12-step voltage waveform of Fig. 10.8 calculate the rms value
and hence the distortion factor.

10.11 A six-step voltage source inverter is supplied from an ideal battery with
terminal voltageV � 200 V. The inverter supplies a delta-connected
load with a seriesR-L impedance in each leg consisting ofR � 20 �,

FIG. 17 Inverter circuit connection in Problem 10.7 [20].
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FIG. 18 Voltage waveform of Problem 10.10 [20].

XL � 30 � at the generated frequency. Calculate the rms load current
and the average value of the supply current. Check that, within calculation
error, the input power is equal to the load power.

10.12 Repeat Problem 10.11 if the load inductance is removed.

10.13 For the inverter operation of Problem 10.11 calculate the maximum and
minimum values of the time-varying link current.
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Three-Phase, Pulse-Width
Modulation, Controlled Inverter
Circuits

The skeleton three-phase inverter circuits of Fig. 10.2 apply not only for step-wave
operation but also for the switching technique known aspulse width modulation
(PWM). Section 8.4 gives a brief account of the principles of PWM—this is
subsumed within the present chapter.

11.1 SINUSOIDAL PULSE WIDTH MODULATION

A periodic (carrier) waveform of any wave shape can be modulated by another
periodic (modulating) waveform of any other wave shape, of lower frequency. For
most wave-shape combinations of a carrier waveform modulated by a modulating
waveform, however, the resultant modulated waveform would not be suitable for
either power applications or for information transmission.

For induction motor speed control the motor voltage waveforms should be
as nearly sinusoidal as possible. If nonsinusoidal voltages are used, as with most
inverter drives, it is preferable to use waveforms that do not contain low-order
harmonics such as the fifth and the seventh because these can cause torque ripple
disturbances, especially at low speeds. The lower order harmonics of a modulated
voltage wave can be greatly reduced if a sinusoidal modulating signal modulates
a triangular carrier wave. The pulse widths then cease to be uniform as in Fig.
8.5 but become sinusoidal functions of the angular pulse position, as in Fig. 11.1.
With sinusoidal PWM the large look-up tables of precalculated values needed
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FIG. 1 Principle of sinusoidal modulation of triangular carrier wave [20].

for harmonic elimination in step-wave inverters (Sec. 8.4.3) are avoided. Inverter
control becomes complex with sinusoidal PWM, and the switching losses are
much greater than for conventional six-step operation of step-wave inverters. For
SCR and GTO devices the switching frequencies are usually in the range
500–2500 Hz, and for power transistors the frequency can be as high as 10 kHz.

11.1.1 Sinusoidal, Modulation with Natural
Sampling

The principle of sinusoidal PWM was discussed in Sec. 8.4 and is followed up
in this present section, with reference to Fig. 11.2. A sinusoidal modulating signal
vm (	t) � Vm sin 	t is applied to a single-sided triangular carrier signalvc (	ct),
of maximum heightVc, to produce the output modulated wavevo (	t) of the
same frequency as the modulating wave. For the example shown, the modulation
ratio M, defined asVm/Vc, is 0.75 and the frequency ratiop, defined asfc/fm or
fc/f, has the value 12 (Fig. 11.2). The peak value	 V of the output wave is
determined by the dc source voltage.

11.1.2 Three-Phase Sinusoidal PWM with Natural
Sampling

The basic skeleton inverter circuit, with a wye-connected load, is shown in Fig.
11.3. This has exactly the same general form as the inverter circuits of Chapter
10, except that a midpoint of the dc supply is shown explicitly. For three-phase
operation the triangular carrier wave is usually doubled sided, being symmetrical
and without dc offset. Each half wave of the carrier is then an identical isosceles
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FIG. 2 PWM voltage waveform obtained by sinusoidal modulation using natural sam-
pling: p � 12, M � 0.75 [20].

triangle. Waveforms for a three-phase system are shown in Fig. 11.4 in which
frequency ratiop � 9 and modulation ratioM is almost unity. For balanced
three-phase operation,p should be an odd multiple of 3. The carrier frequency
is then a triplen of the modulating frequency so that the output-modulated wave-
form does not contain the carrier frequency or its harmonics. In Fig. 11.4 the
three-phase, modulated output voltages are seen to be identical but with a mutual
phase displacement of 120� or one-third of the modulating voltage cycle, and the
peak level is determined by the dc source level.

The order of harmonic componentsk of the modulated waveform are given
by

k � np 	 m (11.1)

wheren is the carrier harmonic order andm is the carrier side band. The major
harmonic orders are shown in Table 11.1 for several values ofp. At p � 15, for
example, the lowest significant harmonic isk � p � 2 � 13, and this is of much
higher order than the harmonicsk � 5, 7, obtained with a six-step waveform. It
is found that the 2p 	 1 harmonics are dominant in magnitude for values of

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



PWM, Controlled Inverter Circuits 343

FIG. 3 Basic skeleton inverted circuit [20].

modulation ratio up to aboutM � 0.9. Whenp � 9, the harmonic magnitudes
at a given value ofM are independent ofp.

Fourier analysis of a sinusoidally pulse width modulated waveform is very
complex. Thenth harmonic phase voltage component for a waveform such as
those of Fig. 11.4 is given by an expression of the form
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(11.2)

In Eq. (11.2) the termsJ0, andJn represent first-order Bessel functions,	m is
the fundamental frequency of the modulating and output waves, and	c is the
carrier frequency.

The first term of Eq. (11.2) gives the amplitude of the fundamental fre-
quency output component, which is proportional to modulation indexM, in the
range 0� M � 1, for all values ofp � 9.
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FIG. 4 Voltage waveforms for a three-phase sinusoidal PWM inverter,m � 1 p � 9:
(a) timing waveforms, (b)–(d) pole voltages, and (e) output line voltage [21].

TABLE 11.1 Major Harmonics in a PWM Waveform with Naturally
Sampled Sinusoidal Modulation [20]

Frequency
n � 1 n � 2 n � 3

ratio
m � 2 m � 1 m � 2

p p � 2 2p � 1 3p � 2

3 5, 1 7, 5 11, 7
9 11, 7 19, 17 29, 25
15 17, 13 31, 29 47, 43
21 23, 19 43, 41 65, 61
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V
MVdc

1 2( )peak = (11.3)

The corresponding rms value of the fundamental component of the modulated
line-to-line voltageVL1 (rms) is given by
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= = (11.4)

There is no straightforward analytical expression for the related values of the
higher harmonic voltage components. Calculated values of these, in the range 0
� M � 1 with p � 9, are given in Fig. 11.5 [21]. If the modulating wave peak
amplitude is varied linearly with the modulating frequencyfm, then ratioM/fm is
constant. A waveform having a constant ratio of fundamental voltage to frequency
is particularly useful for ac motor speed control.

FIG. 5 Harmonic component voltages (relative to peak fundamental value) for sinusoidal
PWM with natural samplingp � 9 [21].
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The second term of Eq. (11.2) describe harmonics at the carrier frequency
and its multiples, while the third term refer to sidebands around each multiple
of the carrier frequency.

11.1.3 Overmodulation in Sinusoidal PWM
Inverters

Increase of the fundamental component of the modulated output voltageV1, be-
yond theM � 1 value, is possible by makingM � 1, butV1 is then no longer
proportional toM (Fig. 11.6). In this condition of overmodulation the process of
natural sampling no longer occurs. Some intersections between the carrier wave
and the modulating wave are lost, as illustrated in Fig. 11.7. The result is that
some of the pulses of the original PWM wave are dropped in the manner shown
in Fig. 11.8.

In the extreme, whenM reaches the valueM � 3.24, the original forms
of PWM waveform in Fig. 11.4 are lost. The phase voltages then revert to the
quasi-square wave shape of Table 10.1, Fig. 10.5, and Fig. 10.7 in which harmon-
ics of orders 5 and 7 reappear. Variation of the fundamental output voltage versus
modulation ratioM is shown in Fig. 11.6. For pulse voltageVdc (i.e., twice the
value given in Fig. 11.3) the rms fundamental line value of the quasi-square wave
is

V V V Vdc dc dc1
4 3

2 2

6
0 78

( )
.

rms
= = =

π π (11.5)

FIG. 6 RMS fundamental line voltage (relative toVdc) versus modulation ratioM for
sinusoidal modulation [20].
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FIG. 7 Overmodulation of triangular carrier wave by a sinusoidal modulating wave,M
� 1.55 [21].

FIG. 8 Example of pulse dropping due to overmodulation: (a) containing a minimum
pulse and (b) minimum pulse dripped [20].
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Overmodulation increases the waveform harmonic content and can also result in
undesirable large jumps ofV1, especially in inverter switches with large dwell
times.

Other options for increase of the fundamental output voltage beyond the
M � 1 value, without increase of other harmonics, are to use a nonsinusoidal
reference (modulating) wave such as a trapezoid or a sine wave plus some third
harmonic component.

11.1.4 Three-Phase Sinusoidal PWM with Regular
Sampling

As an alternative to natural sampling, the sinusoidal reference wave can be sam-
pled at regular intervals of time. If the sampling occurs at instants corresponding
to the positive peaks or the positive and negative peaks of the triangular carrier
wave, the process is known asuniformor regular sampling. In Fig. 11.9a sample
value of the reference sine wave is held constant until the next sampling instant
when a step transition occurs, the stepped version of the reference wave becomes,
in effect, the modulating wave. The resulting output modulated wave is defined
by the intersections between the carrier wave and the stepped modulating wave.

When sampling occurs at carrier frequency, coincident with the positive
peaks of the carrier wave (Fig. 11.9a), the intersections of adjacent sides of the
carrier with the step wave are equidistant about the non sampled (negative) peaks.
For all values ofM the modulated wave pulse widths are then symmetrical about
the lower (nonsampled) carrier peaks, and the process is calledsymmetrical regu-
lar sampling. The pulse centers occur at uniformly spaced sampling times.

When sampling coincides with both the positive and negative peaks of the
carrier wave (Fig. 11.9b), the process is known asasymmetrical regular sampling.
Adjacent sides of the triangular carrier wave then intersect the stepped modulation
wave at different step levels and the resultant modulated wave has pulses that
are asymmetrical about the sampling point.

For both symmetrical and asymmetrical regular sampling the output modu-
lated waveforms can be described by analytic expressions. The number of sine
wave values needed to define a sampling step wave is equal to the frequency
ratio p (symmetrical sampling) or twice the frequency ratio, 2p (asymmetrical
sampling). In both cases the number of sample values is much smaller than in
natural sampling, which requires scanning at sampling instants every degree or
half degree of the modulating sine wave.

The use of regular sampled PWM in preference to naturally sampled PWM
requires much less ROM-based computer memory. Also, the analytic nature of
regular sampled PWM waveforms makes this approach feasible for implementa-
tion using microprocessor-based techniques because the pulse widths are easy to
calculate.
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FIG. 9 Sinusoidal modulation of a triangular carrier wave using regular sampling,M �
0.75,p � 4.5: (a) symmetrical sampling and (b) asymmetrical sampling [27].

Some details of various forms of pulse width modulation, using a symmetri-
cal triangular carrier wave, are given in Table 11.2.

11.2 PWM VOLTAGE WAVEFORMS APPLIED TO
A BALANCED, THREE-PHASE, RESISTIVE-
INDUCTIVE LOAD

A double-sided triangular carrier wave modulated by a sinusoid results in the
pulse waveformsvA and vB of Fig. 11.10. If modulating signalvmB is delayed
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FIG. 10 PWM voltage waveforms with sinusoidal natural sampling instants,M � 0.75,
p � 12 [20].

120� with respect tovmA the resulting modulated wavevB is identical in form to
vA but is also delayed by 120�. The corresponding line voltagevAB (� vA � vB)
has a fundamental component that leads the fundamental component ofvA by
30�, as in a sinusoidal balanced set of voltages. Note that the positive pulse pattern
of vAB (	t) is not quite the same as the negative pulse pattern, although the two
areas are the same and give zero time average value. This issue is the subject of
Example 11.1.

The application of a PWM voltage waveform to an inductive load results
in a current that responds (very nearly) only to the fundamental component. The
harmonics of a PWM waveform, including the fundamental, are a complicated
function of the carrier frequency	c, the modulating (output) frequency	m, the
carrier amplitudeVc, and the modulating wave amplitudeVm (combined in the
modulation indexM), as indicated in Eq. (11.2).

Harmonic components of the carrier frequency are in phase in all three
load phases and therefore have a zero sequence nature. With a star-connected
load there are no carrier frequency components in the line voltages.

An approximate method of calculating the harmonic content of a PWM
waveform is to use graphical estimation of the switching angles, as demonstrated
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in Example 11.1. A precise value of the intersection angles between the triangular
carrier wave and the sinusoidal modulating wave can be obtained by equating the
appropriate mathematical expressions. In Fig. 11.10, for example, the modulating
wave is synchronized to the peak value of the carrier wave. The first intersection
p1 between the carriervc (	mt) and modulating wavevmA (	mt) occurs when

V

V
t tm

c
m msinω

π
ω= −1

24
(11.6)

Intersectionp2 occurs when

V

V
t tm

c
m msinω

π
ω= − +3

24
(11.7)

This oscillating series has the general solution, for theNth intersection,

p N
p

tN
N N

m= − − + −+( )( ) ( )2 1 1 1
21

π
ω (11.8)

whereN � 1, 2, 3,…, 24.
Expressions similar to Eqs. (11.6) and (11.7) can be obtained for all of the

intersections, as shown in Example 11.1. Equations of the form Eqs. (11.6)–(11.8)
are transcendental and require being solved by iteration.

11.3 PWM VOLTAGE WAVEFORMS APPLIED TO
A THREE-PHASE INDUCTION MOTOR

The basic differences of structure between the voltage source, step-wave inverter,
such as that of Fig. 10.1, and the voltage source, PWM inverter are given in Fig.
11.11. A step-wave inverter uses a controlled rectifier to give a direct-voltage
source of adjustable level at the input to the dc link. The voltage level of the
inverter output is controlled by the adjustableVdc link voltage, whereas the fre-
quency is controlled independently by the gating of the inverter switches.

A PWM inverter uses a diode bridge rectifier to give a fixed level ofVdc

at the dc link. Both the voltage and frequency of the inverter are simultaneously
controlled by gating of the inverter switches (Fig. 11.11b). The complete assembly
of rectifier stage, dc link, and inverter stage is shown in Fig. 11.12. Since the
output voltage of the diode bridge rectifier is not a pure direct voltage, a filter
inductor is included to absorb the ripple component.

The use of a fixed dc rail voltage means that several independent inverters
can operate simultaneously from the same dc supply. At low power levels the
use of transistor (rather than thyristor) switches permits fast switching action and
fast current and torque transient response, compared with step-wave inverters.
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FIG. 11 Basic forms of voltage source inverter (VSI): (a) step wave (or quasi-square
wave) and (b) PWM [20].

FIG. 12 Main circuit features of PWM VSI with motor load [20].
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Because the harmonic currents are small and can be made of relatively high
order, compared with single-pulse or multiple-pulse modulation, and because
the fundamental component is easily controlled, PWM methods are becoming
increasingly popular for ac motor control. Although the harmonic currents may
be small, however, the harmonic heating losses may be considerable through
increase of the motor resistances due to the skin effect. PWM switching techniques
are better suited to power transistor inverters than to thyristor inverters because
the commutation losses due to the many switchings are then less significant.
Above about 100 Hz the commutation losses with PWM switching become unac-
ceptably large, and stepped-wave techniques are used in ac motor drives.

When PWM voltage waveforms are applied to an induction motor, the
motor torque responds largely to the fundamental frequency component. Motor
current harmonics are usually small and of high harmonic order, depending on
the frequency ratiop.

The harmonics of the PWM applied voltage are often more significant than
those of the consequent motor current. This has the result that the eddy-current
and hysteresis iron losses, which vary directly with flux and with frequency, are
often greater than the copper losses in the windings. The total losses due to
harmonics in a PWM driven motor may exceed those of the comparable step-
wave driven motor. It is a common practice that a PWM driven motor is derated
by an amount of 5–10%.

Torque pulsations in a PWM drive are small in magnitude and are related
to high harmonic frequencies so that they can usually be ignored. The input
current waveform to a dc link-inverter drive is determined mostly by the rectifier
action rather than by the motor operation. This has a wave shape similar to that
of a full-wave, three-phase bridge with passive series resistance–inductance load,
so that the drive operates, at all speeds, at a displacement factor near to the ideal
value of unity.

11.4 WORKED EXAMPLES

Example 11.1 A double-sided triangular carrier wave of heightVc is natu-
ral sampling modulated by a sinusoidal modulating signalvm (	t) � Vm sin 	t,
whereVm� 0.6Vc. The carrier frequency	c is 12 times the modulating frequency
	m. Sketch a waveform of the resultant modulated voltage and calculate its princi-
pal harmonic components and its rms value.

The waveforms are shown in Fig. 11.10. The phase voltagevA (	t) is
symmetrical about�/2 radians and contains only odd harmonics. SincevA (	t)
is antisymmetrical about	t � 0, the Fourier harmonicsan � 0, so that the
fundamental output component is in phase with the modulating voltagevm (	t).

It is necessary to determine the intersection pointsp1 to p6.
Point p1: From Eq. (12.31),p � 12, Vm/Vc � 0.6 so that
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Fourier coefficientsbn are given by
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The distortion factor is

Distortion factor = =
×

=

b
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2 0 626

2 0 547
0 809

.

.
.

Note that the highest value harmonics satisfy ann � p 	 1 relation and that
the low-order harmonics have small values. This enhances the suitability of the
waveform for ac motor speed control.

Example 11.2 The PWM voltage waveformvA (	t) of Fig. 11.10 is gener-
ated by an inverter that uses a modulating frequency of 50 Hz. If the dc supply
is 200 V, calculate the rms current that would flow ifvA (	t) was applied to a
single-phase seriesR-L load in whichR � 10 � andL � 0.01 H.

At the various harmonic frequencies the load impedance is

|Zh| � �R2 � (n	L)2

which gives
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If the harmonic voltages of Example 11.1 are divided by the respective harmonic
impedances above, one obtains the following peak current harmonics:
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This has an r.m.s. value

I
I n= =∑ 2

2
9 27. A

which compares with a fundamental rms current of 11.95/�2 � 8.45 A.
The current distortion factor is therefore 8.45/9.27� 0.912, which is greater

(i.e., better) than the corresponding voltage distortion factor of 0.809.

Example 11.3 The PWM voltage waveformvA (	t) of Fig. 11.10 is ap-
plied to a single-phase seriesR-L circuit with R� 10� andL � 0.01 H. Voltage
vA (	t) has a frequency of 50 Hz and an amplitudeV � 200 V. Deduce the
waveform of the resulting current.

The waveformvA (	t) is reproduced in Fig. 11.13. If a direct voltageV is
applied across a seriesR-L circuit carrying a currentIo, the subsequent rise of
current satisfies the relation

i t
V

R
I

V

R

V

R
It

o
t

o
t( ) / / /ω ε ε ετ τ τ= −( ) + = − −





− − −1

whereIo is the value of the current at the switching instant. In this case � L/
R � 	L/	R � �/10	 so that

i(	t) � 20 � (20 � Io)ε�10/�	t

FIG. 13 PWM waveforms with seriesR-L load, from Example 11.3 [20].
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At switch-onIo � 0 and the current starts from the origin. Consider the current
values at the voltage switching points in Fig. 11.13. These time values are given
in Example 11.1.

At point p1,

ω
ω
t

i t

= =
= − − = −
7 0 122

20 1 0 678 6 44

° radian

A

.

( ) ( . ) .

At point p2,

ω
ω
t

i t

= − =
= − + × =
24 7 0 297

20 20 6 44 0 39 9 8

° ° radian

A

.

( ) ( . ) . .

At point p3,

ω
ω
t

i t

= − =
= − − − − × = −
34 5 24 0 183

20 20 9 8 0 56 3 3

. .

( ) ( . ) . .

° ° radian

A

At point p4,

ω
ω
t

i t

= − =
= − + × =
56 34 5 0 375

20 20 3 3 0 303 12 94

° ° radian

A

. .

( ) ( . ) . .

At point p5,

ω
ω
t

i t

= − =
= − − − − × =
63 56 0 122

20 20 12 94 0 678 2 33

° ° radian

A

.

( ) ( . ) . .

At point p6,

ω
ω
t

i t

= − =
= − − × =
87 63 0 419

20 20 2 33 0 264 15 34

° ° radian

A

.

( ) ( . ) . .

Similarly,

At point p7, 	t � 93� � 87� � 0.105 radian,i(	t) � 5.3 A.
At point p8, 	t � 116� � 93� � 0.401 radian,i(	t) � 15.9 A.
At point p9, 	t � 124.5� � 116� � 0.148 radian,i(	t) � 2.4 A.
At point p10, 	t � 145.5� � 124.5� � 0.367 radian,i(	t) � 14.53 A.
At point p11, 	t � 155� � 145.5� � 0.166 radian,i(	t) � 0.3 A.
At point p12, 	t � 172.5� � 155� � 0.305 radian,i(	t) � 12.5 A.
At point p13, 	t � 187.5� � 172.5� � 0.262 radian,i(	t) � �5.9 A.
At point p14, 	t � 201� � 187.5� � 0.236 radian,i(	t) � 7.78 A.
At point p15, 	t � 220.5� � 201� � 0.34 radian,i(	t) � �10.6 A.

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 11360

At point p16, 	t � 229.5� � 220.5� � 0.157 radian,i(	t) � 1.43 A.

The time variation of the current, shown in Fig. 11.13, is typical of the current
waveforms obtained with PWM voltages applied to inductive and ac motor loads.

Example 11.4 The PWM waveforms of Fig. 11.4 have a height of 240
V and are applied as the phase voltage waveforms of a three-phase, four-pole,
50-Hz, star-connected induction motor. The motor equivalent circuit parameters,
referred toprimary, areR1 � 0.32�, R � 0.18�, X1 � X2 � 1.65�, andXm

� large. Calculate the motor rms current at 1440 rpm. What are the values of
the main harmonic currents?

A four-pole, 50-Hz motor has a synchronous speed

N
f

ps = = × =120 50 120

4
1500 rpm

At a speed of 1440 rpm the per-unit slip is given by Eq. (9.3)

S= × =1500 1440

1500
0 04.

It is seen from Fig. 11.4a that the PWM line voltage waveform of Fig. 11.4 is
the value of the battery (or mean rectified) supply voltageVdc in the circuit of
Fig. 11.3. The rms value of the per-phase applied voltage is therefore, from Eq.
(11.3),

V1 0 9
240

2 2
76 4

rms
V/phase= × =. .

The motor per-phase equivalent circuit is a seriesR-L circuit. At 1440 rpm this
has the input impedance

Z j

j

in1440

° /

= +





+

= + = ∠

0 32
0 18

0 04
1 65

4 82 1 65 5 095 18 9

.
.

.
.

. . . . Ω pphase

Therefore,

Therefore, A/phaseI1
76 4 0

5 095 18 9
15 18 9= ∠

∠
= ∠ − °.

. .
.

With M � 0.9 the dominant harmonics are likely to be those of order 2p 	 1
andp 	 2. In this case, therefore, withp � 9, the harmonics to be considered
aren � 7, 11, 17, and 19. The harmonic slip values are
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S

S

7

11

7 1 0 04

7

6 04

7
0 863

11 1 0 04

11

11 96

11
1 087

= − − = =

= + − = =

( . ) .
.

( . ) .
.

S

S

17

19

17 1 0 04

17

17 96

17
1 056

19 1 0 04

19

18 04

19
0

= + − = =

= − − = =

( . ) .
.

( . ) .
..95

For thenth harmonic currents the relevant input impedances to the respective
equivalent circuit are

Z j j

Z

in

in

7

11

= +





+ × = + =

=

0 32
0 18

0 863
7 1 65 0 53 11 55 11 56.

.

.
. . . . Ω

00 32
0 18

1 087
11 1 65 0 486 18 15 18 16.

.

.
. . . .+





+ × = + =j j Ω

Z j j

Z

in

in

17

19

= +





+ × = + =0 32
0 18

1 056
17 1 65 0 291 28 1 28 2.

.

.
. . . . Ω

== +





+ × = + =0 32
0 18

0 949
19 1 65 0 51 31 35 31 35.

.

.
. . . .j j Ω

The 7, 11, 17, and 19 order harmonic voltage levels have to be deduced from
Fig. 11.5. ForM � 0.9 the 2p 	 1 andp 	 2 levels have the value 0.26 of the
peak fundamental value. TheM � 1 value of the r.m.s. component of the funda-
mental phase voltage, from Eq. (11.3), is

V1
240

2 2
84 86

rms
V/phase= = .

Therefore, the rms harmonic voltage values

V7 � V11 � V17 � V19 � 0.26� 84.86� 22 V/Phase

The appropriate rms harmonic phase currents are

I I

I I

7 17

11 19

22 1

11 56
1 91

22 1

28 2
0 78

22 1

18 16
1 22

= = = =

= =

.

.
.

.

.
.

.

.
.

A A

A == =22 1

3 135
0 7

.

.
. A

The total rms current is obtained by the customary square-law summation
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I I I I I I

I

rms

rms

= + + + + +

= + + +

1
2

7
2

11
2

17
2

19
2

2 2 2 215 1 91 1 22 0

…

( . ) ( . ) ( .778 0 7

225 3 65 1 49 0 6 0 49

231 23

231 23 15

2 2

2

) ( . )

. . . .

.

.

+
= + + + +

=

= =

A

rmsI ..25 A

which is about 2% greater than the fundamental value.

PROBLEMS

11.1 A single-sided triangluar carrier wave of peak heightVc contains six
pulses per half cycle and is modulated by a sine wave,vm (	t) �
Vm sin 	t, synchronized to the origin of a triangular pulse. Estimate,
graphically, the values of	t at which intersections occur betweenvc

(	ct) and vm (	t) when Vm � Vc. Use these to calculate values of
the harmonics of the modulated wave up ton � 21 and thereby
calculate the rms value.

11.2 The modulated voltage waveform described in Problem 11.1 is applied to
a seriesR-L load in whichR� 25� andXL � 50� at 50 Hz. If the constant
height of the PWM voltage wave is 400 V, calculate the resulting current
harmonics up ton � 21. Calculate the resultant rms current. Compare the
value of the current distortion factor with the voltage distortion factor.

11.3 Calculate the power dissipation in theR-L series circuit of Problem 11.2.
Hence calculate the operating power factor.

11.4 The PWM voltage waveformvo (	t) if Fig. 11.2 is applied to the seriesR-
L load,R� 25� andXL � 50� at 50 Hz. IfV � 250 V andf � 50 Hz,
reduce the waveform of the resulting current.

11.5 The PWM waveformvo (	t) of Fig. 11.2 has a heightV � 240 V
and is applied as the phase voltage waveform of a three-phase, four-
pole, 50 Hz, star-connected induction motor. The motor equivalent
circuit parameters, referred to primary turns, areR1 � 0.32 �, R2

� 0.18 �, X1 � X2 � 1.65 �, Xm � large. Calculate the motor
rms current at 1440 rpm. What are the values of the main harmonic
currents?

11.6 For the induction motor of Problem 11.5 calculate the input power and
hence the power factor for operation at 1440 rpm.
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11.7 If only the fundamental current component results in useful torque pro-
duction, calculate the efficiency of operation for the motor of Problem
11.5 at 1440 rpm. (a) neglecting core losses and friction and windage,
(b) assuming that the core losses plus friction and windage are equal to
the copper losses.

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



12

Phase-Controlled Cycloconverters

12.1 INTRODUCTION

A cycloconverter is a static frequency changer that converts an ac supply of fixed
input frequency to an ac output of adjustable but lower frequency. The converter
consists of an array of back-to-back or inverse-parallel connected switches, usu-
ally silicon controlled rectifiers (SCRs). By the controlled opening and closing
of the switches it is possible to fabricate output voltage waveforms having a
fundamental component of the desired output frequency.

Cycloconverters fall into two broad categories:

1. Phase-controlled cycloconverters, in which the firing angle is con-
trolled by adjustable gate pulses as in controlled rectifier circuits such
as those of Chapters 5 and 7. These are discussed in this present chapter.

2. Envelope cycloconverters, in which the switches remain fully on like
diodes and conduct for consecutive half cycles. This form of cycloconv-
erter is discussed in the following chapter.

All cycloconverters are line commutated, like controlled rectifiers. It is because of
the necessity of producing natural commutation of the current between successive
switchings that the realizable output frequency is lower than the input frequency.
Theoretically the fundamental component of the highly distorted output voltage
waveform is likely to be notionally between 1/3 and 2/3 of the input frequency.
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For phase-controlled cycloconverters with 60-Hz supply the practical maximum
output frequency is likely to be about 36 Hz for three-phase (six pulse) bridges
and 18 Hz for single-way, three-phase (three pulse) rectifiers.

In addition to severe output voltage distortion the input current to a cyclo-
converter is usually significantly distorted. Also, the fundamental component of
the input current lags the supply voltage, resulting in poor input power factor,
irrespective of whether the load current is lagging, leading, or of unity power
factor. Very often both input and output filters may be needed.

It is possible to implement a cycloconverter in several different forms. The
single-phase to single-phase version (Fig. 12.1a) will be used to illustrate the
principle. Practical uses of the cycloconverter include the speed control of adjust-
able frequency ac induction motors and in aircraft variable-speed, constant-fre-
quency (VSCF) supply systems.

A phase-controlled cycloconverter has exactly the same circuit topology
as a dual converter. For a dual converter the firing angles of the converter switches
are constant in time, as in bridge rectifier circuits, to result in rectifier operation
with dc output. On the other hand, cycloconverter operation utilizes circuits in
which the switch firing-angles are functions of time and the output is ac.

12.2 SINGLE-PHASE, PHASE-CONTROLLED
DUAL CONVERTER

12.2.1 Circulating current free mode

The single-phase, full-wave bridge rectifier of Fig. 3.21 was discussed in Exam-
ples 3.8 and 3.9. Two such bridges can be connected back to back, as shown in
Fig. 12.2, to form a single-phase dual converter. Each bridge is connected to the
same ac source but no thyristor firing overlap can be permitted between them as
this would short-circuit the supply. By the gating of diagonal pairs of switches
in the positive (P) group, a positive load voltage is developed, as in Fig. 3.19,
with the polarity indicated in Fig. 12.2. To establish negative load voltage (not
possible with a single bridge), it is necessary to deploy the negative (N) group
of switches in diagonal pairs.

In an ideal dual converter the firing angles of the two converters are con-
trolled so that their dc output voltages are exactly equal. If the positive bridge
is gated at an angle�P to produce a rectified output voltageVdc, then the negative
bridge is simultaneously gated at�N to also produce the same output voltageVdc,
of consistent polarity.

Thus the two bridges are delivering identical output dc voltages at any
instant and the two firing angles must satisfy the relation

�p � �N � � (12.1)
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FIG. 1 Basic forms of cycloconverters: (a) one phase to one phase, (b) three phase to
one phase, and (c) three phase to three phase.
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FIG. 2 Single-phase, full-wave dual converter in a noncirculating current connection.

Since the two bridges are acting alternately only one bridge carries load current at
any given time. There is then no current circulating between the two bridges, and
the mode of operation is usually calledcirculating current freeoperation ornoncir-
culating currentoperation. The average value of the rectified load voltage was de-
veloped in Sec. 3.2.2. For the voltage waveform of Fig. 3.19, which applies here,

Εav
m

p
E

=
2

π
αcos (12.2)

whereEm is the peak value of the single-phase supply voltage.
The actions of the two bridges are illustrated in Fig. 12.3, which shows the

load voltage and current for a highly inductive load, assuming sinusoidal load
current (i.e., neglecting the load current ripple). While theP bridge is causing
both positive load voltage and current, it is in rectifying mode. But with inductive
load the load current continues positive after the load voltage has reversed. For
this interval theP bridge is inverting. While the load voltage and current are both
negative, theN bridge is rectifying. When the load current continues negative
after the voltage has again become positive, theN bridge is inverting.

Figure 12.4 describes the complementary nature of theP andN group firing
angles for a thyristor switch dual converter. The interval 0� �p � 90�, 180� �
�N � 90� represents rectification by theP bridge and inversion by theN bridge.
Conversely, the interval 90� � �p � 180� and 90� � �N � 0 represents rectifica-
tion by theN group and inversion by theP group. In practise, allowance has to
be made for supply system reactance, which causes commutation overlap, and
for finite thyristor turn-off time. The combined effect is to restrict the converter
delay angle to less than 180�.

In order to maintain the circulating current free condition, the gating pulses
to the thyristors must be controlled so that only the bridge carrying current is
kept in conduction. The temporarily idle converter must be blocked, either by
removing its gating pulses altogether or by retarding the pulses away from the
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FIG. 3 Load voltage and current for a single-phase dual converter inductive load, 0�
� � 90�.

condition of Eq. (12.1). Even then some severe control problems arise when the
load current is discontinuous (e.g., with resistive loads).

Example voltage waveforms are given in Fig. 12.5 for the case of�p �
60�. The firing pattern chosen is such as to give an ac output voltagevo of double
wavelength or one-half frequency of the input. If the supply frequency is 60 Hz,
then the output voltage has a fundamental component of 30 Hz, plus higher
harmonics. Because this switching produces an ac output, this is an example of
the dual converter used as a cycloconverter frequency changer.

12.2.1.1 RMS Load Voltage
The rms valueV of the output voltage waveformvo (	t) in Fig. 12.5 is equal to
the rms value of any of the half sinusoid sections. This is shown, in Example
12.1, to be

V Vm p p= −( ) +





1

2
2

π
π α αsin (12.3)

12.2.1.2 Fundamental Load Voltage
The peak fundamental component of the load voltageV1 is expressed in terms
of the a andb terms of its Fourier definition, consistent with the Appendix. If
there arem half cycles of input in each half period of the output, then
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FIG. 4 Relationship of output dc voltage to thyristor firing angles for a dual converter.

V
V

m
t

t

m
d t t

t
b p p

m
o

o
o o

o
1

2
= 











 +

+
∫ ∫π

ω
ω

ω ω
ω π

α

π

α

π
sin sin sin sin

mm
d t

t
t m

m
d t

V

m

o

o
o

o

m

n

p









+
+ −













=

∫

=

ω

ω
ω π

ω

π

α

π
sin sin

( )1

11 1

1

1

m

p
pm

m

n

m

n

m

m

m

∑ −
− −

+ −



























+
+

sin sin
( )

s

π α
α π

iin sin
( )n

m

n

mp
pπ α

α π
+ −

+ −



























1

(12.4)

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 12370

FIG. 5 Voltage waveforms of a single-phase dual converter with resistive load.

Similarly,
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(12.5)

The total peak fundamental load voltage is then given by

V V V
a b1 1
2

1
2= + (12.6)

Higher harmonic components can be calculated by dividing the parameterm
inside the square brackets of Eqs. (12.4) and (12.5) by the appropriate order of
harmonic.

The single-phase, center-tapped or push–pull circuit of Fig. 12.6 performs
the same circuit function as that of Fig. 12.2. It uses only one-half as many
thyristor switches, but they must have twice the voltage rating. Figure 12.6a
demonstrates an essential feature of cycloconverters which is that they use in-
verse-parallel or back-to-back combinations of switches. The circuit of Fig. 12.6b
is electrically identical to that of Fig. 12.6a but is topologically rearranged to
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FIG. 6 Single-phase dual converter with center-tapped supply (a) demonstrating the in-
verse-parallel feature, (b) demonstrating the positive and negative group topology, and
(c) generalizing the circuit for a circulating current free cycloconverter.
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show the positive (P) and negative (N) switch groups, also identified in Fig. 12.2.
A more general representation of the two converter groups constituting a single-
phase dual converter is shown in Fig. 12.6(c).

12.2.2 Single-Phase Dual Converter in the
Circulating Current Mode

In the dual bridge converter of Fig. 12.2 it is possible to exactly match the two
dc voltages across the load by observing the firing restriction of Eq. (12.1).
But the rectified voltages are not purely dc. In addition to the predominant dc
components, they also contain ‘‘ripple’’ voltages that consist of ac harmonic
components, as described in Sec. 4.3. Although the dc components from the two
bridges can be precisely matched, the ac ripple voltages are not equal instanta-
neously and cannot be matched by a direct circuit connection.

For satisfactory circuit operation it is necessary to absorb the ripple voltage
and thereby to account for differences between the instantaneous voltages of the
two bridges. This can be realized by the connection of a current limiting reactor
between the dc terminals of the two bridges, as in Fig. 12.7. Current can now
circulate between the two bridge circuits without passing through the load, and
the ripple voltages fall across the reactor coils, not across the load. In the presence
of such interphase or intergroup reactors, the switches from both bridges can
operate, and current can flow simultaneously. If the load current remains continu-
ous, the average (dc) value of the load voltage can be smoothly varied from
positive maximum to negative maximum.

Any single-phase arrangement is essentially of a two-pulse nature. Every
control cycle involves two firing pulses in the circuit configuration, whether it

FIG. 7 Single-phase, full-wave dual converter with interphase reactor to facilitate circu-
lating current operation.
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is the dual-converter bridge or the center-tapped, midpoint connection. With two-
pulse control the ripple voltage level of a single-phase cycloconverter is relatively
large, requiring the necessity of large smoothing reactors.

In addition, the distorted input current to a single-phase dual converter
contains subharmonics of the supply frequency. With large rated loads this may
not be acceptable to the electricity supply authority.

For these reasons single-phase supplied cycloconverters are not greatly
used. More versatile control is found to be available via the use of multiphase
supplies that, in effect, increase the pulse number. The ideal situation, of sinusoi-
dal output current without filtering, would require an infinitely large pulse
number.

12.2.3 Examples on Single-Phase Converters

Example 12.1 Show that the rms valueV of a waveform of the form�o

(	t) in Fig. 12.5 is given by Eq. (12.3).
The rms value of a function is independent of polarity and is equal to the

rms value of the smallest repetitive section. In Fig. 12.5

v t V to m
p

( ) sinω ω
π

α
=

but, in general,

V v t d t
p

o
2 21= ∫π

ω ω
α

π
( )

Substituting�o (	t) into the rms equation gives

V V t d t

V t
d t

p

p

m

m

2 2 2

2

1

1 2

2

=

= −

∫

∫

π
ω ω

π
ω ω

α

π

α

π

sin ( )

cos

= −















= − − +

V
t

t
d t

V

m

m
p

p

p

2

2

2

2

2

2

2

2

2

π
ω ω ω

π
π α π α

α

π
sin

sin sin

22

2

1

2
2

2











= − +





Vm
p pπ

π α α( ) sin

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 12374

Taking the square roots of each side

V Vm p p= − +





1

2

1

2
2

π
π α α( ) sin

Example 12.2 When operating as a cycloconverter a single-phase, circu-
lating current free dual converter with input 110 V, 60 Hz is used to produce an
output voltage waveform of the general form (Fig. 12.5). The output frequency
is one-third of the input frequency, and�p � 45�. Calculate the amplitude of
the fundamental current.

From Eq. (12.4), withm � 3,
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The sections of these equations are evaluated in Table 12.1
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The rms value of the fundamental load voltage is therefore
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TABLE 12.1
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12.3 THREE-PHASE TO SINGLE-PHASE
CYCLOCONVERTERS

12.3.1 Three-Phase, Half-Wave (Three-Pulse)
Cycloconverter Circuits

12.3.1.1 Circulating Current Free Circuit

The three-phase, four-wire, half-wave controlled rectifier circuit was extensively
described in Chapter 5.

In general the average output voltage of ap pulse rectifier is given by

E E
p

pav m= sin /

/
cos

π
π

α( )
(12.7)

For the three-phase, four-wire, half-wave circuitp � 3 and

E Eav m= 3 3

2π
αcos (12.8)

whereEm is the peak value of the supply voltage per phase. For a single-phase
supplyp � 2 and Eq. (12.7) reduces to Eq. (12.2).

More comprehensive control of the load voltage waveform can be obtained
by a corresponding dual converter of the type shown in Fig. 12.8. The positive
(P) and negative (N) bridges must operate alternately without overlap in the
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FIG. 8 Three-phase-to-single-phase, half-wave (three-pulse) cycloconverter (a) demon-
strating the inverse-parallel feature, (b) demonstrating the positive (P) and negative (N)
groups, and (c) showing the midpoint circulating current connection.
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electrically identical circuits of Fig. 12.8a and b to result in circulating current
free operation. The output is then no longer restricted to the function of rectifica-
tion with unidirectional output current. Load current can flow in both directions
so that ac operation is realizable and regeneration action is possible.

The most important feature of dual converter ac operation is that the firing
angles of the converter switches can be time varied, cycle by cycle. If the time-
varying firing angle is described as�(t), then the output voltage (no longer dc)
has a peak amplitudeVo given by

V E to m= 3 3

2π
αcos ( ) (12.9)

When the firing angle�(t) is time varied in a periodic manner, the effect is to
produce time-phase modulation, usually just calledphase modulation. This per-
mits the output (modulated) voltage of the converter to be controlled in both
amplitude and frequency independently. The supply frequency acts as a carrier
frequency, and the output frequency	o is also the modulating frequency.

A form of modulating function commonly used is

�(t) � 	 cos�1 (M cos	0t) � 	 cos�1 (M cos 2�f0t) (12.10a)

or, since, cos�1x � �/2 � sin�1x, it may be written in the form

�(t) � 	 sin�1 (M sin 	0t) � 	 sin�1 (M sin 2�f0t) (12.10b)

The inverse cosine function limits the range of�(t) and can be taken to give 90�
� �(t) � 180�, necessary for rectifier operation. The same technique can be
employed by using the inverse cosine of a sine function. In Eqs. (12.10) the
parameterM is the modulation ratio (ratio peak modulating voltage/peak carrier
voltage) described in Chapter 11, andf0 is the desired output frequency.

For example, to convert a three-phase supply into a single-phase 20-Hz
output, it is necessary to use the modulating function (i.e., firing angle)

�(t) � 	 cos�1 (M cos 40�t) (12.11a)

or

�(t) � 	 sin�1 (M sin 40�t) (12.11b)

Equations (12.11) describe a pair of triangular modulating functions, attributable,
respectively, to theP andN bridges of Fig. 12.8b, with periodicity 0.50 s. The
output voltage waveform Fig. 12.9, withM � 1, is highly distorted, but its
fundamental (20Hz) component is clearly discernible.

It is inherent in cycloconverter operation that the output voltage, made up
of sections of sine waves, is highly distorted. The amount of distortion increases
as the ratio output frequency/input frequency (i.e., modulating frequency/carrier
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FIG. 9 Normalized output voltage waveform (�/Em) of a three-phase to single-phase
(three-pulse) circulating current free cycloconverter with inductive load.M � 1, fin �
60 Hz, fo � 20 Hz (fundamental) [32].

frequency) increases. In terms of the PWM frequency ratio, defined in Eq. (8.15),
it can be said that minimum output voltage distortion requires cycloconversion
using the maximum possible value of frequency ratiofin/fo or 	in/	o. A higher
value of frequency ratio	in/	o can be realized by increase of the converter circuit
pulse number. As in single-phase-to-single-phase conversion, control problems
arise when the load current is discontinuous (e.g., with resistive load).

12.3.1.2 Circulating current circuit

To alleviate the control problems arising with discontinuous load current an inter-
group reactor may be connected, as in Fig. 12.8c. The firing angles of the two
converters are regulated so that both bridges conduct simultaneously and a con-
trolled amount of currentIc is allowed to circulate between them unidirectionally.
The ideal cosine relationship of Fig. 12.4 is preserved so that the output average
voltages of the two bridges are identical, satisfying Eq. (12.1). Although the
reactor absorbs the ripple voltages, as described in Sec. 12.2.2, its size and cost
represent significant disadvantages. Figure 12.10 shows waveforms for the no-
load operation of the circuit of Fig. 12.8c at a particular setting of firing angles.
The reactor voltage (Fig. 12.10d) has a time-average value of zero, and the circu-
lating current Fig. 12.10e is unidirectional. With a highly inductive load imped-
ance both of the bridge circuits deliver (ideally) sinusoidal currents with zero
offsets. The dc components (i.e., zero offsets) then cancel in the load to give a
substantially sinusoidal current of the modulating frequency, as shown by the
dotted line of Fig. 12.10c.
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FIG. 10 Voltage waveforms for three-phase to single-phase circulating current cyclo-
converter. No load.M � 0.87,p � 1:4,�p � 30�, �N � 150�: (a) P group voltages, (b)
N group voltages, (c) total load voltage, (d) reactor voltage, and (e) circulating current
[3].
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12.3.2 Three-Phase, Full-Wave (Six-pulse)
Cycloconverter Circuits

Two three-phase, full-wave controlled bridge rectifier circuits of the form of Fig.
7.1 can be used to form a dual converter, shown in Fig. 12.11. The two separate
P andN converters are shown in Fig. 12.11a and redrawn to show the back-to-
back nature of the connection in Fig. 12.11b, representing circulating current free
operation. Figure 12.11b is seen to be the full-wave version of the half-wave
circuit of Fig. 12.8a. Similarly, the full-wave circulating current circuit of Fig.
12.11c is the full-wave version of the half-wave circuit of Fig. 12.8c.

For the three-phase, full-wave converterp � 6, and the peak load voltage
may be inferred from Eq. (12.4) to be

V Eo m= 3 3

π
αcos (12.12)

This is seen to be twice the value of the half-wave, three-pulse converter given
in Eq. (12.5).

12.3.3 Examples on Three-Phase to Single-Phase
Converters

Example 12.3 A three-phase-to-single-phase, three-pulse cycloconverter
delivers power to a load rated at 200 V, 60 A, with power factor 0.87 lagging.
Estimate the necessary input voltage and power factor.

From Eq. (12.9) the peak value of the required input voltage is given by

200 2
3 3

2
=

π
αE tm cos ( )

To accommodate the worst case, when cos� � 1,

Em = × × =200 2 2

3 3
342

π
V

so that the rms supply voltageE is given by

E = =342

2
242 V/phase

The rms value of the specified single-phase load current is 60 A. If this is shared
equally between the three input phases, each input line (assuming sinusoidal
operation) has an rms current

I
I

in
L= = =
3

60

3
34 64. A/phase

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Phase Controlled Cycloconverters 381

FIG. 11 Three-phase-to-single-phase, full-wave (six-pulse) cycloconverter: (a) double-
bridge, noncirculating current configuration, (b) inverse-parallel topological form of (a),
and (c) double-bridge, circulating current configuration.
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The load power is seen to be

PL � 200 � 60 � 0.87� 10.44 kW

Assuming that the input power is shared equally by the three phases and is equal
to the output power,

P
P

in
L= = =
3

10 44

3
3 48

.
. kW/phase

The input power factor is then

PF
P

EI
in

in

= =
×

=3480

242 24 64
0 415

.
. lagging

Note that this value of input power factor is the maximum possible value, with
� � 0. If � is increased, the power factor will decrease.

Example 12.4 A three-phase-to-single-phase, full-wave cycloconverter of
the type shown in Fig. 12.11a supplies a seriesR-L load, whereR � 1.2 � and
	oL � 1.6 � at the specified output of 110 V (rms) at frequency 4 Hz. If the
input is 220-V line, 60 Hz, calculate (1) the necessary firing angle, (2) load
current, (3) load power, (4) input current, (5) thyristor current, and (6) input
power factor.

The specified output voltage wave is

�o (	ot) � �2Vo(rms) sin 	ot

� �2 � 110 sin 8�t

But the peak load voltage�2Vo(rms) is defined in terms of Eq. (12.12), where
Em is the peak phase voltage

V Eo m= 3 3

π
αcos

1. Therefore,

2 110
3 3 220

3
× = × ×

π
αcos

giving cos� � 0.74 or� � 42.2�.
2. The load impedance to currents of 4-Hz frequency is

Z � �1.22 � 1.62 � 2 �

The rms load current is thereforeIo � 110/2� 55 A at a load power
factor
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PF
R

ZL = = =1 2

2
0 6

.
. lagging

3. The load power is therefore

PL � Vo(rms)Io cos�o � 110 � 55 � 0.6 � 3630 W

4. With symmetrical operation the load current is supplied equally by the
three input currents. Each rms input current is therefore

I
I

in
o= = =
3

55

3
31 76. A

5. If each presumed sinusoidal line rms current is divided equally between
two thyristors, in Fig. 12.11b, then

I
I

thyr
in= = =
2

31 76

2
22 5

.
. A (rms)

6. It is assumed that the converter is lossless so that the output power is
equal to the input power, giving

Pin � PL � 3630 W

The input power factor is

PF
P

EIin
in

in

= =
×( )×

=
3

3630

3 220 3 31 76
0 3

/ .
. lagging

The input power factor in this case, is only one-half the value of the
load power factor.

12.4 THREE-PHASE TO THREE-PHASE
CYCLOCONVERTER

12.4.1 Load Voltage Waveforms of the Half-Wave
(Three-Pulse) Cycloconverter

The three-phase, four-wire cycloconverter circuits of Fig. 12.12 are of three-pulse
nature and use 18 semiconductor switches. They each represent three circuits of
the single-phase forms of Fig. 12.8. With balanced three-phase loads the neutral
connection can be omitted. Most practical cycloconverter circuits consist of combi-
nations of the basic three-pulse group, connected so as to realize six-pulse or 12-
pulse performance. The standard method of determining the switch firing pattern
is called thecosine crossing methodand is similar to the principle described in
Chapters 8 and 11 for pulse-width-modulated rectifiers and inverters. Detailed
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mathematical derivations of the output voltage waveform and the input current
waveform for multipulse cycloconverters are very lengthy and complex. The inter-
ested reader is referred to the excellent and authoritative standard text by Pelly [3].

If the load current is continuous and the modulating function of Eq. (12.10b)
is used, then

sin ( ) sinα ωt M to= (12.13)

FIG. 12 Three-phase-to-three-phase, half-wave (3 pulse) cycloconverter circuits: (a) cir-
culating current free and (b) circulating current connection.
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and this implies the cosine crossing method of switch firing control. For the three-
pulse circulating current circuit of Fig. 12.12b it is found that the output voltage
may be written [3]

v
E

M t A B C Do
m

o
p

= + +( )










=

∞

∑3 3

2

1

2 1π
ωsin [ ][ ] [ ][ ]

(12.14)

where

[ ]
( )

( )
( ) ( )

A
a

p

a

n

n p
p n p n=
− −

+
=

= − +

∑ − −[ ] − +[ ]

0

2 3 2 1 1
3 2 1 1 2 3 2 1 1 2

3 2 1 1 33 2 1 1

3 2 1 2 3 2 1

( )

[ ] sin ( ) sin ( )

p

B p t n t pin o in

− +

= − +[ ] + −ω ω ω tt n to−[ ]2 ω

( )

[ ] ( )( ) ( )( )C
a

p

a

pn

n p
p n p n=

−
+

+=

+ = +

∑ − + + +

0

2 1 6 1
6 1 2 1 6 1 2 1

6 1 6 1

= + +[ ] − − +[ ][ ] sin ( ) sin ( )D p t n t p t n tin o in o6 2 1 6 2 1ω ω ω ω

( )
The first term in Eq. (12.14) is the term representing the desired fundamental
output frequency	o. In Fig. 12.9, for example, this would be the 20-Hz compo-
nent, shown dotted. When the modulation indexM is unity in Eq. (12.14) the
higher harmonic terms in the summation section include values

sin(3	int 	 2	ot), sin(3	int 	 4	ot), sin(6	int 	 5	ot), etc.

For the three-pulse circulating current free circuit, (Fig. 12.12a), all of the terms
of Eq. (12.14) are present plus a further series of higher harmonic terms. The
harmonic component frequenciesfh expressed as multiples of the input frequency
fin may be written in terms of output frequencyfo and integersp andn for two
separate harmonic families

f

f
p n

f

f
h

in

o

in

= − ±3 2 1 2( )
(12.15a)

and

f

f
p n

f

f
h

in

o

in

= ± +6 2 1( )
(12.15b)

where 1� p � � and 0� n � �.
With p � 1,n � 0 in Eq. (12.15b), for example, it is seen that the harmonic

frequencies arefh � 5fo and fh � 7fo. The lowest order harmonic frequency is
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fh � 3fo whenp � 1 andn � 1 in Eq. (12.15b) andp � 1 andn � 0 in Eq.
(12.15a).

12.4.2 Load Voltage Waveforms of the Full-Wave
(Six-Pulse) Cycloconverter

Asix-pulse cycloconvertercanbe implemented bydoubling thenumber ofswitches
from 18 to 36. Each load phase current is shared equally between two switch groups,
resulting in symmetrical three-phase operation. The midpoint or push–pull center-
tapped circuit of Fig. 12.13 facilitates circulating current operation. This requires
a double-star supply of two separate secondary windings on the input transformer,
feeding the six input terminals in two separate three-phase groups.

The output voltages�0 with six-pulse circulating current operation may be
written [3]

v k
E

M t A Bo
m

o
p n

n p

= +










=

∞

=

+ = +

∑ ∑3 3

2

1

2 1 0

2 1 6 1

π
ωsin [ ][ ]

(12.16)

where

[ ]

[ ] sin

( )( ) ( )( )A
a

p

a

p

B p

p n p n

i

=
−

+
+













=

− + + +6 1 2 1 6 1 2 1

6 1 6 1

6 ω nn o in ot n t p t n t+ +[ ]− − +[ ]( ) sin ( )2 1 6 2 1ω ω ω

k = 1 for the six-pulse midpoint circuit
k = 2 for the six-pulse bridge circuit

If a three-phase-to-three-phase bridge connection (Fig. 12.14) is used, only one
input transformer secondary winding is required. For this noncirculating current
circuit with continuous load current, the output voltage for phase 1 in Fig. 12.14
is given in Fig. 12.15 for three different types of load impedance. The output
voltage expression then combines all of the terms of Eq. (12.16) plus a large
family of additional higher harmonic terms. The large number of unwanted har-
monic terms typically includes sum and difference combinations of the input
frequency	in and output frequency	o, such as 3	in 	 2	o, 6	in 	 5	o etc.
As in three-pulse operation, the load voltage with the circulating current free
mode contains harmonics of orders

f

f
p n

f

f
h

in

o

in

= +6 2 1( )
(12.17)

where 1� p � � and 0� n � �.
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FIG. 13 Three-phase, full-wave (six pulse) center-tapped, circulating current cycloconv-
erter.

The 3(2p � 1) 	 2n(fo / fin) group harmonics associated with three-pulse
operation in Eq. (12.15a) are not present in six-pulse operation. For 12-pulse
operation in the circulating current free mode (not considered in this text) the
frequencies of the harmonic components of the output voltage are found to be

f

f
p n

f

f
h

in

o

in

= ± +12 2 1( )
(12.18)
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FIG. 14 Three-phase (six pulse) circulating current free bridge cycloconverter [11].

12.4.3 Input Current, Power, and Displacement
Factor

Expressions for the input current waveforms to both three-pulse and six-pulse
cycloconverters are, if anything, even more lengthy and complex than correspond-
ing expressions for the load voltage waveforms. Theoretical waveforms are shown
in Fig. 12.16 for the input currents with three different loads in the circulating
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FIG. 15 Load phase voltage for three-phase-to-three-phase (six-pulse) bridge cycloconv-
erter.M � 1, f0 / fin � 1/3. (a)R load, cos� � 1. (b) R-L load, cos� � 0.5 lag. (c)R-
C load, cos� � 0.5 lead.

current free mode of operation. With resistive load the output displacement angle
�o is zero, and the output displacement factor cos�o is unity. But the fundamental
component of the input current (shown dotted) lags its phase voltage by about
32� giving an input displacement factor cos�in � 0.85 lagging. For both the
inductive and capacitive loads shown (Fig. 12.16b and c), the load impedance
displacement factor�o � 60�. In both cases the fundamental component of the
input current lags its respective phase voltage by more than 60�, so that cos�in

� cos�o. In other words, the power factor of the total burden of cycloconverter
plus load is lower (i.e., worse) than that of the load alone.
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FIG. 16 Input phase voltageV and currenti for three-phase-to-three-phase (six-pulse)
bridge cycloconverter.M � 1, fo/fin � 1/3. (a)R load, cos� � 1. (b) R-L load, cos� �
0.5 lag. (c)R-C load, cos� � 0.5 lead [3].

12.4.4 Components of the Fundamental Input
Current

12.4.4.1 In-Phase Component (Ip)

In all cases the fundamental input current lags the phase supply voltage. The rms
in-phase component of the fundamental currentIp, can be can be expressed in
terms of the rms output currentIo by [3]

I qsM Ip o o= 3

2π
φcos (12.19)

where
q � number of output phases
s � number of three-pulse switch groups in series per phase (integer)
M � modulation ratio (peak modulating voltage/Em)
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�o � output (load) displacement angle
Io � total rms output (load) current (noting that this current is usually

substantially sinusoidal)
For the three-phase-to-three-phase systems,q � 3 so that

I sM Ip o o= 3 3

2π
φcos (12.20)

For the six-pulse circuits of Fig. 12.13 and Fig. 12.14, parameters � 1 or 2 in
Eq. (12.20).

12.4.4.2 Quadrature Lagging Component (IQ)

Due both to any reactive load impedance and to the switching nature of the
cycloconverter, the input current always lags its respective phase voltage. This
corresponds with the description of power factor for the controlled, three-phase
bridge rectifier in Sec. 7.1.3. For three-phase-to-three-phase systems the rms value
of the quadrature component of the fundamental input current may be written
[3]

I s I
a n

n nQ o
n

on= × ×
−

− +=

∞

∑2
3 3 2

2 1 2 12
0

12

π

φcos

( )( ) (12.21)

Parametera12n
in Eq. (12.21) represents the values of an infinite series of negative

harmonic terms defined by
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−cos ( )sin sin (cos )p M t n t d to o o

Some values of the coefficientsa12n
are given in Example 12.6. For instance,

with M � 1 andn � 0, it is found thata1o � 0.637. In general, the ratio of the
in-phase and quadrature componentsIp/IQ is independent of the pulse number,
the number of output phases, and the frequency ratiofo/fin. These proportion
values depend only on the load displacement factor cos�o and the output voltage
ratio M.
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The rms value of the total fundamental input current component is therefore

I I Iin p Q1
2 2= + (12.23)

The input displacement factor is, correspondingly,

cosφin
p

in

p

p Q

I

I

I

I I
= =

+1 2 2 (12.24)

The total rms input currentIin contains the two componentsIp and IQ of the
fundamental harmonic plus the summation of the higher harmonic termsIh:

I I I Iin p Q
h

h
2 2 2

2

2= + +
=

∞

∑ (12.25)

With a three-phase output the rms input currentIin does not have any fixed
analytical relationship with the rms output currentIo.

12.4.5 Distortion Factor of the Input Current
Waveform

The distortion factor defined Eq. (2.26) and used throughout this book is equally
true for cycloconverters.

=
I

I
in

in

1Current distortion factor 
(12.26)

With a balanced three-phase load the input current distortion is determined largely
by the circuit switching action rather than by load reactance effects. Input currents
with low distortion are available ifp � 6.

12.4.6 Input Power (Pin)

It is a basic property of ac electric circuits that real power in watts can only be
transferred by the combination of voltage and current components of the same
frequency. Since the supply voltage is of single frequency, it is possible to transfer
power from the supply to the converter only via the fundamental (supply fre-
quency) component of current. For a three-phase supply

P EI EIin in I
E

in inin
= ∠ =3 31 11

cos cosφ (12.27)

whereE is the rms phase voltage. But the in-phase component of the fundamental
currentIp is given by
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I Ip in in= 1 cosφ (12.28)

Combining Eqs. (12.27) and (12.28) gives

P EIin p= 3 (12.29)

If Eq. (12.29) is now combined with Eq. (12.20), it is seen that

P sM EIin o o= 3
3 3

2π
φcos (12.30)

If the switching action of the cycloconverter thyristors causes negligible loss,
then the output powerPo equals the input power:

Po � Pin (12.31)

An alternative interpretation is to assume sinusoidal output current so that

Po � 3EoIo cos�o (12.32)

The rms value of the desired output frequency voltageEo may be therefore ob-
tained by equating Eqs. (12.30) and (12.32)

E sM Eo = 3 3

2π (12.33)

12.4.7 Power Factor

The power factor is given by

PF
P

S

P

EI
in

in

in

in

= =
(12.34)

Combining Eqs. (12.25)(12.30), and (12.34) gives a very cumbersome expression
that is not helpful in calculating the power factor and is not reproduced here.

12.4.8 Worked Examples

Example 12.7 A three-phase-to-three-phase circulating current free, six-
pulse cycloconverter is connected as a bridge, as in Fig. 12.14. The input supply
is rated at 440 V, 60 Hz. The (presumed sinusoidal) output current is 100 A
when the modulation ratioM is unity. Calculate the load power and the input
displacement factor when the phase angle of the balanced load impedance is
�o � 0�, representing resistive load.

In the circuit of Fig. 12.14 there are effectively two three-pulse switch
groups in series per phase so thats � 2 in Eqs. (12.19) and (12.20). WithM �
1, the rms in-phase componentIp of the fundamental supply current is
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I p o o= × × × =2
3 3

2
100 165 4

π
φ φcos . cos

For �o � 0, cos�o � 1.0 andIp � 165.4 A. The rms quadrature component of
the fundamental currentIQ is given in Eq. (12.21) with the summation term
evaluated in Table 12.2, forM � 1

IQ = × × × × =2 2
3 3

100 0 652 137 3
2π

. . A

The fundamental component of the input currentI1in is then given by

I I Iin p Q1
2 2= +

At �o � 0,

I1in � �165.42 � 137.32 � �27237� 18851� �46208� 214.96 A

The per-phase input voltage isE � 440/�3 � 254 V. The input power to the
cycloconverter is then, from Eq. (12.27),

Pin � 3 � 254 � 214.96� cos�in � 148.91� 103 � cos�in

But the input power can also be obtained from Eq. (12.29),

Pin � 3EIp � 3 � 254 � 165.4� 126 kW

The input displacement factor is therefore

Displacement factor lagging= = =cos
.

.φin
126

163 81
0 77

The load powerPo is equal to the input powerPin

Po � Pin � 126 kW

Example 12.8 Calculate the order of the lowest higher harmonic terms
in the output voltage wave of a six-pulse, circulating current free cycloconverter
if fin � 60 Hz and the frequency ratio	o / 	in � 1/4.

For a circuit of the form of Fig. 12.14 the output voltage harmonic order
is defined by Eq. (12.17).

fh � 6pfin 	 (2n � 1) fo

where 1� p � � and 0� n � �, fin � 60Hz, andfo � 15Hz. Some values
are given in Table 12.3

Example 12.9 Evaluate some of the coefficientsa12n
in Eq. (12.21) for

M � 1, 0.8, 0.5, 0.1 andn � 0, 1, 2, 3.
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TABLE 12.2

M a10
(n � 0) a12

(n � 1) a14
(n � 2) a16

(n � 3)

1 0.637 0.424 �0.085 0.036
0.8 0.813 0.198 �0.012 0.002
0.5 0.934 0.067 �0.001 0
0.3 0.977 0.023 0 0
0.1 0.997 0.003 0 0

Using the terms in Eq. (12.22), it is found that the coefficients shown in
Table 12.2 can be calculated. Substituting values from the Table 12.2 into Eq.
(12.21) gives coefficients for the summation term (using a square-law relation-
ship) in Table 12.4. ForM � 0.6 andn � 1 the higher harmonic terms are
negligibly small. With reactive load impedance the summation terms are subject
to sign changes due to the cos 2n�n term in Eq. (12.21).

PROBLEMS

12.1 For the waveform�o (	t) in Fig. 12.5, with peak voltage 163 V, calculate
the rms voltageVo for the values� (a) 30�, (b) 60�, (c) 90�, (d) 120�,
(e) 150�.

12.2 Show that the fundamental component of waveform�o (	t) in Fig. 12.5
is zero. What is the frequency of the lowest order harmonic?

TABLE 12.3

p n fh (order) fh (Hz)

1 0 6 fin � fo 375, 345
1 6 fin � 3 fo 405, 315
2 6 fin � 5 fo 435, 285
3 6 fin � 7 fo 465, 255

2 0 fin � fo 735, 705
1 12 fin � 3 fo 765, 675
2 12 fin � 5 fo 795, 645
3 12 fin � 7 fo 825, 615
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TABLE 12.4

M n � 0 n � 1 n � 2 n � 3 �

1 0.637 �0.141 �0.0057 �0.001 0.652
0.5 0.934 �0.026 �0.00067 0 0.934
0.1 0.997 �0.001 0 0 0.997

12.3 A three-phase, four-wire, half-wave rectifier dual converter operated from
a 230-V, 60-Hz three-phase supply. Calculate the average value of the
load voltage for firing angles (a) 0�, (b) 30�, (c) 60�, (d) 90�.

12.4 A three-phase-to-single-phase cycloconverter delivers an output of 250
V, 70 A to a load of 0.9 power factor lagging. Assume that the switches
of the converter are ideal and that the output current is substantially
sinusoidal. Calculate the input power factor.

12.5 A full-wave, three-phase to single-phase circulating current free cyclo-
converter has an output of 120 V (rms) when the output frequency is
6.667 Hz. The input supply is 220 V, 60 Hz. The load impedance consists
effectively of a seriesR-L circuit with R � 1 � and	L � 2 � (at the
specified output frequency). Calculate (a) firing angle, (b) load current,
(c) load power, (d) input current, (e) thyristor switch current, and (f)
input displacement factor.

12.6 The switching angle of a cycloconverter is given by the function

�(t) � cos�1 (cos 20�t)

to convert a three-phase 60-Hz input to a single-phase 10-Hz output.
Show that this switching function is double triangular with peak values
	 180� at 0.05 s.

12.7 A three-phase to three-phase, three-pulse, circulating current free cyclo-
converter operates with an input frequency ratio	in / 	o � 9. What are
typical frequencies of the low-order higher harmonics?

12.8 A three-phase-to-three-phase, full-wave, six-pulse, circulating current free
cycloconverter is supplied from 60-Hz mains. If the switching ratio in	in /
	o � 9, calculate typical frequencies of the low-order higher harmonics.

12.9 A three-phase-to-three-phase, six-pulse, circulating current free cyclo-
converter is connected as a full-wave bridge. It delivers a current of 120
A to a resistive load when operating with unity modulation ratio. The
three-phase supply is rated at 440 V, 60 Hz. Calculate the load power,
input power, input displacement factor, and load voltage.
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Envelope Cycloconverters

As an alternative to the adjustable gate control of phase-controlled cycloconvert-
ers described in Chapter 12, the switches can operate continuously, like diodes.
This requires that the gate control signal must fully be on during the whole of
one half cycle and fully off during the other half cycle. In effect the rectifier
valves, usually thyristors, act as on–off switches for the whole of a half cycle.
As in phase control, the commutation of the conducting switches occurs naturally.
The output voltage waveform follows the profile of the ac supply voltage, as in
Fig. 13.1, leading to the nameenvelope cycloconverter. In Fig. 13.1 there are
three half cycles of the supply voltage, which defines the frequency ratio	in/	o

� 3. As with rectifier circuit operation an increase of pulse number reduces
the voltage ripple and the higher harmonic content. In envelope cycloconverter
operation it is invariably necessary to use some form of input transformer connec-
tion. Conduction in successive phases of the transformer secondary windings has
to occur, with respect to the supply voltages, so as to normally provide an output
voltage envelope that is approximately a stepped waveform of the desired output
frequency.

13.1 SINGLE-PHASE CYCLOCONVERTER
OPERATION

In the circuit of Fig. 13.2a the voltage applied across the load can be the full
supply voltage of either polarity or some fractionA, depending on the transformer
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FIG. 1 Output voltage waveforms of an envelope cycloconverter,	o/	in � 1/3: (a)
single-phase (two pulse) and (b) three-phase (six pulse).

secondary tap setting. The switches are shown as triacs but can equally well be
pairs of inverse-parallel connected silicon controlled rectifiers. With an ideal
supply and ideal switches the characteristic waveform of Fig. 13.2(b) can be
obtained, having three peaks in an overall half period.

13.2 THREE-PHASE-TO-SINGLE-PHASE
CYCLOCONVERTER

Bidirectional switches from each line of a three-phase supply can be combined
to form a single-phase output as in Fig. 13.3. This connection is seen to be a
bidirectional extension of the various half-wave rectifier circuits of Chapter 5.
With a cycloconverter, however, the load voltage is shaped to produce frequency
conversion, and the load current is bidirectional to give an ac output.

An important parameter defining the performance is the number of peaks
M of the supply voltage in a half period of the output voltage. In Figs. 13.1 and
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FIG. 2 Single-phase cycloconverter: (a) circuit diagram for two-pulse operation and (b)
load voltage waveforms,	o/	in � 1/3 [9].
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FIG. 3 Three-phase-to-single-phase cycloconverter circuit [9].

13.2 it is seen thatM � 3. The number of peaks in a one-fourth periodmdepends
on the periodicity and is defined by

m
M

M M=
+( )

+( )1 2 1 2

2

/ /
– ;

±
 for  even   for  odd (13.1)

Typical voltage waveforms with resistive load are given in Fig. 13.4. Commuta-
tion occurs naturally, but not precisely at the waveform crossovers due to overlap
caused by supply reactance. The frequency ratio does not have to be integer and,
in this case, is plotted for	in/	o � 10/3.

With an inductive load, such as induction motor, there is within the same
half cycle both a direct rectifier mode in which energy is transferred from the
input power supply through the transformer to the load and an inverse rectifier
mode in which energy stored in the inductive load is recovered and returned
back to the supply. The triggering angles of the switches to ensure the desired
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FIG. 4 Voltage waveforms for a three-phase-to-single-phase cycloconverter.R load,	in/
	o � 10/3,M � 3 [9].

commutation margin are vitally important to avoid commutation failure. The
relation between the output voltageeu and corresponding lagging current (pre-
sumed sinusoidal)iu for the circuit of Fig. 13.3 is shown in Fig. 13.5. It can be
seen that the fundamental component of the load voltage (not shown) is symmetric
with the waveform itself so that the displacement angle�1 � �3 is about 60�.
Prior to instant�1 and after instant�3, the converter operates in direct rectification
mode. During the period�1 � �3, operation occurs in the inverse rectification
mode. To commutate from the input voltageea to voltageeb, for example, the
commutation process must initiate at an angle� prior to the point of intersection
�2 in Fig. 13.5. The lead angle� is related to the overlap angle�, which is
changed proportionately with the instantaneous current valueI� the instant when
� � �. Failure to observe the inequality� � � would mean that the outgoing
thyristor could not be turned off within the period� and would continue in
conduction beyond�2. This would result in operational failure and system shut
down.

13.3 THREE-PHASE-TO-THREE-PHASE FOUR-
WIRE ENVELOPE CYCLOCONVERTER

13.3.1 Load Voltage Waveforms

The load side connection of the three-phase, 4-wire, cycloconverter circuit of
Fig. 13.6 is the same as the three-pulse circulating current free circuit of Fig.
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FIG. 5 Voltage and current waveforms for three-phase-to-single-phase cycloconverter.
R-L load,M � 5, �o � 60� [9].

12.12(a). In addition, however, the wye-connected transformer secondary wind-
ings are tapped to give either a fraction A or the whole input voltage to each
phase of the load. For four-wire operation switch sw remains closed. Variation
of the load phase voltageeU, is shown in Fig. 13.7 for the rangeM � 2 to M
� 6. The phase voltage waveform is identical in shape and equal in magnitude
in the three phases, as shown in Fig. 3.8, for the caseM � 6. It should be noted,
however, that the three voltages do not constitute a symmetrical, balanced set as
would be the case for sinusoidal operation. Although equal in magnitude, they
are not, in general, mutually displaced in phase by precisely 120�. This is further
discussed in Sec. 13.3.5. It is also clear from Fig. 13.8 that the three corresponding
transformer secondary voltagesea, eb, andec are unbalanced in magnitude and
different in waveform. Variation of the transformer secondary voltage waveforms
ea for different values ofM is shown in Fig. 13.9. All of the waveforms are free
of a dc component, but each different value ofM has its own wave shape forea,
with the different wave shapes foreb andec.
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FIG. 6 Three-phase-to-three-phase cycloconverter [9].

13.3.2 Fourier Analysis of the Load Voltage
Waveform

The load voltage waveformseU, eV, andeW in the circuit of Fig. 13.6 are always
mathematically odd functions so that the cosine termsan of the Fourier series
are zero. Each output phase voltageeo can be analyzed as a Fourier summation

e b n to
n

n=
=

∑
1

α
ωsin

(13.2)

In terms of the period of the output voltage waveformT,

b
T

e t n
t

T
dtn

T
o= ∫

2
2

0
( )sin π (13.3)

When there arem peaks in one-fourth period of the output voltage waveform,
then
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FIG. 7 Load voltage waveformeu for three-phase envelope cycloconverter of Fig. 13.6,
A � 0.5: (a)M � 2, (b) M � 3, (c) M � 4, (d) M � 5, and (e)M � 6 [9].
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FIG. 8 Voltage waveforms for the three-phase envelope cycloconverter of Fig. 13.6,A
� 0.5, M � 6 [9].
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FIG. 9 Transformer secondary voltageea for the three-phase envelope cycloconverter
of Fig. 13.6. A� 0.5: (a)M � 2, (b) M � 3, (c) M � 4, (d) M � 5, and (e)M � 6
[9].
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b
T

e t n
t

T
dtn

i

m

T

T
i

i

i=
=

+∑ ∫
8

2
0

1
( )sin π

(13.4)

Parameterm in Eq. (13.4) is related to the waveform identifying parameterM of
Figs 13.7–13.9 by Eq. (13.1). The envelope voltageei(t) existing between the
instantsTi andTi � 1 is

e t A p
t

Ti i i( ) sin( )= −2π θ (13.5)

where phase displacement�i is defined as

θ π
i

i= 2

3 (13.6)

Substituting Eqs. (13.5) and (13.6) into Eq. (13.4) gives

b
T

A p
t

T

i nt

T
dtn

i

M

T

T
i

i

i= −



=

+∑ ∫
8

2
2

3

2

0

1
sin sinπ π π

(13.7)

FactorAi in Eq. (13.7) is given by

A
Ai  = 
1  central waves

both sets of side waves



 (13.8)

The frequency ratiop defined in Chapters 8 and 11 is used here:

p
f

f
in

o

in

o

= = =input frequency

output frequency

ω
ω (13.9)

The wavelength of the output voltage waveform envelopeT is related to the
output frequency by

ω π π
o of t

= =2
2

(13.10)

Substituting Eqs. (13.9) and (13.10) into Eq. (13.7) permits the coefficientsbn

to be expressed in terms of the input and output angular frequencies	in and	o,
respectively.

b
T

A t
i

n t dtn
i

M

T

T
i in o

i

i= −



=

∑ ∫ +8 2

30

1 sin sinω π ω
(13.11)

Because the Fourier coefficientsbn are sinusoidal components, the displacement
angles�i are notionally multiples of 2�/3. But in this case it is found that the
three-phase voltage waves that they represent are not symmetrical in phase dis-

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 13408

placement, as discussed in Sec. 13.3.5. There will therefore be asymmetry be-
tween the fundamental componentsb1. The integral in Eq. (13.11) can be evalu-
ated to give a form involving sum and difference terms

b
T

A
p n t

i
p n t

i
n

i

i

M

T

T
o o

i

i= − −





− + −
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1
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3 (13.12)

13.3.3 RMS Value and Distortion Factor of the
Load Voltage Waveform

The rms valuec of the resultant output voltage waveform can be obtained by
summation of the rms values of the Fourier componentsbn

c b
T

e t dtn
n i

m

T

T
i

i

i= =
=

∞

=
∑ ∑ ∫ +2

1 0

28 1 ( )
(13.13)

The voltage distortion factor, used throughout this book, is the ratio of the funda-
mental component of voltage to the total rms value. It is a measure of the departure
of the voltage waveform from the ideal sinusoidal wave shape, having a maximum
value of unity.

Voltage distortion factor=
b

c
i

(13.14)

Comparison is made in Fig. 13.10 between the rectangular waveformvAN of Fig.
10.5, the six-step waveformvAN of Fig. 10.7, and the load phase voltages typified
in Fig. 13.7. Values are given for the casesA � 0.5 andA � 1. For all values
of M the distortion factor has its maximum value whenA � 0.5, which therefore
represents the condition of minimum harmonic distortion.

13.3.4 Frequency Constraints of the Load Voltages

In the context of envelope cycloconverters the frequency ratio is related to the
number of peaks in one-half of an output waveM by

p
Min

o

= = +ω
ω

2 1

3 (13.15)
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FIG. 10 Distortion factors of the load voltages [9].

With M � 6, for example,p � 13/3. Examination of the output voltage wave-
forms of Fig. 13.8 shows that the frequency of (say) voltageeu is 3/13 times the
frequency of the input sine wave.

In the general form of the load voltage waveforms let the number of control
waves beMc and the number of side waves on either side of the central wave
be Ms. The total number of peaks in each half waveM is then given by

M � Mc � 2Ms (13.16)

irrespective of the values of wave heightsA. Total M is also constrained to lie
within the limits

3Ms � 1 � M � 3Ms � 1 (13.17)

For example, Fig. 13.7b shows the caseM � 3, whereMc � 1 andMs � 1.
Similarly, in Fig. 13.7d,M � 5, Mc � 1, Ms � 2. The combination of Eqs.
(13.13) and (13.17) establishes limits for the frequency ratiop when certain values
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of M are used. WhenMs � 2, for example, as in Fig. 13.7d and e, it is found
thatp must lie within the limits 11/3� p � 9. This is seen to be also consistent
with constraints of Eq. (13.15), wherep � 13/3. The combination of Eqs. (13.16)
and (13.17) leads to a further constraint Eq. (13.19) betweenMc andMs discussed
in Example 13.2.

13.3.5 Displacement Angles of the Three Load
Voltages

It was pointed out in Sec. 13.3.1 that although the three load voltageseU, eV, and
eW of the circuit of Fig. 13.6 are equal in magnitude, they are not symmetrical
in phase. This can be seen in the waveforms of Fig. 13.8. If phase voltageeU is
the datum, theneV lags it by 110.8� andeW lags it by 249.2�.

The phase displacements�V and�W of load phase voltageseV andeW are
given by

θ θ

π

πV W

c
c

c
c

M M

M
M M

M M

M
M M

= − =

+
+

≠ −

+ +
+

= −










( )

( )
2 1

3 1

2

2 1
3 1

for

for (13.18)

Equations (13.18) can also be expressed in terms ofM andMs or in terms ofMc

andMs. In the waveforms of Fig. 13.8, for example,M � 6, Mc � 2, andMs

� 2. The inequality of Eq. (13.18a) is satisfied, and the values are found to be
�V � 110.8�, �W � �110.8� � 249.2�, which is consistent with the waveforms
of Fig. 13.8. Only for the caseM � 4, Mc � 2 are the phase angles found to
be symmetrical at	120�. This is the condition of sinusoidal load voltage and
current, as seen in Fig. 13.9c. The asymmetry of the load voltage displacement
angles causes the load voltages to be unbalanced, except whenM � 4, Ms �
1. This asymmetry can be calculated in terms of the symmetrical components of
the three load voltages, which is beyond the scope of the present text. It is found
that the worst-case unbalance occurs whenM � 2, is zero forM � 3Ms � 1,
and decreases for increasingM, as shown in Fig. 13.11.

13.4 THREE-PHASE-TO-THREE-PHASE, THREE-
WIRE ENVELOPE CYCLOCONVERTERS

Some three-phase loads, such as the three-phase induction motor, are usually
available only as three-wire loads. The neutral point of the load is not accessible.
This corresponds to operation of the circuit of Fig. 13.6 with switch SW open.

In the three-wire condition the unbalance factor of Fig. 13.11 remains un-
changed, but the load voltageseU, eV, andeW become unbalanced not only in

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Envelope Cycloconverters 411

FIG. 11 Voltage unbalance factor due to asymmetry of three displacement angles [9].

phase displacement, as in four-wire operation, but also in amplitude. The further
implication of this is not explored in the present text.

13.5 WORKED EXAMPLES
Example 13.1 For a range of values of parameterM calculate the corre-

sponding number of peaks per quarter cyclem and the input–output frequency
ratio p in the load voltage waveform of an envelope cycloconverter.

Using relationships (13.1) and (13.15), the following values may be calcu-
lated:

M m

1 1 1

2 1

3 2

4 2 3

5 3

6 3

7 4 5

8 4

7_
3

5_
3

11—
3

13—
3

17—
3

P =
ωin
ωo
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Example 13.2 In the load voltage waveform of an envelope cycloconv-
erter show that the number of center peaks per half cycleMc is related to the
side peaksMs by the relation

Ms � 1 � Mc � Ms � 1

In the text

M M Mc s= + 2 (13.16)

3 1 3 1M M Ms c− ≤ ≤ +c (13.17)

Combining the two equations,

3Ms � 1 � Mc � 2Ms � 3Ms � 1

Therefore,

Ms � 1 � Mc � Ms � 1 QED

Example 13.3 For what combination ofM, Mc, andMs do the three output
voltages of an envelope cycloconverter represent symmetrical three-phase opera-
tion? What are the corresponding frequency ratios?

The displacement angles between the three load voltages are represented by
Eqs. (13.18). For symmetrical operation the three load voltages must be mutually
displaced by 120� or 2�/3 radians. The criteria of Eqs. (13.18) must satisfy the
equalities

M M

M
M Mc

c
+

+
= ≠ −

2 1

2

3
3 1for (Ex. 13.3a)

and

M M

M
M Mc

c
+ +

+
= = −

2

2 1

2

3
3 1for (Ex. 13.3b)

Relations (Ex. 13.3a) and (Ex. 13.3b) reduce to

M
M

M Mc c= + ≠ −2

3
3 1for (Ex. 13.3c)

M
M

M Mc c= − = −4

3
3 1for (Ex. 13.3d)
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A table of values satisfying (Ex. 13.3c) is found to be

M Mc Ms p

1 1 0 1
4 2 1 3
7 3 2 5
10 4 3 7

Values ofMc � 4 are found to contravene Eq. (13.17) and are not tenable.
There do not appear to be any values satisfying (Ex. 13.3d). The corresponding
frequency ratiosp are found from Eq. (13.15) and shown in the table above.

Example 13.4 A three-phase envelope cycloconverter is supplied from a
60-Hz supply. What fundamental frequencies are available by the use of values
of M up to M � 9?

From Eq. (13.9) the output frequencyfo is given byfo � fin/p � 60/p. But
p is related toM by Eq. (13.15):

p
M= +2 1

3

Therefore,

Therefore, f
Mo =

+
180

2 1

The values offo consistent withM are found to be

M 1 2 3 4 5 6 7 8 9

fo (Hz) 60 36 25.7 45 16.36 30 12 10.6 9.5

Example 13.5 In an envelope cycloconverter the number of peaks per
half cycle of the output waveM � 9. With this constraint what options are
available for the waveform pattern assumingA � 0.5 for the side waves? With
the tenable patterns what will be the phase displacements�V and �W and the
frequency ratios?

The frequency ratiop is given in terms ofM by Eq. (13.15) and is indepen-
dent of the pattern of center wavesMc and the side wavesMs

p
M= + =2 1

3

19

3
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Various options exist for the pattern of waves within a profileM � 9:

1. Mc � 9, Ms � 0.
2. Mc � 7, Ms � 1.
3. Mc � 5, Ms � 2.
4. Mc � 3, Ms � 3.
5. Mc � 1, Ms � 4.

Options (1), (2), (3), and (5) above fail to satisfy the criterion Eq. (13.17) and
are not viable. The only option possible is option (4), which gives, from Eq.
(13.18a),

θ θ
π

π πV W
cM M

M
= − =

+
+

= +
+

= = °( )
.

2 1

9 3

18 1

12

19
113 7

PROBLEMS

13.1 In the load voltage waveform of an envelope cycloconverter what values
of parameterM will result in integer frequency ratios?

13.2 Show that the load voltage waveforms of Fig. 13.7 satisfy the criteria of
Eqs. (13.16) and (13.17) and Example 13.1.

13.3 Is a cycloconverter envelope consisting ofM � 11, Mc � 5, Ms � 3
an acceptable voltage waveform?

13.4 Is a cycloconverter envelope consisting ofM � 8, Mc � 2, Ms � 3 an
acceptable voltage waveform?

13.5 A three-phase cycloconverter is supplied from a 50-Hz supply. What
fundamental output frequencies are available by the use of values ofM
up to M � 12?

13.6 In an envelope cycloconverter the number of peak waves per half cycle
of the output waveM � 7. What options are available for the output
waveform patterns, and what are the values of the phase displacements
�V and�W?

13.7 Repeat Problem 13.6 for the valueM � 11.

13.8 A three-phase envelope cycloconverter is supplied from a 60-Hz supply.
What fundamental output frequencies are available by use of the values
(a) M � 7, (b) M � 11, and (c)M � 13?

13.9 Calculate the frequency ratio and the phase displacements�V, �W for the
envelope waveform of Fig. 13.7e.
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Matrix Converters

14.1 PRINCIPLE OF THE MATRIX CONVERTER

An arbitrary number of input lines can be connected to an arbitrary number of
output lines directly using bidirectional semiconductor switches, as shown in
Fig. 14.1. The multiple conversion stages and energy storage components of
conventional inverter and cycloconverter circuits can be replaced by one switch-
ing matrix. With ideal switches the matrix is subject to power invariancy so that
the instantaneous input power must always be equal to the instantaneous output
power. The number of input and output phases do not have to be equal so that
rectification, inversion, and frequency conversion are all realizable. The phase
angles between the voltages and currents at the input can be controlled to give
unity displacement factor for any loads.

In the ideal, generalized arrangement of Fig. 14.1 there do require to be
significant constraints on the switching patterns, even with ideal switches. Some
previous discussion of this given in Sec. 9.1. Both sides of the matrix cannot be
voltage sources simultaneously since this would involve the direct connection of
unequal voltages. If the input is a voltage source, then the output must be a current
source, and vice versa. It is a basic requirement that the switching functions must
not short-circuit the voltage sources nor open-circuit the current sources.

When the input lines are connected to an electric power utility then the
source is imperfect and contains both resistance (power loss) and inductance
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FIG. 1 General arrangement of an ideal switching matrix.

(energy storage). Many loads, especially electric motors, are essentially inductive
in nature and may also contain internal emfs or/and currents. The basic premises
of electric circuit theory apply also to matrix converters—it is not possible to
instantaneously change the current in an inductor nor the voltage drop across a
capacitor.

To achieve the operation of an ideal matrix converter, it is necessary to
use ideal bidirectional switches, having controllable bidirectional current flow
and also voltage blocking capability for both polarities of voltage. The detailed
attributes of an ideal switch are listed in Sec. 1.2.

14.2 MATRIX CONVERTER SWITCHES

There is no such thing as an ideal switch in engineering reality. Even the fastest
of semiconductor switches requires finite and different switching times for the
switch-on and switch-off operations. All switching actions involve power dissipa-
tion because the switches contain on-state resistance during continuous conduc-
tion. Various options of single-phase bidirectional switches are given in Fig. 14.2.
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FIG. 2 Single-phase bidirectional switches: (a) two SCRs in inverse-parallel, (b) triac
bidirectional switch, (c) two IGBTs in inverse parallel (probably nonviable due to limited
reverse blocking), and (d) IGBT diode switch.

A fast switching pair such as Fig. 14.2c can be employed if the devices have
reverse blocking capability, such as the MCT or the non-punch-through IGBT.

A fast-acting switch that has been reportedly used in matrix converter exper-
iments is given in Fig. 14.3 [34]. Two IGBTs are connected using a common
collector configuration. Since an IGBT does not have reverse blocking capability,
two fast recovery diodes are connected in antiseries, each in inverse parallel
across an IGBT, to sustain a voltage of either polarity when both IGBTs are
switched off. Independent control of the positive and negative currents can be
obtained that permits a safe commutation technique to be implemented.

The common collector configuration has the practical advantage that the
four switching devices, two diodes and two IGBTs, can be mounted, without
isolation, onto the same heat sink. Natural air-cooled heat sinks are used in each
phase to dissipate the estimated losses without exceeding the maximum allowable
junction temperatures. In the reported investigation the devices used included
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FIG. 3 Practical switch for matrix converter operation: (a) heat sink mounting and (b)
equivalent circuit.

JGBT-International Rectifier (IRGBC 30 F, 600 V, 17 A)
Fast recovery diode-SSG. Thomson (STTA3006, 600 V, 18 A)

A separate gate drive circuit transmits the control signal to each IGBT. Electrical
isolation between the control and the power circuits can be achieved using a high-
speed opto coupler to transmit the control signal and a high-frequency transformer
to deliver the power required by a driver integrated circuit.

14.3 MATRIX CONVERTER CIRCUIT

The basic circuit of a three-phase-to-three-phase matrix converter, shown in Fig.
14.4, consists of three-phase groups. Each of the nine switches can either block
or conduct the current in both directions thus allowing any of the output phases
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FIG. 4 Basic circuit of a three-phase matrix converter.

to be connected to any of the input phases. In a practical circuit the nine switches
seen in Fig. 14.4 could each be of the common configuration of Fig. 14.3 [34].
The input side of the converter is a voltage source, and the output is a current
source. Only one of the three switches connected to the same output phase can
be on at any instant of time.

In general, low-pass filters are needed at both the input and output terminals
to filter out the high-frequency ripple due to the PWM carrier. An overall block
diagram of an experimental matrix converter system is given in Fig. 14.5.

Nine PWM signals, generated within a programmable controller, are fed
to switch sequencer circuits via pairs of differential line driver receivers. In the
switch sequencers the PWM signals are logically combined with current direction
signals to produce 18 gating signals. Isolated gate driver circuits then convert
the gating signals to appropriate drive signals capable of turning the power
switches on or off. Each power circuit is protected by a voltage clamp circuit.
A zero crossing (ZC) detector is used to synchronize to the input voltage controller
signals. For three-phase motor loads the output filter may not be necessary.

14.4 SWITCHING CONTROL STRATEGIES FOR
PWM MATRIX CONVERTERS IN THREE-
PHASE MOTOR APPLICATIONS [34,35]

When a PWM matrix converter is used to control the speed of a three-phase ac
motor the control system should possess the following properties:
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FIG. 5 Basic building blocks of the matrix converter.

Provide independent control of the magnitude and frequency of the gener-
ated output voltages (i.e., the motor terminal voltages).

Result in sinusoidal input currents with adjustable phase shift.
Achieve the maximum possible range of output-to-input voltage ratio.
Satisfy the conflicting requirements of minimum low-order output voltage

harmonics and minimum switching losses.
Be computationally efficient.

Many different methods have been considered as the basis of analyzing and
designing a workable matrix converter. Because of the complexity of the neces-
sary switching the associated control logic is also complex and involves large
and complicated algorithms. General requirements for generating PWM control
signals for a matrix converter on-line in real time are

Computation of the switch duty cycles within one switching period
Accurate timing of the control pulses according to some predetermined

pattern
Synchronization of the computational process with the input duty cycle
Versatile hardwave configuration of the PWM control system, which allows

any control algorithm to be implemented by means of the software

Microprocessor-based implementation of a PWM algorithm involves the use of
digital signal processors (DSPs).
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The two principal methods that have been reported for the control of a
matrix converter are discussed separately, in the following subsections.

14.4.1 Venturini Control Method [34]

A generalized high-frequency switching strategy for matrix converters was pro-
posed by Venturini in 1980 [36,37]. The method was further modified to increase
the output-to-input voltage transfer ratio from 0.5 to 0.866. In addition, it can
generate sinusoidal input currents at unity power factor irrespective of the load
power factor.

14.4.1.1 Principle

In the Venturini method a desired set of three-phase output voltages may be
synthesized from a given set of three-phase input sinusoidal voltages by sequential
piecewise sampling. The output voltage waveforms are therefore composed of
segments of the input voltage waves. The lengths of each segments are determined
mathematically to ensure that the average value of the actual output waveform
within each sampling period tracks the required output waveform. The sampling
rate is set much higher than both input and output frequencies, hence the resulting
synthesized waveform displays the same low-frequency spectrum of the desired
waveform.

14.4.1.2 Switching Duty Cycles

The Venturini principle can be explained initially using a single-phase output. A
three-phase output is generated by three independent circuits, and the analytical
expressions for all three waveforms have the same characteristics. Consider a
single output phase using a three-phase input voltage as depicted in Fig. 14.6.
Switching elementsS1–S3 are bidirectional switches connecting the output phase
to one of the three input phases and are operated according to a switching pattern
shown in Fig. 14.6b. Only one of the three switches is turned on at any given
time, and this ensures that the input of a matrix converter, which is a voltage
source, is not short-circuited while a continuous current is supplied to the load.

As shown in Fig. 14.6a within one sampling period, the output phase is
connected to three input phases in sequence; hence, the output voltageVo1 is
composed of segments of three input phase voltages and may be mathematically
expressed as
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(14.1)

Symbolk represents the number of sampling intervals,tn(k) for n �1, 2, 3 are
the switching on times,t1(k) � t2(k) � t3(k) equals the sampling periodTs and
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FIG. 6 One output phase of a matrix converter: (a) equivalent circuit and (b) switching
pattern.

tn(k)/Ts are duty cycles. For a known set of three-phase input voltages, the wave-
shape ofVo1, within thekth sample, is determined byt1(k), t2(k), t3(k).

It should be noted that the switching control signalsm1, m2, m3 shown in
Fig. 14.6b can be mathematically represented as functions of time

m t u kT u kT t k
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∑ (14.2)
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0
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where

u(t0) � { 1 t � t0
0 t � t0

is a unit step function and the switch is on whenmn(t) � 1 and off whenmn(t)
� 0.

For constructing a sinusoidal output wave shape, functionmn(t) defines a
sequence of rectangular pulses whose widths are sinusoidally modulated. Conse-
quently, its frequency spectrum consists of the required low-frequency compo-
nents and also unwanted harmonics of higher frequencies. Since the required
output voltage may be considered as the product of these functions and the sinusoi-
dal three-phase input voltages, the Fourier spectrum of the synthesized output
voltage contains the desired sinusoidal components plus harmonics of certain
frequencies differing from the required output frequency.

The input currentIi1 equals output currentIo1 when switchS1 is on and
zero whenS1 is off. Thus the input currentIi1 consists of segments of output
current Io1. Likewise, the turn-on and turn-off of switchesS2 and S3 results in
the input currentsIi2 andIi3 containing segments of output currentIo1. The width
of each segment equals the turn-on period of the switch. Corresponding to the
voltage equation (14.1), the three average input currents are given by
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(14.5)

14.4.1.3 Modulation Functions

Applying the above procedure to a three-phase matrix converter, the three output
phase voltages can be expressed in the following matrix form:
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 (14.6)

or

[Vo(t)] � [M(t)][VI(t)]

and the input currents as
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(14.7)
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or

[II(t)] � [MT(t)] [ I0(t)]

whereM(t) is the modulation matrix. Its elementsmij(t), i,j � 1, 2, 3, represent the
duty cycletij/Ts of a switch connecting output phasei to input phasej within one
switching cycle and are calledmodulation functions. The value of each modulation
function changes from one sample to the next, and their numerical range is

0 � mij(t) � 1 i,j � 1, 2, 3 (14.8)

Bearing in mind the restriction imposed on the control of matrix switches stated
above, functionsmij(t) for the same output phase obey the relation

j
ijm i

=
∑ = ≤ ≤

1

3

1 1 3
(14.9)

The design aim is to definemij(t) such that the resultant three output phase voltages
expressed in Eq. (14.6) match closely the desired three-phase reference voltages.

14.4.1.4 Three-Phase Reference Voltages

The desired reference-phase voltages should ensure that the maximum output-
to-input voltage transfer ratio is obtained without adding low-order harmonics
into the resultant output voltages. To achieve this, the reference output voltage
waveform to be synthesized must, at any time, remain within an envelope formed
by the three-phase input voltages, as shown in Fig. 14.7a. Thus when the input
frequency	i is not related to the output frequency	o, the maximum achievable
output-to-input voltage ratio is restricted to 0.5, as illustrated in Fig. 14.7a.

The area within the input voltage envelope may be enlarged by subtracting
the common-mode, third harmonic of the input frequency from the input phase-
to-neutral voltages. For example, when a voltage of frequency 3	i and amplitude
equal toVim/4 is subtracted from the input phase voltages, the ratio of output to
input voltage becomes 0.75 as shown in Fig. 14.7b. Note that this procedure is
equivalent to adding the third harmonics of the input frequency to the target
output-phase voltage. The introduction of the third-order harmonics of both the
input and output frequencies into the reference output-phase voltages will have
no effect on an isolated-neutral, three-phase load normally used in practice, as
they will be canceled in the line-to-line output voltages.

Further improvement on the output voltage capability can be made by sub-
tracting the third harmonics of the output frequency from the target output phase
voltage. This is to decrease the peak-to-peak value of the output phase voltage,
as illustrated in Fig. 14.7c. With the magnitude of the output-frequency third
harmonics equivalent toVom/6, an output-to-input voltage ratio of 0.866 can be
achieved. This figure is the theoretical output voltage limit for this type of con-
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FIG. 7 Third harmonic addition to increase the maximum achievable output-voltage
magnitude of matrix converter: (a) output voltages,Vo � 0.5Vin, (b) output voltages,Vo

� 0.75Vin, and (c) output voltages,Vo � 0.866Vin.
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verter. The two-step, third-harmonic modulation described above results in the
following output phase voltages expression [38,39]
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whereVom and	o are the magnitude and frequency of the required fundamental
output voltage andVim and 	i, are the magnitude and frequency of the input
voltage, respectively. The three terms of Eq. (14.10) can be expressed as

V V Vo A o B o C[ ] + [ ] + [ ] (14.11)

14.4.1.5 Derivation of the Modulation Matrix

Having defined the three-phase output reference voltage, determination of modu-
lation functionM[t] involves solving Eqs. (14.6) and (14.7) simultaneously. The
three-phase input voltages with amplitudeVim and frequency	i and the three-
phase output currents with amplitudeIom and frequency	o are given by
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Assume the desired output voltage of Eq. (14.10) to consist only of the first term,
[Vo]A, then
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By eliminating the other two terms of Eq. (14.10), the achievable ratioVom/Vim

becomes 0.5. Derivation of the modulation matrix for the output voltages defined
in Eq. (14.10) is given in Ref. 34. Using the three-phase input voltages of Eq.
(14.12) to synthesize the desired output voltage of Eq. (14.14), the modulation
matrix derived must be in the form expressed as either
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or
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whereA1 andA2 are constants to be determined. Substituting either Eq. (14.15)
or Eq. (14.16) into Eq. (14.6) gives three output voltages which are sinusoidal
and have 120� phase shift between each other.
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or
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If both [m(t)]A� and [m(t)]A� are used to produce the target output voltage, then
[Vo]A � [Vo]A� � [Vo]A�, yielding
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Applying the same procedure as above to synthesise the input currents, using Eq.
(14.7), yields
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This means that modulation matrix [m(t)]A� results in an input current having a
leading phase angle�o, while [m(t)]A� produces an input current with a lagging
phase angle�o.

Let the required sinusoidal input currents be defined as
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where�i is an input displacement angle.
Setting [Ii(t)] � [Ii]A� � [Ii]A� and substituting [Ii]A� and [Ii]A� defined

by Eqs. (14.20) and (14.21), respectively, the input phase current equation is
given as
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As cos(A � B) � cosA cosB � sinA sinB, applying this to both sides of the
equation yields
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and
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Neglecting the converter power losses, the input power of the circuit equals the
output power of the circuit; hence,

VimIim cos�i � VomIom cos�o (14.24)

This yields
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SubstitutingIim/Iom from Eq. (14.23) into Eq. (14.25) gives

( )cos cos cos cosA A t
V

V
ti o

om

im
i o1 2 3

2

3 3
+ −





= −





ω γ π φ ω γ π φ

( )sin sin
tan

tan
sinA A t

V

V
ti o

om

im

i

o
i2 1 3

2

3 3
− −





= −ω γ π φ
φ
φ

ω γ π




sinφo (14.26)

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 14430

Solving Eq. (14.26) simultaneously, coefficientsA1 andA2 are found to be
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where Q � Vom/Vim is an output-to-input voltage ratio, which also satisfies
Eq. (14.21). Note that the input displacement angle and hence the input power
factor of the matrix converter may be adjusted by varying these coefficients
appropriately.

The overall modulation matrix may be written as the sum of [m(t)]A�

and [m(t)]A�. As adding three elements on the same row of the modulation
matrix results in zero at any instant, the constant 1/3 must be added to each
element to satisfy the constraint specified in Eq. (14.9) giving
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Substituting each component in Eq. (14.28) with the results derived above,
the formulas for the overall modulation matrix are expressed by
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Alternatively, a general and simplified formula for one of the nine elements in
matrix [m(t)] above may be written as [39]
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wherei,j � l, 2, 3; Q � Vom/Vim; and� � tan�i / tan�o is an input-to-output
phase transfer ratio. As shown in Eq. (14.29),mij(t) is a function of	i, 	o, Q,
and�. Assuming thatVi and	i are constants,Q is a variable ofVo, while �o,
the phase lag between the load current and voltage, is a nonzero value. Since
unity input power factor operation is always desired,�i, is zero. This, in turn,
leads to� being zero. Subsequently Eq. (14.30) may be simplified as
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(14.31)

For practical implementation, it is important to note that the calculated values of
mij(t) are valid when they satisfy the conditions defined by Eqs. (14.8) and (14.9).
Also Eq. (14.30) gives positive results whenVo /Vi � �3/2

14.4.2 Space Vector Modulation (SVM) Control
Method

The space vector modulation (SMV) technique adopts a different approach to the
Venturini method in that it constructs the desired sinusoidal output three-phase
voltage by selecting the valid switching states of a three-phase matrix converter
and calculating their corresponding on-time durations. The method was initially
presented by Huber [40,41].

14.4.2.1 Space Vector Representation of Three-Phase
Variables

For a balanced three-phase sinusoidal system the instantaneous voltages maybe
expressed as
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This can be analyzed in terms of complex space vector

→

V V t V t e V t e V eo AB BC
j

BC
j

ol
j to= + +



 =2

3
2 3 4 3( ) ( ) ( )/ /π π ω

(14.33)

whereej� � cos� � j sin� and represents a phase-shift operator and 2/3 is a
scaling factor equal to the ratio between the magnitude of the output line-to-line
voltage and that of output voltage vector. The angular velocity of the vector is
	o and its magnitude isVol.

Similarly, the space vector representation of the three-phase input voltage
is given by

→

V V ei i
j ti= ( )ω (14.34)

whereVi is the amplitude and	i, is the constant input angular velocity.
If a balanced three-phase load is connected to the output terminals of the

converter, the space vector forms of the three-phase output and input currents
are given by

→

I I eo o
j to o= −( )ω φ (14.35)

→

I I ei i
j ti i= −( )ω φ (14.36)

respectively, where�o is the lagging phase angle of the output current to the
output voltage and�i is that of the input current to the input voltage.

In the SVM method, the valid switching states of a matrix converter are
represented as voltage space vectors. Within a sufficiently small time interval a
set of these vectors are chosen to approximate a reference voltage vector with
the desired frequency and amplitude. At the next sample instant, when the refer-
ence voltage vector rotates to a new angular position, a new set of stationary
voltage vectors are selected. Carrying this process onward by sequentially sam-
pling the complete cycle of the desired voltage vector, the average output voltage
emulates closely the reference voltage. Meanwhile, the selected vectors should
also give the desired phase shift between the input voltage and current.

Implementation of the SVM method involves two main procedures: switch-
ing vector selection and vector on-time calculation. These are both discussed in
the following subsections.

14.4.2.2 Definition and Classification of Matrix
Converter Switching Vectors

For a three-phase matrix converter there are 27 valid on-switch combinations
giving thus 27 voltage vectors, as listed in Table 14.1. These can be divided into
three groups.
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TABLE 14.1 Valid Switch Combinations of a Matrix Converter and the Stationary Vectors (k � 2/�3)

Output voltages Input currents Voltage vector Current vector
On switches VAB VBC VCA Ia Ib Ic Magnitude Phase Magnitude Phase

1 S1, S5, S9 Vab Vbc Vca IA IB IC Vil �it IO �ot
2 S1, S6, S8 �Vca �Vbc �Vab IA IC IB �Vil ��it�4
/3 IO ��ot
3 S2, S4, S9 �Vab �Vca �Vbc IB IA IC �Vil ��it IO ��ot � 2
/3
4 S2, S6, S7 Vbc Vca Vab IC IA IB Vil �it � 4
/3 IO �Ot�2
/3
5 S3, S4, S8 Vca Vab Vbc IB IC IA Vil �it � 2
/3 IO �ot � 4
/3
6 S3, S5, S7 �Vbc �Vab �Vca IC IB IA �Vil ��it � 2
/3 IO ��ot � 4
/3
1P S1, S5, S8 Vab 0 �Vab IA �IA 0 kVab 
/6 kIA �
/6
1N S2, S4, S7 �Vab 0 Vab �IA IA 0 �kVab 
/6 �kIA �
/6
2P S2, S6, S9 Vbc 0 �Vbc 0 IA �IA kVbc 
/6 kIA 
/2
2N S3, S5, S8 �Vbc 0 Vbc 0 �IA IA �kVbc 
/6 �kIA 
/2
3P S3, S4, S7 Vca 0 �Vca �IA 0 IA kVca 
/6 kIA 7
/6
3N S1, S6, S9 �Vca 0 Vca IA 0 �IA �kVca 
/6 �kIA 7
/6
4P S2, S4, S8 �Vab Vab 0 IB �IB 0 kVab 5
/6 kIB �
/6
4N S2, S5, S7 Vab �Vab 0 �IB IB 0 �kVab 5
/6 �kIB �
/6
5P S3, S5, S9 �Vbc Vbc 0 0 IB �IB kVbc 5
/6 kIB 
/2
5N S2, S6, S8 Vbc �Vbc 0 0 �IB IB �kVbc 5
/6 �kIB 
/2
6P S1, S6, S7 �Vca Vca 0 �IB 0 IB kVca 5
/6 kIB 7
/6
6N S3, S4, S9 Vca �Vca 0 IB 0 �IB �kVca 5
/6 �kIB 7
/6
7P S2, S5, S7 0 �Vab Vab IC �IC 0 kVab 
/2 kIC �
/6
7N S1, S4, S8 0 Vab �Vab �IC IC 0 �kVab 
/2 �kIC �
/6
8P S3, S6, S8 0 �Vbc Vbc 0 IC �IC kVbc 
/2 kIC 
/2
8N S2, S5, S9 0 Vbc �Vbc 0 �IC IC �kVbc 
/2 �kIC 
/2
9P S1, S4, S9 0 �Vca Vca �IC 0 IC kVca 
/2 kIC 7
/6
9N S3, S6, S7 0 Vca �Vca IC 0 �IC �kVca 
/2 �kIC 7
/6
0A S1, S4, S7 0 0 0 0 0 0 0 0 0 0
0B S2, S5, S8 0 0 0 0 0 0 0 0 0 0
0C S3, S6, S9 0 0 0 0 0 0 0 0 0 0
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1. Group I. Synchronously rotating vectors. This group consists of six
combinations (1 to 6) having each of the three output phases connected
to a different input phase. Each of them generates a three-phase output
voltage having magnitude and frequency equivalent to those of the
input voltages (Vi, and	i,) but with a phase sequence altered from that
of the input voltages. As the input frequency is not related to the output
frequency, the SVM method does not use the above listed vectors to
synthesize the reference voltage vector that rotates at a frequency	o.

2. Group II. Stationary vectors. The second group (1P to 9N) is classified
into three sets. Each of these has six switch combinations and has a
common feature of connecting two output phases to the same input
phase. The corresponding space vectors of these combinations all have
a constant phase angle, thus being namedstationary vector. For exam-
ple, in the first set of the group, output phasesB andC are switched
simultaneously on to input phasesb, a, andc. This results in six switch
combinations all giving a zero output line-to-line voltageVBC. For the
second set, the short-circuited output phases areC andA; hence,VCA

is zero. In the final six, output phasesA andB are connected together
and the zero line-to-line voltage isVAB. The magnitudes of these vec-
tors, however, vary with changes of the instantaneous input line-to-
line voltages.

3. Group III. Zero vectors. The final three combinations in the table form
the last group. These have three output phases switched simultaneously
on to the same input phase resulting in zero line-to-line voltages and
are calledzero voltage vectors. When a three-phase load is connected
to the converter output terminals, a three-phase output current is drawn
from the power source. The input currents are equivalent to the instanta-
neous output currents; thus, all input current vectors corresponding to
the 27 output voltage vectors are also listed in Table 14.1.

14.4.2.3 Voltage and Current Hexagons

A complete cycle of a three-phase sinusoidal voltage waveform can be divided
into six sextants as shown in Fig. 14.8. At each transition point from one sextant
to another the magnitude of one phase voltage is zero while the other two have
the same amplitude but opposite polarity. The phase angles of these points are
fixed. Applying this rule to the 18 stationary voltage vectors in Table 14.1, their
phase angles are determined by the converter output line-to-line voltagesVABVBC,
and VCA. The first six, all giving zeroVBC, may locate either at the transition
point between sextants 1 and 2 (	ot � 30�) or that between sextants 4 and 5
(	ot � 210�), depending upon the polarity ofVAB andVCA. From the waveform
diagram given in Fig. 14.8 the three having positiveVAB and negativeVCA are
at the end of sextant 1; conversely, the other three are at the end of sextant 4.
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FIG. 8 Six sextants of the output line-to-line voltage waveforms.

The magnitudes ofVAB andVCA are determined by the switch positions of the
converter and can correspond to any of the input line-to-line voltages,VabVbc, or
Vca. Similarly, vectors in the second set generating zeroVCA and nonzeroVAB

andVBC are at the end of either sextant 3 or 6. The three having positiveVBC

and negativeVAB are for the former sextant, the other three are for the latter. The
final set is for sextants 2 and 5.

Projecting the stationary voltage and current vectors onto the�� plane, the
voltage hexagon obtained is shown in Fig l4.9a. It should be noted that this
voltage vector diagram can also be obtained by considering the magnitudes and
phases of the output voltage vectors associated with the switch combinations
given in Table 14.1. The same principle can be applied to the corresponding 18
input current vectors, leading to the current hexagon depicted in Fig. 14.9b. Both
the output voltage and input current vector diagrams are valid for a certain period
of time since the actual magnitudes of these vectors depend on the instantaneous
values of the input voltages and output currents.

14.4.2.4 Selection of Stationary Vectors

Having arranged the available switch combinations for matrix converter control,
the SVM method is designed to choose appropriately four out of 18 switch combi-
nations from the second group at any time instant. The selection process follows
three distinct criteria, namely, that at the instant of sampling, the chosen switch
combinations must simultaneously result in

1. The stationary output voltage vectors being adjacent to the reference
voltage vector in order to enable the adequate output voltage synthesis

2. The input current vectors being adjacent to the reference current vector
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FIG. 9 Output-voltage and input-current vector hexagons: (a) output-voltage vectors and
(b) input-current vectors.

in order that the phase angle between the input line-to-line voltage and
phase current, and hence the input power factor, being the desired value

3. The stationary voltage vectors having the magnitudes corresponding
to the maximum available line-to-line input voltages

To satisfy the first condition above, consider the reference voltage vector that
lies in one of the six sectors at any particular time instant. One of the line-to-
line voltages in this corresponding sector is bound to be either most positive or
most negative, hence being denoted as the peak line. The vectors selected to
synthesis the reference voltage vector should be those that make the voltage of
the peak line nonzeros. For example, when the reference voltage vectorref is
in sector 2 as shown in Fig 14.9a, the peak line isVOCA, and the stationary vectors
giving nonzeroVCA are the first and third sets in group II of Table 14.1, thus 12
in total.

Further selection takes both second and third requirements into account.
From Eq. (14.35),�i is the phase-angle between input line-to-line voltage and
phase current, which, for unity input power factor, must be kept at 30�, giving
zero phase shift angle between the input phase voltage and current. Following
the same principle for the reference voltage vector, at a particular time interval
the reference current vector locates in one of six sectors and so does the input
line-to-line voltage vector. Note that the input voltage vector leads the current
vector by 30� and transits from the same sector as that of the current to the
next adjacent one. Consequently, the maximum input voltage value is switched

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Matrix Converters 437

between two input line-to-line voltages of these two sectors. Taking the previously
selected 12 vectors and using the maximum available input voltages, there are
four vectors with peak-line voltages equivalent to one of these two line-to-line
voltages, and these are chosen. This can be illustrated using the input line-to-line
voltage waveform in Fig. 14.10b when the reference current vectorI

→
ref is in sector

1, the input line-to-line voltage vectori may lie in either sector 1 or 2. The
maximum input line-to-line voltage in sector 1 isVab, while that in sector 2 is
�Vca. Among the 12 stationary vectors, those havingVOCA equivalent to either
Vab or �Vca are the suitable ones and these are vectors 1P, 3N, 7N, and 9P in
Table 14.1. Following the above stated principle, the selected sets of stationary
vectors for reference voltage vector and input current vector in sextants 1 to 6
are listed in Table 14.2

14.4.2.5 Computation of Vector Time Intervals

As described above, the selected voltage vectors are obtained from two subsets
of the stationary vector group. In particular, vectors 1P and 3N are from the zero
VBC subset, and 7N and 9P are from the zeroVAB subset. The sum of these, given
by | o1P| � | o3N| due to the 180� phase angle between them, defines a vector

ou. Similarly, the solution of| o7N| � | o9P| gives another vectorov. As shown
in Fig. 14.10a both ou and ov are adjacent vectors of the output reference
voltage vector ref. Based on the SVM theory, the relation for these voltage
vectors can be written

t

t T
ref ov ov ou ou

s V dt T V T V
0

0+
∫ ≈ +

→ → →

(14.37)

whereTov andTou represent the time widths for applying vectorsov and ou,
respectively,t0 is the initial time,Ts is a specified sample period.

FIG. 10 Vector diagrams: (a) output sextant 2 and (b) input sextant 1.
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TABLE 14.2 Selected Sets of Switch Combinations

Input sextant 1 Input sextant 2 Input sextant 3 Input sextant 4 Input sextant 5 Input sextant 6

Output sextant 1 1P,4N,6P,3N 5N,2P,3N,6P 2P,5N,4P,1N 6N,3P,1N,4P 3P,6N,5P,2N 4N,1P,2N,5P
Output sextant 2 3N,9P,7N,1P 9P,3N,2P,8N 1N,7P,8N,2P 7P,1N,3P,9N 2N,8P,9N,3P 8P,2N,1P,7N
Output sextant 3 4P,7N,9P,6N 8N,SP,6N,9P 5P,8N,7P,4N 9N,6P,4N,7P 6P,9N,8P,5N 7N,4P,5N,8P
Output sextant 4 6N,3P,1N,4P 3P,6N,5P,2N 4N,1P,2N,5P 1P,4N,6P,3N 5N,2P,3N,6P 2P,5N,4P,1N
Output sextant 5 7P,1N,3P,9N 2N,8P,9N,3P 8P,2N,1P,7N 3N,9P,7N,1P 9P,3N,2P,8N 1N,7P,8N,2P
Output sextant 6 9N,6P,4N,7P 6P,9N,8P,5N 7N,4P,5N,8P 4P,7N,9P,6N 8N,5P,6N,9P 5P,8N,7P,4N
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For the example given above, the space vector diagrams of output sextant
2 and input sextant 1 are shown in Fig. 14.10. Let the phase angle of the reference
voltage vector,	ot, be defined by the sextant number (1–6) and the angle within
a sextant�o (0� � �o � 60�). Similarly, the phase angle of the input current
vector,	it � �i � 30�, may be defined by the input sextant number and the
remaining angle�i. The subsequent derivation is then based on these vector dia-
grams.

For a sufficiently smallTs, the reference voltage vector can be regarded as
constant, and hence Eq. (14.37) can be expressed in two-dimensional form as

T V t V t Vs ref
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P o P N o P
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→ →

(14.38)

wheret1P, t3N, t7N, andt9P are the time widths of the associated voltage vectors.
Note that in general these time widths are denoted ast1, t2, t3, andt4.

As the magnitude and frequency of the desired output voltage are specified
in advance, the input voltage and phase angle are measurable and relationships
for evaluating the magnitudes of the stationary voltage vectors are given in Table
14.1. Equation (14.38) can then be decomposed into the scalar equations

t1PVil cos	it � t3NVil cos(	it � 240�) � VolTs sin(60� � �o), (14.39)

t7NVil cos	it � t9PVil cos(	it � 240�) � VolTs sin�o, (14.40)

whereVil is the magnitude of the input line-to-line voltage andVol is that of the
output line-to-line voltage.

Applying the SVM principle to control the phase angle of the reference
current vector, the following equation results.
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(14.41)

Using the magnitudes of the input current vectors given in Table 14.1, the above
equation may be written as
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where� is an arbitrary variable that enables Eq. (14.41) to be divided into two
parts. Since it is necessary to set only the phase angle of the reference input
current vector, Eq. (14.42) becomes
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which can be rearranged to give

t3N cos(	it � �i � 30�) � t1P cos(	it � �i � 90�) � 0 (14.44)

Repeating this procedure with Eq. (14.43) results in

t9P cos(	it � �i � 30�) � t7N cos(	it � �i � 90�) � 0 (14.45)

Solving Eqs. (14.39), (14.40), (14.44), and (14.45) results in expressions for
calculating the four vector time widths
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whereQ � Vol / Vil is the voltage transfer ratio, and�o and �i, are the phase
angles of the output voltage and input current vectors, respectively, whose values
are limited within 0�–60� range. The above equations are valid for when the
reference output-voltage vector stays in output sextant 2 while the reference input-
current vector is in input sextant 1. For different sets of vectors the same principle
is applied.

In principle, each of the time widths is restricted by two rules, namely

0 1≤ ≤
t

T
k

s (14.50)

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Matrix Converters 441

and

k
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4
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(14.51)

In variable speed ac drive applications, unity input power factor is desired. As
a consequence, the sum of the four vector time widths is normally less than a
switching periodTs when the maximum output-to-input voltage ratio is limited
to 0.866. The residual time withinTs is then taken by a zero vector; thus,

t T ts k
k

0
1

4

= −
=

∑ (14.52)

14.5 SPECIMEN SIMULATED RESULTS [34]

14.5.1 Venturini Method

A specimen simulated result is given in Fig. 14.11 for a balanced, three-phase
supply applied to a symmetrical, three-phase, seriesR-L load, without the use of
an input filter, assuming ideal switches. With a carrier frequency of 2 kHz the
output current waveform is substantially sinusoidal at 40 Hz but has a 2000/40,
or 50, times ripple. It can be seen that the phase angle between the input phase
voltage and the fundamental input current is zero, resulting in unity displacement
factor.

14.5.2 Space Vector Modulation Method

A specimen simulated result is given in Fig. 14.12 for the case of balanced 240-
V (line), 50-Hz supply with symmetrical, three-phase, seriesR-L load. The carrier
(switching) frequency is 2 kHz, resulting in a substantially sinusoidal output
current offo � 40 Hz.

Comparison of Fig. 14.12 with Fig. 14.11 shows that the two methods give
very similar results. The SVM method has the advantage of simpler computation
and lower switching losses. The Venturini method exhibits superior performance
in terms of output voltage level and input current harmonics.

14.6 SUMMARY

The matrix converter holds the promise of being an all-silicon solution for reduc-
ing the use of expensive and bulky passive components, presently used in inverter
and cycloconverter systems. Its essentially single-stage conversion may prove to
be a crucial factor for improving the dynamic performance of system.
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FIG. 11 Simulated matrix converter waveforms.Vo/Vi � 0.866, fo � 40 Hz, fs � 2
kHz. (a) Output line-to-line voltage. (b) Output current. (c) Input current (unfiltered). (d)
Input phase voltage and input average current [34].
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FIG. 12 Simulated matrix converter waveforms using the SVM algorithm.Vo/Vi �
0.866,fo � 40 Hz. (a) Output line-to-line voltage. (b) Output current. (c) Input current
(unfiltered). (d) Input phase voltage and input average current [34].
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Matrix converters have not yet (2003) made any impact in the commercial
converter market. The reasons include the difficulties in realizing high-power
bidirectional switches plus the difficulties in controlling these switches to simul-
taneously obtain sinusoidal input currents and output voltages in real time. In
addition, the high device cost and device losses make the matrix converter less
attractive in commercial terms.

Recent advances in power electronic device technology and very large scale
integration (VLSI) electronics have led, however, to renewed interest in direct
ac-ac matrix converters. Ongoing research has resulted in a number of laboratory
prototypes of new bidirectional switches. As device technology continues to im-
prove, it is possible that the matrix converter will become a commercial competi-
tor to the PWM DC link converter.
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DC–DC Converter Circuits

A range of dc–dc switch-mode converters are used to convert an unregulated dc
input to a regulated dc output at a required voltage level. They achieve the voltage
regulation by varying the on–off or time duty ratio of the switching element.
There are two main applications. One is to provide a dc power supply with
adjustable output voltage, for general use. This application often requires the use
of an isolating transformer. The other main application of dc–dc converters is to
transfer power from a fixed dc supply, which may be rectified ac, to the armature
of a dc motor in the form of adjustable direct voltage.

Three basic types of dc–dc converters are

Step-down converter
Step-up converter
Step-up-down converter

15.1 STEP-DOWN CONVERTER (BUCK
CONVERTER)

15.1.1 Voltage Relationships

The basic form of a voltage step-down (buck) converter uses one controlled
switch (Fig. 15.1a). This particular form of the connection does not contain an
isolating transformer between the power supply and the load.
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FIG. 1 Step-down converter,R load: (a) general circuit, (b) switch-on state, and (c)
switch-off state.
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For the purpose of analysis, the circuit resistances are assumed to be negligi-
ble and the capacitors,Cin andCout, are very large. For steady-state operation, if
the inductor current is continuous and the load current is substantially constant,
the load voltage and the three circuit currents will be as given in Fig. 15.2. While
the switch conducts, the ideal supply voltage,Vs, is transferred directly across
the load so thatvo(t) � Vs. During extinction of the controlled switch the supply
current, which is the switch current, is zero, but load current,io(t), continues to
flow via the diodeD and the inductorL(Fig. 15.1c). The combination of inductor
L and output capacitorCout forms a low-pass filter. The switching frequencyfs
is determined by the designer and implemented as the switching rate of the con-
trolled switch. Typical switching frequencies are usually in the range 100 Hz�
fs � 20,000 Hz. The overall periodic timeTp is related to the switching frequency
by

T T T
fon off p
s

+ = = 1
(15.1)

FIG. 2 Waveforms for the step-down converter. Continuous conduction,R load.
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If the switch conducts for a fractionk of the total period time, then

Ton � kTp

Toff � (1 � k)Tp (15.2)

During conduction it may be seen from Fig 1.1(b) that

V v L
di

dts o
sw− = (15.3)

The load current waveformio(t) for repetitive steady-state operation is shown in
Fig. 15.2b. During the switchonperiods, the current is increasing and the inductor
emf has the polarity shown in Fig. 15.1b.

The derivative in Eq. (15.3) can be interpreted from the waveform (Fig.
15.2b) during conduction, as

di

dt

i

T

i

kT

sw

on

sw

p
≡ =∆ ∆

(15.4)

Combining Eqs. (15.3) and (15.4) gives, for the conduction intervals,

V v L
i

kTs o
sw

p
− = ∆

(15.5)

During the switch extinction periods, the load currentio(t) remains continuous
but decreases in value. The polarity of the inductor emf assumes the form of Fig.
15.1c to support the declining current (i.e., to oppose the decrease). Correspond-
ingly, in the switch extinction periods, the circuit voltage equation for Fig. 15.1c
is

L
di

dt
v

D

o= (15.6)

A typical value for inductorL would be of the order hundreds of microhenries
as seen in Fig. 15.2b.

di

dt

i

T

i

k T

D D D

off p
≡ =

−
∆ ∆

( )1 (15.7)

Combining Eqs. (15.6) and (15.7) gives

L
di

dt
v

L i

k T

D D
o

p
= =

−
∆

( )1 (15.8)

Neglecting the very small current in the output capacitorCout, it is seen in Fig
15.1 thatio � iD � isw.
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The magnitude of the current change
io in Fig. 15.2(b) is the same for
both theon periods and theoff periods. Equating
io between Eqs. (15.5) and
(15.8) gives

( ) ( )V v
kT

L
v k

T

Ls o
p

o
p− = −1

giving

kVs � vo � Vo � 
Vo (15.9)

The output voltage ripple
Vo, discussed in Sec. 15.1.3 below and shown in Fig.
15.3, has a time average value of zero so that Eq. (15.9) is true for the average
output voltageVo and

k
V

V
o

s

=
(15.10)

In the absence of the filter inductor L the supply voltage is applied directly across
the load during conduction. It is seen that Eq. (15.10) is then also true, because
Vo � (kTp/Tp)Vs. The voltage waveformvo (t) in Fig. 15.2a is defined by

v t
V t kT

kT t To
s p

p p

( ) =
≤ ≤

≤ ≤







0

0 (15.11)

The rms valueVo (rms) can be obtained from the integral definition

V
T

v  t  dto
p

o
Tp

( )rms ( )= ∫
1 2

0 (15.12)

Substituting Eq. (15.11) into Eq. (15.12) gives

V
T

V
kTp

o
p

s(rms)= 1

0
2

(15.13)

Therefore,

Vo � �kVs

15.1.2 Current Relationships

15.1.2.1 Average Currents

Power enters the circuit of Fig. 15.1a from the ideal dc voltage source. Now
power can only be obtained by combining voltage and current components of
the same frequency. The component of the input currentiin(t) that combines with
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FIG. 3 Output voltage and current ripples in a step-down converter: (a) inductor voltage,
(b) output current, and (c) output voltage (not sinusoidal).
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ideal direct voltageVs is therefore the zero frequency or time average value
Iin(av). This gives an input power

Pin � VsIin(av) (15.14)

If the output voltage ripple is entirely smoothed by capacitorCout in Fig. 15.1,
then the output voltage is constant andvo(t) � Vo. The load current (Fig. 15.2b)
consists of an average valueIo plus a ripple
io. The output power is then obtaina-
ble from the (presumed) constant output voltageVo combined with the average
value of the output currentIo.

Pout � VoIo (15.15)

Neglecting the small switching losses in the controlled switch and the diode and
also the resistive loss in the inductor, thenPout � Pin. Combining Eqs. (15.10),
(15.14), and (15.15) gives

V

V

I

I
ko

s

in ac

o

= =( ) ( )duty ratio
(15.16)

Equation (15.16) corresponds directly to the voltage and current relationships for
an electrical transformer in which duty ratiok would be represented by the pri-
mary-to-secondary turns ratio. In Fig. 15.3b it may be seen that the magnitude
of the current ripple
io defines the maximum and minimum values of the output
current in terms of the average valueIo.

I I
i

I I
i

o o
o

o o
o

(max) (min)= + = −
∆ ∆
2 2 (15.17)

The peak-to-peak magnitude of the output current ripple
io can be obtained
from Eq. (15.17)

Io(max)� Io(min) � 
io (15.18)

For the load current of the converter shown in Fig. 15.2b, the instantaneous value
io(t) maybe given expressed as

i t I
i

kT

kTp

o
t kT

I
i

k

o o
o

p
p

o
o

( )

( )

(min)

(max)

= +





≤ ≤

+ −
−

∆

∆

� for 0

1 TT
t kT

Tp

kTp
kT t T

p
p p p( )−






 ≤ ≤for

(15.19)

The average valueIo(av) of the currentio (t) during any intervalTp is defined
by the equation
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I av
T

i t  dto
p

T
o

p( ) = ∫
1

0
( ) (15.20)

The average valueIsw(av) of the switch currentisw(t) (Fig. 15.2c), obtained by
substituting from the first bracketed term of Eq. (15.19) into Eq. (15.20), is found
to be

Isw(av) � kIo � Iin(av) (15.21)

which confirms Eq. (15.16). The average valueID(av) of the diode currentiD(t)
(Fig. 15.2d) is obtained by substituting from the second bracketed term of Eq.
(15.19) into Eq. (15.20).

ID(av) � (1 � k)Io (15.22)

It is seen from Eqs. (15.21) and (15.22) that the average load currentIo(av) is
given by

Io � Io(av) � Isw(av) � ID(av) (15.23)

15.1.2.2 RMS Currents

The thermal ratings of the circuit components depend on their respective rms
current ratings (not on their average current ratings). The rms value of the current
during any periodTp is defined by the classical integral definition

I
T

i t  dto
p

T
o

p( )rms ( )= ∫
1

0
2

(15.24)

During the switch conduction intervals (Fig. 15.1b), when for example, 0� t �
kTp, thenio � iswandiD � 0. During the switch extinction intervals (Fig. 15.1a),
when for example,kTp � t � Tp, then io � iD and isw � 0. Since the two
componentsisw(t) and iD(t) of io(t) are operative for different intervals of the
cycle Tp, and not simultaneously, Eq. (15.24) can be written

I
T

i t dt i t dto
p

kT
sw kT

T
D

p

p

p2

0

2 21
( ) ( ) ( )rms = +



∫ ∫ (15.25)

When the rms valueIsw(rms) of the switch current shown in Fig. 15.2c is obtained
by substituting the first bracketed term of Eq. (15.19) into Eq. (15.25),

I k I
i

sw o
o2 2

2

12
( )

( )
rms = +











∆

(15.26)

When the ripple current
io is negligibly small, it is seen from Eq. (15.26) that

Isw(rms) � �kIo (15.27)
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The rms valueID(rms) of the diode currentiD(t), shown in Fig. 15.2d, is obtained
by use of the second bracketed term from Eq. (15.19) into Eq. (15.24)

I k I
i

D o
o2 2

2

1
12

( ) ( )
( )

rms = − +










∆

(15.28)

It is seen from Eqs. (15.26) and (15.28) that

I I I I
i

o sw D o
o2 2 2 2(rms) (rms) (rms)= + = + � �

��

�∆
(15.29)

The output capacitorCout in Fig. 15.1 is presumed to carry the ripple current
io
but is an open circuit to the average load currentIo. Instantaneous capacitor
currentic(t) may be interpreted from Fig. 15.3b as

i t
i

kT
t

i

k

i

k Tc
o

p

o o

p

kT

kT

Tp

p

p

( ) = +
−

−
−











∆ ∆ ∆

0 1 1� � � �
�

(15.30)

Substitutingic(t) from Eq. (15.30) into Eq. (15.24) gives

I
i k

kc
o

out
( )rms = −

−
� �

�

�∆ 1 5

1 (15.31)

15.1.3 Output Voltage Ripple
With a practical (noninfinite) value of capacitanceCout the output voltagevo(t)
can be considered to consist of an average valueVo plus a small but finite ripple
component with peak value
Vo (Fig. 15.3c). Although the two shaded areas in
Fig. 15.3c are equal, the two half waves are not, in general, symmetrical about
the Vo value. The waveform of the voltage ripple depends on the duty cyclek
and on the nature of the load impedance, shown as resistorR in Fig. 15.1

Instantaneous variation of the inductor voltagevL(t) in Fig. 15.3a shows
the variations of polarity described in Sec. 15.1.1. In this figure the two shaded
areas are equal (because the average inductor voltage is zero) and represent the
physical dimension of voltage multiplied by time, which is electric flux or electric
chargeQ.

The incremental voltage
Vo is associated with incremental charge
Q by
the relation

∆ ∆
V

Q

Co
out

=
(15.32)

The area of each of the isosceles triangles representing
Q in Fig. 15.3b is

∆
∆ ∆

Q
T i T ip o p o= =1

2 2 2 8 (15.33)
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Combining Eqs. (15.32) and (15.33) gives

∆
∆

V
T i

Co
p o

out

=
8 (15.34)

Eliminating 
io (or 
iD) between Eqs. (15.34) and (15.8) gives

∆V
T

C
k

V T

Lo
p

out

o o= −
8

1( )
(15.35)

The incremental output voltage ratio
Vo/Vo is then

∆V

V

T k

LC
o

o

p

out

=
−2 1

8

( )

(15.36)

Now the periodTp can be expressed in terms of the switching frequencyfs, as
in Eq. (15.1). Also, the corner frequencyfc of the low-pass filter formed byL
andCout is

f
LC

c
out

= 1

2π (15.37)

Expressing
Vo/Vo in terms of frequency is found to give

∆V

V
k

f

f
o

o

c

s

= −










π2 2

2
1( )

(15.38)

Equation (15.38) shows that the voltage ripple can be minimized by selecting a
frequencyfc of the low-pass filter at the output such thatfc �� fs. In switch-
mode dc power supplies, the percentage ripple in the output voltage is usually
specified to be less than 1%.

There is an economic case for reducing the size of the inductor (lower
weight and cost), but at a given frequency this will increase (1) the current ripple
and therefore the peak and rms switch currents and associated losses and (2) the
ripple voltages (and currents) on the input and output capacitors implying a need
for larger capacitors.

Increase of the switching frequencyfs (i.e., smallerTp) results in lower
ripple magnitude
Vo. This requires a smaller inductor and lower rated smoothing
capacitors. However, the switching losses in the semiconductor may then become
significant and electromagnetic interference problems become worse.

15.1.4 Worked Examples
Example 15.1 A semiconductor switching element in a power circuit has

a minimum effective on time of 42�s. The dc supply is rated at 1000 V. (1) If
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the chopper output voltage must be adjustable down to 20 V, what is the highest
chopper frequency? (2) If the chopping frequency increases to 500 Hz, what will
then be the minimum output voltage?

1. Minimum required duty cycle� 20/1000� 0.02� k.

Ton (minm) � 42 � 10�6 s

But Ton � kTp from Eq. (15.2). Therefore,

T
T

kp
on= = × = ×

−
−42 10

0 02
2100 10

6
6

.
s

Maximum chopper frequency is

f
Ts

p

= = =1 10

2100
476 2

6

. Hz

2. For fs � 500 Hz

T
fp
s

= = =1
0 002 2000. s sµ

If Ton remains at 42�s, the minimum duty cycle is then

k
T

T
on

p

= = =42

2000
0 021.

At this value of duty cycle the converter output voltage, from Eq. (15.19), is

Vo � kVs � 0.021� 1000� 21 V

Example 15.2 The semiconductor switch in a dc step-down converter has
a minimum effective off time of 28.5�s. If the constant dc supply is rated at
1250 V and the chopping frequency is 2000 Hz, calculate the maximum duty
cycle and the maximum output voltage that can be obtained.

T
fp
s

= = =1 1

2000
500 µs

But the switching off time is 28.5�s so that the on time per cycle is

Ton � 500 � 28.5� 471.5�s

The maximum duty cyclek will then be, from Eq. (15.2),

k
T

T
on

p

= = =471 5

500
0 943

.
.
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From Eq. (15.10), the output voltageVo is

Vo � kVs � 0.943� 1250� 1179 V

Example 15.3 The dc chopper converter in Example 15.1 is connected to
resistive loadR � 1.85 �. What is the average input current when it operates
at a frequency of 500 Hz?

From Example 15.1, part (2), the average load voltage isVo � 21 V.
Therefore, the average load current is

I
V

Ro
o= = =21

1 85
11 35

.
. A

As before, the duty cyclek is

k
T

T
on

p

= = =42

2000
0 021.

From Eq. (15.16), the average valueIin(av) of the input current, which is also
the average valueIsw(av) of the switch current, is

Iin(av) � kIo � 0.021� 11.35� 0.24 A

Example 15.4 A step-down dc converter is used to convert a 100-V dc
supply to 75-V output. The inductor is 200�H with a resistive load 2.2�. If
the transistor power switch has an on time of 50�s and conduction is continuous,
calculate

1. The switching frequency and switch off time
2. The average input and output currents
3. The minimum and maximum values of the output current
4. The rms values of the diode, switch, and load currents

1. Ton � 50 � 10�6 s. NowVs � 100 V, Vo � 75 V, so that, from Eq.
(15.10),

k
V

V
o

s

= = =75

100
0 75.

From Eq. (15.2)

T
T

k
T k T T

p
on

off p p

= = =

= − = =

50

0 75
66 67

1 0 25 16 67
.

.

( ) ( . ) .

µ

µ

s

s

Switching frequencyfs is given, from Eq. (15.1), by
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f
Ts

p

= = =1 10

66 67
1

6

.
5 kHz

2. The average output currentIo is

I
V

Ro
o= = =75

2 2
34 1

.
. A

From Eq. (15.16), the average input currentIin(av) is then

Iin(av) � kIo � 0.75� 34.1� 25.6 A

3. From Eq. (15.15), noting that
isw � 
io, it is seen that the peak-to-
peak output current
io may be expressed as

∆i
kT

L
V Vo

p
s o= − = × − =( )

. . /

/
( ) .

0 75 66 7 10

200 10
100 75 6 25

6

6
A

Therefore, from Eq. (15.17),

I

I

o

o

(max)

(min)

.
.

.

.
.

.

= + =

= − =

34 1
6 25

2
37 225

34 1
6 25

2
30 975

A

A

4. The rms output currentIo(rms), from Eq. (15.28),

I I
i

o o
o( )

( )
( . )

( . )
.rms A= + = + = =2

2
2

2

12
34 1

6 25

12
1166 34 15

∆

From Eq. (15.25),

I2
sw(rms) � kI2o(rms)

so that

Isw(rms) � �0.75� 34.15� 29.575 A

Using the alternative expression (15.26), since the ripple is small,

Isw(rms) � �kIo � �0.75� 34.1� 29.53 A

From Eq. (15.27),

I 2
D(rms) � (1 � k)I2

o(rms)

or

ID(rms) � �1 � kIo(rms) � �0.25� 34.1� 17.05 A
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15.2 STEP-UP CONVERTER (BOOST
CONVERTER)

15.2.1 Voltage Relationship

If the controlled switchS, the diodeD, and the filter inductorL are configured
as in Fig. 15.4a, the circuit can operate to give an output average voltageVo

higher at all times than the supply voltageVs. In Fig. 15.4 it is assumed that the
switches are ideal and that the inductor and capacitors are lossless. Equations
(15.1) and (15.2) for the basic switching conditions also apply here.

Waveforms for steady-state converter operation, with continuous conduc-
tion, are given in Fig. 15.5. The inductor voltagevL(t) and the switch voltage
vsw(t) sum to the supply voltageVs at all times. During conduction of the switch
S the supply voltageVs is clamped across the inductor. Because the inductor
average voltage is zero the positive and negative excursions of the inductor volt-
age (Fig.15. 5b) are equal in area. The input currentiin(t), in Fig 15.4a, divides
between the switch (when it is conducting) currentisw(t) and the diode current
iD(t).

During the extinction intervals, whenSis on (Fig. 15.4b), inductorL charges
up.

L
di

dt
V L

i

T
L

i

kT
in

s
in

on

in

p

= = =
∆ ∆

(15.39)

During the extinction intervals, whenS is open (Fig. 15.4c), energy from the
inductor and from the supply are both transferred to the load.

L
di

dt
V V L

i

T
L

i

k Ts o
in

p

in in

off

= − = − = −
−

∆ ∆
( )1 (15.40)

But the current excursions
iin are equal for both the conduction and extinction
intervals (Fig. 15.5c). Therefore, eliminating
iin between Eqs. (15.39) and
(15.40) gives

kT V

L

k T

L
V V

p s p
s o=

−
−

( )
( )

1
(15.41)

and

Vs � (1 � k)Vo (15.42)

While the switchS is off, load current continues to conduct via the inductor and
diode in series (Fig. 15.4c). The output voltagevo(t) maps the load currentio(t).

vo(t) � io(t)R � (Io � 
io)R � Vo � 
Vo (15.43)
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FIG. 4 Step-up converter,R load: (a) general configuration, (b) switch-on state, and (c)
switch-off state.
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FIG. 5 Waveforms of the step-up converter: (a) switch voltage, (b) inductor voltage, (c)
input current, (d) switch current, (e) diode current, and (f) output voltage.
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Assume that all the ripple current component
io of the load current flows through
Cout and its average valueIo flows through the load resistorR. Then the ripple
voltage
Vo is

∆ ∆
V

Q

C

I kT

C

V

R

kT

Co
o p o p= = =

out out out (15.44)

The output voltage ripple may be expressed in per unit as

∆V

V

kT

RC

kTo

o

p p= =
out τ (15.45)

15.2.2 Current Relationships

The expressions (15.11) and (15.12) for input powerPin and output powerPout

to a step-down converter remain valid here for the step-up converter. Also, for
a lossless converter it is still true thatPin � Pout. Combining Eqs. (15.11) and
(15.12) into Eq. (15.45) gives

∆V

V

I

I av k
o

s

in

o

= =
−( )

1

1 (15.46)

Equation (15.46) compares with the corresponding relation Eq. (15.16) for a step-
down converter.

For any valuek � 1 the voltage ratioVo/Vs in Eq. (15.46) is greater than
unity, corresponding to a step-up transformer.

From Eqs. (15.39) and (15.40)

∆i
kT V

L

k k V T

L

V

L
t

kV

L
tin

p s o p s
on

o
off= =

−
= =

( )1
(15.47)

Note that in this converter, the output current to the filter capacitorCout is very
unsmooth, whereas the input current is much smoother because of the inductor.
This is in contrast to the buck converter, in which the opposite is true, because
the inductor is in series with the output. This will strongly influence the relative
ease of smoothing the input and output dc voltages (i.e., the sizes of the capaci-
tors). From Fig. 15.5c, it can be deduced that

I I av
i

in
in(max) ( )= +in

∆
2 (15.48)

I I av
i

in
in(min) ( )= −in

∆
2 (15.49)
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iin � I in(max) � Iin(min) (15.50)

The corresponding instantaneous input current is given by an expression similar
to Eq. (15.19),

i t I
i

kT
t I

i

k T
t kin in

in

p
in

in

p

kTp

( )
( )

(
min max

= +








 + +

−
−

∆ ∆

0 1
TTp

kT

T

p

p

)










 (15.51)

During the switch conduction intervals, 0� t � kTp, iD � 0, andIm � Isw. The
switch current properties, similarly to Sec. 15.1.2, are found to be

Isw(av) � kIin (15.52)

ID(av) � Io(av) � (1 � k)Iin (15.53)

Isw(rms) � �kIin (15.54)

15.2.3 Worked Examples

Example 15.5 A dc–dc step-up converter requires to operate at a fixed
output voltage level of 50 V. The input voltage varies between the limits of 22
V and 45 V. Assuming continuous conduction, what must be the range of duty
ratios?

Vo � 50 V Vs � Vin(av) � 22 V → 45 V

From Eq. (15.45)

1− =k
V

V
s

o

If Vs � 22 V,

k = − = − =1
22

50
1 0 44 0 56. .

If Vs � 45 V,

k = − = − =1
45

50
1 0 9 0 1. .

Example 15.6 A step-up dc converter is used to convert a 75-V battery
supply to 100-V output. As in Example 15.4, the inductor is 200�H and the
load resistor is 2.2�. The power transistor switch has an on time of 50�s, and
the output is in the continuous current mode.

1. Calculate the switching frequency and switch off-time.
2. Calculate the average values of the input and output current.
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3. Calculate the maximum and minimum values of the input current.
4. What would be the required capacitance of the output capacitorCout

in order to limit the output voltage ripple
Vo to 10% of Vo?

1. Vo � 100 V, Vs � 75 V. From Eq. (15.42),

1

1

100

75
1 33

−
= = =

k

V

V
o

s

.

k � 1 � 0.75� 0.25

From Eq. (15.2),

T
T

kp
on= = × =

−50 10

0 25
200

6

.
µs

Switching frequency is

f
Ts

p

= = =1 10

200
5

6

kHz

Switch-off period is

T k Toff p= − = × =( ) .1 0 75
200

10
150

6
µs

2. Vo � 100 V. The average output currentIo is given by

I
V

R .
.o

o= = =100

2 2
45 45 A

From Eq. (15.46), the average input currentIin(av) is

I av
I
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.

.
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−
= =
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3. From Eq. (15.40),
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From Eq. (15.48),

I I av
i
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.
.

.

= +

= + =

in

A

∆
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2
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.
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∆
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4. 
Vo/Vo � 0.1 (specified). From Eq. (15.45),
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∆
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15.3 STEP-DOWN–STEP-UP CONVERTER
(BUCK–BOOST CONVERTER)

15.3.1 Average Voltage and Current

The circuit diagram of a buck–boost converter (Fig. 15.6a) shows that the output
current io(t) is unidirectional and that the output voltagevo(t) is negative with
respect to the input. During conduction of the semiconductor switch the diode
D is reverse biased and the load is electrically isolated (Fig. 15.6b), while energy
is transferred from the supply to the inductor. When switchS is open, the load
current flows through inductorL, and the stored energy is transferred from the
inductor to the load (Fig. 15.6c). The operation of the buck–boost converter is
equivalent to that of a buck (step-down) converter in cascade with a boost (step-
up) converter. The following analysis presumes that the converter operates in the
continuous conduction mode.

During the switch on intervals, the current increases by a value
iin in time
Ton (� kTp) through inductorL:

V L
i

T
L

i

kTs
in

on

in

p

=
∆

=
∆

(15.55)
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FIG. 6 Step-up-down converter,R load: (a) general circuit, (b) switch-on state, and (c)
switch-off state.
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But since the average inductor voltage is zero, the equal area criterion applies in
Fig. 15.7 and

kV T V k Ts p o p= − −( )1 (15.56)

It is seen from Eq. (15.56) that the voltage ratio for a buck–boost converter is

V

V

k

k
o

s

= −
−1 (15.57)

For k � 1/2, Vo is smaller than the input voltageVs. For k � 1/2, Vo is larger
than the input voltageVs. Output average voltageVo is negative with respect to
the input voltageVs for all values ofk. Once again it can be assumed that the
input and output powers are equal, as in Eqs. (15.14) and (15.15), so that

I

I av

V

V

k

k

k

k
o

in

s

o( )

( )= = − − = −1 1
(15.58)

Equation (15.58) demonstrates that the polarity of the output average currentIo

is negative with respect to input currentIin(av) for all values of duty ratiok. Note
that the relations Eqs. (15.57) and (15.58) are valid only for fractional values of
k and not at the limitsk � 0 or k � 1.

15.3.2 Ripple Voltage and Current

The peak-to-peak ripple input current
iin, shown in Fig. 15.7, can be obtained
from Eq. (15.55):

∆ =i
kT V

Lin
p s

(15.59)

Since the periodic time is the inverse of the switching frequencyfs, the current
ripple may also be expressed as

∆ =i
kV

f Lin
s

s (15.60)

From Eq. (15.57) the duty ratiok can be expressed in terms of the system average
voltages

k
V

V V
o

o s

=
− (15.61)
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FIG. 7 Waveforms of the step-up-down converter: (a) switch voltage, (b) inductor volt-
age, (c) input current, (d) diode current, and (e) switch current.
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Combining Eqs. (15.60) and (15.61) gives

∆ =
−

i
V V

f L V Vin
o s

s o s( ) (15.62)

The load voltage ripple
Vo (not shown in Fig. 15.7) can be obtained by consider-
ing the charging and discharging of the output capacitorCout. In the periodskTp,
while the input currentiin(t) is increasing, the capacitor voltage or output voltage
vo(t) decreases as the capacitor discharges through the load resistorR

v t v t
C

i t dtc o
out

c
kTp( ) ( ) ( )= = ∫

1
0 (15.63)

But if Cout is large, the capacitor current in thekTp periods is almost constant at
the valueIo of the load current. The capacitor voltage ripple is therefore also
constant.

∆ ∆v t V t
C

i t dt

kT I

C

kI

f C

c o
out

c
kT

p o

out

o

s out

p( ) ( ) ( )= =

= =

∫
1

0

(15.64)

15.3.3 Worked Examples
Example 15.7 A buck–boost converter is driven from a batteryVs � 100

V and operates in the continuous current mode, supplying a load resistorR �
70 �. Calculate the load voltage and current and the input current for values of
duty cyclek (1) 0.25, (2) 0.5, and (3) 0.75.

From Eqs. (15.57) and (15.58)

I
V

R

k

k

V

Ro
o s= = −

−1

1. k � 0.25,

I
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o o
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3. k � 0.75,

I

V I R

o

o o

= − × = −

= = −

0 75

0 25

100

70
4 286

300

.

.
. A

V

The negative signs in the values above indicate reversal of polarity with respect
to the supply.

From Eq. (15.58)

I
k

k
Iin o=

−1

Combining this with the expression forIo above gives
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Example 15.8 A buck–boost converter operates in the continuous current
mode at a switching frequencyfs � 20 kHz.Vs � 24 V, Cout � 250 �F, L �
200�H, and the load resistanceR � 1.5�. For a duty cyclek � 0.33 calculate
(1) the average load voltage and current, (2) the peak-to-peak input current ripple,
and (3) the peak-to-peak output voltage level.

1. From (15.57)

V
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k
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2. If fs � 20 kHz,

Tp =
×

=1

20 10
50

3
µs

Using Eq. (15.62)

∆ = − ×
× × × × − −

=−iin
12 24

20 10 200 10 12 24
2

3 6 ( )
A

3. From Eq. (15.64)

∆ = = × −
× × ×

= −
−

V
kI
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o

s out

0 33 8

20 10 250 10
0 53

3 6

. ( )
. V

The negative sign has no significance in this context.

15.4 DC CHOPPER CONTROL OF A DC MOTOR

A dc converter in the voltage step-down (buck) connection is useful for controlling
the armature voltage of a separately excited dc motor in order to control its speed.
The armature circuit contains a small resistanceRa and a small inductanceLa.
In order to ensure continuity of the armature currentia(t) (Fig. 15.8), it is often
necessary to include an additional series inductance. The combination of armature
inductanceLa plus the additional inductance is represented by the inductorL in
Fig.15. 8a. The time constantL/Ra of the armature circuit is long compared with
the switching period. It may be seen that the dc chopper circuit (Fig. 15.8a) is
the same as that of the buck converter (Fig. 15.1a), differing only in the load
circuit.

15.4.1 Equations of Operation for a DC Motor

During rotation of the armature an internal emfE is generated which has a polarity
that opposes the flow of armature current during motoring operation. The average
voltage drop on the inductor must be zero so that for steady-state motoring at
constant speed,

Va � IaRa � E (15.65)

The torqueT in newton-meters(Nm) developed by a dc motor can be represented
by

T � K�Ia (15.66)
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FIG. 8 Chopper control of dc motor speed: (a) equivalent circuit and (b) speed–torque
characteristics in quadrant 1.

The internal emfE is related to the speed	 radians/s by

E � K�	 (15.67)

The magnetic flux� developed in the motor depends on the current in the separate
excitation winding. This winding plays no part in the following calculations. Term
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FIG. 9 Chopper control of dc motor speed in the regeneration mode: (a) equivalent circuit
and (b) speed–torque characteristics in quadrant 2.

K in Eqs. (15.66) and (15.67) is a design constant; so the torque is proportional to
armature current and the internal emf is proportional to the speed.

K
T

I

E

a

Φ = =
ω (15.68)

The powerPout delivered out of the shaft of the motor, neglecting rotational
losses, is given by
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Pout � T	 (15.69)

With the torque in newton-meters (Nm) and speed in radian per second (radian/
s) the output power is in watts. It is now customary for electric motors to be
rated in watts rather than in the former unit of horsepower [1 hp� 746 W]. But,
from Eq. (15.70), it can be seen that the output power can also be represented
in equivalent electrical terms.

Pout � T	 � EIa (15.70)

The combination of Eqs. (15.64)–(15.66) gives an expression

ω =
−

= −
V I R

K

V

K

R

K
Ta a a a a

Φ Φ Φ2 2 (15.71)

Equation (15.64) represents a linear characteristic of negative slope, shown in
Fig. 15.8b. The negative slope of the characteristics is constant at the valueRa/
K2�2, but the intercept on the speed axis is proportional to the load voltageVa.
With dc chopper control of the load (i.e., armature) voltage, it was shown in Eq.
(15.10), for the buck converter, thatVo(Va) � kVs, wherek is the switch duty
cycle. With constant supply voltageVs from the dc source the speed axis intercept
is therefore proportional tok. The power flow in the circuit of Fig. 15.8a is
unidirectional from the supply to the load. Only positive motor speed and unidirec-
tional motor current are realizable. This particular mode of control is referred to
as one quadrantcontrol because the operating characteristics lie only in one
quadrant of the speed–torque plane.

15.4.2 Regenerative Braking Operation

The rotating machine will behave like a generator if it is driven in the motoring
direction by some external mechanical means. Energy can be transferred from
the rotating machine to the electrical circuit connected to its terminals. In effect,
the motor armature voltage becomes the input voltage to a boost converter and
the dc system voltageVs becomes the output voltage (Fig. 15.9a). Internal emf
E becomes the source voltage. For the armature circuit the Kirchhoff voltage
equation is

Va � E � IaRa (15.72)

During reverse current operation, the terminal voltageVs becomes the output
voltage of a generator. Compared with the motoring equation, Eq. (15.65), it is
seen that Eq. (15.72) differs only in the sign of the current term. If the electrical
supply is capable of receiving reverse current from the rotating machine then
energy can be returned from the rotating generator into the supply. This operation
is referred to asregenerative braking, or sometimes justregeneration. The energy
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of rotation is now reinstated into the supply, whereas for dynamic braking, it is
dissipated and lost. When switchS is closed, the source voltageE drives an
increasing current throughRa, L, andS. When switchS opens the continuous
armature currentia(t) flows and decays through the diodeD and the supply.
Energy is then converted from the mechanical energy of rotation into electrical
energy. The transfer of energy acts as a brake on the motion, causing speed
reduction. The power generated inside the rotating dc machine during braking,
is

Pgen � EIa (15.73)

Some part of this power is lost as heat in the armature resistance,I2
a(rms)Ra. The

remaining powerVaID flows back into the dc supply With an ideal diodeVa �
Vs so that

VsID(av) � EIa(av) � I2
a(rms)Ra � Pgen � I2

a(rms)Ra (15.74)

Now for boost converter operation it was shown in Eq. (15.45) thatVs � (1 �
k)Va or

k
V V

V
a s

a

=
−

(15.75)

In most regenerative braking applications the ‘‘supply’’ voltageVs remains con-
stant. Therefore

1. For low speeds,E is low, Va is low, so thatk is required to be high.
2. For high speeds,E is high,Va is high, so thatk is required to be low.

It is a prerequisite for regenerative braking operation that the dc supply system
must be capable of accepting reverse current and also be able to absorb the
regenerated energy. A battery would be satisfactory but not a rectifier fed from
an ac supply. If necessary, an ‘‘energy dumping’’ resistor must be switched across
the dc system to dissipate the excess energy whenVs rises above a safe level.

15.4.3 Four-Quadrant Operation

Fully comprehensive operation of a speed-controlled motor includes both motor-
ing and regenerative braking operation in either direction of motor speed. Such
full control combines the speed-torque characteristics of Figs. 15.8b and 15.9b,
which occur in quadrants (1) and (2), respectively, of the speed–torque plane,
plus the corresponding reverse-speed characteristics in quadrants (3) and (4) of
the speed–torque plane. The overall four-quadrant picture is demonstrated in Fig.
15.10. Four quadrant operation can be obtained by the use of the dc chopper type
of converter. But reverse-speed operation requires reversal of the armature voltage
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FIG. 10 Speed–torque characteristics for four-quadrant control.

polarity. It is therefore necessary either to use two choppers with independent
back-to-back operation or to provide supplementary switching so that a single
chopper can be applied to the motor in either of its two polarity options.

PROBLEMS

Step-Down (Buck) Converter

15.1 Sketch the basic circuit diagram for a dc–dc buck (step-down) voltage
converter, incorporating a large output capacitor. Show waveforms of
the load voltages for the two duty-cycle conditions (a)k � 1/4 and (b)
k � 3/4. For both conditions write expressions for the average and rms
values of the load voltages in terms of the supply voltageVs.

15.2 For a buck converter with continuous load current and resistive loadR,
derive an expression for the output power in terms of supply voltageVs

and duty cyclek. Calculate the per-unit value of the load power for (a)
k � 1/4 and (b)k � 3/4.

15.3 A buck converter with batteryVs has resistive loadR and duty cyclek.
Sketch waveforms of the voltages across the switch and diode and calcu-
late their average values.

15.4 The semiconductor switch in a step-down converter has a minimum effec-
tive on time of 37.5�s. If the output voltage range is to have a minimum
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value of 45 V and the dc supply is rated at 600 V, what is the highest
chopper frequency?

15.5 If the chopper frequency in Problem 15.4 is reduced to 1 kHz, what will
be the minimum output voltage?

15.6 A semiconductor switch has a minimum effective off time of 30.5�s.
If the ideal dc supply is rated at 1200 V and the chopping frequency is
3500 Hz, calculate the maximum duty cycle and the maximum output
voltage that can be obtained.

15.7 The dc chopper convert in Problem 15.4 is connected to a resistive load
R � 2.25 �. What is the average load current when it operates at a
frequency of 700 Hz?

15.8 A step-down converter is used to convert a 500-V dc supply to an output
voltage of 300 V. The filter inductor has a value of 200�H, and the
resistive load is 2.75�. The semiconductor switch has an on time of
53.5�s, and conduction can be assumed to be continuous. Calculate (a)
the switching frequency, (b) the switch off time, and (c) the average
value of the input current.

15.9 For the step-down converter of Problem 15.8, operating in the continuous
conduction mode, calculate (a) the maximum and minimum values of
the load current and (b) the rms values of the diode, switch, and load
currents.

Step-Up (Boost) Converter

15.10 A boost converter is required to operate with a fixed output voltageVo

� 60 V. The input voltage varies in the range from 20 V to 40 V. If
the conduction is continuous, what must be the range of the duty ratios?

15.11 A step-up converter supplied by a 100-V battery transfers energy to a
seriesR-L load, whereL � 220�H andR � 2.5�. The semiconductor
switch has an on time of 42.7�s. If the output voltage is required to
be 130 V and the conduction is continuous, calculate (a) the switching
frequency, (b) the switch off time, and (c) the average output current.

15.12 For the step-up converter of Problem 15.11 calculate the maximum, mini-
mum, and average values of the input current.

15.13 For the step-up converter of Problem 15.11 it is required to limit the
output voltage ripple
Vo/Vo to 10%. What value of capacitance is re-
quired of the output capacitorCout?
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Step-Up–Step-Down Converter

15.14 A step-up–step-down (i.e., boost–buck) converter supplied from a battery
of 176 V supplies a load resistorR� 58�. If the load current is continu-
ous, calculate the average input current and the load average voltage and
current for the values of duty cycle (a)k � 0.25, (b)k � 0.5, and (c)
k � 0.75.

15.15 A buck–boost converter has the design parametersL � 200 �H, Cout

� 300 �F, andfs � 22.4 kHz. It operates from a 50-V dc supply in
the continuous current mode, supplying a load resistanceR � 1.85�.
Calculate the average load voltage and current for duty cycles (a)k �
0.25 and (b)k � 0.75.

15.16 For the buck–boost converter of Problem 15.15, at the two values of the
duty cycle, calculate (a) the peak-to-peak input current ripple and (b) the
peak-to-peak output voltage level.
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Switch-Mode Converter Power
Supplies

A switch-mode power (SWP) converter transforms a (usually) fixed level of dc
voltage to an adjustable level of dc output voltage. Voltage control is realized
by variation of the duty cycle (on–off ratio) of a semiconductor switching device,
as in the chopper converter described in the Chapter 15.

In a SWP system it is necessary to use an isolating transformer, as shown
in the basic schematic of Fig. 16.1. The switching frequency of the dc–dc con-
verter can be made much higher than the line frequency so that the filtering
elements, including the transformer, may be made small, lightweight, efficient,
and low cost. The output of the transformer is rectified and filtered to give a
smoothed output voltageVo. The output voltage may be regulated by using a
voltage feedback control loop that employs a PWM switching scheme.

16.1 HIGH-FREQUENCY SWITCHING

Switch-mode power supplies use ‘‘high’’ switching frequencies to reduce the
size and weight of the transformer and filter components. This helps to make
SWP equipment portable. Consider a transformer operating at a given peak flux
�m, limited by saturation, and at a certain rms current, limited by winding heating.
For a given number of secondary turnsN2, there is a given secondary voltageV2

related to the primary valuesV1 andN1 by
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FIG. 1 Schematic of a switch-mode supply.
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(16.1)

The sinusoidal primary (applied) voltageV1 is related to the peak flux�m and
supply frequencyf1 by a relation

V1 � 4.44�mf1n (16.2)

wheren is a design constant.
If the applied frequencyf1 is increased with the same flux and the same

waveforms, the voltagesV1, andV2 will also increase proportionately. But if the
transformer windings are not changed and use the same respective sizes of con-
ductor wire and the same respective number of turnsN1, N2, the current ratings
of the two windings, will be unchanged. Increase of the voltages due to increased
frequency, with unchanged current ratings, implies a proportionate increase in
the winding voltampere (VA) ratings, which is equally true for both the primary
and secondary windings.

16.2 HIGH-FREQUENCY ISOLATION
TRANSFORMER

Transformer iron losses, due to magnetic hysteresis and to eddy currents, increase
with frequency. For SWP equipment the increased losses can become considera-
ble so that it may be desirable to use ferrite core materials rather than iron or
steel laminations. The isolation transformer in Fig. 16.1 is a shell-type cored
device with a form of B-H loop shown in Fig. 16.2. The peak flux densityBm

is related to the flux�m by

Bm
m=

Φ
area of flux path (16.3)
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FIG. 2 Two-winding transformer: (a) shell-type core and (b) core B-H loop.

In Fig. 16.2 the interceptBr is known as the residual flux density. The magnetizing
intensity H in Fig. 16.2 is proportional to the magnetizing current in the winding.
Time variations of the current and flux cause iron power losses in the trans-
former core, which appear as heat. When ceramic ferrite rather than iron or
steel laminations is used as the magnetic core material, and when the frequency
is greater than 20 kHz, the working peak flux density then falls from (say)
1.5 T to about 0.3 T. But the iron losses in the ferrite also increase with
frequency so that the usable flux density then falls, and still more expensive
ferrite materials may be desirable. Nevertheless, the economic benefits of using
high-frequency switching are considerable, particularly in portable equipment.
Present (2002) developments are moving toward operating switching frequen-
cies up to 1 MHz, but the consequent problems of electromagnetic interference
(EMI) then become significant.

In the flyback and forward converter connections, described below, unidi-
rectional transformer core excitation is used where only the positive part of the
B-H loop (Fig. 16.2b) is used.

For the push–pull, full-bridge, and half-bridge converter circuits, described
below, there is bidirectional excitation of the transformer core and both the posi-
tive and negative parts of the B-H loop are used.

16.3 PUSH–PULL CONVERTER

16.3.1 Theory of Operation

The dc–dc push–pull converter (Fig. 16.3) uses a center-tapped transformer and
two controlled switches,S1 andS2. To prevent core saturation both switches must
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FIG. 3 Push–pull dc–dc converter.

have equal duty cycles,k. The transformer voltage ratio satisfies the turns ratio
relationship Eq. (16.1) . VoltageV1 is determined by the switch duty ratiok �
Ton/Tp, as for the step-down converter in Fig. 15.2.

V kV
T

T
V
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on

p
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on

p
s

on

p
s1

1 2= = = =
(16.4)

The cycle of operation for the circuit of Fig. 16.3 is that conduction occurs
sequentially through switchesS1 andS2 with dwell periods between the sequences
in which there is no conduction at all on the primary side. This action is repre-
sented in the waveforms of Fig. 16.4 in which the switch-on periods are repre-
sented byS1 andS4, respectively, and the dwell (off) periods by
.

During the intervals when switchS1 (Fig. 16.3) conducts, then diodeD1

also conducts so thatD2 is reverse biased. CurrentiL(t) flows through inductor
L and the output voltagevo(t) is given by

v t V
N

N
V

N

N
Vo

on
s

S
( ) 1

2
2

1
1

2

10
= =

−
=

+
(16.5)

The signs in Eq. (16.5) refer to the voltage polarities defined by the ‘‘dots’’ on
the transformer windings in Fig. 16.3.

During the intervals
 when both switches are off, the inductor currentiL(t)
splits equally between the two diodes and the output voltagevo(t) is zero.
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FIG. 4 Waveforms for the push–pull converter (based on Ref. 3).
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Also

S S
T

on on
p

1 2        + ∆ = + ∆ =
2 (16.7)

The whole periodTp in Fig. 16.4 represents a performance similar to that of
the step-down converter (Fig. 15.1), but of double frequency. Combining Eqs.
(16.5)–(16.7) yields, for 0� k � 0.5,

V

V

N

N
ko

s

= 2 2

1 (16.8)

The voltagevL(t) across the inductor, which has an average value of zero, is given
by

v t
N

N
V V VL s o

T

o

Tp
p

( )
/

= −








 −

−
2

1 0

2
2∆___( )

Tp −
2

∆___( ) (16.9)
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During the conduction intervals of the switches the currentiL(t) smoothly in-
creases. When both switches are off,

iL(t) � 2iD1(t) � 2iD2(t) (16.10)

The system currents are given in Fig. 16.4.

16.3.2 Worked Example

Example 16.1 A resistive loadR� 8.5� is supplied from a 12-V battery
via a push–pull dc–dc converter in which the transformer (step-down) ratio is
1:4. Calculate the average output current for the duty ratios (1) 0.1, (2) 0.3, and
(3) 0.5.

Given N2/N1 � 4. The average output voltage is, from Eq. (16.8) ,

V
N

N
V k k ko s= = × × × =2 2 4 12 962

1

1. Vo � 96 � 0.1 � 9.6 V, and Io � Vo/R � 9.6/8.5� 1.13 A.
2. Vo � 96 � 0.3 � 28.8 V, andIo � 28.8/8.5� 3.39 A.
3. Vo � 96 � 0.5 � 48 V, andIo � 48/8.5� 5.65 A.

16.4 FULL-BRIDGE CONVERTER

A particular form of single-phase voltage-fed full-bridge converter that uses four
switches is shown in Fig. 16.5a. In its simplest form energy from a dc supply of
voltageVs is transferred through a transformer to a seriesR-L load. Symmetrical
switching of the four power transistorsT gives an output voltage square wave
(Fig. 16.5b), so that the function is an inverting operation giving an ac output
voltage v1(t) across the transformer primary winding. The ideal transformer has
a turns ratio 1:n, wheren � N1/N2. Steady-state operation (not start-up operation)
is presumed.

16.4.1 Modes of Converter Operation

1. With switchesT1 andT4 on the supply voltage is connected across the
transformer primary andv1(t) � Vs. A positive voltagev2(t) � Vs/n
causes currenti2(t) to increase through the load. Currenti2(t) � ni1(t)
and both currents have the same wave shape.

2. With switchesT2 andT3 on, andT1 andT4 held in extinction, the rising
load current (and hence primary current)i1(t) cannot suddenly reverse
because of the load inductance. But this current now flows through the
diode switchesD2 and D3 and the voltage across the transformer is
reversed, so thatv1(t) � �Vs and v2(t) � �Vs/n. Energy stored in
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FIG. 5 Full-bridge converter: (a) circuit schematic and (b) waveforms for ideal operation.

the inductor is then fed back into the supply. The result is that the
currenti1(t) reduces and then reverses so thati1(t) becomes negative.
The voltage relationships can be summarised as
v1 � 	Vs (16.11)

v
N

N
V

V

n

V

n
s

2
2

1
1

1= = = ±
(16.12)

The voltampere ratings of the two transformer windings must be equal
so that
V1I1 � V2I2 (16.13)
Combining Eqs. (16.12) and (16.13) gives
I2 � nI1 (16.14)
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3. If switchesT2 andT3 are then switched off and switchesT1 andT2 are
switched on again, the negative current flows through diodeD4, the
transformer primary winding, and diodeD1 back into the positive sup-
ply terminal, falling to zero and then reversing. The diagram Fig. 16.5b
indicates the current paths during the actions of the transistors and
diodes in each period of the cycle.

16.4.2 Operation with Full-Wave Rectifier Load

Consider the transformer of Fig. 16.5a supply a single-phase, full-wave, rectified
load incorporating anL-C filter, as shown in Fig. 16.6. Assume that the filter
inductorLD is large enough to maintain the load currentiL(t) effectively constant
at valueIL and that the output capacitorC smooths any perturbations of the load
voltagevL(t) so thatvL(t) � VL. If the transformer leakage reactance is negligibly
small, the primary currenti1(t) can reverse instantaneously after switching. Volt-
age and current waveforms for the ideal condition are shown in Fig. 16.7. When
switching occurs, the instantaneous transformer voltagesv1(t) andv2(t) both re-
verse polarity, and the primary and secondary currents also reverse direction.

The practical operation of the circuit Fig. 16.5b is more complicated due
to the unavoidable effects of circuit inductance. A fairly accurate picture of the
circuit operation may be obtained in terms of transformer leakage inductance if
the transformer magnetizing current is neglected.

When one pair of the full-bridge switches opens, the primary currenti1(t)
cannot suddenly reverse because of the energy stored in the transformer series
leakage inductanceL1. Note thatL1 defines the total transformer series inductance,
referred to asprimary turns. When switchesT1 andT4 turn off the currenti1(t)
commutates via diodesD2 and D3. While i1(t) remains smaller thanIL/n, the
difference current (IL � ni1) freewheels through the diode bridge andv1(t) �

FIG. 6 Single-phase, full-wave bridge rectifier load supplied by a full-bridge converter.
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FIG. 7 Waveforms for ideal operation of a full-wave bridge rectifier load supplied by a
full-bridge converter.

v2(t) � 0. Wheni1(t) has fallen to zero, it then increases in the reverse direction
throughT2 andT3 up to the magnitudei1(t) � IL/n, whenv1(t) � nv2(t) � �nVL.
During the reversal ofi1(t) the freewheeling action causes the voltagev1(t) across
L1 to bevL(t) � 	Vs. It then follows thatv1(t) � 0 and

di

dt

V

L
s1

1

= ±
(16.15)

Although switching on takes place at zero voltage, the switching off of full current
occurs at full voltage, which imposes a severe duty on the switches.

16.4.3 Worked Example

Example 16.2 A full-bridge converter with rectified load has a power
supplyVs � 300 V and incorporates a 10:1 step-down transformer. The trans-
former leakage inductance is 30�H and the switching frequency is 20 kHz.
Calculate the dc output voltage when the output current is 50 A.

Neglecting transformer leakage inductance the transformer output voltage,
from Eq. (16.12) , is

V
V

n2
1 300

10
30= = = V

The secondary currentI2 � IL � 50 A. From Eq. (16.14) ,

I
I

n1
2 50

10
5= = = A
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The peak-to-peak value of input currenti1(t), from Fig. 16.5b is therefore

I1 (peak to peak)� 10 A

Now Vs � 300 V andL1 � 30 �H. During switching the peak-to-peak current
is the interval described asdi1 in Eq. (16.15) . Therefore, the transient interval
dt is given by

dt di
L

VS

= = × × =
−

1
1

6

10
30 10

300
1µs

At a switching frequency of 20 kHz each cycle period occupies a time

t
f

= =
×

=
−

1 1

20 10
50

3
µs

Each switching intervaldt therefore occupies 1/50 of the periodic time and there
are two switchings per cycle. The switching or commutation actions take 2�s/
cycle. This means that there is zero voltage for 2�s in each 50-�s cycle so that
the net voltagesv1(t) andv2(t) are lowered by 2/50, or 4%. The resultant output
voltage is therefore

VL � 0.96V2 � 28.8 V

16.5 SINGLE-SWITCH FORWARD CONVERTER

16.5.1 Ideal Forward Converter
The circuit diagram of a single-switch forward converter is shown in Fig. 16.8.
Assume, initially, that the transformer is ideal with zero leakage inductance and
zero losses. The turns ratio is related to the voltage and current ratios by the
standard relationship, using the terminology of Fig. 16.8,

N

N
n

v

v

i

i
1

2

1

2

2

1

= = =

(16.16)

The L-C output filter in Fig. 16.8 results in a smooth output voltagevo(t) � Vo

during steady-state operation.
When the power transistorT is switched on, in the interval 0� t � 1, the

supply voltage is applied to the transformer primary winding so thatv1(t) � Vs

andv2(t) � Vs/n. DiodeD1 is then forward biased, andD2 is reverse biased. The
inductor voltage is then positive and increasing linearly

v t
V

n
VL

s
o( )

τ1

0
= −

(16.17)
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FIG. 8 Ideal single-switch forward converter.

When transistorT is switched off, the inductor currentiL(t) circulates through
diodeD2 so that the output voltage is negative and decreasing linearly.

v t VL o
Tp

( )
τ1

= −
(16.18)

Over a complete switching periodTp, the average inductor voltage is zero

V av
T

V

n
V VL

p

S
o o

Tp
( ) ( )= −






 + −









 =∫

1

0
01

1

τ
τ (16.19)

The solution of Eq. (16.19) shows that

V

V n
k

n T

N

N T
o

S p p

= = =1 1 1 2

1

1τ τ
(16.20)

wherek is the duty cycle.
The voltage ratio of the ideal forward converter is proportional to the duty

cycle k, as in the step-down, or buck, dc–dc converter, described in Sec. 15.1.

16.5.2 Practical Forward Converter

In a practical forward converter the transformer magnetising current must be
recovered and fed back to the supply to avoid the stored energy in the transformer
core causing converter failure. This is realized by adding another, demagnetizing,
winding with unidirectional currents, Fig. 16.9.

1. T � on. With transistorT switched on diodeD2 is forward biased and
conducts currenti3(t), while diodesD1 andD3 are reverse biased. Then

v t V v t V v t
V

n

V N

Ns s
s s

1 2 3
3

1

( ) ( ) ( )= = = =
(16.21)
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FIG. 9 Practical single-switch forward converter: (a) circuit schematic and (b) wave-
forms.
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Also, during switch-on, the core flux� ramps up to satisfy the relation

V N
d

dts
τ1

0
1= Φ

(16.22)

Even if the load current is effectively constant due to a large value of filter
inductanceL, the input currenti1(t) will increase. Currenti1(t) in Fig. 16.9b,
includes the hypothetical transformer magnetizing componentim(t), flowing
through the magnetizing inductanceLm and acting to increase the flux against
the opposition of the magnetic reluctance. Currentim(t) increases linearly from
zero toIm. By Kirchhoff’s node law

i t
i t

n
i tm1

3( )
( )

( )= + (16.23)

2. T � off. When switchT is off, the magnetizing current must continue to
flow due to the stored energyLmim2/2. The flux must be allowed to decay, and
to support this flux, a magnetizing current must flow inward at a dotted terminal.
As it can no longer flow into winding 1, it transfers to the only possible path,
i.e., in at winding 2, becomingi2. Winding 2 is then connected acrossVs; thus,

v1 � v2 � nv3 � �Vs (16.24)

CurrentiL(t) must continue to flow inL despite being reverse biased by voltage
Vs/n, so thatD3 then conducts. The core flux� ramps down at the same rate at
which it ramps up andim (� i2) falls correspondingly. Flux� reaches zero after
a second period1 (Fig. 16.9b).

There is then a dwell period with the currentiL(t) freewheeling through
D3, for a period2, with i1 � i2 � 0, until the start of the next cycle. WhenT
is switched on again,D2 becomes forward biased andiL(t) commutates fromD3

to D2.
The overall periodic frequency is

f
T T TP

= =
+

=
+

1 1 1

2 1 2on off τ τ (16.25)

Any leakage flux between winding 1 and 2 will cause a voltage ringing overshoot
on the device, which may be greater than 2Vs. Therefore it is important to have
very tight magnetic coupling between windings 1 and 2. Leakage between these
two windings and winding 3 will cause overlap in the conduction ofD2 andD3

during commutation, ramping the edges of the current waveforms. The presence
of the leakage inductance will force a finite rate of fall of the currenti3 and
growth of i4 or a finite rate of fall ofi4 and growth ofi3 becausei3 � i4 � iL,
which is constant. The coupling with winding 3 cannot be as tight as between
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the windings 1 and 2 because of the construction. There will usually be a different
number of turns, and also because of the insulation requirements, the output must
be well insulated from the incoming power supply.

Since there can be no average dc voltage across the ideal filter inductorL,
whenT is off, the input voltage toL is zero, and whenT is on, it isVs/n. Therefore,

V
f V

nL
s=

τ1
(16.26)

For a lossless system the input power is equal to the output power,Pout � Pin.

P V I

P V I V I I

V I V I I

L L

s in av s av av

L L s av

out

in

=
= = −

= −
( ) ( ) ( )

( ) (

[ ]

[

1 2

1 2 aav) ] (16.27)

The energy stored in the transformer core is incidental and basically undesirable
for the operation of this converter. The only inductive stored energy necessary
for operation is that in L, the output filter. Since only one quadrant of the magnetic
B-H loop is employed this form of converter is generally restricted to lower
power applications.

16.5.3 Maximum Duty Ratio

If N1 � N2, then during the time interval wheni2(t) is flowing throughD1 into
the power supply in Fig. 16.9a,

i t
N

N
i tm2

1

2

( ) ( )=
(16.28)

The voltagev1(t) across the transformer primary is also the voltagevm(t) across
the transformer magnetising reactanceLm, when i2(t) is flowing,

v t
N

N
Vs1

1

2

( ) =
−

(16.29)

Once the transformer is demagnetized, the hypothetical currentim(t) � 0 and
alsov1(t) � 0. This occurs during the interval2 in Fig. 16.9b. The time interval
Tm during demagnetization can be obtained by recognizing that the time interval
of voltagev1(t) acrossLm must be zero over a complete switching period:

kV
N

N

V T

Ts
S m

p

− =1

2

0
(16.30)

Time intervalTm is therefore given by
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T

T
k

N

N
m

p

= 2

1 (16.31)

For a transformer to be totally demagnetised before the next cycle begins, the
maximum value thatTm/Tp can have is 1�k. Thus the maximum duty ratio with
a given turns ratio is

( )max1 2

1

− =k
N

N
km (16.32)

or

k
N N

n

nmax /
=

+
=

+
1

1 12 1

With an equal number of turns for the primary and the demagnetizing windings
n � 1 and the maximum duty ratio in such a converter is limited to 0.5.

16.5.4 Worked Example

Example 16.3 A forward converter is operating at 35 kHz with an on
time of 12�s. The supply voltage of 300 V drops by 10%, but the output voltage
must remain constant. Calculate a new on time. If the magnetizing inductance
of the primary is 45 mH, calculate the peak magnetizing component of the primary
current when the supply voltage is 300 V.

The output average voltageVL is given by Eq. (16.26)

V
f V

n n nL
S= = × × × × =

−τ1
3 635 10 12 10 300 126

The turns ration is fixed, but its value is not given. The problem specification
is thatVL must remain constant.

In the above relation, ifVs drops by 10%, then the switch on time1 must
increase by 10% to 1.1� 12 � 13.2�s. The transformer magnetizing reactance
Lm is related toVs by

V L
di

dts m=

Since the on timedt � 13.2�s, the change of currentdi in that interval is

di
V

L
dtS

m

= = × ×
×

= =
−

−
300 13 2 10

45 10
0 088 88

6

3

.
. A mA
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If the actual regulated supply voltage is used in the calculation the valueVs

becomes

Vs � 0.9 � 300 � 270 V

Then

dim = × =270

300
0 088 0 0792. . A

16.6 SINGLE-SWITCH FLYBACK CONVERTER

Another converter system for dc–dc applications requiring only one semicondutor
switch is the flyback converter, which is derived from the buck–boost converter
described in Sec. 15.3. The transformer is required to store energy and so includes
an air gap in its magnetic circuit, that is made of high-permeability material. In
addition the transformer must be of high-quality production with good magnetic
coupling between the windings.

16.6.1 Ideal Flyback Converter with Continuous
Current

The circuit schematic diagram of a flyback converter is given in Fig. 16.10a. If
the transformer is ideal having zero leakage flux, and operates in the steady state,
the waveforms are shown in Fig. 16.10b.

1. T � on. When the transistor switchT is on the supply voltageVs is
applied across the transformer primary windingN1. For 0� t � 1

1 2
2

1

= = =v t V v t
V

n
V

N

Ns
S

S( ) ( )
(16.33)

While T is switched on diodeD1 becomes reverse biased by a potential difference
Vs/n � VL and the transformer secondary currenti2(t) � 0. The core flux�(t)
ramps up from�(0) to �(1), satisfying the relation

N
d

dt
Vs1

Φ = (16.34)

The primary currenti1(t) also ramps to provide the mmf needed to drive the flux
(largely) across the airgap, which contains a stored magnetic energy1⁄2L1i21.

In the switch-on intervals the time variation of the transformer core flux
is obtained from Fig. 16.10b and Eq. (16.34)
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FIG. 10 Ideal flyback converter in continuous current mode: (a) circuit schematic and
(b) ideal waveforms.

Φ Φ( ) ( )t
V

N
tS= +0

1 (16.35)

The flux reaches its maximum value�(t) when t � 1

ˆ ( ) ( ) ( )Φ Φ Φt
V

N
s= = +τ τ1
1

10
(16.36)
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2. T� off. Wheni1(t) falls to zero there can be no instantaneous change of
the core flux and no instantaneous change of the stored energy. The unidirectional
secondary currenti2(t) continues to flow through diodeD1 so that for1 � t �
Tp,

v t V v t nV N
d

dtL L2 1 1( ) ( )= − = − = Φ
(16.37)

The voltage across the open transistor switchT is

v t V nVT s L( ) = + (16.38)

In the turn-off intervals the flux decrease is defined by the equation

Φ Φ

Φ

Φ

( ) ( ) ( )

( ) ( )

t
V

N
t

V

N
T

V

N

Tp L

L
p

L

τ
τ

τ

τ

1 2
1

2
1

2
2

= − −

= − −

= −

( ) ( )

τ1

τ1

τ1

Φ Tp( )

(16.39)

But the net change of flux in the transformer core over one complete switching
period must be zero in the steady state. Equating the flux transitions between
Eqs. (16.36) and (16.39) gives

V

N

V

N
S L

1
1

2
2τ τ=

or

V

V

N

N

N

N

k

k
L

S

= =
−

2

1

1

2

2

1 1

τ
τ (16.40)

wherek is the duty ratio1/TP � 1/(1 � 2). The voltage ratio realised in a
flyback converter depends onk such that

V
V

n
k

V
V

n
k

V
V

n
k

L
S

L
S

L
S

< <

> >

= =

for   

for   

for   

0 5

0 5

0 5

.

.

.
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The effect of duty ratiok on the voltage transfer relationship corresponds exactly
to the performance of the buck–boost dc–dc chopper circuit, described in Chapter
15.

16.6.2 Ideal Flyback Converter with Discontinuous
Current

When the transformer flux�(t) in the circuit of Fig. 16.10a falls to zero during
the switch-off period2, the voltage waveformv1(t) assumes the form shown in
Fig. 16.11. There is a nonconduction or dwell period3 of zero current. Evaluating
the voltage relationship from the flux variation is found to give

V

V

N

N

k

k T
L

S p

=
− −

2

1 31 τ / (16.41)

This differs from the equation for continuous current, Eq. (16.40) , only in the
denominator3 term. If nVL is smaller thanVs, the rate of fall of flux is slower
than the rate of rise, and it will take longer, as in Fig. 16.11 (2 � 1). Once the
flux has ‘‘reset’’ to zero, transistorT can be switched on again. The rise of flux
equals the fall of flux; so the positive voltseconds applied equals the negative
voltseconds applied. In Fig. 16.11,

Vs1 � nVL2 (16.42)

Also

FIG. 11 Waveforms for ideal flyback converter with discontinuous current.
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f
TP

=
+ +

=1 1

1 2 3τ τ τ (16.43)

Now the power flow is equal to the energy stored per cycle multiplied by the
frequency. From Eq. (16.43) an increase of1 would decrease the frequency. In
circuit design it would seem logical to choose a turns ratio so thatnVL is greater
thanVS, but this choice is not always made. If the design choice isn � VS/VL,
then1 � 2, and the power is a maximum when3 � 0 andf � 1/(1 � 2).

16.6.3 Comparison of Continuous and
Discontinuous Conduction Performance

It is reasonable to consider whether continuous current operation is superior to
discontinuous current operation. The two modes are shown in Fig. 16.12 necessar-
ily carrying the same average input current for the same load power. The particular
design chosen for comparison has1 � 2 and a 10% ripple for the continuous
current mode.

16.6.3.1 Peak Currents and Current Ripples

The peak-to-peak switch current rippleim(t) is twice the average valueIo in the
discontinuous case but specified as 10% of the average value for the continuous
case

i I

i I
ma o

mb o

   for discontinuous operation

   for conti

=
=

2

0 1. nnuous operation (16.44)

The peak valuesIL of the load current, illustrated in Fig. 16.12, are seen to be

ˆ

ˆ .

I I
i

I

I I
i

La o
ma

o

Lb o
mb

= + =

= + =

2
2

2
1

for discontinuous operation

005Io for continuous operation (16.45)

16.6.3.2 Transformer Inductances

For discontinuous operation

L
V

i

V

Ia
s

ma

s

o

= =
τ τ1 1

2 (16.46)

For continuous operation

L
V

i

V

Ib
s

mb

s

o

= =
τ τ1 1

0 1. (16.47)
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FIG. 12 Comparison of flyback converter operation (1 � 2): (a) discontinuous opera-
tion and (b) continuous operation.

Comparing the necessary inductance values for the two cases, from Eqs. (16.46)
and (16.47) gives

L

L
b

a

= 20
(16.48)

The result of Eq. (16.48) does not mean that the inductor must be physically 20
times bigger for the continuous conduction case. Comparison of the maximum
stored energy is a better indicator of the necessary physical size.

16.6.3.3 Peak Stored Energy in the Transformer

The peak energy stored can be expressed in terms of the transformer inductance
L and the peak current of the load. For the discontinuous conduction condition
of Sec. 16.6.3.1,
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W L Ia a La= 1

2
2ˆ

(16.49)

Substituting from Eqs. (16.45) and (16.46) into Eq. (16.49) gives

W
V

I
I V Ia

s

o
o s o= × × =1

2 2
41 2

1
τ

τ
(16.50)

For the continuous conduction condition of Sec. 16.6.3.2,

W L Ib b Lb= 1

2
2ˆ

(16.51)

Substituting from Eqs. (16.45) and (16.47) into Eq. (16.51) gives

W
V

I
I

V I V I

b
s

o
o

s o s o

= × ×( ) ×

= × =

1

2 0 1
1 05

1 1

0 2
5 51

1 2 2

1 1

τ

τ τ

.
.

.

.
. (16.52)

The ratio of the peak stored energies for the two cases is

W

W
b

a

= 5 51.
(16.53)

Equation (16.53) shows that in the continuous conduction condition about 5.5
times the stored energy capability is required, compared with discontinuous opera-
tion, although only about one half of the peak current is needed.

16.6.3.4 Energy Storage in the Transformer

The type of transformer used in the circuits of Figs. 16.8 and 16.9 and 16.10 is
the shell type of structure shown in Fig. 16.2, with the addition of an air gap of
lengthg in the center leg. An ideal transformer with an infinitely permeable core
stores no energy. It is a poor material for storing energy but is good for guiding
flux. In a transformer or inductor with a ferromagnetic core, an air gap is required
in which to store the magnetic energy. The design requirement is tight magnetic
coupling between primary and secondary windings but also a small air-gap length.
As discussed in Sec. 16.2 above, the ferrite core then has a peak flux densityBm

� 300 mT at frequencies higher than 20 kHz.
The current density in the windings around the central limb of the core is

limited by thei2R heating. The volumes of copper in the primary and secondary
are about the same in a well-designed transformer, even though the numbers of
turns and wire sizes may be very different. Let the flux path in the core center
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leg have the contour dimensions widthW times lengthL. Then the maximum
energy stored in an air gap of volumeW � L � g is found to be

= =
B H WLg B WLgm m m

o2 2

2

µ
Maximum energy

(16.54)

The magnetic permeability of free space,�o � 4 � � 10�7 SI units, is applicable
here because all of the stored energy is in the air gap and not in the core. Typical
practical dimensions for a transformer core areW � L � 10 mm,g � 1 mm
andBm � 0.3 T. The maximum energy stored in the airgap can be found from
Eq. (16.54)

= × × ×
× ×

=
−

0 3 0 1 0 1 0 01

2 4 10
3 58

2

7

. . . .
.

π
mJMaximum energy

The periodic timeTp at 20 kHz is

Tp =
×

=1

20 10
0 05

3
. ms

For discontinuous operation the rate of energy conversion or power is therefore

P
W

Tb
b

p

= = =3 58

0 05
71 6

.

.
. W

But, from Eqs. (16.50) and (16.52), the energy conversion rate with continuous
operation is therefore

P
W

T

P
a

a

p

a= = = =
5 51

71 6

5 51
13

.

.

.
W

16.6.3.5 Comparison Summary

In this comparison of designs for continuous and discontinuous operation, the
continuous current case would require to have an air gap 5.5 times larger. In fact,
the whole transformer would need to be bigger by this factor and so would be
the copper losses. With continuous operation the range of excursion of the flux
density is only about one-tenth that in the discontinuous case, and so the iron
losses are lower, even though the core is five times bigger and works to the same
peak flux density.

16.6.3.6 Addition of Tertiary Winding

If the power being taken from the output is less than that being fed in, the output
voltage will rise. The maximum output voltage can be limited by using a third
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winding, closely coupled to winding 1 with the same number of turns (Fig. 16.13).
If VL tries to rise to a voltage greater thanVs/n, then a negative voltage greater
thanVs is induced in the windings 1 and 3. The effect of winding 3 andD2 is to
clamp the maximum voltage of windings 1 and 3 at�Vs and winding 2 at�Vs/
n, i.e., it will preventVL becoming greater thanVs/n.

WhenT is switched off, the current commutates from winding 1 to winding
3 (instead of 2) and the stored energy is fed back to the supply instead of into
the output circuit. This prevents the rise ofVL from becoming greater thanVs/n
and also limitsvDS to 2Vs.

Note that it is easier to wind windings 1 and 3 closely coupled because
they have the same numbers of turns and can be wound together fully interlaced,
so that the leakage flux between them and the corresponding leakage reactance,
is very small. This is called abifilar winding.

Windings 1 and 3, which are ‘‘live’’ on the incoming mains supply, have
to be well insulated from winding 2, which is connected to the output circuit of
the power supply. This insulation is governed by international standards. It means
that the leakage between windings 1, 3, and 2 cannot be as small as between 1
and 3 because of the amount of insulation and the differing number of turns and
wire sizes.

16.6.4 Worked Examples
Example 16.4 A flyback converter operates in the discontinuous mode

with an input voltage of 300 V and a turns ratio of 10:1 at a frequency of 50
kHz. The output voltage is 30 V and the maximum output current is 1 A. Calculate
(1) the peak input current, (2) the transformer stored energy, and (3) the induct-
ance.

1. Vs � 300 V, VL � 30 V, andn � 10. From Eq. (16.40) ,

V

V
L

s

= =30

300

1

10
1

2

τ
τ

FIG. 13 Single-switch flyback converter with added tertiary winding.
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Therefore,1 � 2. Correspondingly,

I

I

nL av

av

( )

( )1

2

1

10= =
τ
τ

Therefore,

I av1
1

10
0 1( ) .= = A

For a switching frequencyf � 50 kHz,

T
fp = =

×
=1 1

50 10
0 02

3
. ms

From Fig. 16.11 it may be deduced that

Tp =I av1( ) I1 1τ� � __1
2

= I1 � __
2

Tp
� __1

2
ˆ ˆ�

Î1 � 4I1(av) � 0.4 A

2. For a lossless converter the input power must be equal to the output
power

Pin � VLIL � 30 � 1 � 30 W

The transformer stored energy is obtained from the input power and the periodic
switching time

W P  T  in p= × = × =30
0 02

1000
0 6

.
. mJ/cycle

3. The stored energy can also be expressed in term of the peak input
current and the transformer inductance

W LI L= = =1

2

1

2
0 4 0 61

2 2ˆ ( . ) . mJ

The inductanceL is required to be

L = × =0 6 2

0 4
7 5

2

.

.
. mH

which is a typical practical value.

Example 16.5 A flyback converter operates from a 300-V dc supply in
discontinuous mode at a frequency of 35 kHz. The transformer turns ratio is 10:
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1. When the duty cycle is 0.4, the output voltage is 25 V. Calculate the three
time periods shown in Fig. 16.11.

Vs � 300 V VL � 25 V n � 10 k � 0.4

From Eq. (16.42) ,

τ
τ

1

2

100 25

300
0 833= = × =

nV

V
L

s

.
(Ex. 16.5a)

From Eq. (16.44) ,

nV

V

k

k T
L

s p

=
− −1 3τ /

Therefore,

τ3 1

1 0 4
0 4 300

10 25
1 0 4 0 48 0

T
k

kV

nVp

s

L

= − −

= − − ×
×

= − − =

.
.

. . .112

1 1

35 10
28 6

3
T

fp = =
×

= . µs

Therefore,

3 � 0.12� 28.6� 3.43�s

From Eq. (16.43) ,

Tp � 1 � 2 � 3

Therefore,

sτ τ τ µ1 2 3 28 6 3 43 25 17+ = − = − =Tp . . . (Ex. 16.5b)

Combining Eqs. (Ex. 16.5a) and (Ex. 16.5b),

0 833 25 17

25 17

1 833
13 73

0 833 0 833 13 7

2 2

2

1 2

. .

.

.
.

. . .

τ τ

τ µ

τ τ

+ =

= =

= = ×

s

33 11 44= . µs

The calculated values of1, 2, 3 can be checked by the use of Eq. (16.43)
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1 � 2 � 3 � 11.44� 13.73� 3.43� 28.6�s � Tp

Example 16.6 For the flyback converter of Example 16.5 the output volt-
age is adjusted to be 30 V. What is the required value of duty cycle and what
are the three time periods1, 2, and3?

Vs � 300 V VL � 30 V n � 10

Now nVL � Vs. From Eq. (16.42) or (16.40) it is seen that1 � 2, and when
Vs � nVLk � 0.5. From Eq. (16.41) ,

nV

V

k

k T
L

s p

=
− −

=
1

1
3τ /

Therefore,

k k
T

T
k

p

p

= − −

= − = − =

1

1 2 1 1 0

3

3

τ

τ

Therefore,

3 � 0

From Eq. (16.43) ,

Tp � 1 � 2 � 21

Therefore,

τ τ1 2 2

28 6

2
14 3= = = =

Tp .
. �s

Example 16.7 In the flyback converter of Example 16.4 the load current
falls by 50% while the frequency and output voltage remain constant. Calculate
the time duration3 of the zero flux period in the transformer

When the load currentIL falls by 50%, the load powerPL also falls by
50%, and so does the load energyWout:

Wout = × =0 5
0 6

10
0 3

3
.

.
. mJ

If the input and the load powers are equal, then
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W W LI

I
W

L

in out

out

= =

= = × × =

1

2

2
2

0 3

10

10

7 5

0 6

7 5

1
2

1
2

3

3.

.

.

.

Therefore,

I1 � 0.283 A

In the Fig. 16.12, with1 � 2, the time periods1 and2 that had a value 0.01
ms in Example 16.4 reduce by a factor 1/�2. Therefore,

1 � 2 � 0.01� 0.707� 0.00707 ms

But the overall periodTp remains at 0.02 ms because the frequency is constant.
From Fig. 16.12,

3 � Tp � 21 � 0.02� 0.014� 0.006 ms

PROBLEMS

Push–Pull Converter

16.1 A push–pull dc-to-dc converter has a transformer step-down ratio 1:3.5
and is supplied by a 60 V battery. The industrial load has a dc resistance
RL � 23.4 �. Calculate the average load current with the duty ratio
values (a) 0.05, (b) 0.25, and (c) 0.45.

16.2 For the push–pull converter of Problem 16.1, what is the maximum induc-
tor voltage whenk � 0.45?

16.3 For the push–pull converter of Problem 16.1, what is the average value
of the diode currents when both controlled switches are off, ifk � 0.45?

Full-Bridge Converter

16.4 A full-bridge converter with rectified load operates from a dc power
supply of 120 V. The transformer has a step-down ratio of 8.33:1 and a
leakage reactance of 20.4�H. At a switching frequency of 20 kHz the
converter delivers a load current of average value 40 A. What is the
average output voltage?

16.5 A full-wave bridge converter with a rectified load operates from a dc
power supplyVs � 120 V. The transformer has a step-down turns ratio
of 8.33:1. At a switching frequency of 20 kHz the average load current
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is required to be 50 A. What value of transformer primary inductance
L1 will limit the output voltage regulation to 5%?

Single-Switch Forward Converter

16.6 A forward converter incorporating a demagnetizing winding operates
from a 300-V dc supply. If the primary and secondary numbers of turns,
what is the maximum permitted duty cycle?

16.7 A forward converter operates at a frequency 40 kHz from a 300-V dc
supply. The controlled switch is set to provide an on time of 12�s.
If the transformer turns ratioN1/N2 is 3:1, calculate the average load
voltage.

16.8 For the forward converter of Problem 16.7 what is the dwell period2

(in Fig. 16.9b) during whichi1 � i2 � 0?

16.9 A forward converter incorporating a demagnetizing winding operates
from a dc supply, nominally ofVs � 300 V but subject to 7% regulation.
The output voltage must remain constant at its nominal value. The con-
verter operates at a frequency 35 kHz with a switch on time of 13.2�s.
If the magnetizing inductance of the transformer is 37.5 mH, calculate
the peak magnetizing component of the primary current.

Single-Switch Flyback Converter

16.10 An ideal flyback converter has a transformer turns ratio of 8:1 and oper-
ates from a 600-V dc supply. Calculate the output voltage for values of
duty cyclek equal to (a) 0.25, (b) 0.5, and (c) 0.75.

16.11 For an ideal flyback converter, with a unity turns ratio, what value of
duty cycle k will cause the output voltage to be equal to the supply
voltage?

16.12 A flyback converter with a transformer turns ratio of 10:1 operates in
the continuous current mode from a 600-V dc supply. If the operating
frequency is 35 kHz and the transistor switch on time is 19.5�s, calculate
the necessary duty cycle and the output voltage.

16.13 A flyback converter with a transformer turns ratio of 6.5:1 operates in
the continuous current mode at a frequency of 35 kHz from a 400-V dc
supply. What value of transistor switch on time is required to cause an
output voltage of 75 V.

16.14 A flyback converter with a transformer turns ratio of 8:1 and inductance
7.5 mH operates in the continuous current mode at a frequency of 50
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kHz from a 300-V dc supply. The output voltage is 30 V and the maxi-
mum output current is 1 A. Calculate (a) the switch on time, (b) the peak
primary current, and (c) the maximum stored energy.

16.15 A flyback converter operates from a 330-V dc supply in discontinuous
mode at a frequency of 42 kHz. The transformer turns ratio is 10:1. When
the duty cycle is 0.60, the output voltage is 52.3 V. Calculate the three
time periods in the switching cycle.

16.16 At a certain value of duty cycle the output voltage from the flyback
converter of Problem 16.15 is 33 V. Calculate the duty cycle and the
time periods of the switching cycle.
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Appendix: General Expressions for
Fourier Series

If a periodic functione(	t), of any wave shape, is repetitive every 2� radians,
it may be expressed as a summation of harmonic terms

e t
a

a n t b n t

a
c n t

o
n n

n

o
n n

n

( ) ( cos sin )

sin( )

ω ω ω

ω ψ

= + +

= + +

=

∞

=

∞

∑

∑

2

2

1

1 (A.1)

It follows from Eq. (A.1) that

c peak value of nth harmonica bn n n= + =2 2 (A.2)

ψn
n

n

a

b
= =−tan phase displacement of the nth harmonic1

(A.3)

Also,

an � nsin�n (A.4)

bn � ncos�n (A.5)
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The various coefficients in Eq. (A.l) are defined by the expressions

a
e t d to

2

1

2 0

2
=

= =

∫π
ω ω

π
( )

 time value average  dc term value (A.6)

a e t n t d tn = ∫
1

0

2

π
ω ω ω

π
( )cos (A.7)

b e t n t d tn = ∫
1

0

2

π
ω ω ω

π
( )sin (A.8)

For the fundamental component,n � 1, so that

a e t t d t1 0

21= ∫π
ω ω ω

π
( )cos (A.9)

b e t t d t1 0

21= ∫π
ω ω ω

π
( )sin (A.10)

c a b1 1
2

1
2= + (A.11)

ψ1
1 1

1

= −tan
a

b (A.12)

Note that the definition Eqs. (A.7) and (A.8) represent a sign convention. Some
authors use a reverse definition, whereby the right-hand side of Eq. (A.7) is
defined asbn. The values ofcn and�n are not affected by the sign convention
used.

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Answers to Problems

CHAPTER 2

2.1 V

R
t

V

R
t

i
E

RL
m

1 10

90

90

180

0

90

90

180

2
0

s(g) Asymmetrical line current

(h) Half-wave rectified

in sinω ω
°

°

°

°

°

°
= +

and

2.2 Equations (2.6) and (2.8)

2.3 Equations (2.54) and (2.55)

2.4 1/�2 � 0.707

2.5 Textbook proof

2.6 a b c
E

R
m

1 1 1

1 1

0
2

0 1 0

= = =

= =

,

, cos .ψ ψ
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2.7 E
E

E
E

RF

av
m

L
m

= =

= =

=

2
210 1

2
233 3

0 48

π
.

.

.

V

V

2.8 i t
E

R
t tL

m( ) cos cosω
π π

ω
π

ω= − −





2 4

3
2

4

15
4

2.9 I

I

I

I

av

av

m

m

V Em

V

=

=

= =
0

/ π
π

2.10 I
E

Rav
m= =

2
0 685 0 11

π
( . ) . A

2.11 IL � 0.208 A

P � 9.83 W

RF � 0.668

2.12 Iav (supply)� 0

Iav (load) � 0.872 A

(a), (b) Half-wave operation,Iav � 0.436 A

2.13 See Fig. 2.5.

2.14     is same as  in Fig. υ

υ ω
θ

π
L R

D m

i

E t
x

x

xc

2 5

0
2

. .

sin= +
−

2.15 2.15 See Sec. 2.1.2.

2.16 Solution not given here—refer to library texts on applied electronics

2.17
i t

E

R
t

E

X
t

I I P;

L
m m

c

L R

( ) sin sin( )ω ω ω
π π

= + + °

>
0 0

2
90

for some   thereefore    reduces., PF

2.18 See Sec. 2.3.1.

2.19 �c � 225.8�
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2.20 (a) Equation (2.72)

(b) Figure 2.11

(c) Differentiate Eq. (2.72) wrt time and equate to zero

2.21 Section 2.3.1 and Fig. 2.11

2.22 �c � 212�

2.23 �c � 210.05� (by iteration)

Iav � 4.83 A

2.24 Section 2.31

�c � 180� � 45� � 4� � 229�

2.25 9.06 A

2.26 WhendeL/dt � 0, eL (	t) � 0.5Em.

2.27 X � 210.05�

�c � 225.8�

Iav � 0.764 A

Taking the dc, fundamental, plus second harmonic components of the
voltage

I L = + + =

= =

( . ) ( . ) .

.
.

0 9
1

2
2 0 36 1 41

1

1 41
0 71

2 A

Distortion factor    

2.29 With positive supply voltage there are positive load and supply currents.
With negative supply voltage the secondary current is zero and the pri-
mary current is the magnetizing current.

2.30 Section 2.3.1 and Fig. 2.10

2.31 QED question

2.32 Section 2.4 and Fig. 2.13

2.33 See Sec. 2.4. Current waveform can be deducted from Fig. 2.13.

CHAPTER 3

3.1 See Sec. 3.1.1.

Is (av) � 2.387 A
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3.3 At � � 0, P � 50 W.

At � � 180�, P � 25 W.

Pest � 37.5 W.

DC, even and odd order harmonics.

3.4 Iav � �0.08 A

3.5 See Sec. 3.1.1.

3.6
a

E

R

n

n

n

n

b

n
m

n n

= + − −
+

+ − − −
−











+ −

2

1 1

1

1 1

1

1 1

π
α αcos( ) ( ) cos( ) ( )

nn
mE

R

n

n

n

n
= +

+
− −

−




2

1

1

1

1π
α αsin( ) sin( )

At α π

π

=

= = = =

/ ,

. . .

2

0 295 0 237
2

0 161 2 3c
E

R
c

E

R
c

E

R

E

R
m m m m

3.7 I
E

R

I
E

R

E

R

I

I

m

m m

1

1

2

0 296

2 2
0 354

2

=

= =











.

.

/

peak value

rms value

== 





=0 29

0 5
0 35

2
.

.
.

3.8 Equation (3.7)

3.9 No. The supply current waveform will remain nonsinusoidal.

3.10 105.2�

3.11 Section 3.1.1

3.12 Section 3.1.1

3.13 JudgingPF from the waveforms could be misleading. Better to undertake
the necessary calculations.

3.14 Use Eqs. (3.4) and (3.10) for the uncompensated distortion factor.

Displacement factor cos�1 � b1/c1; so use Eqs. (3.9) and (3.10).

3.15 The diode has no effect at all.

3.16 During thyristor conduction the transformer has little effect on the load
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and supply current waveforms. During thyristor extinction the secondary
current is zero and the primary winding draws its magnetizing current
(i.e., 2–5% of full-load current at 90� lagging).

3.17 0.48, 0.613, 0.874, 1.21, 1.69, indeterminate at 180�

3.18 Use Eqs. (3.4) and (3.6).

3.19 Distortion factor� 0.707. Displacement factor� 1.0, PF � 0.707.
Since�1 � 0�, no power factor improvement is possible, at� � 90�,
by the use of capacitance.

3.20 Equations (3.32)–(3.34)

3.21 (b) 1.592 A

3.22 Connection (b) contains only one controlled switch and is likely to be
the cheapest. Connection (d) contains four controlled switches and is
expensive both for the switches and the firing circuits.

3.23 See Figs. 3.5 and 3.6.

3.24 Iav � 2.173 A IL � 3.643 A RF � 1.34 P � 1327 W

3.25 a
E

R
b

E

R
m m

1 12
5 712

2
= − =

π π
.

3.26 Equation (3.38)

3.27 Figure 3.13

3.28 Figure 3.16

3.29 (a) 209.85�

(b) 209.8�

(c) 210�

3.30 239.5�

3.31 � � 57.5� X � 237.2� �c � 177.2� Z � 18.62�

Iav � 5.626 A IL � 6.18 A RF� 0.455 P � 381.9 W
PF � 0.26

3.32 iL (�) � 0.83 A iL (�) � 11.65 A Iav � 7.16 A

3.33 The diode cannot conduct while the controlled switch is on—it acts as
a freewheel diode to provide continuity of the load current when the
controlled switch is off.
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3.34 The comments for Problem 3.33 still apply.

3.35 Yes. The supply current waveform is that part of the load current wave-
form (Fig. 3.20) in the intervals� � 	t � �. The fundamental component
of this lags the supply voltage. Hence there is a lagging displacement
angle that can be compensated by a capacitor of appropriate value.

3.36 (a) Figure 3.18, Eq. (3.60)

(b) Figure 3.19

3.37 Equation (3.64)

3.38 a I b Id d1 1 1
2 2

2
= − = − =

π
α

π
α) ψ π

sin c(1+ os

3.39 The waveforms are not a reliable indicator of power factor correction. It
is always better to undertake a calculation.

3.40 Equation (3.65),�1 � �/2.

3.41 Q
E Im d=

π
αsin

3.42 This is a QED question.

3.43 a I b Id d1 1 1
4 4= − = =
π

α
π

α ψ αsin cos

3.44 No solution available.

3.45 Q E Im d= 2

π
αsin

3.46 QED question

3.47 QED question

3.48
c

E n

n

n

n
n

m= + +
+

+ + −
−

+ + +2 1 1

1

1 1

1

1 2 2
2 2π

α α α αcos( )

( )

cos( )

( )

cos cos coss

( )

/
n

n

α
1 2

1 2

−











c � 166.6 V c4 � 41.62 V c6 � 18.54 V

Iav � 10.08 A IL � 10.24 A P � 2097 W RF � 0.334

3.49 graphical solution

3.50 graphical solution
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CHAPTER 4

4.1 See Eq. (4.5).

4.2 See Eqs. (4.7) and (4.9).

4.3 See Eq. (4.11).

4.4
a1 � 0 b1 � c1 � 

0.471 Em

2R
� 1 � 0

Displacement factor � cos� 1 � 1.0

4.5
I � 0.485

� 0.687 � PF

Em

R
I1 � 0.471

Em

2R

Distortion factor �

�
I1
I

4.6

4.7 1.886 kW

4.8 ia � 0 The load current has the waveshape of waveeDa
in Fig. 4.6, but

is positive.

4.9 I av
E

R
RFs

m( ) . .= =0 276 1 446

4.10 Figure 4.5b to e

4.11 See Eq. (4.22).

4.12 See Eqs. (4.25) and (4.11).

4.13 I
I E

R

R

av

I RF0.477 1.41 compared with 1.446 for R load (Problem 4.9)a

av m

Em

( )
( )

supply
load

=

= =

=
3

3

2π

4.14 2628 W compared with 2716 W.
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4.15 a b c
I E

R
av m

1 1 10
3

0 456= = = =
π

.

Displacement factor� 1.0

4.16
i a(� t) � 0.456

[ i a (� t) is in time phase with ea (� t).]

Em

R
sin� t

4.17 I
E

R
I

E

R
PF

a
m

a
m= =

= = ×

0 477 0 322

0 676 0 676

1
. .

. , .Distortion factor  11 0 0 676. .=

4.18 a
I n n

n

b
I n n

n
av

n
av

= × × =

= × × =

2

3 2
0

2

3 2
0

π
π π

π
π π

sin cos ( )

sin sin (

for odd

ffor evenn )

4.19 SubstituteeL (	t) into the defining equations in the Appendix. Note that
it is a very long and tedious calculation.

4.20 The load current consists of rectangular pulses with conduction period
120�.

4.21 9.35 A, 339.5 V

4.22 Figure 4.8, Eq. (4.32)

4.23 Equations (4.26) and (4.29) or (4.48)

EaN (rms) varies fromEm/�2 at � � 0 to 0.599Em at � � 90�.

4.24 � (�) varies almost linearly for 0� � � � 60�.

4.25 graphical solution

4.26 133.74 V (cf. 196 V), 8.88 A (cf. 9.36 A)

4.27 2627.7 W (unchanged),PF � 0.74 (cf 0.676)

4.28 Note in Eq. (4.33) that cos� is negative for� � 90�.

4.29 Waveforms similar to Fig. 4.10. Waveform ofia (	t) during overlap is
given in Example 4.8.

CHAPTER 5
5.1 Eav � 203.85 V E� 238.9 V RF� 0.611

5.2 (a) 3.24 A

(b) 2.16 A
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(c) 1.08 A

(d) 0.289 A

5.3 574 W

5.4 1.838 A at 45�

5.5  0 30 60 90 120 150

Iav 3.74 3.24 2.16 1.08 0.29 0
Irms 3.8 3.72 2.765 1.73 0.662 0
RF 0.186 0.564 0.8 1.25 2.061 No meaning

5.6 QED question

5.7 P � VI1 cos�1 W/phase �1 � �32.5� 574 W

5.8  0 30 60 90 120 150

PF 0.686 0.634 0.5 0.443 0.121 0

The fundamental (supply frequency) component of the supply current
lags the applied phase voltage in time-phase. But the lagging current is
not associated, in any way, with energy storage in a magnetic field.

5.9 The appearance of a current waveform can be deceptive. If the waveform
contains severe discontinuities, it may have a low distortion factor and
therefore a low power factor.

5.10 QED question

5.11 c
fR

< − +1 2 3

4 2

cos( )α π
π

5.12  60 90 120

Imin/I 5.2% 7.2% 5.66%

5.13 No energy storage occurs in the thyristors or in the load resistor. Neverthe-
less, if a � 0, there is a component of reactive voltamperes Q� 3VI1
sin �1 entering the load. All of the voltamperes entering the capacitors,
Qc � 3VIc sin 90�, are reactive voltamperes.
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5.14 The capacitors have no effect on the average value of the supply current.

5.15  0 30 60 90

Iav 3.736 3.235 1.868 0

5.16  0 30 60 90

Is 2.157 1.868 1.078 0
P 1047 785 262 0
PF 0.675 0.585 0.338 0

5.17 Expressions fora1 andb1 are given in Table 5.2

 0 30° 60° 90°

�1 0 �30° 60° �90°
cos�1 1 �0.866 .0.5 0

5.18 QED question

5.19 QED question

5.20  0 30 60 90

PFL 0.675 0.585 0.338 0
PFR 0.686 0.634 0.5 0.443

5.21 QED question

5.22 QED question

5.23 The degree of power factor improvement is the ratio ofPFc [Eq. (5.52)]
to PF [Eq. (5.44)].

 0 30 60 90

PFc/PF 1.355 1.063 1.063 0.83

Note: For� � 90� the ratioPFc/PF � 1.0, implying a reduction of power
factor due to the presence of capacitance.

5.24 Q E
X Rm

c

= −










3

2

1 9

2

12
2

2

π
αsin
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For uncompensated operation,Xc � �.

Q is zero if C � �R/9 f sin2 � wheref � frequency.

5.25 The presence of compensating capacitors makes no difference to the
average value of the supply current

5.26 I
E

R
m

1 2

9

2 2

3

2
=

π
α πcos distortion factor

5.27 QED question

5.28 QED question

5.29  30° 45° 60° 75°

1.00 1.028 1.155 1.654
EavR
EavL

5.30 The reduction of area due to� in Fig. 5.13 is given by

Area= −
+



+ °

+ + °
∫ e

e e
aN

AN CN( )

230

30

α

α µ

5.31 Evaluation of the integral gives

Area= − +[ ]3

2

Em cos cos( )α α µ

5.32  0° 30° 60° 90°

Eav 274.23 241.7 134.11 �6
R 6.856 6.043 3.353 meaningless

5.33 Similar in style to Fig. 5.13

5.34 QED question

CHAPTER 6
6.1 The load current waveform (Fig. 6.2 e contains six pulsations in each

supply voltage period. The lowest order alternating current term in the
Fourier series is therefore of sixth harmonic frequency.
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6.2 See Figs. 6.1 and 6.2.

I
E

R
Iav

m
av    load      supply= =1 654 0. ( ) ( )

6.3 Equations (6.8)–(6.11)

6.4 I
E

R
Iav

m
av    load    = =1 827 0. ( ),

6.5 6292 W, 11.25 A

6.6 9.156 A, 6.47 A.

6.7 QED question

6.8 Section 6.1, Eq. (6.11)

6.9 The fundamental component of the load current is in time phase with its
respective phase voltage. Any parallel connected reactor at the supply
point would draw a component of supply current in time quadrature with
the respective phase voltage, without affecting the load current and power.
The net supply current would increase causing reduction of the power
factor.

6.10 See Example 6.6.

6.11 The peak amplitude, relative to the maximum dc value, of any voltage
harmonic of ordern, for firing angle�, in a controlled bridge, is

2 1

1

1

1

2

1 1

0

2 2

E

E n n n n

L

av

n

o

=
+

+
−

−
+ −

=

( ) ( )

cos

( )( )

,

α

αAt

2 2

12

E

E n

L

av

n

o

=
−( )

6.12 From the relationship of Problem 6.11, withn � 6, it is seen thatELn
/

Eavo
� 5.71%.

6.13 See Fig. 6.14.

6.14 See Eqs. (6.16)–(6.19).

6.15 See Eqs. (6.16)–(6.18).
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6.16 See the answer to Problem 6.9. Becausea1 � 0, the fundamental compo-
nent of the load current is in time phase with its respective phase voltage.

6.17 ID � 57.74 A PRV� 339.4 V

6.18 Sincea1 � 0, the displacement factor cos�1 � 1.

== =I

I
1 3

π
PF distortion factor (using the expressions in Table 6.1)

6.19 i t
E

R
t I

E

R
rmsm m( ) sin ( )ω

π
ω

π
ψ= = =18 18

2
0

2 1 2 1

6.20 See Eqs. (6.19) and (6.22).

6.21 i t
E

R
t t t ta

m( ) sin sin sin sin sinω
π

ω ω ω ω ω= − − + +18 1

5
5

1

7
7

1

11
11

1

13
13

2
tt +





…

I
E

R

E

Ra
m m

1

18

2
1 29

2
= =

π
.

I
I E

Ra
a m

5

1

5
0 258= = .

I
I E

Ra
a m

7

1

7
0 184= = .

6.22 315.11 V, 19.2�

6.23
( ) . .

( ) .

a

b

µ

µ

= ° =

= ° =

19 2 0 972

52 0 81

E

E

E

E

av

av

av

av

o

o

6.24 E

E
av

avo

= 0 933.

6.25 Use Eq. (6.29).

6.26 Section 6.3

CHAPTER 7
7.1 See Fig. 7.8.

7.2 (a) 2.81 A, 814.5 W.

(b) 1.621 A, 338 W.

(c) 0.434 A, 49.84 W
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7.3 Use Fig 7.3b.

7.4 Section 7.1.2

7.5 Section 7.1.1 and 7.1.2

7.6 7.7

 a1 b1 c1 Ia1
�1 cos�1 P

30° �140.4 277.1 310.64 2.197 �26.87 0.892 814.8
60° �140.4 115 181.5 1.283 �50.7 0.633 337.7
90° �46.8 16.96 49.78 0.352 �70 0.342 50

The values ofP are seen to agree with those of Problem 7.2.

7.8 Use Eq. (7.20) in the defining equations fora1 andb1 in Sec. 7.1.3.

7.9 See the relevant expressions in Table 7.2.

7.10 Use Eqs. (7.25) and (7.26).

7.11
 �1 sin�1 Q P P2 � Q2 Ia S

30 �26.9 0.45 411 814.8 912.6 2.33 968.8
60 �50.7 0.774 412.9 337.7 533.4 1.5 623.7
90 �70 0.94 137.6 50 146.4 0.576 239.5

�

It is seen that�P2 � Q2 is less thanS(� 3EIa1) for all �. The knowledge
of P andQ does not account for all the apparent voltamperes. See Refs.
10 and 20.

7.12 The use of waveforms alone is not reliable indicator of power factor.

7.13 (a) 45.6�F

(b) 45.6�F

(c) 15.1�F

7.14 (a) 22.8�F

(b) 22.8�F

(c) 7.5�F

7.15 (a)PF � 0.84,PFc � 0.93

(b) PF � 0.542,PFc � 0.722

(c) PF � 0.21,PFc � 0.254

Copyright � 2004 by Marcel Dekker, Inc. All Rights Reserved.



Answers to Problems524

7.16 See Fig. 7.8.

7.17 See Eqs. (7.54)–(7.58)

7.18 (a) 235.8 W, 2436.5 W (b) 786 W, 1011 W

7.19 See Eq. (7.59).

7.20 QED question

7.21 See Eqs. (7.60) and (7.61).

7.22 Use Eq. (7.49), which has the value unity for� � 0.

7.23 (a) 3.96A at 30�

(b) 2.29A at 60�

7.24 587 V, 3.24 A

7.25 QED question

7.26 Use Eqs. (7.54) and (7.55).

7.27 Without compensation,PF30 � 0.827,PF60 � 0.477.

WhenXc � R, PF30 � 0.932,PF60 � 0.792,� � 33.25�.

7.28 See Eq. (7.68).

7.29 25.11�F PF30 � 0.941 (0.827) PF60 � 0.848 (0.477)

7.30 Waveforms questions-subjective

7.31
Current distortion

factor = =
( ) − ( )( ) +I

I

R X R Xc1

2 218 2 18/ / / sin /π α π22

2

2

2 2 2 218 2 36

( )
( ) − ( )( ) + ( )

cos

/ / / sin / cos

α

π α π αR X R Xc

When the limiting condition of Eq. (7.66) is satisfied, thenR/Xc � 18
sin2�/�2. This givesI1/I � 3/�, which is the condition for resistive load.
If R/Xc � 18sin2�/�2, thenI1/I → 3/�.

7.32 Section 7.3.1

7.33 QED question

7.34 25.14 mH, 59.5�

7.35 Eqs. (7.89)–(7.91)

7.36 3000 W, compared with 7358 W
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7.37 I m

I m
a

a

ο

ο   

( )

( )
.

=
=

=
15

0
0 975

7.38 (a) 0.927

(b) 0.802

(c) 0.47

7.39 Section 7.3.1, Eq. (7.77)

7.40 Section 7.3.1, part (b), Eq. (7.97)

CHAPTER 8

8.1 Use the basic integral definition Eq. (2.7).

8.2 (a) 1.03 V

(b) 0.9 V

8.3 V
V

n

n n

V

n = − +





= ° =

4
1

6 3

120 0 811

π
π π

δ

cos cos

. V(cf. 1.1 V)

8.4 �1 � 17.8� �2 � 40�

8.5 QED question

8.6 �1 � 23.6� �2 � 33.3�

8.7 Graphical question

8.8 b1 � 0.99 V, b3 � 0.004 V,b5 � �0.001 V,b7 � �0.03 V, b9 �
�0.21 V,b11 � �0.184 V,b13 � 0.11 V,b15 � 0.14 V,b17 � �0.02
V, b19 � �0.12 V, b21 � �0.01 V, brms � 0.743 V.

CHAPTER 9

9.1 0, 12051 W, 11840 W, 10133 W

9.2 622 V, 37.24 A

9.3 154�, P165 � 0, 52.6 kVA

9.4 933 V, 32.5 A

9.5 146.4�
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9.6 0.675

9.7 Iav � 228 5A Eav � 218.81 kV

9.8 � � 155�

9.9 � � 13.24�

CHAPTER 10

10.1 See Figs. 10.3 and 10.4.

10.2 See Figs. 10.5 and 10.6.

Vab leadsVan by 30�

10.3 See Figs. 10.5–10.7

10.4 V V V V VNO dc AN dc BN= −( ) = −( )π π

π0

2

(a) VNO is square wave	Vdc/3 with three times supply frequency.

(b) INO is square wave	Vdc/R with three times supply frequency.

10.5 a b
E

V
E

V
E

V
Em m

av
m

av
m

1 1 1 2
0

3 3

2

2

3

6
1

= = = = =
π π π

10.6 V t V t V tAB( ) . sin( ) sin( )ω ω
π

ω= + ° = + °2 21 30
4 3

30

V t
V

AB( )ω = =1

2

4

3
 (wave average)

V t
V

AB( )
.

.ω
π

= = =1

2

2 21
0 703 (wave average) V

Current wave form is shown in Fig. 10.7.

10.7 See Example 10.1

10.8 a b
E

c E Em
1 1 1 10

4
1

0 9

= = = = =

=
π

ψcos

.

rms

Distortion factor

10.9 π
π

ω ω
π

π

3

6
0 732

6

3V
t d tsin .

/

/

∫ =

10.10 Vrms � 0.732V b1 � 1.023 V

Distortion factor� 0.99
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10.11 4.35 A,Idc � 5.67 A, 1135 W

10.12 8.165 A,Idc � 20 A ,400 W

10.13 8.723 A, 0.38 A

CHAPTER 11

11.1 b1 � 0.99 V, b3 � 0.004 V,b5 � �0.001 V,b7 � �0.03 V, b9 �
�0.21 V,b11� �0.184 V,b13� 0.11 V,b15� 0.14 V,b17� �0.02V,
b19 � �0.12 V, b21 � �0.01 V, brms � 0.743 V

11.2 Irms � 5.013 A, CDF� 0.999, VDF� 0.942

11.3 628 W, 0.42

11.4 See Example 11.3 and Fig. 11.13.

11.5 Irms � 32.72 A,I1 � 32.65 A, I11 � 1.72A, I13 � 0.87 A, I19 � 0.65
A

11.6 There are no triplen harmonic currents.

Pin � 15421W,Vrms � 171 5V, Irms � 32.72A,PF � 0.915 lagging

11.7 (a) 89.6%
(b) 81.1%

CHAPTER 12

12.1 (a) 114 V

(b) 103.2 V

(c) 81.5 V

(d) 51.02 V

(e) 19.9 V

12.2 Lowest harmonic is the second-order harmonic.

12.3 (a) 109.8 V

(b) 95.1 V

(c) 54.9 V

(d) 0

12.4 Erms � 302.3 V Pin � 5.25 kW/phase

Iout � 70 A rms PF � 0.43 lagging
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12.5 (a)� � 36�

(b) Io � 53.67 A (rms)

(c) P1 � 2880 W

(d) Iin � 31 A(rms)

(e) Irh � 21.92 A (rms)

(f) PF � 0.244 lagging

12.6 See section 12.3.1

12.7 3fin 	 2fo � 193.33� 166.67 Hz

3fin 	 4fo � 206.66� 153.34 Hz

3fin 	 6fo � 220 � 140 Hz

3fin 	 8fo � 233.33� 126.67 Hz

12.8 6fin 	 fo � 380 � 340 Hz

6fin 	 3fo � 420 � 300 Hz

6fin 	 5fo � 460 � 260 Hz

12.9 P1 � Pin � 151.4 kW

Eo � 420 V

cos�in � 0.77 lagging

Io � 120 A

CHAPTER 13

13.1 M � 1, 4, 7, 10, 13

13.2 The criteria are satisfied in all cases.

13.3 The combinationM � 11,Mc � 5, Ms � 3 does not satisfy Eq. (13.17)
and is not viable.

13.4 The combinationM � 8, Mc � 2, Ms � 3 satisfies both Eqs. (13.17)
and (13.19) and is an acceptable waveform.

13.5 M 1 2 3 4 5 6 7 8 9 10

fo (Hz) 50 30 21.4 16.67 13.6 11.54 10 8.82 7.9 7.14

13.6 Mc � 3, Ms � 2, M � 7

�v � ��w � 120�
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13.7 Mc � 3, Ms � 4, M � 11

�v � ��w � 109.6�

13.8 (a) 12 Hz

(b) 7.83 Hz

(c) 6.67 Hz

13.9 M � 6, Mc � 2, Ms � 2

�v � ��w � 110.8�

p = 13

3

CHAPTER 14

There are no end-of-chapter problems for this section.

CHAPTER 15

15.1 Vav � kVs Vrms � �kVs

15.2 P kV R

V

R

V

R

s

s

s

= 2

2

2

4

3

4

/

( )

( )

a

b

15.3 Vswitch � (1 � k)Vs Vdiode � �kVs

15.4 Tp � 500 �s f � 2000 Hz

15.5 22.5 V

15.6 k � 0.893 Vo � 1072 V

15.7 I � 7 A

15.8 (a) 4486 Hz

(b) 169.42�s

(c) 26.18 A

15.9 (a) 135.85 A, 82.35 A

(b) Io � 110.2 A, Isw � 53.98 A, Id � 96.1 A
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15.10 0.667–0.333

15.11 (a) 185�s

(b) 142.15�s

(c) 52 A

15.12 Iin(max) � 77.32 A, Iin(min) � 57.92 A, Iin(av) � 67.62 A

15.13 171�s

15.14 (a) 0.337 A, 58.67 V

(b) 3.034 A, 176 V

(c) 27.31 A, 528 V

15.15 (a) 16.67 V, 9 A

(b) 150 V, 81.1 A

15.16 (a) 2.79 A, 0.335 V atk � 0.25

(b) 8.37 A, 9.05 V atk � 0.75

CHAPTER 16

16.1 (a) 0.9 A

(b) 4.49 A

(c) 8.08 A

16.2 �18 V

16.3 4.04 A

16.4 I2 � 40 A, I1 � 4.8 A

t � 50 �s, VL � 13.46 V

16.5 15.6�H

16.6 1/2

16.7 48 V

16.8 1/2 � 1 �s

16.9 dim � 105 mA

16.10 (a) 25 V

(b) 75 V

(c) 225 V
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16.11 k � 1/2

16.12 VL � 128.6 V,k � 0.682

16.13 k � 0.549,1 � 15.71�s

16.14 (a) 8.89�s

(b) 0.125 A

(c) 3.16 mJ

16.15 14�s, 9.04�s, 0.8�s

16.16 1 � 11.905�s, 0.5�s, 11.9�s, 0�s
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