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Preface

Practicing professionals increasingly find themselves in & position of
mideling complex systems for anderstanding andfor contred and require a more
comprehensive knowledge of multivarizble systems. This book focuses on the
compuier-tided approach a5 the mest effective way of introducing the advanced
topics of multivariable systems. Emphasis 15 placed on computer-aided modeling
and analyzis techniques to help both professionals and advanced siudents (o expend
thedr understanding well bevond a first course in avtomatic control systems, This
book is alse sppropriate as a text for & senior of ficst-year gradusis courss in
engineering. It is realistically possible to cover all essential contents of (he book
in ome sermester, and, with some selection, in one academic quarter, Apperdicas
& end B and Chapter | present a summary of the essential material that is nesded;
this should be primarily & review for the reader,

The inteni of the fext is o supply only the most relevant mathematical
developments; keeping proofs and detailled derivations o & minimum, whils
maximizing the utility of computer algorithms, These referenced and well-iestad
algorithms have besn gathered topether in a compater-aided design (CAD) package
called Linegr Algebra and Sysrems (L-4-5). L-4-5 is an interactive conversational
soltware language that i3 suppléed with this temt, It §s wsed extensively in the
illustrative examples throughout the book, but the utility of L-4-5 goes well beyond
the scope of this text. The reader will find L-4-5 to be 1 handy and eagy-lo-use
tool for werifying an analysis techrigue or control design. 1i is assumed that the
reader has access to A personal compuober to work wath L=4-5. The hardwars
recomendations are an ITBM FC, AT, P5-2 or compatible with a minimum of 640k
of memory, M5-DOS version 3,0 or higher, math co-processor and hard disk, CGA
ar higher graphica, doi-matrix or laser printer.

The motivation for this text is the underiying conviction that control
engineers are nol well prepared for significant design wark al the completion of a
basic undergradunte course. Compuier technology has, on the ather hand, brought
a pread deal of computing power o the desk of individual enginesrs and applied
sciemtists. We believe that this text can provide a suifable bridge for students or
professionals 10 beamn complex modeding and analysis metheds. To enhance the
speedd of learning, the main chaplers provide a special section of application
problems along with their salutions,
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The beok may be considered 1o emphasize thres important areas:

(1} the theory of multiviriable linear systems,
{2} the developmént of algorithms from the theory, and
{3} the L-4-5 software to implement the algonthms.

This book is unique in the balanced presentation of these three areas. Other texis,
e.g. those by Kailath, Brogan, and Chen, dealing with the same topics, offer only
the first part. Texts which do offer areas (1) and (3}, such as those by Jamshidi
and others which combine MATLAS™ with control theory, generally do so af a
beginning level and do not contain skpnificant multivarisble sysiem discussion,
Although one may extract "algorithms® from theoretical developmenis, it is,
newertheless, ime-consuming and tedious work réquiring good programming skills,
The subject matter is captured in the five chapter Giles:

Introduction

System Discretization
System Modeling

. Intzrmeodde] Conversion
System ldentification

In Chapter | wvarious basic concepts are presented in a review mode §o
bridge the gap between a first course in contrel sysiems and the multivaciable
gystem mwberial. The topica of Chapler 2 concentraie on the conversion of system
represeniations between the discrete-lime (D-T) and the continuous-time (C-T)
domains, mcluding several conversion methods based on difforent assumplions
regarding the sampling process. In addition o discretization procedures, Chapler
2 alsy offers robust algorithms for the inverse problem of cominualizerion, which
converts & D-T model into an "equivalent® C-T model. The understanding of
multi-input, multi-outpiet (MIMO) system structure is the subject of Chapter 3. In
addition to the standard "canonical” forma, special emphasis is given to the use of
predo=covitrodbable (and -obserabie) frme, which generalize the standard forms
and provide preater flexibility in achieving higher numerical accuracy in the
modeling process.  Also included in Chapler 3 85 o detailed discussion of matrix
Sraction deporptions (MFD). MEDs represent an important altemative io the more
standard state space and transfer function matrix models. Having preseried the
various system modeling concepts in the carlier chapters, Chapter 4 then provides
a multitude of wsefisl alporithms which can be used fo coavert any ane form into
any other. Finally, in Chapter 5 the "comversion® from input/owtput data to some
specific system model, §e. idenrificarion, is presented.  The special identification
pechniques are based on the flexibie structural considerations of Chapler 3,

In summary, this text presents a uoified theory of linear MIMO system
models, containing material that is wnavailable outside of the “technical journal®
literature, At this time thece is no other published book which provides the depth
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and scope, a5 well as a professional level software package. on the topic of MIMO
systems, Perhaps, more importantly, the material i3 presented in a fashion to be
of immediate use 10 the reader due to its “algorithmic® approach.

The typical format for presenting material is to provide a brief introduction
and discussion of the concepts followed by ose or more algorithms for parforming
the required operations. The algorithms themselves are also implemented in L-A-S§
code and used in a few explanatory examples, Detuiled code listings are included
in Appendix . The algorifhms in this book ane represented in 2 pseade-code
format as a neutra] way of defining the algorithms, With this pscudo-code
structure, the user may implement his or her own code using any available, or
preferred, software package (such as MATLABR, Matriw/X, or Control-C), or a
standard computer language (such ax FORTRAN, Pascal, or C}, If the user has no
such preference, the L-A-5 software will be found to be both powerful and efficient,
The additlonal advamtape of using L-4-5, is that the computer code is available,
ready for wse.

All algorithms in the book follow the same general format. ‘The process can
be illustrated by the "system block" diagram below. The simple, yet powerful,
idea is that the algorithm implements a single command that "transforms” the inpul
data into the desired outpiel data. Both sets of data are usually combinations of
arrays representing  specific elements of 8 particular syslem medel,  The
corresponding syntax wsed throughout the text is

A, A, (Algarithm) = B, -, B_

whene the A, i=[1,n]. are the required input arrays, and the B, i=[1,m], arz the
desired cuiput armmays.

in Diaka Ehipu'l. Data
soadosoualid MRt

As an aid 1o usng this book as a classoom text, we recommend the
following order of study;

® Appendix A, as a review of matrix fundamenials. This review could
be supplemented by the instructor,

L Appendix C, o develop an early Tamiliarity with the L-4-5 software.

- Chapter 1, for an introduction to the notation and definitions ussd in
the text, The instroctor should determinc if this chapter is a
sufficient review, and, if not, provide some supplementary material,

» Chapter 2 is basic to the understanding of sampled systems and
should follow mext,
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L Chapter 3 then provides the major link from SIS0 fo MIMO
Sy Rlema,

. Appendix B muay be uselful 1o study ad ihis posnl,

L Mext, Chapter 4 35 the culmination of the modeling process and
showld be exercisad in analysis, or design, problems chosen by the
imsmicior,

L] If tme permits, Chaplter 5 presents 2 pencral approach 1o system
identification, based on the previoosly studied MIMO structure.

We hope that you, the reader, fimd ihat our methoed of presentation facilitates
your bearning of the theorelical concepds, 28 well a8 belping you o apply them o
ronirivial problems.

The suthors would like 1o recognize the interest and help of the praduate
students at Virginda Podytechnie Instifute and State University, as well as those from
Yugoskavia, Brazil and Kuwait; and also the co-zuibors of the research which led
to the creation of this text, who in a special way inspired vs and greatly contrituted
to this material.

5, Bingulaz and H.F, VanLandingham
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Glossary of Symbols and

Abbreviations

ABC....
A S
Sk,
L S
x(5), G{x}
x(2),G(z)

p{A), mnkiA)
#{A), nullity{A)
h{A)

AT

det{A)
dep(e(s)
diagiab.cl

adj(A)-

This symbol desoles the end of a development or
example or an impoeciant egaation.

Boldface, capital letters denote matrices.

Boldface, lowercase letiers denobe veciors.

Italiz, lowercase letters represent scalar valued funclions,
Cireek betters typically denote scalar factord,

Boddface, ialic letbers denote the corresponding

Laplace or z-fransformed quantity. For example, the véctor
x(s) = Flxi)].

The rank of the matrix A.

The nullity of the matriz A

Thiz set of eigenvalues of the matrix A,

The transpose of the matdx A and the vector x.

The determinant of the matrix A,

The degres of the vector of polysomials g(s) = {gi0}.

Denoes & disgonal matrix with the given values as diagonal
eglemenis.

Drenodes the adjoing matrix of the mairix A



xvi
A}
lal

M
Mi-

L=

N(A)
R{A)

C-T, D-T
ADC,DAC
ZOH
SIS0
81,50
MIMO
MIMO
PCILPOI
PCF,POF
CCF,OCF
PMF

Glossary of Symbols and Abbreviations

Denoies the race of the matrix A.

The norm of the matrix A&, alao Morm{A). The Frobeniug
pornr, fee square-root of the sum of the squares of all entries
of A, is used throoghoot the ext

Eguals approsimately
Inverse of & (square} noosingulsr matmx

Poeude- (generalized) inverse of an {wxm) matrix B,
salislying:
MMM =M and MM'M=M

(M) ZET0 MAtrix, N of m may be mro
{n xcm) identity matrie, I = (o}, ¢y = 1, ¢, =0 fori #j.

(m x5y nuil space matrix of the (nxm) matrix A, stisfying:
A NA) = 0, ,, where 5 = m—r, r = rank{A}

{n¥# range space matrix of an (nXm) matrix A, satisfying:
r = rank[R{A)] = rank{A).

Continueus-time, discrele-time, as in D-T system
Analog-to-digital converier, diglal-io-analog comvener
Zerg-onder hobd

Single-ioput and single-cutput

Single-input, single-output

Multiple-input and/or multiple output

Multiple-input, multiple-output

Pseudo-controllability and pseudo-observability indices
Pseudo-controllable and pssudo-observable forms
Controllable canonical form, observable canonical form
Polynomial matrix form

Computer representation of pelymomials:

® An #® order polynomial i =T e’ (G1)
d=i

15 represented in the computer by the (m+ N=dimensional Tow array;

a=[a, a « al={g]) (G2)



Glossary of Symbols and Abbreviations wnvil
The relationship between the potynomial a(s) and the row a could formally

e written as

1

¥
als) = weils) , where i(s)=| (G3)

E.

&  An " order, (p ¥ m) polynomial matrix
&

Als) =¥ A = [ays) ] (G4

i=0

where gy(5), | =1 = pand 1 = j = m are polynomials of up to & order,
e with = [dp dy .. Gl =1{anl

&
af) = T apst = ay i) (G9)
h=0
are represented in the following two forms:

1. Polmomial marrix form (PMF), Ay ®(pm X {r+1)) motrix defined by

By Bisg T - T
By Aypg dpgy gy

I i -— |
._pl. ﬂ,;l. ﬂ-J:lll e ﬂ,llq

"“'p= Wig | =] Oyae g3 T Oy, (G6)

= H S |
B Bpas  Fpgg =
5 | i f
o) (G G - G

2. "Row" equivalewr polynowial matriz form (PMF-ry, A, 2 (p X
min+ 1Y) matrix defined by

A=A, A - AT=(A) (67
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Glossary of Symbols and Abbraviations

The relationships between the polynomial matrix Afs) and cocfficient
matrices A, and A are given by:

1

[ s

Al5) = AT (), whens I (5) = (G8)

with T, the (m % m) identity mairix,
Sometimes, if it is more convendent, a polynomEal, afs), may be represented
by the transpoze of Eg.(G3), e

alr) = i75) -aT (G
Similarly, a polynomial matrix Ais) may sometimes be represented by its
“column® equivalent podyromial motrix form (PMFP-c), A, 1.6,

A -L@A,  wher LG=[1, Ls - Lst] (@10

Ay

with the (pin+1) X m) mairix A, given by A_= Ay

A

Compuiational Procedures:

In this text the computaiional provedures are alternatively referred to as

algorithms, Computational procedures operate on, or manipulate, input data
AFraLys

'ﬂ:h AII Ll ] '|'"J
o produce {desired) output armays

BI.! llh LEER ] B-
which may be interpreted in specific ways, Algorithms will be presented
symbolically wsang specific input variables, output variables and the
algorithm abbreviation. For the generic algorithm (abbreviated ComProc

for computational procedure) and the assoctated input/output variables ahove
the procedure would be represented as:



Gloszary of Symbols and Abbraviations Xix
A Ay o A, (ComProc) = By, By, ., B (GLLY

Such a procedure can be visualized in the "operator” form as a "black box®
tilack diagram as {llustrated in the fipure below,

A B
1 Computational —
L H
AE Procedute 2
(ComProc) — B
n m
(a)

Avi Ay (ComProc) pB By

(b)

Block Disgrams Representing o Generic Algorithm
with Input and Output Variables: () Complete Form,
(b} Abbreviated Form.

Either representation, symbolical or graphical, should be inerpreted the same;
namely, “Apply the Algorithm “ComProc’ to the inpin dare { A, 1 =158}
In order to penerarg the ourput dota {8, , 1 = j = m }.* Tt is worth mentioning
that the sbove algorithm pepreserdation resembles the "post-fix,” or reverse Polish
notation, where the inpul arguments are specified first, followed by the algorithm
name and ended by the ouipul arguments,
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Chapter 1 Introduction

A brief treatment of the background assumed for the remainder of the text is
presented in this chapter, The presentation is nol meant to be complese, bt anly
indicative of the level of knowledge raquired. 1t is aleo appropriate that the reader
review Appendin A for more detils,

1.1 Systems

The investigations of engineers and applied mathematicians often regquire them
o stedy complicated physical systems for the purpose of understanding and/or
modifying their operation. A physical sysiem is the starting point for the modeling
process in which the engineer tries to formulate a mathematical description of the
physical operation, The arl of deriving a plant model is usually an iterative
procedure of adding or deleting complexity to match observed performance, always
with an eye toward obtaining the simplest model which maiches the physical system
measurements. The resulting model is an engineering compromise botwean
complexity and model match which is naturally infleenced by the computational
power available for working with the model. For the remainder of the text the
word sysrfem will refer 1o a mathematical model, not a physical system. The actual
modeling process is nog within the scope of the present stody.

Models generally fall into one of two categeries, One, input owpre models,
also known as exrermal models, are constructed from inputl outpul measurements
without detaited knowledge of the internal mechanisms which produce the
responses.  The other, internal models, are wsually well structured from "first
principles,” such as the laws of Mewton for mechanical elements or of Kirchhoff
for electrical interconnections.  In the subsequent chaplers different forms of
models and their inerrelations are considered. One form, trangfer finchions, is a
basic extemal model type while another, waee piodely, I3 an internal model ype.

1.2 Scope of the Text

Most of the material in this text is oriented foward multivariable, lincar,
constani-parameter systems and deals with modeling and representation of such
systems,  Many diffesent algorithms will be presented along with the theory of
MIMUO systems, The emphasis is on “leaming by doing, " working with the L-A-5
software, or other means of implementing ihe zlgorithms, o more easily anderstand
the theory and limitations of multivarable sysizm modeling,
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1.3 Background Material

The reader is assumed te have kad 2 first course in control systems which
bypically covers single-inpul single-outpul (S150)) systems using classical frequency
damain methods, This section provides a briel reves of definilions from basic
contred theory. The wopics include bodh the continuous-time (C-T) and discrele-time
(2T stake space models as well as transfer function mairices for both domains.
In the next chapier additionn] discussion will be presenied regarding the trans-
formation of models betwesn C-T and DT domains.

1.3.1 Linearization

The basic techniques of this text deal with linear constanl-parameder syslems.
“Thiz utility of these methods 15 based on the fact that such idedlized sysiem models
are good represenlations of most physical systems near o controlled egquilibrium
puint, Por example, a large class of models can be represented in the C-T doman
as folows:

&) = Fixir,u(n), =i

(1.1
(0 = hix(r), wlf))
wihere x5} 15 the (nx 1) g veerar of the syslem, uir) is an (s 1) vector of inpn
signals and i) is the (px1) woior of oupar signals,  The general nonlinear
dynamics are capured in the (ssumed smoath) functions Oix,u) and hixu). Wis
because of these nonlinear dynamics that the system is Uypically analylically in-
tractable, Ome method of reducing the seope of the model is 10 consider the linear-
ization of Eqs.( 1. 1) about & known equilibrivm solution given by (%, ug, yob which,
for simplicity, is taken to be a constant solution, i.c. each element of the I-uple
5 & vonsbant vector and together they satisfy Bga.(1.1) as shown i Eq, (1.3},
By formally expanding the abowe sysiem in a Taylor senmes about the
equilibrium point,

£ ety o S gutxeng) o S lueny

(1.2)
o ch
y = by v Rfuen) + Tloxtu-uy

where the -dependence has been dropped for nolational convenience, The subscript
notation of Eq.(1.2) indicates vectors or matrices evalwied al the equilibrium
solution. Moting that by assumption,
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&, = fim,mg)
(L3
¥g = hixy, uy)
The linearized system becomes
L5 = sty + Batg, 1)
W{l.4)
FH = C() + D)
where 1he notation i hat
f=x-x,, d=u-u, §-¥y-§ (1.5)
and
Aoy, B= i)
a ¥ F h "
{1.6)

oh dh
€= Ee )y D= im0y

In keeping with the structure of the book we will introduce the first of many
algorithms used 1o implement the theoretical developments. Tt is recommended thas
the reader implement the algonthm using the L-4-5 code found in Appendix
The best use of this text is to operate in a “hands-on® mode of exercising the
algorithms as they appear in the reading. Some end-of-chapter problems are
inchuded 10 encourage computer usage. The purpose of this algorithm, denosied
LiN, s 1o numerically caleulwe the lincarized dynamic model (1.4} piven a
nonlinear model (1.1).

Algorithm LIN

Eyniax; Py By the (LIN) = A, B, dif

Purpose: Lincarization of a sysiem of nonlinear differential or difference
equations, i.e. determination of the corresponding linearized stale space
representation,

Input/Outpot Arguments:

& pe={pl i=1, ..,k rowconaining parameters used in defining
ihe nonlinear system,
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® gz = (h ® 1} column defining the nominal point at which the
lincarization is to be performed; & = a1 + m, & and m being the
dimengions of the state, x(f), and input, i), vectors, respectively,
e 2y =[x [ u/].

® dr = (h x 1) column containing finite difference values; or, and du,
for i =1, ..,nandj=1, .., 0 ie de=[d | du” ]

® A = (n % g sysiem matriz of the linsarized model.

e B = {n x m)input matrix of the lincarized model.

® dif = {r % |} column defining the sccuracy of the linearization.

Deseription: The system of nonlinear differeniial equations is given by

&(f) = glx{f), uir), p] (a)
where %), uify and p are the state, input and parameter veclors of
dimensions &, m and &, respectively, while gl{e, o, ) = { gi+.o,*) }isa
r-dimensional vector-valued fancton.

The lincarized model in the state space corresponding o (8) evaluated
ik

¥e) = %, and  w) =uy (k)

1 given by
= Ax(f) + Buf {c)
where the elements of A = { @y | and B = { b, | are calculated according

to Bq.(1.6) by approximating the partial derivatives by finite differences.
The accuracy of the linearization process is measured by

dx
dif = gix, +dx, u,+du, p) - [glx, m,p) +[A E]thr

If g matches [ in Eq.(l.1), then the first equation of Eq.(1.4) i3
forthcoming.  Similarly, if g matches h in Eq.(I.1), then the second
pquation of Bq,(1.4) is obrained,

NMote that in order to perform a linearization, @ nonlinear vector-valued
Sfunction g appearing in {a) showld frsf be defined. The following notation
is usad in the algorthm sleps:

=[x, o

Algorithm:
I, Define vectors p, 2, and dz
2, Define Algorithm GZ performing p,  (GZ) = g, i.e. caloulating the
vector-valued function g
3. Set the number of rows (plements) in 2, = A
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3,
fi.
T
8.
5.
1.
Il.
I
13
14,
15,
1&,
17,
18,
%
20,
20,

O
I,

Selp, I, (GE) = g,

Set the number of rows (elements) in gy = n
Sergy= 1

See Q=i

Qe f + 1=

Extract the ™ element dzif) = oz,

581 1 a1 the ™ tocation of the (h ¥ 1) 2Ero=vechor, &= &
Setzg + o dg = &

Set p, %, (GZ) = &

Set[H|gl=H

[Fd = &, goto B else, po o 16

Sol diagldy,, ..., d2,)} =D

St HTD'=H

Partition H=[ A | B ]. A has n columns
Sel z, + de = x

Set p, 7, (GZ) = g,

Setg - (g + Hde)=dil

Sel =T

Algorithm Implementation:

The listing of the Algerithm LIN implemented using the L-A-8 language 15
given in Appendix C, The vectars g, @ and g in Stepa 5, 13, and 20 are
caleutated by the L-A-8 subrontine GZ. As was emphasized earlier, prios
tr uging Algorithm LIN, Algorithm G should be developad 1o cabeulale the
wector function gy, u, pl.

Example 1.1  As an example of system linsarization, consider the robot arm
illustrased) in Fig, 1.1, For a particular set of arm masses, lengths and inertias, the
nonlinear equations of motion for the system are as follows:

whene

W, = %ifa - T, + Dl w, w, 4in(28,)]

W, = 100T, -%w,lahizﬂ,_}

B,=w, . By=w,, ad [=07+.06co8’(B,) + 05 sin®(B,)
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“‘“1“4:':*:”’:{;j
:a_\_\_ x‘:—-ﬁ;f“z T-'.

—

FIGUEE 1.1 A Tad M=gme-af-Freediin {D0F) Rohed Arm

Ler Lhe slale wecldr, x, am! inpud veckor, u, be defined a3 Falkows:
E = [m Bl w, l]n;.]r
v - T, .

Tz, the full-cdimgnsizng] veclor-yalusd fupcliun pix, u, p1 = gz, p} which
cepencls on e sik-dimensional vecor 2 — [a7, u'" is given by:

g-lg B o2 o8l

where
gL, s 2]
HI‘-_III}_; = [5,.!1 2 -5
P+ P e[, b+, 5L, )
—p;zfamm.:nf D Bh
|

The parimesters in fhe aboeg egiealion arg the compoecints of e parLcier woelor
p [ OF d& 05 50|

The nonlinear di fferenlial squations described, 2. the vector-valued Muncieon
glz, g1, is lingar zed wsing Alpariihm L0 [of Lvd nominal operding painli: 2,
al and e, = [0 2 .3 .4 .5 8|7 while the "linele difference” wectar dr
C I 1 T T A T N 2 1 B

TIsing Algorithn O to develop the Funchon gex, pr. sl the vesors o, ikl
de, previously dellocd, Algorth Lo gived the olkwing hinearized poor {A, E]
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o090 TTEGE L TEm

L 04D (b %]
A - ,n-|

G nah ] | (H]

0nla I-:r oo

The wector ol detining e azcucagy of Jhe linsarizacion is

dif - {1F85E-12, 0, -AHNE-1L, OF
Similacly. linearizatiem sbeur ey wizlds the paic (A, B:

O8O0 00 - 043 lﬂas 1783
L o 0 0 a0
A - . OB
-m2 b 1 -7 A 1
a0 1 0 I

with the pocemey of the Lincaricption sdicaisd by

dif = { OERSE-0S, & - 13940E-08,  0]f

1.3.2 S Models for Contimoans-Time Systems

Frazeal apn ther CervglepTond af the previcos seclion, ac delime a basiz Sass ol
mxlzlz far mulli-inpul - mli opor e spsemy andd dispniss  somearn]
Monglamzntal svaem propeclies wsng chis representalion. Fipure 1.2 illoetraies the
corceepand ity vecior Block diaprasr.

eipilion 1.1 T orvmdmgrsay (e e ['.'.u.-u'.-.l.nf.n'-.-e] el is g,i'l.'-l,:n I:I}'

s = Asfl o+ RoQ), =00
¥irh - 4 sirp + Truied {4

wlhiere X o i (011 0o, W o Dtk 11 w2, ¥ isa [ e IR ¢
anel Lhe mznees &, 1, Cand IF aee occscon waeh cormzatible Junensions.

Typically, the cozificiend matcices A, IE, C and 1Y are <rsven umensally
along with ke initial scace, #6n. By analoay oo the scalar egualion
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FIGURE 1.2 Vecior Block IMagram of the State Moded

[

Em:r} = axif)
whose solution is X = " (e

we introduce the definition of exp{Ad) for a square copstant matrix, A, through the
familiar infinite serses for an exponential function.

Definition 1.2 The frensiton marels, expiAd), for the (rxk) constani
matrix A is
&

1
m:};huq’%:r..ﬂ*%f- (1.9)

It §s important 1o recognize that exp{Ad) has meaning only throagh Bq. (1.8,
which itself is well defined since A' is simply A multiplied by itself & times, The
series Eq.(1.8) 15 absolulely convergent for any finide matrix As, this permits
manipulation of the series on 2 term by term basis,

Several important results are reviewed in the following developmenis.

iﬂp{hﬂ = Ao AT w s j-""-.ri-': . .9
Clearly, by facoring out A as a pre- or poss-multiplier,
r%ewtm:r = A explAf) = explAr) A Wil

showing that the matrices A and exp{As) commute.
Another important result is the familiar property of exponential fusction
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multiplication, Consider that

aplA-e) - 1o oA« EP (L1
Separately, it can be shown that

2 2
PP I | T .;T.E e J(I-1A+ Fi'l_f -}

(1.1Z)
e = (T + (1-1)A + SL;-EEM * )

Thus, comparing Bqs.(1.11) and (1.12},

gMe ™ u gAY {113
Since il follows from Bq.(1.11) that

e 2 g® ] Wi.14)
we feadily deduce that

¢ M = [aM] W(l.15)

by letting + = ¢ in Eq.(1.13), since the substitution gives ¥ e = 1
With the sbove results the general solution to the state model will now be
developed, Rewriting Eq,(1.T),

%:m - Ax(f) = Bulp) (1.18)

Upon premultiplication by expl-Af, the lefi-hand side becomes an exact derfvative,
The reader can easily check this using the refation that for © = AR, then

£ =AB + AR (1.17)
Integrating Eqg.(1.16) from g to f,
_Ir%[t"'t[r‘.l]dt = ft"‘!u[t}dt
’ : (1.18)
e Ml - e oulp) = [e*Butrydr
L3
Finally,

]
x(t) = e Vx(ty + [eX¥IBulz)de (.19
L
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1% the general sofution i the saare in Bg.(0.7).  Introducing Eq.(1.19) inio the
output equation of Eq.(1.7) with 1, = 0,

Fi) = ¥ = ¥lt) W20
where
¥edf) = Ce™xi0) (121}
is the zero-inpur resporse and
Yoult) = [CeMBuiz)ds + Dufs) m(L.22)
o

is the Tero-siare respomse.

1.3.3 Discrete-Time State Models

In many cases the C-T sysiem is to be inferfaced with a digital computer,
The usual analog-to-digital converiers (ADCs) and digital-io-analog converiers
(DAY are available on electronie boards which sre connected fo the computer and
are jointly controfled by 4 synchronizing clock signal. The output of an ADC is
therefore a ssquence of numbers (o be manipulated by the computer; however, each
number is guandized doe o the necessity of being represented as a finite length
compuies word. 17 the {usually small) ermors between the ADC outpul and the ideal
samples of the input signal are neglected, an acceptable model of the ADC mierface
15 an ieal sampler, sampling at uniform intervals in time,

Similarly, the digital number sequence which is fed into the DIAC is converted
to a C-T signal by holding cach sample constant until the mexi sample arrives.
Control engineers refer to this type of action &8 3 zerp-onder lold (Z0H),

Thus, if the above simplifications are made, 2 sampled-data system can be
represenied as shown in Fig. 1.3, The notation is that & D-T signal s given an
argument of time egqual o kT signifying that the walues are defined only at integer
muliiples of te sample interval, T. The DAC interface is represenied as a rero-
order hold and the ADC interface, by an ideal sampler which 15 synchronized 1o the
Z0H by a system clock signal, not explicitly shown in Fig, 1.3,

The effect of the signal conversion into and out of the C-T system in Fig. 1.3
15 bo create an equivalent D-T system with input vector w{ET) and output vector
¥ET). To establish the Z20H equivalent model, assume thai the sampled state
vector is known af , = kT, From Eq,(1.19) with ¢ = k74T,

kT=T

©kT+T) = e*ATx(kT) + [ ACTTUB I uikd) (1.23)
kT
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FIGURE 1.3 Sampled-Dats System

where use has boen made of the fact that w(s) is the output of the ZOH, Le. that
aff) okl for ET<i<kT+T (1.24)
The resulting discrete-time model s given by
mk+1} = A, x(k) + Byutk) , =)

Wil.25
¥(B) = Cx(l) » Duf)
and is called the ZON equdvaleny moded, The notation is that
a(t) = x(kT), ulf) - wkT), yik) = y(kT) (1.26)

where T is the sample interval. The mairices A, and B, are obtained from
Eq.(1.23) with the change of variable s = KT+ T-r for the integral, The results are

T
Ag=et’, B, = [MBa W(1.27)

The owtpat equation in By, (1.25) is simply the ideal sampled version of the outpul
i Bq.(1.7}. An aliernative representation for B, when A is nonsingular is green
by

- i
B, - AlerT-1yB = 5 AT gy
4 (= E i+ 1)

A was dose earlier in the chapler, we introdoce the second algogithm usexd
to implement the previous theoretical developments,  Again, it is recommended that
the reader implement the algorithm using the L-4-5 code found in Appendix C.
Afber having worked through the algorithms and the end-of-chapier exercises in this
chapter, the reader will feel comfortable reviewing and exercising the algorithms
in the remaining chapbers. The purpose of this elgorithm, denoted EAT, is io
numerically cablculate the trangition matrix for a panicular A matrix and scalar
sampling interval, T.
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Algorithm EAT
Syntax; T, A, Nrm, N(EAT) = A,

Purpose: Calculation of the state transition matrix, A, = A"

Inpast/Oulpul Arguiments:
® T = positive scalar
® A = pxn) matnx
® Nrm = positive scalar, suggested wvalue: 0.5 < Nem < ]
# N = integer defining number of 1erma in power series of Eq.(a)
® A, = (n¥n) matrix satisfying: A; = exp[AT]

Descriplion: The matrix A, is calculated using the truncated power series:

E UL‘.!'.fr]-’ whees pead, @)
i
The integer § is given by
o [In(jAL T Nrm) ot
InZ ininpar (b)
e
Equation (b} guarantees that (see the Glossary for matriz norm)
AT r] = Nrm iz

which leads to the satisfaciory converpence of the power series of Bog.(a).
In order o save computational time and 1o reduce round-off errors, the
M* arder polynomial e(A) used in Eq.(a),

N T i
- . .= —_—
e(A) th. where ¢ E{r] (d)
i& evaluated by calculating the (r-1)" order polynomizl ¢ (A} given by

|
efA) = ﬁ Alc, )
where, according to the Cayley-Hamilton Theorem:
efl) =ed) for i=1,-.n
whete ‘ULII‘ = L{A)

The coeflcients f = 1/, i=[1.¥], are calculated by Algorithm FACT.
Calculation of the coefficients c; of the polynomaal ¢{f) is done using
Algorithm POLR,  Calculation of the polynomial cf{A) m Bg.(e) 1

i)
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L.

3
4
5
[
T
B
9,
14}
11
iz
13

2. Sat

accomplished with the POM algonithm, Algorithms such as FACT, POLE and
POM below, not specifically discussed, are listed in Appendix C.

Algorithm:

Define input arrays: T, A&, N and &

[tnuMﬂHmﬂ il
In(2)

. B ¥=or

. SuaTir=T,

Bt = and fT)'=e,, fori=(, - N
et —cte]l=C

. Set C, A (POLR) = C.

, SelC, A (POM) = A,

Iff = 0, stop; else, go to 10

. s =

. BetiE]l =g

coBeL Ay A A

IEF =, pooto 10 else, stop

Algorithm Implementation;

The listing of Algorithm EAT implemenied using the L-4-5 language is given
in Appendix C. Algorithms POLR and POM are otber algorithms also Hsted
in Appendix C. The coefficients i of the (1 x N+1) row armray [ used by the
algorithm are calculated by the L-4-§ subroutine FACT. For more details see

Chaper 2.

As is mentioned in Chapler 2, if the matrix (n % ) A is "diagonalizable,”
then A, = &*" may also be calculated using Eq.(2.1), i.e.:

A, - M diagje™"] M

where b, are cipenvalues of A, and M is an (7 % 1) "modal® mairix conkaining ®
“ordinary” eipenvectors of A associabed with cigenvalues &, For more details ses
Chapter 2 as well as Appendices A and B.

In this specific case the matrix A, may be cabculated by Algorithm EATY given
below which, in fact, implements Bg.(2.1).

Algorithm EAT)

Syntax: T, A (EAT)) = A,

For inputioutput arguments see Algorithm EAT,
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Algorithm:

1, Define input arays T and A
2. Set A (JFR) = M

1. Set A (EGY) =g = { ), |

4. Sel diag{ exp(dT) } = ExJf
5. Set MOExIEM' = A,

The listing of Algporithm EAT], implemented wsing the L-A-§ lnguage, is given
in Appendix C. The calculations in Steps 2, 3 and 4 are performed using the
alporithms;

JFR (the Jordan form of & diagonalizable square matrix),

EGV (the eipervalues of a general square matrix), and

Exlf (a diagonal “Jordan® form having the scalars ™ on the main

diagonal},

respectively. All these algorithmas are available in L-A-F as simple “opertors.®
For detadls on the concept of L-A-5 operators see Appendix C.

Linearly Interpolated Model

In & similar development one can work with higher-order hold devices,
although they are not a5 commenly found in hardware form. A more accorate
medel is given by a linear interpolation between sampled values, This is referred
b0 &8 the frapesoidal nde when used as an approzimate infezration lechnigue.
Thus, the C-T input signals are represented as straight lines between adjaceat
samples as illustrated in Fig, 1.4, Prom Fig. 1.4, for kT = ¢ < AF47T, we can
write the relation

it - kT

“UJ = T]fﬁ‘rf T} + M

ulkT)

With this more elaborate model of the inputs the generl solubion o the stale
equation can be used (in much the same manner &5 was done i the previous
development for the ZOH model) 1o arrive at the Nnearly inrerpodaied model

x(k+1) = Ax(E) = Byuik) + Byyuk+1) m(1.28)

where the notation of Eg.(1.26) has besn used to simplify the expression and
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i)
|
wkT+T)
u(kD)

[

kT KT+T .

FIGURE 1.4 Linearly Interpolated Data

= o
Ay = E F!"
=1

- i+l a1
B, = —— _TA'E W{1.2%
- Eﬂ i+
=
= AR
E @+
Equextion (1.28) evaluates the present state as a weighted sum of present inpat,
past input, and pass site, The eoefficient matrices would have to be handled
numerically as e.g. truncaled versions of Bgs.(1.29). We will not pursue higher-
order developments alosg this line; however, more defails will be presented in the
next chapter oo algorithms for implementing this discretization. We summarize
with the following definition.

Bn‘l

Defnitlon 1.3 The discrete-time state fvarialle) model is given by
ak+1) = AxiE) + Bk,  w(0)
yik) = Cxfk) + D uik)

where ¥ is an {ax 1) vector, @ 18 an (mx 1) vector, ¥ 15 a (px 1} vector
and the matrices A, By, C and D' have cormesponding compatible
dimensions, Figure 1.5 illustrates the wector block diagram for (his
msdel.

(1.30)

Recursive Solation  In the following development the subscript o is omitted for
convenience. Working with Definiton 1.3 and assuming that xi0) and w(k) are
known for k = 0,
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x(1) = Ax(0) + Bu{l)
x(2) = Ax(l) + Bu(l) = A'x(0) + ABu(l) + Bu(l)

Continuing this recursive process leads to the general solidion:

i-]
xik) = A'xD) + ¥ AV Ba() W{l.31)
i=0

Introducing Eq.(1.31) into the output equation of Bg.(1.30),

¥E) = §glk) + ¥ulk) W(1.32)
where the zera-iapel response, Yqlk) is

¥ AE = CAtx(D) M(1.33)
and the zero-maie response, v (k) i3

k=B
Y k) = ¥ CA¥“'Buil) + Dulk) Wil.54)
i=h

We will also review transform descriptions from (he beckground of the state
variable models. The Laplace and z-transforms provide these allermative
descriptions of the systems of Definitions 1.1 and 1.3.



Swction 1.3 Backgrouwnd Matarial 17
1.3.4 Controllability and Observability

Both consrollability and observability are fundamental concepts in the design
of controd systems, The first answers the question of whether we can be assured
of being able o influence ihe state of 2 system using the available inpats; and, the
second answers i related question of whether all state variation is "visible” in some
way through the measurements. In the following developments a D-T state space
model of the form of Bg,(1.30) will be assumed as a starting point; bud, sinee it is
the structure of the state space model that is important and not whedher the model
15 D-T o C-T, the end results will hold for both Bg.(1.30), as well as Bq.(1.7)

Controllability

By “controlling” a plani, we mean fo use its available dynamic imputs
{variables capable of being maniputated) amd specify thelr time variations in order
to obdain some desired response. We begin the discussion with the assumption that
the D-T model in Eq.(1.30) is completely known and completely representative of
the gystem to be controlled. Equation (1.30) has the general solution for its stae
given by Bq,(1.31). Here we recognire that it is the internal state and not just the
ouwtpat that is of concern.

Definition 1.4  The discrete-fime state (variable) model given by
Eq.{1.30) is jcompleely srane) corrrolfable 37 1t is possible o force the
state from any initial state x, to an arbiteary "target® state x, in a finite
number of seps,

We will use this definition to derive & simple rank calculation to test for the
property of controflability in & linear system, It is noted that for lnear systems the
problems concerning the transfer from an arbitrary initial state x; to the origin 0,
or the transfer from the origin 0 10 an arbitrary final state x, are equivalent. This
latter perspective is often wsed to define the related concept of reachabiliry.
Recalling Bg.(1.31), x(k) is the state after & steps. Intuitively, if we can drive a
systemn from ome siate o any other, then we can controd the system in some moone
complicated manner. Expanding Bq.(1.31) and equating x(k) 1o x,, we write

uik~1)
x-At@ -8 AB A% - a-1"¢P|

ﬂﬂ'}
This expression is suggestive of solving for the set of input vectors which, when
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applied o the sysiem, will cause the state 1o end up 4 x, after k steps.  Since the
left side of the equation i3 arbitrary, the coefficient (partitioned) matrix must have
full mank, i.e. 8. However, we have nof, as yet, specified k. 15 it possible that the
partitions A*' B continue to generate linsarly independent columns as & increases?
In fact this is not the case. The Cayley-Hamilten theorem of matrix algebra tells
us that A" (where A is an (n ® ) mairix) satisfies its own characieristic polynomaial
and, thercfore, A" can be written as a lincar combination of powers of A less than
n, Thus, with k = r in Eq.(1.35) we maximize the number of linsarly independent
columng of the coefficient matrix. [n this caze the coefficient matrix is given a
special name, i.e. the system conerodlabiliny marrix.

Dufinition 1.8  The confrodability mateix for the discrete-time slabe
model piven by Bg.i(1.30) is defined as

Q. =B AB - A*'B]

Confroltability is an inberent structural propesty of 4 system mosdel, and
cguivabent systems will exhibit the zame iest resulis. The simple knowtledpe of
whether a sysiem is controllable, or not, is crucial to the sabssquent stale space
control methods.  Without controllability not all of the states can be "guided® by
input manipulation, Unforiunately, the question of centrollabilily gives rise toa yer
or ne answer and does not directly indicate the “degres of controllability ™ a
messure of how close the system is to being uncontrollable. Yet another perspec-
tive is that if 3 particular model is not controllable, it simply means that additional
actuation capability miest be desipned into the system.

We summarize this discusgbon with the following test and a subsequend
algorithm for calcutating the controdiability matriz, It may be noted that in the
Algogithm Jc, the definition of €, is slighily modified. In particular, it is known
that for MIMO systems no new linearly independent columns of Q, are added
beyond the partition A" B, where s is the number of (independent) columns in B,
Therefore, . can be defined to end with the partition A™* B, rather than A™' B,

Controllability Test: The system described by Eqo{1.30), or that described by
Eq.(1.7), is comiroliable if and only if its controllability matrix, 0, given in Dief,
[.5 has rank &, where 5 i3 the order of the sysiem,

Algorithm (¢

Purpose! To calculate the m X (n-m+ 1w matnx Q=] B AB ... A"™R]



Section 1.3  Background Material 19
Description: The matrix £}, is caleulated by the following recursive process:
Q, = [Qyy, | A'B], for i=1 to (u-m+I)
with initial condition that Qg = 0, ;. The matrix ), iz equal to Q. .0

Notation: 0, , represents a @en matrix with n rows and zero codumns, and
[X; | X;1= X refers o concatenation "By columns,” Le.

X-0% | 5]

Algorithm:

Define matrces A and B

%et the number of columns in A =n
Set the number of columps in B=m
Sed n-wick 1 o= 0

Sl B=X

Sal b, =0,

Set =

Seti+ 1=i

Set [ | X]=19Q.

SerA X=X

Ifi < i, goioB; else, stop

Algorithm Implementation:

The listing of the Algorithm (v implemented using the L-4-5 language is
given in Appendiz C, MNote the striking similaslity of the algorithm steps
and the corresponding L-A-§ operator stabements,

Observability

As in the previous discussion, the D-T model of Bg.(1.30) will be asumed
io accurately represent the system at hand. The concepd of obrenabilily is a
fundamental property of systems related to bow the measurements, or ousputs,
interzct with the system stales, 1t has been shown that the smple problem of
identifying the initial stabe, x(0), by ocbserving a fimite number of outputs i3
eguivalent to knowing that the complete state information is transmitted to the
outputs.  Although we know from Eg.(1.32) that the general solution consists of
two parts, only the zero-input response need be used to develop the condition under
which the initial stare can be identified from a finite nember of outpuis, The reason
for this is that, since the model and inpuls are known, the zero-state response could
amply be caloulated and subtracted away from the fotal solution,

o A LR
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Definition 1.6 The discrels-time state model given by Eq.(1.20) is
feomplerely store) obrervable if # is posable o determine (0} from
knowledge of wik) and y(k) over a finite number of time stepa.

This definition will be used to develop & simple rank test for the property of
ahservability of a system, similsr to that developed for controllability above. Since
without loss of generality we can assume that wik) = 0, as discussed previously,
we can expand Bg.(1.33) w obtain

c ¥
CA 1

x0 = M

CAY vk}

We can sobvie for x(0) given the known vestor on the right if and only if the &
columns of the coefficient matrix on the left are linearly Independent. Since the
number of linearly independent columns of a matrix equals the number of linearly
independent rows, we can add partitions (C A') 4o have this affect. Again, as in
the case of the controllability teet, the maximal rank of the coefficient matrix is
assured when the final panbiion is (C A™"). Por this case the obrerbilin marrie
is defined as follows,

Decfindtion 1.7 The observability marrix for the discrete-time state model
given by Eq.(1.30) is defined as

C

CA
=] _

cA*

Since €, has » columns and mp rows, the maximum rank of Q, is n. Thus, for an
arbitrary st of & oufpul measurements, we can solve for x(00) above if and only if
Q. has n linearly independent columns. Consequently, we have the following test,

Observability Test: The system described by Bq.(1.30), or that described by
Eq.(1.7), is observable if and only if its observability matrix, (., given in Def. 1.7
has rank o, where n is the order of the system,
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Like controliability, observability is an intrinsic property of a system.
Equivalent state models exhibit identical (est results, The test above provides a yex
or no answer amd, ns with controllability, no direct measure of the “degree of
ohservability.” Since observability deals with how the sensors relate o the system
dynamics, lack of cbservahility can be interpreted 23 2 need for mome sensors for
the system.

Algorithm Qo
Syntax: A, C{Qa)=1Q,
Purpoze: To calewlate the (n-p+13p % 1 matrix

i
CA

q, =
CA"P

where  is the number of rows in (C. Mote that ae in algorithm O,
ihe rows of ), have been truncated, thereby redefining ©), for ease of
compuation,

Description: The matrix (F, is calealated by the following recursive process:
uulil’-li-

Q=) -— |, fat i=1 0 {n-p+1)
o U

with initial condition that Q, = 0,,. The matrix Q, 5 equal to Q..

Motation: 0, = a zero matrix with zero rows and & columns,  And

X, X,
== | = X, means that X = | --
X, X,

L.e. concatenation "hy rows.”

Algorithm:

1. Define matrices A and C
2. Sef the number of columns in A = n
3. Set the number of rows in C= p
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Setrp+l =i
SetC=X
Set 0y, = Q,
Set O = j
Seti+ 1=i

Bt IQ'T | xr]!" _{L

10, St X A=X
11, Ifi < i, go to 8, else, slop

e pamwes B

Algorithm Implementation:
The listing of the Algorithm Qo implemented using the L-4-§ language is
given in Appendix .

Duality Principle: it is found that for many types of calculafions that a certain
similarity exists. For example, in the previous tests for controllability and observa-
bility, thers is a noticeable similarity in the calculations. Since this phenomenon
shows up in several places, we will begin to explain with the following definition
af dual rysrems.

Definition 1.8 If the discrete-time staie model, 5, 15 defined as
xk+1) = Ax(E) + Bu(i)
Fik) = Cx(k) + Duik)
then the dual symem, §', is given by
2 k1) = ATxR) » CTu k)
vk = B xR « DTl
with ifs own states, inputs and oitputs,

It is casy to soc that the relationship of duality is "reflexive,” i.e. if a system
§ ia the dual of a system §°, then §' i3 also the dual of 5. With regard to the
previous tests of controllability and observability, we can sy that:
® A sysiem is controllable {observable) if and only if its dual sysem is
observable (contrallable), Specifically, ), may be calealated using O as follows:
AT, C7 () = X
X o= 0,
and similasly ), can be calculated using Qo. More will be said on (his fater,
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1.3.5 Responses of State Space Models

Having created models of systems such as given in Eqs.(1.7) or (1.30), it i
frequenily necessary to numerically calculate and plot the responses of these
systems from known initial conditions and input functions. In L-4-§ it is
convenient to symbolically represent the responss of either D-T or C-T in the same
way:

A, B, C. D x,u I'(CDIR) =¥

where A, B, C and D represent the D-T or C-T staie space moded; x; is the initial
stase; u is the (m 3 M) armay of inpul vector samples, where N is the number of
samples. The parameter T, shown as an input to Algorithm CDSR shove, is a
scalar which represents the total solution time For C-T models; for D-T models it
should be set to Zero or any negative scalar.

Ir the case of a C-T system, i.e. for i), the &* column of o contains the
wector wif), where

A L L s for 1sksHN
N-1
The values of uif) between samples are assumed to be fineary interpolated as
illustrased in Fig. 1.4 and further deseribed in the previous discussion of Linsarly
Interpolated Models., Finally, ¥ is a {p X &) matrix containing solutions of cither

of the sate modals, Eqs.(1.7y or (1.30).
Plotting of the responses ¥y may be sccomplished in L-A-5 by the commands:

¥(T)=ytr of by the MOS = §(T),TI(DIB)=
*  ytr,T(DIB}=

where (T} is a matrix tronspose operator.  For more delails see Appendix C,

1.3.6 Continuous-Time Transfer Matrices

Applying the Laplace transform to the state space model of Definition 1.1
with &= 0,

sx(gy - x(0) = Axls) + Buls)

W9 = Cxig) + Dats) (9

Salving for y(s),
¥ = ClEl-A) o + [Clsl-A)Y"B + D]uis) W{1.37)
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Diefinition 1.9 The comfimsesus-time frangfer marrbe, ), s ibe zero-state
relation hetween the transformed input and output vectors, B.g.

Gis) = CisI-A)'B + D Wil.38)

Definition 110 The characiesistic poedynomicl of the peneric state moded
is the a®™ order polynomial

ais) = detix]l - A) Wil.39)

The tramsfer matriz G} reduces o a scalar and i3 called the rrangfer fimerion when
the system hias only ome input and one output.

Definition 1.11  The transfer matrix Gix) is said to be a proper frangfer
muirir if
in g - g ni0

whers f is a constant (finlte) matns, not dependent on 5.

Definitian 1.12  The transfer matrix G35 is said to be a soicenly proper
trangfer marrix if

I ) - 0 Wi1.41)

1.3.7 Discrete-Time Transfer Matrices

In & similar manner to the previous development the r-transform can be
applied to the system of Definition 1.3, whene the subscripl o is omitied for
convenience,

x(g) - el = Ax(z) « Bulz) (1.42)
wz) = Cx(z) « Dulz) :

Ths, yizd = Clzl- A) e x(@) + [Cizl-A)'B « DJux)  W(1.43)
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Definition 1,13  The discrete-time franger mairiz Giz) is the zero siale
relation between the z-transformed input and outpud vectors, e.g.

G{x) = CizI-AY'E + D W(l.44)

The reader should recognize the similarty between the D-T and the C-T transfer
matrices, Both are afgebraie quantities so that Definitions 1.10, 1.11 and 1.12, as
well a3 many others, may be interpreted in ¢ither the 3- or the z-domain. In many
places throughout this text we will rely on the readers’ recognition that a certain
operation performed in the s-domain would be identical in the z-domain, The
fidlowing algorithm is one such case.

1.3.8 Leverrier's Algorithm

In the previous scction it was seen that the resadvenr marrix, (51 - A)', played
an important roll in formulating the trensfer matrix from the state-space model.
Formally,

(i = At o BRIAL =AY W(1.45)

det (s1- A)

where the denominator of Eg.(1.45) is an #® order polynomial, ais), called the
characteristic polynomial of the matrix A, Explicitly,

alf) =2* ea, 2 re, o v ety W1 .46)
From Eq.(1.45),
adj (51 - A}-(s1 -A) = det{s]-A) = als) 1 (1.47)

The adjoint mairix can be expanded as
adj(sl - A) = Ts™ ! s (Ave, D&+ (A +a,_ A+a, 115"

#on (AR ul_:A": v = k)

(1.48)

To see that this expansion is valid, the reader should ke time to mulbiply
Eq.(1.4%) by {s1- A}, thereby checking Eq.(1.47). Note that the Cayley-Hamilron
Thearetn requires (hat & (square) mairix satisfy its own characteristic equation, i.e.
a(A)=0, where a(s) is given in Bq.(1.46). Let us formally wrise that

- 'I-L ""]1- l'_':-|-..-|- - :.E.El
(sI-A) 20 R, R, .5 R,s+R.] g (1,49
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The numerator polynomial matrix Ris) = {r(} is an {0 = #) matrix of f@m-1)"
order polynomials, rys), which can be expressed as follows:

%=l n-l
Rg) = L Ris' = Ary@ )y r@ = % s’ (1.50)
i I

It should be clear thai the relation between ihe (n ¥ n) real matrices R, and the
coefficients f; of the polynomials rifs) is given by:

R, = {ry)., for lsisa, lzfzn, Bzlzn-1
Comparing Bgs.{l 48} and (1.4%), it may be concloded that!
R_,=I, R _,~R _A+s, 1, R, R, A+e, 0,

1.
Ry=RA<ayl Vel

Also, sinpe the matrix A saiisfies {ts own chamacteristic equatlon, a{A) = 0,
RA+mI=0 (1.52)

Leverricr's algorithm is a recursive metbod that caleulates the coefficients of
the characteristic polynomial in Eq.(1.46) as well as the matrix coefficients of
adj(s1 - A), as shown in Bq.(1.51). The recursion steps begin with & matrix result
that the coefficient o, ; in Bg.(1.46) is the negative of the sum of the eigenvalues
of A, which, in um, is eqaal to the negative of the frece of A, The frace of A is
defined as the sum of the main dingonal clements of A, denoted fHA).

E'I'l = I_ . ﬂ:l-l = _ﬂ'{h}
R,,=R_A+a, I, a,,-= —%nrmﬂ_im

R, ~RA+al, :,a—irr{n,a}

{1.53)

Equation (1.52) can be used as a numeslcal eheck on the above calculations,

Example 1.2 (Leverrier's Algorithm) Given the following matrix

610
A=|0 0 1
2 4 -3

We will calculate (51 - AY' using Algorithm RESO o implement Eq.(1.53) and
check the result with Eq.(1.52). Pollowing the recursion steps of Eg,(1.53),
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K~ i a,=3
310
E=RA+a,I=1 0 3 1), & =4
2 -4 0
4 3 1]
H'-H:ﬁiull'- =2 0 af, l‘-j
g0 -2 4
Equation (1.52) is satisfied identically; therefone,
100 31 0 4 3 1
010fs«|0 3 1lsg+r|-2 O O
Ay g OO 2 -4 0 0 -2 0] _ Ris
Wl £+ 3z + 45+ 2 aisy
or, cqually,
e+3s+d 243 1
-2 R ¥
[5.] —ﬁ'}'j = -8 "‘-n!"! Jl L {TH[J'}]

p' v A+ 45+ 2 ais)

The reader is invited to further check the results by direct calculation of (71 - A).

In the following we will discuss algorithms which not only calculate the
resolvent matrix (Algorithm RESD), but also caloulate e complete transfer matrix
from a state space description (Algorithm LALG, using Leverrier's algorithm and
Algorithm S8TF, which is not based on Leverrier's algorithm}. In the sequel
important notation is developed a5 well as additional examples for begter

understanding of MIMO system descriplions,
Algorithm EESO
Symta; A (RESQ) =a, B R

of the given (square) matrix A using the Leverrier algorithm,

Input/Out put Arguments:
® A =given (p X i) malnix

Purpose: Calculation of cocfficients of the characteristic polynomial ais)
and the numertor polynonial matrix Ris) defining the resolvent (51 - A
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# a3 = (| ® n+1) row contnining coelTicients o, 0 = | = n, of
afi), Coefficients are ordered by indices in increasing order.

* R =(nxn) matrix containing n (& * n) matrices R, 0 =
i = n-1, defining the (r * n) podynomisl matrix Riz). Matrices
R, are ordered by indices in increasing order.

& R ={r ® n) matrix whose rows contain n ceefficients, rg,, 0
< h =n-1, of the polynomials r,is) defining the polynomial
madrix R(5). Rows r, are ordered “columnwise,” Le.

row | contzins coefficients of £, s,
row 2 contains coefficients of my (s,

oW n;:uul:ajm coefficients of r_ (5],
rovd i1 containg coefficients of r,(s), [a)

oW EH-mMms coefficients of r(sh,
sow o Gimibing couiTidkents of i,

The matrix B i3 sid to be in polvnonial matrlx form (PMF). The rows r,

of B are:
= Lrg Ty Tyenl

Description: The expressions in (1.53) can e represented by the following
TECUTSIVE PIOOESS:

B =R A+Le,
(R, A) (v
i+l

for @ = i = m, with initial conditions R, = 0 and a, = 1.

Moie that the matrix R, = RyA + o] calculated in the last siep, i.e. for
i = i, is not used in defining the numerator pelyromial matriz Ris). The
norm of this matrix could be used for checking the accurey of the
calculation since:

“I =-i=1 —

R, = t a, A (e
[T

which acconding to the Cayley-Hamilton Theorem should be aqual o the
LeTe malrix,

In eddition o the (1 = a+1) row a and the (n = &°) matrix R,
nmely
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a=loy o -~ a,, a]
R=[R, R, - R_1

Algorithm RESO zlso caleulates the (v % n) matrix R whose rows contain
the coefficients, rg . of the {(7-1)" order polynomials r(s), defining the
numerator polynoméal matrix B{s) in Eq.{l.50). The amays R, and R
contain the same scalars, ry, , but arranged differently. The reason for
caleulating both arrays is, as will become clear later, that some control
algorithms requine the form of R, while others make use of the polynomials
of B more direcily,

dy

Algorithms

Deefine square matrix A

Set mumber of columng in A = 4
Setl, =1

Set0,, = R,

SetI= R,

Set 0’ = nn

Setl_ =R

Bel l=a

9. Betl=j

0. Seti+] =i

I, SR xA=E

12, Set =/HEW = g

13. Set[a |aj=an

4. Set[R | R ]=R,

15. Setall & columns of R, into & gingbe n° dimensional column = p,
5. Bei[r, | R]=R

17. SstE+a 1=K,

18, Ifi < n, goio 10; clse, stop

O el O LM B LR bk e
Eom o w m weom m

Algorithm Implementation; (See Appendix © for the L-4-8 listing.)

1.3.9 Transfer Function Matrix Calculation

From the previous discussion it is clear that i addition b the resolvent
matrix of Bg.(1,45) the transfer function matrix G{s), defined in Eq.(1. 28}, or Giz)
in B, (1,44}, 15 an imporiant representation of & system, The next iwo alporithms
were designed fo calculate the transfer matrix from a given state space
representation, (A B, C D}, Alparithm LALCG, based on Leverrier's algocithm will
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b considered fiest ‘This alposithm calculaes the coefficients of the chamcteristic
polynomial afs) and the (7 ¥ p) nemerator polynomial matrix, Wis), related to the
transfer mairix by

G(s) = C(s1-A)'B + D « H& (1.54)
als)
for & given n® order system with me-inputs and p-pupits.
Similarly, as in Eg.(1.4%), the (p ® m) polynomial mairix W5} can be
represented as

Wizl =% W5t = ["’u'[‘]' = E L (1.33)

whene w*LIw{ulr IE-ESF. I-i-jim. uihﬂl

Algorithm LALG
Symtax: A B C D{ALG) =a, W, W

Purpose: Calculation of coefficients of the characieristic polynomial @)
and the (p % m) numesator polynomial matrix W(s) defining the transfer
matrix ((s) of a given state space representation {A, B, C, D} using the
Leverrier algorithm.

Inputiutpat Arguments:

® A B C, D} = state space representation of given system with i
stafes, m inpuls and p outputs,

® a =(1 ¥ n+]) row armay containing coefficients a,, 0 = { = m, of
als). Coefficients are ordered by indices in increasing order,

* W =g x (n+1)m) matrix containing a1 {p = m) matrices W,
for O = | = n, defining the (p % m) polynomial matrix W) in
(1.55), The matrices W, are ordercd by indices in increasing order,

® W = {pm ¥ n+]) matriz whose rows contain s+ 1 coefficients wy,,
for 0 = k = m, of polynomials wy(5) defining the polymomial matrix
Wir). As was true for Algorithm RESO, therows wy, 1 =i = p,
1 = j = m, are ordered "colomnwise,” Le.

row | contzing cosfficients of wy,(z),
rovw 2 containg coefficients of we,(f),

oW I::nnt.ams coefficients of w,(s),
row g+l contains coefficients of wy,(s), {a)




Section 1.3  Background Material n

o Eplul:;mtaj:u cocfficients of wyls),
row _m ;mu.'-rﬁ coefiichents of w, ().

The matriz VW is said to be in the pelvonial marrix form (FMEF), The rows
wy of Woare ;

Wy = e Wy — Wyl

Deseription: The caloulation of the coefficients of afy) and mafrices W),
0 = i = n, defining &5} can, &5 in algorithm RESO, be represented by the
following recursive process:

By =R A+Ta,

(R, A)
Bai-q i#1l {b}
I"Tll-l - ER'I-JB L ll'ﬂ'_]

for & = [ =< &, with initial conditions R, = 0 and o, = 1.
Again note that the matrix B, calculated in the last step, be for [ = &,
could be vsed fior checking the accuracy of the algothm,

I sddition to the (I % r+1) row mairix o and the (p X% (n-+ L)

matrix W namely
aefe, a - o £]
Wo=[W, W, - W, W] )
Algorithm LALG also caleulates the (um = g4 1) matnz W whosse rows

contzin the coefficients, wi, . of the (n-1)* order polynomials wy(x), defining
the numerator polymomial matrix Wis) as In Eg.(1.55), i.e.

A n
W = T W, st - {wut?r‘} -3 w,,,;'-} @
hed b0
where W, = [w,), lzizp, lzfsm, Ochsn
Algorithms
1. Define sqsare malrix A
2.  Sel pumber of columns in A = &
3. Sal =1
4, S5 D=W and I=R,



a2

5
L]
¥
B
k)
1
11.
12,
13
14
15
{7
17
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Het all m columns of IF into a pm dimensional column = W
Sot | = a

Set)= |

Sel i+ 1 =i

Setl R, 5 A=E

Set —m(EMI = g,

St CR,B 4 Dag =W,

Set[aq jal=a

Set [ W, | W,1=W,

Sel all m columns of W, into a single pm dimensional column == w,
Set[w | W]l=W

SctE + g l=R

IFi =< &, poto B; else, slop

Algarithm Implementation: (See Appendix C for the L-4-5 listing. )

Example 1.3 (Transfer Matrix Calculation) For this example the given MIMO
system (&, B, C, T} is {in sysrent maeris fivm)

0 1 0 | @ 1

o 0 1 | 1 0
lh Bl |2 4 21 1 0 (1.56)
(55 U e

1 o © | 1 o

¢ o 2 | 0 0

Mot that swre maiee, A, 1% identical to that wsed in Example 1.2 1o illustrate the
caleulation of the resolvent matrix (51 - AY'. In this example we are looking for
the fransfer matrix

Gis) = C(sI-A)'B + p - X&)
aix)

Fram applying Alporithm LALG:

g¢=[ay 4 a a]=[2 4 3 1]

The characterisic polyrontial is inlerpreted from this 1o be

als) =2 + 43 + 35 + g

In addition the algorithm provides W, | a3 follows
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64| 5 3131110
-40|-BE-4|20]00
andl W, which containg the same information in different form,

W, ‘[wu W, W, wa] =

EE

o

tad
[ = L ¥
=T - T -

From W we directly interpret that Wis) is

+ 855 + 352+ 57 4+ 05 + 5%
Wiz = g
-4 - RJr+ 1z o

which compleies the transfer matrix  Gis) = Wish'als).

Ag can be seen from the previous discussion, the Leverrier algorithm i3 both
simple o undesstand and easy 10 inplement, but due to its recursive mnatre, it 5
susceptible to the acoumualation of round-off errors.  The next algorithm offers an
albermative means for calculating the transfer matrix G5} without using the
Leverrier algorithm,

Algorithm S5TF
Syntax: A, B, C, D (55TF)y=a, W

Purpuses  Calcukation of cosfficients of the charcteristic polynomial ais)
and the {p = m) numerator polysoemial matris Wish defining the transfer
matris G5 of 4 given stabe space representation {A, B, C, D} using
polynomial manspulation,

LagaitiOnat sl Argumenis:

e {A B, C D} = sate space representation of given sysicm with &
siafes, M inpuwts and @ owtputs.

& g = (] ¥ a4l) row army contining coefficients o, 0 = § = n, of
@l5). Cosfficients are ordered by indices in increasing onder.

* W= (pm ¥ n+l) matrix whose rows contain £+ 1 coefficients w,,
for 0 < & = n, of polynomials w(s) defining the polynomial matrix
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W(r). Asin the case of Algorithm RESO, therows Wy, | = i s p, 1 =
= m, are ordered "columnwise,” i.e.

row 1 contains coefficients of wy,(s),
row 2 containg coefMcients of wy(s),

ow o containg coefficients of w5,
rovw p4 1 contains coefficients af wi{s),

o Eplrl;;:nl:ina coefficients of wgir),

m-'n-pm“l:runtajm coefficients of s {5,

The mairix W i3 saad to be in polynomial marix form (PMF). The rows w,
of W are

w-u = [wm “Il,rl. wu.l

Deseription: The polynomials wy(s) in the {p % m) matrix W) can be
calculated differently from Algorithm LALG starting with the following
result:

wul:r} - ug{.:j + d'”.n{.t] (a)

where a(s) is the characteristh: polynomial of A, d, is the (™ element of D,
and v(s) is the (51" order polynomial given by

v, 5 = ?-:; riul5) by, 1]

where by, is the & clement of the input matrix B and the (n-1)® order
polynomial ryis) is defimed by

rals) = det R, (s) ich

and Ry(7) is the (n % m) polynomial matrix obtained by substitwting the i*
row in (s - A) by the /® row, ¢, of the cutput matrix C,
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C= E‘ {d}

4

Assurming that a computational procedure for calculating the characteristic
polynomial of a square matrix 15 available {without vsing Leverrier's

alporithm), the calculation of the polynomials rylsh could be performed by
Fuls) = Fals) - e ()

where ry (5) and r(5) are characteristic polynomials of the (o % n) matrices
Ry, =nd R, respectively, defined by

"t 'T: *
By-y dy.q At
Re.=| & | Ry=| z |, whare A =] 4, if
By dy.1 Wy oy
a, a, a,

In other words, R, is oblsined from A by substituting the &® row with the
i® row of C, and R, is obtained from A by substituting the &* row with the
s-dimenstonal zere row, T.

The alternate expression for calculating the polynomials vis) in
Exg.(a), o be used when p > m, is

W = X cuay) @

where ¢, is the (W™ element of the output matrix C and the (n-1)* order
polynomial g (¢} is defined by

a5} = det Q) (k)
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The (n * n) polynomial matrix ,45) is cbtained by substituting the &*
egdume in (51 - A) by the /* column of the input matrix B,

B=-(b - b - b1 i

The calculation of palynomials g, (x) can be performed by:
Tu ) = Bg,l8) = g, )

where gu.(5) and g.(s) are characieristic polynomials of (n = #) matrices
0, und b, respeclively, defined by

L “EL ol g G lgey M ".]
Q.= ~ Sy B G,y v Gy &)
whers A = la, - &, &, 4, - a,

In other words, Qg is obiained from A by substitting the h® column with
the  column of B, and @ i3 obtained from A by substituting the i*
column with the n-dimensional gére column;, 2.

Adgorithen:

St the number of columns in & = n
Set the number of columns in B = m
Set the number of mws in C=p
Seta+l=n

Set . =1

Bet 1, =1

Set .= W,

Set O, = Wy

Set 0= j

Set j+1=j

Extract j * row from C = g

Set Oy = W,

Setl=1r

et (41 = |

Replace i™ row of A by ¢ = 4,
Replace i®" ow of Aby 2= A,

Set coefficients of det (51 - A) = row &,
Set coefficients of det (51 - A) = row o,
Set a, - ay = det

R e R S

e e e
EEApLRLEREE
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20, Ser
det

Ifi < m, go o 14; else, po io 22

Sot [We | W]=W_

Ifj < p, go o 10; alse, po io 2d

Set = |

Sat i+l =i

Extract i column from B = &

Set BT W= W,

Rearrange k n, elements in the row Wy, = (k % n)) matrix W,

we] --||'qi'.l'r

REpBEEEE

W
Wo

29, 8mt -W,o

30, Ifi =< m, goto 25; clse, go to 31

31, Setall m columns of D into a pe dimenzicnal column == d,
32, Set coefficients of det (1 - A) = row a

33, SetW, +d a=W,

Hemnrks:

®  Muatrices R, B, and coefficients of the polysomials ry (81, fgy(5) nnd
rais) are calculated in Steps 15 - 19;

® The matrix R, contains the coeffickents of ry(s), 0 = h < n, in Step
215, while the matrix B contzins the coeffickents of rus), | = § <
P20 = k= nin Step 22;

#® In Seep 27 the matrix ¥, comtaining coefficients of the polynomials
wiE), 1 = i = k i3 formed;

» g matrix V, formed by concatenating mairices V, in Step 29,
contains coefficients of all wis); and, finally,

® The matrix W, formed in Step 33, containg all coefficients of he
podynomials wy{s), defined by Eq.{a).

Algorithm Implementation: (Sez Appendiz C for the L-4-5 Hatlng.)

It has been computationally verified that for higher-order systems, i.e, for n > 10,
Algorithm S5TF is more accurate than Algorithm LALG.

The listing of Algorithm SSTF above, corresponding to Eqs.(a) to (), should
be used when m < p. The L-4-8 implementation ks given in Appendix C. Ifp >
m, instead of wsing Eqs.(g) to (k), it is more convenicnt to use the concept of
dualiry and apply the algorithm to the system representation given by
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R - |AT,CT, BT, D7)
and then to transpose the oblained Wig). Thia sequence of operations is represented
by the following three steps:

Sﬁ-ﬁr|nf1{:ran-ﬂhlcrlnaﬁnr
Eﬂl‘\llc]!nlni{'ﬁm-"1w.|r
Sl W= W,

1.4 Matrix Fraction Description (MFD)

An alternative represemtation to cither the state spece description or the
transfer matrix description is the marrix froction description (MFIY, For a C-T
MIMO systemn the MFD model iz of the form

Dis) yis) = Nis) wiz) (1.37)
where yi5) is the (px1) aystem output and w(g) is the (m3 1} system input. The
matrices Iz} = [ dyfs) | and Nis) = { nyis) | are left coprime (p>p) and (pxm)
polynomial matrices. The orders of palynomials dy(s) and my(s) satisfy:

0« degld )] < k

0 = deg[n 5] s k
where & = n, & being the order of the system,

In keeping with the notation already established, polynomials dy(s) and mls)
will be represented by:

(1.58)

[ [
dyis) = i}; dyy s and a ) = E Ay 8 (1.59)
Similarly, polynomial matrices £5) and N(5) may be written as:
i i
Dig) = ¥ Ds* and Mg = . N5t (1.600
o k=0
where
dygy = e = Mimi

D, = - | |'amd N = f =

G By LTI,

Two polynomdal matrices are left coprime if they do not have common terms,
o if:
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rank[ D) | M) =p forall 5
In other words, 18 15 assumed that all existing common terms in D{x) and N{5) have
besn cancelled, In sodme relevant ltersturs the MFD model is referred to as an
auto-regressive-moving average (ARMA) model.  Ag iz the case with state space
models, the MFD representation is not unigue, i.e. there are more than one pair of
podynomial matrices (D7), N(s)} that will represent a given sysiem.
e variation of an MEFD model is the following model;

yis) = Nee) 575 i) {1.61}
which 15 somelimes expressed as
¥ = W) wis)
{1.62)
Bi(s) wg) = wiz)

whene wix) is an auxiliary & dimensional vector,
It can be concluded that the MFD model i5 related bo the sysiem transfer
matrix, s} by

Gig) = D7(5) Nis) = Bs) 7' (s) (1.63)
Similarly, the (pxm) and (m>m) matrices Nis) and H(5) are right coprime if:

rank| W) | D] ~m  forall = (1.64)

It is worth mentioning that in the case of SIS0 models, e forp =m = 1,

matrices [{s) and N5} become scalar pelynomials dis) and nis), respectively, and
tha coprima condition reduces bo:

rank{d{s) | n{s)] =1 forall »# (1.65)

The condition of Bg,(1.65), in fact, implies that pedynomials ds) and afs) have no
commen factors, i.e. there is no value 5 = 5; for which both d(z) and nis) are
equal o zero. In other words, for 5 = p,, I=[L,n], L.e. system poles, dip) = 0,
but mip) # O i.e the transfer function gis) = n{s)/dis) does nod have any pole-
zere cancellations.  Similarly, if there are no common factors, then for s = g, ie.
system zeros for which miz) = 0, diz) = 0.

In the case of 5150 systems, i1 5 iypically assumed that i) 15 a momic
purlyncmial, e,

diz) = i I]“i' where & =1 {1.66)
i=1

In Chapter 3 we exiend this "rormalization™ concept to MIMO sysiems,



4“0 Chapter 1 Introduction
1.5 Summary

In this chapter o general background of knowledge has been set. The reades
is expected fo have a basic understanding of linear comrrol spstems such as one
might acquire with a first course in Control Systems. The direction of the material
of this text is to extend this fundamentsl knowledpe to include a3 working
computational facility with MIMO linear sysiems, The authors fael that under-
standing MIMO systems i3 complemented by the exgrcise obtained from studving
the algorithms that are wsed o work with these sysiems,

The concepl of system linearization was discussed early in the chapter since
lincarization is the basis of obaining the models of concem from real-world
models, In the remainder of the chapber srafe space models were used o describe
various fundamental relationships between models of different types. The two most
important relationships ane:

() The relatos between the comdfmions-fme (OG- models and the
comesponding  discrete-time  (D-T) models which i5 reguired for most
computer-aided calculations; and

() The relation between the tme domain models, elther C-T or D-T,
wsually specified as sare space models, and the corresponding frequency
domain models, The reader is expecied to be familiar with both the s-domain
and the z-domain,

In the latter portions of the chapter, sarting with Levernier's algorithm, the
impartant problem of comverting from a state space epresentation to a transier
matrix representatlon was considered. In the process of presenting the computa-
tional algorithms wseful notuion was introduced,  Pinally, in Section 1.4 the wsaful
mairix fraction description (MFDN method of system representatzon was introduced.

The emphasiz in this chapter has been on definitions and notation.  In the
subsequent chapters the emphasis will be on computztional methods of converting
between mdel types a5 well as acoomplishing various operations that are usefu] in
the analysis and design of contral systems,

1.6 References

Adthough this chapter is présented as a transition chapter betoesn (he expectad
backpround of a classical control course and the subseguent study of multivarable
systems, there are, no dowht, several topics for which the reader might want ko
obtain further information, This is & typical reference section in that at the end of
each chapter o similar sechion gives sugpestions for further reading, more or less,
by chapter section.
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Much of the material in this chapter can be found in more defailed form in
many existing fexts, One thal is very aitractive because of the many worked-out
problems is Brogan {1991). In Chapter 15 of Brogan the resder can find an
excellent review of mendinear syefem nearinafon, Similarly, Chapters 3, 9 and 11
of Brogan offer relevant discussions of this chapier’s topies, Other books that fail
in the catagory of general references for this chapber are listed below, Anather
peneral text which emphasizes & similar "computer-gided” approsch is Jamshidi
(1992), particularly Chapsers 2 and 3.

specific references for the D-T models developed in Section 1.3.3 are
VanLandingham (1985) arnd Haykin {1972). For details on the calculation of
transfier funclions see Bingulac (19752 and 19750), and for controllability and
observability, Bingulac and Luse {1990),

Bengulac, 5. (1973), "On the calculation of the transfer function matrix,” JEEE
Trans. on Awtormaric Contrd, AC20, 1, 134-135,

Bingulac, 8, (1975}, "On the calculation of matrix polynomials,” IEEE Thans. on
Autormaric Comirol, AC-20, 3, 435437,

Bingulzc, 5, and W, Luse (1990, "Computational simplification in controllabilicy
and Observability 1ests,” Proceeding of the 28° Allerton Conference, University of
Minnis, Oclober 3-53, 1990, 527-328,

Brogan, W.L. (1991}, Modem Control Theary, 3™ Edidion, Prentice-Hall, Inc.,
Englewood Cliffs, NI.

Hiykin, 5.5, (19723, "A unified tresiment of recursve digital filering,” [EEE
Trans. on Awtormatic Control, February 1972, pp 113116

Jamahidi, M. et al (1992}, Comprirer-Alded Analysly and Design of Linear Cortrol
Systems, Preatice-Hall, Inc., Englewood Cliffs, NJ.

VanLandingham, H.F, (1983), ferrducrion i Dfghal Comerod Svarems, Macmillan
Publishing Co., New York, NY.
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1.7 Exercises

1.1 Using the following syslem state space repredentation, given in the system
matrix pamitioned fonm;

A B
(g )
namely,
[ -10 0 10 & o0 | 14 0 0
-3 =15 A =5 Jdx | B T TR 1
-5 5 =% % & | =5 35 M40
i} H 10 0 20 L¢ | o 0 10
R 5 =5 =5 =5 <k | + -4 M
. e e—— —I— —_— mmw s
N 10 Lo 10 20 | a o o
S 1 0 20 L0 | R | A |
Calewlate:

(a) —the controllatlity matrix €, of the pair [& B},

{h) —the observability malrix €, of the pair {A,C}.

(c) —the ranks of both Q, and €, to check the controllability and observability
of B,

(d) —the resolvent matrix B in PMF and the characleristic polynomaal ads) of A,

(e} —the resolvent matriz B_in a PMF-r form, and

(I} =the system cransfes function matcx (5} in the form Gi5) = WisVa{s).
Express W) in PMF, i.e. determine the armay W,

Hints:
®  Define the matrices of &, and the scalar ¢ using the L-4-§ operator
A,
®  Use operators Qo and O fo calculate 0}, and ), respectively.

®  The rank of a matrix is obained wsing the operator NRS.

® Calculate the resolvent matrices R and R, with the L-4-5 subroutine
REZ.SUB.

®#  The transfer function matrix W in PMF may be obtained with the
operaior 55TF.



Section 1.7  Exarcises 43

#  The results may be displayed on screen by using the flag T with the
operaior OUT.

&  The results may be writien to the L-A-§ print file by using the flag L
with 1he operator QLT

®  Use the subroutine SYSM. SUB to build the system matrix R,

& The individual matrices of B, may be extracted by the subroutine
MI4.5U8.

®  Siore your program on a Disk Program file using the Interpreter
Command (IC) WPF {or simply W).

®  Recall your program from a Disk Program file using the IC RPF {or
simply K).

L R:nirberht]nfmmmimmbd—fwmmnrlﬂ syntax may be
obtained by: MELP,<xyz> or simply h,<xyz> and for
subroutine syntax: HELP,SUB,<xyz> of b, sub<xyz>.

A version of an L-4-5 program which solves this excrcise is available in the L-4-§
subdirectory C:ALAS\DPRAEXERT1,.DFF.

1.2 Linearize the nonlinear mathematical model of the robot arm, Fig. 1.1,
Section 1.3.1. As elements of the parameter vector p, defining the system
dymamics, use

p=[00125 007 006 005 04]
Linearize the model around the following nominal point, =,

2, =[02 02 04 04 06 06

using for *finite differences," dz = [1 1 1 1 1 1]710%
Your resulis should show the resulting matrices A and B, a3 well as estimate the
accuracy of the linearizsiion,

Hints:

®  Define veciors using the DMA operator,

®  The subroutine LIMN.SBR ¢an be used for performing the linearization.

®  The subroutine GZ.5UB, defining the system dynamics, is available in
the L-A-5 master subdirectory C:\LAS\SUBY and will be called by
LIN.SBR.

®  See also the hints following Bxercise 1.1,

A version of an L-4-§ program which solves this exercise is available in the L-A-5
subdirectory CALAS\DPREXERI2.DPF.
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1.3 A 5 order “weakly” comtroflable and "weakly® observable stale space
representation with m=1 input and p=2 outpuls is given below:

Dietermine:

(2} —the eigenvalues b, {=[1x], of &,

(b) —the degrees of controllability and observability of each b, i=[1n], of A.
(e} Estimatethe least controllable end the least observable elgenvalue &, [=[1.#],

of A
(10 20 -2 6 0 | -2
20 -10 4 8 0 | 405
0 0 -20 10 0 | -006
0 0 -10-20 0 | -012
B lao 20 -4 -8 10 | 98
= TP —— -l- -
03 106 20 103 10 | .0
06 -03 -10 -20 O | O |

Himts:

®  Define the representation X using either the operator DMA or INFM.

The eigenvalues of A may be calculated using the operator EGW,

®  The deprees of controdlability and observability may be estmated using
the suhroutine COTS.SER. See Section B.5 for more details on this
bopac.

e To plot the cipenvalues of the "auxiliary” matrices A, and A_. wse
operaior MIK. For scaling of the axes operator YX5C may be uased.

A version of an £-A-8 program which solves this exercise is available in the L-A-5
subdirectory CHLAS\DPFEXER 13 DPF.
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As pointed out in Chapter I, with the widespread use of compiters in control
loops it is inevitable that conirol engineers will face problems asocialed with
sampled-data sysiems.  Such systems by their very definition contain 8 mixture of
contimsus-time and discrete-time signals. A common problem that arises with
sampéed-data controd systems 13w find the equivalent effect of conlinuous-time
operations as seen by the computer in the boop. Typically, the modeling of the
signal converters assumes an ideal wniform sampler for the analog-to-digital
converter and a simple (zere-order) hold device synchromized with the samples for
a digital-io-analog converter.  With these assumptions one may find in many
references the standard zerp-order hold model, also known as the siep invariane (S1)
model which will be discussed subsequently.

2.1 Introduction

In asdelition 1o simple plant modeling with SI equivalents there ase nccasions,
such as in digital redesign or system identification, that demand more scouracy
between & given contineous-time (C-T) system and its discrete-time (D-T)
equivalent model. In these instasces higher-order discrebe models are reguines,
Two models which have been inlroduced for this perpese are the bifineor
frawfarmation (BTy (withowt prewnrping) and a method which assumes 2 linearly
interpolated input, also known as e fropesaldel nde.  This laiter method is
referred 1o a8 8 Fesp-tvarians (R model in contmast bo the standasd 208 model
being a srep=invariane (57) model, This model was introduced as a linearly
inrerpodeted (fnpury moded in Chapter [ see Equ(1.29). There are many other
useful models, but this chapier will focus on only these three methods of discretiza-
fion as heing the most useful in praciice,

The reverse problem, called conrinnlization, is that of reconstructing a C-T
model from a given D-T model. This problem could arise, for instance, when
measured discrete data are used to identify a C-T system. The particular method
of cortinualization selecied would depend on biw the discrete data was derived (if
known). The method of continealization s presented for each of the three
discretization techniques, thereby offering the designer a great deal of Dexibility in
going between the continuous and the discrele domains,

For the 51 and RI models both the forward, discreization, and reverse,
confimnalization, problems may be viewed as functional transformations on a given
mintrix A, i, incaloulating expiA_ for discretization or In{& W T for continualiza-
tion. 1f the matrix A i3 transfoeimed indo its Jordan eanonical form, A, then

4z
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A = QA0

The modal matrix () contsing as columns the eigenvecioes andior pereralized
gigermveciors of A, depending on the eipenstracture of A,  Then, relating the
problem at hand, it is well known that

SA) = QfiA) Q! 2.1}

when the scalar function fx) is analytic at the eigenvaloes of A. This approach is
conmvenient if A; is diagonal beczuse AL is then itself diagonal. Howewer, in the
penergl case this approach is very restrictive in that it is not s0 straightforward o
evaluate elther the matrix Q or TA). Since it is desired 1o kave robust algorithms
o solve the continualization and discrefization problems which are completely
general, this method will not be pursued here,

Using basic properties of the exponentinl and begarithmic functions, a unified
approach is presanted in this chapter which provides simple robust algorithms for
system discretization, &5 well as system continzalization, using the three methods
mentioned abowve. Enmn[:l.r_':m p{ﬁmmdﬁ:ull]umte the effectivencss of the
alporithms, showing convergence properlics versus the computation parameers used
for truncation and scaling. In additon, practical guidelimes are discussed,
specifically for selecting the computation parameters and, more generally, for
efficient computation of the matrix power series involved in the procedures,

2.2 Discretization Procedures

In the srea of systems and controls, 25 well 23 related areas such as signal
processing, it is useful lo be able to discretize a given continuous-time system.
This problem and ite reverss problem of continualizing a discrete-time system are
conzidered bere. We assume a basic state variable repressntation for a continuos-
fime system as follows. A siofe space reaglizanon for 3 linear, contifuwoas-time,
constant parameter system oonaisis of & 4-tple of matrices; namely,

R, = H._. !t. 'l:,. IJ,]
which defines the staie model
B = A ) + B uin

2
¥ = €30 + D, u0 22
where x{r), wir) and ¥} are the state, input and uuq:rul; vegtors with dimensions m,
m and p, respectively, while the matrices A, B, C, and I¥, are constant matrices
with compatible dimengiong,
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2.2.1 The Step-Invariant Model

The familiar sep-invariant (1) or ZOH equivalent discrete-time (D-T) model
introfuced in Section 1,33 assumes that the inpit vector wir) in Bg. (2.2) is constant
betwesn (uniform) samples, The equivalent D-T model can be represenied as

R‘ . Iﬁlﬂl!’,rﬂ,‘: DJ ':2-3}
which implies the D-T state moded
mk+1) = A u(k) « B k)

4
S8 = € 308 + D, u(k) G

The matrices A, and B, are related w0 A, and B, in Eq.(2.2) by the relations,
repeated here from Chapter 1:

Aoy ATY 2.5
A ,=¢ E -
(A 'i!".lJ
d = [e*B dr = (2.6)
an B, fﬂ E Ty B,
Al if A_ 13 nonsingular,
B, = A e -1)B, (2.7)

And sirce the owtput (1) in Bg.(2.2) is asumed to be ideally sampled, the matrices
C,=C,and D, = D..

The following algorithm, (SI-C-D), can be used to caleulate the 1 (ZOH)
equivalent model of a continuoes-time linesr system, In particular, thiz algorithm
is & numerically robust procedure for calculating A, and B, described above. The
standard general method for calculating A, is to compute a trancated version of
Eqg.(2.5). The problem with this approach is that for matrices A, amd sampling
intervals T satislying that

IAT| > 1 (2.8)

a iruncated version of Eq.(2.5) may either require lasge ¥, leading to considerahle
round-off errors, or may noel converge ab all. The algorithm presented here 5
completely general.

It is easily shown that the ST model can be caleulated using an intermediale
matrix E a5 follows:

A,=1+EAT wd B,=EBT whw E-= Emi?;
i=0 X
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To resalve the problem sisociated with Eq.(2.8), it is possible to utilize the
property of the exponential function thar

explz) = &* = (W)’ G0

The following algorithm extends this lechnique to permil calculation of both A, and
B, under the condition of Bq. (2. 8) as well as the condition that A_ may be singuiar,

First let us define a scaling factor r = 2¥in terms of the scalar Mrm, N <
0.5, snd the inleger sealing paramerer § given by

. | I(§A TS New) 5
g
Foty
The series
AT ia
h,-g = (2.12)

will coaverge satisfactorily with the valuwe of § given in Eq.(2.11) since | A Tir||
< Nrm. It is easily developed from the property in Bq.(2.10) that the serics in
Eq. (2.5}, truncated to N+1 ferms, satisfies the following recursive process

Ay = AN, for k=1,2,-] @13
From Eq.{Z.9) we formally obtain the recursion relationships
() =T+ B AT,
Ady, <1+ B AT,
Introducing Eq. (2. 14) into Bq.(2.13), we obtain the following:
A+E ALY =T+E AT,
I+2E, AT, +(E.ATY =1+E AT,

(z.14)

(2.15)

This last equation lesds us to (he final racursion

Ton = 0,

b
E,, = B+ E,AT,[2) G0

which must be initialized with

N i
T (A Tin
=T ad B =} =

A
=d '“4'1:“ ﬂ 'T}
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The desired E = E,,. By the argements given above for Bq.1.12), the
converpance of Eq.(2, 17} 15 grarantesd, Once E has been calculated, A, and B,
can he obtained using Bq.(2.9), Thus, this algorithm is similar to the intsoductory
zlgorithm of Chapter 1, EAT, but it iz more powerful in that the complets discrede-
firmee 57 equivabent madel can be determined, not just the ransition matnix. The
alporithm is sammarized in the fellowing,

Algorithm SI-C-D

Symbax: T A, B, Nm, N(S-C-D)= A, B,
Purpose: Caleslatnon of the 51 D-T model
Input/Ootput Argiements:

T = positive scalar

A, = (mxm) matrix

B. = {nxm) matrix

Nrmi = pasitive salar, = 0.5, defining the norm of the matrix A T
N = intcger for truncation (suggested value N = 16)

Ay = (n¥ny matrix satisfying Bq.(2.5)

B, = [nxm] matrix satisfying Eq.(2.6)

Deseription: The natrdces A, and B, are calculated using the truncated

DEWET SETies;
N i
g . g T a8
o G+ 1N
modified according 1o the development given in Bgs.(Z.11) o {217
Subseguently,
A,=1+EAT, B, = EBT (2.19)

a5 siated in Bq.2.9).
Algarithmy

L. Define inpuf arrays A_and B, scalars T and Nrm and intéger N, The
supgested vilses for Nedr and & are Mo = 05 and & = 16

. Calcalate § using Eq.(2.11)

. Calcatate E,; and T; using Eq.(2. 17}

 For k= 1,2, - f caleulate E,,, recursively from Eq.(2.16)

Set B, =E and 1+ EAT= A, B, = EB.T from Eq.(1.19)

U e L Bl
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Algorithm Implementation:

The listing of Algorithm S5-C-I0 implemented using the L-4-8 language is
given in Appendix . As in Algonithm EAT, Section 1.3.3, the matrix E;
in Eq.(2.17) is calculated using Algorithms POLR and POM, while the
coeffizients = 1!, i=[0,N], are obained by Alporithe FACT,

2.2.2 Ramp-Invariant (Linearly Interpolated) Model

In Chapter | the linegrly inferpolaied mode! was introduced which assumed
thai the inpat samples are interpolated &s in Fig. 1.4, L.e. straight lines connecting
thes individual sampled values. Since this model is remp invardanr in the same way
that the SI (ZOH) equivalent is srep invariang, we will refer to this moded as the
ramip-invarians (BI) equivalent model. This model may be used for situations
which require increased secursey of discretization over the 51 equivalent model of
the previous saction,

Althowgh Eqs.(1.28) to {1.30) describe the basic approach, several impartant
developments ane necessary hefore achieving the desired tobust conversion
alporithm, First we note that there is ome extra input matrix.  The five-matrix state
space model in the discrete domain will be represented by

R, = |A,, B, B, C,D,] (2.20)
which, in b, can be writlen as
w1 = A,x(R) « Byulk) + B,ulk+1)
vl = C,x(h + D, u(h L

Later in the chapter an algerithm will be presented for the conversion of such five-
mairix models o a standard four-matrix model.

The matrices A, E, C, and Dy, were described in the previous section, see
Eqs.(2.9) and (2.10). To specify the remaining matrices, we define the series

F = i HET}I {'1.-1'1}

-
o
-
=
+
I
Tt
=

from which we obiain
B, =(E - FIB,T, B, - FB, T (2.53)
Also, il A, i nonsingular,
F=(A-1-ATHATY? (2.24)
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Following the guidelines of Algorithm S/-C-D, it is degsirable to create an alporithm
which allows the condition of Eq.(2.8) and singular A, matrices. The following iz
a development of this algorthm, referred 1o 83 Algorithm BEC-D.

By comparing the power series in BEq.(2.9) with that of Eq.{2.22}, it may be
determined that the matrices E and F satisly (he following relation:

E=0+FAT 225
With j and 7 as previously defined in Eq.(2.11) let
¥ (A _TirY
” . 2.2
= :E #+1)! &

Using Eq.{2.25), we can write, a5 was dope i arrive al Eq.(2.13), the
FeCUrgion squations

E,~I1+FAT, 2.27)
E‘.|+|. 2] I * F&-J""'rrt-l {1'23}

Mow using Eg.(2. 168) and eliminating E; and E,,, from Bgs. (2.27) and (2,28},
the fedlowing relationship between F, and F,,, can be derived:

I, =17,

F., =03F, » 025 +F, A T,) 82
which must be initialized with
N
=L wd §,-% (A T11Y (2.30)
r e (=2}

The desired F = F,,. The series will obvicusly converge satisfactorily with
the value of j given in Bg.(2.11) since [|A,TVr] < Nrm. Once F has been
calcalated, A, B, and B, can be obtained using Egs.(2.215), (2.19) and {2.23).
Thus, this algorithm ks simalar o S5-C-0, but it 5 more powerful in that the more
accurife discrete-time R equivalent model can be determined,  The alporithm is
summarized in the following,

Algorithm RI-C-D

Syndac;: T A B, Nem N{(RIFC-DYy=4A, B, B,
Purpase: Calculation of the BRI D-T maxdel
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Input/Outpul Arguments:

T = positive scalar

A, o= (Hdr) mabrix

B, = (mxm) matrix

MNem = positive scalar, = 005, defining the norm of matrix A_Tir
N = ineper for truncation (supgessed valve N = [86)

Ay = (n¥m) matrix suisfying Bg.(2.5)

By = (nxm) matrix satisfying Eq.42.23)

B, = (nxm) mainx sabisfying Eq.(2.33)

Description: The matrices A, |, B, and B, are calculated uming the
trupicated porwer series:

L
rey (2.31)

in the derived recursive form of Bgs.(2.29) and (2.30). Sobseguently, once
F is known

E=I+FAT, A,=1+EAT {2.32)
and

B,-(E-F)BT, B, -FBT .39
as statesd in Bq.{(2.23),

Algorithm:

.  Defineinput arrays A, and B, scalars T and New and inleger N, The
suppesied values for Mo oand N are N < 0.5 and &N = 16

2. Calcubate | using Eq.(2.11).

3. Calculate F, and T; using Eq.(2.30).

4, Fork = 1,2, -, calculate F,,, recursively from Bg.(2.29),

3. Sel F,, = Fand solve for E, Eq.(2.25), A, EqQ.(2.19), Bgand By,
Bq.(2.23).

Algorithm Implementatbon:

The listing of Algorithm Rf-C-D implemenied using the L-4-5 languape is
piven in Appendix C. Seec also Algorithm BSR4 below. For more details
se gither Algorthm SI-C-0), or Algorithm EAT, in Section 1.3.3.
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General C-T = D-T Algorithm EATF

Recall that in order to calculate the output arrays A,, B, and B, Algorithm
RI-C-D miest calevlme matrloes Foand E given by Eqa2.31) amd (2.32),
respectively. Mote also that the same mairix E i3 needed in Algorithm S-C-0 for
calculating B, EgiZ.1%). Thos, both 8 D-T and Rl D-T models could be
calculated using a single algorithm if # has a5 output arguments the arrays!

AL E and F

Then, the desired 8T or RI D-T model (or both) could be cbtained simply by osing
Eqgs.(2.19) and (2.33). To achicve this, the algorithm referred as EATF (the name
siems from the calculation of ¢*7 using the matrix F) is formulated:

Syntnx: T, A, Nem, N(EATF) = A, E F

while the input argumenis are exacily the mme as in EAT, §-C-0 nnd RI-C-0,
It s bnteresting to note that in ihe version;

T, A Nrm, N (EATF) = A,

where only one outpul argument {5 specified, Algorithm EATF s "formally® equal
1o Alporithm EAT, discusssd in Chapler 1,

The listing of Algorithm EATF, implemented using the L-4-§ langieage 1%
given in Appendix C. Duoe bo its generality and flexibility, it is recommended that
thiz algorithm be used whepever gither of the 51 D-T or Rl D-T models, or even
just the matrix A % sought. In fact, this slgorithm may be considersd numerically
advanbageous over both of the Algorithms EAT and S/-C-0, since the jerms in the
truncated power series, Bo.(2.30), are divided by (i-+2)!, while in EAT and 5i-C-D
the same terms are divided by £ and (+1), respectively, see Bgs.(2.12) aml
(2. 173, which improves the convergence properties of the Alporithm EATF,

2.2.3 Bilinear Transformation

This algorithm is included becauss of its popularity with the signal processing
community. The method is also known in the signal processing literature as
Tustin's approvimanon, We will see in the development that the technigue was
designed for models in the transform domain.  This algorithm, referred to as (87
C-0, i3 known in the transform demain as & comversion from the -domain to the
s-domain using the direct substitution;

i e (2.34)
Tiz+1)
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Thai, introducing Bg.(2.34) into the C-T st eqgimtion of Bg,(1.36) and collecting
terms v maich Bq.(1.28), the BT-C-D Alporithm provides o five matrix discrele-
time model as in Bg.(2.21) where, in this case, {(witha = 2/T')

A= fal - ANl + A)
By = By = el - *"r]'_lse

And, as in the previous results, ©, = C, and I, = [, Algorithm 8T-C-IF may
be symbadically represented by:

lhﬂ Bﬂ- T{BT'G_&J - 'ﬁ'.h B-l:ll B.ﬂ! P

{2.35)

The listing of Algorithm BF-C-D, implemented using the L-4-5 language, is given
in Appendix . Motz that in the L-A-§ implementation its name is BCDC, and the
SyTItAx 3%

A, B T, lede (BCDC) = A,, By, B, P

where, for reasons explained fater, the dlgomthm "flag” fode should have the valse
fede = 1, For moare delails ss also Section 2.5.

Algorithm RSRY

Simce both Algorithm B-C-D and Algorithm 87-C-D reaslt in & noa-standard
five-matrix madel, it 15 wseful to have 3 method of converting 6 2 stamdard model
ag given m Eq.(2.4). Specifcally, we deseribe the transformation from BEq.(2.21)
iy Ghe Tolbowing equeiaden moded:

aE+1) = A3l + B, ulk)
¥k = %l + D, uik)

The simplest computational procedure for obtaining the conversion o standasd
sate model 15 derived ysing the identity of transfer fupction matrices, 1.,

C izl -A) "By, +2B,) + D,
= C(zl-A,) "B, + D,

The deialed afgorithm, referred o as Alporithen RIRS, iz presentcd in the
following,
In this development first consider the two D-T slale space representations;

{2.36)

(2.37)

Ry={A By, B, C, D} and K ={A B, ,C, D} (235

defining the state models of BEgs.(2.21) and (2.4), respectively, whese the d notation
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has been dropped for convenlence.  Since these two models represent the same D-T
aystem, the comesponding iransler function matrices should be the same, Thuss, we
obtain the following equality:

Cizl - A) (B, +zB) + D = C,z1-A,)'B, + D, (2.3

Also the two transfer matrices should have identical characteristic polimomials. So,
withowl loss of generality, i may be sssumed that in hoth repressntations the
gyatem and output matrices are equal, ie.

A=A ad C,=C (2.40)

In each of the five-matrix repressntations given in Bgs.(2.21) and (2.33), a3
well as in the conversions yet 10 come, there is a distinet relationship between
matrices B, and By Tt can be verified from Bgs.(2.23) and (2.35), respactively,
that this rekationghip is given be

B, = PB, (2.41)
where the rxy matrix 1* i3 expressible in each case by
P-FE-F)' wmd P=1 (2.42)
respectively.  Using Eq.(2.41) and the identity
(zl-A)'z =T+ @I-A)"A (2.43)

Exq.(2.39) may be wrlltca as
Cizl=A)'[(I+AP}B, - B,] + (CPB,+D-D) = 0 {2.44)

Sinoe Eq.(2.44) should be satisfied for all z, it reduces o
Cizl-AY'[(1-AP)B, -B,] =0

{2.45)
D, = CPR,-D
We now introduce the followang notation
a4 ¥
Clel-A)! = —= (2.46)
diz)
where M) = Cadj[zl=A] , diz) = det[z]-A] {247

The pxn polynomial matrix Wz} = [v(z)}, consisting generally of (a-1)" order
polynomials, can also be represented as 2 matris polysomial with real-number g xn
maALrees, ie,
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Vi - X Ve @.48)
i=n
Using Eqs.(2.47) and (2.48) and defining the arrays
Yo
III-I
V= v K- o2, - ) (2.49)
FII.l-l
Eq.{2.45) becomes
V{(I+AP)B,-B | = 0 (2.50)

It is casily shown that if the pair {A, C} is observable, ¥ is a full {column) rank
matrix ard that the unknown matris B, becomes

B, = (1+AP)B, (2.51)

However, if {A, C} is not an observable pair, the general soletion 1o Eq.(2.50)
may be writhen as

B, = (1+AP)B, + NT (2.52)

where N is an mxA "null space” matrix (h is the mdlity or dimenston of the null
space of V) satisfying that

YN =@ (2.53)
and T is an arhitrary &>m matrix, which, if desired, may be chosen 1o be 3 zero
matrix. If, however, T is selected sz

T = -N*(1+AP)B, (2.34)

N* = [HI‘N:}'[H'I'
is the psede-inverse of N, then B, may be written as
B, = (1-NN'){1+AP)B, (2.55)

which represents the minimum norm solution for B,. It should be mentioned that
even when the pair {A, C} is unobservable, the matrix B, given in Eq.(2.51)
satisfies the transfer function matrix identity Ex.(2,39),

The result of the previous development is the following computational
procedure for converting from a five-matrix model 10 a four-matrix model,
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Algorithm RSR4
E}T“H?ﬂ A. B:ui Prci D tmﬁﬂ ) !!I Dr

Purpose:  Transformation from a five-matrix mode] to a (standard) four-
mitrix model.

Input/Output Variables:

A = (nxn) system maknx of e fve-matriz model

B, = {n*m) first-input matnx of the five-matax model

P = (nxn) transform mairix between By and B (see Eq.(2.41])
C = (pxa) owpel matrix of the five-matrix model

D = (pxm) fesdibrough mairix of the five-mairix model

B, = {nxm} input matrix of the four-matrix model

D, = (pxm) feedithrough matrix of the four-matrix model

Drescription: From a ghven Tve-mamrix model, e.g. Bq.(2.21) or BEq.(2.35)
and Ba.(2.41), & standard fopr-maris moded with equivalent transfer matrix
is generabed using Bg,(2.45).

Algorithm:

|. Define the matrices A, By, P, Cand D

2. If the pair {&, C} is observable, calculate the unknown matrices B,
and I, from Bqs.(2.51) and {2.45), respectively.

3, If {A, €] 55 an unobservable pair, Eq.{2.51) may be substituted for
EBqg.(2.55) which requires the evaluation of the polyromial marix Vi),
Eq.(2.47), building the {pnxn) matrix ¥, Eq.(2.49), and calculation
of the null space matrix N, Eq.(2.53).

The listing of Algorithm RFR4, implemented in L-4-8, is given in Appendix
C.

Algorithm R4RS

Tramsformation from 2 sandasd four-matrix representation to an squivalent five-
mairx n:'p'rmﬂlal'inrl iz {he revergs process af the previois Algerithm, RIS, =ndd
is sl primarily as an o intermediate step in the subsequent ooniinualizathon
procedure of Algorithm BI-C-D,  The refation indicaled in Bgs (241} and (2,423
will be used in this procedure to ensure that o unigue four-maimix state spece
representation is obtained. Thus, astuming Bgs.(2.40) 2nd {2.41}, only B, and T
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are unknown. Following the same line of reasoning a3 in the previous algorithm,
if the pair {A, C} is observable, then from Bg.(2.51) we obtaln

B, = (1+AP)"'B, (2.56)
while from Eg.(2.45)

D = D, - CPE, (2.5T)

If JA, C} iz an unobservable pair, the minmem sorm solution for B, can be
obained in a manner Smilar o the development of Bg.(2.55) from

B, = (I-NN")}(1+AP)'B, (2.58)

where N was defined above, s Bg.(2.53).

Thus, from the transfer mabrix equivalency Eq.(2.39) we are led to the
following algorithm for converting from a standard four-matrix model @0 an
equivalent five-matrix model,

Algorithm R4R35

Byntax: A B ,.C,D, PRI =B, D

Purpose: Transformation from a (standard) four-matriz model © a five-
mabrin moudel,

Input/Out pul Argoments:

= (nxn) sysbem matrix of the four-matrix model

= (n>) Inpil matrix of the four-matrix moded

= (pxn) output matrix of the four-matrix model

= {pxm) feadthrough mairix of the four-matrix model

P = (nxn) iransform matrix between B, and B (see BEq.(2.41))
By = (nxm} first input matrix of the five-matrix model

D = (pxm) feedthrough matnx of the five-matrix model

A
B,
C

D,

Descripiion: From a given fowr-mareis model a ffee-matriv model is
generated using the transfer matrin equivalency of Eq.(2.39).

Algorithin:

. Define the matrices A, B,, C, D, and P.

2. If the pair {&, C} is observable, calculate the unknown martices By
and I from Eqs.(2.56) and {2.57), respectively.

3. If{A, C} is an unobservable pair, Eq.(2.58) may be uwsed in place of
Eq.(2.56), This necessitates the evalustion of the polynomial matrix
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Wiz), Eq.(2.47), building V, Eq.(2.49), and calculation of the matrix
M in Eq.(2.53).
The listing of Algorithm R4R5, implemented using L-A-5, can be found in
Appendix C.

2.3 Continualization Procedures

The reverse process of converting from & DT model o an equeivalenr C-T
model will now be considersd, i.e. coaverting from the model in Eq.(2.4) 1o the
model in Bq.(2.2), R, R, in the ST case, or from Eq.(2.21) w Eq.(2.7), R,;~ R,
in the RI sense and from Eq.{2.35) to Eq.(2.2) in the BT sence. OF course, by
itself B, has no information regarding the signal values between samples so that
model conversion in this direction should be taken in the comext of some prior

kmoveiedpe regarding the type of inputs used.

2.3.1 SI to Continuous-Time Model

The algorithms for contimesalizsiion require logarithmic operations instead of
mustrix exponentialion, When (A, - [) or & iz irvertible, it is easily concluged that
the matrices of K. in Bq.(2.2) can be found from Eqs.2.5) and (2.7) by:

A, = il' InfA), B, = (A,~T)'A_B, (2.59)

with the understanding that C, = C, and D, = D, a3 before, thus completing the
contingous-time model in Eg.(2.2), To begin the development, consider the Taylor
series expansion for the functon ln(x) in the neighborbood of ¥ = 1 which leads
o

- _I i
A = -IT_'EE L“"i—}fnn“'“ (2.60)

The problem of using a truncated version of Eq.(2.60) is that for matrices A, with
Aa || =05 {2.61)

where A, is the maximum magnitude eigenvalue of (A, - 1), the series may require
targe X, leading 1o considerable round-off errors if it converpes at all, As will be
seem, the preseat algorithm will resolve this problem by using the following basic
property of the logarithm fusction.

nix) = r h“#}m] = ri M{hlﬂ'ﬂ . -riw [2.62)
dnl (]|
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With this approach the truncated series for calculation becomes

(2.63)

where the integer [ satisfies that
[MALN =T)| < A, . with 7 =2' (2.64)

An algorithm which calculates A, acomding v Bq.(2.63) is roferred o as
Algorithm LNM, Tt has been experimentally verified that the accuracy of using
Eq.(2.63) is satisfactory even for matrices A, where some eigenvalues of L =
A,~T have magnitude greater than ope.  From the previous development the
following algorithm is formalized.

Algorithm LNM

Syntax: T, Ay Ay, N, (LNM) = A,

Purpose: The caleclation of the nataral logamthm of an (R matnx A,
Tnput/ Crutput. Argumenis;

T = smmpling inferval used in the discrele-time model
&, = (nxa) sysiem malrix of the discrele-time model
%, = scaling parameter, see Eq.{2.64)

N = garies truncation parametes

A, = (nxn) sysiem malrix of the continuous-time madel

Description: A continuous-time equivalent system matrix is constracted
from a corresponding discrete-lime system matrix.

Algorithm;

l. Define the matnxs A, scalars T and b and integer N — (sugpested
values for Mand &, are N = 36 and 2, = (0.25)

Set 0= fand A, = A,

Setl-A =L

I ML | e = Ry g2 106 else, goin 3

Setf+l=j; (A )7"=A andgoto3d

Set 2/ = r and calculate A, using A, = A" in Bg.(2.63)

B Lh e Lk

The square root of the matrix A, is calculated by Algorithm S, described later.
Calculation of A_ in Step 6 is accomplished using Algorithms MOLE and POM,
mentioned earlier. Calculation of the coelficlents f = 1A, i=[1,M, required by
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POLE Bs dore by Algosithm FLY, The listing of Algorithm LAY, implemented
using L-A-5, is given in Appendix C,

Having determined A, the remaining matrices in the S1 C-T equivalent state
space model of Bg.(2.2) could be calculated using Exq.(2.59) if A, is nonsingular,
If, however, A_ i singuolar, thes the matrix E, appearing in Eq.{2.9) should be
calculated using the procedune given in Algorithm S5-C-0, It followa that C, = C,,
D, = D, and

B, = %_l:'in, (2.65)

In the spirit of algorithm formulaton and algorthm “naming,” Eqs.(2.59) and
(2.65) could be symbolically represented by Algosithm S5-D-C, e,

A, B, T(SI-D-0)= A, B

For reasns explained later, there is no direct L-4-5 “counter-pant® (o Algorithm
S-D-C. However, as will be shown in Section 2.5, there i5 an L-4-§ algorithm
which, among other tasks, performs the task of Algorithm S1-D-C.

Algorithm LNMj

An altermate algorithm, referred to as LNMY, applicable for calculating A,
given by (2.59), in the specific case when the matrix A, is “disgonalizable.” is
given befow, It is worth menticning that this algorithm is "in a way" eguivalent
io Algorithm EAT), mentioned in Chapter |, Section 1,33,

Synkax: T, A, (LNMi) = A,

For input/output arguments so¢ Algorithm LAM,
Algoritho:

Define the matrix A, and the scalar T

Se A JFRy=M

Set A (EGV)=epd = | A, )

Set diag{ In(ha) | = LaJf
Set M LaJf M7= A,

LA e b

The histing of Algorithm LNMJ, implemenied wsing L-A-8, is given in
Appendix C. Mote that the steps in this algorithm are similar (o the steps of
Algorithm EAT), discussed in Section 1.3.3. The only difference 15 that in
Step 4 the armay LaJf contains in its main dizgonal the natural log of the
cigenvaluss Mg, i.e.
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{3 4,
while in Algorithm E4T], the array ExJff contains the terms exp(hT)-

Algorithm SOM

The square root of the mairlx ""fa" reqaired in Step 5 of Algorithm LM, could
be caloulated by Algorithm S0M given below. This algorithm is based on the
gtandard recursive proceduse:

%,y = 0505+ flh (2.66)
used to determing the square root x = (5)'? of a positive scalar b,
Algorithm SQM
Symiax: A e (SOM)= X
Purpose: To calculate the sguare rool of a positive-definite matrix.

Input/Output Argnments:
A = Given square positive definite matrix
¢ = Emall scalar parameter used o terminate the recursion
X = The sgusre-root mairix of A

Description: Determination of the sguare root of an nxn matnix A, X =
(A)'"7.

Algorithm:
1. Define the matrix A and a small scalar parameder ¢ < < |
2, Sea X, = land { = 0
3, Seti=i+land X, = 05 (X, + A X"}

4. If | Xy =X, || = & o103 else, sop

The listing of Algorthm SOM, implemented using L-A4-5, can be found in
Appendiz O,

2.3.2 RI to Continuous-Time Model

It is easily determined that the C-T model in Eg.02.2) can be oblaised from
the fivie-matrix model in BEq(2.21) by using Algorithm LMVM to calculate A, and
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from the availability of F in Eq.(2.31), i.c. Algorithm R-C-D, solving Eq.(2.33)
to get

B, - %r*n,, - —;{E—r}"lﬂ (2.67)
MNote that from Bg.(2.67), or from Bq.(2.42)
B, ~PR,, where P = F(E-F)"' (2.68)

The required five-matrix D-T model of Eq.(2.21) can be obtained 22 an initial step
from a standard four-matrix D-T model in Ex.(2.36) by applying Algorithm R4RS

garlier. Similarly, as in the case of Algorithm 5/-D-C, Section 2.3.1,
Eq.(2.59%), together with Bgs.(2.67) and (2.68), could symbolically be represented
by

A, By, B, T(RI-D-C)=A,,B,

As has already been mentioned, there i no L-4-8 slgorithm which dinectly
cornesponds to RID-C. This will be made clear in Sactioa 2.5,

2.3.3 Bilinear to Continuvous-Time Model

The C-T model of Bg.(2.2), which corresponds to the bilinear transformed
maded specified in Bg,(2.35), can be obtatned by a direct substitation of

-2
.whmn-r (2.69)

a = x5
a = F

£ =

ity W 2-doanain (ransfer function, teereby providing an s-domaln iransfer funciion
from which &, coubd be derived. Specifically, taking the z-transform of Eq.(2.4),
introducing Eq.{2.69) and converting back to the time domain:
k() = Ax() « Buld + B, a)
: (2.70)
¥ = Cx(f) + D ouin)

where (with g = 2T}
A, = alATYYA-T), B, =-alA,+I)'B,

(2.70)
B, - -(A,+I)'B,, C,-C,, and D, =D,

As was discussed previously in terms of the five-term model of Bg.(2.21), if a
four-term C-T model 5 required, Algorithm B3R4 can b2 applied o Eq.(2.70) o
obdain an equivalent standard model of the form in Bg.(2.2). Mot that in this case
Eq.(2.41) holds with
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T
P--2, @)

Similarly, as with Eqs.(2.35) and Algorithm B7-C-D, Eqs.(2.71) may be symboli-
cally represented by Algorithm BT-D-C, i.e.

A, B, T{(BT-C-D)=~A_,B,.B, P
However, its L-A-§ implementation reguires:
h‘l ‘I:f' T:- M me] - lﬁlfl l-l!ﬂ"‘ n‘| P ?

wheere now, as opposed o the case of Alporithm BT-D-C, the algorithm flag fode
should have the valee fode = 2. The lisfing of Algorithm BCDC, implemented
using L-A-5, and performing the tasks of both BT-D-C and BT-C-0, is given in
Appendix C. For more details see alw Section 2.5.

This completes the three methods of continualization. The reader now hag
the algorithmic tools to discretize a C-T system using piccewise constant inpuls
{51}, piecewise lincar inputs (RI) and the bilinear transformation [BT), as well as
1o perform the inverse operation of continualization correspending o each of these
methads. In converting a physically sampled C-T system to o D-T model the 51
meethod most closely approximates the commen digital-to-analog device operation.
However, any one of the three techaiques may be used when it is desired 1o mimic
a linear C-T process with @ D-T model, Such a situation might arise, fos instance,
for preprocessing data in a computer by developing a filter algorithm from a known
frequency filter in the C-T doeain, In this instance, it would be prudent to
compare the frequency responses of the D-T models with the desired frequency
response, - Yet another area of otility is system identification. The BRI method can
be an effective approach 1o kdentifying a system from discrete data because of the
additional sccuracy inherent in the method. [n the remainder of this chapter we
present several examples which illustrate the convergence and robusiness of both
the discretization and the contimialization procedures.

2.4 Examples

Three examples are presentad In ihis section. They have been selected to
illustrate the computational accuracy that can be achieved using the exponential and
the logarithmic matrix calculations discussed previously, The first example
demonstrates convergence rates when caleulating A, from a given 5 x5 singular
matrix A, followed by a similar development in the second example in calculating
A, piven A, The third example illustrates the remaining discretization and
continualization procedures mentioned in the chapter, The calculations were
performed wsing the algorithms discussed earlier,
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Example 1. For this example the matrix A, is given by

@ L ¢ 00
0 0D 1 DO
A =|-4 -4 -3 1 4 (2.73)

0 0 0 -14
g 5 0 00

The eigenvalues of A, are  MA) = [0, -1, -1, -1+j1, -1-j1} (2.74)

Mote that A, is singular and has enultiple eigenvalues. In addition, the Jordan form,
A, corresponding to A_ is nol diagonal, The selection of this matrix was motivated
by the fact that some widely used software packages ane nol capable of caboeating
gither the Jordan form, or the natural logarithm, of non-diagonalizable matrices,
The well known packages MATIAE and MATHEMATICA are examples of this
deficiency. It is sugpasted that the reades repeat the calculations in these examples
with another package at his or her disposal. The desired sampling interval for the
discretization is 7 = I sec.; and the porm of AT is calculated 1o be 13.63.
Eqs.(2.5) and (2. 109 to (2.12) combined provide the following truncated summa-
tian, which s similar o Algorithm S1-C-D for calculating the exponential matrix.

N (AT T (2.75)

Ay = | L

.

Ag i S-C-D, r o= X where [ i3 given In Bq.(2.11). Both the truncation number
N and the scaling parameter § are of key interest to this development. To
emphasize the dependence of our calculated matrix A, on these paramebars, we will
use the notation A (N ). Resulte will be presented for the following 36 parameter
oodmbinations:

=0, 11,3 4, 5
and MNo= 6, 14, 12, 10, 8, 6 (2.76)

Each A, bs compared to the "exact” matrix A, given by

-99900 E-1 50637 E+0 .19165 E+0 .14761 E+0 10999 E+«1

=666 E+0 = 311657 E+0 - 68595 E-1 44044 E-1 76662 E+0

Ay =| 27438 E+0 - 10893 E+0 - 1107TB E+0 -11264 E+0 -27438 E+0
D000 E«3 0000 E«) 00000 E«D 13534 E<0 00000 E«D
- HM995 E+ 25318 E+0 93B2TE-1 .T3BOSE-1 .15500E+1

The "exact™ matrix A, above was calculated by transforming A, musnuaily inbo its
Jordan canonical form A, and then wsang
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e - ge™Tp 2.7
It may be verified that for A_ given in Eg.(2.73),
-1 1 0 0 0] 2 0 2 01
=1 =1L 0O 0 0 =2 2 <2 X O
Ay=(0 0 -1 10, @=|0 -4 2 40
G 0 0 =10 G 0O 0 0
¢ 0 0 00 |1 0 1 &1
and fof T = 2 secpnds
eTcosT ST 0 0O O 056 123 0 0 0
-« "snT £ TecsT 0 0 O -123 0% 0 0 O
e 0 eTrTeTo|=|0 0 352710
0 0 g T 0 0 L} 0 .35 0
0 0 o o 1) a 0 4 0 1

Motz that A, is given in the real aimber Jordan form. Ses Section B.4.

The log, of the norm of the emor matris E; = A, - A {NJ) is tabulated for
each combination in Byg.(2.76) in Table 2.1 below. Since the particular norm used
i3 not critical, the Frobenis norm, defined as the square root of the sum of squares
of all matrix elements, is ussd. From Table 2.1 and comesponding Fig. 2.1 it can
be seen that N = 16 terms i3 sufficient for A, in Eq (2.75) even for matrices AT
whih relatively high norms, And, as we can sa& from Table 2,1, ¥ may be chosen
as fow as &N = & with judicious choice of the scaling parameter f.

TABLE 11,
Logyt JE; |} s Truncation Musber ¥
and Scalimg Parsmeter §

N =0 J=1 f=1 J=1 P l et
16 -3.743 -10. 06 -14.433 SERLL -14.551 -14.551
14 3. 723 .09 -12 114 -b4.013 =14.551 ~14.55]

12 I3 4.038 “A.63] -3 og ~14.351 =14.351
o -1.248 4357 T.057 2,837 -12.6084 -1 44
i 0100 -2 -4.56F -T.198 £.362 -1 1496

& 0.637 -1.155 -2.T#0 8. 361 -5.50E -1.435%
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FIGURE 2.1 Lag (Marm{EJ) v&. Computation Paramsters

Example 2. In this example the matris A, is taken to be Ay given above. The
calculation used to determine A i3 the truncated series in Eq.(2.63). We note that
the eigenvalues of L = 1 - A, influencing the convergence of the series, can
exceed unit magnitude, In particular, A(L) are:

MI-A,) = {0, 086, -086, - 106 +j0.12, -1.06-j0.12}  (2.78)

To illustrate the convergence properiies, the power series Bq.(2.63) was evaluated
for all combinations of the pammeters & amd § given by

J=0132,3 45
and N = 35,30, 25, 20, 15, 10 (2.79)

As in Example 1, the ermor matnix is defined to be
E =A - AN (2.80)

where the explicit notation A (N.7) 15 used to emphasize the dependence of the
calculated matrix on the computation parameters & and [, The lag,, of the norm
of the matrix E, i tabulated for the combinations indicated in Eqs.02.79) in Table
2.2, Asin Example | the Frobenius norm i3 used for convenience,
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We see from the results in Table 2.2 that the series Eq.(2.63) can be
truncabed as high as & = 35 even when the maximum gigenvalue of L i3 preases
It is alse noted that the truncation may be as low as N =
thet the scaling parameter § is appropriately selected, In practice, N can be fixad
at 8 nomingl valve, say 20, and j can be varied over 3 or 4 values to ensure good
This 8 true whether the problem reguines

than unity,

comvergence fo the desired malrix,
aiscreiization o continmelizaion,
A before, the information of Table 2,2 s given in graphical form in Fig, 2.2

Chaptar 2

fo ilestrate the convergence of the sedes Bg.(2.63),

System Discratization

10 provided

FIGURE 2.2 Log (Morms(EJ) vs, Compubation Pacameters

TABLE Z.2-
Lo, | E. [ 3 ve. Truncation Nusber ¥
wnad Scaking Parameter f
|"|' A=l J=1 J=2 J=1 | j=d Jas
= — = —
15 115 2,564 L2352 L0123 ~L123 =123
i | 915 -1,59E 7,843 10,123 -10.123 =10L123
b 48 1,743 4,403 50,123 40,123 B 1 ek |
i (KN =1.Z12 = 57 5,758 10,123 =fOL123
15 0,784 AL TTR 3,519 =T, 194 <10, 055 =10, 133
14 (LHBE 1,374 2.0%) <4, 400 <7015 -0.5u