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Preface 

Practicing  professionals  increasingly  find  themselves in a  position of 
modeling  complex  systems for understanding and/or  control and require  a  more 
comprehensive  knowledge  of  multivariable  systems.  This  book  focuses  on  the 
computer-aided  approach  as the most  effective  way  of  introducing the advanced 
topics  of  multivariable  systems.  Emphasis is placed  on  computer-aided  modeling 
and  analysis  techniques  to  help  both  professionals  and  advanced  students  to  extend 
their  understanding  well  beyond  a  first  course  in  automatic  control  systems.  This 
book is also  appropriate  as  a text for  a  senior  or  first-year  graduate  course in 
engineering.  It  is  realistically  possible  to  cover  all  essential  contents  of  the  book 
in  one  semester,  and,  with  some  selection,  in  one  academic  quarter.  Appendices 
A  and B and  Chapter 1 present  a  summary  of the  essential  material  that  is  needed; 
this  should  be  primarily  a  review  for  the  reader. 

The  intent of the  text is to  supply  only the most  relevant  mathematical 
developments,  keeping  proofs  and  detailed  derivations  to  a  minimum,  while 
maximizing the utility  of  computer  algorithms.  These  referenced  and  well-tested 
algorithms  have  been  gathered  together  in  a  computer-aided  design  (CAD)  package 
called Linear Algebra and Systems (L-A-S). L-A-S is an  interactive  conversational 
software  language  that is supplied  with  this  text. It is used  extensively in the 
illustrative  examples  throughout  the  book,  but  the  utility  of L-A-S goes  well  beyond 
the  scope  of  this  text.  The  reader  will  find L-A-S to  be  a  handy  and  easy-to-use 
tool for  verifying  an  analysis  technique or control  design.  It is assumed  that the 
reader  has  access  to  a  personal  computer  to  work  with L-A-S. The  hardware 
recomendations are an  IBM PC,  AT,  PS-2  or  compatible  with  a  minimum  of  640k 
of  memory,  MS-DOS  version 3!0 or  higher, math  co-processor  and  hard  disk,  CGA 
or higher  graphics,  dot-matrix or laser  printer. 

The motivation for  this  text  is  the  underlying  conviction  that  control 
engineers  are  not  well  prepared  for  significant  design  work  at  the  completion  of  a 
basic  undergraduate  course.  Computer  technology  has,  on  the  other  hand,  brought 
a  great  deal  of  computing  power  to the desk  of  individual  engineers  and  applied 
scientists. We  believe  that  this  text  can  provide  a  suitable bridge  for  students  or 
professionals  to  learn  complex  modeling  and  analysis  methods. To enhance  the 
speed  of  learning, the main  chapters  provide  a  special  section  of  application 
problems  along  with  their  solutions. 

V 
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The book  may  be  considered  to  emphasize  three  important  areas: 

(1) the  theory  of  multivariable  linear  systems, 
(2) the  developmknt  of  algorithms  from  the  theory,  and 
(3) the L-A-S software  to  implement  the  algorithms. 

This  book is unique  in  the  balanced  presentation of these  three  areas.  Other  texts, 
e.g.  those  by  Kailath,  Brogan,  and  Chen,  dealing  with  the  same  topics,  offer  only 
the first  part.  Texts which do  offer  areas (1) and (3), such as  those by  Jamshidi 
and  others  which  combine M A T L A P  with control  theory,  generally  do so at  a 
beginning  level  and  do  not  contain  significant  multivariable  system  discussion. 
Although one may extract  "algorithms"  from  theoretical  developments,  it  is, 
nevertheless,  time-consuming  and  tedious  work  requiring  good  programming  skills. 

The  subject  matter  is  captured in the  five  chapter  titles: 

1. Introduction 
2. System  Discretization 
3. System  Modeling 
4. Intermodel  Conversion 
5 .  System  Identification 

In  Chapter 1 various  basic  concepts  are  presented  in  a  review  mode  to 
bridge the gap  between  a  first  course  in  control  systems  and  the  multivariable 
system  material. The topics  of  Chapter 2 concentrate  on the conversion  of  system 
representations  between the discrete-time (D-T) and  the  continuous-time  (C-T) 
domains,  including  several  conversion  methods  based  on  different  assumptions 
regarding  the  sampling  process. In  addition  to discretization procedures,  Chapter 
2 also  offers  robust  algorithms  for the inverse  problem  of continualization, which 
converts  a D-T model  into an ''equivalent"  C-T  model. The  understanding  of 
multi-input,  multi-output  (MIMO)  system  structure is the subject of Chapter 3. In 
addition  to the standard  "canonical"  forms,  special  emphasis  is  given  to the use  of 
pseudo-controllable (and -observable) fom, which generalize the standard  forms 
and  provide  greater  flexibility  in  achieving  higher  numerical  accuracy  in the 
modeling  process.  Also  included  in  Chapter 3 is  a  detailed  discussion  of matrix 

fraction  descriptions (MFDS). MFDs  represent an important  alternative  to the more 
standard  state  space  and  transfer  function  matrix  models.  Having  presented the 
various  system  modeling  concepts in the earlier  chapters,  Chapter 4 then  provides 
a  multitude  of  useful  algorithms  which  can  be  used  to  convert  any  one  form  into 
any  other.  Finally,  in  Chapter 5 the "conversion"  from  input/output  data  to  some 
specific  system  model,  i.e. identiJicution, is  presented.  The  special  identification 
techniques  are  based  on the flexible  structural  considerations of  Chapter 3. 

In summary,  this  text  presents  a  unified  theory  of  linear  MIMO  system 
models,  containing  material  that  is  unavailable  outside  of the "technical  journal" 
literature. At  this  time  there  is  no  other  published  book  which  provides  the  depth 
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and  scope, as well as  a  professional  level  software  package,  on  the  topic  of  MIMO 
systems.  Perhaps,  more  importantly,  the  material  is  presented  in  a  fashion  to be 
of  immediate  use  to  the  reader  due  to  its  "algorithmic"  approach. 

The  typical  format for presenting  material is to  provide  a  brief  introduction 
and  discussion  of the  concepts  followed  by  one or more  algorithms  for  performing 
the  required  operations.  The  algorithms  themselves are also implemented in L-A-S 
code  and  used  in  a  few  explanatory  examples.  Detailed  code  listings are included 
in  Appendix  C. The algorithms  in  this  book are represented  in  a pscudo-code 
format  as  a neutral way  of  defining  the  algorithms.  With  this  pseudo-code 
structure, the user  may  implement  his or her  own  code  using  any  available, or 
preferred,  software  package  (such  as MATLAB,  MatrixIX, or  Control-C), or a 
standard  computer  language  (such  as FORTRAN, Pascal, or C). If the user  has  no 
such preference, the L-A-S software  will  be  found  to be both  powerful  and  efficient. 
The  additional  advantage  of  using L-A-S, is that the computer  code is available, 
ready for use. 

All  algorithms  in  the  book  follow  the  same  general  format.  The  process  can 
be illustrated  by  the  "system  block"  diagram  below.  The  simple,  yet  powerful, 
idea is that the algorithm  implements  a  single  command  that  "transforms"  the  input 
data  into  the  desired  output  data.  Both  sets  of  data are usually  combinations  of 
arrays  representing  specific  elements of  a  particular  system  model. The 
corresponding  syntax  used  throughout the text is 

A, ... A, (Algorithm) - B,, ... , B,,, 

where  the Ai, i=[l,n], are the  required  input  arrays,  and  the Bi, i=[l,m], are the 
desired  output arrays. 

Algorithm 

As  an  aid  to  using  this  book  as a classroom text,  we  recommend  the 
following  order  of  study: 

Appendix A, as  a  review  of  matrix  fundamentals.  This  review  could 

Appendix  C,  to  develop  an  early  familiarity  with the L-A-S software. 
0 Chapter 1, for an  introduction  to  the  notation  and  definitions  used  in 

the  text.  The  instructor  should  determine  if  this  chapter is a 
sufficient  review,  and,  if  not,  provide  some  supplementary  material. 

0 Chapter 2 is basic  to  the  understanding  of  sampled  systems  and 
should  follow  next. 

be supplemented  by the instructor. 
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Chapter 3 then provides the major  link  from SISO to MIMO 

0 Appendix B may be  useful  to  study at this point. 
Next,  Chapter 4 is  the  culmination  of  the  modeling  process  and 
should  be  exercised  in  analysis, or design,  problems  chosen  by the 
instructor. 
If  time  permits,  Chapter 5 presents a general  approach to system 
identification,  based  on the previously  studied  MIMO  structure. 

systems. 

We  hope  that  you,  the  reader,  find  that  our  method  of  presentation  facilitates 
your  learning of the theoretical  concepts,  as  well  as  helping  you  to  apply  them  to 
nontrivial  problems. 

The  authors would like to  recognize  the  interest  and  help of the  graduate 
students  at  Virginia  Polytechnic  Institute  and  State  University, as well as those  from 
Yugoslavia,  Brazil  and  Kuwait;  and  also  the  co-authors of the  research  which  led 
to the creation  of  this text, who  in a  special  way  inspired  us  and  greatly  contributed 
to this  material. 

S. Bingulac  and H.F. VanLandingham 
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Glossary of Symbols and 
Abbreviations 

This  symbol  denotes the end  of a development  or 
example or an important  equation. 

Boldface,  capital  letters  denote  matrices. 

Boldface,  lowercase  letters  denote  vectors. 

Italic,  lowercase  letters  represent  scalar  valued  functions. 

Greek  letters  typically  denote  scalar  factors. 

Boldface,  italic  letters  denote  the  corresponding 

Laplace or z-transformed  quantity. For  example,  the  vector 
x(s) = 2[x(t)l. 

The rank  of  the  matrix A. 

The nullity  of  the  matrix A. 

The  set  of  eigenvalues  of  the  matrix A. 

The  transpose  of  the  matrix A and the  vector x. 

The  determinant  of  the  matrix A. 

The  degree  of the vector  of  polynomials g(s) = {gi(s)}. 

Denotes a diagonal  matrix  with  the  given  values  as  diagonal 
elements. 

Denotes  the  adjoint  matrix  of  the  matrix A. 

xv 
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Glossary of Symbols and Abbreviations 

Denotes  the  trace  of  the  matrix A. 

Computer  representation  of  polynomials: 

U 

An n" order  polynomial u(s) = c ais' (G 1) 

is  represented  in  the  computer  by  the  (n+l)-dimensional  row  array: 

a = [ao al ... U,,] = ( a, )  

1-0 

c 

The norm  of  the  matrix A, also Norm(A). The Frobenius 
norm, the  square-root  of  the  sum  of  the  squares  of  all  entries 
of A, is used throughout  the  text. 

Equals  approximately 

Inverse of a  (square)  nonsingulax  matrix 

Pseudo-  (generalized)  inverse of an (nxm) matrix M, 
satisfying: 

M + M M + = M +  and M M + M = M  

(n xm)  zero  matrix, n or m may be  zero 

(nxm) identity  matrix, I = {ee), e, = 1, eB = 0 for i C j .  

(mXs) null space  matrix  of  the (nxm) matrix A, satisfying: 
A N(A) = On,, where S = m-r, r = rank(A) 

(nxr)  range  space  matrix  of an (nxm) matrix A, satisfying: 
r = rankm(A)] = rank(A). 

Continuous-time,  discrete-time, as in D-T  system 
Analog-to-digital  converter,  digital-to-analog  converter 
Zero-order  hold 
Single-input  and  single-output 
Single-input,  single-output 
Multiple-input  and/or  multiple  output 
Multiple-input,  multiple-output 
Pseudo-controllability  and  pseudo-observability  indices 
Pseudo-controllable  and  pseudo-observable  forms 
Controllable  canonical  form,  observable  canonical  form 
Polynomial  matrix  form 
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The  relationship  between  the  polynomial a(s) and  the  row a could  formally 
be written as 

0 An n"' order, (p x m) polynomial  matrix 

where a&), 1 4 i 4 p and 1 5 j S m are polynomials of up to n"' order, 
i.e. with a@ = [ a@ aL ... sun] = { a#,, } 

n 

a&) = c Qijh h = 
h -0 

are  represented in the  following  two  forms: 

1. Polynomial mat& form (PMF), A,, a (pm x (n+ 1)) matrix  defined by 

A, = 

a1 1 

%l 

... 

aP 1 

a12 
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... 

aP2 
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... 

a110 Q111 

a210 $11 

Uplo up11 

Q120 a121 

Up20 up21 

Qpmo 'pm1 

... 't tn 

*.* "21, 

... 
Qptn 

* * *  '12n 

... 
'p2n 

... 
'pm 

2. "Row" equivalent  polynomial  matrix form (PMF-r), A,, a (p x 
m(n+ 1)) matrix  defined  by 

A, = [A, A, * a *  An] = {A,  } (G7) 



xviii Glossary of Symbols and Abbreviations 

The  relationships  between  the  polynomial  matrix A(s) and  coefficient 
matrices A, and A, are  given by: 

with I,,, the (m X m) identity  matrix. 
Sometimes,  if it is more  convenient,  a  polynomial, a@), may be  represented 
by the transpose of Eq.(G3), i.e. 

a(s) = i"(s) .a* ((39) 
Similarly,  a  polynomial  matrix A(s) may  sometimes be  represented  by  its 
"column"  equivalent polynomial matrix form (PMF-c), A,, i.e. 

A(s) = ',(S) A, , where ',(S) = [ I, Ips Ips" ] (G101 

Computational Procedures: 

In  this  text  the compulational procedures are alternatively  referred  to  as 
algorithms. Computational  procedures  operate  on, or manipulate,  input  data 
-YS 

to  produce  (desired)  output  arrays 

which  may be  interpreted  in  specific  ways.  Algorithms  will  be  presented 
symbolically  using  specific  input  variables,  output  variables  and  the 
algorithm  abbreviation.  For  the  generic  algorithm  (abbreviated ComProc 
for  computational  procedure)  and  the  associated  inputloutput  variables  above 
the procedure  would  be  represented  as: 



Glossary of Symbols  and  Abbreviations XiX 

A,, A2, . . . , A,, (ComProc) * B,, 5, . . . , B,,, (G1 1) 

Such  a  procedure  can be visualized  in  the  "operator" form as a  "black  box" 
block  diagram as illustrated  in  the  figure  below. 

A (COmPrOC) t + B  
n m 

(a) 

Block Diagrams Representing a Generic  Algorithm 
with Input and Output  Variables: (a) Complete Form, 

(b) Abbreviated Form. 

Either  representation,  symbolical or graphical,  should  be  interpreted  the  same; 
namely, "Apply the  Algorithm  'ComProc' to the input data { A, , 1 I i I n 1 
in order  to generate  the  output data { B] , 1 j 5 m 1." It is worth  mentioning 
that  the  above  algorithm  representation  resembles  the  "post-fw," or reverse  Polish 
notation,  where  the  input  arguments  are  specified  first,  followed by the  algorithm 
name  and  ended  by  the  output  arguments. 
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Chapter l Introduction 

" 

A brief  treatment  of  the  background  assumed  for  the  remainder  of  the  text is 
presented in this  chapter.  The  presentation is not  meant  to  be  complete,  but  only 
indicative  of the level  of  knowledge  required. It is also  appropriate  that  the  reader 
review  Appendix A for more  details. 

1.1 Systems 

The  investigations  of  engineers  and  applied  mathematicians  often  require  them 
to study  complicated  physical  systems  for  the  purpose  of  understanding and/or 
modifying  their  operation. A physical  system is the  starting  point  for  the  modeling 
process  in  which  the  engineer  tries  to  formulate a mathematical  description  of  the 
physical  operation.  The art of  deriving a plant  model  is  usually an iterative 
procedure  of  adding or deleting  complexity  to  match  observed  performance,  always 
with an eye toward  obtaining  the  simplest  model  which  matches  the  physical  system 
measurements.  The  resulting  model  is an engineering  compromise  between 
complexity  and  model  match  which is naturally  influenced  by  the  computational 
power  available  for  working  with  the  model.  For  the  remainder  of  the  text  the 
word system will  refer  to a mathematical  model,  not a physical  system. The  actual 
modeling  process  is  not  within  the  scope  of the present  study. 

Models  generally  fall  into  one  of two categories.  One, input output models, 
also  known as external models, are constructed  from  input  output  measurements 
without  detailed  knowledge  of  the  internal  mechanisms  which  produce  the 
responses. The  other, internal models, are usually  well  structured  from "first 
principles," such as  the  laws  of  Newton for mechanical  elements or of  Kirchhoff 
for  electrical  interconnections.  In  the  subsequent  chapters  different  forms  of 
models  and  their  interrelations are considered.  One  form, trunsfrfuncn'ons, is a 
basic  external  model type while  another, state models, is an internal  model type. 

1.2 Scope of the Text 

Most  of  the  material  in  this  text is oriented  toward  multivariable,  linear, 
constant-parameter  systems and deals  with  modeling  and  representation  of  such 
systems.  Many different  algorithms  will  be  presented  along with  the  theory  of 
MIMO  systems.  The  emphasis  is  on  "learning by doing," working  with  the L-A-S 
software, or other  means  of  implementing  the  algorithms,  to  more  easily  understand 
the theory and  limitations  of  multivariable  system  modeling. 

1 



2 Chapter 1 Introduction 

1.3 Background Material 

The  reader  is  assumed  to  have  had  a  first  course  in  control  systems  which 
typically  covers  single-input  single-output (SISO) systems  using  classical  frequency 
domain  methods.  This  section  provides  a  brief  review  of  definitions  from  basic 
control  theory.  The  topics  include both the  continuous-time  (C-T)  and  discrete-time 
(D-T)  state  space  models as well  as  transfer  function  matrices  for  both  domains. 
In  the  next  chapter  additional  discussion  will  be  presented  regarding the trans- 
formation  of  models  between C-T and  D-T  domains. 

1.3.1 Linearization 

The  basic  techniques  of  this  text  deal  with  linear  constant-parameter  systems. 
The  utility of  these  methods is based  on the  fact  that  such  idealized  system  models 
are good  representations  of  most  physical  systems  near  a  controlled  equilibrium 
point.  For  example,  a  large  class of  models  can  be  represented  in  the  C-T  domain 
as follows: 

H0 = f(X(0, U(O), x(rJ 

where  x(t)  is  the (n x 1) state  vector of the system,  u(t)  is an (m x 1) vector of input 
signals and y(t) is the @ X  1) vector of output signals. The  general  nonlinear 
dynamics  are  captured in the (assumed  smooth)  functions f(x,u) and h(x,u). It is 
because  of  these  nonlinear  dynamics  that the system  is  typically  analytically  in- 
tractable.  One method of reducing the scope of the model is to  consider  the linear- 
ization  of Eqs.(l. 1)  about  a  known  equilibrium  solution  given  by (&, uo, yo) which, 
for  simplicity,  is  taken  to  be  a  constant  solution,  i.e.  each  element  of  the  3-tuple 
is a  constant  vector  and  together  they  satisfy Eq~( l .1 )  as shown  in Eq.(1.3). 

By formally  expanding  the  above  system  in  a  Taylor  series  about  the 
equilibrium  point, 

x c f l ,  + ~,x(x-xJ + au lox(u-uJ 
x af 

where the t-dependence  has  been  dropped  for  notational  convenience.  The  subscript 
notation  of  Eq.(1.2)  indicates  vectors  or  matrices  evaluated at the  equilibrium 
solution.  Noting  that by assumption, 
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The linearized  system  becomes 

-g(t) = A%($) + BE@), f(tJ d 
dr 

f(r) = C%(t) + DC@) 

where  the notation is that 

%=x-%, ii=u-uo, Q=y-yO 

and 

3 

(1.3) 

W(1.4) 

In keeping  with  the structure of  the  book  we  will  introduce  the  first  of  many 
algorithms  used  to  implement  the  theoretical  developments. It is recommended  that 
the  reader  implement  the  algorithm  using  the L-A-S code  found  in  Appendix C. 
The best  use  of  this  text is to  operate  in a "hands-on"  mode  of  exercising  the 
algorithms  as  they  appear in the  reading.  Some  end-of-chapter  problems are 
included  to  encourage  computer  usage. The  purpose of  this  algorithm,  denoted 
LIN, is to  numerically  calculate the  linearized  dynamic  model (1.4) given a 
nonlinear  model (1.1). 

Algorithm LZN 

I Syntax: p, zo, dz (LIN) * A, B, dif 

Purpose: Linearization  of a system  of  nonlinear  differential or difference 
equations, i.e. determination  of  the  corresponding  linearized state.space 
representation. 

Input/Output  Arguments: 

the  nonlinear  system. 
0 p = (pi}, i = 1, . . . , k, row  containing  parameters used in  defining 
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z, = (h X 1) column  defining the nominal  point at which  the 
linearization is to be performed; h = n + m, n and m being  the 
dimensions  of  the  state, x(t), and  input, u(t),  vectors,  respectively, 
i.e. z, = [ I uOTlT. 
dz = (h X 1) column  containing  finite  difference  values; dx, and du,, 
fori = 1, ..., n andj = 1, ..., m; i.e. dz = [ d x T  I duTIT. 

0 A = (n X n)  system  matrix  of the  linearized  model. 
B = (n X m) input  matrix  of the  linearized  model. 

0 dii = (n X l) column  defining  the  accuracy  of  the  linearization. 

Description: The  system  of  nonlinear  differential  equations is given  by: 

= g r m ,  u(0 9 P1 (a) 
where x(t), u(t) and p are the state,  input  and  parameter  vectors  of 
dimensions  n, m and k, respectively,  while g( , , 0 )  = { g,( , , 9 )  } is a 
n-dimensional  vector-valued  function. 

The  linearized  model  in  the  state  space  corresponding to (a)  evaluated 
at 

~ ( t )  = and u(t) = ~0 @) 

is given  by 

X = A ~ ( t )  + B u(t) (c) 

where  the  elements of A = { a, } and B = { b, } are calculated  according 
to Eq.(1.6) by  approximating  the  partial  derivatives  by  finite  differences. 

The  accuracy  of  the  linearization  process is measured  by 

If g matches f in Eq.(l.l), then  the  first  equation of Eq(1.4) is 
forthcoming.  Similarly, if g matches h in @.(l. l), then  the  second 
equation  of Eq.(l.4) is obtained. 

Note that in order to p e ~ o n n  a linearization, a nonlinear vector-valued 
function g appearing in (a) shouldfirst be  defined.  The  following  notation 
is  used in the  algorithm  steps: 

z = [ X T ,  UT]T 

Algorithm: 
1. Define  vectors p, z, and dz 
2. Define  Algorithm G2 performing p, z (GZ) * g , i.e.  calculating  the 

vector-valued  function g 
3. Set  the  number  of  rows  (elements)  in 20 * h 
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4. 

5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Set P, z, (Gz) =) go 
Set  the  number  of  rows  (elements)  in g,, * n 
Set g, * H 
Set 0 * i 
Seti + l * i  
Extract  the 1"' element &(i) * dz, 
Set  1  at  the 1"' location  of the (h x 1) zero-vector, e, * e, 
Set z, + e, d . ,  * z, 
Set P, 2, (GZ) * gi 

Se t [H  I g , l*H 
If i < h , go  to 9; else,  go to 16 
Set  diag(dzl, . . . , d.,} =) D 
Set H T D-' * H 
Partition  H * [ A I B 3. A has n columns 
Set zo + dz =) zI 

Set g, - ( g,, + H dz ) * dif 
Set P, 2 1  (Gz) * g1 

Algorithm  Implementation: 

The  listing of the  Algorithm LIN implemented  using the L-A-S language  is 
given  in  Appendix C. The  vectors h, g, and g, in  Steps 5, 13, and 20 are 
calculated  by the L-A-S subroutine GZ. As  was  emphasized earlier,  prior 
to  using  Algorithm LIN, Algorithm G2 should be developed to calculate  the 
vector  function g(x, U, p). 

Example 1.1 As  an  example of system  linearization,  consider  the  robot  arm 
illustrated in Fig.  1.1.  For  a  particular  set of arm  masses,  lengths  and inertias,  the 
nonlinear  equations of motion for the system are as follows: 

*l = -[T, - T~ + .OIW,W,S~~(~BJ~ 
1 
Z 

where 

e, = w1 , 8, = w2 , a d  z = .07 + .06 cos2(e,) + .os sin2@,) 
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FIGURE 1.1 A Two Degree-of-Freedom @OF) Robot Arm 

Let the state vector, x, and input vector, u, be defined as follows: 

x = [wl el w2 e21T 
u = [TI T*]T 

Thus, the four-dimensional vector-valued function g(x, u, p) = g(z, p) which 
depends on the six-dimensional vector z = [x', u']' is given by: 

g = [ g ,  g2 g3 g41T 

where 

2 &6 
g3 = -p5z1 sin(2z4) + - , g4 = 23 

p1 

The parameters in the above equation are the components of the parameter vector 

p = [ .01 .07 .06 .05 501 

The nonlinear differential equations described, i.e. the vector-valued function 
g(z, p), is linearized using Algorithm LIN for two nominal operating points: zol 
= 0 and zm = [ . l  .2 . 3  .4 .5 .6 1' while the "finite difference" vector dz 

Using Algorithm GZ to develop the function g(z, p), and the vectors zol and 
dz, previously defined, Algorithm LIN gives the following linearized pair (A, B) 

= [l 1 1 1 1 13' x l o ?  
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A =  

7 

1 0 0 0  

0 0 0 0  

0 0 1 0  

B =  

yo 0 0 01 

.009 ,004 .003 -.043 

1 0 0 0  

-.072 0 0 -.007 

0 0 1 0  

A =  

7.783 -7.783 

0 0 

0 100 

0 0 

B =  

7.692 -7.692 

0 0 

0 100 

0 0 

1.3.2 State Models for Continuous-Time Systems 

Based on the development of the previous section, we define a basic class of 
models for multi-input multi-output (MIMO) systems and discuss several 
fundamental system properties using this representation. Figure 1.2 illustrates the 
corresponding vector block diagram. 

Definition 1.1 The continuous-time state (variable) model is given by 

x(t) = Ax(t) + Bu(t), x(tJ 

y(t) = Cx(t) + Du(t) 

where x is an (n  X 1) vector, u is an (nzx 1) vector, y is a @ X  1) vector 
and the matrices A, B, C, and D are constant with compatible dimensions. 

Typically, the coefficient matrices A, B, C and D are known numerically 
along with the initial state, x(ro). By analogy to the scalar equation 
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FIGURE 1.2 Vector Block Diagram of the State Model 

-x(t) = a%(t) d 
dt 

whose  solution is x(t) = c'" x@,,) 

we introduce  the  definition  of  exp(At) for a square  constant  matrix, A, through the 
familiar  infinite  series  for  an  exponential  function. 

Definition 1.2 The transition matrix, exp(At),  for  the (nxn) constant 
matrix A is 

2 
exp(h) p I + ~t + A ~ L  + ... + A ~ L  + ... k 

21 kl 

It is important  to  recognize  that  exp(At)  has  meaning only through Eq.(1.8), 
which  itself is well  defined  since Ak is simply A multiplied  by  itself k times. The 
series Eq.(1.8) is absolutely  convergent for any finite  matrix At, this  permits 
manipulation  of  the  series  on a term  by  term  basis. 

Several  important  results are reviewed in the  following  developments. 

-exp(At) = A + A2t + ... + Ak"- + ... d t k  
dt kt 

Clearly,  by  factoring  out A as a pre- or post-multiplier, 

-exp(At) = A  exp(At) = exp(At)  A d rn(1.10) 
dt 

showing  that the matrices A and  exp(At)  commute. 
Another  important  result is the  familiar  property of exponential  function 
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multiplication.  Consider  that 

exp(A(t-r)) = I + (t-r)A + + ... 
21 

(1.11) 

Separately, it can be shown  that 

Thus,  comparing Eqs.(l.ll) and  (1.12), 

eAte -AT = e A ( t - ~ )  M(1.13) 

Since it follows  from Eq.(l. 11)  that 

= e0 = I 

we  readily  deduce  that 

6" = [e*]-' 

m(1.14) 

M(1.15) 

by letting 7 = t in Eq.(1.13),  since  the  substitution  gives e"'  e-& = I. 

developed.  Rewriting  Eq.(1.7), 

d 
dt 

With  the  above  results  the  general  solution  to  the state model  will  now be 

-X(t) - AX(t) = Bu(t) (1.16) 

Upon  premultiplication  by  exp(-At),  the  left-hand  side  becomes  an  exact  derivative. 
The  reader can easily  check  this  using  the  relation  that  for C = AB, then 

C = AB + AB (1.17) 

Integrating Eq(1.16) from to to t ,  

t 
d 

I 

/-[e-A'x(r)]dr = /e-A'Bu(s)dz 
b dr b 

Finally, 

(1.18) 

M(1.19) 
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is the general solution to the state in Eq.(1.7).  Introducing Eq(1.19) into  the 
output  equation  of Eq.(1.7) with to = 0, 

m = Y&) + S&) M(1.20) 

where 

is the zero-input response and 

t 

= [CeA(t”)lu(T)ds + Dn(z) M(1.22) 
0 

is the zero-state response. 

1.3.3 Discrete-Time  State  Models 

In many cases the  C-T  system is to be  interfaced  with a digital  computer. 
The usual analog-todigital converters (ADCs)  and  digital-to-analog  converters 
WACS) are available on electronic  boards  which are connected  to  the  computer  and 
are jointly  controlled  by a synchronizing  clock  signal. The output  of  an  ADC is 
therefore a sequence  of  numbers  to  be  manipulated by the  computer;  however,  each 
number is quantized due to the necessity of  being  represented as a finite  length 
computer  word.  If  the  (usually  small) errors between  the  ADC  output  and  the  ideal 
samples  of the  input  signal are neglected,  an  acceptable  model  of the ADC interface 
is an ideal  sampler,  sampling at uniform  intervals  in  time. 

Similarly, the digital  number  sequence  which is fed  into  the  DAC is converted 
to a C-T  signal by holding each  sample  constant  until  the  next  sample  arrives. 
Control  engineers  refer to this  type  of  action as a zero-order hold (ZOH). 

Thus,  if  the  above  simplifications are made, a sampled-data  system can be 
represented  as  shown  in  Fig.  1.3.  The  notation is that a D-T  signal is given  an 
argument of  time  equal  to kT signifying  that  the  values are defined  only at integer 
multiples  of  the  sample  interval, T. The DAC  interface is represented as a zero- 
order hold  and the ADC interface, by an ideal  sampler  which is synchronized  to  the 
ZOH by a system  clock  signal, not explicitly  shown  in Fig.l.3. 

The effect of the  signal  conversion  into and out of the  C-T  system  in  Fig.  1.3 
is to  create an  equivalent  D-T  system  with  input  vector u(k7‘) and  output  vector 
y(kl) .  To  establish  the ZOH equivalent model, assume  that  the  sampled  state 
vector is known  at to = kT. From Eq.(l. 19)  with t = kT+T, 

kT+T 

x(kT+T) = eArx(&T) + I eA(kr+T-‘)Bdr u(k3) (1.23) 
LT 
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F!IQURE 1.3 Sampled-Data System 

where use has  been  made  of  the  fact  that u(f) is the  output of the ZOH, i.e. that 

n(f) = u(RT) far RT S f < KT + T (1.24) 

The  resulting  discrete-time  model is given  by 

x(k+l) = A,x(k) + B,u(R) , ~ ( 0 )  

y(R) = C x(k) + D ~ ( k )  
M(1.25) 

and is called  the ZOH equivalent model. The  notation is that 

x(k) = x(RT), n(R) = u(RT), y(R) = y(kT) (1.26) 

where T is the  sample  interval.  The  matrices A,, and B,, are obtained  from 
Eq.(l.23) with the change  of  variable t = kT+T-r for  the  integral.  The  results are 

A, = eAT, B, = /eA'Bdr M(1.27) 

The output  equation  in Eq.(1.25) is simply  the  ideal  sampled  version  of the output 
in Eq(1.7). An alternative  representation  for B,, when A is nonsingular is given 

T 

0 

by 

As  was done  earlier in the  chapter, we  introduce  the  second  algorithm  used 
to  implement the  previous  theoretical  developments.  Again, it is recommended  that 
the reader  implement  the  algorithm  using  the L-A-S code  found in Appendix C. 
After  having  worked  through  the  algorithms  and the end-of-chapter  exercises  in  this 
chapter,  the  reader  will  feel  comfortable  reviewing  and  exercising  the  algorithms 
in the remaining  chapters.  The  purpose  of  this  algorithm,  denoted EAT, is to 
numerically  calculate  the  transition  matrix for a particular A matrix  and  scalar 
sampling  interval, T. 
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I Algorithm liXT 
Syntax: T, A, Nnn, N (EA'I) =) Ad 

Purpose: cakulation of  the state transition  matrix, Ad = P 

Input/Output  Arguments: 
0 T = positive  scalar 

A = (nxn)  matrix 
Nnn = positive  scalar,  suggested  value: 0.5 < Nnn < 1 

0 N = integer  defining  number of terms in power  series  of  Eq.(a) 
Ad = (nxn)  matrix  satisfying: Ad = exp[ATJ 

Description: The matrix Ad is calculated  using  the  truncated  power  series: 

The integerj is given  by: 

Equation @) guarantees  that (see the  Glossary for matrix  norm) 

IATIrl Nnn (c) 

In order  to  save  computational  time  and  to  reduce  round-off errors, the 
which  leads  to the  satisfactory  convergence of the  power  series  of  Eq.(a). 

N" order polynomial c(A) used in -.(a), 

N 

c(A) = c A'c, , where ci = 
i = O  

is evaluated  by  calculating the (n-l)"  order  polynomial c,(A) given  by 

R - l  

C,(A) = c A'cr, 
i-0 

where,  according  to  the  Cayley-Hamilton  Theorem: 

c,@,) = c@,) for i = 1, -,PI 

where { A i l  = 1(A) 

The coeficients = Ui!, i=[l,NJ, are calculated  by  Algorithm FACT. 
Calculation  of  the  coefficients c,, of the polynomial c&) is done  using 
Algorithm POLR. Calculation  of  the  polynomial c,(A) in Eq.(e) is 
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accomplished with the POM algorithm.  Algorithms  such as FACT, POL8 and 
POM below,  not  specifically  discussed, are listed  in  Appendix  C. 

Algorithm: 
1. Define  input  arrays: T, A, Nrm and N 

3. Set 2 * r 
4. Set T/r * TI 
5.  Set lli! *J; and J; Tli =) c, , for i = 0, - S ,  N 
6.  Set [ C, c1 ... CM] =) C 
7. Set C, A (POLR) =) C, 

9. I f j  I 0, stop;  else,  go  to 10 
10. Set O *  i 
11. Set i+l * i 

13. If i < j, go  to 11; else,  stop 

8.  Set c,, A ( P o w  =$ Ad 

12. set Ad  Ad =) Ad 

Algorithm  Implementation: 

The  listing  of  Algorithm EAT implemented  using  the L-A-S language  is  given 
in  Appendix  C.  Algorithms POLR and POM are  other  algorithms  also  listed 
in  Appendix  C. The  coefficients.& of  the (1 X N+1) row array f used  by the 
algorithm  are  calculated by the L-A-S subroutine FACT. For  more  details see 
Chapter 2. 

As is mentioned  in  Chapter 2, if  the  matrix (n x n) A is  "diagonalizable," 
then Ad = PT may also  be  calculated  using Eq.(2.1), i.e.: 

A, = M diag{e*tT} M-' 

where A, are eigenvalues  of A, and M is an (n X n) "modal"  matrix  containing n 
"ordinary"  eigenvectors of A associated  with  eigenvalues A,. For more  details see 
Chapter 2 as well  as  Appendices A and B. 

In this speciftc case the matrix Ad may be  calculated  by  Algorithm EAi'j given 
below  which,  in  fact,  implements Eq(2.1). 

Algorithm EATj 

Syntax: T, A (Mg) =) Ad 

For  inputloutput  arguments see Algorithm MT. 
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l A'gorithm: 
1. Define  input  arrays T and A 
2. Set A (JFR) =) M 
3. Set A (EGV) =) eg = { A, } 
4. Set  diag{  exp(A,n } ExJf 
5.  Set M ExJf M" =+ A,, 

The  listing of  Algorithm EA", implemented  using the L-A-S language, is given 
in  Appendix C. The  calculations in Steps 2, 3 and 4 are performed  using the 
algorithms: 

JFR (the  Jordan  form  of a diagonalizable square matrix), 
EGV (the  eigenvalues  of a general  square  matrix),  and 

Wf (a  diagonal  "Jordan"  form  having the scalars ellT on the main 
diagonal), 

respectively.  All  these  algorithms are available in L-A-S as simple  "operators. " 
For  details on the concept  of L-A-S operators see Appendix C. 

Linearly  Interpolated  Model 

In a similar  development  one can .work with  higher-order  hold  devices, 
although  they are not as commonly  found  in  hardware  form. A more accurate 
model is given  by a linear  interpolation  between  sampled  values. This is referred 
to as  the trapezoidal rule when  used as an approximate  integration  technique. 
Thus,  the C-T input  signals  are  represented as straight  lines  between  adjacent 
samples  as  illustrated  in  Fig. 1.4. From Fig. 1.4, for kT I t < kT+T, we can 
write  the  relation 

With  this  more  elaborate  model of the  inputs  the  general  solution to the  state 
equation can be used (in much the same  manner as was  done in the previous 
development for the ZOH model)  to arrive at the linearly interpolated model 

x(&+l)  = A,,x(k) + Bdou(k) + Bd,u(k+l) M(1.28) 

where the notation  of Eq(1.26) has  been used to  simplify the expression  and 
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FIGURE 1.4 Linearly Interpalated Data 

Ti 
i.o i t  

Ad = c "A' 

M(1.29) 

Equation (1.28) evaluates the present  state as a weighted  sum of present  input, 
past  input, and  past  state.  The  coefficient  matrices  would  have  to be handled 
numerically  as  e.g.  truncated  versions  of Eq~(1.29). We  will  not  pursue  higher- 
order developments  along  this line; however,  more  details  will  be  presented in the 
next  chapter on algorithms  for  implementing  this  discretization.  We  summarize 
with  the  following  definition. 

Definition 1.3 The discrete-time state (variable) model is given  by 

x(k+l) = A,x(k) + B&), x(0) 

~ ( k )  = C ~ ( k )  + D ~ ( k )  
(1.30) 

where x is an (nX 1) vector, U is an (m X 1) vector, y is a @X 1) vector 
and the matrices A,, B,, C and D have  corresponding  compatible 
dimensions. Figure 1.5 illustrates  the  vector  block  diagram for this 
model. 

Recursive  Solution In the  following  development  the  subscript d is omitted for 
convenience.  Working  with  Definition 1.3 and  assuming  that x(0) and u(k) are 
known for k 2 0, 
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FIGURE 1.5 Discrete-Time State Model 

x(1) = Ax(0) + Bu(0) 

~ ( 2 )  = Ax(1) + Bu(1) = A2x(0) + ABu(0) + Bu(1) 

Continuing  this  recursive  process  leads  to  the general solution: 

k - l  

x(k) = A'x(0) + c A'""Bu(~) 
i-0 

m(1.31) 

Introducing Eq(1.31) into  the  output  equation  of Eq.(1.30), 

Y(4 = Y&) + S#) m(1.32) 

where  the  zero-input  response, yz.k) is 

= CA'x(0) m(1.33) 

and  the  zero-state  response, ydk) is 
k - l  

y&) = c CAk""Bu(i) + Du(k) m(1.34) 
i -0  

We  will also review  transform  descriptions  from the background of the  state 
variable  models.  The  Laplace  and  z-transforms  provide  these  alternative 
descriptions of the  systems of Definitions 1.1 and 1.3. 
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1.3.4 Controllability  and  Observability 

17 

Both controllability and observability are fundamental  concepts  in  the  design 
of  control  systems.  The  first  answers  the  question  of  whether  we can be  assured 
of  being able to  influence the state  of a system  using  the  available  inputs; and, the 
second  answers a related  question  of  whether  all  state  variation is "visible"  in  some 
way  through  the  measurements.  In  the  following  developments a D-T state  space 
model  of the form  of  Eq.(1.30)  will  be  assumed  as a starting  point;  but,  since  it is 
the  structure of  the  state  space  model  that is important  and  not  whether  the  model 
is D-T or C-T,  the  end  results  will  hold  for  both  Eq.(1.30), as well as Eq.(1.7). 

Controllability 

By "controlling" a plant, we mean to  use  its  available  dynamic  inputs 
(variables  capable  of  being  manipulated)  and  specify  their  time  variations  in order 
to obtain  some  desired  response.  We  begin  the  discussion  with  the  assumption  that 
the D-T model  in Eq(1.30) is completely  known  and  completely  representative  of 
the  system  to  be  controlled.  Equation  (1.30)  has  the  general  solution  for  its  state 
given  by Fq(1.31). Here we  recognize  that it is the  internal  state  and  not just the 
output  that is of  concern. 

Definition 1.4 The  discrete-time  state  (variable)  model  given  by 
Eq.(1.30) is (completely state) controllable if it is possible  to  force  the 
state from.any initial  state x. to  an arbitrary  "target"  state xf in a finite 
number  of  steps. 

We  will use this  definition  to  derive a simple rank calculation  to  test  for the. 
property  of  controllability  in a linear  system.  It is noted  that for  linear  systems  the 
problems  concerning  the  transfer  from  an  arbitrary  initial  state x. to  the  origin 0, 
or the  transfer  from  the  origin 0 to  an  arbitrary  final  state xfare equivalent.  This 
latter  perspective  is  often  used  to  define  the  related  concept  of reachability. 
Recalling %.(l .31), x(k) is the  state  after k steps.  Intuitively, if we can drive a 
system  from  one  state  to any other,  then  we  can  control  the  system  in  some  more 
complicated  manner.  Expanding Eq(1.31) and  equating x(k) to 4,  we can write 

x,-A'x(O) = [B  AB 

This  expression is suggestive  of  solving for  the  set  of  input  vectors  which,  when 
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applied to the system,  will cause the  state to end  up at 9 after k steps. Since  the 
left  side  of the equation is arbitrary, the coefficient (partitioned) matrix  must  have 
full rank, i.e. n. However,  we  have  not, as yet, specified k. Is it possible  that  the 
partitions A'"' B continue  to  generate  linearly  independent  columns as k increases? 
In fact  this is not  the case. The  Cayley-Hamilton  theorem  of  matrix  algebra  tells 
us  that A" (where A is an (n X n) matrix)  satisfies its own characteristic  polynomial 
and,  therefore, A" can be  written as a linear  combination  of  powers  of A less than 
n. Thus,  with k = n in  Eq.(1.35) we maximize  the  number  of  linearly  independent 
columns  of the coefficient  matrix. In this case the  coefficient  matrix is given a 
special  name, i.e. the  system controllability matrix. 

Definition 1.5 The contro2lability matrix for the discrete-time  state 
model  given  by Eq(l.30) is defined as 

Q, = [ B  AB A'"'B] 

Controllability is an inherent  structural  property  of a system model,  and 
equivalent  systems  will  exhibit  the  same  test  results.  The  simple  knowledge  of 
whether a system is controllable, or not, is crucial  to  the  subsequent  state  space 
control  methods.  Without  controllability  not  all  of  the states can be  "guided"  by 
input  manipulation.  Unfortunately,  the  question  of  controllability  gives  rise  to ayes 
or no answer  and  dues  not  directly  indicate  the  "degree of controllability," a 
measure  of  how  close  the  system is to  being  uncontrollable.  Yet  another  perspec- 
tive is that if a particular  model is not  controllable,  it  simply  means  that  additional 
actuation  capability  must  be  designed  into  the  system. 

We  summarize  this  discussion  with  the  following  test  and a subsequent 
algorithm  for  calculating  the  controllability  matrix.  It  may  be  noted  that in the 
Algorithm QC, the  definition  of Q, is  slightly  modified. In particular,  it is known 
that for MIMO systems no new  linearly  independent  columns  of Q are added 
beyond the partition A"" B, where m is the  number  of  (independent)  columns  in B. 
Therefore, Q, can be  defined  to  end  with  the  partition A"" B, rather than A"" B. 

Controllability Test: The  system  described  by Eq.(1.30), or that  described  by 
Eq.(1.7), is controllable if and only  if  its  controllability  matrix, Q,, given  in Dsf. 
1.5 has rank n, where n is the  order of  the  system. 

Algorithm QC 

Syntax: 

I. Purpose: To calculate  the n X (n-m+l)m matrix Q,=[ B AB ... A""B 3 
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Description: The matrix Q, is calculated  by  the  following  recursive  process: 

Qi = I A"'B] , for i= l  to (n-m+l)  

with initial  condition  that = On,,. The matrix Q, is equal to Q,-+,). 

Notation: represents a zero matrix  with n rows  and  zero  columns,  and 
[X, I X,] * X refers  to  concatenation  "by  columns,"  i.e. 

I Algorithm: 

1. Define  matrices A and B 
2. Set  the  number  of  columns  in A =) n 
3. Set  the  number  of  columns  in B =) m 
4. Set n-m+l =) i,,, 
5. Set B =5 X 
6. Set On,o =) Q, 
7. Set 0 =5 i 
8. Set i + 1 * i 

10. Set A X * X 
11. If i < i,,,, go  to 8; else,  stop 

9. Set [Q, I XI *Q, . 

Algorithm  Implementation: 

The  listing  of the Algorithm QC implemented  using the L-A-S language is 
given  in  Appendix C. Note  the  striking  similarlity  of  the  algorithm  steps 
and  the  corresponding GA-S operator  statements. 

Observability 

As  in  the  previous  discussion, the D-T  model  of Eiq(1.30) will  be  assumed 
to accurately  represent  the  system  at  hand.  The  concept  of ObservabiZity is a 
fundamental  property  of  systems  related  to  how the measurements,  or  outputs, 
interact  with  the  system  states. It has  been  shown  that the simple  problem  of 
identifying  the  initial  state, x(O), by  observing a finite  number  of  outputs is 
equivalent  to  knowing  that  the  complete  state  information is transmitted  to the 
outputs.  Although  we  know  from Eq(1.32) that  the  general  solution  consists of 
two parts,  only  the  zero-input  response need be  used  to  develop  the  condition  under 
which  the  initial  state can be  identified  from a finite  number  of  outputs.  The reason 
for  this is that,  since  the  model  and  inputs are known,  the  zero-state  response  could 
simply  be  calculated  and  subtracted  away  from  the  total  solution. 
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Definition 1.6 The discrete-time  state  model  given by Eq(1.30) is 
(complerely sfate) observable if it is  possible  to  determine x(0) from 
knowledge  of u(k) and y(k) over a finite  number  of  time  steps. 

This  definition  will  be used  to  develop a simple rank test for the property  of 
observability  of a system,  similar  to  that  developed for  controllability  above.  Since 
without  loss  of  generality  we can assume  that u(k) = 0, as discussed  previously, 
we can expand Eq.(1.33) to obtain 

... I CA' 
x(0) = 

We can solve  for x(0) given  the  known  vector on the  right  if  and  only  if  the n 
columns  of  the  coefficient  matrix on the  left are linearly  independent.  Since  the 
number  of  linearly  independent  columns  of a matrix  equals  the  number  of  linearly 
independent  rows,  we  can  add  partitions (C A') to  have  this  affect.  Again,  as  in 
the  case  of the controllability  test,  the  maximal rank of the  coefficient  matrix is 
assured  when  the final partition is (C A""). For  this  case  the observability matrix . 

is defined as follows. 

Definition 1.7 The observability matrix for the discrete-time  state  model 
given by Eiq(l.30) is defined as 

C 
CA 

Q, = ... 
CA'"'- 

Since Q, has n columns  and np rows,  the  maximum rank of Q, is n. Thus,  for an 
arbitrary set  of n output  measurements,  we can solve  for x(0) above  if  and  only  if 
Q, has n linearly  independent  columns.  Consequently,  we  have  the  following  test. 

Observability Test: The system  described  by Eq.(1.30), or that  described  by 
Eq.(1.7), is observuble if and  only  if  its  observability  matrix, Q,, given  in  Def. 1.7 
has rank n, where n is the  order  of  the  system. 
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Like  controllability,  observability is an  intrinsic  property  of a system. 
Equivalent  state  models  exhibit  identical  test  results. The  test  above  provides a yes 
or m answer  and,  as  with  controllability, no direct  measure  of  the  "degree  of 
observability."  Since  observability  deals  with  how  the  sensors  relate  to  the  system 
dynamics,  lack  of  observability can be  interpreted as a need for more  sensors  for 
the system. 

Algorithm Qo 

Purpose: To calculate  the (n-p+l)p x n matrix 

where p is the  number  of  rows in C. Note  that as in  algorithm QC, 
the  rows  of Q have  been  truncated,  thereby  redefining Q, for  ease of 
computation. 

Description: The matrix Q, is calculated  by  the  following  recursive  process: 

Q00-1) 

Q .  = _ _ _ _  
OI 

, for i = l  to ( n - p + l )  
CA"' 

with initial  condition  that Q& = O0,.. The matrix Q, is equal to 

Notation: Oor = a zero  matrix  with  zero  rows  and n columns.  And 

Txl 1 I -- I - X ,  meansthat X =  

i.e.  concatenation  "by  rows." 

Algorithm: 

1. Define  matrices A and C 
2. Set  the  number of columns  in A =) n 
3. Set  the  number  of  rows  in C * p  
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4. Set n-p+l * ip 
5. Set C - X 
6. Set O,, * Q, 
7. Set 0 - i 
8. Set i + 1 i 

10. Set X A * X 
11. If i < ip, go to 8; else,  stop 

Algorithm  Implementation: 
The  listing of  the  Algorithm Qo implemented  using the GA-S language is 
given  in  Appendix C. 

Duality Principle: It is found  that for many types of  calculations  that a certain 
similarity  exists.  For  example,  in  the  previous tests for  controllability  and  observa- 
bility,  there is a noticeable  similarity  in  the  calculations.  Since  this  phenomenon 
shows  up  in  several  places,  we  will  begin  to  explain  with  the  following  definition 
of dual systems. 

Definition 1.8 If the discrete-time  state  model, S, is  defined as 

x(k+l) = Ax(k) + Bu(&) 

~ ( k )  = C ~ ( k )  + D  u(k) 

then  the dual system, S', is given  by 

X '&+l) = ATx '(k) + CTu '(k) 

y'(k) = BTx'(k) + DTu'(k) 

with its own  states,  inputs  and  outputs. 

It  is  easy  to see that  the  relationship  of  duality is "reflexive,"  i.e.  if a system 
S is the dual  of a system S', then S' is also  the  dual  of S. With  regard  to  the 
previous  tests of controllability  and  observability, we can say  that: 

A system is controllable  (observable)  if  and  only  if  its  dual  system is 
observable  (controllable).  Specifically, Q may  be  calculated  using QC as follows: 

AT,  C* (QC) * X 
XT * Q, 

and  similarly Q, can be  calculated  using Qo. More  will  be  said on this  later. 
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1.3.5 Responses of State  Space  Models 

23 

Having  created  models  of  systems  such as given  in Eqs.(l.7) or (1.30), it  is 
frequently necessary to  numerically  calculate  and  plot  the  responses  of  these 
systems  from known initial  conditions and input  functions.  In L-A-S it is 
convenient  to  symbolically  represent  the  response  of  either  D-T or C-T  in the Same 
way: 

A, B, c, D, xo, U, T (CDSR) - 9 

where A, B, C and D represent  the  D-T or C-T  state  space  model; x, is the  initial 
state; U is the (m X N) array  of  input  vector  samples,  where N is the number of 
samples. The parameter T, shown  as  an  input  to  Algorithm CDSR above, is a 
scalar  which  represents  the  total  solution  time for C-T  models; for D-T  models it 
should  be  set  to  zero or any  negative  scalar. 

In  the  case  of a C-T  system,  i.e.  for  u(f),  the Kh column  of U contains  the 
vector u(Q, where 

The  values of u(f) between  samples are assumed  to  be  linearly  interpolated as 
illustrated  in Fig. 1.4 and further described  in  the  previous  discussion  of  Linearly 
Interpolated  Models. Finally, y is a (p X N) matrix  containing  solutions  of  either 
of the  state  models, Eqs.(l.7) or (1.30). 

Plotting of the  responses y may  be  accomplished  in L-A-S by  the  commands: 

* Y(T)=Ytr or by the MOS * y(T) ,T(DIS)= 
* ytr,T(DIS)= 

where (I+) is a matrix transpose operator. For more  details see Appendix  C. 

1.3.6 Continuous-Time  Transfer  Matrices 

Applying  the  Laplace  transform  to  the  state  space  model of Definition 1.1 
with to= 0, 

SX(S) - ~(0) = AX(@ + B@) 
y(s) = Cx(s) + D u(s) 

(1.36) 

Solving  for y(s), 

Y(S) = C(SI-A)"X(O) + [C(sI-A)"B + D]u(s) m(1-37) 



24 Chapter 1 Introduction 

Definition 1.9 The continuous-time trunsfer  matrix, G(s), is the zero-state 
relation  between  the  transformed  input  and  output  vectors,  e.g. 

G(s) = C(sI-A)"B + D W(1.38) 

Definition 1.10 The  characteristic  polynomial of  the  generic state model 
is the n"' order polynomial 

a(s) = det(s1 - A) W(1.39) 

The transfer matrix G(s) reduces  to a scalar and is called  the  trunsferfunction  when 
the  system  has  only  one  input and one  output. 

Definition 1.11 The  transfer  matrix G(s) is said to  be aproper transfer 
matrix if 

W(1.40) 

where Go is a constant  (finite)  matrix,  not  dependent  on S. 

Definition 1.12 The  transfer  matrix G(s) is said  to  be a strictly proper 
transfer  matrix if 

lim C(S) = 0 
S" 

m(1.41) 

1.3.7 Discrete-Time  Transfer  Matrices 

In a similar  manner  to  the  previous  development  the  z-transform can be 
applied  to  the  system  of  Definition 1.3, where  the  subscript d is omitted for 
convenience, 

ZX(Z)  - ZX(O) = Ax(z) + Bu(z) 
y(z) = Cx(z) + Du(z) 

(1.42) 

Thus, Y(Z)  = C(ZI -A)"zx(O) + [C(zI -A)"B + D] u(z) W(1.43) 
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Definition 1.13 The discrete-time trmfer mafrix G(z) is the zero state 
relation  between  the  z-transformed input and  output  vectors,  e.g. 

G(z) = C(ZI - A)"B + D M(1.44) 

The  reader  should  recognize the similarity  between the D-T  and  the  C-T  transfer 
matrices.  Both are algebraic quantities so that  Definitions 1.10,  1.11 and 1.12, as 
well as many others, may be  interpreted  in  either  the s- or the zdomain. In  many 
places  throughout  this  text  we  will  rely  on  the  readers'  recognition  that a certain 
operation  performed  in  the  s-domain  would  be  identical  in the zdomain. The 
following  algorithm is one such  case. 

1.3.8 Leverrier's  Algorithm 

In  the  previous  section it was  seen  that  the resolvent matrix, (SI - A)-', played 
an important  roll  in  formulating  the  transfer  matrix  from  the  state-space  model. 
Formally, 

M(1.45) 

where  the  denominator  of Eq(l.45) is an n"' order  polynomial, a@), called the 
characteristic polynomial of  the  matrix A. Explicitly, 

a(s) = S "  + a,-lsn-l + a,-2 + ... + a l s  + a, M (1.46) 

From Eq.(1.45), 

adj (SI -A)  -(SI - A) = det (SI - A) = U(S) I (1.47) 

The  adjoint  matrix can be  expanded as 

adj(s1 - A )  =  IS'"^ + (A + a,-lI)s"-2 + (A2 + and1A + ~ , - , I ) s " - ~  
(1.48) 

+ ... + (An-' + a,-lAn-z + ... + alI) 

To see that  this  expansion  is  valid,  the  reader  should  take  time  to  multiply 
Eq(1.48) by (SI - A), thereby  checking Eq(1.47). Note  that the Cayley-Hamilton 
llteorem requires  that a (square)  matrix  satisfy  its  own  characteristic  equation,  i.e. 
a(A)=O, where a(s) is given  in Eq.(1.46). Let us  formally  write  that 

(SI -A)-' = - [R,-,s'"' + R,-z~'"2 + ... + R,s + %] = - R(s) (1.49) l 
4s)  4s) 
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The  numerator  polynomial  matrix R(s) = (r&)} is an (n X n) matrix of (n-l)" 
order  polynomials, rff(s), which can be expressed as follows: 

It should  be clear  that  the  relation  between  the (n X n) real matrices R, and the 
coefficients rffl of  the  polynomials rff(s) is given  by: 

Comparing  Eqs.(1.48)  and  (1.49), it may be  concluded  that: 

Also,  since  the  matrix A satisfies  its  own  characteristic  equation, a(A) = 0, 

%A + a,I = 0 (1.52) 

Levemer's algorithm is a recursive  method  that  calculates  the  coefficients  of 
the  characteristic  polynomial in Eq.(1.46) as well as the  matrix  coefficients  of 
adj(s1- A), as shown in Eq(1.51). The  recursion  steps  begin  with a matrix  result 
that the coefficient  in  Eq.(1.46) is the negative  of the sum  of  the  eigenvalues 
of A, which,  in turn, is equal  to  the  negative  of  the trace of A. The trace of A is 
defined as  the sum  of the main diagonal  elements of A, denoted tr(A). 

% = R , A + a , I ,  a. = --@(%A) 1 
n 

Equation  (1.52) can be  used as a numerical  check on the  above  calculations. 

Example 1.2 (Levemer's Algorithm)  Given  the  following  matrix 

We  will  calculate (SI - A)-] using  Algorithm RES0 to  implement Eq(1.53) and 
check  the  result  with Eq(1.52). Following the recursion  steps  of  Eq.(1.53), 
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R , = R , A + a , I =  

% = R , A + a l I =  1 4  -2 0 3 0 11 , a,=2 

1 0 -2 01 

Equation (1.52) is  satisfied  identically;  therefore, 

(SI -A)-' = 
S3 + 3s2 4.4s + 2 

" 

4s) 

or, equally, 

(SI - A)-' = [S* '2," -2s  + 4  - 4 s - 2  S' f 1 - " { r,,(s) I 

The reader is invited  to further check the results  by  direct  calculation  of (SI - A)". 
In  the  following  we  will  discuss  algorithms  which  not  only  calculate  the 

resolvent  matrix  (Algorithm RESO), but  also  calculate  the  complete  transfer  matrix 
from a state  space  description  (Algorithm LALG, using  Leverrier's  algorithm  and 
Algorithm S S P ,  which is not based on Levemer's algorithm).  In  the  sequel 
important  notation is developed as well  as  additional  examples  for  better 
understanding  of MIMO system  descriptions. 

S3 + 3s2 + 4 s  + 2 4s) 

Algorithm RES0 

Syntax: A (RESO) =) a, R,, R 

Purpose: Calculation  of  coefficients  of  the  characteristic  polynomial U(S) 

and the numerator  polynomial  matrix R(s) defining  the  resolvent (SI - A)" 
of the given  (square)  matrix A using  the  Leverrier  algorithm. 

Input/Output Arguments 
0 A = given (n X n) matrix 
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a = (1 X n+l )  row  containing  coefficients U,, 0 5 i 5 n, of 
a@). Coefficients are ordered  by  indices  in  increasing order. 
R, = (n X nZ) matrix  containing n (n X n) matrices &, 0 S 
i 5 n-l, defining  the (n x n) polynomial  matrix R(s). Matrices 
R, are ordered  by  indices  in  increasing  order. 
R = (nz X n) matrix  whose  rows contain n coefficients, rth, 0 
I h s n - l ,  of  the  polynomials r&s) defining  the  polynomial 
matrix R(s). Rows rt are ordered  ”columnwise,”  i.e. 

row 1 contains coefficients of rll(s), 
row 2 contains  coefficients  of rzI(s), 

row n contains  coefficients  of rnl(s), 
row n+l  contains  coefficients  of r&), 

row 2n contains  coefficients  of m,&), 

row n2 contains  coefficients  of r,,,,(s). 

... 

... 

... 

The  matrix R is said  to  be  in polynomial matrix form (PMF). The rows rv 
of R are: 

‘I, = ‘,,a ‘ill ... ri,(”-l) 1 

Description: The expressions in (1.53) can be represented  by the  following 
recursive  process: 

Rn+* = %-,A + 1, Qn- i  

- *(Rn-,_, A) (b) - -  
an-1-1 i + l  

for 0 s i 5 n, with  initial  conditions R,, = 0 and CY,, = 1. 
Note  that  the  matrix Rl = + cxJ calculated  in  the  last  step,  i.e. for 
i = n, is not  used  in  defining  the  numerator  polynomial  matrix R(s), The 
norm of this  matrix  could  be  used for checking  the  accuracy  of the 
calculation  since: 

U 

R-, = c a, A’ 
1-0 

which  according to the Cayley-Hamilton  Theorem  should be equal  to  the 
zero matrix. 

In addition to the  (1 x n+l) row a and  the (n X nz ) matrix R,, 
namely 
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a = [ a. a,  ... anel a , ]  

R = RfJ R, ..* R”-1 1 ( 4  

Algorithm RES0 also  calculates  the (nz x n) matrix R whose  rows contain 
the coefficients, ‘@h , of  the (n-l)“ order polynomials r&), defining  the 
numerator  polynomial  matrix R($) in Eq(1.50). The  arrays R, and R 
contain the same  scalars, , but  arranged  differently.  The  reason for 
calculating  both arrays  is, as will  become  clear later, that  some control 
algorithms  require  the  form  of  while  others  make  use  of the polynomials 
of R more  directly. 

Algorithm: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

Define  square  matrix A 
Set  number  of  columns  in A * n 
Set I,,,,, * I 
Set - R, 
Set I * 
Set n2 * nn 
Set --j R 
Set 1 =$ a 
Set 0 =$ i 
Set i+l i 
Set Ri x A * E 
Set -tr(E)li =) a, 
Set [ a, I a ]  * a 
Set [ R, R,] *R, 
Set  all n columns  of R, into a single nz dimensional  column * ri 
Set[r i  I R ] - R  
Set E + a, I * R, 
If i < n, go  to 10; else,  stop 

I Algorithm  Implementation: (See Appendix C for the L-A-S listing.) 

1.3.9 Transfer  Function  Matrix  Calculation 

From  the  previous  discussion it is clear  that in addition  to  the  resolvent 
matrix  of Eq(1.45) the  transfer  function  matrix G($), defined  in Eq.(1.38), or G(z) 
in Eq.(1.44), is an  important  representation  of a system.  The  next two algorithms 
were  designed  to  calculate  the  transfer  matrix  from a given  state  space 
representation, {A,B,C,D). Algorithm M G ,  based on Levemer’s algorithm  will 
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be considered  first.  This  algorithm  calculates  the  coefficients  of  the  characteristic 
polynomial u(s) and  the (m X p )  numerator  polynomial  matrix, W@), related  to  the 
transfer  matrix  by 

G(s) = C(s1 -A)"B + D = - 
0 (4 
W@) (1.54) 

for a given n* order system  with  m-inputs  and p-outputs. 

represented  as 
Similarly, as in Eq.(1.49), the (p X m) polynomial  matrix W(s) can be 

(1 . S )  
h -0 

where W, = {w~,,,}, l s i s p ,  l s j s m ,  O s h r n  

Algorithm LALG 

Syntax: A, B, C, D ( L A L G )  * a, W,, W 

Purpose: Calculation  of  coefficients  of the characteristic  polynomial u(s) 
and  the (p X m) numerator  polynomial  matrix W(s) defining  the  transfer 
matrix G(s) of a given  state  space  representation (A, B, C, D} using  the 
Leverrier  algorithm. 

Input/Output Arguments: 

(A, B, C, D) = state  space  representation  of  given  system  with n 
states, m inputs  and p outputs. 
a = (1 X n+l )  row array  containing  coefficients U,, 0 5 i S; n, of 
a($). Coefficients are ordered by indices in increasing  order. 
W, = (p X (n+ 1)m) matrix  containing n+ 1 (p X m) matrices W,, 
for 0 I; i I n, defining  the (R x m) polynomial  matrix W(s) in 
(1.55). The  matrices W, are ordered by indices in increasing  order. 
W = (pm x n+l )  matrix  whose  rows  contain n + l  coefficients W,,,,, 
for 0 I; h I n, of  polynomials W&) defining  the  polynomial  matrix 
W@). As was true for Algorithm RESO, the  rows wu, 1 5 i 5 p ,  
1 I j I m, are ordered  "columnwise," i.e. 

row 1 contains coefficients  of wII(s), 
row 2 contains  coefficients  of W&), 

row p contains  coefficients  of wkI(s), 
row p +  1 contains  coefficients  of W&), 

... 
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row 2p contains  coefficients  of W&), 

row pm contains  coefficients  of W&). 

... 

... 

The  matrix W is said to  be in the polynomial mac& form ( P M q .  The rows 
W,, of W are : 

Wij = [wijo Wijl ... Wt/n 1 

Description: The  calculation  of  the  coefficients  of a(s) and  matrices W,, 
0 I i 5 n, defining G(s) c a n ,  as  in  algorithm RESO, be  represented  by the 
following  recursive  process: 

R,+ = %-,A + Inan - ,  

for 0 5 i I n, with  initial  conditions R,, = 0 and a, = 1. 
Again  note  that  the  matrix R-, calculated  in  the  last  step, i.e. for i = n, 
could  be  used  for  checking  the  accuracy  of  the  algorithm. 

In  addition  to  the (1 X n+ 1 )  row  matrix a and  the (p X (n+ 1)m) 
matrix W,, namely 

a = [ a. a1 a n - l   a n ]  

W, = [WO W, *.* wn-, W, 1 (4 

Algorithm LALG also  calculates  the (pm X n+l)  matrix W whose  rows 
contain  the  coefficients, wUh, of  the (n-1)" order polynomials W,,@), defining 
the  numerator  polynomial  matrix W($) as in Eq.(1.55), i.e. 

where wh = { w i j h }  , l s i s - p ,  1 s j s m ,  O s h s n  

Algorithm: 

1. Define  square  matrix A 
2. Set  number  of  columns  in A e n 
3. Set I,,. =) I 
4. Set D =) W, and I Ri 
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5. Set  all m columns of D into a pm dimensional  column * W 
6. Set 1 * a 
7. Set 0 i 
8. Set i+l =+ i 
9. SetR, x A * E  
10. Set -t@)/i * a, 
11. Se tCR,B  + D a , * W ,  
12. Set [ a, I Q 3 * a 
13. Set [ W, I W, ] * W, 
14. Set  all m columns  of W, into a single pm dimensional  column * w, 
15. Set [ W, I W ] * W 
16. Set E + a, I * R, 
17. If i < n, go  to 8; else,  stop 

Algorithm  Implementation: (See Appendix C for  the L A - S  listing.) 

Example 1.3 (Transfer  Matrix  Calculation)  For  this  example  the  given " 0  
system {A, B, C, D} is  (in system  matrix form) 

0 1 0 1 0  1 -  

0 0 1 I 1 0  

-2 -4 -3 I 1 0 

1 0 0 I 1 0  

L o  0 2 I 0 0 -  

[: :] = "- "-  -" -1- "_ "- 
(1.56) 

Note  that state  matrix, A, is  identical  to  that used in  Example 1.2 to  illustrate  the 
calculation  of  the  resolvent  matrix (SI - A)". In this  example  we are looking for 
the transfer matrix 

From  applying  Algorithm LALG 

a = [ao a, a2 a3] = [ 2  4 3 l] 

The characteristic polynomial is interpreted  from  this  to  be 

a(s) = 2 + 4s  4. 3s2 4- S3 

In addition  the  algorithm  provides W, , as follows 
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6 4 1  5 3 1 3 1 1 1 0  
= [wo w2 w3] = [ - 4 0 1 - 8 - 4 1 2 0 I O O  1 

and W, which  contains  the  same  information in different  form, 

W11 

-4 -8 2 0 W21 

6 5 3 1  

*wZz- 

4 3 1 0 W12 

- 

W =  - - 

0 -4 0 0 -  

From W we  directly  interpret  that W($) is 

W(s) = i" + 5s + 3s2 + s3 4 + 3s + S 2  

-4  - 8s -+ 2s2 -4  S 1 
which  completes  the  transfer  matrix G($) = W(s)/u(s). 

As can be seen from  the  previous  discussion,  the  Leverrier  algorithm is both 
simple  to  understand  and  easy  to  inplement,  but  due  to its recursive  nature,  it is 
susceptible  to  the  accumulation  of  round-off  errors. The next  algorithm  offers an 
alternative means for  calculating  the  transfer  matrix G(s) without  using the 
Levemer algorithm. 

Algorithm S S V  

Syntax: A, B, C, D (SSTF) * a, W 

Purpose: Calculation  of  coefficients  of  the  characteristic  polynomial a(s) 
and  the (p X m) numerator  polynomial  matrix W(s) defining  the  transfer 
matrix G(s) of a given  state  space  representation (A, B, C, D) using 
polynomial  manipulation. 

Inpuffoutput Arguments: 

(A, B, C, D) = state  space  representation  of  given  system  with n 
states, m inputs  and p outputs. 

e a = (1 X n+ 1) row  array  containing  coefficients U,, 0 5 i I n, of 
a($). Coefficients are ordered  by  indices  in  increasing  order. 

0 W = (pm X n+ 1) matrix  whose  rows  contain n+ 1 coefficients wYh, 
for 0 5 h I n, of  polynomials W&) defining the polynomial  matrix 
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W(@. As  in the case of  Algorithm RESO, the  rows W#, 1 S i S p ,  1 S 
j S m, are ordered  "columnwise,"  i.e. 

row 1 contains  coefficients of wI,(s), 
row 2 contains  coefficients of wZ,(s), 

row p contains  coefficients of W&, 
row p + l  contains  coefficients  of W&), 

row 2p contains  coefficients of W,&, 

row pm contains  coefficients of W&). 

... 

... 

... 

The matrix W is said to be  in polynomial mafrix form (PMF). The rows W, 
of W are 

Description: The polynomials W&) in  the (p x m) matrix W(S) can be 
calculated  differently  from  Algorithm LALG starting  with the  following 
result: 

where a($) is the  characteristic  polynomial  of A, d, is the 0'" element  of D, 
and v&) is the (n-l)" order  polynomial  given  by 

R 

where bM is the hf" element  of  the  input  matrix B and  the @-l)* order 
polynomial rut(@ is  defined  by 

and &,(S) is the (n X n) polynomial  matrix  obtained  by  substituting  the h"' 
row  in (SI - A) by  the 1'" row, c,, of the output  matrix C, 
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C =  

C1 

. . .  
=i 

. . .  
cP 

Assuming  that a computational  procedure for calculating  the  characteristic 
polynomial  of a square  matrix is available  (without  using Levemer's 
algorithm),  the  calculation  of  the  polynomials r,(s) could be performed  by 

rih(S) = - rhz(s) (e) 

where r&(s) and r&) are characteristic  polynomials  of  the (n x n) matrices 
R, and R,, respectively,  defined by 

Rihc = 

Q1 

... 
4 - 1  

c i  

'h+1 

. . .  
an 

Q1 

. . .  
' h - 1  

z 

' h + ,  

. . .  
'n 

, where A = 

Q1 

. . .  
4 - 1  

ah 

' h + l  

. . .  
Q" 

In other  words, R, is  obtained  from A by  substituting the h* row with the 
z* row  of C, and R, is obtained  from A by  substituting the h* row  with  the 
n-dimensional zero row, z. 

The  alternate  expression  for  calculating the polynomials v&) in 
Eq.(a), to  be  used  when p > m, is 

I 

= c Cih  qhks)  03) 
h - l  

where c, is the ih* element  of the output  matrix C and  the @-l)* order 
polynomial g,,,@) is defined  by 

qhj(s) = det Q&) 01) 
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The (n X n) polynomial  matrix &(S) is obtained  by  substituting the h* 
column  in (SI - A) by the$ column of the  input  matrix B, 

B = [ b ,  ... b, ... bnl1 0) 

The calculation of polynomials q,&) can be  performed  by: 

In other  words, QIJa is obtained  from A by substituting  the h" column  with 
the J" column  of B, and is obtained  from A by substituting  the h* 
column  with the n-dimensional zero column, z. 

Algorithm: 

1. Set the number  of  columns in A 3 n 
2. Set  the  number of columns  in B 9 m 
3. Set the number of rows in C =) p 
4. Set n + l  * nl 
5. Set =) z 
6. Set I,,, =) I 
7. Set On,O * W, 
8. Set OO,nl =) W,, 
9. Set 0 * j 
10. Setj+l * j 
11. Extract j "  row  from C =) c, 
12. Set OO,nl * W, 
13. Set O *  i 
14. Set i+l * i 
15. Replace i' row of A by cj 3 A,  
16. Replace i"' row  of A by z =) A, 
17. Set  coefficients  of  det (SI - AgJ row U, 
18. Set  coefficients  of  det (SI - AJ =$ row U, 

19. Set U, - U, =) det 
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20. 

21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 

If i < n, go  to 14; else, go to 22 

I f j  < p, go  to 10; else,  go to 24 
Set 0 =) i 
Set i+l H i 
Extract i Ib column  from B =) b, 
Set b: W, * W, 
Rearrange k n, elements  in  the  row W, =) (k X n,) matrix W, 

set [W, I WC1 =) W C  

29. Set [ *WBc 

30. If i < m, go to 25; else,  go  to 31 
31. Set  all m columns  of D into a pm dimensional  column =$ dc 
32. Set  coefficients  of  det (SI - A) =) row a 
33. Set W, + d, a * W. 

Remarks: 

0 Matrices R&,  R,, and  coefficients  of  the  polynomials r&(s), r&) and 
rut($) are calculated  in  Steps 15 - 19; 
The matrix R, contains  the  coefficients  of rut@), 0 I h I n, in  Step 
20; while  the  matrix R contains  the  coefficients  of r,,,(s), 1 L; i I 
p ,  0 L; h I n, in  Step 22; 

0 In  Step 27 the  matrix V,, containing  coefficients  of  the  polynomials 
v&$), 1 L; i I k, is formed; 
The  matrix V, formed  by  concatenating  matrices V, in Step 29, 
contains  coefficients  of  all v&); and,  finally, 
The  matrix W, formed  in  Step 33, contains  all  coefficients  of  the 
polynomials W&), defined  by  Eq.(a). 

I Algorithm  Implementation: (See  Appendix C for the L-A-S listing.) 

It has been  computationally  verified  that for  higher-order  systems,  i.e.  for n > 10, 
Algorithm SSTF is more  accurate  than  Algorithm LALG. 

The  listing of Algorithm SSTF above,  corresponding  to  Eqs.(a)  to (Q, should 
be used  when m < p. The L-A-S implementation is given  in  Appendix C. I fp  > 
m, instead  of  using  Eqs.(g)  to (k), it  is  more  convenient  to  use  the  concept of 
dualiry and  apply  the  algorithm  to  the  system  representation  given  by 
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R, = {A', CT, B', D') 

and  then to transpose the  obtained W(s). This sequence  of  operations is represented 
by the following three steps: 

Set AT, BT , CT , DT =) A,, C, , B, , D,. 
Set A, , C, , B, , D, (SS?") =) a , W, . 
Set W: =$ W . 

1.4 Matrix  Fraction  Description (MFD) 

An alternative representation to either  the state space  description or the 
transfer  matrix  description  is  the mufrixfracron description (Mm). For a C-T 
"0 system the MFD model is of the form 

W Y ( 4  = m W (1.57) 
where y(s) is  the (p x 1) system  output  and u(s) is the (m X 1) system  input. The 
matrices D(s) = { d&) } and N(s) = { n&) } are Zefl coprime ( p x p )  and (pxm)  
polynomial  matrices.  The  orders  of  polynomials d&) and n&s) satisfy: 

(1.58) 

where k S n, n being the order of the system. 

will  be  represented  by: 
In  keeping  with the notation  already  established,  polynomials d&s) and n&s) 

Similarly,  polynomial  matrices D(s) and N(s) may be written as: 
k k 

(1.59) 
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r a n k [ D ( S )  I N ( S ) ]  = p  for all S 

In other words, it is assumed  that  all  existing  common terms in @S) and N(s) have 
been  cancelled. In some  relevant  literature  the MFD model is referred to as an 
awe-regressive-moving average (ARUA) model. As is the case with state space 
models,  the  MFD  representation  is  not  unique,  i.e. there are more  than one  pair of 
polynomial  matrices {@S), N(s)) that  will  represent a given  system. 

One  variation of an  MFD  model is the  following  model: 

y(s) = f i (S)  B"(s) U(S) 

Y ( d  = f i ( 4  W 
$(S) V(S) = U(S) 

which is sometimes  expressed as 

(1.61) 

(1.62) 

where v(s) is an  auxiliary m dimensional  vector. 

matrix, G(s) by 
It can  be  concluded  that  the  MFD  model  is  related  to  the  system  transfer 

G@) = D"(s) N(s) = fi(s) B"@) (1.63) 

Similarly,  the (p xm) and (mxm) matrices fi(s) and B(s) are rig& coprime if: 

It is worth  mentioning  that  in  the  case  of  SISO  models, i.e. for p = m = 1, 
matrices D(s) and N(s) become  scalar  polynomials d(s) and n(s), respectively,  and 
the  coprime  condition  reduces  to: 

rank[ d(s) I n(s) ] = 1 for all S (1.65) 

The  condition of  Eq.(1.65),  in  fact,  implies  that  polynomials d(s) and n(s) have no 
common  factors,  i.e.  there is no value s = so for which  both d(sJ and n(sJ are 
equal to  zero.  In  other  words, for s = p,, i=[l,n], i.e.  system  poles, d(pJ = 0, 
but n(pJ # 0; i.e.  the  transfer  function g(s) = n(s)/d(s) does  not  have  any  pole- 
zero  cancellations.  Similarly,  if  there are no common factors,  then  for s = %, i.e. 
system  zeros  for  which n(zj) = 0, d(zj) # 0. 

In the  case  of SISO systems,  it  is  typically  assumed  that d(s) is a monic 
polynomial, i.e. 

In  Chapter 3 we  extend 

n 

d(s) = c di s i  where d, = 1 (1.66) 

this  "normalization"  concept  to MIMO systems. 

i-l 



40 Chapter l Introduction 

1.5 Summary 

In this  chapter a general  background  of  knowledge  has been set.  The  reader 
is expected  to  have a basic  understanding  of linear control systems such as one 
might acquire with a first  course  in  Control  Systems. The direction  of  the  material 
of this  text is to  extend  this  fundamental  knowledge to include a working 
computational  facility  with MIMO linear  systems.  The  authors  feel  that  under- 
standing MIMO systems is complemented  by  the  exercise  obtained  from  studying 
the  algorithms  that are used  to  work  with  these  systems. 

The concept  of  system  Zineurizarion  was  discussed  early  in  the  chapter  since 
linearization is the  basis  of  obtaining  the  models  of  concern  from  real-world 
models.  In the remainder  of  the  chapter state space models  were  used  to  describe 
various  fundamental  relationships  between  models  of different types. The two  most 
important  relationships are: 

(1) The relation  between  the continuous-time (C-7) models  and the 
corresponding discrete-time (D-7) models  which is required for most 
computer-aided  calculations;  and 
(2) The  relation  between  the time domain models,  either C-T or D-T, 
usually  specified  as state space models,  and  the  corresponding pequency 
domain models.  The  reader  is  expected  to  be  familiar with both  the  s-domain 
and  the  z-domain. 

In  the  latter  portions  of  the  chapter,  starting  with Levemer’s  algorithm,  the 
important  problem  of  converting  from a state  space  representation to a transfer 
matrix  representation  was  considered.  In  the  process  of  presenting the computa- 
tional  algorithms  useful  notation  was  introduced.  Finally,  in  Section 1.4 the useful 
matrix fraction description (MFD) method  of  system  representation  was  introduced. 

The  emphasis  in  this  chapter  has  been  on  definitions and notation.  In the 
subsequent  chapters  the  emphasis  will  be  on  computational  methods  of  converting 
between  model types as well  as  accomplishing  various  operations  that are useful  in 
the  analysis and design  of  control  systems. 

1.6 References 

Although  this  chapter is presented  as a transition  chapter  between the expected 
background  of a classical  control  course and the  subsequent  study  of  multivariable 
systems,  there are, no doubt,  several  topics  for  which  the  reader  might  want to 
obtain further  information.  This  is a typical  reference  section  in  that  at  the  end  of 
each  chapter a similar  section  gives  suggestions  for further  reading,  more or less, 
by  chapter  section. 
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Much  of  the  material  in  this  chapter can be  found  in  more  detailed  form  in 
many  existing texts. One  that is very  attractive  because  of the many  worked-out 
problems  is  Brogan  (1991).  In  Chapter  15  of  Brogan  the  reader can find an 
excellent  review  of nonlinear  system linearim*on. Similarly,  Chapters 3 , 9  and  11 
of  Brogan offer  relevant  discussions of  this  chapter's  topics.  Other books that  fall 
in the  catagory of  general  references for  this  chapter are listed  below.  Another 
general  text  which  emphasizes a similar  "computer-aided"  approach is Jamshidi 
(1992),  particularly  Chapters 2 and 3. 

Specific  references  for  the  D-T  models  developed in Section  1.3.3 are 
VanLandingham  (1985)  and  Haykin  (1972). For  details on the calculation  of 
transfer  functions see Bingulac  (1975a  and  1975b),  and for controllability  and 
observability,  Bingulac  and  Luse  (1990). 

Bingulac, S. (1975),  "On  the  calculation  of  the  transfer  function matrix," IEEE 
Trans. on  Automatic Control, AC-20, 1, 134-135. 

Bingulac, S. (1975),  "On  the  calculation  of  matrix  polynomials," IEEE Trans.  on 
Automatic Control, AC-20, 3, 435-437. 

Bingulac, S. and W. Luse  (1990),  "Computational  simplification in controllability 
and  Observability  tests," Proceeding of the 28"' Allerton Conference, University  of 
Illinois,  October  3-5,  1990,  527-528. 

Brogan,  W.L.  (1991), Modern  Control Theory, 3"' Edition, Prentice-Hall,  Inc., 
Englewood  Cliffs, NJ. 

Haykin, S.S. (1972), "A unified  treatment  of  recursive  digital filtering," IEEE 
Trans.  on  Automatic Control, February  1972,  pp  113-116. 

Jamshidi,  M. et al  (1992), Computer-Aided  Analysis and Design of Linear  Control 
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1.7 Exercises 

Chapter 1 Introduction 

1.1 Using  the  following  system  state  space  representation,  given  in the system 
matrix  partitioned  form: 

namely, 

R, = 

-1.0 1.0 1.0 .o .o I 1.0 .o .o 
-.5 -1.5 .5 -.5 .O I .5 .5 .O 

-.5 .5  -1.5 .5 .O I -.5 .5 .O 

.o 1.0 .o -2.0 1.0 I .o .o 1.0 

.5 -.5 -.5 -.5 -2.0 
- - - - - - - - - - - - - - - 

.o 1.0 1.0 1.0 2.0 

.o 1.0 .o 2.0 1.0 

Calculate: 

(a) -the  controllability  matrix Q, of the pair (A,B}, 
@) -the  observability  matrix Q, of the pair {A,C), 
(c) -the ranks  of  both Q and Q, to  check the  controllability  and  observability 

(d)  -the  resolvent  matrix R in  PMF  and  the  characteristic  polynomial a(s) of A, 
(e)  -the  resolvent  matrix R, in  a  PMF-r  form,  and 
(0 -the  system  transfer  function  matrix G($) in the form G(s) = W(s)/d(s). 

of R,, 

Express W(s) in  PMF,  i.e.  determine  the  array W. 

Hints: 
0 Define  the  matrices  of R, and the scalar E using the L-A-S operator 

0 Use  operators Qo and QC to  calculate Q, and Q,., respectively. 
The rank of  a  matrix is obtained  using the operator NRS. 
Calculate  the  resolvent  matrices R and R, with the L-A-S subroutine 

0 The  transfer  function  matrix W in  PMF  may be obtained  with the 

DMA. 

RES0.SUB. 

operator S S T .  
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The  results may be displayed  on screen by  using the  flag T with the 
operator OUT. 
The results  may be written to the LA-S print file by  using the  flag L 
with  the  operator OUT. 
Use  the  subroutine SYSMXJB to build the system  matrix R,. 
The  individual  matrices of R, may be extracted  by the  subroutine 
M14.SUB. 
Store your  program on a Disk  Program  file  using  the  Interpreter 
Command  (IC) WPF (or  simply W). 
Recall  your  program  from a Disk  Program file using  the IC RPF (or 
simply R).  
Remember  that  information  on L-A-S operators or IC syntax may be 
obtained  by: HELP, <xyz> or simply h, <xyz> and for 
subroutine syntax: HELP, SUB, <xyz> or h , sub<xyz>. 

A version  of an L-A-S program  which  solves  this  exercise is available  in the L-A-S 
subdirectory  C:\LAS\DPF\EXERl  1.DPF. 

1.2 Linearize  the  nonlinear  mathematical  model  of  the  robot arm, Fig.  1.1, 
Section  1.3.1.  As  elements  of  the  parameter  vector p, defining  the  system 
dynamics,  use 

p = [ 0.0125 0.07 0.06 0.05 0.4 ] 
Linearize  the  model  around  the  following  nominal  point, z, 

q, = [ 0.2 0.2 0.4 0.4 0.6 0.6 3' 
using for  "finite  differences," dz = [ 1  1  1  1  1  1 IT lo-'. 
Your  results  should  show  the  resulting  matrices A and B, as well as  estimate  the 
accuracy  of  the  linearization. 

Hints: 

0 Define  vectors  using  the  DMA  operator. 
0 The  subroutine  LIN.SBR can be used for  performing  the  linearization. 
0 The subroutine  GZ.SUB,  defining the system  dynamics, is available in 

the L-A-S master  subdirectory  C:\LAS\SUB\  and  will be called  by 
LIN.SBR. 

0 See also the  hints  following  Exercise  1.1. 

A version  of  an LA-S program  which  solves  this  exercise is available in the L-A-S 
subdirectory  C:\LAS\DPF\EXER12.DPF. 
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1.3 A 5"' order "weakly"  controllable  and  "weakly"  observable  state  space 
representation  with m= 1 input  and p = 2  outputs  is  given  below: 

Determine: 

(a) -the eigenvalues A,7 i=[l ,n], of A, 
(b) -the  degrees  of  controllability  and  observability  of  each A , 7  i=[l,n], of A. 
(c)  Estimate  the  least  controllable  and the least  observable  eigenvalue A,, i=[l,n], 

of A. 

R, = 

-1.0 2.0 -.2 .6 .O I -.202 
-2.0 -1.0 .4 .8 .O I .405 

.O .O -2.0 1.0 .O I -.W6 

.o .o -1.0 -2.0 .o I -.012 

"_ "_ "_ "_  "_ -1- "" 

-.03 1.06 -2.0 1.03 1.0 1 .O 
-.06 -.03 -1.0 -2.0 .O I .O 

2.0 2.0 -.4 -.8 1.0 I 395 

Hints: 

Define  the  representation R using  either  the  operator  DMA or INPM. 
The  eigenvalues of A may be  calculated  using  the operator EGV. 

0 The  degrees of controllability  and  observability  may  be  estimated  using 
the  subroutine  COTS.SBR.  See  Section B.5 for more  details on this 
topic. 
To  plot  the  eigenvalues  of  the  "auxiliary"  matrices A, and A,, use 
operator NIK. For  scaling  of  the axes operator  YXSC  may be  used. 

A version  of an L-A-S program  which  solves  this exercise is available in the L-A-S 
subdirectory  C:\LAS\DPF\EXER13.DPF. 



Chapter 2 System  Discretization 

As pointed  out in Chapter 1, with  the  widespread  use  of  computers  in control 
loops  it is inevitable  that  control  engineers  will  face  problems  associated  with 
sampled-data  systems.  Such  systems  by  their  very  definition  contain  a  mixture  of 
continuous-time  and  discrete-time  signals. A common  problem  that  arises  with 
sampled-data control systems is to  find the  equivalent  effect  of  continuous-time 
operations  as  seen  by the  computer  in  the  loop.  Typically,  the  modeling  of  the 
signal  converters  assumes  an  ideal  uniform  sampler  for the analog-to-digital 
converter  and  a  simple  (zero-order)  hold  device  synchronized  with the  samples  for 
a  digital-to-analog  converter.  With  these  assumptions  one  may find in  many 
references the standard zero-order hold model,  also  known as  the step invariant (Sl) 
model  which  will be discussed  subsequently. 

2.1 Introduction 

In  addition  to  simple  plant  modeling  with SI equivalents  there are occasions, 
such as in digital  redesign  or  system  identification,  that  demand  more  accuracy 
between  a  given  continuous-time  (C-T)  system  and its discrete-time  (D-T) 
equivalent  model.  In  these  instances  higher-order  discrete  models are required. 
Two  models  which  have  been  introduced for  this  purpose are the bilinear 
transformation (BQ (without  prewarping)  and  a  method  which  assumes  a  linearly 
interpolated  input,  also  known  as  the trapezoidal rule. This  latter method is 
referred  to  as  a ramp-invariant (Rl) model  in  contrast  to the standard ZOH model 
being  a step-invariant (SI) model.  This  model  was  introduced  as  a linearly 
inferpolated (input) model  in  Chapter 1; see Eq.(1.29). There are many other 
useful  models,  but  this  chapter  will  focus  on  only  these three methods  of  discretiza- 
tion as being the most  useful  in  practice. 

The  reverse  problem,  called continualization, is that  of  reconstructing  a  C-T 
model  from  a  given  D-T  model.  This  problem  could arise,  for  instance, when 
measured discrete  data  are used  to  identify  a  C-T  system.  The particular method 
of  continualization  selected  would  depend  on  how  the  discrete  data  was  derived  (if 
known).  The  method  of  continualization is presented for each  of the three 
discretization  techniques,  thereby  offering the designer  a  great  deal  of  flexibility  in 
going  between the continuous  and the discrete  domains. 

For  the SI and RI models  both  the forward, discretization, and reverse, 
continualization, problems  may  be  viewed  as  functional  transformations  on  a  given 
matrix A, i.e. in  calculating  exp(A,Q for  discretization or ln(A&/Tfor  continualiza- 
tion. If  the  matrix A is transformed  into  its  Jordan  canonical  form, A,, then 

45 
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A = QA,Q" 

The modal matrix Q contains as columns  the  eigenvectors and/or  generalized 
eigenvectors  of A, depending  on  the  eigenstructure of A. Then,  relating the 
problem at hand,  it is well  known  that 

when the scalar  functionAx) is analytic at the  eigenvalues  of A. This approach is 
convenient if AJ is diagonal  becauseAA,) is then  itself  diagonal.  However, in the 
general case this  approach is very  restrictive  in  that  it is not so straightforward  to 
evaluate  either  the  matrix Q orAA,).  Since it is desired  to  have  robust  algorithms 
to  solve  the  continualization and discretization  problems  which are completely 
general,  this  method  will  not  be  pursued  here. 

Using  basic  properties  of the exponential  and  logarithmic  functions, a unified 
approach  is  presented  in  this  chapter  which  provides  simple  robust  algorithms for 
system  discretization, as well  as  system  continualization,  using  the three methods 
mentioned  above.  Examples are presented  to  illustrate  the  effectiveness  of  the 
algorithms,  showing  convergence  properties  versus  the  computation  parameters  used 
for  truncation  and  scaling.  In  addition,  practical  guidelines are discussed, 
specifically  for  selecting  the  computation  parameters and, more  generally, for 
efficient  computation  of  the  matrix  power  series  involved  in  the  procedures. 

2.2 Discretization  Procedures 

In the area of systems and controls, as well as  related areas such as signal 
processing,  it is useful  to  be able to  discretize a given  continuous-time  system. 
This problem  and  its  reverse  problem  of  continualizing a discrete-time  system are 
considered  here.  We  assume a basic  state  variable  representation for a continuous- 
time  system as follows. A sfafe space realization for a linear,  continuous-time, 
constant  parameter  system  consists  of a 4-tuple  of  matrices;  namely, 

which  defines  the  state  model 

where x@), u(f) and y(f) are the  state,  input and output  vectors with dimensions n, 
m and p ,  respectively,  while  the  matrices A,, B,, C, and D, are constant  matrices 
with compatible  dimensions. 
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2.2.1 The  Step-Invariant Model 

The  familiar srepinvuriunf (SI) or ZOH equivalent  discrete-time @-p model 
introduced  in  Section  1.3.3  assumes  that the  input  vector u(f) in Eq.(2.2) is constant 
between  (uniform)  samples.  The  equivalent D-T model can be  represented as 

= {Ad, B,, c,, D,) (2.3) 

which  implies  the D-T state  model 

x(k+l) = A,x(k) + B,u(k) 

y(k) = cdx(k)  + Ddu(k) 
(2.4) 

The  matrices A,, and B,, are related  to A, and B, in  Eq.(2.2)  by  the  relations, 
repeated  here  from  Chapter 1: 

and 

Also, if A, is nonsingular, 

And  since the output y(r) in Eq.(2.2) is  assumed  to  be  ideally  sampled,  the  matrices 
C,, = C, and D,, = D,. 

The following  algorithm, (SI-C-D), can be used  to  calculate  the  SI (ZOH) 
equivalent  model  of a continuous-time  linear  system.  In  particular,  this  algorithm 
is a numerically  robust  procedure for  calculating A, and B,, described  above. The 
standard  general  method for  calculating A,, is to  compute a truncated  version  of 
Eq.(2.5). The problem  with  this  approach  is  that for  matrices A, and  sampling 
intervals T satisfying  that 

a truncated  version  of Eq(2.5) may either  require  large N, leading  to  considerable 
round-off errors, or may  not converge at all.  The  algorithm  presented  here is 
completely  general. 

It is easily  shown  that the SI  model can be  calculated  using an intermediate 
matrix E as follows: 

A, = I + EAcT and B, = EB,T where E = c - - (2.9) 
1-0 ( i + l ) l  
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To resolve  the  problem  associated  with 4.(2.8), it is possible  to  utilize  the 
property  of  the  exponential  function  that 

exp(x) = e x = ( eCr'r))r (2.10) 

The  following  algorithm  extends  this  technique  to permit calculation  of  both Ad and 
Bd under the condition  of Eq(2.8) as  well  as  the  condition  that A, may be  singular. 

First  let us  define a scaling  factor r = 2' in terms  of  the  scalar Nm, Nrm < 
0.5, and the  integer scaling parameter j given  by 

j =  

W 

The  series 

(AcT/rY 
Adl = c 7 

1-0 

(2.11) 

(2.12) 

will  converge  satisfactorily  with  the  value  of j given in Eq(2.11) since 11 &T/rII 
< Nnn. It  is  easily  developed  from  the  property  in Fq(2.10) that  the  series  in 
Eq.(2.5),  truncated  to N+ 1 terms,  satisfies  the  following  recursive  process 

(A&+I = (A& for k =  (2.13) 

From Eq(2.9) we  formally  obtain  the  recursion  relationships 

(A,,), = 1 + EkAcTk 
(2.14) 

(Ad)k+l I + Ek+IAcTk+l 

Introducing Eq.(2.14) into Eq.(2.13), we obtain  the  following: 

(r + E,AcTk)2 = I + Ek+lAcTk+l 
(2.15) 

I + 2EkAcTk + (EkAcTk)2 = 1 + Ek+lAcTk+l 

This  last  equation  leads  us  to  the final recursion 

Tk+l  = 2Tk 

Ek+1 = Ek(I + EkAcTk/2) 

which  must  be  initialized  with 

(2.16) 
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The desired E = Ej+,. By the  arguments  given  above  for  Eq.(2.12),  the 
convergence  of Eq(2.17) is guaranteed.  Once E has  been  calculated, A, and B, 
can be obtained  using  Eq.(2.9).  Thus,  this  algorithm is  similar  to  the  introductory 
algorithm  of  Chapter 1, EAT, but  it is more  powerful in that  the  complete  discrete- 
time SI equivalent  model can be  determined, not just  the  transition  matrix.  The 
algorithm  is  summarized  in  the  following. 

Algorithm SI-C-D 

Syntax: T, A,, B,, Nm, N (SI-c-D) =) A,, B, 

Purpose: Calculation of the SI D-T  model 

Input/Output  Arguments: 

T = positive  scalar 
A, = (n x n )  matrix 
B, = (nxm) matrix 
Nrm = positive  scalar, I 0.5, defining  the  norm  of  the  matrix A,Th 
N = integer  for  truncation  (suggested  value N 2 16) 
A, = (nxn)  matrix  satisfying  Eq.(2.5) 
B, = (nxm) matrix  satisfying  Eq.(2.6) 

Description: The matrices A, and B,, are calculated  using  the  truncated 
power  series: 

(2.18) 

modified  according  to  the  development  given in Eqs.(2.11)  to  (2.17). 
Subsequently, 

A, = I + EA,T, B, = EB,T (2.19) 

as  stated in Eq(2.9). 

Algorithm: 

1.  Define  input  arrays A, and B,, scalars T and Nnn and  integer N .  The 

2. Calculatej using  Eq.(2.11) 
3. Calculate E, and T, using  Eq.(2.17) 
4. For k = 1, 2, ... , j calculate E,+, recursively  from  Eq.(2.16) 
5.  Set Ej+, =) E and I + EA,T =) A,, B, * EB,T from  Eq.(2.19) 

suggested  values for Nrm and N are Nnn I 0.5 and N 2 16 
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Algorithm  Implementation: 

The  listing  of  Algorithm SI-C-D implemented  using the L-A-S language is 
given  in  Appendix C. As in  Algorithm EAT, Section  1.3.3, the matrix E, 
in  Eq.(2.17) is calculated  using  Algorithms POLR and POM, while the 
mfficientsJ = W!, i=[O,m,  are obtained by Algorithm FACT, 

2.2.2 Ramp-Invariant  (Linearly  Interpolated)  Model 

In Chapter 1 the linearly intepolated model was  introduced  which  assumed 
that the input  samples are interpolated as in Fig. 1.4, i.e.  straight  lines  connecting 
the  individual  sampled  values.  Since  this  model is ramp invarianr in the same  way 
that the SI (ZOH) equivalent is step invariant, we  will  refer to this  model as the 
ramp-invuriunt (RI) equivalent  model. This model  may be used for  situations 
which  require  increased  accuracy  of  discretization  over  the SI equivalent  model  of 
the  previous section. 

Although Eq~(l.28) to  (1.30)  describe  the  basic  approach,  several  important 
developments are necessary before  achieving  the  desired  robust  conversion 
algorithm.  First  we  note  that  there is one  extra  input  matrix.  The  five-matrix  state 
space  model in the  discrete domain  will  be  represented  by 

which,  in turn, can be  written as 

Later  in the  chapter an  algoiithm  will  be  presented for the  conversion  of  such  five- 
matrix  models  to a standard  four-matrix  model. 

The  matrices A,,, E, C,, and D,, were  described  in  the  previous  section, see 
Eqs.(2.9)  and  (2.10). To specify  the  remaining  matrices,  we  define the series 

(2.22) 

from  which we obtain 

Bdo = (E - F)BcT, Bd, = FB,T (2.23) 

Also, if A, is nonsingular, 

F = (Ad - I - AcT)(AcT)-2 (2.24) 
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Following  the  guidelines of  Algorithm SI-C-D, it is desirable  to  create an algorithm 
which  allows  the  condition  of Eq(2.8) and  singular A, matrices. The  following is 
a development  of  this  algorithm,  referred  to as Algorithm RI-C-D. 

By comparing  the  power  series  in Eq(2.9) with  that  of Eq.(2.22), it may be 
determined  that  the  matrices E and F satisfy  the  following  relation: 

E = I + FACT (2.3) 

With j and r as previously  defined  in Eq(2.11) let 

(2.26) 

Using Eq.(2.25), we can write, as was done  to  arrive at Eq.(2.15), the 
recursion  equations 

E, = I + F,A,T, (2.27) 

(2.28) 

Now using Eq(2.16) and  eliminating E, and E,,, from Eq~(2.27) and (2.28), 
the following  relationship  between Fk and F,,, can be  derived: 

'k+I = 'k 

= 0.5 F, + 0.25 (I + F, 

which  must be  initialized  with 

(2.29) 

(2.30) 

The desired F = F,,,. The  series  will  obviously  converge  satisfactorily with 
the  value of j given in Eq(2.11) since 11 A,T/rII < Nrm. Once F has  been 
calculated, Ad, BdD and B, can be  obtained  using Eqs.(2.25),  (2.19) and (2.23). 
Thus,  this  algorithm is similar  to SI-C-D, but  it is more powerful  in  that  the  more 
accurate  discrete-time RI equivalent  model can be  determined. The  algorithm is 
summarized  in  the  following. 

Algorithm RI-C-D 

Syntax: T,  A,, B,, Nrm, N (RI-C-D) * Ad , Ba , B, 

Purpose: Calculation  of  the RI D-T model 
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Input/Output  Arguments: 

T = positive  scalar 
A, = (nxn) matrix 
B, = (nxm) matrix 
Nnn = positive  scalar, S 0.5, defining  the norm of  matrix A,T/r 
N = integer  for  truncation  (suggested  value N = 16) 
A, = (n x n )  matrix  satisfying Eq(2.5) 
B,,,, = (nxm) matrix  satisfying Eq.(2.23) 
B, = (nxm)  matrix  satisfying Eq(2.23) 

Description: The  matrices A, , Bdo and B, are calculated  using  the 
truncated  power  series: 

(2.31) 

in the  derived  recursive  form  of Eq~(2.29) and (2.30). Subsequently, once 
~ F i s  known 

' and 

E = I + FACT,  A, = I + EA,T (2.32) 

' Bdo = (E - F)B,T, Bdl = FBcT (2.33) 

, as stated  in Eq.(2.23). 

l Algorithm: 

1. Define  input  arrays A, and B,, scalars T and Nrm and  integer N. The 
suggested  values  for Nrm and N are Nnn I 0.5 and N 2 16. 

2. Calculatej using Eq(2.11). 
3. Calculate F, and TI using Eq.(2.30). 
4. For k = 1 ,  2, ... , j calculate Fk+, recursively  from Eq(2.29). 
5 .  Set F,+, =) F and  solve  for E, Eq.(2.25), Ad, Eq.(2.19), B,,,, and Bdl, 

Eq.(2.23). 

1 Algorithm  Implementation: 

The listing  of  Algorithm RI-C-D implemented  using  the L-A-S language is 
given  in  Appendix C. See also  Algorithm R5R4 below. For  more  details 
see either  Algorithm SI-C-D, or Algorithm EAT, in  Section 1.3.3. 
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General C-T * D-T Algorithm EATF 

Recall  that  in order  to  calculate  the  output  arrays A,, Bdo and B,,,, Algorithm 
RI-C-D must  calculate  matrices F and E given  by Eq~(2.31) and (2.32), 
respectively.  Note  also  that the same  matrix E is needed  in  Algorithm SI-C-D for 
calculating B,, Eq(2.19). Thus,  both  SI  D-T  and RI D-T  models  could  be 
calculated  using  a  single  algorithm  if it has as output  arguments  the  arrays: 

A,, E and F 

Then,  the  desired  SI or RI  D-T  model  (or  both)  could  be  obtained  simply  by  using 
Eq~(2.19) and (2.33). To achieve  this,  the  algorithm  referred as EATF (the name 
stems  from  the  calculation  of @T using  the  matrix F) is  formulated: 

Syntax: T, A,, Nnn,  N (EATF) * A,, E, F 

while the input  arguments are exactly the same  as in EAT, SI-C-D and RI-C-D. 
It is interesting  to  note  that  in  the  version: 

where  only  one  output  argument is specified,  Algorithm EATF is "formally"  equal 
to  Algorithm EAT, discussed  in  Chapter  1. 

The  listing  of  Algorithm EATF, implemented  using the L-A-S language is 
given in Appendix  C.  Due  to its  generality  and  flexibility, it is recommended  that 
this  algorithm  be  used  whenever either of  the SI  D-T or RI  D-T  models, or even 
just the matrix A, is  sought.  In  fact,  this  algorithm  may  be  considered  numerically 
advantageous  over  both  of  the  Algorithms EAT and SI-C-D, since  the  terms  in  the 
truncated  power  series, Eq.(2.30), are divided  by (i+2)!, while  in EAT and SI-C-D 
the  same  terms are divided  by i! and ( i+ l ) ! ,  respectively, see Eqs.(2.12) and 
(2.17), which  improves  the  convergence  properties  of  the  Algorithm EATF. 

2.2.3 Bilinear  Transformation 

This  algorithm  is  included  because  of  its  popularity  with the signal  processing 
community.  The  method is  also known  in the signal  processing  literature  as 
Twin's approximation. We  will see in the  development  that the technique  was 
designed for models  in  the  transform  domain.  This  algorithm,  referred  to as (BT- 
C-D), is known  in  the  transform  domain as  a  conversion  from the s-domain  to  the 
z-domain  using  the  direct  substitution: 

S = " 2 (z - 1) 
T (z + 1) 

(2.34) 
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Thus,  introducing Eq(2.34) into  the C-T state equation  of Eq.(1.36) and  collecting 
terms  to  match Eq.(1.28), the ET-C-D Algorithm  provides  a  five  matrix  discrete- 
time  model as in Eq(2.21) where,  in  this  case,  (with a = 2 / T )  

A, = (a1 - AC)-'(aI + A,) 

Bdo = Bdl = (uI - A,)"B, 
(2.35) 

And,  as  in  the  previous  results, C,, = C, and D,, = D,. Algorithm BT-C-D may 
be  symbolically  represented  by: 

The listing of  Algorithm ET-C-D, implemented  using  the L-A-S language,  is  given 
in  Appendix C. Note  that  in the L-A-S implementation  its  name  is BCDC, and  the 
syntax  is: 

A,, BC, T, M C  (BCDC) * A,,,  B&,  Bdl, P 

where,  for  reasons  explained  later, the algorithm  "flag" Zcdc should  have the value 
Zcdc = 1. For more  details see also  Section 2.5. 

Algorithm R5R4 

Since both  Algorithm RI-C-D and  Algorithm BT-C-D result  in  a  non-standard 
five-matrix  model,  it  is  useful  to  have a method  of converting  to  a  standard  model 
as  given in Eq.(2.4). Specifically, we describe  the  transformation  from Eq.(2.21) 
to  the  following equivalent model: 

(2.36) 

The  simplest  computational  procedure  for  obtaining  the  conversion  to  standard 
state model  is  derived  using  the  identity  of  transfer  function  matrices, i.e. 

C,(ZI - AJ1@,o + ZB,,) + D, 
(2.37) 

= C,,(zI - Ade)-'BdC + D, 

The  detailed  algorithm,  referred to as Algorithm R5R4, is  presented  in  the 
following. 

In this  development  first  consider the two D-T state  space  representations: 

defining  the  state  models of E q ~ ( 2 . 2 1 )  and (2.4), respectively,  where  the d notation 
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has  been  dropped for  convenience.  Since  these two models  represent  the  same  D-T 
system,  the  corresponding  transfer  function  matrices  should  be  the  same.  Thus,  we 
obtain  the  following  equality: 

C(z1- A)-' (B, + zB,) + D = C, (21 - A,)-' B, + D, (2.39) 

Also the two  transfer  matrices  should  have  identical  characteristic  polynomials. So, 
without loss of generality, it may be  assumed  that  in  both  representations  the 
system  and  output  matrices are equal, i.e. 

A, = A  and C, = C  (2.40) 

In  each  of  the  five-matrix  representations  given  in  Eqs.(2.21)  and (2.35),  as 
well as in the conversions  yet  to  come,  there is  a  distinct  relationship  between 
matrices B, and B,. It can  be  verified  from  Eqs.(2.23)  and  (2.35),  respectively, 
that  this  reiationship  is  given  be 

B, = PB, 

where the nXn matrix P is expressible  in  each  case by 

P = F(E -F)-' and P = I, 

respectively.  Using Eq(2.41) and the identity 

(zI - A)"z = I + (21 -A)-'A 

Eq(2.39) may be  written as 

C(z1-A)"[(I+AP)B, - B,] + (CPB,+D-D,)  = 0 

Since  Eq.(2.44)  should  be  satisfied  for  all z, it reduces  to 

C(zI - A)-* [(I + AP)B, - B,] = 0 

D, = CPBo+D 

We  now introduce the following  notation 

where V(z) = C adj[zI -A] , d(z) = det[zI -AI 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

The p x n  polynomial  matrix V(z) = {v,(z)}, consisting  generally  of (n-l)" order 
polynomials,  can  also  be  represented  as  a  matrix  polynomial  with  real-numberp x n  
matrices,  i.e. 
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.-l 

V(Z) = c yz' 
i -0 

Using Eqs.(2.47) and (2.48) and  defining  the arrays 

(2.48) 

(2.49) 

Eq(2.45) becomes 

V [(I + AP)Bo  -B,] = 0 (2.50) 

It is  easily  shown  that  if  the  pair {A, C} is  observable, V is  a  full  (column) rank 
matrix  and  that the unknown  matrix B, becomes 

B, = (I +AP)Bo (2.51) 

However,  if {A, C) is not  an observable  pair,  the  general  solution  to Eq.(2.50) 
may be  written as 

B, = (I + AP)Bo + NT (2.52) 

where N is an nxh  "null  space"  matrix  (h is the nulhy or dimension  of  the  null 
space  of V) satisfying  that 

VN = 0 (2.53) 
and T is an arbitrary hxm matrix,  which, if desired, may be  chosen  to  be  a  zero 
matrix. If, however, T is selected  as 

T = -N+(I +AP)Bo (2.54) 

where 

N' = ( N ~ N ) - ~ N ~  

is thepseudo-inverse  of N, then B, may be  written as 

B, = (I -NN')(I +AP)B, (2.55) 

which  represents the minimum  norm  solution for B,. It  should  be  mentioned  that 
even  when  the  pair {A, C) is unobservable,  the  matrix B, given  in Eq(2.51) 
satisfies the transfer  function  matrix  identity Eq.(2.39). 

The  result  of  the  previous  development  is the following  computational 
procedure  for  converting  from  a  five-matrix  model  to  a  four-matrix  model. 
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Syntax: A,B, ,P,C,D (R5R4) B,,D, 

Purpose: Transformation  from  a  five-matrix  model  to  a  (standard)  four- 
matrix  model. 

Inputloutput Variables: 

A = (nxn)  system  matrix  of the  five-matrix  model 
B, = (nxm)  first-input  matrix  of  the  five-matrix  model 
P = ( n x n )  transform  matrix  between B, and B, (see Eq(2.41)) 
C = @ x n )  output  matrix  of the five-matrix  model 
D = ( p x m )  feedthrough  matrix  of  the  five-matrix  model 
B, = (nxm)  input  matrix  of the four-matrix  model 
D, = @ x m )  feedthrough  matrix  of  the  four-matrix  model 

Description: From  a  givenpvc-matrix  model,  e.g. Eq.(2.21) or Eq.(2.35) 
and Eq.(2.41), a  standard four-matrix model  with  equivalent  transfer  matrix 
is generated  using Eq.(2.45). 

Algorithm: 

1. Define  the  matrices A, B,,, P, C and D. 
2. If the  pair {A, C} is  observable,  calculate  the  unknown  matrices B, 

and D, from Eq~(2.51) and (2.45), respectively. 
3. If {A, C} is an unobservable  pair, Eq.(2.51) may be substituted  for 

Eq.(2.55) which  requires the evaluation  of the  polynomial  matrix V(z), 
Eq.(2.47), building the @nxn)  matrix V, Eq.(2.49), and  calculation 
of the null  space  matrix N, Eq.(2.53). 

The  listing  of  Algorithm R5R4, implemented  in L-A-S, is  given in  Appendix 
C. 

Algorithm R4R5 

Transformation  from  a  standard  four-matrix  representation  to an equivalent  five- 
matrix  representation is the reverse  process of the  previous  Algorithm, R5R4, and 
is used  primarily as  an  intermediate  step  in the subsequent  continualization 
procedure  of  Algorithm RI-C-D. The  relation  indicated  in Eq~(2.41) and (2.42) 
will  be  used  in this  procedure  to  ensure  that  a  unique  four-matrix  state  space 
representation  is  obtained.  Thus,  assuming Eqs.(2.40) and (2.41), only B, and D 
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are unknown.  Following  the  same  line  of  reasoning as in  the  previous  algorithm, 
if  the  pair {A, C} is  observable,  then  from Eq.(2.51) we  obtain 

B, = (I + AP)-'B, 

while  from Eq(2.45) 

(2.56) 

D = D, - CPB, (2.57) 

If {A, C} is an  unobservable  pair,  the  minimum norm solution for B,, can be 
obtained  in a manner  similar  to the development  of Eq.(2.55) from 

B, = (I  -NN')(I +AP)"B, (2.58) 

where N was  defined  above, see Eq.(2.53). 
Thus, from  the  transfer  matrix  equivalency Eq(2.39) we are led  to  the 

following  algorithm  for  converting  from a standard  four-matrix  model  to an 
equivalent  five-matrix  model. 1 Algorithm R4R5 

Syntax: A, B, , c, D,, p (R40 - B,, D 

Purpose: Transformation  from a (standard)  four-matrix  model  to a five- 
matrix  model. 

Input/Output  Arguments: 

A = (nxn) system  matrix  of  the  four-matrix  model 
B, = (nxm) input  matrix  of  the  four-matrix  model 
C = @Xn) output  matrix  of  the  four-matrix  model 
D, = (pxm)  feedthrough  matrix  of  the  four-matrix  model 
P = (nxn) transform  matrix  between Bo and B, (see Eq(2.41)) 
B, = (nxm) first  input  matrix  of  the  five-matrix  model 
D = (pxm)  feedthrough  matrix  of  the  five-matrix  model 

Description: From a given four-matrix model a jive-matrix model is 
generated  using  the  transfer  matrix  equivalency  of Eq.(2.39). 

Algorithm: 

1. Define  the  matrices A, B,, C, D, and P. 
2. If  the  pair {A, C} is observable,  calculate  the  unknown  martices B, 

and D from Eq~(2.56) and (2.57), respectively. 
3. If {A, C} is an unobservable  pair, Eq(2.58) may  be  used in place of 

Eq(2.56). This  necessitates  the  evaluation  of  the  polynomial  matrix 
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V(z), Eq.(2.47), building V, Eq.(2.49), and  calculation  of the matrix 
N in Eq(2.53). 

The listing  of  Algorithm R4R5, implemented  using L-A-S, can be  found in 
Appendix  C. 

2.3 Continualization Procedures 

The reverse  process  of  converting  from a D-T  model  to  an equivalent C-T 
model  will  now be  considered,  i.e.  converting  from  the  model  in Eq.(2.4) to  the 
model in Eq.(2.2), Rd + R, in  the SI case, or from Eq(2.21) to Eq.(2.2), Rdf+ R, 
in  the RI sense  and  from Eq.(2.35) to Eq(2.2) in  the  BT sense. Of  course,  by 
itself Rd has no information  regarding  the  signal  values  between  samples so that 
model  conversion  in  this  direction  should  be  taken  in  the  context  of  some prior 
knowledge  regarding  the type of  inputs  used. 

2.3.1 SI to  Continuous-Time  Model 

The  algorithms  for  continualization  require logarithmic operations  instead  of 
matrix  exponentiation.  When (Ad - I) or A, is invertible,  it is easily  concluded  that 
the  matrices of R, in Eq.(2.2) can  be  found  from Eqs.(2.5) and (2.7) by: 

A, = - h(Ad) , B, = (Ad - 1 p A c B d  (2.59) 

with the understanding  that C, = cd and D, = Dd as  before,  thus  completing  the 
continuous-time  model  in Eq42.2). To  begin the development,  consider the Taylor 
series  expansion  for the function  ln(x)  in  the  neighborhood  of x = 1 which  leads 
to 

1 
T 

The problem  of  using a truncated  version  of Eq.(2.60) is that  for  matrices Ad with 

h, P 1h-l 0.5 (2.61) 

where X, is the  maximum  magnitude  eigenvalue  of (Ad - l),the series  may  require 
large N, leading  to  considerable  round-off  errors  if  it  converges  at  all.  As  will  be 
seen, the present  algorithm  will  resolve  this  problem  by  using the  following  basic 
property  of  the  logarithm  function. 
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With  this  approach  the  truncated  series for  calculation  becomes 

(2.63) 

where  the integerj satisfies  that 

I A(Ad" - I)I, < A.,,, , with t = 2' (2.64) 

An algorithm  which  calculates A, according  to Eq.(2.63) is referred  to as 
Algorithm LNM. It  has  been  experimentally  verified  that  the  accuracy  of  using 
Eq.(2.63) is satisfactory  even  for  matrices A, where  some  eigenvalues  of L = 
A,-I have  magnitude  greater than one.  From  the  previous  development  the 
following  algorithm is formalized. 

Algorithm LNM 

Syntax: T, A,, L, N, (LNW =$ A, 

Purpose: The calculation  of  the  natural  logarithm  of  an (nxn) matrix A,,. 

Input/Output Arguments: 

T = sampling  interval  used  in the discrete-time  model 
A, = (nxn)  system  matrix  of the discrete-time  model 
X,,, = scaling  parameter, see Eq(2.64) 
N = series  truncation  parameter 
A, = ( n x n )  system  matrix  of  the  continuous-time  model 

Description: A continuous-time  equivalent  system  matrix is constructed 
from a corresponding  discrete-time  system  matrix. 

Algorithm: 

1. Define  the  matrix A,, scalars T and X,,, and integer N - (suggested 
values for Nand X,,, are N 2 36 and A,,, I 0.25) 

2. set 0 =$ j and A, =$ AI 
3. Set I - AI * L 
4. If lX(L)l, < A,,,, go to 6; else,  go  to 5 
5. Setj+l * j  ; (A, ) l n  * Aj and go  to 3 
6. Set 21 =$ r and calculate A, using Ai =$ Ai" in Eq(2.63) 

The  square  root of  the  matrix A, is  calculated  by  Algorithm SQM, described  later. 
Calculation  of A, in  Step 6 is  accomplished  using  Algorithms POLR and POM, 
mentioned  earlier.  Calculation  of  the coefficienbJ = M, i=[l,N, required  by 
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POLR is  done by  Algorithm E N .  The  listing  of  Algorithm LNM, implemented 
using L-A-S, is  given in  Appendix C. 

Having  determined A,, the  remaining  matrices  in  the SI C-T  equivalent  state 
space  model  of Eq(2.2) could  be  calculated  using Eq(2.59) if A, is  nonsingular. 
If, however, A, is  singular, then the  matrix E, appearing  in Eq.(2.9) should  be 
calculated  using  the  procedure  given  in  Algorithm SI-C-D. It  follows  that C, = c,, 
D, = Dd and 

B, = -E"B, 1 (2.65) 
T 

In  the  spirit  of  algorithm  formulation  and  algorithm  "naming," Eq~(2.59) and 
(2.65) could  be  symbolically  represented  by  Algorithm SI-D-C, i.e. 

Ad, Bd, T (SI-D-c) * A,, B, 

For  reasons  explained  later,  there  is no direct L-A-S "counter-part"  to  Algorithm 
SI-D-C. However,  as  will  be  shown  in  Section 2.5, there  is an L-A-S algorithm 
which,  among  other tasks, performs  the task of  Algorithm SI-D-C. 

Algorithm LNMj 

An alternate  algorithm,  referred  to as LNMj, applicable  for  calculating A,, 
given  by (2.59), in  the specijk case when the  matrix Ad is  "diagonalizable,"  is 
given  below.  It  is  worth  mentioning  that  this  algorithm  is  "in  a  way"  equivalent 
to  Algorithm E4T, mentioned  in  Chapter 1,  Section  1.3.3. 

Syntax: 

For input/output  arguments see Algorithm LNM. 

Algorithm: 

1. Define  the  matrix Ad and  the  scalar T 
2. set A d  (JFR) * M  
3. Set A d  (EGV) * egd = { x, } 
4. Set diag{ In(&) 1 =+ LnJf 
5. Set M LnJf M"/T* A, 

The  listing  of  Algorithm LNMj, implemented  using L-A-S, is  given in 
Appendix  C.  Note  that the steps  in  this  algorithm are similar  to  the  steps of 
Algorithm EA", discussed  in  Section  1.3.3. The  only  difference is that  in 
Step 4 the array LnJf contains in its main  diagonal  the  natural  log of the 
eigenvalues X,, i.e. 
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W X,) 
while  in  Algorithm EATj, the array ExTf contains the  terms  exp&"). 

Algorithm SQM 

The .square  root of the  matrix A,, required  in Step 5 of Algorithm LMM, could 
be  calculated  by  Algorithm SQM given  below. This algorithm is based  on the 
standard  recursive  procedure: 

x,+l = O.S(x, + -) 
b 

xi 
(2.66) 

used to  determine  the  square  root x = @)ln of a positive  scalar b. 

I Algorithm sQM 
Syntax: A, E (SQM) =) X 

Purpose: To  calculate  the  square  root of a positive-definite  matrix. 

Inputloutput Arguments: 
A = Given  square  positive  definite  matrix 

E = Small  scalar  parameter  used  to  terminate the recursion 
X = The square-root  matrix of A 

Description: Determination of the  square  root of an n x n  matrix A, X = 
(A)'". 

Algorithm: 
1. Define  the  matrix A and a small  scalar  parameter E < < 1 
2. SetX, ,=Iandi=O 
3. Set i = i+l and Xi+, = 0.5 ( X i  + A X;') 
4. If 11 X,+, - X, 11 > E ,  go  to 3; else,  stop 

The  listing of Algorithm SQM, implemented  using LA-S,  can be  found in 
Appendix C. 

2.3.2 RI to Continuous-Time  Model 

It is easily  determined  that  the C-T model  in Eq(2.2) can be obtained  from 
the  five-matrix  model  in Eq(2.21) by  using  Algorithm LNM to  calculate A,, and 
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from the  availability  of F in Eq.(2.31), i.e.  Algorithm RI-C-D, solving Eq(2.33) 
to get 

B, = -F"B,, = -(E -F)"Bdo 1 l 
T  T 

Note that  from Eq.(2.67), or from Eq.(2.42) 

(2.67) 

Bdl = PBdo , where P = F(E  -F)-' (2.68) 

The required  five-matrix  D-T  model  of Eq(2.21) can be  obtained as an initial step 
from a standard  four-matrix  D-T  model in Eq.(2.36) by  applying  Algorithm R4R5 
presented  earlier.  Similarly, as in the case of  Algorithm SZ-D-C, Section 2.3.1, 
Eq.(2.59), together  with Eq~(2.67) and (2.68), could  symbolically  be  represented 
by 

A,, Y Bdl 2 (RI-D-c) 9 

As  has  already been mentioned,  there is no L-A-S algorithm  which  directly 
corresponds  to RI-D-C. This  will  be  made  clear  in  Section 2.5. 

2.3.3 Bilinear  to  Continuous-Time  Model 

The  C-T  model  of Eq.(2.2), which  corresponds  to  the  bilinear  transformed 
model  specified  in Eq.(2.35), can be  obtained  by a direct  substitution of 

a + S  , where a = - 2 
a - S  T 

z = -  (2.69) 

into  the  z-domain  transfer  function,  thereby  providing  an sdomain transfer  function 
from  which R, could  be  derived.  Specifically,  taking  the  z-transform  of Eq.(2.4), 
introducing Eq(2.69) and  converting  back  to  the  time  domain: 

= A,x(t) + Bcon(t) + BclU(t) 

S(0  = C,x(t) + D,n(t) 

where  (with a = 2/T) 

(2.70) 

B,, = -(Ad+I)"Bd, C, = C , ,  and D, = D, 
. I  

As was  discussed  previously in terms  of  the  five-term  model of Eq.(2.21), if a 
four-term  C-T  model is required,  Algorithm R5R4 can be  applied  to Eiq(2.70) to 
obtain  an  equivalent  standard  model of the  form  in Eq.(2.2). Note that  in  this case 
Eq(2.41) holds  with 
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P = "I, T 
2 

(2.72) 

Similarly, as with Eq~(2.35) and  Algorithm BT-C-D, Fkp(2.71) may be symboli- 
cally  represented  by  Algorithm BT-D-C, i.e. 

However, its L-A-S implementation  requires: 

where  now, as opposed  to  the case of  Algorithm BT-D-C, the  algorithm  flag IC& 
should  have  the  value Icdc = 2. The  listing  of  Algorithm BCDC, implemented 
using L-A-S, and  performing  the  tasks  of  both BT-D-C and BT-C-D, is given  in 
Appendix  C. For more  details see also  Section 2.5. 

This  completes  the  three  methods  of  continualization.  The  reader  now  has 
the  algorithmic  tools  to  discretize a C-T  system  using  piecewise  constant  inputs 
(SI), piecewise  linear  inputs (RI) and the  bilinear  transformation (BT), as well as 
to  perform  the  inverse  operation  of  continualization  corresponding  to  each  of  these 
methods. In converting a physically  sampled  C-T  system  to a D-T  model  the SI 
method  most  closely  approximates  the  common  digital-to-analog  device  operation. 
However,  any  one  of  the  three  techniques  may  be  used  when  it  is  desired  to  mimic 
a linear  C-T  process  with a D-T  model.  Such a situation  might  arise,  for  instance, 
for  preprocessing  data  in a computer by developing a filter  algorithm  from a known 
frequency  filter  in  the  C-T  domain. In this  instance,  it  would  be  prudent  to 
compare  the  frequency  responses  of  the D-T models  with  the  desired  frequency 
response.  Yet  another  area  of  utility  is  system  identification.  The RI method can 
be an  effective  approach  to  identifying a system  from  discrete  data  because  of the 
additional  accuracy  inherent  in  the  method. In the  remainder  of  this  chapter  we 
present  several  examples  which  illustrate  the  convergence  and  robustness  of  both 
the  discretization  and  the  continualization  procedures. 

2.4 Examples 

Three examples are presented in this  section.  They  have  been  selected  to 
illustrate  the  computational  accuracy  that can be  achieved  using the exponential  and 
the logarithmic  matrix  calculations  discussed  previously.  The  first  example 
demonstrates  convergence  rates  when  calculating Ad from a given 5 X 5 singular 
matrix A,, followed by a similar  development  in  the  second  example  in  calculating 
A, given A,. The  third  example  illustrates  the  remaining  discretization  and 
continualization  procedures  mentioned  in  the  chapter. The  calculations  were 
performed  using  the  algorithms  discussed  earlier. 
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Example 1. For  this  example  the  matrix A, is given  by 

- 0  1 0  0 0  

0 0 1 0 0  

A, = -4  -4 -3 1 4 

0 0 0 - 1 0  

0 .5 0 0 0- 

The  eigenvalues o 

(2.73) 

If A, are 1(A,) = {O, -1,  -1,  -1 +jl, -1 -jl} (2.74) 

Note that A, is singular  and  has  multiple  eigenvalues. In addition,  the Jordan form, 
A,, corresponding  to A, is not  diagonal.  The  selection  of  this  matrix  was  motivated 
by the  fact  that  some  widely  used  software  packages are not  capable of calcuating 
either  the  Jordan  form, or the  natural  logarithm, of non-diagonalizable  matrices. 
The well  known  packages MATLAB and MATHEMATICA are examples  of  this 
deficiency. It is suggested  that  the  reader repeat the  calculations in these  examples 
with  another  package  at  his or her  disposal.  The  desired  sampling  interval  for  the 
discretization  is T = 2 sec.; and  the norm of ACT is calculated  to  be  15.65. 
Eqs.(2.5)  and  (2.10)  to  (2.12)  combined  provide  the  following  truncated  summa- 
tion,  which is similar  to  Algorithm SI-C-D for  calculating  the  exponential  matrix. 

(2.75) 

As in SI-C-D, r = 2’ where j is  given  in  Eq.(2.11).  Both  the  truncation  number 
N and  the  scaling  parameter j are of  key  interest  to  this  development. To 
emphasize  the  dependence  of  our  calculated  matrix A, on these  parameters,  we  will 
use the  notation A~NJ) .  Results  will  be  presented  for  the  following  36  parameter 
combinations: 

j = 0, 1,  2, 3, 4,  5 
and N = 16, 14, 12, 10, 8, 6 (2.76) 

Each A,, is compared  to  the “exact“ matrix A, given  by 

-.g9900 E-l .50637  E+O .l9165 E+O .l4761 E+O .l0999 E+l  

-.76662  E+O  -.31657  E+O  -.68595 E-l .44044 E-l .76662  E+O 

Ads= .27438  E+O -.l0893 E+O -.l1078 E+O -.l1264 E+O  -.27438  E+O 

.00000E+O .00000E+O .00000E+O  .13534E+O  .00000E+O 

&-.54995  E+O  .25318  E+O  .g5827 E-l .73805 E-l .l5500 E+l  

The “exact” matrix A, above  was  calculated  by  transforming A, munuuZZy into its 
Jordan  canonical form A, and  then  using 
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e W  Q ~ A J T Q - I  

It may be verified  that  for A, given  in Eq.(2.73), 

AI = 

-1 l 0  0 0  

-1  -1 0 0 0 

0 0 - 1 1 0  

0 0 0 - 1 0  

0 0 0 0 0  

, Q =  

and for T = 2 seconds 

e-TcosT  e-TsinT 0 0 0 

-e-TsinT e-TCosT 0 0 0 
eAJr = 0 0 e-*  Te-T 0 

0 0 o e-T 0 

0 0 0 0 1  

2 0 2 0 1  

-2 2 -2 2 0 

0 -4 2 -4 0 

0 0 0 2 0  

1 0   1 0 1  

,056 .l23 0 0 0- 

-.l23 .056 0 0 0 

0 0 .l35 .271 0 

0 0 0 .l35 0 

0 0 0 0 1 -  

Note  that A, is given  in  the real  number Jordan  form. See Section B.4. 
The log,,,  of  the  norm  of the error matrix E, = Adc - AAN,j) is tabulated for 

each  combination  in  Eq.(2.76)  in  Table  2.1  below. Since  the  particular  norm  used 
is not  critical,  the Frobenius norm,  defined  as  the  square  root  of  the  sum  of  squares 
of  all  matrix  elements, is used. From  Table  2.1  and  corresponding  Fig.  2.1  it can 
be seen that N = 16  terms is sufficient  for A, in Eq(2.75) even for  matrices ACT 
with relatively  high  norms.  And, as we can see from  Table  2.1, N may be  chosen 
as low as N = 6 with judicious  choice of  the  scaling parameterj. 

TABLE 2.1. 
Loglo( 1 Ed 1) vs. Truncation Number N 

and Scaling Parameter j 

, 1/ :..:lo; 1 -2.601 1 -4.965 

-1.155 -2.180 

j=3 j=4  j=5 "- 
-14.448 -14.551 -14.551 

-14.613 -14.551 -14.551 
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FIGURE 2.1 Log (Norm&)) vs.  Computation  Parameters 

Example 2. In  this  example  the  matrix Ad is taken  to be A, given  above.  The 
calculation  used  to  determine A, is  the  truncated  series  in  Eq.(2.63).  We  note  that 
the eigenvalues of L = I - A,, influencing  the  convergence  of  the  series,  can 
exceed  unit  magnitude.  In  particular, X(L) are: 

A(I-Ad) = IO,-0.86, -0.86, -1.06+j0.12,  -1.06-j0.12] (2.78) 

To illustrate the convergence  properties,  the  power  series  Eq.(2.63)  was  evaluated 
for  all  combinations  of  the  parameters Nand j given  by 

and 
j = 0, 1, 2,  3, 4, 5 

N = 35,  30,  25,  20,  15,  10 

AS in  Example 1, the error matrix  is  defined  to  be 

E, = A, - A , W )  

(2.79) 

(2.80) 

where  the  explicit  notation A,(NJ) is used to  emphasize  the  dependence  of  the 
calculated  matrix  on  the  computation  parameters Nand j .  The log,, of the norm 
of the  matrix E, is  tabulated  for  the  combinations  indicated  in  Eqs.(2.79)  in  Table 
2.2. As in  Example 1 the  Frobenius norm is  used for  convenience. 
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We see from the results  in  Table 2.2 that  the  series Eq.(2.63) can be 
truncated as high as N = 35 even  when  the  maximum  eigenvalue of L is greater 
than  unity. It is  also  noted  that  the  truncation  may  be as low  as N = 10 provided 
that  the  scaling parameterj is appropriately  selected. In practice, N can be fixed 
at  a  nominal  value,  say 20, and j can  be  varied  over 3 or 4 values to ensure  good 
convergence  to the desired  matrix.  This is true whether the problem  requires 
discretizaxion or continualization. 

As before,  the  information of  Table 2.2 is given  in  graphical form in Fig. 2.2 
to illustrate  the  convergence of the series Eq(2.63). 

2- 

0- 

-2 - 

-4- 

a _. 

-8 - 

-10- 

-1 2 
0 1 

I I I I 

FIGURE 2.2 Log (Norm(E3) vs. Computation  Parameters 
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Example 3. In this  example the following  C-T  state  space  representation is 
considered: 

0 1 0  0 0 ~ 0 0 0  

0 0 1 0 0 ~ 0 0 0  

-4 -4 -3 1 4  I O 0  1 
0 0 0 - 1 O I O 1 0  

0 0.5 0 0 0 I 1 0 0  
- - - - - + ” -  

l o  0 0 0 ~ 1 0 0  
0 1 0  0 0 ~ 0 0 0  

(2.81) 

Note  that A, is the  same  matrix  used  in  Example 1, Eq.(2.73). The  input  signal 
u(t) is specified  over  the  interval 0 < t < 8T, with T = 2 seconds  by  the 
components  defined  in  Table 2.3. 

TABLE 2.3. Input  Signal for Example 3. 

Time  Interval 

0.5 (COs(d(47)) - 1) sin(d(42))  r44n O S t t 4 T  

u3(0 W )  U , ( O  

Discretization: Using  the  sampling  interval T = 2, the  representation R, is 
discretized  into  the  following  equivalents,  each  represented  in  the  partitioned sysfem 
mat& form of the  given  state  space  model  in Eq.(2.81): 

(a) R& = { A, , B& , C, , D& } , D-T  step-invariant (SI) equivalent 
(b) R,+ = { A, , B, , C, , Ddr } , D-T  ramp-invariant (RI) equivalent 
(c) R, = { A, , B, , C, , D, } , D-T  bilinear  transform (BT) equivalent 

As  was  pointed  out  in  Sec. 2.2, in  the  cases of (b) and  (c)  the  five-matrix  D-T 
models  of Eqs.(2.21) and (2.35) were  first  calculated.  This  was  followed  by a 
conversion  to  the  standard  four-matrix  D-T  model  using  Algorithm R5R4. These 
three  results are given  below: 



70 Chapter 2 System Discretization 

‘-.l00 506 .l92  .l48  1.100 I .787  .l27  .275 
-.767  -.317 - M 9  .W .767 I 1.100  .l48  ,192 
.274  -.l09  -.l11  -.l13  -.274 I .767 .W -M9 

R~ =r ‘ds] = 
0 0 0 .l35 0 I 0 .S65 0 

C ,  Dds -550 .253 .O% .074  1.550 I 2.394 .W .l37 

I -.l00 506 .l92  .l48  1.100 

-.767  -.317  -.069 .W .767 
I 2.084  .238  .309 
I 1.235 .070 -.034 

.274  -.l09 -.l11 -.l13 -.274 I -.l35  -.l04  -.l77 

0 0 0 .l35 0 I 0 .374 0 

-550 .253  .096  .074  1.550 I 3.042  .l19  .l54 
- - - - - + -  - - 
1 0 0 0 0 I 1.1% .035 .W8 

0 1 0 0 0 I .394 . 0 6 4  .l37 

.200 .800 .200  .l00 .800 I 1.840 
-.S00 -.200 .200 .l00 .800 

-.800 -1.200 -.S00 .l00 .800 
0 0 0 0 0  

“0 .400  .l00 .050 1.400 
- - - - - 

I 1.040 

I 
I O  
I 2.920 
+ -  

l 0 0 0 0 I 1.400 
0 1 0 0 0 1 . 4 0 0  

.l80 260- 

.OS0 .060 
-.020 -.l40 

500 0 

.090 .l30 
- - 

.050 .l00 

.050 .l00 

Responses of these  models to samples of the  input  signal u(r) at f, = iT for i = 0, 
1, 2, 3, 4, are  given in Table 2.4 below.  Also  included in Table 2.4 for 
comparison  are  the  samples of the  C-T  system  response.  The  norms of the 
differences  between  the  C-T  response, y,(t,), and  those of the three D-T  models  are: 

A, = 
Ab = 
A,,,, = 

y,(tJ - y&(tJ = 1.6975 

y,(tJ - y,,,,(tJ I/ I = 0.87992 X 10” 
y,(tJ - yJtJ = 0.59173 X lo” 
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TABLE 2.4. Simulation Results for D-T Equivalents 

I y2 I O.OO0 0.123 0.555 0.966 1.374 

O.OO0 0.250 0.747 2.107 4.290 

O.OO0 O.OO0 0.351 0.790 1.171 

0.0oO 0.309 1.228 3.011 5.594 

O.OO0 0.123 0.555 0.966 1.374 

O.OO0 0.371 1.249 2.994 5.615 

O.OO0 0.121 0.508 0.987 1.383 

3 3  
3 3  
In order to  illustrate  the  application  of  continualization  procedures, i.e. the 

determination  of  C-T  models  from a given  D-T  model,  we  will  first  "generate" a 
D-T  model  using an inpudoutput  identification  procedure  which  will  be  presented 
in Chapter 5 in detail. 

Identification from  Sampled  Input/Output  Data: As is  well  known,  in order to 
perform a successful  identification,  the input signal  selected  should  be  sufficiently 
long  and suflcienfly rich. To this  end  the  selected  input  vector u'(f) is defined  by 

U,'(f) = U&) + U& - 10'1) 
U z u  = 40) + W - 12'1) 
U;(t) = U3( t )  + - 14n 

where &(f) are given  in Table  2.3.  Using u'(f), the  response y'(f) of  the  system in 
Eq.(2.81)  was  calculated  in  the  time  interval 0 I t I 22T = 44  seconds. The 
simulation  of  the  C-T  system  in Eq(2.81) was  accomplished  by  solving  the  state- 
space  differential  equations  at  points 0.5 seconds  apart. No measurement  noise  was 
added  to  the  system  response.  The  signals (u*(f), y'(f)), shown  in  Figs.  2.3  and 
2.4, were  then  sampled  at  intervals  of T = 2 seconds  yielding  the  input-output 
samples (u'(fJ, y'(tJ} of a C-T  system  to  be  identified.  For  present  purposes it 
suffices  that  we obtain the  "identified  D-T"  four-matrix  model  given by the 
following  system  matrix: 
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With the identification  procedure  used,  the  representation Rd is in  the pseudo- 
observable form. (Canonical  forms  will be discussed  in  detail  in  Chapter 3). As 
an  admissible  set  of  pseudo-observability  indices, {n,}, the  following  was  selected, 
namely {nil = (2,  3). The  unique  set  of  observability  indices  of R, is {ni} = (3, 
2). As was  mentioned earlier,  more  details on this  identification  procedure  will be 
presented  in  Chapter 5. Finally,  the  "identified  D-T  model"  will now be used as 
a  basis  for  illustrating  the  continualization  techniques. 

Continualization: Using the sampling  interval T = 2, the  D-T  representation Rd 
above  is continualized into: 

(a) R, - C-T  step-invariant (SI) equivalent 
(b) Rcr - C-T  ramp-invariant (RI) equivalent 
(c) R, - C-T  bilinear  transform (BT) equivalent 

As was  pointed out in Sec. 2.3, to  determine R,, it was  first  necessary  to  convert 
Rd into an  equivalent  five-matrix  representation, Rd5, using  Algorithm R4R5. 
Subsequently,  using Eqs.(2.63),  (2.64) and (2.67, the  desired R,, was  obtained. 
To determine R&, the  identified Rd was first  converted  to  a  five-matrix  C-T  repre- 

FIGURE 2.3 Excitations for Example 3 
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0 IO 20 30 40 t - 
FIGURE 2.4 Responses for Example 3 

sentation  using Eqs.(2.69) to (2.71). Following  this,  Algorithm R5R4 was  used  to 
obtain  the  desired  four-matrix  model, R,. The C-T representations  thus  obtained 
are given  below: 

- -.W1 1.Ooo .m1 -.m2 -.010 I .394 .W 
-4.070  -3.712  4.070  -6.702  5.474 I S52 .076 

.OOO .OOO -.WO 1.001 -.W4 I 1.629  .l34 

.344  .l47  -.344  -.033  1.061 I .415  -.030 
R, = 

-.074  -.038  ,074  -.295  -.260 I .033  -.036 
- - - - + -  - 

1 0 0 0 0 1 1.196  .035 
0 1 0 0 0 I .394 .064 
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-1.158  -.076 1.158 -1.148  -.487 

-.051  -1.028  .051  1.847  -1.502 

.l58  .076  -.l58  1.148  .487 

.051  .028  -.051  -.847.  1.502 

-.051 -B28 .051  -.l53  -.502 
- - - - - 
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-.832  -.030  .285 

1.142  .316  .265 

1.507  .222  .l63 

.651  -.059  -.l58 

.026  -.056  -.017 
- - - 

0 0 0 0 I .858 - M 1  -.l26 

1 0 0 0 I -S03 "4 .084 

It  is  worth  mentioning  that  the  eigenvalues  of  the  matrix A, (= A,) obtained  by 
the  continualization  of Ad are: 

(0 , -0.9844 , -1.0211 , -1.0004  +jl.o002 , -1.OOO4 - jl.o002} 

which are only  slightly  different  from  those  of A, given  by Eq(2.74). 

Having  determined  the  C-T  models  above,  the  responses  of  these  models  to 
the four  samples  of  the  input  signal u(f), Table 2.3, were  calculated, as was done 
for  the  D-T  models,  Table 2.4. In  order  to  assess  the  accuracy  of  the  proposed 
continualization  procedures,  only  the  samples  of  these  C-T  responses  at the 
sampling  instants are considered.  Table 2.5 contains  these  results as well as  the 
samples  of  the  identified  D-T  model for  comparison.  The  norms  of  the  differences 
between yd(fi) and the  responses  of  the  three  derived  C-T  models are as follows: 

From  the  normed  differences,  both for  the  discretization  and  the  continualiz- 
ation,  it may  be  concluded  that  the RI transformation is superior  to either of the 
other two, primarily  because  of  the  particular  selection  of u'(f) which  does  not 
contain  step  discontinuities.  This  should  be  expected  since  the  SI  transformation 
assumes  constant  values  of  input  between  samples, and the  bilinear  transformation 
(BT)  is  only  satisfactory  if lp,Tl < 0.5 for all poles p ,  of  the  C-T  system,  which 
is not  the  case for this  example. 
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TABLE 2.5. Simulation Results for C-T Equivalents 

4 (=.l 8 6  4 2 0 

m- m m: m 

O.OO0 

7.110 4.108 1.927 0.567 O.OO0 

1.374  0.966 0.555 0.123 O.OO0 

5.594 3.011 1.228 0.309 

O.OO0 0.322 0.765  1.161 1.585 

O.OO0 

1.374  0.966 0.555 0.123 O.OO0 

5.594 3.011 1.228 0.309 

O.OO0 0.253 1.219 3.001 5.578 

O.OO0 0.164 0.561  0.956 1.374 

With  the  accuracy  given  in  Tables 2.4 and  2.5 it cannot  be  seen just how  well 
the  C-T idenrzped system  output y,(t,) matches  that  of  the  original  C-T  system,  but 
the  largest  magnitude  difference  between  the  two,  component by component, is 
0.421 X lo4. The  reader is urged  to  verify  parts  of  the  above  examples  using the 
same, or different,  input  data. 

We conclude  this  chapter  with a short  section on an efficient method for  the 
calculation  of  truncated  power  series. 

Polynomial  Reduction Using the  Cayley-Hamilton  Theorem 

In  several  developments  presented  earlier, it was  required  that  an n x n  matrix, 
say A, be  calculated  using a truncated  power  series  of  the  form 

N 
A = c ciX‘ (2.82) 

i -0 

In  this  section  we  discuss  an  efficient  method  for  the  calculation  of  truncated  power 
series,  referred  to  as  Algorithm POLR. The  series  of Eq(2.82) can be  interpreted 
as an evaluation  of  the  matrix  polynomial C(X) of  the  matrix X where  the W‘‘ order 
polynomial C@) is  given by 

N 

C(S) = c C i S i  (2.83) 
i -0 

As a result  of  the  Cayley-Hamilton  theorem,  the  calculation  of Eq(2.82) can 
be  reduced  to  the  evaluation  of  an @-l>” order matrix  polynomial R@) of the 
matrix X where  the  coefficients ri of  the  scalar  polynomial R@) satisfy  the 
following n conditions: 
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R(1,) - C(1J , for i - 1,2, .-,n (2.84) 

where X, is the z?' eigenvalue  of the n x n  matrix X. Using  this  approach,  it can be 
verified  that  given  the  matrix X and the N+ 1 coefficients c, of  the  polynomial C(s), 
the n coefficients of  the  polynomial R(s) can be  obtained  with  the  following: 

Algorithm POLR 

Syntax: C ,  X (POLR) * r 

Algorithm: 

1. Set c, * r, , for 0 S i I N 
2. Set N+ 1 * k and det(s1 - X) * A s )  
3. Set k-l * k 
4. Set rk+,+, - rk$ * r,,,, for 0 I j S n-l 
5.  If k > n, go  to 3; else,  stop 

A listing Of Algorithm POLR, implemented  in L-A-S, may be  found  in 
Appendix C. 

If the  coefficients$  define  the  (monic)  characteristic  polynomial of X, 

n-l 
f(s) = det(S1-X) A S" + E ~ S '  

i -0 
(2.85) 

then,the  first n coefficients 5, 0 I j S n-l define  the (n-l)" order polynomial R(s) 
satisfying Eq.(2.84). 

From  Algorithm POLR it is clear  that  evaluating  the  matrix A in Eq.(2.82) 
is equivalent  to  evaluating 

A = c r i X '  
n-l 

i - 0  
(2.86) 

thereby  considerably  reducing  the  computational  time  and,  more  importantly, the 
accumulation of round-off  errors.  This  method  works  well  even  if X is completely 
general  with  multiple  eigenvalues.  The POLR algorithm  given  above  may be 
considered  as a computational  simplification  of a standard  procedure  based on the 
Cayley-Hamilton  theorem  of  matrix  algebra.  This  standard  procedure  calculates 
coefficients r, of  the  polynomial r(s) from 

r(k)(l,) - C ( ~ ) ( A ~ )  , for i = 1,2, ..., m and k = 1,2, ..., n, (2.87) 
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where X, is an  eigenvalue  of X, n, is its  algebraic  multiplicity  and m is the number 
of  distinct  eigenvalues.  Obviously, if all of the eigenvalues  of X are distinct,  then 
m = n and n, = 1 for  all i. The  notation  of Eq.(2.87) is defined  by 

(2.88) 

The computational  simplification  of  the POLR algorithm is useful  in  that  when 
X has  multiple  eigenvalues, it is neither  necessary  to  determine the  algebraic 
multiplicities,  nor  to  evaluate  the  derivatives  in Eq.(2.88). The POLR algorithm 
also  works for matrices  having a spectral radius  greater than 0.5. 

2.5 Summary 

To summarize  the  developments  in  this  chapter a set  of  numerically  robust 
algorithms  was  presented.  These  algorithms  deal  with  the  often  encountered 
problems of discretization of  continuous-time  (C-T)  models as well  as  the  inverse 
problem  of  recreating a C-T  model  from a given  discrete-time (D-T) model.  This 
latter  operation  we  have  referred  to  as continualization. The  algorithms  described 
comprise,  in  addition  to the standard SI (ZOH) procedures,  two  methods  which are 
commonly  referred  to  in  the  signal  processing  literature,  namely the bilinear 
transformation (BT) and a method  called  the ramp-invariant (RI) method  that is 
equivalent  to  the  next  higher  order  approximation  beyond  the SI (ZOH), represent- 
ing a piecewise  linear  approximation to the  input  functions.  With  these  algorithms 
the  design  engineer  has  complete  flexibility  to  move  between  the  continuous  and 
discrete model  domains. 

To  assist  readers  in  the  "maze"  of  "time-domain"  conversion  algorithms 
introduced  in  this  chapter, as well as in  Chapter 1, and to  relate  these  algorithms 
to  their L-A-S implementations  given  in  Appendix C,  let us  review  these  algorithms 
once  more  in a slightly  different  way.  The  list  below  relates  algorithms  that  have 
been  discussed  with  the  names  of  their L-A-S "counter-parts,"  i.e. L-A-S operators, 
or subroutines: 

Algorithm 
Name 

LA-S  Operator or 
Subroutine  Name 

EAv EAv.SVB 
EAT EAT. SBR 
EATF EATF and EATF.SBR 
LNM  LNM and LNM.SBR 
LNMj  LNMj.SUB 
SI-C-D  SICD.SBR 
RI-C-D  RICD.SBR 
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BT-C-D 
BT-D-C 
SI-D-C 
RI-D-C 

SQM 
POLR 
POM 
FACT 
FLN 
B R 4  
R4R5 
JFR 
EGV 
EFJF 
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BCDC.SUB 
BCDC.SUB 
not  available 
not  available 

SQM and SQM.SUB 
POLR and P0L.R.SUB 
POM and POMSUB 
FACT.SUB 
FLN.SUB 
IUR4.SUB 
R4RS.SUB 
JFR 
EGV 
EFJF 

"Service" Algorithms: 

Note that  whenever an L-A-S operator  is  available,  it  is  more  convenient  to 
use the  operator  version,  rather than the  corresponding  subroutine,  since  its 
execution is much  faster.  The  listings  of  certain  subroutines,are  given  to  show  how 
they  might  be  implemented  using  the L-A-S language, or any  other CAD package. 
A close  correspondence  should  be  noticed  between  the  steps  of  an  algorithm  and 
the associated L-A-S implementation. 

Historically,  the  development  of  the L-A-S language  progressed  by  constantly 
undergoing  modifications and upgrading.  Early on,  all  algorithms  were  implement- 
ed as subroutines. As specific  algorithms  saw  increasing  use,  users  requested 
"single  step  operations"  for  speed  and  convenience. As L-A-S continues  to  grow, 
this  trend  of  "upgrading"  subroutines  to  operators  will,  no doubt,  continue.  Thus, 
in  the future some  algorithms  which are implemented as subroutines  in  this  text  will 
be  implemented  as  operators. 

Recall that  both  Algorithms BT-C-D and BT-D-Care implemented  by a single 
L-A-S algorithm with the  syntax: 

A,, B,, T,  Zcdc (BCDC) - 4, B,, P 
where, in the  case  of  the  algorithm  flag, Icdc: 

Icdc = 1, it  performs  the  task  of BT-C-D, Eqs.(2.35), while for 
lcdc = 2, Eqs.(2.71), required by BT-D-C are used. 

Some of these  algorithms,  such as RI-C-D,  BT-C-D and BT-D-C calculate  five 
matrix  models  from a standard four  matrix  model,  albeit in a different  time-domain, 
while  other algorithms,  e.g. RI-D-C, calculate a four  matrix  model  from a five 
matrix  model.  To  help  this  situation, a set  of L-A-S algorithms  has  been  developed 
which  greatly  facilitates  these  various  time-domain  conversions.  This is achieved 
by developing  algorithms  which  convert  from a standard  four-matrix  model  in  one 
domain  into a corresponding  standard  four-matrix  model  in  the  other  domain. All 
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of  these  algorithms  and  subroutines use four  matrices  in R = (A,B,C,D} and 

produce  a  corresponding  "converted"  representation I? = { &fl,c,fi). The 
syntactical  definitions  of  these  algorithms are 

For C-T 4 D-T conversions: (2.89) 

A,, B,, c,, T, E (sRcD) L Ad, Ddr 

As the  names  of  the  algorithms  in  Eq.(2.89)  suggest,  given  a  C-T  state  space 
representation: 

R, = {A,,B,,C,,Dc) and the sampling  interval T 

0 Algorithm SRCD calculates  four  matrix  D-T  models for both SI and RI 
equivalents: 

Rh = (A*,BhrChtDJ and Rdr = {A&,Bdr,C&,D&} (2.91) 

where Ah = Adr = A d  and c, = c d r  = c, . 
0 Algorithm BLCD calculates  a  four  matrix  D-T  model  using  the  bilinear 

transformation: 

Rdb = ~Adb,Bdb,Cdb,Ddb) (2.92) 

Both algorithms, in  addition  to  using  the  "basic"  conversion  algorithms,  i.e. 
E;qW and BT-C-D (or  the  subroutine BCDCSUB), also use Algorithm WR4 to 
obtain  the  four  matrix  D-T  model  given  by  Eqs(2.91)  and  (2.92). 

Similarly,  considering  the  algorithms  in  Eq.(2.90),  given  a  D-T  state  space 
representation: 

Rd = (Ad,Bd,Cd,Dd} and  the samphlg  interval T 

0 Algorithm SRDC calculates  four  matrix  C-T  models for both SI and RI 
equivalents: 

R, = (Aa,Ba,Ca,D,} and R, = (A,B,,CWD,} (2.93) 

where A, = A, = A, and C, = C, = C, . 
Algorithm BLCD calculates  a  four  matrix  D-T  model  using  the  bilinear 
transformation: 

R, = {A,sB,*C,,D,} (2.94) 
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In  accordance  with  the  developments  in  Section 2.3, Algorithm  SRDC,  in 
addition  to  using  the  basic  conversion  Algorithm LNM, first  uses  Algorithm R4R5 
in order  to  obtain  the  five  matrix  D-T  model  required  by RZ-C-D. On the  other 
hand, Algorithm B D C ,  in a similar  manner  to  the  previously  mentioned BLCD and 
SRCD, uses  Algorithm BT-C-D, i.e.  subroutine BCDC.SUB, followed  by  Algorithm 
R5R4 in  order  to  obtain  the  desired  four  matrix  model Rd, given  by Eq(2.94). 

In order to facilitate  time  domain  conversions even further, a single 
"unifying"  algorithm,  referred  to  as CZZIT, has  been  developed. Its syntax  is: 

A, B, C ,  D, E ,  Isrb (CTDT) -A,%, c, b (2.95) 

where,  given a state space  representation  in ONE domain  (C-T or D-T) 

R = {A,B,C,D} 

it calculates  the equivalenr model  in THE OTHER  domain  (D-T or C-T) 

The desired  conversion  is  specified by the  seventh  input  argument,  i.e.  algorithm 
flag Isrb (where  "srb"  stands  for  the srep, ramp and bilinear transformations). 
More  specifically,  for Isrb = 1, 2 or 3, Algorithm CZDT assumes  that  the  given 

R is a C-T  model  and  that  the  representation I? is consequently a D-T  model 
corresponding  to SI , RI or BT equivalents,  respectively. 

Conversely,  if  the  algorithm  flag Isrb = -1 , -2  or -3, the  algorithm treats the 

the given  representation R as the  D-T  model and calculates a C-T  model I? as an 
SI , RI or BT equivalent. 

For  more  details  about  this  "unifying"  algorithm  readers are referred  to 
Chapter 5, where a full description  of  Algorithm C"DT from  the  user's  point of 
view  is  given.  Listings  of all algorithms  mentioned  in  this section, implemented 
using  the L-A-S language,  are  given  in  Appendix C. 

2.6 References 
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systems.  More  specific  references are Bingulac  and  Cooper  (1990) for  SI  and RI 
discretization  techniques,  and  Cooper  and  Bingulac  (1990),  as  well as Bingulac  and 
Vanhdingham (1992),  for  background on computing the corresponding  "contin- 
ualized"  models.  See also h u b  (1985) and Moler and Van Loan  (1978) for some 
interesting  reading on the  topic  of  discretization. 
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2.7 Exercises 

2.1 Two (4 X 4) matrices A, and  A,, are given  below: 

-1 1 0 -1 

-1 -2 1 0 

1 0 - 2  1 

0 0 0 - 2  

-1 1 0 -1 

-1 -2 1 1 

A, = 

* c ,  = 
1 0 -2  1 

0 0 0 - 1 -  

Calculate: 

(a)  The  eigenvalues  of A, and A,,. 
(b) Verify  that A,, is not  diagonalizable. 
(c)  Determine A, = exp(A,1)  and A,, = exp(A,,T)  with  a  sampling interval 

(d)  Determine A,, = In(AJT and Acln, = In(A,,)/T 
(e)  Verify  that A, = A,, and  that A,, = A,,-. 
( f )  If available,  use  some  other  software  package  to  perform  the  same  calcula- 

tions.  Many  such  packages  do not implement  functions  of  a  matrix  if the 
matrix is not  diagonalizable. 

of T = 2 sec. 

Hints: 

0 To calculate  the  eigenvalues  of  a  matrix,  use  operator EGV. 
0 To verify  if  a  matrix A is  diagonalizable,  check the rank, or null  space 

To  calculate  the  rank,  or  null  space,  use  operator N R S .  
0 To calculate the natural  log  of  a  matrix,  use either  (or  both)  the 

operator LNM and/or  the  subroutine  LNMj.SUB. 
0 To  calculate the matrix  exponential  function of a  matrix,  use  either  (or 

both)  the  operator EATF and/or  the  subroutine  EATj.SUB. 
0 Verify  that  subroutines LNMj.SUB and EATj.SUB are not  applicable 

in the  case of  non-diagonalizable  matrices. 

of the matrix B = A - &In , where X, is an  eigenvalue  of  A. 

A version  of  an L-A-S program  which  solves  this exercise is available in the L-A-S 
subdirectory  C:\LAS\DPF\EXER21+DPF. 



Section 2.7 Exercises 

2.2 Two (4 X 4) matrices A, and A, are given  below: 

I -.9 .8 
-.8 .l 

-1.4 .8 

-.9 .8 

-.8 .l 

-1.4 .8 Ad1 = 

1 

0 

1.5 

0 

1 

0 

1.5 

0 

-.8 

1.7 

.2 

.8 

-.8 

1.4 

.2 

.5 
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Calculate: 

(a) -the eigenvalues  of A, and A,,. 
(b) Verify  that A, is not  diagonalizable. 
(c)  Determine A, = ln(A,)/T and A, = ln(A,)/T  with a sampling  interval  of 

(d) Determine A-, = exp(A,I)  and Adl- = exp(A,,q. 
(e)  Verify  that A, = A,, and that A, = AdW. 
(0 If  available,  use  some  other  software  package  to  perform  the  same  calcula- 

T = 2 sec. 

tions. 

Hints: 

0 To  calculate  the  eigenvalues  of a matrix,  use  operator  EGV. 
0 To  verify  if a matrix A is  diagonalizable,  check  the  rank, or null  space 

0 To  calculate  the rank, or null  space,  use  operator N R S .  
To  calculate  the  natural  log  of a matrix,  use either  (or both) the 
operator  LNM  and/or  the  subroutine  LNMj.SUB. 

0 To  calculate  the  matrix  exponential  function  of a matrix, use either  (or 
both)  the  operator EAW and/or  the  subroutine  EATj.SUB. 

0 Verify  that  subroutines  LNMj.SUB  and  EATj.SUB are not  applicable 
in the  case  of  non-diagonalizable  matrices. 

of  the  matrix B = A - X,&, , where X, is an eigenvalue  of A. 

A version  of  an L-A-S program  which  solves  this  exercise is available  in the L-AS 
subdirectory  C:\LAS\DPF\EXER22.DPF. 
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2.3 Using  the  following  system  state  space  representation Rd of a D-T " 0  
system: 

1.1 .8 1 . 8 1 1 0  

-.8 .l 0 .6 I 0 -1 
-.6 -.8 -.S .2 I -1 0 
0 0 0 . 5 1 0 1  

1 0 0 0 1 1 0  

1 0 1 0 1 0 0  

-1- "- "_ 

with  sampling  interval T = 2 sec., and  the  number  of  samples N = 41, calculate: 

-the  response yd(k),  k=[O,N-l], of Rd to  zero  initial  conditions  and  an  input 
vector u(k), with u(O)=O. For non-zero  values of u(k), i.e. U@), k=[l ,N-l] ,  
use  pseudo  random  numbers. 
"equivalent C-T  models  using: 
( 1 )  -a step-invariant  assumption - the  SI-C-T  model R, 
(2) -a ramp-invariant  assumption - the  RI-C-T  model R, 
(3) -a bilinear  transformation - the  BT-C-T  model Rcb 
-the responses y,(t), y,(t) and yJt) of  the  obtained  SI-C-T,  RI-C-T  and 
BT-C-T  models,  respectively,  to  zero  initial  conditions  and  an  input  vector 
u(t) having  at t = kT, k=[O,N-l], the  same  values u(k) used  in  calculating the 
response yAk) of  the  given  system R,,. 
Plot  all  responses and check  the  differences  between yd(k) and  the  responses 
of each  obtained CLT  equivalent  model. 
Determine which  C-T  model  gives  the  response  which is closest  to ydk). 

Define the matrices  in Rd using  either  the  DMA or the INF" operator. 
Define  the  scalars T and N using  either  the  DMA or the  DSC  operator. 
The  system order and  number  of  inputs  may  be  extracted  from Ad and 
Bd either by  the  operator  CD1 or subroutine  GETD.SUB. 
The matrix U containing  the  samples u(k) may be  defined  using 
operators  DPM  and SHR. 
Zero  initial  conditions  may  be  established  using  the  DZM  operator. 
The  responses  of  the  D-T  and  C-T  models  may  be  calculated  using 
CDSR.SUB. 
Response  plotting  may  be  performed  using  the  DIS  operator. 
For  axes  labeling and scaling,  operators  YLAB,  XLAB  and  YXSC  may 
be  used. 
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0 The  required  C-T  models  can be calculated  in  the  following two ways: 
= The  "easy"  way, i.e. using  subroutine  CTDTSBR,  where  the 

quantities Isrb = -1, -2  and -3 should be used for the algorithm 
flag Isrb. 
The  "hard"  way,  i.e.  for 

(2.65)  and  (2.9). 

(2.33),  (2.67)  and  (2.68), as well  as  subroutine  R4R5.SUB 
for  converting  the  given  four-matrix  D-T  model R, into  the 
required  five-matrix  model  given  by  Eq.(2.21). 

0 -the BT-C-T  model  use Eq~(2.70) - (2.72)  and  subroutine 
R5R4.SUB  for  converting  the  obtained  five-matrix  C-T  model 
into  the  required  four-matrix  model Reb. 

0 Note  that the matrix A, has  multiple  eigenvalues  and  that  it  is  not 
diagonalizable.  Therefore,  subroutines LNMj .SUB and  EATj  .SUB 
should  not be used! 
The L-A-S program  EXER23.DPF,  residing  in  the  subdirectory 
C:\LAS\DPF\,  contains  a  possible  solution  to  Exercise  2.3. 

0 -the  SI-C-T  model  use  operators  LNM  and  EATF,  Eqs.(2.63), 

0 -the  RI-C-T  model  use  the  same  operators,  but  Eqs.(2.63), 

2.4 Using the following  system  state  space  representation R, of a  C-T  MIMO 
system: 

-1 1 0 1 1 1 0  

1 -1 1 0 1  0 - 1  

1 -1 0 0 1 - 1  0 

0 0 0 - 1 1 0 1  
-1- "_  "_ 

1 0 0 0 1 1 0  

1 0 1 0 1 0 0  

with  sampling  interval T = 2  sec.,  and  the  number  of  samples N = 41,  calculate: 

(a) "the response y,(k), k=[O,N-l] ,  of R, to zero  initial  conditions  and an input 
vector U@), with u(O)=O. For samples u(kT), k=[l,N-l], use  pseudo  random 
numbers. 

(b) -equivalent  D-T  models  using: 

(1)  -a  step-invariant  assumption - the  SI-D-T  model Rdr 
(2) -a ramp-invariant  assumption - the  RI-D-T  model Rdr 
(3)  -a  bilinear  transformation - the BT-D-T  model Rdb 
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(c) -the responses ydr(f),  ydr(f) and y&) of the  obtained  SI-D-T,  RI-D-T  and 
BT-D-T  models,  respectively,  to  zero  initial  conditions  and  an  input  vector 
u(k) having the same  values  as u(kT), k=[O,N-l], used  in  calculating  the 
response y,(t) of the  given  system R,. 

(d)  Plot  all  responses  and  check  the  differences  between y,(kT) and the responses 
of  each  obtained  D-T  equivalent  model. 

(e)  Determine  which  D-T  model  gives  the  response  which is closest  to y,(kT). 

Define  the  matrices  in R, using  either  the  DMA or the  INPM  operator. 
Define the scalars T and N using  either  the  DMA or the  DSC  operator. 
The system  order  and  number  of  inputs  may  be  extracted  from A, and 
B, either by the  operator  CD1 or subroutine GETD.SUB. 
The  matrix U containing the samples u(k2') may be defined using 
operators  DPM and SHR. 
Zero  initial  conditions may  be  established  using  the  DZM  operator. 
The  responses  of  the  C-T  and  D-T  models  may be  calculated  using 
CDSR.SUB. 
Response  plotting  may be  performed  using  the  DIS  operator. 
For  axes  labeling  and  scaling,  operators  YLAB,  XLAB  and  YXSC  may 
be used. 
The  required  D-T  models  can  be  calculated  in the following  two  ways: 
= The  "easy"  way,  i.e.  using  subroutine  CTDT.SBR,  where  for 

the algorithm  flag Isrb the quantities Isrb = 1, 2 and  3  should 
be  used. 
The "hard"  way,  i.e.  for 

0 -the SI-D-T  model  use the operator  EATF  and  Eq.(2.9). 
0 -the RI-D-T  model  use  the same uperator,  but  Eqs.(2.32), 

(2.33)  and  the  subroutine  RSR4.SUB for converting  the  obtained 
five-matrix  D-T  model, Eq.(2.21), into  the  required  four-matrix 

0 -the BT-D-T  model  use Eq~(2.35) and  subroutine  R5R4.SUB 
for converting the obtained  five-matrix  D-T  model  into  the 
required  four-matrix  model R&. 

model Rdr. 

Note  that  the  matrix A, is singular,  has  multiple  eigenvalues  and is not 
diagonalizable.  Therefore, the subroutines  EATj.SUB  should not be 
used! 

The L-A-S program  EXER24.DPF,  residing  in  the  subdirectory 
C:\LAS\DPF\.  contains  a Dossihle solution to  Exercise  2.4. 
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In this  chapter  we  will  elaborate on the  brief  introduction  of  system  models 
given  in  Chapter  1. In carrying  out  design  problems  engineers and analysts 
frequently need to  convert  between  various  system  descriptions  for  insight  into  the 
different phases of the  design  process.  The  principal  linear,  time-invariant, 
dynamic  system  model  types  considered  in  this  chapter  are: 

(1) State  space  models, 
(2) Transfer  function  matrices, and 
(3)  Matrix  fraction  description  (MFD)  models. 

In the  first  section  single-input,  single-output (SISO) systems  and  their 
canonical  representations are considered. 

3.1 Canonical Forms for SISO Systems 

As an introduction  to  the  special  standard  forms for  representing  systems  in 
state  space,  we  will  restrict  our  attention  to SISO systems  in  this  section.  Later  in 
the  chapter  the  concepts  will  be  extended  to MIMO systems. There are three main 
state  space  structures  that  are  recognized  as  "standard:" 

e The controlluble canonical form, 
e The observuble canonical form, and 
0 The Jordun canonical  form. 

These  three  forms  also  have  versions  which  have  minor  variations,  which  can  arise, 
for  instance,  from  different  labelings of  the  state  variables. The following 
discussion  will  be  presented  from  the  point  of  view  of  C-T  systems  and the Laplace 
Transform  variable, S; but the  reader  should  keep  in  mind  that  exactly the same 
canonical  forms  also  hold  for  D-T  systems  with  the  corresponding  z-Transform 
notation. 

In the  following  each  of  the  three  forms  mentioned  above  will  be  studied as 
they pertain to  the SISO transfer  function: 

where  the  numerator  and  denominator  of  the  transfer  function g(S) are polynomials 
given  by 

11 m 

87 
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Of  course, it is well  known  that  the  transfer  function  of Eq.(3.1) represents a 
system  described  by the differential  equation 

For the model  in  either  form  to  be  realizable,  the order of  the  numerator, m, must 
be  less  than or equal  to the order of  the  denominator, n. In the  subsequent 
discussions  it  will  be  assumed  that U,, = 1 and m = n, i.e. a proper system. 

3.1.1 The Controllable  Canonical  Form 

The  first method  to  be  presented  is a state  model  based on a natural  extension 
of the phase variables of a differential  equation,  namely, 

dy d""y 
xl=Y , %=x,  ... , x.=- 

d P 1  
In order  to  simplify  the  notation, a third-order  transfer  function  will  be  used  for  the 
development.  However,  because  of  the  regularity  of  the  canonical  form, the 
general case will be  clear.  Consider  that  the  transfer  function, g@), of Eq.(3.1) is 
given  by 

Y(S) = b3s3 + b2s2 + bls +bo 
= - 

4s) s3 + u2s2 + u,s +ao 

Alternatively, g(s) could  be  written as 

y(s) = b3 + b2s" + b,s-* + b , ~ - ~  
= - 

1 +U&' + up-2  + u0s-3 

(3.4) 

(3.5) 

From Eq43.5) we can solve  for y(s) as 

y(s) = (b3 + b2s" + bls-2 + b , ~ - ~ ) e ( s )  (3.6) 

where 

e(s) = W (3.7) 

An equivalent  expression  for e(s) can be  obtained  by  cross-multiplying  in Eq.(3.7) 
and  solving  for e($) in terms  of  itself  and u(s), i.e. 

1 + u2s" + up-2  + u0s-3 

e(s) = u(s) - ( 5 s "  + + ~,,s-~)e(s) (3.8) 

The lower  portion  of  Fig. 3.1 illustrates Eq(3.8) in  that  the  signal e is the sum  of 
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the  four  terms: U ,  -w-'e,  -u,s2e and - ~ " e ;  the  last  three  terms  are  the  "feedback" 
terms  in  the  diagram.  It  is  easy  to see how the  diagram  of  Fig. 3.1 extends  to 
higher  order  systems by  cascading  the n integration  blocks  together  for  an n"' order 
system. 

By labeling  the  outputs of the  integration  blocks  as state  variables, as shown 
in Fig. 3.1, the  following  equations  may be  derived: 

q t )  = x2(0 

q t >  = x3(0 (3.9) 
S ( t )  = - uoxl(t) - U ,  x2(t) - %x3(r) + ~ ( t )  

Finally,  from Eq.(3.6) the  upper  portion  of  Fig. 3.1 may be  drawn;  that is, y(s) is 
a linear  combination  of  the  signal e(s) and its  integrals. We may refer  to S'e(s) as 
the  integral  of e(s). Thus,  the  output  equation is 

r(t) = (bo -4b3)x l ( f )  + (b ,  -a1b3)@ + (b, -~2b3)x3(t) + b 3 W  (3.10) 

When Eq~(3.9) and (3.10) are put  into  a  vector-matrix  form,  the  following 
structure of the  state  space  model is obtained. 

f i t )  = [bo-uob3 b , - ~ , b ,  

In general,  the controllable canonical SISO model is given  by 

t(t) = A, x(t) + b, ~ ( t )  

y(t) = c,  ~ ( t )  + d, ~ ( t )  

where 

(3.11) 

(3.12) 

(3.13) 

c,  = [ Cl e*.  c, 1, d, = [b,I 

with a = [ ao  ... and c i =  bi-,-ui-,bn for O s i s n - l  (3.14) 

Note  that for SISO  systems A is an (n X n) matrix, b is an (n X 1) column, c is 
a (1 x n) row,  and d is a scalar. 
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FTGURE 3.1 SISO Feedback (controllable) Form 

As will  be  made  clear later, the  canonical  form  of Eqs.(3.11), represented  in 
Fig. 3.1, will  be  called  the SISO feedback (controllable) form.  Its main property 
is that the input  vector b, has a unit element  at  the  location  corresponding  to  the 
row  of A, with non-zerohon-unity elements. A modification  of Eq~(3.11) 
preferred by some  authors  is  obtained by labeling  the  states  in Fig. 3.1 in  reverse 
order.  In  this  case,  with x1 and xj interchanged  in Fig. 3.1, the Eqx(3.11) become 

(3.15) 

which  presents a different  looking,  but  still, a controllable  form. 
The controllable  canonical  form  of  either  version  provides an extremely  useful 

method  of  obtaining a set  of  state  equations  from a given  transfer  function.  With 
sufficient  practice the reader will be able to  skip  the  intermediary  diagram  and fill 
in  the  state  model  directly  from  the  transfer  function.  For  instance,  in Eq~(3.11) 
the  upper  rows  of  the  state  coefficient  matrix are formed  from a shifted  identity 
matrix,  while  the  last  row  has a direct  correspondence  to  the  denominator  of  the 
transfer  function. The input  matrix  is  all  zeros  except  for  the  last entry, which is 
unity. The output  matrix and feedthrough  element  incorporate the numerator 
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coefficients in a specific  manner.  Note  that  the  absence  of  the 4 (feedthrough) 
element  greatly  simplifies  the  output  matrix. 

3.1.2 The  Observable  Canonical  Form 

In this section a second  state  space  form  will  be  presented  based on the same 
transfer  function g(s) in  Eq.(3.4)  or Eq(3.5). In a later  section the concept  of 
equivalent  state  space  descriptions,  i.e.  when two state  models  represent the same 
system,  will  be  discussed.  For  now  it is sufficient  to  accept  the  non-uniqueness  of 
state  space  models. 

As in  the  previous  section  the  generic  third-order  system  will  be  used  for  the 
development.  After  cross-multiplying  in  Eq.(3.5)  we  isolate y and  group  terms  as 
follows. 

where  the  argument S was  omitted for  simplification.  The  diagram  for Eq(3.16) 
is illustrated  in Fig.  3.2.  To  elaborate,  Eq.(3.16)  contains  four  terms  for y(s); one, 
a direct feedthrough  from U@), and  three  others  which are associated  with one, two, 
or three  integrations.  The  reader  should  be  able  to  follow  the  contribution  of  each 
term to  the  output  signal.  For  instance,  the  single-integration term, s"(b,u - W),  
is  incorporated  into  the  diagram  of  Fig.  3.2 by  feeding  the  signals b,u(s) and -ary(s) 
into  the  final  integrator  block. 

As in  the  previous  case  of  Fig.  3.1  state  variables are assigned  to  the  outputs 
of the integrator  elements  in  some order. With  the  assignment  shown in Fig. 3.2 
the  resulting observable  canonical form is  given  by  the  following  structured 
equations: 

In general, the observable  canonical SISO model is given  by 

k(r) = A, x(z) + bo u(r) 

YO) = c, x(t) + do 

(3.16) 
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FIGURE 3.2 Observer (Observable) Canonical Form 

where 

(3.18) 

with 

To reiterate,  for SISO systems A is an (n X n) matrix, b is an (n X 1) 
column, c is a (1 x n) row,  and d is a scalar. The  canonical form Eqs.(3.18), 
represented in Fig. 3.2, is called  the SISO obseWr (observable) form. As a dual 
property  to  the  controllable  form Eqs.(3.1 l), the  row  vector c,, has a unit  element 
at the location corresponding  to  the  column of A, containing  non-zerolnon-unity 
elements. 

Again, a variation  of Eqs.(3.17) may be  obtained  by  reversing  the order of 
the  state  variables. Thus, with x1 and xj interchanged  in  Fig. 3.2, the Eqs.(3.17) 
become 
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which  presents  another  possible  observable  form. 

3.1.3 The Jordan Canonical Form 

The  third  specific  form  of  state  space  representation  of a system to be 
discussed  corresponds  to a diagonal, or block  diagonal,  coefficient  matrix,  which, 
as  we  will see, implies  some  form  of  decoupling  of  the  system.  This  representation 
is referred  to as the Jordan canonical form because  the  resulting  coefficient  matrix 
is that  of a Jordan.  canonical matrix. Before  discussing  the  more  general  Jordan 
form  we  will  consider  the  simple, but important,  case  where  the  transfer  function 
g(s) has  distinct  poles. In  this  case  the  partial  fraction  expansion  of g($) is 

g@)=b3+-+-+”?- rl ‘2 
r 

S - l ,   S - l ,   S - l 3  
(3.21) 

The diagram for Eq(3.21) is illustrated  in  Fig. 3.3. Note the decoupling  of the 
dynamics  into  first-order  blocks.  With  the  state  variables  as  labeled  in  Fig. 3.3, 
the  corresponding  state  space  representation  may  be  written  directly as 

0 0 A3 
(3.22) 

If the  roots  are  not  distinct,  for  instance,  if A, = A,, then  the  partial  fraction 
expansion  becomes 

(3.23) 
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U 

0 

X 

X 

PIGURE 3.3 Block Diagram for a System with Distinct Poles 

Figure 3.4 illustrates  the  diagram  corresponding  to Eq(3.23). Note  that  the 
dynamics  associated  with  common  pole, X,, are separated  from the  distinct  pole, 
X3. Thus,  the  Jordan  form  model  results  more  generally  in a "block  diagonal" 
structure,  where  each block is  associated  with  one  of  the  distinct  poles. The 
corresponding  state  equation  for  Fig. 3.4 is  given by 

(3.24) 

Equation (3.22) or Eq(3.24) completes  the  third  state  model  representing g@) in 
Eq.(3.4). Based on previous  knowledge,  the  reader  should  be able  to  extend  this 
third-order  example  to  more  general  systems,  including  the  extension  to  higher- 
order systems  with  repeated  poles  of  degree  greater than two. The  Jordan  form 
structure  is  discussed  further in  Appendices A and B. Obviously,  state  model 
representations  for a given  system are not  unique. In the next  section  the  concept 
of  general  state  model  equivalence  is  discussed.  We  summarize  with  some  general 
remarks  regarding  Jordan  form  models  for SISO systems. 

The  generalization  of Eqs.(3.22) is  clearly a diagonal  coefficient  matrix  and 
column  of  ones  for  the  input  matrix, but when  one or more pairs of poles 
(eigenvalues) are complex  conjugates, it is sometimes  more  convenient to write the 
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RGURE 3.4 Block Diagram for System with Multiple Poles 

coefficient  matrix  in a real  number  Jordan form. For  example,  if XI = U, + jo, 
and X, = U, - j w I ,  where j represents (-l)'*, the  real  parameters, U, and W,, are 
used instead  of  the  complex  values, X, and X,, as illustrated  in  the  following: 

A coefficient  matrix  as  shown  above  corresponds  to a partial  fraction  of  second 
order with  complex  conjugate  roots,  i.e. 

4,s + 40 

(S - a,)2 + 0,  
2 

in place  of - + -  rl '2 

S - l ,  S - A ,  

The  generalization  of Eqs.(3.24) is  more  involved. As we  know,  when a 
matrix A has  multiple  eigenvalues,  the  resulting  Jordan  form  matrix  may, or may 
not, be diagonal. It depends  on  the  set  of  linear  independent  eigenvectors  for A, 
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as discussed  in  Appendix A. The  general  structure  is,  however,  "block  diagonal", 
meaning  that  the  Jordan  form for A, say J, has r blocks  along  the  diagonal,  where 
r is the  number  of  linearly  independent  eigenvectors.  Thus,  if P is the modal 
manix, i.e.  the  transformation  matrix  relating  the  similar  matrices A and J, then 

where the "Jordan blocks," J,, 1 5 i 5 r, are associated  with a single  eigenvalue 
and  may have  dimension  up  to  the  multiplicity  of  the  eigenvalue.  The "block" 
associated  with a non-repeated  eigenvalue  is  simply  the  scalar  eigenvalue  itself.  All 
of  the  nontrivial  blocks  have  the  following  form: 

I l L 1 0 ' "  0 

0 L 1 - 0  0 

where the same  eigenvalue  is  repeated  along  the  main  diagonal  with  ones  along the 
super  diagonal. 

Appendix B contains a description  of a realiable  algorithm  for  calculating  the 
modal  matrix  of a general  non-diagonalizable  square  matrix. 

3.2 Equivalent  State  Space  Models 

Since we are familiar  from  the  previous  sections  with  the  fact  that  the  choice 
of  state  variables  for a system  is  not  unique,  let  us  consider  the  conditions  under 
which two state  models  represent  the  same  system.  Repeating  the  generic  state 
space  representation  from Qs.(1.7), 

x(?) = Ax(?) + Bu(r), x(rJ 

S(?) = Cx(r) + Dn(t) 
(3.25) 

Although Eqs.(3.25) is a C-T model,  we  could just as  easily  work  with the D-T 
model  of Eqs.(l.30) as a starting  point. 

Let us refer  to Eqs.(3.25) as system  representation S. Then  any  other 
representation  must  be  associated with an invertible  transformation of state  vectors 
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in order  to  uniquely  relate  one  representation  to  another.  We  formalize  with  the 
following  definition. 

Definition 3.1 The C-T state  model S given  by 

x(r) = Ax(r) + Bu(t), x(tJ 

y(r) = Cx(r) + Dn(t) 

where x is an (nx  1) vector, U is an (mx 1) vector, y is a (p X 1) vector 
and  the  matrices A, B, C, and D are  constant  with  compatible  dimensions 
is said  to  be equivalent to the C-T state  model C given  by 

if  and  only  if €(rd = P-' x(rJ , 

F = P " A P ,  G = P " B ,  and H = CP (3.26) 

It should  be  clear  that  Def. 3.1 is  derived  from the  transformation 

x(t> = P W) (3.27) 
where P is  required  to  be  an (n X n) nonsingular  (invertible)  constant  matrix. 

It  is  easy  to  show  that the transfer  matrices  of the two  representations S and 
E are  equal,  as we  would  expect  since  they  represent the  same  system.  From 
Eq.(1.38), Def. 1.9, the  transfer  matrix  of S is given  by 

G(s)  = C(SI  -A)"B + D (3.28) 

Similarly, the transfer  matrix  of C, using the results  of  Def. 3.1 above is 

C(S) = (CP)[SI - (P"AP)]-'(P-'B) + D (3.29) 

By introducing P'IP for  the  identity  matrix I in Eq.(3.29), and  factoring  a P' to 
the left  and  a P to the right  from the bracketed  expression, 

G(s) (CP)[P"(SI - A)P]" (P"B) + D (3.30) 

Simplifying  the  expression  in  brackets, 

G(s) = (CP) P"(sI - A)-' P (P"B) + D (3.31) 
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which  reduces to Eq.(3.28) upon  cancelation  of  the PIP factors. 

3.2.1 Transformations  between  State  Models 

In  Def. 3.1 the  representation S, = {A,, B,, C,, Dl} is equivalent to 
representation S, = {P'A,P, P'B,, CIP, Dl} = {A2, &, G, D,}. Reversing the 
transformation,  i.e.  if T = P', then  the  representations S, = {A2, h, C,, D,} and 
{TA2T1, T&, C2T', D,} are equivalent.  It  is easy to  show  that  this last 
representation is back  to S,. Since  the similarity, or equivalence, transformation 
leaves  the D matrix  unchanged,  it  will  be  convenient  in  the  sequel  to  represent the 
algorithm  used for  this  procedure  as 

A, > B, > C, y P (Sm) - 4 9 B2 9 C2 (3.32) 

It is interesting  to  investigate  the  particular  structure  of T'AT for  some 
specific  transformation  matrices T or P. Consider  the  case for T satisfying 

ti+l = Ati  , for 1 S- i S- n-l (3.33) 

where t, is  the I* column of T. Therefore, with t = t, we  may write 

T = [ t  At ... An"t] (3.34) 
Assuming  that the column t assures the non-singularity  of T, it may be easily 
shown  that  the  structure  of  the  transformed  (similar)  matrix A, = T'AT is given 
by 

0 0 0 .*. 0 -a, 

1 0 0 ... 0 ' U ,  

A, = T"AT = 0 l 0 0 -3 
. . .  

0 0 0 ... 1 -a"-l 

Eq(3.35) should  be  verified by considering  the  equation T As = A T. 
In  the  dual sense, if A, = TAT' where  now  the rows ti satisfy 

tl t 

T =  
t A  G =  ... ... 

- t n -  . t A"" 

(3.35) 

(3.36) 

then A, becomes 
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A, = TAT" = (3.37) 

Again, it is assumed  that  the  row t assures  that T is  nonsingular. 

calculated  using  algorithms QC and Qo from  Chapter 1,  i.e. 
The  similarity  transformation  matrices T in  Eqs.(3.34)  and (3.36) may be 

A , t (QC)  - T and 
A , t (Q01 - T 

respectively. 

3.2.2 Controllability  and  Observability Forms 

It may be deduced  that  given the SISO system R = {A, b, c, d}, the 
similarity  transformations 

A,b,c,Q,(STR)~A,,b,,c, (3.38) 

and 

A, b, c, Q;' (Sm) -A,, bo, c, (3.39) 

where  the  (full rank) similarity  transformation  matrices Q and Q, are  calculated 

A, b (QC) -Q, and A, c (Q01 -Q, (3.40) 

will  produce  the  general  "controllable" and  "observable"  models R, and R. 
described  in  Eqs.(3.41)  and  (3.42),  respectively, for third  order  systems  (and 
illustrated  in  Figs.  3.5 and  3.6). For  convenience  the  feedthrough  term  is  assumed 
to  be  zero,  i.e. d = 0. 

by 

(3.41) 
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X 

FIGURE 3.5 Controllability (Controllable) Canonical Form 

0 1 0  b0 

t,(r) = u(r) b, x&) + 0 0 1 

-Uo -U1 -U2 
I b2 - 

(3.42) 

r(r) = [ 1 0 0 ]X,(t) 

Canonical  forms  of Eq~(3.41) and (3.42) are called  the controllability 
(controllable) and  the observability (observable) forms,  respectively.  They  have 
the  important  property  that  their  controllability  or  observability  matrix is an n X n  
identity  matrix. As will be  shown later,  the observability form, because  of  its 
useful  properties  in  the MIMO case, is widely  used  in  inputloutput  identification 
of D-T MIMO state  space  models. 

Any SISO system  that  is  controllable  may  be  put  into  the  forms  of Eqs43.1 l), 
(3.15) or (3.41) since  these  are  all controllable forms. Every  controllable form is 
guaranteed  to  be  controllable, i.e. the  controllability  matrix Q is full rank 
independent  of  the  system  parameters.  For  example, the  controllability  matrix  of 
the  form (3.41) is  the  identity  matrix  as a result  of  manner  in  which it was 
constructed. 

Similarly, any observable  system  may  be  put  into  the  forms of Eqs.(3.16), 
(3.20) or (3.42), the observable forms. As with  the  controllable  forms,  each 
observable  form is observable,  i.e.  the  observability  matrix Q, is full rank. As 
previously  mentioned,  the  form  given  in Eq~(3.42) has  an  observability  matrix 
equal  to an identity  matrix. 

If  we compare  Figs. 3.1 and 3.2, or Figs. 3.5 and 3.6, we  notice a certain 
similarity of structure.  In  particular,  they are dual systems. In  Chapter 1, Def. 
1.8, we  briefly  touched  on  the  concept of duality.  The  equivalent  block  diagram 
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RGURE 3.6 Observability  (Observable) Canonical Form 

changes  necessary  to  construct a dual  system  are: t6 exchange  input  and  output, 
reverse  the  order of  labeling  the  state  variables,  reverse  the  signal  flow  directions 
and  replace  tap-off  points  and  summation  junctions with summations  and  tap-offs, 
respectively.  Thus,  for  instance,  Figs. 3.1 and 3.2 are dual diagrams.  In  the 
sequel  three  computational  procedures  for  calculating  the  representations  in 
Eqs.(3.41) and (3.42) will  be  presented.  However,  using  the  concept  of  duality, 
only  the  transformation  to  controllable  form  will  be  given,  with  the  understanding 
that  transformation  of  the  dual  system to controllable  form  results  in the 
transformation  of  the  original  system  to  observable  form.  Also  at  this  point  in the 
text,  since  readers  will  have  obtained  some  experience  using  algorithms,  we  will 
begin to present  the  procedures  in a slightly  more  abreviated  manner. The reason 
that  more  than  one  procedure  is  presented  is  that  some  ideas  of  these  procedures 
will  be  used  in  the  subsequent  discussions  of  canonical  forms for MIMO systems. 

3.2.3 Transformation  to  Feedback  Controllable  Form 

Procedure 1: 

The problem  is  to  determine  the  similarity  transformation  matrix T which  will 
transform a given  controllable  representation R = {A, b, c) into  the type of 
representation  shown  in Eqs.(3.1  l), i.e., 

A ,  b ,  c ,  T" (SZR) -A, ,  b,, c, (3.43) 

It  is  desired  that T should  be  of  the  form  given  by Eq.(3.36), with  the  first 
where,  according  to Eq.(3.32), A, = TAT', b, = Tb, and c, = cT'. 

row  of T selected to satisfy 
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b, = T b  (3.44) 

where b, is specified  as in Eq.(3.11). In scalar  form Eq43.44) becomes 

0 = t b  
0 = t A b  
0 = tA2b 

0 = tAn-2b 
1 = tA'"'b 

. . .  (3.45) 

In turn,  the Eqs.(3.45) may  be  collected  into  the  following  vector  form 

[0 0 0 -1. 0 l ]  = t[b  Ab A2b ... A'"'b] (3.46) 

Note that  the  right hand sideis simply tQ,, where Q, is the  controllability  matrix 
of the given  pair {A, b). Thus, t can be  calculated  from Eq(3.46) using the 
inverse  of Q since  the  system is assumed  to  be  controllable. 

The  following  steps  summarize Procedure I: 

l 1. Define a state  representation {A, b, c}  
2. Set A, b (QC) * Q, 

3. Partition Q;' + , where t is the  last  row 

I 4. Set A, t (eo) T 
5. Set A, b, c, T' (STR) * A,, b,, c, 

Procedure 2: 

Again  considering Eqs.(3.45), note  that  the  first (n-l) equations can be 
written in the  vector  form 

t[b  Ab A2b A'"'b] = 0 (3.47) 

The interpretation  of Eq.(3.47) is  that t is a multiple  of  the  transpose  of  the  null 
space  matrix  of (Q,,)', where Q,' contains  the  first (n-l) columns  of Q, i.e. 

t = a NT , where Q: N = 0 (3.48) 

The factor a in Eq.(3.48) can  be  determined  from  the  last  row  of Eqs(3.45) to satisfy 
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a NTAn" b = 1 

This  calculation  leads  to 

1 a = -  
NT 9,. 
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(3.49) 

where 9, is  the  last  column  from Q. The  following is a summary  of  this 
procedure: 

1. Define a state  representation (A, b, c) 
2. Set A, b (QC) =j Q 

3. Partition Q, * [ QC1 q, , where q, is  the  last  column 

4. Set QIT (Null) * N , so that QIT N = 0 
5.  Set ]/(V q 3  * a 
6. Set M a  * t 
7. Set A, t (Qo) * T 
8. Set A, b, c, T' (SnZ) * A,, b,, c, 

Procedure 3: 

Consider  the  transfer  function  matrix G(s) of a strictly  proper  single  input, 
multi-output (SIMO) system {A, b, C}, where {A, b} is  equal to {A,, b,} given  by 
the  structure of Eqs.(3.1 l), while C = I,,, i.e. 

(3.50) 

In this case m = 1 and p = n, so that W,@) is (n X l), i.e. an n-dimensional 
column: 

(3.51) 

Due to the  special  form  of A, and b,, it may  be  easily  verified  that the polynomials 
W&) are given  by 

WJS) = S"' , for 1 s i  s n (3.52) 
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leading  to  the  matrix W, = I,,, see Algorithm S S P  in  Section 1.3.9. The z* row 
of W, contains  all n coefficients  of the n-l* order polynomial W&). 

Recall  that a similarity  transformation P does  not  change  the  transfer  function. 
Therefore,  for an arbitrary  state  realization and nonsingular P, the following 
equation  holds 

C (SI - A)" b = C P (sP" P - P" A P)"  P" b (3.53) 

If P = TI is  selected  to  satisfy Eq.(3.43), then  from Eqs.(3.50), (3.51) and (3.52), 
Eq(3.53) can be  written  as 

c W(s) = CP W&) (3.54) 

where W,@) is defined  in Eq(3.50) and W(s) is given  by 

W(S) = adj (SI - A) b (3.55) 
Using the definition  of  the  matrix W in the PMF introduced  in  Chapter 1, 
Eq(3.54) may be  formally  written  as 

which,  because W, = I,,, finally  leads  to P = W. The  following  steps  summarize 
the  previous  development: 

1 .  Define a state  representation {A, b, c}  
2. Set  the  number of columns  of A =) n 
3. Set On,, =$ d 
4. Set &," I 
5. Set A, b, I, d (SSTF) =$ a, W 
6. Partition W * [P 21, where P is (n X n) 
7. Set A, b, c,  P (STR) A,, b,, c, 

Note  that  in  Step 5, where  the SSTF algorithm is executed, the characteristic 
polynomial a is not  used.  Only  the  second  output  argument  in  polynomial  matrix 
form (PMF) is required.  Since d in Step 3 is  defined as a zero  vector,  the  last 
(n+l)"' column  in W contains  zeros, and the  first n columns  contained in P, Step 
6, are used  as  the  required  similarity  transformation  matrix. 

In conclusion,  the  following  comments are worth  mentioning. Thefeedbuck 
form  of Eqs.(3.11) and Observability form  of Eqs.(3.42) have  the  same  system 
matrix  of the structure Eq.(3.37). In other  words, in Eqs.(3.11) A, = TAT', 
where T is the  observability  matrix  of  the  pair {A,t}, given  by Eq(3.36). In spite 
of the fact  that an observability  matrix  is  used,  the  form Eqs.(3.11) is considered 
to  be a controllable  form,  since  according  to Eq(3.46) the  row t exists  only  if  the 
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pair  {A,b}  is  controllable.  Similarly,  in Eq~(3.42) A, exists  only  if  {A,c) is 
observable.  In  the  next  section  we  will  consider  the  calculation  of  SISO  canonical 
forms  when the system  transfer  function is given. 

3.2.4 Transformations: g(s) =+ SISO Canonical  Forms 

The  above  procedures,  as  well  as Eq~(3.38) to (3.40), are applicable  in  the 
case  when,  given an arbitrary  SISO  representation R = (A,b,c,d), it is  required 
to  obtain  a  controllable or  observable  form.  Note  that in this  case it is much 
simpler to obtain  the  controllability or observability  form, Eqs(3.38) to (3.40), 
than the feedback or observer form. It frequently  occurs,  however,  that  given  a 
transfer function g(s) = b(s)/a(s) of  a  SISO  system,  a  controllable or observable 
form  is  sought. In the  sequel four  algorithms  for  calculating: 

0 Feedback  and  observer forms, and 
0 Controllability  and  observability forms 

are given, assuming  that  a  transfer  function g(s) = b(s)/a(s) of  a  SISO  system is 
given.  These  algorithms  will  be  compared  with  the  previously  given  algorithms. 
I t  will  be  shown  that  when g(s) is  given,  the  algorithms  for  calculating  feedback 
and  observer  forms are simpler than the  procedures  for  calculating  controllability 
and  observability  forms.  This  discussion  should  also be considered as an  "intro- 
duction"  to  the M M 0  case,  which is more  challenging than the SISO case. 

Algorithms: Algorithms g(s) =b(s)/a(s) I) Four SISO Canonical Forms 

The  numerator b(s) and the  denominator a(s) are defined  by: 

n n 

b(s) = c b,s' and a(s) = c ais' , with a,= 1 
1.0 1.0 

let: 

where 

W = [ b bn] 

b = [bo b, bn- , ]  

a = [U ,  a, ... an-, ]  

while 

S, = [ l  0 0 01 and S,, = [ 0  0 *e* 0 l ]  

are the  first and the n"' row  of an (n x n) Identity  matrix I,,. Note  that 
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where z is an appropriate  row  of  zeros. Also, for a, # 0, let dl = b&,. 
If 6 # 0 , then dl = b(s)/u(s) for an arbitrary S different from a root of a@), 
i.e.  pole  of g(s). 

canonical  forms: 
The  following  algorithms may be used for calculating  desired  state  space 

1. g(s) * Feedback  form, R, = {A,, b,,  c,, d,) 

Symbolic  form: a, W (Rcl) * A,, b,, c,, d, 

2. Set S,,= * b, 
3. Set b - a b,, * c, 
4. Set b. =$ d, 

2. g(s) * Observer  form, R, = {A,, bo,  c,, do) 

Symbolic  form: a, W (Rol) A,, b,,  c,, do 

2. Set bT - arbn * bo 
3. Set S,, * c, 
4. Set b,, =$ do 

Obviously,  due  to  duality: A, = A:, bo = c:, and c, = b:. Note  that  when 
b,,=O, i.e. when g(s) is "strictly"  proper,  then: 

in R,: c, = b and d, = 0, while 
in R,: bo = bT and do = 0. 
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3. g(s) .e Controllability form, R, = {A,,  b,,  c,,  d,} 

Symbolic  form: a, W (Rc2) =$ A,, b,, c,, d, 

Z I  

In -1  I 
1. Set ---- + -a7 

2. Set stT* b, 

* 

* A ,  

3. Set A,, S, (Qo) =) Q, ( Q, has n+ l  rows) 
4. Set W Q, * c, 
5. Set cJ;'b, + dl * d, 

4. g(s) * Observability form, R, = {A,, bo, c,,  do) 

Symbolic  form: a, W (R02) * A,, bo, c,,  do 
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2. Set A,, snT (QC) * Q, ( Q, has n+l  columns) 
3. Set Q,w' * bo 
4. Set S, =$ c, 
5. Set cJ;'b, + dl do 

Again  by  duality: {A,, bo, c,} = {A:, c:, b,?. 
Since A, and A, in  Algorithms Rc2 and R02 are of  a  simple  structure, it is 

relatively  easy  to  verify  these  algorithms. It is interesting  to  note  that A, in  the 
feedback  form is equal  to A, in the observability  form,  and  also A, in the  observer 
form is equal  to A, in the  controllability  form. 

Comparing  these  algorithms,  it  may  be  concluded  that  when g(s) is given, it 
is  easier  to  calculate  feedback  and  observer  forms than controllability  and 
observability  forms.  However,  recall  that  when an arbitrary R = {A,b,c,d} is 
given,  then it  is much  easier  to  obtain  controllability  and  observability  forms  than 
feedback  and  observer forms,  since the controllability  and  observability  forms are 
simply  derived  by  a  similarity  transformation  where  the  controllability or 
observability  matrix,  respectively, is used as  a  transformation  matrix. 

This  situation  might  suggest  the  following  "alternate"  procedures: 
Instead  of a, W (Rc2) * A,, b,, c,, d, , one may  use the sequence: 
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1. a, W (Rcl) * A,, b,, c,, d, 
2. A,, b, (QC) * Q, 
3. A,, b,,  c,, Q, (STR) =) A,, b,, c, 

And according to the  principle  of  duality,  instead  of a, W (Ro2) * A,, bo, c,, do , 
the sequence  of  Algorithms Rol, Qo and STR may be  used. This  is  left as an 
exercise  for  the  reader. 

On the  other  hand, if an arbitrary  controllable  realization R = {A,b,c,d) is 
given,  and the feedback  form R, = {A,,  b,, c,, d,} is  sought,  then,  instead  of 
procedures  discussed in Section 3.2.3, one may  use the following  sequence: 

I 1. A, b,  c, d ( S S W  * a, W 
2. a, W (Rcl) * A,, b,,  c,, d, 

Again,  duality  may  be  applied  if  the  observer  form  is  required.  As  will be seen in 
next  sections, in the  case of MIMO models  the  things are not as simple. 

Examples Consider  the 5"' order,  non-strictly  proper  transfer  function g(z) = 
b(z)/u(z) where: 

-numerator b(z) coefficients b,, i=[O,n], n=5, are: 

.85 1.62  -4.43 -5.67 1.06 2.14 

0 -denominator u(z) coefficients U,, i=[O,n] are: 

12 .22 -.69 -.70 -1.34 1.00 

Feedback Form  [Algorithm Rcl] 

I .oo 1.00 .oo .oo .oo I .oo 
I .oo .oo 1.00 .oo .oo I .oo 
I .oo .oo .oo 1.00 .oo I .oo 
I -00 .oo .oo .oo 1.00 I .oo 
I """"""""""""-""""+""" 
I -.l2 -.22  .69 .70  1.34 I 1.00 

I .59 1.15  -2.95  -4.17 3.93 I 2.14 

Observer Form [Algorithm Roll 

I .oo .oo .oo .oo -.l2 I .59 
I 1.00 .OO .OO .OO -.22 I 1.15 

.OO .OO 1.00 .OO .IO I -4.17 
I .OO 1.00 .OO .OO .69 I -2.95 

I .oo .oo .oo 1.00 1.34 I 3.93 
I """"-""""""""""""+""" 
I .OO .OO .OO .OO 1.00 I 2.14 
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Controllability Form [Algorithm R c ~ ]  
.oo .oo .oo .oo -.l2 i 1.00 I 

1.00 .oo .oo .oo -.22 , -00 I 
.oo .oo 1.00 .oo .70 -00 I 
.oo .oo .oo 1.00 1.34 I .oo I 

.OO 1.00 .OO .OO .69 I .OO I 

,""""""""""""""""+"""" I 

3.93  1.09  1.26  6.31  9.82 I 2.14 I 

Observability  Form [Algorithm R o ~ ]  
.oo 1.00 .oo .oo  .oo I 3.93 I 
.oo .oo 1.00 -00 .oo I 1.09 I 
.OO .OO .OO 1.00 .OO I 1.26 I 

-.l2  -.22  .69 .70 1.34 I 9.82 
.OO .OO .OO .OO 1.00 I 6.31 

""""""""""""""""-+"""" I 

1.00 .OO .OO  .OO .OO 2.14 

In  the  next  section  we  will  begin  to  extend  our  modeling  techniques  to  include 
multiple  input,  multiple  output (MIMO) systems. 

3.3 Canonical  Forms for MIMO Systems 

In order  to  discuss  canonical  forms  for MIMO systems,  it  is  first necessary 
to  define  the  concept of controllability and observability indices. Assume  a  given 
(nxn)  state  matrix A, full  column rank (nxrn) input  matrix B and  full  row rank 
@ x n )  output  matrix C describing  a  controllable  and  observable  system.  Then,  the 
controllability  matrix Q, has  dimensions (n x m) and  the  observability  matrix Q, 
has  dimensions (np x n). Since, by  assumption  the  system  is  controllable  as  well 
as observable,  there  must  be n linearly  independent  columns  in Q, and n linearly 
independent  rows  in Q. In  each case  a  nonsingular n x n  transformation  matrix 
may be formed  and  used  to  derive  the  corresponding  controllable or observable 
canonical  forms. 

Controllable  and  observable  forms  to  be  discussed  in  this  section  are MIMO 
versions  (generalizations)  of  the SISO controllability and SISO observability forms 
calculated by Eqs.(3.38) to (3.40) and  represented  by Eqs.(3.41) to (3.42) and  Figs. 
3.5 and 3.6. Note  that in the SISO case  all n columns  (rows)  from Q, (Q,) are 
used  in the  similarity  matrices,  while  in  the MIMO case,  as  we  know,  there  are 
more  than n columns  (rows) in Q, (Q,). Consequently, an appropriate  selection  of 
linearly  independent  vectors  is  required.  In  the  following  general  discussions,  the 
controllability and observability forms  are  treated  separately,  although  there  is much 
similarity  due  to  the  principle of duality. 
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3.3.1 Controllability  Forms - General  Discussion 

A natural  way  to  search  for  linearly  independent  columns  of Q is to  begin 
from the left,  as  follows: 

Q, = [bl b, ... b,,, I Ab, ... Ab,,, I . . . I A*"b, ... A""b,] (3.57) 

Suppose  that  in  the first q groupings  of m columns  each  we  find r, dependent 
columns, 0 5 i I 9-1. In particular, r, dependent  columns are found in B; r,, in 
AB; etc..  For a full  rank B, r, = 0. As a result of  this  choice  of  searching for 
independent  columns,  it  is  easily seen that 

0 5 r,, ?; rl S ... S r,,-l m 

and rk = m  , for k > p  

where p is  the  smallest  integer  such  that 

rank[B AB ... A'B]- = rank[B AB ... A'+'B] (3.58) 

Thus, at some  point  there  are n linearly  independent  columns,  and  all  subsequent 
columns  to  the right are dependent.  Notice  that  the  controllability  of  the  pair {A, 
B) can be  checked  from [B  AB  A2B . .. Ap'B], where p is less  than n. The 
parameter p is  defined  to  be  the controllability index for the  system  with  state 
matrix A and  input  matrix B. 

Searching  by  Columns: Since  there  are many ways,  in general, that n 
linearly  independent  columns may be  chosen  from Q, let us introduce a convenient 
graphical  device,  called a crate diagram for  "visualizing"  the  different  possibilities. 
The crate is a table  consisting  of m columns,  one  for  each  column  of  the B matrix; 
and  up  to n rows,  one  for  each  power  of A in Q,. In this  manner  the (j,i)"' cell 
represents  uniquely  the  column  of Q, given by A'"bi. Selecting n independent 
columns  of Q corresponds  to  selecting n cells in the  crate.  Such a diagram is 
illustrated  in  Fig. 3.7  for an m=3 input, n=7 state  system.  Once  the  basic 
representation is understood, we will  discuss  two fairly natural  ways to search the 
crate  for  the  required  linearly  independent  columns.  Remember  that  each  cell 
represents a vector;  thus, e.g. the  first  Vow"  of  the crate diagram  in  Fig. 3.7 
corresponds  to  the  three  columns  of  the B matrix  (of  the  assumed  3-input  system). 
First b, is selected  and a 1  is marked in cell (1,l). Next,  continuing  with  the  first 
column, Ab, and A2b, are considered  and  found  to be independent, so a 1 is 
marked  in cells (2,l) and (3,1), while A3bl is  found  to be dependent  and a 0 is 
marked  in  cell (4,l). Moving  to  the  next  column, b2 is added  to  the  collection  of 
independent  vectors.  Also Ab2,  A2b2 and A3b2 are added, but not A4b2, since  it is 
found  to  be  dependent on the  previously  selected  columns. At this juncture  the 
required n=7 linearly  independent  vectors  have  been  selected, and the  process is 
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complete.  Note  that  in  this  selection  plan  the  last  column  of B is not  represented, 
although B is assumed  to be  full  rank.  This  is an example  of  selecting  the 
independent  columns of the  transformation  matrix T for  a MIMO system,  which is 
a  possible  generalization  of Fq(3.38) to  the MIMO case.  We  will  refer  to  this 
method as searching by columns. The  reader  should  note  that  the  results can be 
widely  different  with  a  simple  re-ordering  of the inputs.  There is a  tendency  to 
generate  a  few  long  "chains"  with  this  method. 

~ b, b2 b3 

1 

1 

0 1 

1 0 

1 1 

1 

0 

A0 

A' 

A2 

A3 

A4 

FIGURE 3.7 Search-by-Column  Example of a Crate  Diagram 

The resulting  state  space  model  obtained  by  performing  a  similarity 
transformation  using  the  collection  of  independent  vectors  found is  a  generalization 
of  the SISO system of Eqs.(3.41). In particular,  the  crate  diagram of Fig. 3.7 
indicates  that  using the similarity  transformation 

T = [bl Ab, A'b, b, Ab, A2b2 A3b,] (3.59) 

the  calculations A, = T"AT and B, = T"B 

implemented  by A , B , C ,  T ( S T R )  - A, , B,, C,  

result in  the  following  state  space  structure: 

- 0 0 x ~ 0 0 0 x  

1 0 x ~ 0 0 0 x  

0 1  X I O O O X  

0 0  x 1 0  0 o x  

0 0 x 1 1  o o x  

0 0  x 1 0  1 o x  

0 0 x ~ 0 0  1 x  

" "_ "_ 
A, = 

+ - - - - - - - - - - - 

- 1  0 x 

o o x  

0 0 %  
" "- " 

, B,= 
0 1 x  

o o x  

0 0 %  

o o x  
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where  the x's denote  possibly non-zerohon-unity values. The C matrix has no 
particular  form. 

Search by ROWS: Let us  now  consider a similar  example  (of order 7 with 3- 
inputs)  and  search  the crate by rows. Refemng to  Fig. 3.8, we again  begin  with 
a 1 in  the (1,l) cell.  Since  the  rank  of B is m, both 9 and are linearly 
independent. In the  second  row Ab, and Ab2 are found  to  add  to the  collection in 
independent  columns,  but Ab3 is not.  From  the  next  rows  only A2b, and A3b2 are 
found  to  be  linearly  independent  to  complete  the  set.  Once a vector A%* has  been 
found  to  be  linearly  dependent, it  is  not necessary to  check  other  vectors  within  the 
same crate column, AB,, k > j ,  since  they are always  dependent  on  previously 
selected  columns,  as  will  be  verified  later.  With  this  selection  plan  there is a 
tendency  to  generate  shorter chains, and  when B is full rank,  all  columns of B are 
represented  in  the  selected  set. 

Ordering by Columns of the  Crate  Diagram: To obtain a controllable 
form,  the  vectors  of  the  selected  set  must  be  arranged  to  form a similarity 
transformation  matrix T. Two  specific  orderings  have been used.  The  first is by 
"chains" associated with a particular  column  of B, i.e. by columns of  the crate 
diagram  (although  the selection is  done by rows). In this  case T becomes 

T = [bl  Ab, b, Ab,  A2b,  A3b2 b3]  

AO 

A' 

A2 

A3 

A4 

FIGURE 3.8 Search-by-Row  Example of a Crate Diagram 

(3.61) 

Using A, = T ' A T  amd B, = T'B results in a state  space  model  of  the  following 
form: 
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A, = 

0 x ~ 0 0 0 x ~ x  
1 x ~ 0 0 0 x ~ x  

0 x ~ 0 0 0 x I x  

0 x ~ 1 0 0 x ~ x  

0 0 ~ 0 1 0 x ~ 0  

0 0 ~ 0 0 1 x I 0  

0 x ~ 0 0 0 x f x  

" "  + " " " "  + "  

" "  + " " " "  + " 

l 0 0  

0 0 0  
" " " 

0 1 0  

0 0 0  

0 0 0  

0 0 0  
" " " 

0 0 1  
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(3.62) 

where  the x's are again  possibly  nonzero  values.  And as in  previous  case,  the C 
matrix  has  no  particular  form.  The A and B given  in Eq(3.62) represent  another 
generalization  of  the SISO system  of Eqs.(3.41); the  differences lie in  the  selection 
of  the  particular n columns  of Q to  be  used  in  the  similarity  transformation. 

Ordering by Rows of the  Crate  Diagram: Another  formulation  of T is 
more  natural  since  it  follows  the  process  of  selecting  columns.  In  this  case the 
linearly  independent  columns are arranged  according  to  the  unit  elements  in the 
rows of  the crate  diagram, and T is  obtained  as 

T = [bl b, b, Ab, Ab,  A2b,  A'b,] 

which  results  in a state  space  model  given by: 

A, = 

o o x x o o x  
o o x x o o x  
o o x x o o x  
1 0 x x 0 0 x  

0 1 x x 0 0 x  

0 0 0 0 1 0 x  

0 0 0 0 0 1 x  

9 B, = 

1 0 0  

0 1 0  

0 0 1  
0 0 0  

0 0 0  

0 0 0  

0 0 0  

The  pair {A,,B,} given  in Eq(3.62) is  called a controllable Luenberger canonical 
form, while  the  pair {A,,B,} in Eq(3.64) might  be  called a modped Luenberger 
form, or simply a controllability form. The  interesting  property  of  Luenberger 
forms,  illustrated by Eq~(3.60) and (3.62), is  that  the  matrix A, is of  "block 
diagonal"  structure,  having in the  main  diagonal  blocks  corresponding  to h* order 
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SISO  systems, i = [ l , m ] .  Because  of  this  property,  at  its  introduction  this  form 
gained  instant  popularity  within  the  systemdcontrols  community.  However, as will 
be  mentioned  later,  the  Luenberger  form  does  not  prove to be  particularly  useful 
in specific  applications. 

Since  the  transformation  matrices T in Eqs.(3.61) and (3.63) contain the Same 
columns,  only  arranged  differently,  the  controllable  forms  of Eqs.(3.62) and (3.64) 
are rather  similar. In fact,  they  have  the same elements,  only  arranged  differently. 
Note  that,  for  instance,  in Eq(3.64) the  zeros  at the end  of  columns 3 and 4 appear 
in Eq.(3.62) at  locations 5 and 6 in  columns 2 and 7. Considering  the structure of 
Eq.(3.64) as being a more  narural generalization  of  the SISO case,  and, as will  be 
shown  later,  more  convenient for use in  various  applications,  only  the  structure 
type of Eq(3.64) will  be  used  in  the  sequel. A perhaps  stronger  justification  of  the 
use  of  the  modified  form  is  that it is  more  natural (and convenient)  to  form  the 
columns  of T in the  order  that  they are checked  for  linear  dependence  (by  rows  of 
the crate  diagram) than to "rearrange" them  into  chains,  i.e. by columns  of  the 
crate  diagram. 

Controllability Indices: We  previously  defined  the controllability index for 
the  pair (A,B} as  the  smallest  integer, p ,  such  that 

rank[B AB ... Ap"B] = n 

In  the  previous  discussion the word chain was  used  to  describe the  string of  linearly 
independent  vectors  generated  from a single  column  of B by  continued 
multiplication by A. Another  way to view  the controllability  index is as  the  number 
of  vectors in  the  longest  chain. In this  context  we  define  the controllability indices 
(plural)  as  the  set of integers { p , } ,  1 I i I m, identifying  the  lengths  of  the  chains 
of each  column  of B. In  terms  of  the crate diagram  the  controllability  indices are 
the  number  of l's in  the  columns.  For  instance,  in  the  example  of  Fig. 3.8 the 
controllability  indices  are {2, 4, l}. With  these  definitions  one can see that 

(3.65) 

P, + P2 + ... +Pm i n  (3.66) 

The  equality  holds  if  the  system  is  controllable.  Note  that  for a given  pair (A,B} 
the set { p , } ,  1 I i I m is unique. I t  is  noted  that  once a dependent  column is 
found  in a search-from-the-left  process  on Q,, then  any  subsequent  column 
corresponding  to  that  column  of B, i.e. any element  in  that  column  of the crate 
diagram,  is  also  dependent  on  the  columns  of Q to  its  left. For  example,  suppose 
that 

Ab2 = a,b, + ... + ambm + am+,Ab, 
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then, A2b, = a,Ab, + ... + a,Ab, + a,+lA2bl (3.68) 

Likewise, Ai b2, 3 5 j 5 n- 1 are  linearly  dependent on their  left-hand-side  columns. 
It may be shown  that the set  of  controllability  indices p of a  pair {A,B} is 

invariant  under  any  similarity  transformation.  However,  under the permutation of 
columns b, of the  input  matrix B, the  set p is  not  "completely"  invariant. To be 
precise,  it may be  stated  that  under an arbitrary  permutation  of  columns b, the  set 
of controllability  indices  is  invariant  "modulo  permutation."  The  conditions  under 
which  the  values p, of  the  set p remain  invariant  are  presented  in  detail in the 
references  at  the  end  of  the  chapter  and  will  not  be  pursued  here. 

To summarize  this  subsection, any n linearly  independent  columns of Q can 
be used  to  generate  a  "controllability  form"  state  space  model.  The  subsequent 
discussion,  corresponding  to  "observability  form"  models,  will  be  brief,  calling 
upon duality for many developments. 

3.3.2 Observability  Forms - General Discussion 

In a manner  similar  to  the  previous  discussion,  we  will  discuss  possible 
variations in constructing  state  space  models  which  are  generalizations  of  of  the 
observability SISO  observable  form Eqs.(3.42). Beginning  with  the  observability 
matrix Q,, we  consider  the  problem  of  searching for linearly  independent  rows. 
Recall  that  the  dimensions of Q, are (np x n). Assuming  that  the  system is 
observable, Q, must  have  rank n and,  therefore, n linearly  independent  rows. 
Following E4.(3.57), let  us  display Q: 

It is  easily  seen  that  the  comments  made  regarding the columns  of Q can be made 
for  the  rows of Q, i.e. using  the  concept  of  duality. To summarize,  the 
observability  index for the  pair {A,C} is  the  smallest  integer, v ,  such  that 

rank[CT ATCT ... (AT)"'CT] = n (3.69) 

Observability  indices (plural)  are  defined  as  the  set  of  integers (v , } ,  1 5 i S p ,  
identifying  the  lengths of the chains of  each  row  of C. For  instance,  the  rows 

generated  by  row i are  linearly  independent up  to  (and  including) c1AVt". With 
these  definitions  one can  see  that 

v = VI, vp v3, -, vp l 
and v p + v 2 + - . +  v n 

The equality  above  holds if the  system  is  observable. To summarize,  any n linearly 
P 
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independent  rows  of Q. can be used to  generate  an  "observability  form"  state  space 
model.  And, as was  stated earlier,  only  the  version  which is dual  to  the  structure 
given  in E4s.(3.64) will  be  used  in  the  following  developments. 

3.3.3 Pseudo-Controllability  Indices  (PCI) 

In generating  controllable  forms  with  complete  flexibility, it is  necessary  to 
investigate all possibilities of obtaining n linearly  independent  columns  from Q,. 
To achieve  this  flexibility, it has  been  realized  that it is not necessary in a  search- 
from-the-left  process of Q, to  check each column A"br, j=[O,n-l], i=[l,m]. A 
particular  column  may  be  skipped  intentionally,  even  if it has  been  found  to be 
linearly  independent  with  respect  to  the  previously  selected  columns.  However,  in 
order  to  obtain  a  useful  set of n-linearly  independent  columns  from Q,, if  a  column 
A%, is skipped, then,  in  the  spirit  of EQ~(3.67) and (3.68), all other  columns 
Ai"'b,, for h = [l ,2,. . .], should  be  skipped,  regardless  of  whether  they are linearly 
dependent, or not. It has  been  verified  that  under  this  "selection  method," the total 
number  of  combinations  to  check is k, given  by 

k = ( n - l )  = (n-l)!  (3.70) 
m - l  (m-l ) !  (n-m)!  

We  say  that  a  particular  selection  of n columns is admissible if they are linearly 
independent. 

Since,  for  a  given  pair {A,B), there are now  more sets of linearly 
independent  columns,  there are consequently  more sets of  integers {pi) indicating 
the  lengths of chains A%,, j=[O,pi-l],  for  each b,. These  sets are referred to as 
admissible sets of pseudo-controllability indices (PCl). This  same  concept  of PC1 
is  also  called, by some  authors, nice indices. To formalize  the  ideas,  let  us  define 
the following: 

Definition 3.1 The set of individual controllability indices, (ai), 
1 S i S m ,  is  defined  by 

a,  = rank [ b, Ab, ... A""b,] (3.71) 

where b, is the im column  of the  matrix B. 

For  convenience  we  will  use  a notation similar  to  the  controllability  indices 
of Eq.(3.65), since  the  concept of  pseudo-controllability  indices is a  generalization 
of  the  notion of "standard"  unique  controllability  indices  discussed in the  previous 
section. 
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Definition 3.2 The set of pseudo-controllability  indices, {p,}, 1 < i s m ,  
is  any  set of  numbers  satisfying 

m 

l s p f < n - m + l ,  a n d x p , = n  
i -1  

(3.72) 

Definition 3.3 The  set  of  pseudo-controllability  indices, {p,}, 1 S i l m ,  
is admissible if 

(3.73) 

It has  been  shown  that  an  element p ,  of  an admissible  set  satisfies: 

Pi * ai (3.74) 

If  we  make the  reasonable  assumption  that B is  full rank, i.e.  that the 
columns  of B are  linearly  independent,  then the individual controllability indices are 
each  constrained  to be between 1 and n; while  each pseudo-controllability index of 
an admissible  set {p,) is  a number  between 1 and (n-m+l) .  If B is not full  rank, 
an  input  transformation  may be  performed  to  eliminate  the  "redundant"  input(s). 

3.3.4 Pseudo-Observability  Indices (POI) 

Pseudo-observability indices are used to  establish Observability form state 
space  models.  We  will  use  the  notation  of  the  set {v,} in referring  to  either  the 
unique  set  of  observability  indices or a  set  of  admissible  pseudo-observability 
indices.  This  is  justified by the  fact  that  the  unique  set  of  observability  indices  is 
always  one of the  sets  of  POI. The same is  true  of  the  unique  set  of  controllability 
indices  being  a  member  of  the  PCI.  Since  this section provides an important 
background  for  subsequent  chapters,  a  detailed  description  is  presented. A specific 
example  will  help  to  illustrate the concept. 

Consider  a  system  with  order n=7, m=2 inputs  and p = 3  outputs.  We  are 
not  interested  specifically  in  the  unique  set  of  observability  indices,.but  suppose  that 
the  set  of  unique  observability  indices is  given by 

v = { v i ]  = {3,2,2) 
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As we  will  show soon, the  use  of  this  unique  set  of  observability  indices  does  not 
necessarily  lead  to  the  most  convenient  system  representation.  Taking  into  account 
that the use of  admissible  sets  of  pseudo-observability  indices offers more  flexibility 
in  choosing  the  appropriate  model, in the  sequel  we  will  pursue  the  selection  of the 
most  convenient  set  of  (pseudo)  observability  indices. 

Knowing  that  the  system order  is 7 and that the number of outputs is 3, there 
are several  possible  observable  form  structures  that  may  be  considered.  According 
to Eq.(3.70), the  total  number  of  sets of pseudo-observable  indices {v,} is 15. 
Specifically,  the  following  combinations are possible: 

v1 

- -v3- 

v , = 1 2 1 3 2 1 4 3 2 1 5 4 3 2 1  

r s 4 4 3 3 3 2 2 2 2 1 1 1 1 1  

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5  1 
However,  according  to Eq.(3.70), the  number  of  admissible  sets  is  less  than, or 
equal  to 15. To  simplify  the  discussion,  we  will  only  consider  the  following  sets 
of possible POI with  the  assumption  that they are admissible. 

p 1  
Indices 

Note that  in  each  case  the  "observability  indices"  sum  to n=7. We can use a crate 
diagram  to  represent  each of these  three  cases.  The  crate's  column  entries 
correspond  to  rows  of Q, associated  with a particular  output.  Both  here  and in 
subsequent  chapters  the  (reasonable)  assumption  is  made  that  the  outputs,  i.e.  rows 
of C, are linearly  independent.  Consequently,  the  first  row  of  the crate  is  always 
selected. mi 

0 0  

m 
0 0 

mi 
0 0  
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Crate  diagrams are simply  a  graphical  method  of  visualizing the  selection  of 
linearly  independent  rows  from  the  given  observability  matrix. For example,  with 
the  columns  of  the  crate  being  associated  with a particular  row ci of C, the  center 
crate  above  indicates  that,  among  the  possible  choices  of n linearly  independent 
rows  from Q, the  independent  elements  selected  are  the  rows: 

c,, Q, c3,  clA, c,A, c,A2, and c3A2. 

From  the  crate  diagrams  several  related  "selector  vectors" are generated: 

0 By omitting the first row of, say the  center  diagram,  corresponding  to 
the  indices  (3,1,3},  the  vector v i  is created  by  selecting the  non-blank 
elements  row-wise: 

v i  = [ l  0 1 1 1 0 01' (3.75) 

From vi the binary  complement is  formed,  and  denoted  as v,: 

v , = [ O  1 .o 0 0 1 l ] '  (3.76) 

0 By considering  the  blank  elements  to  be  zeros, vi i  is  formed  in  like 
manner,  but  with  row  1  included: 

Vl, = [ 1 1 1 1 0 1 1 0 1 0 0 01' (3.77) 

0 Finally, vid is  formed  by  again  including  the first  row,  but now  taking 
the blank  elements  of  the  diagram  to  be  unit  valued,  and  finally  taking 
the binary  complement,  leading  to: 

vld = [ O O O O 1 O O O O 1 O 1 3' (3.78) 

The above  selector  vectors are uniquely  determined  by  the particular  set  of pseudo- 
observability  indices,  or  equivalently,  the  location of the unity  elements  in the 
corresponding  crate  diagram. As will  be  shown later,  these  selector  vectors  greatly 
facilitate  calculation  of  the  observable  forms  based  on  the  chosen  set  of 
observability  indices. In particular,  the  "selector  matrices"  given  in Eqs(3.79) 
below,  derived  from the associated  selector  vectors  by  a  corresponding  selection  of 
columns  from  an  appropriately  dimensioned  identity  matrix, are actually  used  in 
obtaining  the  observable  form. 
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- l O O O O O O O O O O O - ~  

0 1 0 0 0 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0 0 0 0 0  
'1 0 0 0 0 0 d r  

0 0 1 0 0 0 0  

0 0 0 1 0 0 0  

0 0 0 0 1 0 0  

S, = , s , i = o o o l o o o o o o o o  
0 0 0 0 0 1 0 0 0 0 0 0  

0 0 0 0 0 0 1 0 0 0 0 0  
(3.79) 

0 0 0 0 0 0 0 0 1 0 0 0 ~  

'0 1 0 0 0 0 0" 

0 0 0 0 0 0 0 0 0 0 0 1 ~  0 0 0 0 0 0 1 ,  

- o O O O 1 O O O O O O o - T  

s ~ = ~ o ~ ~ o ~ ~  ~ ~ ~ ~ = 0 0 0 0 0 0 0 0 0 1 0 0  

The  selection of  rows  (or  columns)  of  a  matrix  may  be  accomplished  by  a  pre-  (or 
post-)  multiplication by a  corresponding  "selector"  matrix.  Thus,  for  instance, 
since Si in Eq.(3.79) is a (7x4) selector  matrix, the product S,", where M is a 
(7x7) matrix,  results in the  "selection"  of  rows 1, 3, 4 and 5 from M into  the 
(4x7) product.  It will be  clear  in  a  later  development  how  useful  the  selector 
matrices  are in the  formulation of various  algorithms  to  be  discussed. 

To facilitate  further  discussion,  the  dependence  of  the  above  selector  matrices 
on the  set  of  indices Y will  be  formally  represented  by  the  following  algorithm: 

v (SMat) -. v,,, , S,, S , ,  S,, , S,,, where v,,, = m[ vi ) 

In  the  subsequent  discussion  we  will  relate the crate  diagram,  selector  vectors  and 
selector  matrices  to  the  structural  properties  of  a  state  space  observable  form R, = 
{A,, B,, C,, D,). It  will  be  shown  that  for the (3,1,3}  example  from  above 
matrices C, and A, have  the  following  structure: 

A, = 

. 0 0 0 1 0 0 0  

X X X X X X X  

0 0 0 0 1 0 0  

0 0 0 0 0 1 0  

0 0 0 0 0 0 1  

x x x x x x x  

x x x x x x x  

1 0 0 0 0 0 0  

c, = 

0 0 1 0 0 0 0 ~  

(3.80) 0 1 0 0 0 0 0 

The  structure  of  the  pair {A", C,} is  characterized by the  following  points: 
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0 C, consists of the  first p=3 rows of the (nxn)  identity  matrix k. 
0 At locations  specified  by the unities  in  the  selector  vector v,, the  matrix A, 

contains  the  last n-p = 4 rows  of I,,. 
0 At locations  specified  by  the p =3 unities  in the selector  vector v,,, the  matrix 

A, contains  rows  of  elements  which are not  necessarily of  zero or unit  Value. 
0 The  "observability  matrix" Q, of  the  pair {A,, C,}, i.e. 

Q, = [ C: (C,A,)' ... (3.81) 

contains  all n rows  of I,, at  locations  specified  by the n=7 unities  in  the 
selector  vector v,,. 

0 Thep=3 rows of A, containing  not  necessarily  zero or unit  elements  appear 
in Q, at  locations  specified by  the  unities  in the selector  vector vw 

The  results  of Eqs.(3.80) derive  from  the  basic  similarity  transformation, or change 
of state, 

A, = TAT" , B, = TB 
C, = CT", D, = D 

(3.82) 

where R = {A, B, C, DJ is an arbitrary n"' order  observable  state  space 
representation. In order  to  obtain A, and C, given  by Eqs.(3.80), the 
transformation  matrix T in Eq.(3.82), corresponding  to the pseudo-observability 
indices {3,1,3}, is  given by 

T = [ c: < c: ( C , A ) ~  (c,A)* ( c , A ~ ) ~  (c3A2)'IT (3.83) 

It may be  verified  that all n=7 rows  of T are  located in  the  observability  matrix 
Q, of  the  pair {A, C}, i.e. 

Q, = [ CT  (CA)T ... 

at locations  specified  by n=7 unities  in the selector  vector vli, where Y = 3 is  the 
maximum  length  chain.  The  algorithmic  representation  of Eqs.(3.82) and (3.83) 
is 

v (SMat)  - v , ,  S,, si, S l i ,  S,, 

A ,  C (Q01 Q, 

S f Q ,  - T 

A ,   B ,  C ,  T" ( S T R )  - A , ,  B,, C, 

Note  that  the  structure  of Eqs(3.80) is dual to the  controllable  form  given in 
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Eq.(3.64), with the understanding  that the sets of indices used  in  building  these 
forms are different. To emphasize the fact  that  MIMO  controllability  and 
observability  forms  are  not  unique, and that  they are based  on  sets  of  admissible 
PC1  and POI, these  forms  sometimes  will  be  referred  to as pseudo-controllability 
(PCF)  and  pseudo-observability  forms (POF). 

3.3.5 MIMO Feedback  and  Observer  Forms 

In  discussing  feedback  and  observer  forms  for SISO systems  (Sections 3.1.1 
and 3.1.2) it has  been  mentioned  that  these  forms  provide an extremely  useful 
method  of  obtaining  state  space  equations  from  a  given  transfer  function.  Due to 
this  property, SISO feedback  and  observer  forms  gained  great  popularity.  In  the 
case of  MIMO systems,  however,  these  forms  are  not  particularly  popular.  The 
following  discussion  will  give  more  insight  into  this  lack  of  popularity. 

These  forms  are  applicable  only for solving  state  feedback  pole  placement  and 
full  and  reduced-order  observer  design  problems.  However,  efficient  algorithms 
have  been  recently  developed  which  solve  these  problems  directly,  using the given 
state  space  representation,  without the necessity  of  calculating  canonical  forms 
explicitly. 

Also,  for  a  given  pair {A,B} with  unique  set  of  controllability  indices p = 
{ pi }, the  feedback  form  has  a  unique  structure.  In  other  words,  there is no 
flexibility  even  with  the  use  of  pseudo-controllability  indices,  as  compared  with  the 
case of controllability and  observability  forms  discussed  in  Sections 3.3.1 - 3.3.4. 
Specifically, as will  be  shown by examples,  the  structure  of the matrix A, in the 
feedback  form (A,,B,} is  based  on  the  set ji obtained  by  ordering  the  set p of 
controllability  indices of {A,B} in ascending  order.  Thus, A, is  of the same 
structure  for  pairs (A,B) with different  controllability  indices  provided  that  the  sets 
of  controllability  indices of these  pairs  have  the  same  "ordered"  set p. The 
structure of  the  matrix B,, however,  reflects  actual  controllability  indices p of the 
given  pair {A,B}. 

For these  reasons  the  discussion  of  these  forms  will  be  relatively  brief.  Also, 
only  the  feedback  form  will  be  discussed,  since  the  observer  form  could  be  obtained 
by  invoking  the  principle  of  duality.  The  main  properties of MIMO feedback  forms 
{A,,B,} are  as  follows: 

The  matrix A, has m rows with possibly  non-zero  elements.  Locations  of 
these  rows  are  determined by unities in the  selector  vector 8, generated  by  the  set 
of  controllability  indices fi obtained by ordering the set  of  controllability  indices 
p of the  given  pair {A,B} in ascending  order.  Similar  to A, in Eqs.(3.80), the 
remaining n-m rows  contain  the  last n-m rows  of an (n X n) identity  matrix J,. 
Unlike  the  matrix C, in Eqs.(3.80), which is always  of  the  same structure,  the (n 
X m) matrix B, has  non-zero  elements  in the same m rows  determined  by  the m 
unities  in the selector  vector ii,. Moreover,  as  will  be  shown  by  examples,  these 
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m rows are given  by a particular  permutation  of  the  rows  of  the  following (m X m) 
upper  triangular,  nonsingular  matrix: 

1 x x ". x 

1 x *.. x 

B,,, = (3.84) 

l x  

1 -  

where x represents a possible  non-zero  quantity.  Specifically, if the  actual 
controllability  indices  are  already  ordered in  ascending order, then  the 2% non-zero 

row  of B, is equal  to  the l"' row  of B,,,. In  the  general case,  however,  the 1"' non- 
zero row  of B, is equal  to  the ?' row of the  product: 

- 
B,,, = TB,,, , where = p T  (3.85) 

where p and p are rows  containing  actual  and  ordered  controllability  indices, 
respectively. For example, if p = [ 2 l 2 3 and p = [ 1 2 2 3, then T and B,,, 
are: 

0 1 0  

T =  1 0 0 ,  

0 0 1 -  

0 1 x  

B,,,= 1 x x  

0 0 l *  

(3.86) 

It might  be  of  some  interest  to  mention  that in B,,,, Eq.(3.84), the  value  of X at 

locations (id), i < j ,  is  zero if in the  ordered  set p', pi < To be  specific 
in  the  cases  of p given by: 

(2 1 2) and (2 2 l}, both  leading  to  the  set p = (1 2 2}, 

1 x 0   1 0 %  
matrices B,,, are yielding  for  matrices T and B,,,: 1 x and 1 0 

l 1 

0 1 0  

1 x 0  B,,,= 1 0 0 ,  T =  

0 1 0  

0 0 1 -  0 0 1 -  
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and T =  j o 0  1 0 0  l ] ,  B,=[;::] 

respectively. 

The  reason  for  insisting  on  the  structure  of B,,, and 8, for different sets p 
which are equal  modulo  permutation,  is  to  stress  that  the structure of A, is the  same 
and that a particular  "distribution"  of  values pi in  the  set p is reflected  in  the  non- 
zero rows  of  matrix B,, i.e. m rows  of B,,,. 

In  the  sequel  two  algorithms for  calculating  the  pair {A,,B,) in the feedback 
form will  be  given.  It  is  easy  to  verify  that  these  two  algorithms are MIMO 
generalizations  of SISO algorithms  given in Sec. 3.2. We will  refer  to  them  as 
Procedures 1 and 2.  The dual version  of  the  Procedure 1, calculating  the  observer 
form (A,,B,) for  multi-output  systems is  also  given.  It is worth  mentioning  that 
there  is  no MIMO generalization of Procedure 3, Ekp(3.50) - (3.56), based on 
using the (n x n) matrix P containing  coefficients W,,, of the (n-l)" order 
polynomials w,(s) in  the  transfer  function  matrix  (column) "(x) of the  following 
single-input  n-output  system: 

0 1 0  0 1 %  

W@) = C adj(s1- A) b , where C = I, 

I Procedure 1: Feedback  controllable  form  for  multi-input  system 

1. Define  state  space  representation {A,B,C,D} 
2. Set A,B(Qc) * Q; Set  number  of  columns  in B =) m 
3. Set Q ( I N D )  * c,, unique  controllability  indices 
4. Set p, (SMur) S,,S,,S,,,S,,, 
5.  Set Q S,, * Q,. 
6. Set QC;' =) Q,., 
7. Set SeT Q,,, =) C, 

9. Set  the  first  linearly  independent  rows  from Q, =) T, 
8. Set A,Ca  CQo) * Q ,  

, 10. Set A,B,C,T;' (STR) =) A,,B,,C, 

1 Procedure 1: Observer  observable form for  multi-output  system 

1. Define  state  space  representation {A,B,C,D} 
2.  Set A,C(Qo) Q; Set  number  of  columns  in C * p  
3. Set Q ( I N D )  v,, unique  observability  indices 
4. Set v, (SMut) * S,,S,,S,,,S, 
5. Set S: Q, * Q, 
6. Set Q;] * Q,,, 
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7. Set Q,, S, * B, 
8. Set A,B, (QC) * Q, 
9. Set  the  first  linearly  independent  columns  from Q, * T, 
10. Set A,B,C,T, (ST') * A,,B,,C, 

Procedure 2: Feedback  controllable  form  for  multi-input  system 
(obtained  by  calculating  null  spaces  of  some  columns  of Q,) 

1.  Define  state  space  representation {A,B,C,D) 
2. Set A,B(Qc) * Q; Set  number  of  columns in B =) m 
3. Set Q, ( I N D )  * pc, unique  controllability  indices 
4. Set pc (SMaf) * S,,Si,S,,SU 
5 .  Set Q S,, =) Qr 

6.  Set number  of  columns in A * n 
7. Set Oo,. * C, 
8. Set [ 1 . .. 1 3 * 4; I, = n unities 
9. Set S/* S 
10.  Set 0 * i 
11.  Set i + l  * i 
12.  Set I, - t" row  of S * v 
13.  Set v (DSW =) S,, 
14. Set Q, S,, * M, 
15.  Set Q, vT * q, 
16.  Set  null  space  of M: * ti, row t: M, = 0 
17.  Set t: QI * a, 
18. Set t:/a, * c,, 

19.  Set [ 1 * C, 

20. If i < m, go to  11;  else, go to  21 
21.  Set A,C, (Qo) * Q, 
22.  Set  the  first  linearly  independent  rows  from Q, * Tc 
23. Set A,B,C,T;' (STR) * Ac,B,,Cc 
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The  algorithm  for the observer  form  based  on  calculating  null  spaces  of  some  rows 
from Q, is left  as an exercise  for  reader. 

In the  first 5 steps  of  the  algorithm:  Procedure 1, feedback  form,  the  first n 
linearly  independent  columns  from Q, are  selected in Qr and the selector  matrix 
S, has  been generated.  Then  the  "auxiliary" (m x n) output  matrix C, is  calculated 
by: 
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i.e.  the m rows of C, are  contained in C,' at  locations  determined by m unities in 
the  selector  vector v,, which  generates  the  selector  matrix S,. Finally,  the 
similarity  transformation  matrix T, used in Step 10 to  calculate R, = {Ac,B,,Cc}, 
obtained  by  selecting  the first n linearly  independent  rows  from  the  auxiliary 
observability  matrix Q, of the  pair {A,C,}. It  may be  shown  by  inspection  that 
the  observability  indices of  the  "auxiliary"  pair {A,C,] are equal  to  the 
controllability  indices  of (A,B) ordered in ascending  order,  i.e.  to j i .  

In the  algorithm  of  Procedure 2, feedback  controllable  form,  the  first 5 steps 
are exactly  the  same  as the first 5 steps  of  Procedure 1. By Steps 6 through 20, 
the  auxiliary (m X n) output  matrix C, is  calculated  without  explicitly  calculating 
the  inverse of Qr. To visualize how this  is  done,  consider  a  pair {A,B} with 
controllability  indices p = { 2  1 2) leading  to  the  selector  vector v, and  selector 
matrix S, given  by: 

-0 1 0 0 O - T  

v , = [ O  1 0  1 l ] ,  S , =  

0 0 0 0 1 ~  

0 0 0 I O  

In our  example the first n = 5 linearly  independent  columns  from Q are 

Q,, = [bl b2  b3 Ab,  Ab,] P [X X q 2  931 

For  convenience, by q,., i = [ l , m ] ,  m=3, are  denoted  columns  in a whose 
locations  correspond  to  unities in the selector  vector v,. Recall  that  these  columns 
correspond  to the "end-of-chain"  columns, i.e. to bz, Abl and Ab,. Note  that  these 
columns  are  "associated"  with the m columns bi of  the  matrix B in the  order 
determined  by  the ordered controllability  indices p = { 1 2 21, corresponding to 
actual  indices: pz  = l  and p1 = p 3  = 2. Then, 1"' row c,, i=[l,m], of C, is 
calculated  by: 

where N(X) = N represents  the  null  space  of X, satisfying X N = 0. 
In Eq(3.87) the (n x n-I) matrix M, is  obtained  from Q, by eliminating 

column Q, i=[l,m]. Finally,  having  calculated  rows c,, i.e.  the  auxiliary  matrix 
C,, the  last 3 steps  of  this  algorithm are equal  to  the  last 3 steps of the  algorithm 
implementing  Procedure 1. It is  relatively  easy to verify  that in the  SISO case 
these  two  algorithms  (Procedures l and 2) reduce  to the algorithms  (Procedure 1 
and 2)  given  in  Section 3.2.3. 
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3.3.6 Modeling Example 

To illustrate  usefulness and  advantages  of  controllability  and  observability 
forms  over the feedback  and  observer  forms the  following  example  of S" order 
system  with m=2 inputs  and p = 3  outputs is considered 

Given  System  Representation 

I .05 .OO .OO .OO .OO I 1.00 1.00 I 

I .OO .OO .l5 .OO .OO I .02 1.00 I 
I .oo .l0 .oo .oo .oo I .01 1.00 I 

I .oo .oo .oo .20 .20 I .oo 1.00 I 
I """"""""""""""""-+""""""" E I "+""l 

I 1.00 .01 .oo .oo .oo I 
f .oo .oo 1.00 .01 .oo I 
I 1.00 1.00 1.00 1.00 1.00 I (a) 

f .OO .OO .OO -.20 .20 I .OO 1.00 I I A I B I 

I C I  

The unique  controllability  and  observability  indices are 

p = { 3 2 )  and v = ( 2 2 1 )  @) 

According  to Eq.(3.70) the  possible  sets of pseudo-controllability  and  pseudo- 
observability  indices are 

4 3 2 1  
v1 3 2 2 1 1 1  

1 ,  v =  
= 1 2   1 3 2  1 v2 1 2 3 4  
[l 3 ]  (c) L v 3 -  

It has  been  verified  that the  first  set of  controllability  indices (4 l} and the  first  set 
of  observability  indices (3 1 1) are not  admissible. 

Comparing Eqs.(b) and (c), it may  be  concluded  that the second  set  of  PC1 
is  equal  to  the  unique  controllability  indices.  Similarly,  the  second  set  of  POI is 
equal  to the unique  observability  indices.  The  unique  feedback  and  observer  forms 
of  Eq.(a) are given  in  Eqs.(e).  As  was  mentioned  previously, the  structures of 
matrices A, and A, are based  on  selector  vectors ii, corresponding  to  the  sets 

2 = ( 2 3 )  and + = ( l 2 2 1  (4 
obtained  by  ordering the sets p and v in (b), respectively. 

Feedback  (unique  controllable)  Form 

[Unique  controllability  indices (3 2); admissibility  degree =. 12E-071 
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1 .o .o 1.0 .o .o 1 .o .o I 
I .o .o .o 1.0 .o  I .o .o I 
I .o .o .o .o 1.0 I . o  .o  I 
1 """""""""""""""-+""-"-""" 

I -2.2 .o 32.3 . O  .02 I 

1 - .08 .O  .4 -0 -0 I .o 1.0 I 
1 112.3 . O  -291.9  .02 .3 I 1.0 -1562.5 I 
1-255.4  .015  1563.7  -.25 1.0 I 
1-260.0 .015 1614.4  -.25 1.0 1 

Observer  (observable) Form 

Wnique  observability  indices (2 2 l}; admissibility  degree =.53E-06] 

1 -.l3 . O  .o -87.9  -76.8 I -475.0  -741.6 I 
1 .o -0 .o .o . o  I -.l -.l 1 
1 .001 .o 
I .o 1.0 

.o  -.3 -.2 I -1.1 -1.7 1 

.o .2 
I .o  .o 1.0 1.1 .7 I -0 1.0 I 

. o  I 1.0 1.0 I 
I "--""""""""""""""+"""""""" 
I . o  .o .o 1.0 
I .o 

.o 1 
.o .o .o 1.0 f 

I 1.0 .o .O  470.6  268.6 I (e21 

In Eqs.(e), in  addition  to  the  indices  from Eq.(b), the admissibility degree of  the 
indices  are  given.  The udmissibility degree of  a  full  rank  matrix  is  defined as the 
inverse  of  the  condition  number  of  that  matrix, i.e. as the ratio  of  the  smallest  to 
the largest singular value of  the  matrix. The reason  for  using the inverse of the 
condition  number is  to  avoid  dealing  with  infinite  numbers  when the matrix  is  not 
full rank. 

Controllability  and  observability  forms  obtained  using  all  admissible  sets  of 
pseudo-cdntrollability  and  observability  indices  are  given  in Eqs.(f)  together with 
the  sets  of  indices  used,  as  well  the  admissibility  degree  of  the  corresponding 
similarity  transformation  matrices  used  in  obtaining  these  forms. 

Controllability  (pseudo-controllable)  Forms 

[Pseudo-controllability  indices { 1,4};  admissibility  degree = .66E-03] 

I .051 

1 .083 
I .004 

1 -.356 
1 .732 I """ 
I 1.001 
I .002 
I 1.003 

.o  

1.0 
.o 

.o 

.o 

1.01 
1.01 
5.00  

."""" 

.o  .o 

.o .o 

.o 
1.0 

. o  

.o 1.0 
.o  

.051 .002 

.l54 .023 

.700 .035 

.""""""_ 

.003 
f002 
.024 -. 194 
.648 

.001 

.003 

.027 

"""_ I 

.+ 

1.0 
.o 1.0 1 

.o I 

.o .o 1 

.o .o 1 

.o .o I 
""""""" 
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[Pseudocontrollability  indices (2 3); admissibility  degree = .53E-031 

.o .o .008 .O  -.071 f 1.0 .o f 

.o .o -000 .o .006 I -0 1.0 f 
1.0 .o .213 . O  1.366 f .O  .o I 

.o 1.0 .002 .O  -.l14 I . O  .o I 

.o .o .006 1.0 .486 I .O  .o f 
"""""""""""""""""+""""""" 
1.00 1.01 .OS0 .OS1 .002 f 
.02 1.01 .003 .l54 .021 I 

1.03 5.00 .OS4 .700 .035 I 
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[Pseudo-controllability  indices (3 2); admissibility  degree  =.91E-O5] 

f -0 .o . O  -12.7  .007 I 1.0 .o I 
I .o .o 
I 1.0 
I .o 1.0 

.o . O  333.1 -.027 I . O  .o f 
.o .40 .O  I . O  .o f 

f .o .O  1.0-1562.5 .300 I -0 .o f 
f """"""""""""""""+""""""" 
f 1.0  1.0 .l .os .002 f 
I .o 1.0 .o .l5 .o f 
I 1.0 5 . 0  .l .70  .003 

. O  -.08 . O  I . O  1.0 I 

Observability  (pseudo-observable) Forms 

[Pseudo-observability  indices { 1 1 3); admissibility  degree = .16E-O1] 

f .049 .OOO .001 -.004 .010 I 1.000 1.010 I 
I ,000 .l50 -.001  .011 -.018 f -020 1.010 I 

I -.003  .002  .008  -.l20 .SO1 I .003 .035 f 
. O  1.0 I -054 .700 f 

I .o .o .o 1.0 . O  f 1.030 5.000 f 
I .o .o .o 
I """""""""""""""""+""""-""" 
I 1.0 .o .o .o .o f 
I .o 1.0 .o .o  .o f 
I .o . o  1.0 .o .o  I 

[Pseudo-observability  indices { 1 2 2); admissibility  degree = 30E-031 

I -050 .085 -00 -.S71  .002 f 1.000  1.010 
.o .o .o  1.0 .o I .020  1.010 

f .o .o  .o . O  1.0 I 1.030 5.000 

I """""""""""""""""+""""""" 
I 1.0 .o .o  .o .o I 
I .o 1.0 .o .o .o I 
I .o .o 1.0 .o .o I 

I .OOO .017 .OO .038 .002 I .003 .l54 
f .023 8.491 -.OS -56.723 .612 f .OS4 .700 
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pseudo-observability  iIndices (2 1 2); admissibility  degree = .17E-03] 

I .o .o -0 1.0 .o 1 1.000 1.010 I 

I .o .o .o . O  1.0 I 1.030 5.000 I 

I """"-"""""""""""""+"""""""- 
I 1.0 
I .o 1.0 

.o I 
.o .o I 

: .o .o 1.0 .o .o I 

I .087 .l49 .001 -1.752 -004 f .020 1.010 I 

I - .005 .OOO .OOO .l50 .OOO I . O S 0  .051 I 
I -4.906 .043 -.080 99.384 .401 I .OS4  .700 f 

.o .Q .o 
.o 

Pseudo-observability  indices { 1 3 l}; admissibility  degree = .14E-O3] 

I .o .o .o 1.0 .o : .020 1.010 I 
I .o 
I """""""""""""""""-+""-""""" 
I 1.0 .o .o .o 
I .o 1.0 

.o I 
.o .o I 

f .o  .o 1.0 .o .o f 

-049 .070 .001  -.60  .879 I 1.000 1.010 I 

I - . O S 1  -6.894 .l01  -15.78  413.821  1.030 5.000 I 

f .OOO .012 .OOO -.l4 . 5 5 0  I .OOO .023 I 
.o .o . O  1.0 .003  .l54 

. o  

Pseudo-observability  indices {2 2 l}; admissibility  degree = .12E-O3] 

Q 

f .o .o  .o 1.0 .o 1.000 1.010 
I .o .o .o .o 1.0 I .020 1.010 

.o .l50 .O  f .050 .051 
1 -23.342 -40.000  -.l37  470.581  268.581  1.030 5.000 
f -.005 . O  
I - .OS6  -.080 -.001 1.137  .687 f .003  .l54 I 

"""""""""""""""""""+"""""""- 
I 1.0 
I .o 

.o . o  .o -0 I 
1.0 . o  .o .o I 

I .o -0 1.0 .o .o (f8) 

Comparing the  forms in Eqs.(e) and (f), it may be  concluded  that  among  all 
controllable  forms,  the  forms  corresponding to the  sets  of PC1 

p = { l 4 )  and p = ( 2 3 }  

are more  "convenient"  than the controllability  form  corresponding  to the set of  PC1 
p = (3 2) which is the "unique"  set of controllability  indices  of the pair {A,B), 
as well  as  the  unique  feedback  form.  The  advantages of  these forms are judged  on 
the basis  of  absolute  values of  elements  of  matrices in these  forms,  which is a 
direct  consequence  of  the  admissibility  degree  of  the  transformation  matrix  used  for 
the  similarity  transformation.  Similarly,  among  all  observable  forms, it may be 
concluded  that the observability form based  on Y = { 1 1 3) has  the  largest 
admissibility  degree  and,  consequently,  the  smallest  absolute  values of its  elements. 
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The main point  of  this  example is to  stress the necessity  of  checking  the 
admissibility  degree  of  the  similarity  transformation  matrix  corresponding  to  each 
admissible  set  of  pseudo-controllability  or  pseudo-observability  indices and to  use 
the set  leading  to  the  largest  admissibility  degree.  Then,  the  absolute  values  of  the 
elements  in a state  space  representation  become  relatively small, which is 
computationally  desirable. As was  the  case  in  this  example,  the  most  convenient 
set  of  indices  is  not  necessarily  equal  to  the  unique  set  of  controllability or 
observability  indices. 

3.4 Matrix  Fraction  Description (MFD) 

As introduced  in  Chapter  1,  an  alternative  representation  to  either the state 
space  description or the  transfer  matrix  description  is  the matrirfraction description 
(MFD). For a C-T MIMO  system  the  MFD  model  is  of  the  form 

m )  Y ( 4  = W )  4s) (3.88) 
where y(s) is the (P x 1) system  output and u(s) is  the (m X 1) system  input. The 
matrices &S) = { d,(s) } and N(s) = { nu@) } are leJt  coprime (PXp) and @Xm) 
polynomial  matrices.  The  orders  of  polynomials  d,(s)  and n,(s) satisfy: 

(3.89) 

where k I n, n being  the  order  of  the  system. 

will be represented  by: 
In  accordance  with  the  discussion in Chapter 1, polynomials  d,(s)  and n,,(s) 

C k 

diics> = c dij,s Ir and nij(s) = c nijhsh (3.90) 
h -0 h -0 

Similarly, polynomial  matrices D(s) and N(s) may  be  written as 

where 

(3.91) 

Two  polynomial  matrices are left coprime  if  they  do  not  have  common  terms, 
or if 
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rank[ D(s) I N(s) 3 = p for all s 

In other  words,  it  is  assumed  that all  existing  common  terms  in D(s) and N(s) have 
been cancelled. In some  relevant  literature  the  MFD  model  is  referred  to  as  an 
auto-regressive-moving-average (ARMA) model. As is the  case  with  state  space 
models,  the  MFD  representation  is  not  unique, i.e. there  is  more  than  one  pair  of 
polynomial  matrices {D@), N(s)) that  will  represent  a  given  system. 

One  variation  of  an MFD model  is  the  following  model: 

y(s) = &S) &'(S) u(s) 

which is  sometimes  expressed  as 

(3.92) 

(3.93) 

where v(s) is an auxiliary m dimensional  vector. 

matrix, G($) by 
It  is  quickly  concluded  that  the  MFD  model  is  related  to  the  system  transfer 

G(s) = D"(s) N(s) = &) &'(S) (3.94) 

Similarly, the (pxm)  and (mxm) matrices #(S) and i(s) are right  coprime if: 

(3.95) 

It is worth  mentioning  that  in the case of SISO  models, i.e. for p = m = 1, 
matrices D($) and N(s) become  scalar  polynomials d(s) and n(s), respectively,  and 
the  coprime  condition  reduces to: 

rank[ d(s) I n(s) ] = 1 for all s (3.96) 

The  condition of Eq.(3.96), in fact,  implies  that  polynomials d(s) and n(s) have no 
common  factors,  i.e.  there  is  no  value s = so for  which  both d(s0) and n(so) are 
equal to zero.  In  other  words,  for s = p,, i=[l,n], i.e. system  poles, d@J = 0, 
but n(pJ # 0; i.e.  the  transfer  function g($) = n(s)/d(s) does not have  any  pole- 
zero  cancellations.  Similarly,  if  there  are no common  factors,  then  for s = zf, i.e. 
system  zeros  for  which n(z,) = 0, d(zf) # 0. 

Recall  that  in  the  case  of SISO systems, it is  typically  assumed  that d(s) is  a 
monic polynomial, i.e. 

n 

4 s )  = c di s where dn = 1 
i-l 

(3.97) 
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This type of "normalization," when  applied  to  polynomial  matrices  requires  some 
additional  consideration. 

Definition 3.4 The  degree of apolynomial vector  (row or column), a(s): 

4 s )  = [ q ( s )  ..* QP(S) ] 
is equal  to  the  highest  degree  of  all  (polynomial)  entries,  a,(s),in  the 
vector.  The  polynomial  vector a(s) is  monic  if  its  polynomial  with  highest 
degree is monic  in  the  sense  of Eq.(3.97) and there  is  only  one  polynomial 
with  that  degree. 

Definition 3.5 A column-reduced  polynomial matrix is defined as 
follows:  For a p x p  polynomial  matrix D(s) = { d&) }, let  the  degree of 
the z* column  be  n,. In general, 

P 
deg det( D @ ) ]  = n S C n, 

i - l  

(3.98) 

If  equality  holds  in Eq.(3.98), D(s) is  considered  to  be  column  reduced. 

Definition 3.6 A pxp column-reduced  polynomial  matrix D($) is  said 
to  be  monic  if  in  each  column  the  polynomial  with  the  highest  degree is 
monic. 

Row-reduced and row-reduced  monic  polynomial  matrices are defined  in a 
similar  manner.  Unless  stated  differently,  the p xp matrix D(s) of  the  left  coprime 
pair {D@), N(s)} is  taken  to  be  both  column-reduced and monic.  In  the 

corresponding  case  of  the  right  coprime  pair {fi(s) ,  B(s) } the m x m  matrixas) 
is considered  to  be  both  row-reduced  and  monic. 

Since  the  concept  row-(or  column-)  reduced  polynomial  matrices is important 
for  our  developments,  some  simple  examples will be  presented:  Consider the 3  X3 
column-reduced  polynomial  matrix D(s) with  column  degrees { n, } given  by: 

tn , ,n* ,n , )  = ( 2 , 2 , 2 1  (3.99) 

D(s) has the general  form 

I D(s) = x + x s  x + x s + s 2  x + x s  (3.100) 

I x + x s  x +xs  x +xs +S2 J 
where x represents a possible  non-zero  value.  The  matrices  in Eqs.(3.91) are: 



134 Chapter 3 System Modeling 

(3.101) 

In the case for which  the  column  degrees {nl} are not  equal,  e.g.  if 

{ n, ,n2 ,n3  l = I 2 , 1 , 3  1 (3.102) 

then the  corresponding  description of Eq(3.100) becomes: 

x+xs x + s  x+xs+xs2  

D(s) = x + x s + s 2  x x+xs+xs2  

x+xs x x + x s + x s 2 + s 3 -  

(3.103) 

and  the 3x3 matrices in Eqs.(3.91) become: 

x x x ~ x l x ~ o o x ~ o o o  

[Do I Dl I D, I D 3 ] =  X X X I X 0 X I 1 0  X I O  0 0 (3.104) 
x x x ~ x o x ~ o o x ~ o o l  1 

Note  that  in  both  cases d(s) = det { D(s) } is  an n=6"' order polynomial  with the 
coefficient  associated  with S' equal  to f l .  Also  the fp X (k+l)p] matrix D, 
defined  by: 

D, = [Do I D, 1 1 Dk] (3.105) 

contains: 
n=6 columns with non-zerolnon-unity  elements, 
p=3 columns of the pXp identity  matrix, and 
kp-n columns of zeros. 

It may  be  verified  that  the  locations  of  the non-zerohon-unity columns  and 
the columns of the  identity  matrix  mentioned  above are defined  by  the  unity 
elements of the  selector  vectors v,, and vu, respectively,  generated by a set of POI 
{ vi 1 equal to  the  column  degrees { n, 1 of D(s). It is worth  mentioning  that 
matrices D(s) given  above are completely  general,  since it is  always  possible  to 
premultiply  both D(s) and N(s) by a p xp "permutation"  matrix  to  bring @S) to  the 
above  form.  The  transfer  matrix G($) = D'(s)N(s) is  not  altered by this  multi- 
plication. 

Alternatively,  with  argument z replacing S, Eqs.(3.88) to (3.92) represent D-T 
MFD or ARMA  models. In particular, using  the  z-domain description, Eq.(3.88) 
may be  rewritten  as 
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where  the  matrices (DJ, O r i r k ,  and {Ni}, O l i s k  in Eq(3.106) have  the 
dimensions @ x p )  and @ x m ) ,  respectively. The time  domain  equivalent  of 
Eq(3.106) is 

D,y(t+k) + ... + D,  y(t+l) + D,y(t) = N,u(t+k) + ... + N,u(t+l)  +Non@) 

(3.107) 
where t has  been  used as the discrete  time  index,  taking on only  integer  values. 
More  specifically,  for  the  example  above,  the  difference  equation  corresponding to 
Eq.(3.101) is 

y(t+2) + D, y(t + 1) + D, y(?) = N, u(t+2) + N, ~ ( t  + 1) + No ~ ( t )  

(3.108) 
since D2 is an identity  matrix.  The  vector y( t )  has, of course,  three  components. 

The  special  case  for which all  column  degrees  of D(s) are  equal  is  sometimes 
called  the equi-observable case,  and D(s) is  then  considered  to  be  a regular 
polynomial matrix. The  time  domain  equivalent  in  the  general case when the 
column  degrees  are  not  necessarily  equal  is  not  as  simple as for  the  regular  case. 
For  instance,  corresponding to  the  example  of Eq.(3.102), we  may write 

where d,, is the]'''  column  of  the  matrix Di. In general, the left  side  of  such a 
description  is  a p dimensional  vector  containing  samples y,(t+n,), j = [ l , p ] ,  but 
arranged in  ascending  order  of  column  degrees nl. In fact, the left-hand  side  of 
(3.109) is 

[ Y,(f+nz) Yl(t+n,) y3(t+n3) 1' 
since  in  the  example, 4 I n, 5 n3. 

When a  left  coprime  pair of  polynomial  matrices { D(@, N(s) 1, ( or with z 
instead  of S for  a D-T  system), as described  previoulsy  is  available, it is  relatively 
easy  to  transform  a  left  coprime  MFD  into  an  observable  representation R, based 
on  a  set  of  admissible POI corresponding  to  the  column  degrees  of D(s). And, 
conversely,  given an observable  representation R,, based  on a  set of POI, it is 
possible  to  obtain  a  corresponding  left  coprime  MFD.  Similar  statements can be 
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made for the relationships  between  a  right  coprime  row-reduced  MFD  and  a 
controllable  state  space  representation.  This  is  the  subject  of the next  chapter 
where  the  conversion  between  the  various  system  models is considered. 

3.5 Summary 

In this  chapter  the  important  concepts  of  system  structure  and  canonical  forms 
were  presented. In Section  3.1 the systems  under  consideration  were  restricted to 
be SISO systems.  Controllable,  observable  and  Jordan  forms  were  discussed, 
particularly  with  respect  to  their  relation  with  the  corresponding  transfer  functions. 
In  Section  3.2  the SISO controllable  and  observable  forms  were  extended  to  MIMO 
systems  through the use  of  specific  similarity  transformations  of the system  state. 
In Section 3.3 the  discussion  of  MIMO  canonical  forms  was  continued. A very 
flexible  method is given for  describing the structure  of  a MIMO  system,  using 
pseudo-controllability  and  pseudo-observability  indices  (PC1  and  POI).  The  pseudo- 
controllable  and  pseudo-observable  forms  provide  a  selection  of  possible  system 
structures  from  which  the  "best"  one  can  be  chosen.  This  "best"  structure is not 
always the "unique"  controllable or observable  canonical  form  commonly  used  in 
the  control  system  community.  With  this  chapter's  thorough  discussion  and 
exercises on MIMO  system structure, the  reader  will  be  prepared  to  study  Chapter 
4, which  presents  an entire  collection  of  algorithms  for  conversion  between  the 
various  system  types.  Finally, in  Section 3.4 the matrix  fraction  description  (MFD) 
was  presented in detail, tying the  concepts  of  POFs  and  PCFs  to  left  and  right 
coprime  MFD  forms. 

3.6 References 

The  topic  of  system  modeling  covers  a  broad  area,  but  we  again  refer  to the 
basic  advanced  texts  of  Kailath  (1980),  Chen  (1984)  and  Brogan  (1991) for well 
written  background  reading.  Luenberger  (1967) is a  classical  paper  on  canonical 
forms  for  MIMO  systems.  Ackermann  (1985)  discusses  the  various  "Frobenius" 
canonical  forms  used  in  this  chapter  in  his  Appendix  A. For details  on  the 
"modified"  forms  used  here, i.e. the  use  of pseudo-controllable or observability 
indices, see Bingulac  and  Krtolica  (1987), or Gevers  and  Wertz  (1982); also  called 
nice indices in  Antoulas  (1985). A related  discussion  on the  invariance  of 
controllability  indices is given  in  Bingulac  and Vanhdingham (1992).  Kailath 
(1980)  relates  state  space  and  matrix  fraction  descriptions in his  Chapter  6. 
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3.7 Exercises 

3.1 Given  below is a state  space  representation  of a strictly  proper SISO system 

R = [ :  : ] =  

-1 1 1 0 1 1  

- 1 - 1  2 0 I O  

0 0 - 1 1 1 0  

0 0 0 - 2 1 2  
”” ”” ”” ”” -1- -” 

0 1 0 2 1 0  

Determine: 

(a)  -the  controllability  (controllable)  form, 
(b) -the  observability  (observable)  form, 
(c)  -the  feedback  (controllable)  forms  using  Procedures 1 , 2 and 3 described 

(4) -the  observer  (observable)  form  using  the  principle  of  duality. 
in  Section 3.2.3, and 

Hints: 

0 Define  the  representation R = (A,b,c) using  the  operator DMA, or 

0 Calculate  the  controllability  and  observability  matrices  using the 

0 Calculate  the  required  canonical  forms  using  the  operator STR. 
0 Find  the null space by using  the  operator NRS. 
0 Determine  the  transfer  function, in  Procedure 3, using  the operator 

0 Matrix  partitioning  could be done  using  the  operator CTC. 

IN€”. 

operators  QC and Qo. 

SSTF. 

A version  of L-A-S program  performing  this  exercise  is available in  the 
subdirectory C:\LAS\DPF\EXER3 1 .DPF. 
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3.2 The  coefficients W, and a,, i=[O,n],  n=4, of a  non-strictly  proper SISO 
transfer  fuction g(s) = w(s)/a(s) are  given  below: 

( W * ]  = [ 5 6 -3 -4 -2 3 
( a i }  = [ 2  6 7 4 l ]  

Determine: 

(a)  -the  feedback  (controllable)  form R, = {A,, b,, c,, d,) using  Algorithm RC], 

@) -the  observer  (observable)  form R, = {A,,, bo, c,, d,} using  Algorithm Rol ,  

(c) -the  controllability  (controllable)  form R, = {A,, b,, c,, de} using  Algorithm 

(d)  -the  observability  (observable)  form R, = {Ao, bo, c,, do} using  Algorithm 

(e) -the transfer  functions  of  all  the  obtained  state  space  representations. 

Section  3.4.2. 

Section  3.4.2. 

Rc2, Section  3.4.2. 

R02 Section  3.4.2. 

Hints: 

0 

0 

0 

0 

0 

0 

0 

0 

Define  the  coefficients W, and a,, i=[O,n], n=4, using  either  operator 
DMA, or INPM. 
Row partitioning can  be  performed  using  operator  CTC. 
Extraction  of the dimensions of a  row/column/matrix can be  done  using 
the operators  RDI  and  CD1  of the subroutine  GETD.SUB. 
Rowlcolumnlmatrix  transposition  can be done  using  the  operator T. 
The  controllability and  observability  matrices can be  calculated  using 
the  operators QC  and  Qo,  respectively. 
Rows S, and S, could  be  defined  by  partitioning an identity  matrix 4, 
where the identity  matrix  is  generated  by  the  operator  DIM. 
"Shifting"  rowslcolumns/matrices  up/downlleft/right can be  done using 
the  operators  SHU,  SHD,  SHL and  SHR. 
The  transfer  function can  be  calculated  using the operator SSTF. 

A version  of  an L-A-S program  which  solves  this  exercise  is  available  in  the L-A-S 
subdirectory  C:\LAS\DPF\EXER32.DPF. 
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3.3 A 6" order  C-T  system  with m=3 inputs andp=2 outputs is given  below: 

1 1   0 0 0 0 ~ . 0 1 1  0 

- 1 1 0 0 0 0 ~ 0 0 0  

0 0 1 0 0 - 4 1 1 0 0  

2 2 0 2 0 0 ~ 0 0 1  

0 0 0 0 1 2 l 0 0 0  

0 0 0 0 - 2 1 I O 1 . 0 1  
-" ---  --- -"  -" "- -1- --- "- ". 

1 .M .01 .02 .m 0 I 0 0 0 

0 3 1 1 3 O I O 1 0  

Determine: 

(a)  -the  unique  sets  of  controllability  and  observability  indices. 
(b) Using Eq.(3.70) and  Definition 3.2, determine all sets  of  PC1  and  POI. 
(c)  Determine  which  sets are admissible. 
(d) For all admissible  sets  of  PC1  and  POI  determine  the  corresponding PCF  and 

(e)  Calculate the degrees  of  admissibility for all admissibile  sets. 
(f) Determine the particular PC1  and  POI  which  correspond  to the "best 

selection," i.e. having  the  largest  admissibility  degree. 
(g)  Are  these  "best"  sets  equal  to  the  unique  sets of controllability  and 

observability  indices? 

POF. 

Hints: 

0 To  define  the  required  arrays,  use  operator DMA. 
To calculate Q, and Q,, use  operators QC and Qo. 

0 To calculate  the  unique controllability/observability indices,  use  either 
operator RKC/RKR  and  then  subroutine  CIND.SUB, or subroutine 
IND.  SUB. 
The calling  sequence for IND is: 

The  calling  sequence for CIND  is: v (CIND , SUB) =Ind. 

or the subroutine  SMAT.SUB. 
The  calling  sequence for SMAT  is: Pind (SMAT I SUB) = Inmx I 

Q,mp,cut,eps(IND,SUB)=Ind. 

0 To  calculate  selector  matrices,  use  either the operators  POI  and  DSM 

Sa,Si,Sli,Sld. 
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0 To calculate the admissibility  degree  of  a  particular  realization,  use 
either  the  operator  SVD,  or  the  subroutine  C#.SUB. 
The  calling  sequence  for  C# is: T(c#,suB)=c#. 

0 For  additional  hints  see  those  following  Exercises  3.1  and  3.2. 

A version  of  an L-A-S program  which  solves  this  exercise  is  available in the L-A-S 
subdirectory  C:\LAS\DPF\EXER33.DPF. 

3.4 A (5 X 5 )  matrix A and  three  input  matrices B,, i=1,2,3, are given  below: 

A = diag( 1, 2, 3, 4, 5 ) 

0 1 1  

0 0 1  

B,= 2 l 1  

0 0 1  

.01 0 1 

7 B, = 

0 1 1  

0 0 1  

2 1 1 

0 .01 1 

, B,= 

0 0 1 -  

0 1 1  

0 0 1  

2 1 1  

0 .01 1 

.01 0 1 

For the  pairs {A, BJ, i=1,2,3, determine: 
(a) -the three  sets of  unique  controllability  indices. 
@) -the  three  pairs, {Ad, Bd}, of  Feedback  controllable  forms. 
(c)  -the  three  pairs, {Ad, Bh}, of Controllability  forms which  correspond to  the 

set p = { 1 1 3 } of  admissible  PCI. 

Hints: 

0 

0 

0 

0 

To calculate  a  feedback  controllable  form,  use  procedure 1 or 2, 
Section  3.3.5. 
To calculate  a  controllability  form,  use  the  dual  of  the  procedure  given 
in  Section  3.3.4, or use  Algorithm SSRc discussed  in  Chapter 4, Section 
4.1.2. 
Since  the  same  calculations,  but  using  different  input  matrices (B,), 
should  be  performed,  it  is  advisable  to  use an "incompletely"  specified 
operator  statement. (See Appendix C, the subsection:  "Omitting  Input, 
Output  and  Operator  Fields"). 
For  other  hints see those  following  Exercises  3.1,  3.2  and  3.3. 

A version  of an L-A-S program  which  solves  this  exercise  is  available  in  the L-A-S 
subdirectory  C:\LAS\DPF\EXER34.DPF. 
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Remark: Note  that  even  though the matrices B, are rather  similar,  the  feedback 
controllable  forms are quite  different,  while  the  controllability  forms  based  on  the 
selected  set p are nearly  equal. 

3.5 A Tb order non-diagonalizable  matrix A is given  below: 

A =  

. 2   0 - 1  0 0 - 2 - 2  

0 3 2 0 0 2 2  

0 -1 1 0 0 -1 -2 

0 -1 -1 2 1 0 -1 

0 0 0 - 1  2 0 1 

0 1 1 0 0 3 2  

0 0 - 1  0 0 - 2  1 

Determine: 

(a)  -the  eigenvalues  of A. Verify  that  the  eigenvalues are 2 f jl and 2 with 

@) -the  modal  matrix P which  transforms A into  a  block  diagonal  "real 

(c)  -the  Jordan  form A,. 

multiplicities 2 and 3 respectively, 

number"  Jordan  form AI satisfying AI = P' A P, and 

Hints: 

0 See Appendix  B  for  more  details  on  Jordan  forms. 
0 Define  the  matrix A using either  the  operator DMA or INF". 
0 To calculate  the  modal  matrix P, use  the  subroutine  MODM.SBR.  Note 

that  MODM.SBR calls either CHAR.SBR, or CHAC.SBR, for each 
distinct  eigenvalue  of A. 

0 Calculate  the  distinct  eigenvalues  of A using the  operators EGV, DMA 
and  DSM. 
To calculate A,, use the operators -1 and * (inversion  and 
multiplication). 

A version  of an L-A-S program  which  solves  this  exercise is  available  in  the L A - S  
subdirectory  C:\LAS\DPF\EXER35.DPF. 
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In the  previous  chapters  several  methods  of  system  representation  have  been 
discussed.  The  purpose of  this  chapter is to  present  the  various  algorithms  that can 
be used  to  convert  between  the  different  system  models. As illustrated  in  Fig. 4.1, 
we consider apentagon of five  basic  representations.  The  arrows  refer  to  available 
algorithms  that  may  be  invoked  to  perform  the  indicated  conversion. 

Our  approach  to  presenting  this  material  will  be to focus on a particular  block 
of the  "pentagon"  in Fig. 4.1, e.g.  the  state  space  representation,  and  discuss  the 
algorithms  used for converting  this  model  to  each  of  the  other  four. 

4.1 Conversions  from  a  State  Space  Model 

Since  we are most  familiar  with  the  state  space  representation,  having  used 
this  model as  our  fundamental  system  description in previous  chapters,  we  will 
begin  by  considering  the  different  methods  of  converting  this  model  to  other  forms. 
Even  though  most  of  the  techniques  apply  equally  well  to  C-T  models,  our 
concentration will be on the  conversions of  D-T  models, as indicated  in Fig. 4.1. 
As is  well  known,  state  space  representation for a specific  system  is  not  unique. 

1 2 
bU,CPI  W(@, 4 2 )  

State 4 

A A  A 
Punction Space 
Transfer 

I 

v -  V 
3 

Parameters 
Markov 

A t  

W4 W ,  W 
+ m  
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{U&)* YQI 
Input/output 

.c- 
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* Data 

FIGURE 4.1 Algorithms for Intermodel conversion 
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In this  section  several  options are discussed.  Initially,  we  assume a general 
state  space  representation. And anticipating  the need to transform  the  general  state 
space  form  into  one  of  the  canonical  forms,  two  algorithms are provided:  one  to 
convert to an  observable  form,  and a second,  to  controllable  form. We will 
consider  exclusively  the  controllability  and  observability  forms  since  they  take 
advantage  of  flexibility  offered  by  pseudo-controllability  and  pseudo-  observability 
indices  (PCI)  and (POI). As  was  mentioned  in  Chapter 3, these  forms  will be 
sometimes  referred to as  pseudo-controllable  (PCF)  and  pseudo-observable  forms 
(POF).  Another  reason  is  that  we  found  that  controllability  and  observability  forms 
of  the structure in Eq~(3.66) and (3.80) are best  suited for  all  intermodel 
conversions  to  be  discussed.  These  forms  are  better  than  the  feedback  and  observer 
forms as well  as  forms  of  the  Luenberger  structure.  This  is  in  fact  the reason why 
we in Chapter 3 insisted  on  these  forms  and  stated  that  they are more "natural" than 
other  possible  canonical  forms.  The  remaining  algorithms  in  this  section  provide 
for conversion  to  transfer  function  form, ARMA (or  MFD) forms, as well as for 
calculating  the  Markov  parameters,  and  system  responses. 

4.1.1 General  State  Space to Observable  Form 

This algorithm  transforms a general  form R = (A, B, C, D} to an 
observability  (POF)  form R, = (A,, B,, C,, D,}, bases on an admissible  set Y of 
POI  as  discussed  in  Chapter 3. To  recall  the  basic  steps  of  the  procedure, 

1. Set v (SMat) - v,,,,S,,Si,S,i,S, 
2. Set A,C (Qo) * Q, (Q, has v,+ 1 blocks  of CA' of p rows.) 
3. Set S,' Q, * T, 
4. Set T, (C#) C# 
5. Set A,B,C,T;' (STR) * A,,B,,C, 
6. Set D =) D, 

The  quantity E is a sufficiently  small  positive  number  used  as  "machine  zero."  The 
algorithm C#, Step 4, determines  the  "degree  of  admissibility  of  the  set Y by 
calculating  C#,  the  ratio of  the  smallest  to  the  largest  singular  value  of To. (C# is 
the  inverse  of  the  "condition  number"  of To.) For  more  details  on MIMO 
observability  forms see Section 3.3.4. 

4.1.2 General  State  Space  to  Controllable  Form 

This  algorithm  transforms a general  form R = {A, B, C, D} to a controllabil- 
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ity (PCF) form R, = {A,,  B,,  C,,  D,} based on an  admissible  set p of PCI. 

1. Set P (SM@ * pmm,SmSi,Sii,Su 
2. Set A,B (QC) * Q, (Q, has pm+l blocks A'B of m columns.) 
3. Set Q, S,l * T, 
4. Set T, (C#> =) C# 
5. Set A,B,C,T, (SZR) * A,,B,,C, 
6. Set D D, 

Note  that SSRc is the  dual  algorithm  to SSRo. However,  due  to  different  sets p and 
Y used,'representations R, and R. obtained  by  these  algorithms are mc dual to each 
other in the sense  of the  definition  given  in  Section 3.2.2. For more  details on 
MIMO  controllability  forms see Section 3.3. 

4.1.3 State  Space  to  Transfer  Function 

This  algorithm  transforms  a  general  form R = {A, B, C, D} to  a  transfer 
function  matrix G(s) = C(s1 - A)"B + D using  Levemer's  algorithm.  The two 
versions  of  this  conversion are explained in Section 1.3.9. Recall  the  symbolic 
notations 

A,B,C,D(LQLG) - d,  W,, W 

and A,B,C,D(SSTfl - d, W 

where W is  a [pm X @+l)] matrix in a PMF, see Eq.(G6)  in  the  Glossary. 

4.1.4 State  Space  to  Markov  Parameters 

This  algorithm  transforms  a  general  form R = {A, B,  C,  D) to  a  set  of 
Markov  parameters. The Markov parameters for  a D-T system  may be described 
as  the  matrix  response  sequence  of the system,  initially  at  rest,  to  a  collection  of 
unit pulses of  excitation.  Thus,  given  a  state  space  model 

x(k+ 1) = Ax&) + B U(&) , x(0) 
y(k) = C x(&) + D U(&) 

with x(0) = 0, and u(k) * l@)&,,, (6(k) = 1 if k = 0, otherwise 6(k) = 0): 

(4.1) 
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H(k) = c CAk""Bb(i) + Dtj(R;) 
k - l  

(4.2) 
i - 0  

The first  few terms of  this charucrerisric sequence are easily  calculated to be 

H(k) = { D ,  CB,  CAB, CA'B, CA3B, ) (4.3) 

These  matrix  elements are the Murkovpurmefers of  the  system  in Eq(4.1). For 
convenience  we  will  express  the  Markov  parameters H, by a polynomial  matrix in 
P ,  i.e. 

.D 

H(z") = c H,z" (4.4) 
i -0 

where & = D and Hi = C Ai" B , for i=[l,m]. 

function  matrix G(z) may  be  expressed by: 
The reason  for  using Eq(4.4) is that it may be shown  that  the  transfer 

G(z) = H(z") (4.5) 

It may be verified  that  if  all  eigenvalues  of A are within  unit  circle,  i.e.  if 

Il4A)U < 1 (4.6) 
then IIHH-l 11 < < 1 for a sufficiently  large  finite h4 < W .  

by: 
If Eq.(4.6) holds, the polynomial  matrix H(z") could  formally  be  represented 

H(z -l) A { h& -l) } = I,(z") H, = H, I:(z")  (4.7) 

where 

Ip(Z-l) = [I, 1,z-1 . 'S  I,z""] 

qZ-1) = [I, 1,z-1 ... 1,z "+l J 

For more  details on this  notation, see the  Glossary  of  Symbols. 
If Eq(4.6) does not  hold,  then  instead  of  using  the  original  representations 

R, a "time  scaling''  could  be  performed,  which  amounts  to  dividing A and B by a 
scalarfsatisfying: 
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f > n w g  
In  other  words,  a  "time  scaled"  system  representation R, should  be used where: 

l$ = (N ! ,Bf f ,C ,D  1 (4.8) 

After  performing  a  desired model conversion, the obtained  model  should,  of  course, 
be "time scaled"  back  by  the  same  used scalar$ 

Using  Eq.(4.4)  the  following  algorithm  is  suggested: 

Syntax: A, B, C, D, M (SSH) =) H, hM 

1.  Set A,B (QC) * Q (Q, has  M-l  blocks A% of m columns.) 
2. Set[D I C Q ] * H ,  
3. Set 11 H,, 11 =) h, 
4.  Set H,,  m (PMFr) =) H 

The  matrix H is  a @m X M] matrix in a  PMF  whose  rows  contain  the  first  M 
coefficients  of  the  (M-1)st  order  polynomials h,(z-l) in z" defined  by: 

H(z") = { h i p - ' )  ) 

For more  details on the  PMF see the Glossary  of  Symbols.  Algorithm  PMFr is a 
polynomial  "service"  algorithm  which  transforms  a [p x Mm] matrix H,, Eq.(4.7), 
into  the  PMF,  i.e.  into the [pm x M] matrix H whose  rows  contain  the  coefficients 
of  the  polynomials h,(.?) of H(z"). 

Using  the  duality  principle,  Algorithm SSH could  also be  implemented  by: 

1. Set A,C (Qo) * Q (Q, has M-l  blocks CA' of p rows.) 
2. Set [ DT I (QJ%)T]T =) H, 
3. Set IIHM., 11 =) h,,, 
4.  Set H,,p (PMFc) =) H 

Again,  PMFc  is  a  "service"  algorithm  that  transforms H, into H in  the P m .  The 
reason  for  using  Markov  parameters as  a  "system  model"  is  that Markov 
parameters are a  convenient  vehicle  for  intermodel  conversions  between  different 
system  models. 

4.1.5 Continuous-Time  State  Space  Response 

This  algorithm  calculates  the  output  response of a  general C-T state  space 
model R = {A, B, C, D},  given  the  initial  state  vector  and  samples  of  the  input 
signals.  The  calculations  are based  on  the  assumption  that the input  signals are 
linearly  interpolated  between  samples. 
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A general  algorithm  for  simulating  C-T  systems  is  given  in  Section 1.3.5. 

4.1.6 Discrete-Time  State  Space  Response 

This algorithm  calculates  the  output  response  of  a  general  D-T  state space 
model R = (A, B, C,  D}, given the initial  state  vector  and the sequence  values of 
the  input  signals.  The  general  algorithm  capable of  simulating  D-T  systems is 
given  in  Section 1.3.5. 

Syntax: A,B,C,D,x(O),u,O (CDSR) * y 

Note that  in order  to  specify  that  the  response of a  D-T  model is  sought,  the 7"' 
input  argument  should be set  to  zero or any  negative  number. 

4.1.7 Observable  State  Space  to "D Model 

This  algorithm  converts  an  observable  form R, = {A,, B,, C,, D,} ,to a  left 
coprime  column-reduced  MFD, D(zY'N(z). Of course,  this  algorithm can equally 
well  be  applied  to  a  C-T  state  model  to  obtain  the  corresponding  MFD  representa- 
tion. The algorithm  furnishes  a  monic D(z) in  the  sense of Definition 3.6, given 
in  Chapter 3. Several  of  the  intermodel  conversions  discussed in this  chapter  are 
based on the  relationship  between  the  state  space  model  in a POF and  a  correspond- 
ing  left  coprime  MFD.  For  this  reason we  will  establish  this  relationship  here  and 
then  discuss  individual  algorithms  as  they  arise. 

To this  end,  consider  the  order-n  system  with  m-inputs  and  p-outputs: 

where t is used as an integer  time  index and R, = {Ao, B,, C,,  D,) is in a  POF 
corresponding  to  a  set  of  admissible POI, Y = {vi}. From Eq.(4.9) we  may write 

D, 0 ... 

(4.10) 
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Now we  let r = v,,, = max{v,}. Clearly, Eq(4.10) holds  for  any t = [0, N-r] and 
can be  rewritten as 

Y, = Q,x(O + Hut (4.11) 

where y, and U, are (v,,,+ 1)p and (v,,,+l)m dimensional  columns  containing  the 
output  and  input  vectors y(t+j) and u(t+j), j = [0, vJ. The  matrix Q, is the 
observability  matrix of the pair {A,, C,}, while H is  the (r+l)p x (r+l)m lower 
block  triangular  matrix  containing  along the main diagonal  the (pxm) blocks D,. 
The  other  nonzero  blocks of H are the p xm dimensional Markov  parameters: 

(4.12) 

Our  goal  is  to  eliminate  from Eq.(4.10) the x(r) terms,  thereby  obtaining an 
expression  which  relates the sampled  data  to  the  elements  in R,. 

Equation (4.10) can  be  considered  to  represent (v,,,+ 1)p scalar  equations  in 
the  samples 

Y, = ri(t +i) (4.13) 

i.e.  the I* component  of the output  vector y(r+j), i=[l, p],j=[O, v,,,]. In  Section 
3.4.3 it was  shown  that Q, has n rows  of the identity  matrix I, and p rows  that 
correspond  to the rows  of A, with non-zerohon-unity  elements.  Furthermore,  the 
location of these  rows  are  determined by the selector  vectors v,, and vu, respective- . 

lY 
Premultiplying Eq.(4.11) by the selector  matrices SET and SuT defined  by 

Y,, = x(0 + Hlu,  , and y2, = Ap(0 + %mt (4.14) 

Eq.(3.79), we obtain,  respectively, 

where 

Eliminating x(t) from Eq.(4.14), 

(4.15) 

The matrix A, in Eqs.(4.14) and (4.15) is  a @xn) matrix  containing  the  rows of 
A, with  non-zero  non-unity  elements,  whose  locations in A, are specified  by  the 
selector  vector v,. Equation (4.15) may  be  expressed in a more  concise  form  by 
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Y2k = [ Nr I z k  (4.16) 

where N, = Hz - ABH,  is a p X (vm+ 1)m matrix  and z, is an  h-dimensional  vector 
containing U, and y,,, where h = (v,+l)m + n. Equation (4.16) is referred to as 
the idenfijicufion identity since  it  relates  input-output  data  samples  arranged  into 
columns yu and z, to  parameters  of  the  state  space  representation R,, i.e.  in the 
matrices A,, B, and D,. The idenfiJcaion identity is  the  basis for  conversions 
between  input/output  data  and  either  state  space  or  MFD  models. 

For  the  purpose of Algorithm RoDN, to  be  introduced  here, Eq(4.16) may 
be rewritten  as 

y2t - AJlt  = Nrnt (4.17) 

Note that Eq(4.17) is a time-domain  input/output  expression.  Applying  the z- 
transform and  taking  into  account  the  arrangements  of  the  samples ui(f+]) and 
y,(f+j) in  the  vectors U,, yl, and y,,, we  obtain: 

Y(Z) = W )  4 2 )  (4.18) 
which is a left  coprime MFD. Since in Eq.(4.17) the p dimensional  vector yu is 
multiplied  by  the  identity  matrix Ip, it may  be  concluded  that D(z) in Eq.(4.18) is 
monic. For further  details  see  Section 3.4 and Eq(3.104). Thus,  in order  to 
obtain  the [p X (vm+l)p] matrix D,, which  leads  directly  to D(z), it  is  first 
necessary to obtain the  matrix A,. From  the  discussion  in  Section 3.3.4 it is clear 
that A, may  be  obtained  from A, in a POF by: 

S;A, - A, (4.19) 

where S, is one of  the  selector  matrices  uniquely  defined  by  the  particular set of 
admissible POI v and generated by Algorithm SMa:  

Y (SMat) =) v,,,,S,,,SiS,,,S, 
Then  the  matrix D, becomes 

S: - A,$ = D, (4.20) 

For more  details  see  Section 3.3.4. 

recall that: 
In order to  obtain  the  corresponding N(z) in the  left  coprime  pair (D(z),N(z)}, 

C(z) = D"(z) N(z) 
Thus, using G(z) = W(z)/d(z) and D'(z) = T(z)/d(z), where T(z) = adj D(z), d(z) 
= det(zI - A,) = det{ D(z) 1 and W(z) = C adj(z I - A,) B + d(z) D, the  above 
equation  may  be  expressed  by: 

W O  = T(z) W Z )  (4.21) 
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NO 

Nk 

WO 

W n  
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d by: 

(4.22) 

where T,, N, and W, are corresponding  real  number  submatrices  in  the  polynomial 
matrices q z ) ,  N(z) and W(z). 

From  the  above  discussion it is  not  difficult  to  conclude  that  given R, and  the 
associated  set v, the  following  algorithm  will  calculate  the  corresponding  left 
coprime MFD (D(z), N(z) } .  

Syntax: A,, B,, c,, D,, v (RODN) =) D, N 

1. Set Y (SMat) =) vm,S,,Si,S,i,S,,, 
2. Set S,' A, =) A, 
3. Set SUT - AS; * D, 
4. Set D,,p (PMFr) =) D 
5. Set  adj D(z) * T(z) 
6. Set A,, B,, C,, D, (SSTF) =) d, W 
7. From q z )  and W, ( Ti and Wi ) build Eq(4.22) and  solve for N, 
8. Set N,,p (PMFc) =) N 

As  was  mentioned  earlier,  the  Algorithm PMFr used  in  Step 4 is a polynomial 
matrix  "service"  algorithm  which  simply  transforms D, into  the  PMF,  i.e.  into  the 
rp' X (vm+l)] matrix D whose  rows  contain  coefficients  of  the  polynomials d&z) 
of D(z). From Eq.(4.22) it  is  clear  that  the  submatrices N, are in  the  form  of N,, 
i.e. 

N, = 

NO 

Nk 
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This is why  the  service  algorithm PMFc must  be  used  in  Step 8. 
From  the  discussion  in  Section 3.4, as  well  as  from  the  above  algorithm, it 

may be concluded  that  the  column  degrees {ni} of  the  monic D(z) of  the left 
coprime  MFD {I)(z), N(z)} are equal to  the  POI  used,  i.e. {ni} = {vi} = Y .  

Example: 

The purpose of this  example  is  to  emphasize  the  relationships  between a given 
A, in a POF  and Q(z) of the  corresponding  left  coprime  MFD {D,(z), Nxz)}, where 
Dkz) is monic and column-reduced with column  degrees {nil equal to the set of POI 
Y = {v,} used  in  building A, (in a POF): 

A,, (POI = { 1,3}): 

"2.000  .002  .003 .W1 

' 0  0 0 0 1 

'T - 1 
0 0 1 0 0 

A, = = V, 

L 1.000 -5.001  -9.001  -5.000- 1 

-2.000 .m .003 

1.OOO  -5.001  -9.001  -5.000 

where at the  right  of A, is a selector  vector v,, specifying  the non-zerohon-unity 
rows of A, which are used to form  the  matrix A,. 

Dlr (column  degrees { 1,3}): 

2.000 -.W 1 -.m3 0 ")l 0 0 

-1.OOO 5.001 0 9.001 0 5.000 0 1 1 D,, = [ 
Vli = [ 1 1 0  1 0  l o o ]  

where  the  selector  vector vL. marks the  non-zerolnon-unity  columns  of D,. When 
only  these  columns are selected, D, is  formed: 

2.000 -.m -.m3 -.m1 
= -1.OOO 5.001  9.001 5.000 1 

Note  that A, = - D,. The  corresponding  polynomial  matrix Di(z) can be 
constructed  from DIr = [ D, D, D, D3 ] where {Di} are 2 X2 partitions  associated 
with  the  coefficients of J'. Thus, 
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2.000 + 1s 
D,@) = 

-.m -.003s -.001s2 

-1.OOO 5.001 +9.001s +5.000s2 +ls3 

The  selector  vectors  corresponding  to {vi} = (ni} = ( 1,3} are: 

v,=[1 0 0 l ]  
v , = [ O  l 1 0 1  
vl,=[l 1 0 l 0 1 0 0 1  

v l d = [ 0  0 1 0 0 0 0 l ]  

To  formalize  these  ideas,  we  define  the  following: 

Remark 4.1 For  a given  system  the  total  number  of equivalent left 
coprime MFDs with  column  reduced  and  monic D(z), having  column 
degrees (n,}, is  equal  to  the  total  number  of  POFs  based on admissible 
sets of  POI (vi}. Thus,  it may be said  that  there  is a one-to-one  corre- 
spondence  between  a  POF  and  associated  left  coprime  MFD  satisfying: 

4.1.8 Controllable  State  Space  to MFD Model 

This  algorithm  converts  a  controllable  form R, = {A,, B,, C,, D,} to  a  right 
coprime  row-reduced  MFD, N(z)D'(z). As  with  the  previous  case,  this  algorithm 
can be  applied  to  a  C-T  state  model  to  obtain  the  corresponding  MFD  representa- 
tion. This  algorithm is dual  to  Algorithm RoDN. Thus,  it  may be  easily  verified 
that  given R, in a  PCF,  based on an  admissible  set  of PC1 p,  the following 
algorithm  calculates  a  corresponding  right  coprime { N(z),  D(z) } where D(z) is 
row-reduced  and  monic,  satisfying: 

C ( Z )  = C, (zI - A=)-' B, + D, = N(z) W ( Z )  (4.23) 
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4. Set D,,m (PMFc) =) D 
5. Set  adj D(z) =) T(z) 
6. Set A,, B,, C,, D, (SSn;) =) d, W 
7. From T(z) and W, ( T, and N, ) build Eq.(4.25) and  solve  for N, 
8. Set N,,m (PMFr) N 

Now, A, in  Step 2 is an (n x m) matrix  containing m columns  from A, with non- 
zero and  non-unity  elements,  see Eq.(3.66), while D, is  a [(p,+l)m x m] matrix 
containing (m X m) submatrices Di of D(z). The  structure  of D, is  dual  to  that of 
D, shown  in Eq(3.104). 

Similarly, by duality,  instead of Eq.(4.21) we  have  now 

i c N j T i _ j  = W i  , for i = [l,n] 
j - 0  

(with N, = 0 fori  > k)  which  may  be  represented  by: 

[No 
Nk 1 

TO 

(4.24) 

1 (4.25) 

where k = p,,, while Ti, Ni and W, are  corresponding  real  number  submatrices  in 
the polynomial  matrices T(z), N(z) and W(z). 

From Eq.(4.25) it is  clear  thac  submatrices N, are in the  form  of N,, i.e. 

N, = [No 
Nk 1 

This  is why the  service  algorithm PMFr has  to  be  used  in  Step 8. It  is  important 
to  again  note  that the row degrees {nil of D(z) equal  the  PCI,  i.e. {ni} = {p,} = 
p. As in  the  previous  section  an  example will be  used  to illustrate  these  results. 

Example: 

Consider the relationships  between a given A, in a  PCF and Dxz) of the 
corresponding  right  coprime  transfer  function {Nr(z), Dr(z)}, where Dr(z) is  monic 
and  row-reduced  with  row  degrees (nil equal  to  the  set  of  PC1 p = {p,} used  in 
building A, (in a  PCF): 

A, (PC1 = {1,2,1}): 
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- -.999 0 .000  1.000 

-.m3 0 1.000 -5.002 
.000 0 -2.000  ,000 

-.W1 l .000  -4.001- 

A, = 

v a = [  1 0 1 1 1  

The selector  vector v, specifies  the  non-zerohon-unity  columns of A,. These are 
collected  to form A,: 

-.999  .000 1.OOo 

-.W3 1.000 -5.002 
= 

.000  2.000  .000 

-.W1  .000  -4.001 

The matrix D, containing  the  submatrices Di, i=[O,k], of D(z) is: 

.999 

.003 

.OOO 
"" 

1 

.001 

0 
"" 

0 

0 

0 

.000 

-1.OOO 

2.000 
"" 

0 

.000 

1 
"" 

0 

0 

0 

-1.000 

5.002 
.000 
"" 

0 

4.001 

0 
"" 

0 

1 

0 

= Vli 

Note  that  the  selector  vector vli marks  the non-zerohon-unity rows of D, When 
these  rows are collected  into a matrix D,,, it is  clear  that D,, = - A, As in the 
previous section Dxs) can  be  formed,  this  time  from  the  coefficients  in D, Thus, 

- .999+1s .000  -1.000 

D,@) = .003 + .001s  -1.000  5.002 + 4.001s + 1s' 

.000  2.000 + 1s .000 



156 Chapter 4 lnterrnodel Conversion 

The  selector  vectors  corresponding  to {pi} = {ni} = { 1,2,1} are: 

v a = [ l  0 1 l ]  
v t = [ 0  1 0 0 1  
v,,=[l 1 1 0 1 0 0 0 0 1  

v l d = [ 0  0 0 1 0 1 0 1 0 1  

As in  Remark 4.1 we  would  like  to  formalize  the  ideas  for  this  dual  case: 

Remark 4.2 For a given  system  the  total  number  of equivalent right 
coprime MFDs with  row  reduced  and  monic D@), having  row  degrees 
{n,) , is equal to the  total  number of PCFs based  on  admissible  sets of PC1 
{p,}. Thus,  it may  be  said  that  there  is a one-to-one  correspondence 
between a PCF and  associated  right  coprime  MFD  satisfying: 

( P i 1  = { n , t  

4.2 Conversions  from a Transfer  Function  Matrix 

Beginning  with a transfer  function  matrix  model,  we  may  want  to  convert it 
to a state  space  form;  three  useful  versions  of  this  conversion  will  be  discussed in 
this section.  In  addition,  calculations  of  the  system  response  as  well as the  Markov 
parameters are presented. At the  end  of  this  section a novel  approach to minimal 
realization  will  be  given. 

4.2.1 Transfer  Function  to  State  Space  Model 

This  algorithm  transforms a transfer  function  matrix G(s) = C(sI - A)”B + 
D to a specific  state  space  form R = {A, B, C, D}. The  conversion  into  state 
space is a minimal realization, i.e. the  state  space  model is of  minimum  order. The 
options  include  conversion  into a Hessenberg form, a Kalman  decomposition or a 
Jordan form, which  will  be  explained  in  detail. The above  mentioned  minimal 
realization  procedures  require  as  input  arguments a non-minimal  (uncontrollable or 
unobservable  or  both  uncontrollable and unobservable)  state  space  representation 
R = {A, B, C, D}. Therefore, the  model  conversion: 
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will be performed  in the following  two  steps. 

1. Conversion  from  transfer  function  matrix C(z) = W(z)/d(z) into  a  non- 
minimal  representation R = {A, B, C, D}, i.e. 

TF* R 

2. Minimal  realization  procedure,  i.e.  conversion  from R into  a  minimal 
representation R,,, = {A,,,, B,,,, C,,,, D}, i.e. 

R * R,,, 

Note  that  in R,,, the  direct  through  matrix D is  unchanged.  Therefore,  in  our 
minimal  realization  procedures we will  consider  only the strictly  proper  part  of  the 
system,  i.e.  only  matrices A, B and C. Also,  we  will  assume  that  the  given 

transfer  function &z) is  "strictly"  proper,  i.e.  that  polynomial  matrix w(z) and 
polynomial d(z) satisfy: 

= C,(zI - A,)"B,, or W(z) = C,adj(zI - A,)B, (4.26) 
44 

Of course,  the  non-strictly  proper  transfer  function  matrix G(z) is  related  to a z )  
by: G(z) = G(z) + D. It  is  worth  mentioning  at  this  point  that  the  "extraction"  of 

the  strictly  proper  part G(z), or rt<z> from  a  given  non-strictly  proper  transfer 
function  matrix C(z) = W(z)/d(z) may be  performed  by  a  simple  procedure 
symbolically  represented  by: 

d , W ( E x D ) = W , D  

The  implementation  of  this  procedure  is  based  on the following  equations: 

n n 

Obviously,  since d,, = 1, all  polynomials  in @(z) are  of up  to (n-1)" order.  Thus, 

the  transfer  function  matrix G(z) = m(z)/d(z) is  strictly  proper. 

The easiest way  of  performing the conversion TF * R is  to  build  either: 

(1) -a controllable,  but  not  necessarily  observable,  representation RI = 

(2) -an observable,  but not  necessarily  controllable,  representation Rz = 

{A,,Bl,Cl}, or 

&,%C,) 
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It may be shown  that  the  following  two  representations R, and R2 with m inputs  and 
p outputs  of orders m and np, respectively,  where n is the  order of  the  characteris- 
tic  polynomial d(z), each  have a transfer  function  matrix  equal  to  the  given  strictly 

proper  matrix 6(z)  =@(z)/d(z). To facilitate  the  understanding  of the process  of 
building  these  representations, a generic  example  of a system  with m = 2 and p = 
3 is considered.  Generalization  to  different  values  of m and p is  straightforward. 

Conversions  from  a  Transfer  Function  Matrix 
to a  (Non-Minimal)  State  Space  Representation: TF 4 R 

Here we  will  consider  building  non-minimal  state  space  representations  from 
a given strictly proper transfer  function  matrix G(z) = W(z)/d(z) of a MIMO system. 
In  the  case  of an n"' order MIMO system with m=2 and p=3 ,  the (pm X n) 
matrix W in  the PMF has a structure 

W1 1 

W2 1 

w3 1 

W = "" 

W1 2 

W22 

. w32 

where W# is an n-dimensional  row  containing n coefficients  defining  the @-l)* order 
polynomial w,,(z) in W(z) = { w,,(z) }. The  first n coefficients di, i=[O,n-l], from 
d(z) are arranged  in  the n dimensional  row a. . .  - 

A controllable, but not  necessarily  observable,  representation R, = {A,, B], 
C,) is: 

A, = diag( A, 1 , B, = diagl b, ) m times: 

W11 W12 

A, = ["' A] B, = IC Cl = (4.27) W2r w22 

w31 w32- 

where A, is nm X m, B, is nm X m and C, is p X m. {Ac, b,) in Eq.(4.27) is 
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a  controllable  pair  from  the SISO feedback  canonical  form, Eq(3.13). Recall  that 
A, contains  in  its  last  row the row -a consisting of the  coefficients dl of d(z). All 
n rads of d(z), or the n eigenvalues  of A,, appear  in A, as multiple  eigenvalues 
with  multiplicity m. The nmh order  representation R,  is  controllable,  but  if m> 1, 
it is  unobservable. The number  of  unobservable  modes is  equal  to (m-1)n. 

Similarly, an observable,  but  not  necessarily  controllable,  representation R, 
= {A,, B,, C,} has the dual  structure: 

A, = dag{  A, 1 , C, = diag( c, ) p times: 

A 2 =  

T T  
A0 C O  

W11 W12 

A0 CO C, = W,] W,, B, = T T  (4.28) 

A O -  
T T  

w31 w32 - CO- 

where A, is np X np, B, is np X m and C2 is p X np. {Ao, c,} in Eq.(4.28) is an 
observable  pair  from  the SISO observable  canonical  form, E4.(3.18). All n roots 
of d(z), or the n eigenvalues  of A,, appear  in A, as  multiple  eigenvalues  with 
multiplicity p .  The npu order  representation R, is  observable,  but if p > 1, it is 
uncontrollable.  The  number  of  uncontrollable  modes  is  equal  to (p-1)n. 

The  construction  of  these  representations  will  be  represented  by  the 
algorithms: 

and 

where R, = {A,,B,,C,} corresponds  to R,, while R, = {A,,B,,C,} is  equal to R, 
given  above.  Note  that  when m < p ,  it  is  more  convenient  to  use  Algorithm 7Rcn, 
since  then  the  order  of  matrix A, in R, is  smaller than that  of A, in R,. 

Conversions from a  Non-Minimal State Space  Representation 
to a Minimal State Space  Representation: TF @ R 

As far  as the minimal  realization  procedures are concerned,  it  will  suffice to 
mention  here  that the following  algorithms are available: 
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i.e.,  performing  the  conversion R R,,, using  a  Hessenberg,  Kalman  decomposition 
or a Jordan  form  approach,  respectively.  Detailed  descriptions  of  these  approaches 
are given  in  Appendix B. Minimal  representations  obtained  by  these  approaches 
are not necessarily in a  canonical  form. So, if a  specific  procedure  requires  a 
model  in POF or PCF, then, of course,  either SSRc or SSRo should  subsequently 
be  used. 

Examples 

As an illustration  of  using  the  above  mentioned  minimal  realization 
algorithms,  consider  the  following SISO, strictly  proper,  uncontrollable  and 
unobservable  model R = (A, B, C } .  

-.75  1.00  .21  -.01 .38 -.03 .07  .37 

-1.08  -1.24  -.09  .03  .l0 .W .28 . 0 4  

.03 -.07 -.g8 . 0 6  .32  .23 .38 .30 
-.l8  -.l0  -.08  -2.06 .07 . 0 6  -.M - 5 1  

.l6 .l1 .01  .l9  -1.89  .92 .40  -.l0 

.99 

.81 

.82 

.79 

-.M 

-.l5 -.28 -.20 -.23 -1.34  -2.11  -.41  -.65 1 -.49 

-.05 .09 S2 S4 .23 .02 -1.12  2.59 I -.W 
.M -.l4 -.l4 -.46 -.M -.38 -2.05 -2.82 I -.27 

-" "- _" "_ "_ "_ "-  -" - 1 -  "- 

1.59  1.05  .28  1.54  1.57  1.32 S8 .42 I 0 

The representation R has been obtained  from  the "auxiliary"8 = {A, B, c} 
where: 
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- 1 1 0 0 0 0 0 0 ~ 1  

- 1 - 1 0 0 0 0 0 0 ~ 1  

0 0 - 1 0 0 0 0 0 ~ 1  

o o o - 2 0 0 0 0 ~ 1  

o o o o - 2 l O O l O  

o o o o - l - 2 0 0 l O  

o o o o o o - 2 2 ~ o  

0 0 0 0 0 0 - 2 - 2 1 0  
_" "_ _" "- "- "-  "- --- -1-  -- 

~ 1 1 0 1 1 1 0 0 I O ]  

by the similarity  tansformation 
A, B, e, T (S?7?) * A, B, C 

where 'T was  a  "random" (n X n) similarity  transformation  matrix. 
l l ~ e  Jordan form minimal  representation R,,, has  been  obtained  by  first 

transforming R into  the  Jordan  form R, = {AJ, B,, C,}. This was  done  by  a 
similarity  transformation: 

where  the (n x n) similarity  transformation  matrix M, sometimes  referred  to  as  the 
modal  matrix, contains  eigenvectors  associated  with  all n eigenvalues X, of A, i.e. 
the columns  of M = [m, .. . m,] satisfy 

A, B, c, M * AJ, B,, CJ (4.29) 

(A$, -A)m,  = 0 

i.e. m, is in the  null  space  of B, = XiI - A. 
Using Eq.(4.29), the  representation RJ becomes: 

- 2 2  0 0 

-2 -2 0 0 

0 0 - 2 1  

0 0 -1 -2 

0 0 0 0  

0 0 0 0  

0 0 0 0  

0 0 0 0  
_" "-  "-  "- 

0 0 -.33 -1.35 

0 

0 

0 

0 

-2 

0 
0 

0 
"- 

-1.82 

O O O I O  
O O O I O  

O O O I O  

O O O I O  

0 0 0 I .54 

-1 1 0 I -.g5 

-1  -1 0 I -1.20 

"_ "_ "_ -1- -" 
0 0 -1 I .86 

-.80 -1.02 0 I 0 
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Obviously,  the  first  four  modes  in R, are uncontrollable,  since  the  corresponding 
elements in the  vector B, are equal  to  zero.  Similarly  (dually)  the  modes  with 
indices 1, 2 and 8 are unobservable.  In order to extract  from R, the  minimal  part, 
i.e. the modes  which are both  controllable  and  observable,  the  following  selector 
vector v = { v, 1 has been generated: 

v = [ O  0 0 0 1 l 1 0 l T  

The elements v, are calculated by: 

vi = 1 if bj,cji > E ,  otherwise v, = 0. 

Finally, the  minimal  representation R,,,, obtained  using  the  Jordan  form  approach 
is: 

-2.0 .o 
A,, = 

.O -1.0 -1.0 - 1.205 

.O - 1.0 ;: ] B,, [ -.g53 -547 

C,, = [ 1.829 -A07 -1.021 3 

The sequence  of  algorithms  is: 
v (DSM) =) S 

ST A, S =) AI,,, 
STB, * B  

The  selector  matrix S has  dimension (8 x 3) containing  the S " ,  4 and Tb columns 
of Ig. A service  algorithm, DSM, (Define  Selector  Matrix),  is  used  to  generate the 
matrix S. 

The Kalman decomposition procedure generates  the  minimal  representation 

c, S =) C,a 
Jm 

R, = {A,, B,, c,1: 
-2.01  .l0  -.l1 - 1.03 

= . 0 9  B,,,, = -.22  -.g2  1.28 

. 0 9  -.77 -1.06 I 1.29 

C,,,, = [ -1.23 . 2 4  1.33 3 

This  was  obtained by the  following  algorithm: 

A, B, C, E (KalD) =) A,, B,, C ,  

As is explained  in  Appendix B, the Kalman decomposition  procedure  decomposes 
the  state  space  into  four  subspaces,  namely: 
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c-no Controllable  and  unobservable 
C-o Controllable and observable 
nc-no Uncontrollable  and  unobservable  and 
nc-o Uncontrollable  and  observable 

The  dimensions  of  these  subspaces in our  example are given  below: 

c-no c-0  nc-no nc-o 
1 3 2 2 

The  dimensions  as  well  as the modes  belonging  to  these  subspaces  may be  checked 
by considering  the  obtained  Jordan  form. 

The Hessenberg  minimal  realization RH,,, = {AH,,,, B,,,,,, CH,,,} for  our  example 
is: 

-1.30 -.M .73 1.60 

A,,,, = 

' :: ] 1.20 -1.03  -37 ] BH, = 

.W - . 6 4  -1.67 

C,, = [ 1.88 -.05 -.24 ] 

This was  obtained  by  the  following  algorithm: 

Of  course,  all  of  the  above  three  representationas are controllable  and  observable 
and  have  the  same  transfer  function  matrix. 

4.2.2 Transfer  Function  to  Markov  Parameters 

This  algorithm  calculates the Markov  parameters  from  a  transfer  function 
matrix G(z) = C(z1 - A)"B + D. It is based on the  obvious  equation: 

which  using 

n n 

may be  reduced  to: 

1 

C dn-jHi-j  = W,,_' for i=[O,n] and 
j - 0  
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I c dn-jHi-j  = 0 for i= [n+ l , - ]  
j - 0  

(4.30) 

Since, by definition, d. = 1, Eq.(4.30) leads  to  the  following  recursive  expressions 
permitting  calculation  of H,,j=[O,M-l],  for an  arbitrary  finite M, given d, and  W,, 
i=[O,n]: 

1. Set W,, * H,, 

2. Set - c dn-jHi-j  - Hi for i=[l,n] 
I 

j - 0  

These  recursive  expressions are implemented  by  Algorithm TFH having  the syntax: 

0 d is an (n+ 1) dimensional  row  containing  the  coefficients d,. 
0 W is a [@m X (n+ l)] matrix  in PMF. Rows  of W contain  coefficients 

0 M is scalar specifying  the  number of Markov parameters H,, i=[O,M- 

0 H is a Ipm X MJ matrix  in PMF. Rows of H contain the first M 

0 h, is a scalar  equal  to 11 H,, 11 , where H", is the last Markov parame 

of  the  polynomials w&z) in W(z). 

l], to  be  calculated. 

coefficients  of  the  polynomials h&") in H(,?). 

ter  calculated. 

The reason  for  calcuating  the  quantity hM will be  explained  later. See the  Glossary 
for the particular  matrix  norm  used. As was  mentioned earlier, if  all the roots of 
d(z) are within  the unit circle and if the  scalar M is sufficiently  large so that 

h, << 1 (4.31) 

then,  coefficients  in  the matrix f i ( z  -l), representing  the  truncated  polynomial 
matrix: 

M- 1 

with  sufficient  accuracy  satisfy: 
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It is worth  mentioning  that  if Eq.(4..31) holds, Eq~(4.30) may be represented  either 
by: 

DO 

DO 

I D, 

Dn 

or 

H0 

%-l 

Do ... 

[Bo ... B, l 

(4.32) 

= [ 0 0 WO * e *  W”] 

where B, = Zmdi 

The  forms  of Eq~(4.32) could  also be used for  calculating Hj, given di and Wi. 

4.2.3 Continuous-Time  Transfer  Function  Response 

This  algorithm  calculates  the  zero-state  response of a  general  C-T  transfer 
function  matrix G($) = W(s)/d(s) = C(s1- AY’B + D., given  the  samples  of  the 
input  signals.  The  calculations are based  on the assumption  that the input  signals 
are linearly  interpolated  between  samples. The syntax  of the algorithm  is: 

d,W,U,T(CDTR)=,Y 

Input/Output  Arguments: 
0 d is an @+l)  dimensional  row  containing the  coefficients di, i=[O,n] 

0 W is  a pm X @+l)] matrix  in  the PMF. The  rows of W contain  the 

0 U is an (m x N) matrix  containing N samples of the m-dimensional 

0 Tis  total  simulation  time  in  seconds. 

of d(s). 

coefficients wvh of  polynomials W&) in W@). 

input  vector u(c). 
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y is a (p x N) matrix  containing N samples of the C-T system re- 
sponse. 

The calculation is performed  using a 4'" order Runge-Kutta  method. Since no 
prediction or correction  is  made,  for  sufficient  accuracy  the  number  of  samples N 
should  satisfy: 

N ST(I-1 

where >b, is the  maximum  root of  the  denominator d(s). The multi-input case is 
treated  by  summing  the  responses  of m single-input  multi-output  subsystems. It is 
fair to say  that  better  accuracy  in  simulating  C-T  systems is offered  by CDSR 
discussed in 4.1 S .  which  calculates  the  response  of  systems  defined in state  space. 

4.2.4 Discrete-Time Transfer Function  Response 

This  algorithm  calculates  the  zero-state  response  of a general  D-T  transfer 
function  matrix G(z) = W(z)/d(z) = C(z1 - A)"B + D, given  the  samples  of the 
input  signals.  The  syntax  of  the  algorithm  is: 

d,W,u,O (CDTR) =$ y 

Inputloutput Arguments: 

d is an (n+ l) dimensional  row  containing  the  coefficients d,, i=[O,n] 

0 W is a [pm x (n+I)] matrix in the PMF. The  rows  of W contain the 

U is an (m x N) matrix  containing N samples of the  m-dimensional 

y is a (p X N) matrix  containing N samples  of  the  D-T  system re- 

of d(z). 

coefficients wgh of  polynomials wk(z) in W@). 

input  vector U@). 

sponse. 

The  multi-imput  case  is  treated by summing  the  responses  of m single-input 
multi-output  subsystems.  The  execution  time for the  calculation of D-T  system 
responses using  this  algorithm  is  slightly  longer than that  of  the  Algorithm CDSR, 
Section 4.1.6, although  the  accuracy  in  the  case  of  D-T  systems is the  same. 

Note  that,  formally,  the  same  algorithm is used  in  simulating  C-T  and  D-T 
systems. The only  difference  is in the  fourth  input  argument. If the  fourth 
argument is zero or negative,  then  the  arrays d and W are interpreted  by  the 
algorithm  to  describe a D-T  system  transfer  function  matrix.  Otherwise, as is the 
case  in  simulating C-T systems,  the  fourth  argument  contains  the  total  simulation 
time  interval. 
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4.2.5 Transfer  Function  to  Left  Coprime MFD 

This  algorithm  calculates  a  left  coprime MFD {D(z),  N(z)}  from  a  transfer 
function  G(z) = W(z)ld(z).  It  is  based on: 

which  may  be  rewritten as 

N(z)&) - D(z) W(z) = 0 , where. f%z) = I,,&) (4.33) 

Using 

Eq.(4.33) may be  represented  by 

which,  for  short,  will  be  expressed by: 

[ N .  I D r ] T , = O  

= o  

(4.34) 

N, and D, in Eq.(4.34) are p X (k+ I)m and p X (k+ l )p  matrices,  respectively, 
containing N,  and Q, while Tk is  a [(k+ l)@+m) X m(n+k+ l)] matrix  consisting 

of  known  submatrices Bi and W,. 
Since in this  algorithm  the  matrix Tk is given,  the unknown matrices N, and 

D,, defining D(z) and N(z) are  to  be  determined  from the Null space  of TC. Also, 
the  integer k must be  determined.  Recall  that  we are  looking  for  a  monic  D(z) 
whose  matrix D, has the properties  discussed in Section 3.4, i.e. it has: 

n columns  with  non-zero,  non-unity  elements 
p columns  of  the  identity  matrix I, 
kp-n columns  of  zeros 
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Similarly, as is the  case  in  some  other  algorithms  to  be  discussed  later, it may be 
shown  that for a sufficiently  large k the  row  rank  of  T, is given  by: 

leading  to 
rank [ T k ]  = (k+l)m + n 
n rank [ T k ]  - (k+l)m (4.35) 

The  integer n in E4.(4.35) is  the  order of the polynomial  given  by det( D(z) 1, 
where,  of course, D(z) is a monic  column-reduced  polynomial  matrix  to be 
determined.  It  is  worth  mentioning  that  if  the  given W(z) and d(z) are obtained 
from C(zI-A)"B + D = W(z)/d(z), where R = {A,B,C,DJ is a minimal  state  space 
representation  of order n, then: 

d(z) = det(z1 - A) = det{ D(z) } 

Thus, in  this  algorithm it is  first  necessary  to  build  the  matrix Tk and  then to 
determine  the  smallest  integer k satisfying E4.(4.35). Note  that  the  integer k 
defines  the  maximum  value of the  column  degrees { n, 1 , k = max { n, } , by  which 
D(z) is to  be  represented.  From  the  structure  of  the  matrix  TI  it  may be concluded 
that  since D,, = I&,,, with d,, = 1 , the  first (k+ 1)m rows  in  Tk are linearly 
independent and that  among  the  remaining (k+l)p rows of Tk  there are only n 
additional  linearly  independent  rows.  Recall  that in discussing  Algorithm RoDN, 
Section 4.1.7, it was  established  that a set  of  column  degrees  of D(z) is equal  to a 
corresponding  set  of  admissible  POI.  Thus,  it  may  be  concluded  here  that  the  total 
number  of sets of II linearly  independent  rows  from the "lower" part of Tk is equal 
to  the  total  number  of  admissible  sets  of  POI,  i.e.  to  the fofd number of 
"admissible"  sets  of  column  degrees by which a monic  column  reduced D(z) may 
be  represented.  Thus,  from  the  structure  of  the  matrix D,, Eq.(3.104), it  follows 
that  any  selection  of n rows  from  the  above  mentioned (k+l)p rows of T,,  made 
in accordance  with  the  selector  vector v,,, generated by an admissible  set of POI, 
would  yield n rows  which are linearly  independent  with  respect  to  the first (k+ 1)m 
rows  in T,. Let this  selection  be  represented  by: 

SlT, = H, (4.36) 

where  the  selector  matrix S,, selects  into H, all (k+l)m+n linearly  independent 

rows. The matrix S,, may  be  interpreted  as  the  selector  matrix  generated  by an 
auxiliary  selector  vector  given  by: 

qIi = [ 1 ... 1 I Vli ] 
" (4.37) 

(k + l )m (k + 1)p 
i.e.  obtained by concatenating a row  vector  containing (k+l)m unities  and  the 
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vector v,, generated  by an admissible  set  of POI, i. e. a corresponding set { n, }. 
In order  to  determine  the  matrix N, and  the  non-zero  non-unity  columns  in D,, 

Eq.(4.34), denoted  in  Section 4.1.7,  Eq.(4.17), by -4, a selector  matrix S, should 
be generated  using  another  auxiliary  vector qld defined  by: 

TI* = [ 0 a.. 0 I Vld ] 
" 

(k + 1)m (k  + 1)p 
(4.38) 

Recall that  the  vectors v,, and v, used in Eqs.(4.37) and (4.38) have n and p 
unities,  respectively,  while  all  their  other  elements are equal  to  zero.  These  vectors 
are generated  by  the  set { n, }. Then,  using: 

the desired  matrices N, and -A, may  be  calculated  by  solving  the  following  system 
of linear  algebraic  equations: 

[ N, I -A, ]H1 -H, (4.39) 

Having  determined  matrices N, and -A,, the  desired  polynomial  matrices D(z) 
and N(z) may  be  obtained  using Eq.(4.20) given  in  Algorithm RoDN, i.e. 

S: - A,$ - D, 
and,  finally, N,, m (PMFr) * N(z) and D,, p (PMFr) * D(z). 

The algorithm  may  be  considerably  simplified  if  we  know  in  advance  the 
system order n, i.e. an  "admissible"  set  of  column  degrees { n, }. Then,  it is 
sufficient  to  determine k, build  the  matrix Tk and proceed with Eq(4.36). Details 
are given  in  the  algorithm  formulation. 

Thus,  the  following  algorithm,  permitting  calculation  of a left  coprime MFD 
{ D(z),  N(z) } with D(z) monic and column-reduced,  given a transfer  function 
matrix G(z), i.e. a (p X m) polynomial  matrix W(z) and a characteristic  polynomial 
d(z), may be  suggested. 

Syntax: d,W, E,  n, (TFDN) * D, N, n, C# 

Input/Output Arguments: 
0 d is an (n+ 1) dimensional  row  containing  the  coefficients  of d(z). 

W is a [pm X n+ l] matrix  in  the PMF. The rows of W contain 

0 E is a sufficiently  small  positive  number  used  in rank calculations. 
n, = { ni } is  the  set of  "desired"  column  degrees  by  which D(z) 

the  coefficients wy,, of  the  polynomials wy(z) in H(z). 
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is  to  be  represented.  If nd is not  known,  any scalar, e.g. E ,  may 
be used as the fourth  argument. 
D is  a [p2 X @+l)] matrix  in  the PMF. The  rows  of D contain 
the coefficients dg,, of the polynomials $(z) in D(z). 
N is  a [pm X (k+l)] matrix  in  the PMF. The rows  of N contain 
the coefficients nu,, of the  polynomials ng(z) in N(z). 
n is  the  set of  column  degrees  of D(z). 
C# is  the  degree  of  admissibility  of the set  of  column  degrees  of 
W ) .  

Set W (Art) =$ W,, W, , I,&, =) f i i  

If nd is  specified,  determine k, build  T,,  set nd =) { n, }, and  go  to 
9; else,  go  to 3 
Set 0 =) k and 0 * no 
Set k+l * k 
Build  T,,  in Eq.(4.34), and  set rank(Tb - km * n 
If n = no go  to 7; else,  set n =$ no and go  to 4 
From Tk  determine  the  unique  column  degrees,  i.e. T, (Im) =) 

Define an appropriate  set of  column  degrees {n,} 

Using S,,, S, and k, define SIi and S,, Eqs.(4.37)-(4.38) 

( 4  

Set {nil (SMut) * nm, So, S,,  S,,,  S, 

Set SlT, * H, and SkT, =$ H, 
Calculate the admissibility  degree  of H,, i.e. H, (C#) * C# 
If C# is  "too  small,"  go to 8;  else,  go  to 14 
Solve X H, = -H2 for X, where X = [ N, -A, 3 
Set SUT - =) D, 
Set D,,p (PMFr) =$ D and N,,m (PMFr) =) N 

The  polynomial  matrix  "service"  algorithm All used  in  Step 1 rearranges 
elements  in  the PMF W into the "alternate"  forms W, and W,, given  by Eq.(4.7). 
The  Algorithm I N D ,  in Step 7, determines  the  unique  observability  indices,  i.e. 
column  degrees  of D(z), by detecting  the  first  linearly  independent  rows  in Tk. 
Note  that in this  case by  detecting  the  first (k+ l)m + n linearly  independent  rows 
in T,, Algorithm I h D  first  determines the auxiliary  selector  vector ql,, Eq.(4.37), 
which is later  partitioned  into (k+ 1)m unities  and  the  selector  vector v, which  leads 
directly  to the unique  column  degrees  (or  observability  indices vJ. The  admissibili- 
ty degree  algorithm (C#) in Step 12 defines C# as  the  ratio  of the smallest  to the 
largest  singular  value  of HIT. 
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4.2.6 Transfer  Function  to  Right  Coprime MFD 

Although  this  algorithm is  dual  to TFDN, it  will  be  briefly  stated  here.  The 
algorithm  is  based on: 

which  may be  expressed  as 

B(z)N(z) - W(z)D(z) = 0 , where fi(z) = Ip4z) (4.40) 

Eq(4.40) may also  be  represented by: 

’0 l -W0 

6, fi0 I -W, -W0 

*.. I i 

‘n Bo 1 -Wn 

5. i I 
fi, I 

fin ’1 I -Wn 

which,  for  short,  will  be  expressed by: 

Nc 

D C  

Tk = o  --- 

= o  (4.41) 

(4.42) 

The  relationships  between  the  symbols  in Eq~(4.41) and (4.42) should  be  clear. 
Therefore,  according  to  the  duality  principle, the first  linearly  independent 

columns of Tk give  information  about the set  of row degrees { n, } which are equal 
to  the  unique  controllability  indices p, of  the  corresponding  state  space  representa- 

tion.  Consequently,  by  postmultiplying Tk by a  selector  matrix g l i ,  corresponding 
to an auxiliary  selector  vector fli, defined in the  dual  sense  by Eq.(4.37), a full 
column rank matrix  is  obtained,  i.e.: 

Tk& = H, 

Similarly, by  postmultiplying Tk by the  selector  matrix Sld,  dual  to Eq.(4.38), m 
columns are selected  from Th which are  linearly  dependent on the  columns  of HI. 
In other  words: 
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From  Section 4.1.8 it may be  concluded  that  all n rows  of the matrix -A, in 
Eq.(4.43) correspond  to n non-zero  non-unity  rows  in D,, and also  that  the m 
columns  of A, correspond  to  the m non-zero  non-unity  columns  in  the  system 
matrix A, in a PCF R,, based  on  the  admissible  set  of PC1 p = { pi } which are, 
in turn, equal  to  the  row  degrees { n, } of  the  matrix D(z) that  we are looking for 
in  this  algorithm. 

Therefore, having -A, from Eq.(4.43), the  matrix D, may  be  calculated by: 

Finally,  the  desired  polynomial  matrices D(z) and N(z) may be  obtained  from D, 
and N, using  the  service  algorithm PMFc. 

Thus,  the  following  algorithm,  permitting  calculation  of a right  coprime MFD 
{ N(z), D(z) } with D(z) monic and row-reduced,  given a transfer  function  matrix 
G(z), i.e. a (p X m) polynomial  matrix W(z) and a characteristic  polynomial d(z), 
may be suggested. 

l d,W, e, n, ( ~ ~ )  * N, D, n, C# 

Input/Output Arguments: 
0 d is an (n+ 1) dimensional  row  containing  the  coefficients  of d(z). 
0 W is a [pm X n+ l] matrix  in  the PMF. The  rows  of W contain 

0 E is a sufficiently  small  positive  number  used  in  rank  calculations 
0 n, = { n, 1 is  the  set of "desired"  column  degrees  by  which D(z) 

is  to  be  represented. If n, is  not  known,  any  scalar,  e.g. E ,  may 
be  used as  the  fourth  argument. 

0 N is a [pm X (k+l)] matrix  in  the PMF. The rows  of N contain 
the  coefficients nyh of  the  polynomials n&z) in N(z). 

0 D is a [mz X (&+l)] matrix  in  the PMF. The rows  of D contain 
the  coefficients dgh of  the  polynomials d,,(z) in D@). 
n is the  set  of  row  degrees  of D(z). 

0 C# is  the  degree  of  admissibility of the  set  of  row  degrees  of D(z). 

the coefficients W@ of the polynomials W&Z) in H(z). 

I Algorithm: 

1. Set W ( ~ t )  * W,, W, , Ipdi * fji 

2. If n, is  specified,  determine k, build T,, set n, * { n, 1, and  go  to 
9; else,  go  to 3 

3. Set 0 * kand O *  no 
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4. 
5. 
6. 
7. 
8. 
9. 

10. 

11. 
12. 
13. 
14. 
15. 
16. 

Conversions from a  Transfer  Function Matrix 173 

Set k + l  * k 
Build T,, Eq.(4.42), and set rank( T, ) - kp =) n 
If n = n, go  to 7; else,  set n =) no and  go  to 4 
From T, determine  the  unique  row  degrees,  i.e. T, ( Z N D )  * {n,} 
Define  an  appropriate  set  of  row  degrees {ni} 

Using S,,,  S, and k, define S,, and S,d, Eqs.(4.37)-(4.38) 
Set T,S,i * H, and T,S, Hz 
Calculate  the  degree  of  admissibility  of H,, i.e. H, (C#) =) C# 
If C# is  l'too small,"  go to 8; else,  go  to 14 
Solve H,X = -H, for X, where X = [ N,' I -AmT IT 
Set S, - SUA, = D, 
Set DC,m (PMFc) =) D and N,,p (PMFc) =) N 

set (nil (SM4 =$ n,, S,,  S,, S,{, S, 

The  service  algorithms Alt, I N D  and C# were  explained  in  the  previous  section. 

4.2.7 Transfer  Function to State  Space  Forms 

In  this  section  the  Algorithms TFRo and TFRc will  be  formulated.  Since  they 
are obtained  by  slight  modifications  of  Algorithms TFDN and TFND, respectively, 
the  algorithms  will  be  given  directly.  The  necessary  modifications  will  be 
discussed  following  the  formal  algorithm  presentation. 

It  is  worthwhile  to  compare  these  algorithms  with  the  "classical"  minimal 
realization  procedures,  discussed in Section 4.2.1. The main  advantage  of the 
ZFRo and TFRc algorithms  is  that  they  do not require a non-minimal  state  space 
representation;  but,  instead,  directly  use  the  given W(z) and d(z), which  consider- 
ably  simplifies  the  computational  aspect.  Taking  into  account  the  sizes  of  the 
matrices  involved,  it  may  be  concluded  that TFRo should  be  used  when m < p .  
In  this  sense,  Algorithms TFRo and TFRc may  be  considered  as 'hovel" approaches 
to  minimal  realization  of  MIMO  systems. 

I syntax: 
d,W, E ,  v, (TFRo) R, = A,, B,, C,, D,, v, C# 

I Inputloutput Arguments: 

0 d is an (n+ 1) dimensional  row  containing  the  coefficients of d(z) 
W is a [pm X n+l] matrix in the  PMF.  The  rows  of W contain 

E is a sufficiently  small  positive  number  used  in rank calculations 
v, = { vi } is  an  admissible  set  of POI. If v, is not  known, any 

R, = {A,, B,, C,, D,}, state  space  model  in a POF 

the  coefficients wQh of  the  polynomials W&) in H(z) 

scalar,  e.g. E ,  may  be  used as the  fourth  argument 
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v is an admissible  set  of  POI  corresponding  to R, 
C# is the  degree  of  admissibility  of  the  set v 

Algorithm: 

1. 
2. 

3. 
4. 
5. 
6. 
7. 
8.  
9. 

10. 

11. 
12. 
13. 
14. 

15. 

16. 
17. 
18. 
19. 
20. 

Set W (MC) * W,, W, , I,,,di * bi 
If nd is specified,  determine k, build T,, set n, * { n, }, and go to 
9; else, go to  3 
Set O*kandO*n, 
Set k+l  * k 
Build T,, Eq.(4.34),  and  set  rank( T, ) - km =) n 
If n = no go  to 7; else,  set n =$ no and go to 4 
From T, find  the  unique  column degrees, i.e. T, ( Z W )  * {vl} 
Define  an appropriate  set of  row  degrees (v i }  

Using S,i, S, and k, define S,i and S,, Eqs(4.37)-(4.38) 
set {Vi} (SMQO * v,, S,, si, S,,  S, 

Set SiT, =) H, and SLT, * H, 
Calculate the degree  of  admissibility  of H,, i.e. H, (C#) =$ C# 
If C# is "too  small,"  go  to 8; else,  go  to  14 
Solve X H, = -H, for X, where X = [ N, 1 -A, ] 

Partition I,, -. [ Az ] (C, hasp rows.) 

Set SiA, + S A r  * A, 
Set N,, m (R2C) =) N, 
Set A,, S, (QC) =) Q, , Q, has k + l  blocks {Ads,} o f p  columns 

Partition W, * [ Y I D, 1, D, contains  the  last m columns  of W, 

c* 

Set Q& * B, 

The  service  algorithm R2C in Step  17  rearranges  alternate  form N, into N,. For 
details  see  Eq.(4.7).  Matrices A,, and N, used  in  Step  20  contain the first p and 
the  first m columns  from A, and N,, respectively. 

Comparing  Algorithms TFDN and TFRo, it may  be  concluded  that the first 
14  steps are exactly  the  same.  Only  the  last 6 steps  in TFRo differ  from  the  last 
2  steps  in TFDN. This is a  consequence  of  Remark  4.1  given  in  Section  4.1.7.  As 
may  be  noted,  these 6 last  steps in TFRo actually  calculate the matrices in R, = 
{Ao,Bo,Co,Do]. In the sequel  a  brief  explanation  of  these  steps  will  be  given. 
Some  of  these  steps  may  be  obvious,  while  others  may be verified  by direct 
(straightforward)  matrix  calculation.  It  should  be  noted  that  these  expressions  will 
be  used  in  several  algorithms  to  be  discussed  later. 

Step  15  defines the matrix C, = [ I, 0 1, consisting  of  the  first p rows  of 
an (n X n)  identity  matrix I,,, as well as  the  auxiliary  [(n-p) x n] matrix A, 
containing  the  last  n-p  rows  from I,. Obviously: 
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(4.44) 

Step 16 defines A, as: 

A, = S, 4 + S, A, , where A, = -D$,, (4.45) 

which  may be verified  by  considering the structure of the  auxiliary  matrix A2 and 
selector  matrices S,,  S, and S, discussed  in  Section 3.3.4,  Eq.(3.79). 

Steps 17, 18 and 19 define  the  matrix B, by: 

which is, in fact,  a  straightforward MM0 generalization  of  the  procedure  used  in 
calculating  the  observability  state  space  form of a SISO system  given  a  transfer  fun- 
ction g(s) = b(s)la(s), described in Procedure 4 in Section 3.2.4. 

Finally, the matrix D, in Step 20 is  calculated  by: 

D, C, A;' B, - No (4.46) 

which is  a  direct  consequence of: 

D, = D"(z) N(z) - C, (zI - A,)-' B, (4.47) 

and  the  assumption  that the matrices A, and A,, the  first p columns  from A,, are 
nonsingular,  which  is  almost  always the case in the  case  of  discrete  systems. 

If it happens  that A, is  singular,  i.e.  that  the  system  has  at  least  one  pole at 
the  origin,  leading  to  a  singular A, as  well, then D, may be  calculated  by 
evaluating D, using Eq.(4.47) for an arbitrary z not  equal  to  a  system  pole. This 
calculation,  for  matrices D, (and DJ, is  performed  by  Algorithms GeDo (and 
GeDc); both  algorithms  have L-A-S implementations  listed  in  Appendix C. 
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Inpuff Output Arguments: 

0 d is an @+l) dimensional  row  containing the coefficients  of d(z) 
0 W is a p m  X n+l] matrix in the PMF. The rows  of W contain 

0 E is a sufficiently  small  positive  number  used  in rank calculations 
pd = { pi  } is an admissible  set  of  PCI.  If is not  known, any 
scalar,  e.g. E ,  may  be used as  the  fourth  argument 

0 R, = {A,, B,, C,, D,], state  space  model  in a PCF 
0 p is an admissible  set of PC1 corresponding  to R, 
0 C# is the  degree of admissibility of the  set p 

the  coefficients W#,, of  the  polynomials W&) in H(z) 

Algorithm: 

1. 
2. 

3. 
4. 
5.  
6. 
7. 
8. 
9. 

10. 

11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

20. 

Set W ( ~ t )  * W,, W, , * f j i  

If  is  specified,  determine k,  build T,, set pd =) { p, 1, and  go  to 
9; else,  go  to 3 
Set 0 =) k and 0 3 no 
Set k+l =) k 
Build T,, Eq.(4.42), and set  rank( Tk ) - kp * n 
If n = no go to 7; else,  set n =) no and go  to 4 
From T, determine  the  unique  set  of CI, i.e. T, (]M) * {p i }  
Define an admissible  set  of  PC1 {pi} 

Using S,,  S, and k,  define Sli and Eqs.(4.37)-(4.38) 

Set T$,, =$ H, and T,s, =) Hz 
Calculate  the  degree  of  admissibility  of H1, i.e. Hl (C#) =$ C# 
If C# is  "too  small,"  go to 8; else,  go  to 14 
Solve HIX = -H, for X, where X = [ NCT I -AmT]' 
Partition I,, =) [ B, A, 3 (B, has m columns.) 
Set AZST + A$3: * A, 
Set N,, p (C2R) =) N, 
Set A,,, S: (Qo) =) Q, (Q, has k+ 1 blocks {S,'A;) of m rows.) 
Set N,Q, =) C, 

set {P,} W a t )  * pm, S,, S,, S,, S, 

I y l  
Partition W, * I 1, D, contains  the  last p rows of W, 

Again,  the  first 14 steps  in  Algorithms V N D  and TFRc are exactly  the  same. 
Using  the  principle  of  duality,  the  last 6 steps  of TFRc may  be  easily  verified. For 
convenience and reference  the  equations  defining  the  matrices  in R, = {A,, B,, C,, 
D,} will  be  given  in  the  sequel: 
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A, = 4s; + A,,s,T, where A,, = -s,,D, T 

where  now A, consists  of  the  first m rows  from  the (n X m) matrix A, 
Equations (4.48) are dual  to Eqs44.44) - (4.47). For  more  details see Algorithm 
RchD, Remark 4.2 and  the  included  example  in  Section 4.1.8. 

4.3 Conversions from Markov  Parameters 

Given a set  of  Markov  parameters,  there are algorithms  for  calculating 
equivalent  state  space  models  (observable  or  controllable  forms)  as  well  as 
equivalent AFWA (MFD)  models  (left  or  right  coprime  forms).  If it is desired  to 
convert  to a transfer  function,  it  is  recommended  to  use  the  state  space  representa- 
tion or either  left or right  MFD  as an intermediate  stage,  although  there is an 
algorithm  for  direct  conversion  to a transfer  function  matrix. 

There are several  procedures  for  calculating  state  space  models  from a given 
set  of  Markov  parameters.  Some of them,  known  variations  of the H o - K a h n  
algorithm,  eigensystem  realization  algorithm (ERA), etc. are mentioned  in the end- 
of-chapter  references.  Here, we  will  describe  alternate  procedures  which  take 
advantage  of  the  flexibility  offered by PC1  and  POI and, consequently,  give  state 
space  representations  in  either  PCF  or  POF.  In  addition,  the  procedures  to  be 
discussed  here are less  computationally  "intensive"  and  more  compatible  with  other 
intermodel  conversions  discussed in  this  chapter. 

4.3.1 Markov  Parameters  to  Observable  State  Form 

This  algorithm  calculates an observable  form  state  space  model R, = {A,, B,, 
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C,, D,) in a POF, based  on an admissible  set  of  POI  from a corresponding  set of 
Markov  parameters. 

To derive the algorithm HRo, consider a state  space  model R, = (Ao, B,, C,, 
D,) in a POF, based  on an admissible  set  of  POI v = { v, }. Then it is relatively 
easy to  verify  that  the  following  relation  holds: 

H, 193 --- Hk+1 

. H, =,+l .** % + l ,  

Q,Q, = 4 H[kl (4.49) . . ... 

where Q, and Q, are the  observability and controllability  matrices  of  the  pairs (A,, 
C,} and {A,, B,}, respectivly,  while H,, i = [ 1 , 2 k + l ]  are Markov  parameters  given 
by (4.3). The matrix H[k], Eq(4.49) is  referred  to  as  the Hunkel matrix. For 
simplicity  of  notation,  let k = v,, = max{v,} = p- = max{p,}. Since  Markov 
parameters  do  not  depend  on  the  particular  similarity  transformation  matrix  used, 
they  may  also be expressed by: 

H, = C,Ai" B, 

Assuming  that R, is minimal,  i.e.  both  controllable  and  observable,  then 

&(Q,) = &(Q,) = n (4.50) 

leading  to: 

rank(H[k]) = n (4.51) 

From the  definition  of  the  unique  observability  indices v,,, Sec. 3.3.2, it may be 
concluded  that  the  first  linearly  independent  rows  of H[k] in Eq(4.49) determine 
these indices in exactly  the  same  manner as  these  indices are determined  from  the 
rows  of  the  observability  matrix Q,. 

From Eq(4.49) it  may  be  concluded  that: 

H 2  H3 **. Hk.1 

H3 H4 ... Hk+2 

, H,+l Hk+2 ... b.? 

Q,A,Q, = P H[k]  . 
(4.52) 

... 

Now,  recall  that  in  Chapter 3 for R, in a POF,  it was  stated  that: 
Q, has n rows equal to  all n rows  of  the  identity  matrix I,,. The 
locations  of  these  rows  correspond  to  the  locations  of  unities  in the 
selector  vector vu. 

Thus, using the  selector  matrix, S,, defined  in Eq.(3.79), it may be concluded  that: 
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SLQo = I, (4.53) 

Thus,  premultipying H[k] and H[k] in Eqs44.49) and (4.52), respectively,  with 
S;, and  using Eq.(4.53) yields: 

AoHl = & and Q, = H, 
where H, = SiH[k] and = SLH[k] 

(4.54) 

which,  since H, is  a  full  row rank matrix, may be used for  calculating A,. Also, 

B, may be  obtained  by  taking  the first m columns  from H,. Finally, it is known 
that: 

C, = [ I p  0 1  and D, =H, 

Thus,  from Eq~(4.49) - (4.54) the following  algorithm  may  be  formulated: 

Syntax: H, € 9  vd (HRo) =) A,, B,, c,, D,, v, c# 

Inputloutput Arguments: 

0 H is  a @m x M) matrix  in  PMF. The rows  of H contain  the  first 

E is  a  sufficiently  small  positive  number  used  in rank calculations. 
0 vd = { vi } is an  admissible  set  of  POI.  If v, is not  known,  any 

scalar,  e.g. E ,  may be used as the third  argument. 
R, = {A,, B,, C,, D,}, a  state  space  representation  in  a POF. 
v = { vi 1, a  set  of  admissible  POI  corresponding  to R,. 

0 C# is the degree of admissibility  of the set v .  

M coefficients of the  polynomials h&-') in H(z"). 

Algorithm: 

1. 
2. 

3. 
4. 
5. 
6. 
7. 

8. 
9. 
10. 

Set H (Ah) =) H,,  H, 
If v, is  specified,  determine k, build H[k], Eq.(4.49), set vd = {v f } ,  
and  go  to 9; else,  go  to 3 
Set 0 * k and 0 =) no 
Set k+l * k 
Build H[k], Eq.(4.49), and  set rank( H[k] ) =) n 
If n = n, go  to 6; else,  set n =) n, and go  to 4 
From H[k] determine  the  unique  observability  indices v,,, i.e. H[k] 
( I N D )  * v,, 
Define an appropriate  admissible  set  of  POI v 
Set v (SMuc) =) v,,,, S,, Si, Sii, Su 
Partition H[k] =) [ H[k] I X 1, X has m columns 



180 Chapter 4 lntermodel  Conversion 

11. 

12. 

13. 
14. 

15. 

16. 
17. 
18. 

Parition H[k] r=) [ zkl] and H[k] r=) [ "y"] ; X and Y have p 

rows 

Set S,%[k] * H, and SNTH[k] =) H, 
Calculate the degree  of  admissibility  of H,, i.e. E, (C#) * C# 
If C# is  "too  small,"  go to 8; else,  go  to 15 

Solve AoH, = for A, 

Partition H I  =$ [ B, 1 X 1, B, has m columns 
Set [ I, I 0 3 =$ C, 
Set H. r=) D, 

Note that  in  Step 7 the  loop  "counter" k corresponds  to v, + 1.  That is why it was 
necessary  in  Steps  10 and 11 to extract H[k] and H[k] as defined by Eqs.(4.49) and 
(4.52) for k = v,,,. As was  mentioned  earlier,  the "service" algorithm AZC used in 
Step 1 rearranges  elements in H into the "alternate"  forms H, and H,, given by 
Eq(4.7). The algorithm I h D ,  in Step 7, determines  the  unique  observability 
indices vu of R, by detecting  the  first n linearly  independent rows in H[k]. The 
algorithm C#, in  Step 13 defines C# as  the  ratio  of the smallest  to  the  largest 

singular  value  of H,. 

4.3.2 Markov  Parameters  to  Controllable  State  Form 

This algorithm  calculates a controllable  form R, = {A,, B,, C,, D,) from a 
corresponding  set  of  Markov  parameters. To derive  the  algorithm HRc, consider 
a state  space  model R, = {Ac, B,, C,, D,] in a PCF, based  on an admissible  set  of 
PC1 p = { p, }. Then,  considering Eqs.(4.49) - (4.52), and  applying the  principle 
of duality,  it may  be  stated  for  the  controllability  matrix Q of  the  pair {Ac, B,) in 
a PCF  that: 

Q, has n columns  equal to all n columns of the  identity  matrix &. The 
locations  of  these  columns  correspond  to  the  locations  of  unities in the 
selector  vector v,, based  on p. 

0 Q, has m columns  equal  to  all m columns  of A, containing  non-zero 
non-unity  elements.  Locations of these  columns are determined  by the 
selector  vector vW The  corresponding  locations  of  these  "parameter" 
columns  in A, are specified by the  selector  vector v,. 

See Section 3.3.4 for  more  details in the  dual  sense.  Thus,  using  the  selector 
matrix, S,,, defined  in Eq.(3.79), it may be  concluded  that: 

(4.55) 
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Thus,  postmultipying H[k] and H[k] in Eqs.(4.49) and (4.52), respectively,  with 
Sa, and  using Eq.(4.55), we  obtain: 

H, A, = $ and Q, = E, 
where H, = H[k] S,, and = H[k] S,, 

(4.56) 

which,  since H, is  a  full  column  rank  matrix,  may be used for  calculating A,. 

Also, C, may be  obtained  by  taking  the  first p rows  from H,. Finally, it is known 
that: 

B, = [ :] and D, = H ,  

Thus,  the  following  algorithm may  be  formulated: 

Inputloutput Arguments: 

0 H is  a (pm X M) matrix in PMF. The rows  of H contain  the  first 

0 E is  a  sufficiently  small  positive  number used  in  rank  calculations. 
0 pd = { p, } is an  admissible  set  of  PCI.  If pd is not known, any 

scalar, e.g. e ,  may  be  used  as  the  third  argument. 
0 R, = {A,, B,, C,, D,}, a  state  space  representation  in  a  PCF. 

p = { pi }, a  set of admissible  PC1  corresponding to R,. 
0 C# is  the  degree  of  admissibility of the  set p. 

M coefficients  of the polynomials h,@') in H(?). 

Algorithm: 

1. 
2. 

3. 
4. 
5. 
6. 
7. 

8. 
9. 
10. 

Set H (Ah) * H,, H, 
If pd is  specified,  determine k,  build H[k], Eq.(4.49), set = 
{pi} ,  and  go  to 9; else,  go to 3 
Set 0 * k and 0 * no 
Set k + l  * k 
Build H[k], Eq.(4.49), and  set  rank( H[k] ) * n 
If n = no go  to 6; else,  set n * no and  go  to 4 
From H[k] determine the unique  controllability  indices p,,, i.e. H[&] 
([m) * P,, 
Define an appropriate  admissible  set  of PC1 p 
Set p (SMaO * p,,,, S,, Si, S,, S, 
Partition H[k] * [ H[k] I X 1, X has m columns 
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11. Partition H[k] * ; X and Y havep 

rows 

12. Set H[k]SU * H, and H[klSU * @ 
13. Calculate  the  degree of  admissibility of H,, i.e. H, (C#) * C# 
14. If C# is  "too  small,"  go  to 8; else, go to 15 

15. Solve H, A, = $ for A, 

16. Partition H, * [ ",.l , C, has p rows 

17. Set [ ',. 1 = B, 

18. Set H, D, 

For more  details see Algorithm HRo in Section 4.3.1. 

4.3.3 Markov  Parameters  to Left Coprime MFD 

This  algorithm  calculates a left  coprime  column-reduced  ARMA @@D) 
model, D(z)"N(z), from a corresponding  set  of  Markov  parameters. Of course,  this 
algorithm can equally  well  be  applied  to a C-T state  model  to obtain the  corre- 
sponding MFD representation. As in  some  previously  discussed  algorithms,  this 
algorithm is based on: 

which  using 

may  be  reduced  to: 

i c Dk-jHi-j = Nk+ for i = [O,k] and 
j -0 (4.58) 

k c D,,H,, = 0 for i=[k+l,m] 
j - 0  
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The  important  differences  between Eqs.(4.58) and (4.30), see Section 4.2.2, are: 

0 D,, in Eq.(4.58) is  not  necessarily a full rank matrix,  while I$,, in 

0 The  integer k in Eq(4.58) is  less than the  system order n used in 

To be  specific,  the  value of k = max { ni 1, n, being  the  column  degrees  of D(z), 
satisfies: 

Eq(4.32) is. 

Eq.(4.32). 

k 5 n-p+l (4.59) 

Equation (4.58) may also be  represented  by: 

%+l H, .*. H, 

H,+? %+l ... H, 
[D, D, * * *  D,] = o  . . . 

and 

which,  for  short,  will  be  expressed by: 

D,T, = 0 and D,R, = N, (4.61) 

respectively.  The  relationships  between  symbols  in Eqs.(4.60) and (4.61) should 
be  clear. 

It is interesting  to  note  that  the  matrix Tk in Eqs.(4.60) and (4.61) contains 
the  same Markov parameters Hi, i = [1,2k+l], as  the  matrix H[k] in Eq.(4.49), 
only  arranged  differently.  Note  that  postmultiplying Tk by  the [(k+ l)m X (k+ l)m] 
permutation  matrix P,,,, given by: 

(4.62) 
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gives TJ',,, = H[k], Therefore,  as was  stated  in  Section 4.3.1, the  first  linearly 
independent  rows  of T, give  the  information  about the unique  observability  indices 
P. of  the  corresponding  state  space  representation.  Consequently,  by  premultiplying 
Tk by a  selector  matrix S:, corresponding  to a set  of  admissible POI, a  full  row 
rank matrix  is  obtained,  i. e.: 

SiT,  = T, 

Similarly, by  premultiplying T, by the  selector  matrix S,', p rows are selected  from 
T, which are linearly  dependent on the rows  of T,. In other  words, Eq.(4.61) 
yields: 

-A,T, + T2 = 0 

leading to: 

A,T, = T2 , where T2 = SLTk (4.63) 

The [p X 713 matrix A, defines  the  above  mentioned  linear  dependence. 
On the  other  hand,  note  that we are  looking  for  a  monic  column-reduced 

matrix Wz),  whose  structure  was  exemplified in Section 3.4, Eqs.(3.100) - (3.105). 
In discussing  this  generic  example  it  was  stated  that  the  matrix D,, appearing  in 
Eqs.(4.60) and (4.61), contains: 

0 n columns  with  non-zero  and  non-unity  elements 
0 p columns  of the identity  matrix Ip 

kp-n columns  of  zeros 

Combining  all  what  was  stated  above  and  with the help  of  Remark 4.1 and 
Eq~(4.17) - (4.20), Section 4.1.7, derived  discussing  Algorithm RoDN, it is not 
difficult  to  conclude  that  all n columns  of the matrix A, in Eq.(4.17) correspond to 
n non-zero  non-unity  columns  in D, multiplied  by -1, and  also  that the p rows of 
A, correspond to p non-zero  non-unity  rows  in  the  matrix A. in  a POF, based on 
the  admissible  set  of POI Y = { vi } which is  equal  to the set  of  column  degrees 
{ n, 1 of the  desired  matrix D(z). 

Having A, from Eq.(4.63), matrices D, and N, may be  calculated  by: 

ST, - A,Sl 9 D, 

N r  

Finally,  desired  polynomial  matrices D(z) and N(z) may be  obtained  from D, and 
N, using  the  service  algorithm PMFr. 

Thus,  the  following  algorithm,  permitting  calculation of a  left  coprime MFD 
{ Wz),  N(z) } with D(z) monic  and  column  reduced,  given  the  Markov  parameters 
H,, i = [0, 2k+l], is suggested. 
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The  total  number  of  Markov  parameters  required is equal  to 2k+2, with: 
k = mm{ n, 1 

where { n, } is a selected  set of column  degrees  with  which a desired D(z) is to  be 
represented. 

Syntax: H, E ,  n, (HDN) =) D, N, n, C# 

Input/Output  Arguments: 

Algorithm: 

1. 
2. 

3. 
4. 
5. 
6. 
7. 

8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 

H is a (pm X M) matrix  in PMF. The  rows of H contain the first 
M coefficients  of  the  polynomials h&') in H(z"). 
E is a sufficiently  small  positive  number  used  in rank calculations. 
nd = { ni } is an admissible  set  of  column  degrees.  If n,, is  not 
known,  any  scalar,  e.g. E ,  may  be  used  as  the  third  argument. 
D is a I p 2  x (k+ l)] matrix in the  PMF.  The  rows  of D contain 
the  coefficients dsln of  the  polynomials d,,(z) in D(z). 
N is a Ipm x (k+l)] matrix  in  the  PMF. The rows of N contain 
the  coefficients ng,, of  the  polynomials n&z) in N(z). 
n is the  set  of  column  degrees  of D(z). 
C# is  the  degree  of  admissibility of the  set  of  column  degrees. 

Set H (All) =) H,, H, 
If nd is  specified,  determine k ,  build T,, Eq.(4.61), set n, = {n,}, 
and go to 9; else, go to 3 
Set 0 =) k and 0 =) no 
Set k+l * k 
Build T,, Eq.(4.61), and set rank( T, ) =) n 
If n = no go  to 7; else,  set n =) no and go  to 4 
From T, determine  the  unique  column  degrees,  i.e. T, (MD) =) 

Define a desired  set  of  column  degrees {nil 

Set S U V ,  * T, and S H T ,  * T, 
Calculate  the  degree  of  admissibility  of T,, i.e. TI (C#) E) C# 
If C# is "too  small," go  to 8; else,  go  to 13 
Solve A,T, = T, for A, 
Set SuT - A,SUT =) D, 
Set D$, * N, 
Set D, (PMFr) =, D and N, (PMFr) =) N 

{nil 

Set { d  (SM4 =$ n,, S,,  S,, S,,, S, 

The service algorithms Alr, I N D  and C# are explained  under  Algorithm ZWN, 
Section 4.2.5. 
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4.3.4 Markov  Parameters to Right Coprime MFD 

This  algorithm  calculates a right  coprime  row-reduced ARMA (MFD) model, 
N(z)D'(z), from a corresponding  set  of Markov parameters. As with  the  previous 
case, this  algorithm  can  be  applied  to a C-T state  model  to  obtain  the  corresponding 
MFD representation.  Although  this  algorithm is dual to HDN, it  will  be  briefly 
stated  here.  The  algorithm is based on: 

c(2) = H(Z-1) = N(Z)D"(Z) 
which  using Eq(4.57) may be reduces  to 

I c Hi-jDk, = Nkmi for i = [O,k] and 

c Hi,Dk, = 0 for i = [ R + l , - ]  
1-0 

1-0 (4.65) 
k 

The comments  stated  after Eq(4.58) apply  here in the dual  sense.  Equation (4.65) 
may also be  represented by: 

and 

which, for  short,  will  be  expressed  by: 

T,D, = 0 and R,D, = N, 

(4.66) 

respectively.  The  relationships  between  symbols in Eqs.(4.66) and (4.67) should 
be  clear. 
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It is  interesting  to  note  that  the  matrix Tk in Eqs.(4.66) and (4.67) contains 
the same  Markov  parameters Hi, i = [1,2k+l], as the matrix H[k] in Eq.(4.49), 
only  arranged  differently.  Note  that  premultiplying Tk by the [(k+ 1)p X (k+ l)p] 
permutation  matrix P,, given  by: 

Pp = 

IP 

IP 
(4.68) 

gives PpTk = H[k]. Therefore,  according  to  duality,  the  first  linearly  independent 
columns of Tk give the information  about the unique  controllability  indices p ,  of the 
corresponding  state  space  representation.  Consequently, by  postmultiplying Tk by 
a  selector  matrix S,, corresponding  to  a  set  of  admissible  PCI,  a  full  column rank 
matrix  is  obtained,  i.e.: 

Similarly, by  postmultiplying Tk by the selector  matrix S,,,, m rows are  selected 
from Tk which are linearly  dependent  on the columns of T,. In other  words: 

T, A,, = T2 , where T2 = TkS,, (4.69) 

The [n X m] matrix A, defines  the  above  mentioned  linear  dependence. 
On the  other  hand,  note  that we are  looking  for  a  monic  row-reduced  matrix 

mz),  whose  structure in the  dual  sense  was  exemplified  in  Section 3.4, Eqs.(3.100) 
to (3.105). Thus, the [(k+ 1)m x m] matrix D,, appearing  in Eqs.(4.66) and 
(4.63, contains: 

0 n rows  with  non-zero  and  non-unity  elements 
0 m rows  of  the  identity  matrix I, 

km-n rows  of  zeros 

Thus, it may be  concluded  that  all n rows  of  the  matrix A, in Eq(4.69) correspond 
to n non-zero  non-unity  rows  in D, multiplied  by - 1,  and  also  that  the m columns 
of A, correspond  to m non-zero  non-unity  rows in the  matrix A, in a  PCF, based 
on the admissible  set of PC1 p = { p, } which is  equal  to the set  of  row  degrees 
(nJ of  the  desired  matrix D(z). 

Having A, from Eq.(4.69), matrices D, and N, may be  calculated  by: 

'Id - ' 1 ,  

m 

Finally,  desired  polynomial  matrices D(z) and N(z) may be  obtained  from D, and 
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N, using  the  service  algorithm PMFc. Thus, the following  algorithm,  permitting 
calculation of a right  coprime  MFD { N(z), D(z) } with D(z) monic  and  row 
reduced,  given  the  Markov  parameters H,, i = [0, 2k+ l], k = mm{ n, }, is 
suggested. 

Syntax: H, e, n, (HAD) =$ N, D, n, C# 

Input/Output  Arguments: 

H is a @m X M) matrix  in  PMF.  The  rows  of H contain  the  first 
M coefficients  of  the  polynomials h&-') in H(z"). 
e is a sufficiently  small  positive  number  used  in  rank  calculations. 
n, = { n, } is an admissible  set of  row  degrees. If n, is  not 
known, any scalar, e.g. e, may  be  used as the  third  argument. 
N is a pm x @+l)] matrix  in  the  PMF. The rows  of N contain 
the  coefficients nu,, of  the  polynomials n,(z) in N(z). 
D is a [mz x (k+l)] matrix  in  the  PMF. The rows of D contain 
the  coefficients dilh of  the  polynomials $(z) in D(z). 
n is the set of row  degrees  of D(z). 
C# is  the  degree  of  admissibility  of  the  set  of  row  degrees. 

Algorithm: 

1. 
2. 

3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 

Set H (Ah) H,, H, 
If n, is specified,  determine k ,  build T,, Eq.(4.67), set n,, = {n,}, 
and go  to 9; else,  go  to 3 
Set 0 * k and 0 * no 
Set k+l * k 
Build T,, Eq.(4.67), and  set rank( T, ) =+ n 
If n = no go  to 7; else,  set n 3 no and go  to 4 
From Tk determine  the  unique  row  degrees, i.e. T, ( I N D )  - {n,} 
Define a desired  set  of  row  degrees {n,} 

Set TA,, * T, and Tfi, * T2 
Calculate  the  degree  of  admissibility  of TI, i.e. TI (C#) =+ C# 
If C#' is  "too  small,"  go  to 8; else,  go  to 13 
Solve T,A, = T2 for A, 
Set S,,, - SUA, * D, 
Set R& =$ N, 
Set D,, m (PMFc) =$ D and Ne, p (PMFc) * N 

Set { d  * n,, S,, S,, Stis S, 

The  service  algorithms Alr, I N D  and C# were  explained  earlier  under  Algorithm 
T l D N  in  Section 4.2.5. 
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4.3.5 Markov  Parameters  to  Transfer  Function 

In this  section  we  present a method  for  calculating  the  transfer  function  matrix 
G(z) = W(z)/d(z) from  given  Markov  parameters H,. Since  this  algorithm is the 
"inverse"  of TFH, Section 4.2.2, it is  based  on  the  same  expressions  Eq.(4.30), 
i.e.: 

which  using 

may  be  reduced  to: 

I c d,,-iHi-j = Wn-i for i=[O,n] 
j - 0  

and (4.70) 

n c d,,-iHi-j = 0 for i= [n+ l , - ]  

Since  in  this  algorithm  the  Markov  parameters H,, j = [ O , M - l ] ,  are assumed known, 
while W, and di, i = [ 1 ,n], are to  be  determined, Eq. (4.70), i.e. Eq. (4.30), will  now 
be represented  differently,  either  by: 

j - 0  

and 

H, 1 
(4.71a) 

=' *. I = [Wo W, ... W"] 
e . .  ' 
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= o  

(4.71b) 

where,  now, 6, = Im di. Eqs.(4.71),  for  short,  will  be  expressed by: 

D,T = 0 and D,R = W, (4.72a) 

TD, = 0 and RD, = W ,  (4.72b) 

respectively,  where  the  notation  should  be  clear. 
It  is  worthwhile to  compare  Eqs.(4.71b)  and  (4.66)  in  Algorithm HND, as 

well as Eqs.(4.71a)  with Eq(4.60) in HDN. Recall  that  in  Eq.(4.71) n is used 

instead  of k, where k c n, and  that D,, or fi,,, in  Eq.(4.71) is, by definition,  a full 
rank matrix,  while Dk in  both HDN and HND might  be  non-singular. Also, the 
non-zero,  non-unity  rows  in D,, or the non-zero,  non-unity  columns  in D, in HAD 
or HDN, respectively,  are  determined by treating  full  column  (or  row) rank 
matrices,  while  here,  as  will  be seen, this  is not the  case. Thus, the  present 
problem  requires  a  different  approach in calculating d(z) and W(z) satisfying 
Eq.(4.70). 

It may be  recognized  that  Eqs.(4.71)  and  (4.72)  are  based  on 

D(z) H(z") = W(z) where D(z) = I, d(z) (4.73a) 

respectively,  and  that  the  first  version  is  more  convenient  if p < m, and  vice  versa. 
Because  of  that fact, we  should  have  both  versions  available.  In  fact,  Algorithm 
HTF executes  either HTFp (first  version) or HTFm (second  version),  depending  on 
whether p C m or m < p ,  respectively,  Since  there  is  complete  duality  between 
these two versions,  only HTFm will  be  discussed  in the sequel. 
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The  basic  steps of this  algorithm are: 

Determination  of  the  system order n 
0 Building the [p@+ 1) X m(n+ l)] matrices T and R, Eq.(4.72b) 
0 Calculation  of  the [m@+ 1) x m] matrix D, as a null  space  of T, where 

D, should  have  the  structure: 

D, = [ d,I,  dl  I, * * a  d,I,IT , d, = 1 (4.74) 

0 Calculation  of W, using W, = R D, 

To take  into  account  Eq.(4.74),  specifically d, = 1, Eq.(4.72b)  will be rewritten 
as 

T,D,, = -Tz (4.75) 

while D,, contains  the  first n blocks dJ,, i=[O,n-l]  from D,. 
Equation  (4.75)  represents  a  system  of  algebraic  equations,  where TI is  not 

a  full  column rank matrix,  leading  to  a  non-unique  solution  for Dcl. A procedure 
of  calculating DC1 of the structure in Eq.(4.74)  satisfying Eq(4.75) is given  in 
Appendix B. Algorithmic  implementation  of  this  procedure  is  included  in 
Algorithm HTFm, given  in the following. 

Algorithm HTFm: 

Syntax: H, E ( H T k t )  * d, W 

Input/Output  Arguments: 

0 H is  a @m x M) matrix  in PMF. The rows  of H contain  the first 

0 E is  a  sufficiently  small  positive  number  used  in rank calculations. 
0 d is an (n+ 1)  dimensional  row  containing  the  coefficients di. 
0 W is  a [pm x (n+l)] matrix in PMF. Its  rows  contain  the 

h4 coefficients of the polynomials h,(z") in H(z"). 

coefficients of the  polynomials W&) in W(z). 

Algorithm: 

1. Set H (Alc) * H,, H, 
2.  Set 0 =) k and 0 * no 
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3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
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Set k+l * k 
Build T, using  in Eq.(4.72b) k instead  of n, and  set  rank( T ) * n 
If n = no, go  to 6; else,  set n * no and go  to 3 
Set n * k and  build T and R, Eq.(4.72b) 
Partition T * [ T, 1 T, 3, T, has m columns 
Set T, (Null) * N, N satisfies TI N = 0 
Solve T,Y = -T, for Y 
Set [l 0 0 ... 01 (m-l zeros) =$ v and [v I v I... I v] * v,, 
Set 0 * i and [l 1 ... l] 3 v, , v1 has mn unity  elements 
Set i+l * i 
Set v1 - v,, * vt, vi (DSM) * S, and Si% * n, 
If rank ( N, ) = n(m-l), go  to 16; else,  go  to 15 
Shift v,, by one  column  right,  i.e. v,, (SHR) =$ v,, and go  to 12 
Extract the 1% column  from Y * yi and  set S:y, * y, 
Set N;'y, ti and N ti * d 
Set v, (DSM) * S, ST d 9 d 
S e t [ d T I   l ] * d  
Using d, build D, and  set R D, * W, 
Set W,, p (PMFc) * W 

It may be  verified  (see  Appendix B) that  Steps 7 to 19 of the above  algorithm 
calculate  coefficients di, i=[O,n] defining D, satisfying Eqs.(4.72b) and (4.74). In 
Step 10, the m dimensional  row v has one unity and m-l zeros,  while the mn 
dimensional  row v,, is  obtained by concatenating the vector v n times.  Algorithm 
DSM used  in Steps 13 and 18  generates  a  "selector"  matrix  corresponding  to  the 
row  used as the  input  argument.  The  relationship  between  the  input  and  output 
arguments in  the  "define  selector  matrix" (DSM) algorithm  is  explained  in  Section 
3.3.4. and Eq(3.79). The  "shift  right" (SHR) algorithm  used  in  step 15 simply 
shifts  input  argument by one column  to  right.  The  last  element  (column)  is  lost, 
while  the  zero  element  (or  zero  column)  is  added  as  the  first  element  (column). 

Using  the  principle  of  duality,  it  is  relatively  straightforward  to  develop 
Algorithm HTFp which,  considering  the  first  of the two  versions  of Eqs.(4.71) to 
(4.73) calculates d(z) and W(z) satisfying Eq(4.70). As  was  mentioned  previously, 
within  Algorithm HTF, having  the  same  inputloutput  arguments as HTF>n, both 
algorithms  are  available,  and  only  one  is  called  depending on the  relationship 
between m and p .  It  is  left  as an exercise  for  the  reader  to  develop H W .  
Interested  readers may  check  the L-A-S implementations  of  these  algorithms. 

4.3.6 Discrete-Time  Response  from  Markov  Parameters 

This  algorithm  calculates  the  zero-state  response  of  a  D-T  system  given  the 
Markov  parameters  and  the  samples  of  the  input  signals  using  D-T  convolution, 
derived  from y(z) = H(z-l) u(z) i.e. 



Section 4.4 Conversions from MFD Models 193 

(4.76) 

where ui and y, are I* and J" samples  of  the  input  and  output  vectors,  respectively, 
while Hk is the Kh Markov  parameter.  Equation (4.76) may be  represented  by: 

where L = min  {M, N),  or  for  short by: 

Y e  = H% (4.78) 

where y, and U, are Lp and  Lm  dimensional  columns  containing  samples y, and q, 
i=[O,L-l],  respectively,  while H is  an (LP X Lm)  matrix  containing  the  Markov 
parameters H,, j=[O,L-l] arranged  according  to Eq.(4.77). 

Inputloutput Arguments: 

0 U is an (m x N) matrix  containing  samples  of  the mdimensional  input 

0 H is a @m x M) matrix  in  PMF. The rows  of H contain the  coeffi- 

0 y is the @ x L) matrix  containing  the  samples  of  the  system  response. 

vector. 

cients h, of  polynomials hv(z") in H(?). 

L = min{M,NJ. 

4.4 Conversions  from MFD Models 

Given  either a left  or  right  coprime ARMA (MFD)  model,  this  section 
discusses  the  conversion  to  either  state  space or transfer  function  models as well as 
the calculation  of a set  of  Markov  parameters. If it  is  desired  to  calculate  the 
system  response,  it is recommended  that  the ARMA model first  be  converted  to 
state  space form, then  to  use  the  state  space  representation to calculate  the  response. 
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4.4.1 "D to Observable State Model 

This algorithm  calculates an observable  form  state  space  model R, = {A,, B,, 
C,, D,) from a corresponding  left  coprime  column-reduced ARMA (MFD) model, 
D(z)"N(z). One  may  view  this  algorithm as an "inverse" of  Algorithm RoDN, 
described in Section 4.1.7. It is based  on Eqs.(4.17) to (4.20), as well as 
4s.(4.44) to (4.47). For  completeness  of  the  algorithm  presentation,  some of 
these  expressions  will  be  repeated  here. 

From  Section 3.4, where  MFD  system  description  was  introduced, it is clear 
that  the  locations  of  the p columns of the  identity  matrix I,, in  the  matrix D,, 
4.(3.104), uniquely  determine  the  column  degrees of D(z). Also, as has been 
already  stated  several  times  (Sections 4.2.3, the  set  of  column  degrees { n, } of 
D(z) corresponds  to a set of admissible  POI v = { v, } used  in  building a state 
space  representation R, in a POF. 

Thus,  from a given  left  coprime  MFD,  where D(z) is column-reduced  and 
monic,  it  is  first  necessary  to  determine  the  set  of  column  degrees.  This  is  done 
by another  polynomial  matrix "service" algorithm  refered  to  as D2nv: 

Sptax: D,, E (D2nv) * v (4.79) 

Inputloutput Arguments: 

D, is a Ip x (k+l)p] matrix of the  structure in Eq(3.104). 
e is a sufficiently  small  positive  scalar  used  as  "machine"  zero. 
Y is a p-diminsional  row  containing  the  column  degrees of D(z), or, as 
was  mentioned  earlier, a set  of  POI v to  be  used  in  building  the 
representation R,. 

Having  determined  the  set v, it  is  then  necessary  to  extract  the n columns 
from D, containing  non-zero  non-unity  elements.  From  the  expression 

YZ - Ar YI = N r  U, 

derived  in  Section 4.1.7, Fq(4.13, it  is  clear  that  these n p-dimensional  columns 
constitute  the  matrix -Ar. At the  same  time p rows in  this A, represent  the  non-zero 
non-unity  "parametric"  rows  of  the  matrix A, in  the  representation R,. Thus,  the 
matrix A, can be  obtained  from Eq.(4.45), i.e.: 

"'r% *r  

where S, is a selector  matrix, Eq.(3.79), corresponding  to  the  set v. The  complete 
Algorithm DhRo is  as  follows. 
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1 Inputloutput Arguments: 

0 D is  a [p2 X (k+l)] matrix  in  the  PMF.  The  rows  of D contain 

0 N  is  a [pm x (k+ l)] matrix  in  the  PMF.  The  rows  of N contain 

0 E is  a  sufficiently  small  positive  number used in evaluating  the  set 

0 R, = {A,,  B,,  C,, Do}, state  space  model  in  a  POF. 
0 v = { vi } is an admissible  set  of  POI  corresponding  to R,. 

the  coefficients dvh of the  polynomials d&z) in D(z). 

the  coefficients nvh of the  polynomials n&z) in N(z). 

v using Eq.(4.79). 

Algorithm: 

1.  Set D ( M )  * D,, D, , N (Ah) =$ N,, N, 
2. Set D,, E (D2nv) * v 
3. Set {v i )  (SMut) =) v,, S,, S,, S,,, S, 
4. Set -D,Sli * A, 

C O  
5 .  Partition I, 1 Az l, C, has p rows 

6. Set SiA, + S,& * A, 
7. Set A,, S,, (QC) * Q, , Q, has v,+ 1  blocks {AjS,} of p columns 
8. Set Q>, 3 B, 
9. Set D;'(sJN,(s,) - C,(SJ-AJ-~B, 3 D, for  any S, # a  system pole 

Note  that  Steps 5 to 8 in DNRo are  the  same  as  the  corresponding  steps  at  the  end 
of P R O ,  Section 4.2.7, which is  to  be  expected  since  both  algorithms  determine 
the  state  space  model R, in a  POF.  For  more  details,  and  particularly  for  the  case 
when A, and A,, are  singular, see Ekp(4.44) to (4.47). 

4.4.2 MFD to  Controllable  State  Model 

This  algorithm  calculates  a  controllable  form  state  space  model R, = {A,, B,, 
C,, D,) from  a  corresponding  right  coprime  row-reduced  ARMA (MFD) model, 
N(z)D'(z). Since  this  algorithm  is  dual  to  the  previously  given DNRo, as  well as 
rather  similar to Algorithm TFRc given  in  Section 4.2.7, it will  only  be  listed  here 
for  reference  without  discussion. 

Syntax: N, D, E (MW * A,,  B,, c,, DC, I' 

Input/Output  Arguments: 

0 N is  a [pm x @+l)] matrix  in  the  PMF.  The  rows  of  N  contain 
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the coefficients nVh of the  polynomials n&) in N(z). 

the  coefficients d,, of  the  polynomials d&z) in D(z). 

p using Eq.(4.79). 

0 D is  a [m2 x @+l)] matrix  in  the P m .  The  rows  of D contain 

0 E is  a  sufficiently  small  positive  number used in  evaluating  the  set 

R, = {A,,  B,,  C,,  D,}, state  space  model in a  PCF. 
0 p = { p, } is an  admissible  set  of  PC1  corresponding  to R,. 

I A'gorithm: 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8.  
9. 

Set D (All) =) D,,  D, , N (AZt) =) Ne, N, 
Set D:, E (D2nv) * p 

Set -F&%, * A, 
Partition I,, - [ B, 4 1, B, has m columns 
Set A2ST -l A.$: * A, 
Set A,, S/  (eo) =) Q, , Q, has pm+l blocks {S/A,? of m rows 
Set N,Q, * C, 
Set N(s,)D;'(sa) - C,(sJ-A,YIB, =) D, for  any S,, # a  system  pole 

Set {P,) (SMat) * P m ,  S,, S,, S,, SLI 

Note  that  Steps 5 to 8 in hDRc are  the  same as the  corresponding  steps at the  end 
of TFRc, Section 4.2.7, which is to be expected  since  both  algorithms  determine 
the  state  space  model R, in a PCF. For more  details,  and  particularly  for  the  case 
when A, and A, are  singular, see Eqs.(4.44) to (4.47). 

It is worth  mentioning  that the duality  between  Algorithms DNRo and hDRc 
is  quite  apparent.  In  other  words,  instead of: 

D, N, E (mw =) A,, B,, c,, D,, cc 
the following  sequence  of  algorithms  may  be  used: 

f l * N d ,  DT*& 
Dd, Nd, E (Dmo) * Ad, p 

A/* A,,  B:* C,, C:* B,,  D/*DD, 

4.4.3 Left Coprime "D to Markov  Parameters 

This  algorithm  calculates  the  set  of  Markov  parameters  from  a  left  coprime 
column-reduced  ARMA  (MFD)  model, D(z)"N(z). This  algorithm  is,  in  a  way, the 
"inverse" of  Algorithm HDN, given  in  Section 4.3.3. Thus, it is based  on  the  same 
expressions  given  in Eq~(4.57) to (4.58), i.e.: 

G(z) = H(z -1) = D"(z)N(z) 
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or 

i c D,,H,, = N,-, for i = [O,k] and 
j - 0  

k c D,,H,, = 0 for i = [ k + l , ~ ]  

However,  since  here  the  submatrices D, and N,, i=[O,k] are given,  and  the  first M 
Markov  parameters H,, j=[O,M-l], are sought,  the  above  equations  will  now be 
represented  by: 

j -0  

H0 

1 

0 

0 

0 

NO 

N k  

(4.80) 

which  could  readily  be  used for  calculating H,, given D, and N,. However, as was 
mentioned  in  Section 4.2.2, Algorithm TFH, see Eq~(4.31) and (4.32), Eq.(4.80) 
assumes  that H,, satisfies: 

1 Hbf-l I << 

Thus, the  criterion for selecting  the  scalar M is  that  the  norm  of  the  last  calculated 
Markov  parameter H",, with h, = 11 H,, (I, should  be  sufficiently  small.  In 
other  words,  the  algorithm  based  on Eq.(4.80) is applicable  only  to MFDs whose 
characteristic  polynomials d(z) = det{ D(z) } have all roots  within  unit  circle.  If 
this is not  the  case,  then  either: 

0 "time  scaling" of D(z) and N(z) should  be  performed, or 
0 one of  the  following  sequences  of  algorithms  could  be  used 

or 
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The  "time d i n g "  of D(z),  N(z) is explained in the Example 2, given  at the end 
of this chapter.  Algorithm DNH is  as  follows: 

Input/Output Arguments: 

0 D is a [p2 x (k+ l)] matrix  in  the  PMF.  The  rows of D contain 

0 N is a [pm x @+l)] matrix  in  the  PMF.  The  rows  of N contain 

0 M is scalar  specifying  the  number  of  Markov  parameters Q, i = 

0 H is a [pm x MJ matrix  in  PMF.  Rows  of H contain  the  first M 

hM is a scalar  equal  to 11 H,, 11, where is the  last  Markov 

the  coefficients d$, of  the  polynomials d&z) in D(z). 

the  coefficients nSrh of the  polynomials n&z) in N(z). 

[0, M-l], to  be  calculated. 

coefficients  of  the  polynomials h&-') in H(<'). 

parameter  calculated. 

Algorithm: 

1. Set D (Art) =) D,, D, , N (AZt) * Ne, N, 
2. Build the  matrices  in Eq.(4.80) consisting  of Dl and NI 
3. Solve Eq.(4.80) for H, containing H,,j=[O,M-l] 
4. Set 11 H,, 11 =) hM 
5.  Set H,, p (PMFc) * H 

4.4.4 Right  Coprime MFD to  Markov  Parameters 

This algorithm  calculates  the  set  of  Markov  parameters  from a right  coprime 
row-reduced ARMA (MFD)  model, N(z)Dl(z). As  was  mentioned in the  previous 
algorithm, this  algorithm  is  like an "inverse"  to  Algorithm HAD, given  in Section 
4.3.4. Thus,  it  is  based on the  same  expressions  given in Eqs.(4.64) to (4.65), 
i.e.: 

c(z) = H(2") = N(z)D"(z) 

or 

i c Hi-jDk-j = Nk-i for i = [O,k] and 
1-0 

k c Hi-jD,-j = 0 for i = [k+l,=] 
j - 0  

However,  since  here  the  submatrices Ni and D,, i=[O,k] are given, and the  first M 
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I %-l]  

p0 

... 

D& 

(4.81) 

Since  this  algorithm is dual  to  the  previous  algorithm,  the  comments  about  the 
applicability  of  Algorithm D M ,  given  above,  hold  also  here  in  the  dual  sense. 

The  algorithm  is  described  as  follows: 

Syntax: N, D, M * H, 

InpuVOutput Arguments: 

0 N is a [pm x (k+ l)] matrix  in  the PMF. The  rows of N contain 

0 D is a [mz x (k+ l)] matrix  in  the PMF. The rows  of D contain 

0 M is scalar  specifying  the  number of Markov  parameters H,, i = 

0 H is a [pm x matrix  in PMF. Rows  of H contain the  first M 

h, is a scalar  equal  to 11 H,, 11, where H", is  the  last  Markov 

the  coefficients nVh of  the  polynomials n&z) in N(z). 

the coefficients dVh of  the  polynomials d,(z) in D(z). 

[0, M-l], to  be  calculated. 

coefficients of  the  polynomials h,(z") in H(.?"). 

parameter  calculated. 

Algorithm: 

1. Set N (Ah) =) N,, N, , D (Ah) =$ D,, D, 
2. Build  the  matrices in Eq(4.81) consisting  of Nf and Df 
3. Solve Eq.(4.81) for H, containing Hi, j=[O,M-l] 
4. Set 11 H,, 11 * h, 
5 .  Set H,, m (PMFr) * H 
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To stress the  duality  between  Algorithms DNH and M I H ,  let  us  mention  that 
instead  of 

N, D, M (MW * H, 

the following sequence  of  algorithms  could  be  used: 

NT* Nd, Dr-  Dd 
D,,, Nd, M (DNH) * Hd, hM 

H;*H 

4.4.5 Left Coprime MFD to Transfer  Function 

This  algorithm  converts a left  coprime  column-reduced  C-T or D-T  ARMA 
(MFD)  model, D'(z)N(z), to a matrix  transfer  function G(z) = C(z1- A)"B + D. 
This  algorithm is based on 

D"(Z) N(z) = W(z)/d(z) 

which, as has been shown in Section 4.1.7, Eq.(4.21), may  be  rewritten as: 

where n z )  = adj{ D(z) } and d(z) = det{ D(z) 1. Using  Eq.(4.82),  the  calculation 
of W(z) reduces  to a simple  multiplication  of  polynomial  matrices T(z) and N(z). 

It  should  be  mentioned  that  the  adjoint  of a square  polynomial  matrix, i.e. 
adj{ D(z) }, is calculated  by  applying  the  Laplace  expansion  and  direct  evaluation 
of  minors  and  cofactors  involving  polynomial  manipulation,  which  has  proven to 
give  satisfactory  accuracy  for  polynomial  matrices  of  orders up to 10. 

Syntax: D, N, E (DNTF) * d, W 

Input/Output Arguments: 

0 D is a rp' x (k+ l)] matrix in the  PMF. The rows  of D contain 

0 N is a [pm X (k+l)] matrix in the  PMF.  The  rows  of N contain 

0 E is a small  positive  number  used  as  machine  zero. 
d is an (n+l) dimensional  row  containing  the  coefficients  of d(z). 

0 W is a [pm X n+ l] matrix in the  PMF.  The  rows of W contain 

the  coefficients dg,, of  the  polynomials d&) in D@). 

the coefficients ngh of  the  polynomials n,,(z) in N(z). 

the  coefficients wgh of  the  polynomials W&) of W(@. 
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I The  basic  steps of the  algorithm are: 

201 

1. 
2. 
3. 

Set  det{ D(z) } =) d(z) 
Set  adj( D(z) } =$ T(z) 
If the  highest  order  coefficient  in d(z), d. = 1, go  to 5; 
else,  go  to 4 

4. Set -d(z) =) d(z) and -T(z) =) T(z) 
5 .  Set T(z) N(z) W(z) 

4.4.6 Right  Coprime MFD to  Transfer  Function 

This algoxdthm converts  a  right  coprime  row-reduced  C-T or D-T ARMA 
(MFD)  model, N(z)D'(z), to  a  matrix  transfer  function G(z) = C(zI - A)"B + D. 
This  algorithm  is  based  on 

N(z) D'(z) = W(z)/d(z) 

which,  as  has  been  shown  in  Section 4.1.8,  Eq.(4.24), may be  rewritten  as: 

N Z )  m )  = (4.83) 

where T(z) = adj { D(z) } and d(z) = det{ D(z) 1. Using Eq.(4.83), the  calculation 
of W(z) reduces  to  a  simple  multiplication  of  polynomial  matrices N(z) and T(z). 

The  syntax  of  the  algorithm is: 

N, D, E (NOZ'Q =) d, W 

Input/Output  Arguments: 

N is a [pm X (k+ l)] matrix  in  the PMF. The  rows  of N contain  the 

0 D is  a [m2 x (k+ l)] matrix in the PMF. The  rows  of D contain  the 

0 E is  a  small  positive  number  used as machine  zero. 
0 d is an (n+ 1) dimensional  row  containing  the  coefficients  of d(z). 
0 W is  a [pm x n+ l] matrix  in  the PMF. The  rows  of W contain the 

coefficients ?$,h of the polynomials n,(z) in N(z). 

coefficients dgh of the  polynomials d&z) in D(z). 

coefficients wyh of the polynomials w&z) of W(z). 

For  more  details see Section 4.4.5, Algorithm D m .  
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4.4.7 Other MFD Conversion Algorithms 

For  completeness  in  algorithm  availability,  the  following  four  algorithms  are 
also  available: 

(1) DNRc: Left MFD (D(z), N(z)} into  a  state  space  model RC in  a PCF 

(2) D N m :  Left MFD (D(z), N(z)} into  a  right Coprime  MFD (f&) , &) 

(3) NDRo: Right  MFD {*(z), &z) } into  a  state  space  model R, in  a POF 

(4) NDDN Right  MFD { f i(z) ,  ij(z) } into  a  left Coprime  h4FD {D(z), N(z))  

The  syntax of these  algorithms are as  follows: 

For  input/output  arguments see Algorithms: 

=RC, TFND , TFRo and TFDN (4.85) 

respectively,  as  well as some  other  previously  discussed  algorithms. 

performed  by the following  sequences of algorithms  already  described: 
It  is  worth  mentioning  that  these  model  conversions  may,  for  instance,  be 

0 Instead  of (2): the  sequence (5) and 
nd =$ 1 PI 

A,, BC, cc, DC, c * R ,  fi (4.86) 

0 Instead of (4): the sequence (6) and 
nd * vi 

A,, B,, c,, D,, v ( R O W  * D, N 
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Of course,  the  algorithms  to  be  described in this  section  are  computationally  more 
convenient  than  the  sequences  suggested  above.  All  four  algorithms are based  on: 

D"(2) N(z) = i qz )  B"(Z) (4.87) 

which  may be  rewritten  as: 

D(z) fi(2) - N(z) 5 ( z )  = 0 (4.88) 

(4.89) 

Note  that  for a given  system, the integers k and h, defining  the  numbers  of  terms 
in the  left  and  right  MFDs,  are  not  necessarily  equal.  Recall  that  in the case of 
Algorithms (1) and (2), i.e. DArRc and DNND, the  given  left MFD (D(z), N(z)} is 
not  necessarily  left  coprime  nor  is D(z) required  to  be  monic  and  column-reduced. 
Similarly,  i.e.  dually, in  the  case  of  Algorithms (3) and (4), i.e. NDRo and NDDN, 

the given  right  MFD ( # ( z ) , ~ ( z ) }  is  not  necessarily  right  coprime,  nor  is&) 
required to be  monic  and  row-reduced. 

For  the  purpose of  Algorithms (1) and (2), i.e. DNRc and DNND, Eq.(4.88), 
should  be  represented  by: 

(4.90) 

while  for  Algorithms (3) and (4), i.e. NDRo and NDDN, Eq.(4.89), becomes: 
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Using  the  previously  introduced  notation, Eq~(4.90) and (4.91) may be  represented 
by: 

- R C  

D C  

T, --- 

respectively,  where in  both l 

= O  a d  [ N .  I D,]*, = O  (4.92) 

cases  matrices Th and f, are build  out of known 

submatrices,  while  matrices R, and D,, i=[O,h], entering  in 8, and 6, in  the 
case of Eq.(4.90), and N, and D,, j=[O,k] ,  entering in N, and D, in  the case of 
Eq.(4.91), are unknown.  Recall  that,  not  only are the matrices  unknown,  but the 
integers h and k should  also  be  determined. 

The reason for  denoting  the  matrices  in Eq.(4.92) by subscripts h and k is that 
in the @(k+h+ 1) X (h+ l)(p+m)] matrix T,, and the [@+m)(k+ 1) X m(k+h+ l)] 
matrix f, the  integers h and k, respectively,  are  unknown. As will  be  shown later, 

the  values  of  these  integers  are  determined by  building Th and f, sequentially 
starting  with h = 1 and k = 1, and  ending  with: 

h = max{ n, }, the  row degrees  of &) , or max { p ,  } of a corres- 
ponding  PCF R,, and 

k = max{ n, }, the column  degrees of D@), or max { v, } of a corres- 
ponding  POF R,, respectively. 

Note  that Eq~(4.90) and (4.91) are,  respectively,  similar to Eqs.(4.41) and (4.34), 
which are used for  the  transfer  function  conversion  algorithms  listed  in Eq(4.85). 
Comparing the expression  of Eq(4.90) with  that  of Fiq(4.41) and Eq.(4.91) with 
Eq.(4.34), the  similarities  and  differences  are  easily  determined. 
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It should  be  mentioned  that  the  implementation  of  the  four  algorithms in 
Eq(4.84) is  similar  to  the  algorithms  listed in  Eq.(4.85). For  example,  the  second 
equation  in  Eqs.(4.92)  is  formally  equal  to  Eq.(4.34)  in TFDN. Thus  here, it is 

also  necessary  to  build ?k and to determine  the  smallest  integer k satisfying  the 
previously  given  Eq.(4.35),  i.e.: 

rank [ ?k ] = (k+l)m + n 
leading  to 

n = rank [ T k  ] - (k+l)m (4.93) 

which  permits  determination of the  system order n and  the  value of the  integer k. 
After  having  the  values  of n and k ,  an "admissible"  set of  row  degrees { n, } 
satisfying: 

should  be  determined.  Similarly,  as in  Eqs.(4.36)  to  (4.38),  this  could  be  done  by 
checking  the  "auxiliary"  selector  vector Q l i ,  indicating  linear  independent  rows  in 
T,, which, of course,  leads to  the  unique  set, p, of controllability  indices  of  the 
corresponding  controllability  form R,. If the  admissibility  degree, C#, correspond- 
ing  to  this  set  is  too  small,  which  happens  sometimes,  then,  it  is  advisable  to  select 
an appropriate  set { n, }, satisfying Eq(4.94) and  check its  degree C#. 

Similar  arguments  hold  for  the  first  equation  in  Eqs.(4.92),  i.e.  for 
Algorithms DNND and DNRc. For  additional  details see the  steps  of  the  algorithms 
listed in  Eq.(4.85). The  reader  is  urged  to  examine  the L-A-S implementation  of 
these  algorithms  as  well  as the listings  of  all  other  algorithms  discussed  in  this 
chapter. 

4.5 Summary of Conversion  Options 

This  chapter  has  presented the reader  with  a  wide  variety  of  numerically 
stable  algorithms  with  which  to  convert  from one model  form  to  another.  Since so 
many  variations  were  covered,  a  brief  summary  is  thought  to  be  necessary.  Table 
4.1 below  illustrates the large number  of  options  that are  accessible. All of  the 
algorithms  indicated in Table  4.1,  except  for  those  associated  with  system 
identification,  i.e.  conversion  from  input/output  data to  some  model form, to be 
discussed in Chapter 5, have  been  presented  in  this  chapter. 



206 Chapter 4 lntermodel Conversion 

TABLE 4.1 Avai able Con 

2 

TF 

SSTF 

SSTF 

SSTF 

* 
HTF 

DNTF 

NDTF 

UYTF 

ersion Algorithms m 
SSH  CDSR 

SSH  RoDN  CDSR 

SSH RcND CDSR 

TFH TFDN  TFND CDTR 

* HDN HND 

DNH' * DNND 

N D R  NDDN * 

uyH' uyDN 

uHy 

* 

Comments. 

(1) In addition  to P R O  and TFRc, other  available  algorithms are "classical" 
minimal  realization  procedures  such as Hessenberg's,  Kalman  decomposition  and 
a Jordan  form  procedure. 

Possible  sequences  of  algorithms are given  in  the  table  below  which  represent 
conversions  from a transfer  function  matrix  to  one  of  the  state  space  minimal 
realizations. Of course,  all of  the  resulting  state  space forms, SS,, have  the  same 
transfer  function  matrix,  i.e. SS, (SSTF) * TF,,  where  TF, = TF for  all i=[1,6]. 
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The problems  with  these  procedures are that  they require a non-minimal  state 
space  representations  which are in  the  case  of  MIMO  system either of the  order m 
or np where n = order of  characteristic  polynomial d(z), and m and p are the 
dimensions  of  the  input and output  vectors,  respectively.  Moreover,  in  the TF * 
SS procedure  we  often  "know*'  that  the  order  of  the  minimal  state  space  representa- 
tion is equal  to n. Our TFRo and TFRc procedures are less  computationally 
"intensive"  and are well  "suited"  for  this  intermodel  conversion. 

(2) In  addition  to HRo and HRc there  are  other  "partial"  realization  algorithms 
which,  using "several" Markov  parameters H,, i=O, 1,2, ... , determine SS, for 
example,  the  Ho-Kalman, or ERA,  procedure.  The  problem  with  these  procedures 
are that  they  determine  just a state  space (SS) representation,  without  investigating 
whether  there is another  equivalent,  computationally  more  convenient  representa- 
tion.  Under  the  heading  "computational  convenience,"  we  consider  condition 
numbers  of  the  similarity  transformation  matrices,  i.e.  admissibility  degrees  of 
those  sets  of  POI and PC1  used. 

(3) The  algorithms DNH and h!VH are directly  applicable  only  if  the  system is 
"D-T"  stable,  i.e.  if  all  roots  of d(z) = det{ D(z) } are within  the  unit  circle. If 
not,  then a "time  scaling" of D(z) and N(z) should  be  performed first, and then the 
obtained  time  scaled  Markov  parameters  should  be  multiplied withf', wheref 
is the  "time  scaling"  factor. 

The suggested  sequence  of  algorithms  is: 

D(z) * d(z) * maximum  root  of (d(z) = 0) =$ time  scaling factory 
D(z), N(z) , f*  (time  scaling) * D,(z),  N,(z) 
D,(z),  N,(z) (DNH) =) truncated  and  time  scaled H,(z") 
H d , A  =) (time  scaling "up") 3 H,, i=[O,M-l] 

Algorithms for time  scaling  of  MFD's  and  Markov  parameters are also  available. 

This is equally  applicable  to a left or right  coprime MFD, as has  been  illustrated 
in the Example  Section,  see  Section 4.6. 

(4) The algorithm uyH is applicable  only  to  stable  D-T  systems,  i.e.  to  systems 
where llHM-l 11 < < 1, for a sufficiently  large  finite M. Also  all  of  these M 
Markov  parameters H,, i=[O,M-l], should  be  determined. 
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4.6 Examples 

In this section two comprehensive  examples  will  be  presented  to  illustrate  the 
power  and  flexibility of the  conversion  process.  The  first  example  begins  with a 
state  space  model  of a 4'" order,  3-input,  2-output C-T  system  and  generates six 
different  equivalent  models.  These  six  models are developed  redundantly  and 
crosschecked by 22  distinct  conversions to show  that  the  various  models are 
compatible.  These  conversions are represented  in  Fig. 4.2 by arrows. In Example 
2 additional  conversions are presented  which  illustrate  going  from MFD models  to 
Markov  parameters  when  the  system  is  not  D-T  stable,  i.e.  requiring  scaling. 
Figures are presented  with  the  examples  to  provide a graphical  picture of the 
conversions. 

4.6.1 Example 1 (Model Conversions) 

We will  first  look  at  the  system  given in state  space  form and the  admissible 
pseudo-controllability (PCI) and  pseudo-observability (POI) indices: 

R =  

- 1 1 0 0 ~ 1 0 0  

0 -2 l 0  1 . 0 0 1 0  0 

0 - 1 - 2 1  I O  1 0  

0 0 0 - 2 1 0 0 1  
"_ "_ "_ -" - 1 -  "- "- "- 

0 . 0 0 1 0  l I O  l o  

1 0 0 0 ~ 0 0 0  

Assuming  independent  inputs  and  outputs,  the  system  has  three  possible sets of 
controllability (PCI) indices  and three possible  sets  of  observability (POI) indices 
given in Tables 4.2 and 4.3: 

TABLE 4.2 PC1 
l I *l 

SOE-03 

TABLE 4.3 POI 

.20E-03 
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FIGURE 4.2 Conversions for Example 1 

In Tables  4.2  and  4.3  "degree"  refers  to  the degree of admissibility, the inverse of 
the condition  number  of  the  similarity  transformation  matrix T used  in  obtaining 
the corresponding  PCF  or  POF.  Note  that  the  last  set  of  PC1 is not admissible 
since  the rank of T is  less  than n = 4. The  best  selection is associated  with  the 
highest  degree  of  admissibility,  which is the first set  in  each  case.  Note  that  the 
best  selections  in  both  cases are different  from  the  unique  controllability  and 
observability  indices,  which are {2,1,1} and {2,2}, respectively. 

In the following  development,  which  illustrates  intermodel  conversions 
between SS , TF , H  and  MFD  models,  the  same  model  may be  repeatedly 
generated by different  methods.  In  all  instances  the  models  agree  closely. 

Sequence of algorithm  executions: 

R (SSRo) =$ Ro 
R (SSRc) =) RC 
R ( S S W  =$ TF 
R (SSH) H 
TF (TFH) * H1 
H (HRo) =) Rol 
H (HRc) =) Rcl 
Ro (RoDN) =) DN 
RC (RcND) =$ ND 
DN (DNTF) =) TF1 
ND (NDTF) =$ TF2 

H (HDN) =$ DN1 
H (HND) =$ ND1 
DN (DNRo) =) R02 
ND (NDRc) =$ Rc2 
DN (DNND) =) ND2 
ND (NDDN) =$ DN2 
TF (TFND) =$ ND3 
TF (TFDN) =) DN3 
TF (TRRo) =$ R03 
TF (TFRc) =) Rc3 
H (HTF) =$ TF3 
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Multiply-Generated  Models: 

Transfer function  matrices: TF , TFl , TF2 , TF3 
State Space  representations  in  POF:  Ro , Rol , R02 , R03 
State Space  Representations in PCF: RC , Rcl , Rc2 , Rc3 
Markov  Parameters  in: H , HI 
Left coprime MFD  in: DN , DN1 , DN2 , DN3 
Right  coprime  MFD in: ND , NDl , ND2 , ND3 

Since  the  eigenvalues of A in R are not  within  unit  circle,  the  algorithms 
D M  and NDH were not used.  The  use  of  these two algorithms  will  be  illustrated 
in Example 2. 

Results: 

Using  the  "best"  sets  of  structural  indices  from  Tables 4.2 and 4.3,  the 
following  observable and controllable  state  space  models  were  calculated: 

Observable Form (v = {l ,3}) 

R, = 

R, = 

-2.0 ,002 .003  ,001 

0 0  1 0  

0 0  0 1  

1.0 -5.001  -9.001 -5.0 
"- -" "-  "- - 

0.0  0.0 1.0 

1.0 0.0 0.0 

-.g99 0.0 0.0 

.g97  1.0 0.0 
- "- "- ". 

1 0  0 0 I 0.0 1.0 0.0 

0 1  0 0 I 0.0 0.0 0.0 

Controllable Form (Ir = {1,2,1)) 

".g99 0 0.0 1.0 I 1 0 0 

-.m3 0 1.0 -5.002 I 0 1 0 

0.0 0 -2.0 0.0 I 0 0 1 

"- "- -" "- - 1 -  "_ "_ ". 

0.0 0.0 1.0 .001 I 0.0 1.0 0.0 

1.0 0.0 0.0 0.0 I 0.0 0.0 0.0 

-.W1 1 0.0 -4.001 I 0 0 0 
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where 

W1  1 

W21 

W12 

W22 

w1  3 

w23 

So S1  S2 s3 

0 0 

10.004 13.004 
-"" 

10.002  23.003 

2.0  1.0 
"_" ""- 
5.001 9.001 

1 .o 0 

0 0 

6.001 1 
_"" ""- 

19.001  7.0 

0 0 
""_ ""- 

5.0  1.0 

0 0 

S4 

0 

0 
"". 

1 .o 
0 

"". 

0 

0 

For example, w12(s) = 10 + 23s + 19s2 + 7s3 + s4 

which  happens  to  be  equal  to  the  characteristic  polynomial d(s). 

Markov  Parameters Hi  

The first few  terms of the  3-column  polynomial  matrix H($") = {h&')} are: 

hll-O 0 0 0 0 0 0 0 0 0 

0 1 -1 1 -1 1 -1 1 -1.2  1.4 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

~ 1 2 1 0 0 0 0 0 0 0  0 0.3 

h22 0 0 0 1 -5 16 -40 81 -125  96 
"_ "_ "- "_ "_ "- "- "_ "-  "- 

h13 0 l -2 4 -8 16  -32.1  64.2  -128.4  257.1 

h,, 0 0 0 0 1 -7 30  -100  281 -6K/ 
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Left Coprime MFD 

This form is given by D’(s)N(s) where D(s) is  monic and column-reduced, 
i.e.: 

denoted by 

and 

4 1  - 2.0 1.0 0 0 

41 

-.m -.m3 -.m1 0.0 4 2  

-1.0 0.0 0.0 0.0 
”_” ”“_ -”” ””. 

42 5.001 9.001 5.0 1.0 

-.m 
5.003 
””_ 

2.0 

0.0 
””_ 

1 .o 
0.0 

-.m1 0 

4.001 1 
””- ”” 

1.0 0.0 

0.0 0.0 
””_ ”“ 

0.0 0.0 

0.0 0.0 

Right Coprime MFD 

This form is given by N(s)D’(s) where D(s) is  rnonic and row-reduced,  i.e.: 
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4 1 

d 2  1 

d3 1 

denoted by d l  2 

4 2  

d32 

d l  3 

d23 

d 3 3  

n11 

% l  

and 
n12 

n 2 2  

nl 3 

n2 3 

.g99 

.003 

0.0 
""_ 
0.0 

-1.0 

2.0 
"" 

-1.0 

5.002 
0.0 

1 .o 
.#l 

0.0 
""- 

0.0 

0.0 

1 .o 
"" 

0.0 

4.001 

0.0 

0 

0.0 

0.0 
""_ 
0.0 

0.0 

0.0 
"" 

0.0 

1.0 

0.0 

.m3 
1 .o 

""_ 
0.0 

0.0 ""_ 
5.003 

0.0 

.W1 
0.0 

""_ 
0.0 

0.0 
""_ 
4.001 

0.0 

0 -  

0.0 
"_" 
0.0 

0.0 
"_" 
1.0 

0.0 
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D&) = 

‘ l + s  0 -1 

D$) = 0 -1 5 + 4 s + s 2  

0 2 + s  0 

Note  that  the column degrees  of D,@) are { 1,3} corresponding  to the set I, and  that 
the row degrees  of D,(@ are { 1, 2, l} corresponding  to  the  set p. 

Figure 4.2  indicates  the  following  (22)  conversions: 

R * R o ,   R C ,   T F ,  H 
T F * R o , R c , D N , N D , H  
H * R o , R c , T F , D N , N D  
D N * R o , T F , N D  
ND*Rc ,TF ,DN 
Ro * DN 
RC * ND 

The repeated  models are essentially  the  same and serve  as  checks on the  others. 

4.6.2 Example 2 (Time  Scaling) 

This example  illustrates  the  conversion  between  MFD  and  the  Markov 
parameters  when  the  system  is not D-T  stable.  The  given  system is the same one 
used  in  Example 1. Only  additional  results are presented  for  brevity. Figure  4.3 
illustrates  the  13  distinct  conversions  made. 

Sequence of algorithm executions: 

R (SSRo) * Ro 
R (SSRc) * RC 
R (SSH) * H 
Ro (RoDN) * DN 
RC (RcND) * ND 
DN (DNfs) * DNs 
ND (NDrs)  * NDs 

DNs (DNH) * Hsl 
NDs (NDH)  * Hs2 
Hsl (Hfs) * H1 
Hs2 (H@ =) H2 
H2 (HRo) * Rol 
H1 (HRc) * Rcl 
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n 

215 

FIGURE 4.3 Conversions for Example 2 

This  example  presents  the  following  generated  models: 

State  space  representations  in  POF: Ro , Rol 
State  space  representations  in PCF: RC , Rcl 
Left  and  right  coprime  MFD:  DN , ND 
Time-scaled left and right  coprime  MFD:  DNs , NDs 
Markov  parameters  in:  H , H1 , H2 
"Time  scaled"  Markov  parameters  in: Hsl , Hs2 

The  original  model R ,  as well as  the  derived  models R,, R,, G(@ and H ( d )  
are identical  to  those  given  in  Example 1. Therefore, only  an  extension  of H(.?) 
will  be  given  here,  since the number  of  "useful"  terms is larger than  presented  in 
the results  of  Example  1: 

so S-1 ... S-9 

- 0 0 ... 0 

0 1 ... 1.4 
-" "- "- "_ 

1 0 ... 0.3 

h22 0 0 96.0 
"-  -" "_ "_ 

h13 

0 0 -687.0 h23 

0 1 ... 257.8 

-10 

0 

-2.0 
"- 

-1.2 

240 
"_ 

-513.2 

1470 

s-ll s-12 

0 0 

2.7 -2.9 
"- "- 

3.1 -6.5 

-1439 4555 
"_ _" 
1025  -2047 

-2700  3961 

s-13 s-14 

0 0 

0.2 11.4 
-" "- 
10.2 -8.8 

-11024  21320 
"- "_ 
4088  -8166 

-3367 - 4 2 ~  

In order  to  illustrate scding in MTD, we  will  repeat  some  of  the  results  from 
Example 1. First,  let us  compare  the  unscaled  and  scaled left  coprime  MFD: 
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Left Coprime MFD (unscaled) 

This  form  is  given  by D'(s)N(s) where D(s) is monic  and  column-reduced. 
These  results are taken  from  Example  1: 

denoted  by 

and 

- 2.0 1.0 0 0 

d21 

-.m -.m3 -.m1 0.0 4 2  

-1.0 0.0 0.0 0.0 
_"" ""_ ""- "" 

d,, 5.001  9.001 5.0 1.0 

"l1 

%l 

5 2  

nz2  

"13 

%3 

-.m -.m1 
5.003 4.001 
""_  ""_ 
2.0 1.0 

0.0 0.0 
""_ ""_ 

1.0 0.0 

0.0 0.0 

0 

1 .  
"" 

0.0 

0.0 
"" 

0.0 

0.0 

= D,@) 

The scaling  factor f is  set  at a value of 0.1. This "time scaling" is reflected into 
the sdomain as a scaling  factor on the S variable. A well  known  fact  from Fourier 
theory  is  that a contraction  of  the  time  axis  corresponds  to an expansion  of  the 
frequency  axis  and  vice  versa.  Here,  because  the  system  response  becomes large 
too  quickly in normal  time,  we  expand  the  time  axis by a factorf=10. Thus, i fp  
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represents the scaled  Laplace  variable,  then S = lop, and e.g., a polynomial 

d(S) = 1 + 5s" + 9 P  
becomes 

d(p) = 1 + 0.5~" + 0.09~" 

The  reader  should  compare  the  following  scaled  version  with the above  left  coprime 
MFD: 

Left Coprime MFD (scaled) 

4 1  - 0.2 1.0 0.0  0.0 - 
4 1  = D,,(S) -.m1 0.0 0.0 0.0 

"_" ""_ ""- -"" 
4 2  0.0 -.m3 -.01 0.0 

dzz .W5 .090 0.5 1.0 

and 

"1 1 

"2 l 

"12 

"22 

"l3 

"2 3 

0.0 

.m5 

0.2 

0.0 
""_ 
0.1 

0.0 

-.001 

.040 
"_" 

l .o 
0.0 

""- 

0.0 

0.0 

0.0 

0.1 
""_ 
0.0 

0.0 
""_ 
0.0 

0.0 

Right Coprime MFD (unscaled) 

This  form  is  given  by N(s)D'(s) where D(s) is monic  and  row-reduced.  This 
is the same  scaling  that  was  previously  applied  to the left  coprime MFD above. 
The unscaled  results are  repeated  from  Example 1: 
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denoted by 

and 
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4 1 
4 1 

d3 1 

4 2 
d 2 2  

d32 

'1 3 

d2 3 

d 3 3  

'11 

% l  

n12 

3 2  

'13 

n23 

.g99 I .003 
~ 

0.0 
""_ 

0.0 

-1.0 

2.0 
"" 

- 1.0 

5.002 

0.0 

1 .o 0 

.m1 0.0 

0.0 0.0 
""_ ""_ 

0.0 0.0 

0.0 0.0 

1.0 0.0 
"" "" 

0.0 0.0 

4.001 1.0 

0.0  0.0 

.m3 
1 .o 

""_ 
0.0 

0.0 
""_ 
5.003 

0.0 

.001 0 

0.0 0.0 
""_ "" 

0.0 0.0 

0.0 0.0 
""_ "" 

4.001  1.0 

0.0  0.0 
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Right Coprime MFD (scaled) 

and 

dl 1 

d2 1 

d 3  1 

d,  2 

4 2  

d3 2 

'1 3 

4 3  

4 3  

n 1 1  

n 2 1  

3 2  

3 2  

'13 

$3 

So 

0.1 

0.0 

0.0 
."" 

0.0 

-0.1 

0.2 
"" 

-.01 

.05 

0.0 

So 

0.0 

0.1 

S1  52 

1.0 0.0 

.m1 0.0 

0.0 0.0 
_"" ""- 

0.0 0.0 

0.0 0.0 

1.0 0.0 
"" "" 

0.0 0.0 

0.4 1.0 

0.0 0.0 

S1  52 

.m1 0.0 

0.0 0.0 
_"" "" - ""- 

0.0 0.0 0.0 

0.0 0.0 0.0 
"_" ""- "-" 

.05 0.4 1.0 

0.0 0.0 0.0 

Markov  Parameters  (scaled) 

219 

The  first few terms of the  3-column  polynomial  matrix H(.?) = {h&-')} were 
given  in  Example 1 .  That  result  illustrated  the  increasing  values of the  parameters. 
A further  extension  was  given  earlier  in  this  example.  Now  consider  the scaled 
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Markov parameters  (again  withf = 0. l), and  note  the  dramatic  change: 

so s-l s-2 s-3 s -s  sa s - ~  s-a 

h11 

0.0 43 
0.0 h13 

0.0 42 

1.0 h12 

0 h 2 1  

- 0 

"- 

-" 

0 0  

.l -.01 
"- -" 

0.0 10-5 

0.0 0.0 
"-  "- 

0.1 -.m 
0.0 0.0 

0 

.001 
-" 
0.0 

.W1 
-" 

.W4 

0.0 

0 

-.OoOl 
"- 
0.0 

-.OOO5 
"- 

-.0008 

.OOO1 

0 

10-5 
-" 
0.0 

.OoO16 
-" 

.00016 

- . m 7  

0 0 

0.0 0.0 
-" -" 
0.0 0.0 

-.m 1 0 5  

"_ "- 

-.oooo3 10-5 

. m 3  -10-5 

0 

0.0 
-" 
0.0 

0.0 
"- 

0.0 

0.0 

These Markov parameters  are  obtained by  Algorithms DNH and h?DH which 
require D-T  stable  MFDs. 

Explanation  of  time  scaling of MFDs, time scaling  with the factorf = 0.1: 

Original  left  and  right  coprime  MFDs  (without  scaling): 

D,@) = 
2 + 1s -.m -.003s -.oo1s2 

-1 5.001 +9.001~ + 5s2 + l S 3  

- .999+1s 0 -1 

D,@) = ,003 .t .001~ -1 5.002 +4.001~ + IS' 

0 2 + 1s 0 

Left  and  right  coprime  MFDs  with  scaling: 

1 3 column degrees 

- .0999+1s 0 -.01 

1 0 0.2 + 1s 0 

2 .OOO3 + .OOIS -0.1 ,05002 + . 4001~  + Is2 D,@) = 

- 1  
rOW 

degrees 
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The  coefficients d,,,, of D,(.$ in an l"' row  where  the  polynomial  with  the 

column  degree 9 is  located  are  multiplied  with fni-*, h=[O,n,,J, n,,, = max { n, }. 
Thus,  the  highest  degree  coefficients in  all  polynomials  defining  the  column  degrees 
are unchanged  and the time  scaled  polynomial  matrix D&) remains  monic. 

Similarly,  the  coefficients cl,,,, of &(S) in  a]"'  column where  the  polynomial 

with  the  row  degree n, is  located are multiplied  with f n i - ' ,  h=[O,nJ, n,,, = max 
{ n, }. Thus,  the  highest  degree  coefficients in all  polynomials  defining  the  row 
degrees are unchanged  and  the  time  scaled  polynomial  matrix D&) remains  monic. 
Note  the  verification  of  these  statements  in the example  above. 

4.7 Summary 

To summarize  the  developments in this  chapter,  a  large  collection of 
algorithms  was  presented.  These  algorithms  provide  conversions  between  any  two 
types of  system  models:  state  space  canonical  forms,  transfer  function  matrices  and 
matrix  fraction  descriptions (ARMA  models), as well as the  Markov  parameter 
(Hankel  matrix)  description.  Appropriate  application  of  this  group  of  algorithms 
will  allow  the  designer  to  view the system  from  every  "perspective,"  and  to  work 
with the most  convenient  model. 

In  conclusion  of  this  chapter it should  be  pointed  out  that  the  pseudo- 
controllable  and  pseudo-observable  forms,  PCF  and  POF,  used  in the majority  of 
intermodel  conversions,  have  not so far been  widely  used  in  the systems/controls 
literature.  The  reason  for  that  is,  no  doubt,  due  to  the  great  popularity  of 
Luenberger  canonical  forms and the fact  that  PCFs  and  POFs  used  here are just 
"permutations" of  Luenberger  forms.  Recall  that  in  Chapter 3 it was  stated  that our 
versions  of  PCFs  and  POFs,  based  on  admissible  sets of pseudo-controllability  and 
pseudo-observability  indices, POI and  POI, are more  "natural"  than  other 
approaches  in  representing  MIMO  systems.  This  "naturalness"  stems  from  the 
extremely  simple  relationship  between  the  state  space  and  inputloutput,  i.e.  MFD, 
models  and  the  conclusion  that  there  is  a  one-to-one  correspondence  between  state 
space  and  MFD  models,  which  has  been  established  by  Remarks 4.1 and 4.2 and 
illustrated by  Examples 4.1 and 4.2. 

To emphasize  these  simple,  important  and  straightforward  relationships  let  us 
review  them  once  more  in  a  slightly  different  way.  Consider  a  state  space 
representation: 

R, = {Ao, B,, C,, D,} in a  POF 

based on an admissible  set  of  POI: 

v = { V , ) '  i = [ l , p ] ,  k=max(  v , ]  

and its one-to-one  "counterpart,"  i.e.  a left coprime  MFD: 
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where D(z) is monic and column-reduced  having  column  degrees { n, ) equal to 
POI,  i.e.: 

( 4 1  = { h }  

Of course,  these two models are related  to  each  other  by: 

C,(zI - A,)"B, + D, = D'@) N(z) 

In Section 4.1.7 it  was  established  that  the  non-zero,  non-unity  elements in 
A, and the  negatives  of  the  corresponding  non-zero,  non-unity  coefficients dgh of 
the  polynomials  in D(z) are equal  to  each  other.  Also,  having  these  elements, it is 
extremely  easy  to build either A, or D(z), since  the  locations of those  elements in 
both A, and D(z) are uniquely  determined by the  selector  vectors v,,  v,,  v, and v, 
(and associated  selector  matrices)  generated by the  underlying  set { n, } or { U, ). 
In  Section 3.3.4 it  was  shown  that  the  selector  vectors are a simple  consequence of 
(or  easily  obtainable  from)  the  crate  diagram  based on the  set  POI. 

It has been  shown  that  the  total  number  of  above  mentioned  non-zero,  non- 
unity elements is np, and that  they  appear  in A, in somep rows,  while  in D(z) they 
appear  in  some n columns  in  the [p x (k+ l)p]  matrix D,, where D, is related to 
D(z) by: 

k 

D, = [Do 1 D, I m** Dk] a d  NZ) = C Di Z' 
i -0 

If thep rows  from A,, containing  non-zero,  non-unity  elements, are arranged  in the 
(p x n) matrix A, and if  the n columns  from  the  matrix D, are arranged  into 
another (D X n) matrix,  say D,, then  it  has  been  shown  that: 

Drr = -A, 

It  has  also  been  established  that  the  locations  of  the  non-zero,  non-unity  rows  in A, 
are determined  by  the  locations  of  unities in the  selector  vector v,, i.e.  the  selector 
matrix S,, and that  the  locations  of  the  non-zero,  non-unity  columns  in D, are 
determined  by  the  location  of  unities in the  selector  vector v,, i.e.  the  selector 
matrix S,. 

Thus, as has been shown  previously,  and  used  effectively  in a number of 
algorithms  in  this  chapter,  the  relationship  between A, and D, may be  expressed as: 

A, = SZA, = -Dr S,, (4.95) 

which,  in fact, may  be  considered  as  the  basis  of  almost all of  the  previously 
described  algorithms. 
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With  the  help of two other  selector  vectors,  namely, vi and v,,, (and selector 
matrices S, and S,,,) we  may: 

Given A,, calculate D, by: 

D, = S,, - S,, A, S,i T T  T 

or conversely, 

0 Given D(z), i.e. D,, then A, may be  obtained  simply  by: 

A0 = %A, - S A  sa 

where A, = [ 0 I In-p 3, while  the  selector  vectors  and  selector  matrices  used are 
defined  in  Section 3.3.4. 

Applying  the  principle of duality,  it may be shown  that  the  relationship 
between A, in  a PCF: 

based  on  a  set of PC1 
R, = {A,, B,, c,, DJ 

{ Pi 1, k = max { Pi 1, i=[l,mI 

and its  one-to-one  counterpart,  monic and row-reduced D(z) in a  right  coprime 
MFD 

W(z) 3 1 

having  row  degrees { ni } equal to the PCI,  i.e.: 

{ n i } = { ~ i l  
could  be  expressed  by: 

D,, = S,,, - SIi A, S, 
or 

where,  now: 

A,= 

and of course: 

C,(ZI - A,)"B, + D, = N(z) P ( Z )  
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4.1 The  first 8 Markov  parameters, H,, i = [O , rJ ,  of a  system are given  below: 

These  Markov  parameters  arranged  in  the  PMF, H@'), are: 

' 0 - 1 0 1 1 1 2 4  

0 0 0 - 1 0 1 1 1  

0 1 1  1 2 4 7 1 2  

0 0 0 1 1 1 2 4  

Determine: 

(a) -all admissible  POFs and  the  corresponding  sets  of POI;  use  Algorithm 

(b) -which  set(s)  of  POI are not  admissible, 
(c) -all admissible  PCFs and the corresponding  sets of PCI;  use  Algorithm HRc, 
(d)  -which  set(s)  of  PC1 are not  admissible, 
(e) -all admissible  left  coprime  MFDs  and  the  corresponding  sets of column 

(f) -all  admissible  right  coprime  MFDs  and  the  corresponding  sets of row 

HRo, 

degrees;  use  Algorithm HDN, 

degrees;  use  Algorithm HIVD. 

A version  of an L-A-S program  which  solves  this  exercise  is  available  in  the L-A-S 
subdirectory  C:\LAS\DPF\EXER4 1 .DPF. 

4.2 Given  below  is  a  right  coprime  MFD; D(s) is not  row-reduced: 

The  matrices  above can be  written in PMF  as  follows: 
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N =  

Determine: 

0 0 0 0  

0 0 0 0  

0 0 - 1 0  

- 1 0 0 0  

r-l 1 0 0 -  

- 2 1 0 0  

1 0 - 1 1  
, D =  

L 2  0 -1 O A  

(a)  -all  admissible  left  coprime  MFDs, {D,@), &(S)}, with D,@) column- 
reduced;  use  Algorithm M D N ,  

(b) -all admissible  POFs, R,, and  corresponding  sets of POI;  use  Algorithm 
NDRo. 

(c)  Using  one  of the obtained  admissible  left  coprime  MFDs in (a),  calculate all 
admissible  right  coprime  MFDs, {TVr@), D,($)}, with D,($) row-reduced; use 
Algorithm DNNZ). 

(d)  Using one  of  the  obtained  admissible  left  coprime  MFDs in (a),  calculate  all 
admissible  PCFs, R,, and  corresponding  sets  of  PCI;  use  Algorithm DMc.  

A version  of an L-A-S program  which  solves this exercise  is  available in the L A 4  
subdirectory  C:\LAS\DPF\EXER42,DPF. 

4.3 Given the transfer  function  matrix G(s) = W(s)/d(s) where: 

W(s) = I s  -S( 1 +s)2 -S( 1 +s)2 1 s(1 + s y  

and 

d(s) = ( 1 + s)2 (2 + 

W in Ph4F and the coefficients of d(s) are: 

0 1 0 0 0  

0 -1 -2 -1 0 

0 1 2 1 0  
W =  

10 -1 -2 -1 0 1  
d = [ 4  12  13 6 l ]  

Calculate: 

(a) -the order, n, of  a  minimal  realization; 
(b) -all admissible  POFs and  corresponding  sets  of POI,  (Use FRO.) ;  
(c) -all admissible  PCFs  and  corresponding  sets  of  PCI,  (Use TFRc.); 
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(d)  -all  admissible  left  coprime  MFDs,  (Use  either TEDN or RoDN, with all 
POFs  from (b) as  input.); 

(e)  -all  admissible  right  coprime  MFDs;  (Use  either FND or RcND, with all 
PCFs  from  (c)  as  input.); 

(Q -the  first 9 Markov  parameters;  Use  either RoH or RcH, (As  input 
arguments,  use any of  the  previously  obtained  admissible  realizations, R, or 
RC.). 

A version  of an L-A-S program  which  solves  this  exercise  is  available  in the L-A-S 
subdirectory  C:\LAS\DPF\EXER43.DPF. 

4.4 The  purpose of  these  exercises  is  to  provide a hands-on  experience  on  almost 
all  algorithms  discussed  in  Chapter  4,  as  well  as  on  various  details  about the L-A-S 
implementation  of  these  algorithms.  Various  parts  may  be  assigned,  depending  on 
the  particular  topics  desired. 

(1) Define an arbitrary (random) 5"' order  state  space  representation R, = 

(2) Calculate  the  eigenvalues Xi = u, +j W, of A,. 
(3) Divide A, with 3lh-l; i.e. AJ(3Ih-l) A. 

{A,,B,C,D} with m=2 inputs  and p=3 outputs. 

Using R, calculate: 

(4)  -the  transfer  function G(z) = W(z)/d(z), 
(5) -the  first  15  Markov  parameters H, in H(?), 
(6) -the PCF R, = {A,,B,,C,,D,} corresponding  to p = {4,1}, 
(7) -the  POF R, = {A,,B,,C,,D,} corresponding  to U = {1,3,1}, 
(8)  -the  right  coprime  MFD {Nr(z),Dr(z)l with { n, } = { p, }, 
(9) -the  left  coprime  MFD {D,(z),N,(z)} with { n, } = { U, }. 

Using the models  (one at a  time): 

{ d(z), W(z) } , H@") and { Nr(z),Dr(z) 1 , determine: 
(10) -the  POF R,,, corresponding  to  the  given { U, }, 
(1  1) -the  POF RO2 corresponding to the  given { vi }, 
(12) -the  POF Rd corresponding  to  the  given { U, }. 

Using the models  (one at a  time): 
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(14) -the left  coprime  MFD {D,(z),N,(z)} corresponding  to { n, } = { U, }, 
(15)  -the  left  coprime  MFD {Dn(z),Nn(z)} corresponding  to { n, } = { U, }. 
(16)  Check  that all the R,, i=[l,3] obtained are equal  to Ro. 
(17)  Check  that all  the {D,,(z),N,,(z)}, i=[1,3] obtained are equal  to {D,(z),Nxz)}. 

Using the models  (one at a time): 

{ d(z), W(Z) } , H(z") and { D,(z),N/(z) } determine: 
(18) -the PCF R,, corresponding  to  the  given { p, }, 
(19) -the PCF R, corresponding  to the given { p, }, 
(20) -the PCF Rc3 corresponding  to  the  given { p, }. 

Using  the  models  (one at a  time): 

{ d(z), W(z) } , H(z") and { D,(z),N,(z) } , determine: 
(21) -the right  coprime  MFD {Nr,(z),Dr,(z)} corresponding to { n, } = { p, }, 
(22)  -the  right  coprime  MFD {N,(z),D,(z)} corresponding  to { n, } = { p, }, 
(23) -the right  coprime  MFD {N,,(z),D,,(z)} corresponding  to { n, } = { p, }. 
(24)  Check  that all  the Rd, i=[1,3] obtained are equal  to R,. 
(25)  Check  that all  the {N,,(z),D,,(z)}, i=[1,3] obtained are equal  to {N,(z),D,(z)}. 
(26)  Using {D,(z),N,(z)} calculate  the  first  15  Markov  parameters in Hl(z-'). 
(27)  Using {Nr(z),Dr(z)} calculate  the  first  15  Markov  parameters  in Hz(z-'). 
(28)  Using {d(z),  W(z)} calculate the first  15  Markov  parameters in H3(z-'). 
(29)  Check  that all the H,(z-'), i=[1,3] obtained are equal  to H(Z'). 
(30)  Using H(z") calculate  the  transfer  function {d,(z),Wl(z)}. 
(31)  Using {D,(z),N,(z)} calculate  the  transfer  function {dz(z), Wz(z)}. 
(32)  Using {N,(z),D,(z)} calculate  the  transfer  function {d3(z), W3(z)). 
(33)  Check  that  all the {d,(z),W,(z)}, i=[1,3] obtained are equal  to {d(z),W(z)}. 

Hints: 

(1)  Use either theL-A-S  subroutine  ABCD.SUB or the  operator  DPM  four times. 
(2)  Use  the  operator EGV. 
(3)  Use the operators RPT , S* and S/ . 
(4)  Use  the  operator S S P .  
(5) Use  the  subroutine  SSH.SUB. 
(6)  Use  the  subroutine  SSRc.SUB. 
(7) Use  the  subroutine  SSRo.SUB. 
(8)  Use  the  subroutine  RcND.SUB. 
(9) Use  the  subroutine  RoDN.SUB. 

(10) Use  the  subroutine  TFRo.SBR. 
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(11) Use  the  subroutine  HRo.SBR. 
(12) Use  the  subroutine  NDRo.SBR. 
(13) Use  the  subroutine  TFDN.SBR. 
(14) Use  the  subroutine  HDN.SBR. 
(15) Use  the  subroutine  NDDNSBR. 
(16) Use  the  operators - and OUT in the MOS Roi,Ro(-)(out)= ; with 

(17) Use  the  operators - and  OUT  in the MOS Dli,Dl(-),Nli,Nl(-)(out)= . 
(18) Use  the  subroutine  TFRc.SBR. 
(19) Use  the  subroutine  HRc.SBR. 
(20) Use  the  subroutine  DNRc.SBR. 
(21) Use  the  subroutine  TFND.SBR. 
(22) Use the subroutine  HND.SBR. 
(23) Use the subroutine  DNND.SBR. 
(24) Use the operators - and  OUT in the  MOS Rci,Rc(-)(out)= ; with 

(25) Use  the  operators - and  OUT  in  the MOS Nri,Nr(-),Dri,Dr(-)(out)= . 
(26) Use  the  subroutine  DNH.SBR. 
(27) Use  the  subroutine  NDH.SBR. 
(28) Use the subroutine  TFH.SBR. 
(29) Use the  operators - and  OUT  in the MOS Hi,H(-)(out)= ; with i=[1,3]. 
(30) Use  the  subroutine  HTF.SBR. 
(31) Use  the  subroutine  DNTF.SUB. 
(32) Use  the  subroutine  NDTF.SUB. 
(33) Use the operators - and  OUT  in the MOS di,d(-),Wi,W(-)(out)= . 

i=[1,3]. 

i=[1,3]. 

Additional  "general"  hints: 

(1) From time to time enter  the  interpreter  commands (IC) STATUS and 
NAMES  to  check  the  number of arrays defined  and  the  total  number of 
elements  used  by  these arrays. I f  necessary,  by the IC ELM,  or  the  operator 
(ELM)=  eliminate  some of arrays.  This can  be  done  by  either: 

(IC version) or 
(OS version) 

(2) By  using  the IC HELP (H), syntactical  descriptions of any  operator  statement 
(OS) or interpreter  command (IC), as well as any  subroutine of the type SUB 
or SBR can be  obtained  by: 

* for  any IC or OS * h,sub,xyz for  any  subroutine  of  type SUB or SBR 

(3) At  any  time  during  the L-A-S session  by  using: 
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* x,y,e(out)= or 
* x,y,e(out,e)= or 
* x,y,Z(out,t,<n>)= ; a>:= 0 1 2 

the  desired  arrays may be  displayed on the  screen.  Similarly,  by  using: 

* X,y,Z(OUt,L)= or 
* x,y,&(out,L,e)= or 
* x,y,z(out,L,<n>)= ; a > : =  0 1 2 

the arrays may be written to the LASR "print"  file. 

(4) Before ending  the  session,  the  use of: 

* w,Prg or wpf ,Prg 

stores the sequence  of L-A-S operators,  i.e. the L-A-S program, on the  Disk 
Program  File.  This  program may later be  retrieved  from "DPF" and 
executed  without  retyping  all  statements.  This  can  be  done  by: 

* r,Prg or rpf ,Prg 

A version of an L-A-S program  which  solves  this  exercise  is  available  in  the 
L-A-S subdirectory  C:\LAS\DPF\EXER44.DPF. 

4.5 A 5"' order uncontrollable  and  unobservable  strictly  proper  system  with m=2 
inputs and p = 2  outputs  is given  below in the system  matrix  form: 

namely, 

R, = 

1 .o 
.O 

.O 

3.0 

.O 
"- 
l .o 
1 .o 

-.5 -3.0 

2.5  -1.0 

.S 4.0 

.5 3.0 

-.S 1.0 
-"  "- 
1.0 1.0 

1.0 1.0 

.O 

.O 

.O 
4.0 

.O 
-" 

.O 

1 .o 

-1.5 1 1.0 
-1.5 I .O 
1.5 I .O 
1.5 I .O 
3.5 I .o 
"- -1- "- 

1.0 I .o 
2.0 I .o 

-1.0 

.O 

1.0 

1.0 

.O 
"- 

.O 

.O 
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Determine  minimal  state  space  representations using: 

(a) -a Hessenberg  transformation, 
(b) -a  Kalman decomposition.  Calculate also the dimensions of the  subspaces 

(c) -the  Jordan  form  decomposition. 
CO', CO' and CO, and 

Hints: 

0 

0 

0 

0 

0 

0 

See Appendix B for a  discussion  on  these  methods  of  obtaining  a 
minimal realization. 
Define the  representation R, using  the operator  DMA, or W M .  
For the Hessenberg  transformation  use  either the operator MIN, subrou- 
tine MIN.SUB (twice), or subroutine  MIN.SBR. For extra effort  use 
each option. To check if  all  procedures  give  the  same  minimal 
representation, use the operator  SSTF. 
For the Kalman  decomposition  use the subroutine KALD.SBR. 
For the  Jordan  Form  minimal  representation  use the operators JFR and 
STR and eliminate  the  uncontrollable and/or unobservable  modes. This 
can be done,  for  instance, using the operator DSM. 
Minimal  representations R,,, = {A,,,,B,,,,C,,D,} can be  built using the 
subroutine SYSM.SUB. 

A version  of  an L-A-S program  which  solves  this  exercise is available in the L-A-S 
subdirectory  C:\LAS\DPF\EXER45.DPF. 
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Chapter 5 System  Identification 

In the  previous  chapter  several  methods  of  conversion  between  system 
representations  were  presented.  The  purpose  of  this  chapter is  to  present the 
important  conversions  between  input/output  data  to  various  system  models.  This 
special  catagory  of  conversions is called  idenrflcation. In the  first  section the 
structural  relationship,  called  the  idenrflcation  identity,  which  was  discussed  in 
Chapter 4, is reviewed. 

5. l The  Identification  Identity 
Several of the  intermodel  conversions  discussed  in  Chapter 4 were  based on 

the  relationship  between the state  space  model in a POF  and a  corresponding  left 
coprime  MFD.  Since  this  fundamental  relation  is also useful  in  system  identifica- 
tion,  it will be, in large  part, repeated  here. 

As was  done  in  Section 4.1.7, consider  the  order-n  D-T  system  with  m-inputs 
and  p-outputs: 

where R, = {A,, B,, C,, D,} is in a POF corresponding  to a set  of  admissible POI, 
v = {v,}. From Eq45.1) we  may write 

Now we let r = v,,, = max{v,}.  Clearly, Eq.(5.2) holds  for  any  integer t = [0, N- 
r] and  can  be  rewritten as 

yt = Q,,x(O + Hut (5.3) 

where y, and U, are (v,,+ 1)p and (v,,,+ 1)m dimensional  columns  containing  output 
and  input  vectors y(r+]] and u(r+]],j = [0, v,,]. The  matrix Q, is  the  observabi- 
lity  matrix  of  the  pair {Ao, CO), while H is the (r+ 1)p X (r+ 1)m lower  block 

. ,  

233 
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triangular  matrix  containing  along  the main  diagonal  the (pxm)  blocks D,. The 
other  nonzero  blocks of H are the p x m  dimensional Markov parameters: 

c,AI,B, f o r i  = LO, V,, , -I]  (5.4) 

Note  that H in Eq.(5.3) equals Rk in Eq.(4.61), used in  Algorithm HDN. Our  goal 
is to eliminate  from Eq.(5.2) the x( t )  terms,  thereby  obtaining  an  expression  which 
relates the sampled  data  to the elements  in R,. 

Equation (5.2) can be  considered  to  represent (v,,,+l)p scalar  equations  in  the 
samples 

Yi/ = Y i ( t + j )  (5.5) 

i.e. the  component  of the output  vector y(f+]], i = [ l , p ] , j = [ O ,  v,,,]. In Section 
3.3 it was  shown  that Q, has n rows  of  an  identity  matrix  and p rows  that 
correspond to the rows of A, with  non-zerolnon-unity  elements. Furthermbre, the 
location  of  these  rows are determined by the  selector  vectors v,, and v,,,, respective- 

Premultiplying Eq.(5.3) by the  selector  matrices SUT and SUT defined  by 
lY * 

Eq.(3.79), we obtain,  respectively, 

Y1t = ~ ( 0  + H1 U t  2 and ~ 2 r  = A,x(O + H,nt (5.6) 

where 

~ l t  = SIiyt 92t = s,,Y, with H, = S:H > H, = S ~ H  
T T 

Eliminating x([) from Eq.(5.6), 

The matrix A, in E q ~ ( 5 . 6 )  and (5.7) is a (pXn) matrix  containing  the  rows of A, 
with  non-zero  non-unity  elements,  whose  locations  in A, are specified  by the 
selector  vector v,. Equation (5.7) may be expressed  in a more  concise  form  by 

y2t = [ Nr  Ar ] z t  (5.8) 
where N, = H, - AJI, is ap x (v,,,+l)m matrix  and z, is an  h-dimensional  vector 
containing U, and ytr, where h = (vm+l)m + n. Equation (5.8) is referred  to as 
the identijicurion identity since it relates  input/output  data  samples  arranged  into 
columns y2, and z, to  parameters of  the  state  space  representation R,, i.e. in the 
matrices A,, B, and D,. The idenriJcation identity is the  basis for conversions 
between input/output  data and either  state  space or MFD models. 

Equation (5.8) may  now be rewritten as 

~ 2 t  -Arylt = Nrnr (5.9) 
Note  that Eq.(5.9) is a  time-domain  inpudoutput  expression.  Applying  the z- 
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transform  and  taking  into  account  the  arrangements  of  the  samples dl+]> and 
yk(t+]>, i=[l,m], k=[l ,p] , j=[O,u, ,J  in the  vectors U,, yrr and yu, we obtain: 

(5.10) 

which is a  left  coprime MFD. Since in Eq(5.9) thep dimensional  vector yu is 
multiplied by the identity  matrix Ip, it may be  concluded  that D(z) in Eq.(5.10) is 
monic. For further  details see Section 3.4 and Eq(3.104). Thus, in order to 
obtain  the lp x (v,,,+l)p]  matrix D,, which leads  directly to D(z), it is first 
necessary  to  obtain  the  matrix A, From the discussion in Section 3.3.4 it is  clear 
that A, may be  obtained  from A, in a  POF by: 

m )  Y(Z) = N Z )  4 2 )  

SZA, - A, (5.11) 

where S,, is one of  the  selector  matrices  uniquely  defined by the  particular  set  of 
admissible POI Y and  generated  by  Algorithm SMut: 

S& - A,S$ = D, 

For more  details see Section 3.3.4. 

(5.12) 

5.2 Conversions  from  Input/Output  Samples 

Many  times  only  inputloutput  data is available,  without  a  given system  model. 
The process of creating  a system  model  from  the  data is called  system  identifica- 
tion. The algorithms of  this  section  can  "identify"  a  system  in  either  state  space 
form or as an  ARMA (MFD)  model.  In  addition,  the  Markov  parameters may be 
calculated  from  the  inputloutput  data.  To  obtain  a  matrix  transfer  function, it is 
recommended  that  one  of the above mentioned  forms  be  calculated first, i.e. state 
space or ARMA,  although  there  is  a  procedure  for  the  identification  of  the 
corresponding  transfer  matrix  directly. 

5.2.1 Input/Output  Data to Observable  State  Form 

This algorithm  performs  a  deterministic  D-T  system  identification  by 
calculating an observable  form  state  space model R, = {A,, B,, C,, D,} from  a  set 
of input and  corresponding  output  data.  Certain  restrictions are placed  on  the  input 
signals  to  ensure  that  the system  excitation  is  "sufficiently rich." This will be 
explained  subsequently. The algorithm  is  based  on the identification  identity, 
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Eq(5.8). The  reader  is  urged  to  review  Section 5.1 since we will  assume 
familiarity  here  with  the  identification  identity. 

Thus, Eq.(5.8), i.e. 

U1 

y2, = [ N, I A, ] z t  , where zI = (5.13) --- 

- 911 

establishes  the  linear  dependance  between  the p dimensional  vector yy, containing 
samples y,(t+v;), i=[l,pl, of  the  output  vector y(t) and: 

(v,,,+l)m dimensional  vector U, containing  samples  of the  input  vectors 

0 n dimensional  vector y,, containing  the  samples y, ( t+~) ,  j=[O,v,-l] of 
u(t+13, j=[O,vml and 

the  output  vector y(t). 

where Y is  a set of  admissible POI used in representing  the  system  to  be  identified, 
while k = v,,, = max { v, }. With h = (v,,,+ 1)m + n recall  that (p x h) and (p x 
n) matrices N, and A, defining  linear  dependence  in Eq(5.8) contain: 

0 matrices NI in  the  polynomial  matrix N(z) of  the left  coprime MFD 

p rows with non-zero  non-unity  elements  in  the  matrix Ao, Fq.(5.11), 
relating y(z) to U(& Eq.(5. lo), and 

of  the  state  space  representation R. in a POF. 

In order  to  determine N, and A,, as  well  as  to  select an appropriate  set Y of POI, 
the following  is  suggested.  Concatenate  the  vectors ya and z, corresponding  to 
samples t =0,1,2, . . . , 9-1 into (D X q) and (h X q) matrices Yz and Z, respective- 
ly,  (where  it  is assumed  that h < q and q+v,,, < N), yielding: 

U }(v,+l)m 
Yz = [ N, I A, ] Z  , where Z = (5.14) --- 

JI - In 

Note  that  the  structure  of  the  matrix U is  given by: 

1 u(k) u(k+ 1) u(q+k-l)  1 
(5.15) 

where k = v,,,, while  the  matrices Y, and Y2 appearing  in Eiq(5.14) may  be 
obtained  by  premultiplying  the  following [(k+ 1)p x 4 matrix Yk.  
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by selector  matrices S,: and SUT, respectively, i.e. 

Y, = SiY,  and Yz = S:Y, 

(5.16) 

(5.17) 

Of course, the selector  matrices  used  in Eq(5.17)  are generated  by the set v. 
To emphasize  similarities  between  this  algorithm  and the algorithms TFDN 

(TFRo) and NDDN (NDRo) discussed  in  Sections  4.2.5, 4.2.7, 4.4.7, and  to 
facilitate understanding of the  algorithm  steps  let: 

(5.18) 

where Z, is a [(k+ l)(m+p) X q]  matrix  obtained  by  concatenating U, and Y ,  of 
the form  in Eqs.(5. 16)  and  (5.17), but now  with the integer k = 1 , 2 , . .., pm. 

It is worth  mentioning  that  Eq.(5.14) is similar  to  Eq.(4.34) used  in 
Algorithm TFDN as well as TFRo, (and likewise  Eq.(4.91) in NDDN and NDRo), 
which is to be expected  since  all  these  algorithms  determine a left coprime MFD, 
i.e. a  model  which  corresponds  to  a state space  model  in POF. Therefore, these 
algorithms are also  rather  similar. The following  facts  will  also be seen  from the 
algorithm, but  they do not  make  much  of  a  difference: 

0 -in the TFDN algorithm  the  transfer  function  matrix is given, 
-in the NDDN algorithm the right MFD is given, 
-while here only  inputfoutput  samples are available. 

Only one difference  in the case of Eq.(5.14) is worth  mentioning. Recall 
that, for instance, in Eq.(4.34) the first m(k+l) rows in T, are, by definition, 
linearly  independent, and  that  in the last p(k+ 1)  rows  of T, there are n additional 
linearly  independent  rows.  Since  here, i.e. in Eq.(5.18),  the  same  situation must 
occur, all m(k+l) rows in the  matrix U, must be linearly  independent, i.e. U,, 
containing  only  samples of the  input  vector u(t), must be a  full row rank  matrix, 
leading to: 

rank[Uk] = rn(k+l) , for all k = [l,~,,,] (5.19) 

An input  signal u(t) satisfying the condition  of  Eq.(5.19)  will be referred  to as a 
"sufficiently rich" input, i.e. a persistem excitation capable of exciting all system 
modes.  Note  that for a given u(t) the condition  of  Eq.(5.19)  might be satisfied for 
some  value of k,  but it might  fail for a higher  value of k. 
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As an  example,  consider  a  periodic  input signal u(f), with m=1, given by: 

u ( t ) = [ l O  ... 0 1 0  ... 0 1 0  ... 0 1  ...l 

having in a  period one unity  and h zeros.  Building the matrix U,, Eq.(5.15), for 
various  values of k, it may be  concluded  that U, would be of full  row  rank  only for 
k S h. Thus,  this  input  signal may be used for identifying  a D-T system of uny 
order n, provided  that  the  system  may  be  represented  by a POF having  an 
admissible  set of POI  satisfying: 

max { v l }  = v,,, 5 h 

Therefore,  before using  this  algorithm it is  advisable  to  check the available  input 
and  to  determine  the  maximum  value  of k leading  to  a  full  row  rank U,. 

Input/Output Arguments: 

Algorithm: 

1. 

2. 
3. 
4. 

5. 
6. 

7. 
8. 

U is an (m X N) matrix  containing  samples  of m dimensional  input 
vector. 
y is an (p X N) matrix  containing  samples  of the system  response. 
e is  a  sufficiently  small  positive  number used  in rank  calculations. 
vd = { vi }, the  set of "desired" POI. If v, is not known, any 
scalar,  e.g. e, may  be  used as the  fourth  argument. 
R,, = {A,, B,, C,, D,}, a  state  space  representation in a  POF. 
v = { v, }, a set of admissible  POI  corresponding  to R,. 
x(0) is the  initial  condition  of  the  state  vector x(c) corresponding to 

C# is the degree of admissibility of the set v.  
R,. 

If vd is  specified, set vd =) v, set v,, =) k, build Z, Eq.(5.18) and go 
to 8; else,  go to 2 
Set 0 =) k and 0 =) n, 
Set k+l =) k 
Using the current k, build Z,, Eq.(5.18), and  set rank(Zb - mk * 
n 
If n = n, go to 6; else, set n =) n, and go  to 3 
From Z, determine  the  unique  observability  indices v,,, i.e. Z, 

Define an appropriate  admissible  set  of POI v 
Set v (SMat) =) v,,,, S,, Si, S,, S, 

=) v,, 
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9. 

10. 
11. 
12. 
13. 

14. 

15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
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Using S,, S,,, and k,  define the auxiliary  matrices S,, and S,, 
Eqx(4.37) to  (4.38) 

Set SiZ, * Z and SLZ, * Yz 
Calculate  the  degree  of  admissibility of Z, i.e. Z (C#) * C# 
If C# is  "too  small,"  go  to 7; else, go  to 13 
Solve XZ = Y, for X, where X = [ N, I A, ] 

Parition 1, * [ 1 p . C, has p rows 

Set S,A2 + SA,  * A, 
Set N,, m (R2c) * N, 
Set A,, S, (QC) * Q,,  Q, has (k+ 1)  blocks  (A,'S,)  of p columns 

Set D;l(~,)N,(~,) - C,(sJ-A,)"B, =) D, for any S, # a system pole 
Using R, calculate  the  matrix H in Eq.(5.3),  set S,% =) H, 
Extract the first column  from Z 3 z, 
Partition z, * [ U,' I yl/IT, y,, has n elements 
Set y,, - H,u, * x(0) 

Set Q& * B, 

Since  this  algorithm is, formally,  rather  similar  to  the  previously mentioned 
algorithms, TFDN and NDDN, it suffices to mention  that  Step  10  implements 
Eq.(5.17) and  that  the  matrix Z, used there  corresponds  to the matrix Z, given by 

x(0). The calculation-is based  on Eq.(5.6),  i.e.: 

where y,, and U, are the  first  columns of Y, and U,, Eqs.(5.17) and (5.15), 
respectively,  while H containing  the first v,+ 1 Markov  parameters  of R, is defined 
by Eq.(5.2). 

The role of the fourth  input  argument,  i.e. v,,, is very  crucial in Algorithm 
y R o .  It should be  realized  that for the case when the  input/output  sequences u(t) 
and y(t)  are corrupted by measurement  noise  (or  computational  round-off errors for 
that  matter) then the  determination of linearly  dependent  rows  in Z,, done in Steps 
4 and 6, leading  to  the  unique  set  of Y might be rather  unreliable.  Computational 
experience has  revealed  that in the case of significant  noise,  the  algorithm  tends to 
"suggest"  a system order  higher  than  the  true  order. This is why  Algorithm y R o  
has  an  option  of  using v,. If v,, is specified,  then, as may be seen  from  the 
algorithm,  the  process of  checking  for  linear  dependent  rows  in Z, is bypassed,  and 
the algorithm  operates in the  "mode"  of model reduction, where, of course, the 
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order of the reduced-order  model is equal to the sum  of the  elements in v,,. In this 
case it is  advisable to  use  several  sets  of  indices v,, having the  same  (or  even  a 
different order n) and  to  select the one which  gives the largest  degree of admissibil- 
ity C # .  (Note that  all  algorithms  calculate C# = the reciprocal of the  "standard" 
condition  number  to  avoid  infinite  numbers when a  set v, is not admissible, or when 
Z is not a  full  row rank matrix.) 

In fact, all  other  previously  discussed  algorithms  having as the last  input 
argument  the  set of "desired"  indices such  as: 

{-the set  of  POI p,,, or the  set of PC1 pi, or the  set  of  column or row  degrees n,} 

have an option of operating in the "model  reduction  mode"  which  should  somehow 
deviate problems  resulting from  accumulated  round-off error leading to erroneous 
rank determination  and  detection  of  linearly  independent  rows or columns. 

The quantity E used in these  algorithms has a  similar  role.  Computational 
experience  reveals  that  a good value  for E is on the  order of  magnitude  of lo5 in 
the  case of  double  precision  calculations  and  "moderately  well  conditioned" 
problems and  procedures  leading  to  relatively  small  computational  errors. 

5.2.2 Input/Output Data to Left Coprime MFD 

This  algorithm  calculates  a  left  coprime  column-reduced ARMA (MFD) 
model, D(z)'N(z), from  a  corresponding  set of inputloutput  data.  It is expected 
that  the  reader  has so far realized  significant  (even  striking)  similarities  between 
algorithms  calculating  a  POF R, and a  left  coprime  MFD { D(.), N(z) } as well as 
between algorithms  calculating  a  PCF R, and a  right  coprime  MFD { N(z), D( . )  }. 
Checking  previously  given  algorithms, it may be  concluded  that  these  algorithms 
differ only in several  last  steps  where the specific  matrices  in R, or in {D(z), N(z)} 
are calculated.  Thus,  in  this  section  we  will,  for  completness,  present an algorithm 
and  emphasize  that  everything  that  was  stated  in  Section 5.2.1 holds  here as well. 

I syntax: I Input/Output Arguments: 

0 U is an (m X N) matrix  containing  samples of the m dimensional 

y is an (p X N) matrix  containing  samples  of the system  response. 
e is  a  sufficiently  small  positive  number used  in rank calculations. 

0 n, = { ni } is the set  of "desired" column  degrees. If n, is not 

0 D is  a I p 2  x (k+ l)] matrix in PMF. The rows of D contain  the 

input  vector. 

known, any scalar, e.g. e, may be used as the fourth  argument. 
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coefficients dt,, of the polynomials d,(z) in D(z). 

coefficients nu,, of the polynomials n&z) in N Z ) .  
0 N is a Ipm x (k+ l)] matrix  in PMF. The rows  of N contain the 

0 C# is the degree of  admissibility of the set n,,. 

Algorithm: 

5.2.3 

1. 

2. 
3. 
4. 
5. 
6. 

7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

If n,, is specified,  set n, = {n,), set n, * k, build zk, Eq.(5.18), 
and go to 8; else, go to 2 
Set 0 * k and 0 * no 
Set k + l  * k 
Using the current k ,  build Zk, Eq.(5.18), and set rank(Z3 -mk =B n 
If n = no go to 6; else,  set n * no and go to 3 
From Zk determine  the  unique  observability  indices n,, i.e. zk 

Define an appropriate admissible set of  column  degrees n 
Set n (SMat) =) n,, S,, S,,  S,,  S, 
Using S,, S, and k, define the  auxiliary  matrices S,, and S,, 

=) n, 

Eqs.(4.37) - (4.38) 
Set * z and sLzk =) Y, 
Calculate the degree of admissibility of Z, i.e.  Z (C#) C# 
If C# is "too small," go to 7; else, go to 13 
Solve XZ = Y, for X, where X = [ N,. I A,] 
Set SUT - AS,: * D, 
Set D,,p(PMFr) * D and N,,m(PMFr) =) N 

InpWOutput Data to Markov Parameters 

This algorithm  calculates  the  Markov  parameters of a  system  from its 
inputloutput data. It is based  on Eq(4.76) in  Algorithm uHy, i.e.: 

but now,  since the Markov  parameters are unknown,  this  equation  will be 
represented by: 
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(5.20) 

L 
[Yo Yl *.* YN-l] 

or, for short by: 
H,U = y 

where H, is a (p X Mm) matrix  containing the Markov  parameters H,, i=[O,M-l], 
to be determined, U is an (Mm X IV) matrix  containing  the  samples U,, i=[O,N-l], 
of the input  vector U arranged  according  to Eq.(5.20), while y is a (p X N-l) 
matrix  containing N samples of the output  vector y. 

In order to  obtain the unique  solution for  the  Markov  parameters 6 satisfying 
Eq~(4.76) and (5.20), the matrix U must  be a  full row rank  matrix,  i.e.: 

rank(U)  = Mm (5.21) 

leading to the following  constraint: 
Mm S N (5.22) 

Note  that Eq.(5.20), as do  some  other  equations,  e.g. Eqs.(4.6), (4.32), (4.80) and 
(4.81), assumes  that: 

h, = m,-, II < <  1 (5.23) 

"tius, this  algorithm  is  applicable  only  to  stable D-T systems,  under the condition 
that the input/output  sequences are sufficiently  long  to  satisfy Eq~(5.21) - (5.23). 
Note  that Eq(5.21) requires  that  the  rows  of  the  input  signal u(t) be linearly 
independent, which is another  condition  specifying  a  "sufficiently  rich"  input. For 
more  details see Section 5.2.1. 

Syntax: U, Y, M (l'YH) =) H, 

Inpuffoutput Arguments: 

0 U is an (m x IV) matrix  containing  samples  of m dimensional  input 

0 y is an (p x IV) matrix  containing  samples of the  system  response. 
0 M is an integer  specifying  the  number  of  Markov  parameters  to be 

0 H is  a p m  X M] matrix  in  the PMF. The rows of H contain the 

0 h, is the norm  of  the  last  Markov  parameter  calculated, Eq(5.23). 

vector. 

calculated. 

first M coefficients hgh of the polynomials h,(z") in H(z"). 
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5.2.4 Input/Output  Data  to  Transfer  Function 
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This  algorithm  calculates  transfer  function  matrix  G(z) of a D-T system  from 
its input/output  data. It is based  on: 

Y ( Z )  = G(z) m (5.24) 
where C(z) can be  expressed  as: 

with  individual  transfer  functions  g&),  relating the contribution  of the$ input uj(z) 
to the z* output yi(z),j=[l,m], i = [ l , p ] ,  by: 

(5.26) 

In other  words, in this  algorithm a given  MIMO  system is decomposed  into a set 
ofp MISO (multi-input,  single-output)  subsystems,  and  each  subsystem is identified 
one at a time.  This  is why the denominators  d,(z) in Eq.(5.26) are different for 
different  values of i ,   i = [  1 , p ] .  Of course, the common denominator  d(z) for all d,(z) 
used  and  calculated in previous  algorithms  satisfies: 

It is worth  mentioning  that  the orders n, of  polynomials d,(z) are equal to the 
"individual  observability  indices''  which are dual  to the "individual  controllability 
indices" { ai } introduced by Definition 3.1 in Section 3.3.3. The roots of the 
monic  polynomialsJ(z),  appearing in Eq.(5.27),  correspond to modes  (poles)  of the 
given  MIMO  system  "not  seen" by the I* MISO  subsystem individually. 

From  the  relationship  between  polynomials  d(z)  and  di(z)  in Eq.(5.27), it may 
be concluded  that  the  numerator  polynomial  matrix W(z)  in Eq(5.27) is related  to 

the (p X m) matrix *(z) containing Gij(z) from  Eq.(5.26), i.e.: 

(5.28) 

U is an (m x N) matrix  containing  samples of the m dimensional 
input  vector. 
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0 y is an @J X N) matrix  containing  samples  of  the  system  response. 
e is  a  sufficiently  small  positive  number  used  in rank calculations. 

0 n, = { n, } is the set  of  "desired"  individual  observability  indices 
of p MISO subsystems. If n, is not known, any scalar,  e.g. e, may 
be used as the  fourth  argument. 
D is a [p X (n,+l)] matrix in PMF. The rows of D contain  the 
coefficients d,,, of the polynomials d,(z), n, = max(ni}. 

0 W is a pm x (n,,+ 111 matrix  in PMF. The rows  of W contain 

the  coefficients G,],, of  the  polynomials G,,(z) in W(z) , Eq.(5.26). 
0 no is a  set  of  individual  observability  indices {n,} containing the 

orders of the polynomials di(z). If n, is  used,  then no = n,. 
0 C# is the p-dimensional row vector  containing the admissibility 

degrees  of the matrices used  in identifying the individual MIS0 
subsystems. 

Remarks: 

In order to obtain the transfer  function  matrix G(z), i.e. W(z) and d(z), 
Eq(5.27, of the overall MIMO system, G(z) = W(z)/d(z), a  service  algorithm 
"Common  Denominator" (ComD) may be used. Its  syntax  is: 

D, e (ComD) * d, F 

The algorithm ComD uses the column D(z) = { d,(z) } and calculates  a 
common  denominator d(z) and the diagonal  polynomial matrix Qz), Eq.(5.28). 
Then,  the matrix W(z) of the  overall MIMO system  may be  obtained  using 

Fq.(5.28), i.e. by  premultiplying %'(z) with F(z). 
In spite of the availability  of  this  algorithm, as was  mentioned  in the 

beginning  of  this  subsection, due to  the  relatively  involved  procedure  used, its 
use is recommended only, if for  some reasons, it is  required  to  have  the 
individual  transfer  functions g&z) and  denominators d,(z), Eq.(5.26), defining 
the  single  output  subsystems. 

More details  about  the  procedure used  in the uyTF algorithm will be 
given  later. 

Basic steps of the  algorithm  are: 

1. Set O,,o =) C#, Ol,o * no, max{n,,J + 1 = k, Oo,k * D, O O , ~  * W 
2. Set 0 * 1 
3. Set i+ l  =$ i 
4. If nd is specified,  set nd(i) * ndi, and go  to 6; else, go to 5 
5. Set e * nd, 
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I 6. Extract the I"' row  from y * yi 
7. Set U, y,, E, n, (uyDN) =) d,, n ,  C Y i  

8.  Set [ C# I C#, 3 =) C# and [ no I n, 1 =) no 
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9. Set [ * D  and [ =) W 

It is seen  from the algorithm  steps  that  Algorithm uyTF executes the 
previously  explained  Algorithm uyDN, Step 7, p times. Since y, contains just one 
row, the obtained d, is a single row containing an (nr + 1) dimensional  row  with 

the coefficients of di(z), and W, contains  the  coefficients Cjil,,j=[l,m], h=[O,nJ, 

of all the polyuomials Cjij(z) in the z"' row  of *(z). This is the  reason  why  in Step 

9 the concatenation of D with d, and W with W i  is done. In order to have the 

matrix W-in the PMF "structure," it is necessary  in  Step  11  to perform a 
polynomial  matrix  transposition,  which  is  done by a service  algorithm  called PMT. 

At this  point it of some  interest  to  compare  the  computational  aspects of 
Algorithms uyDN and uyTF. Recall  that in treating MIMO systems, i.e. in treating 
all p outputs simultaneously,  Algorithm uyDN, the  number  of  rows  in the matrix 
Z, Eq.(5.14), which greatly  influences  the  computational  aspect, is given  by: 

n + (vm + 1)m 

where it may be shown  that: [(n-l)/p] + 1 I v,,, 5 n-p+l with [ x ] being the 
integer part of x. 

In the case of treating MISO  subsystems one at a time, Algorithm uyTF, the 
numbers of rows in the matrices 2 are given by: 

n, + (n, + 1)m for i=[l,p] 

where,  of course, the individual  observability  index ni satisfies: n, I n. However, 
when at least one MISO  subsystem "sees" all n MIMO  system  modes,  then  we  have 
n, = n. 

From the above  analysis it may be  concluded  that in Algorithm uym 
0 The algorithm  requires the building  and  manipulation  of the matrix Z, 

Eq.(5.14), p times. 



246 Chapter 5 System Identification 

0 In  addition, it frequently  occurs  that the dimensions  of  the  matrix Z are 
considerably  larger than the  dimensions  of the single 2 required  in 
Algorithm uyDN. 

Recall  that  when  the  number of rows in Z is  smaller,  a  smaller  number of samples 
is needed,  which  considerably  reduces  the  computational  effort of Algorithm uyDN 
and, consequently,  also  of uyRo, since they are similar. 

For example, in the  case  of an MIMO  system  with n=6 and m=p=3, 
Algorithm uy7F may require  building  and  manipulating  the  matrix Z three times 
with: 

6 + 7 x 3 = 27 rows 

and at least 27 columns,  while in the case  of  identifying  the  same  MIMO  system 
using  either uyDN or uyRo, it suffices  to build  only one Z having the  number of 
rows as low as 

6 + 3 x 3 = 1 5  

and at least 15 columns, which illustrates  the  computational  advantage of 
Algorithms uyDN and uyRo over uyTF. 

The reason  for  insisting on  Algorithm uyTF is that quite a  number  of  papers 
and  books  on  system  identification  advocate  treating  individual  outputs  separately, 
i.e.  decomposing  a  particular MIMO system into  a  set of p MIS0 subsystems, 
which  clearly  is  not  a  good  policy,  particularly  with  the  advent of algorithms such 
as uyRo, and uyDN, which  utilize  to  the  fullest  extent  the  structural  properties of 
MIMO systems.  Another  reason  is  to  draw  attention  to  Algorithms uyDN and uyRo 
and  to  show  how a  judicious  choice of a MIMO  system "canonical" form can 
reduce  the  computational  effort  of  identification  algorithms. 

5.3 Conversions  between D-T  and C-T 

We  have  already  mentioned  that  many  of the conversions  presented for D-T 
systems are useable for C-T  systems  as  well. I t  is  also  important  to  recall  the 
algorithms  presented in Chapter 2 for converting  between C-T and  D-T  domains. 
For completeness  these  algorithms, which offer  the user  some  flexibility in 
converting between continuous and discrete  domains, are listed  below. The 
possible  conversions are listed in Table  5.1. 
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II Table 5.1 
Conversions  between  D-T  and  C-T  Domains II 

Algorithm 
Available  Conversions 

(Isrb) 
Flag 

1. 

-3 D-T  state  space model =) C-T  (bilinear  transformation) 6. 

-2 D-T state  space  model  C-T  (ramp  invariant  model) 5.  

-1 D-T  state  space model =) C-T (step  invariant model) 4. 

3 C-T  state  space model * D-T  (bilinear  transformation) 3. 

2 C-T state space  model =) D-T  (ramp  invariant  model) 2. 

1 C-T state  space  model - D-T  (step  invariant  model) 

To perform all  these  conversions,  a  single  algorithm  referred  to as CTDT  has been 
developed. The general  syntax  is: 

I Algorithm CTDl? 

Input/Output Arguments: 

0 R = (A, B, C, D} is  a  state  space  representation in either  the  C-T 
or D-T  domain  to  be  converted by one of the procedures  discussed 
in Chapter 2; see  Table 5.1 above. 
Tis  the sampling  interval. 
E is  a  sufficiently  small  positive  number used as machine zero. 
Isrb is the algorithm  flag, Isrb = [ 1, 2, 3, -1, -2, -3 3, specifying 
a  desired  conversion. 

0 R, = {A,, B,,  C,,  D,} is  the  representation  obtained after the 
conversion  of R according to the  specified  value  of  the  algorithm 
flag Isrb. 
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To specify  a  desired  conversion, the value  of  the  algorithm  flag Isrb (for 
step,  ramp, or bilinear  transformation)  should  be  selected in accordance with 
a  value  given in Table 5.1. 

For instance, if a  conversion  from  C-T  into  D-T  domain  using  the  ramp 
invariant model is  desired, then the  value  of Isrb should be equal  to 2. In the 
case of  converting  a  given  D-T model into the C-T  domain  using the bilinear 
transformation, the value  of Isrb should be  set  to -3. 

According  to  the  expressions  and  examples  given  in  Chapter 2, it may 
be  concluded  that  the  following  sequence  of  algorithms: 

for any  value of k = [ 1, 2, 31, produces  a  representation R, which is very 
close, if  not equal, to  the  given  representation R. 

For more  specific  details  about the structure of  Algorithm CTZIT, see 
Chapter 2 and particularly  Section 2.5. 

Finally, Section 5.4 illustrates  the  conversion  process between  C-T  and 
D-T  representations as well as within  the  same  domain. A primary  emphasis 
in this  example  is  system  identification,  i.e.  "conversion"  from  inputloutput 
data  to  state  space, or other  forms.  Figure  5.1  is  presented with the  section 
to  provide  a  graphical  picture  of the conversions  of  that  example. 

5.4 Identification  Examples 

In this  example we  will  begin  with the  C-T  state  space  that  was  used  in 
the  two  examples  of  Section 4.6. The  purpose  here  is  to  illustrate the process 
of  conversion  between  the  continuous-time  and  the  discrete-time  domain, as 
well as conversion  among the different model forms within a  given  domain. 
Figure 5.1 shows  the  particular  operations,  which are also listed  below. 

The differently  derived responses: y,  yt,  yd, ydl, ydh  and  yc are 
basically  identical.  The models  developed are the  continuous-time  transfer 
function  matrices: TF and TFc, and the discrete-time  state  space  representa- 
tions in POF:  Rdo , Rol and  Roh, the discrete-time system  Markov  parameters 
in  Hd  and H and the  discrete-time  left  coprime  MFD's:  {D,N}  and {Dl,Nl}. 

The given  C-T  state  space  model  and  corresponding  transfer  function 
were  already  presented in Example 1 and  will  not  be  repeated  here.  Conver- 
sion  from  a  C-T  state  space  model  to  a D-T state  space  model,  using  a 
sampling  interval  of 1 second,  is  first  developed.  Then,  using a set of 
admissible POI, the D-T  models  corresponding  to the C-T  models  of  Example 
4.1 are obtained,  including  those  models  obtained by applying the identification 
procedures of  this  chapter. 
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c- continous-time -! c- discrete-time - 
i 
I 

FIGURE 5.1 Conversions for the  Example 

Sequence of algorithm executions: 

R (SSTF) TF 
R (CDSR) =) y 
"F (CDTR) =) yt 
R (m7) =) Rd 
Rd (CDSR) =) yd 
Rd (SSRo) =) Rdo 
Rd (SSH) =$ Hd 
Rdo (RoDN) =) D,N 

Results: 

D-T  conversion  to R,, = {Ad, B,,, C,,, Dd}: 

Rd = 
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u,y (uyRo) =) Rol 
U,Y (UYDN) =$ D1,Nl 
U , Y N  (VW =$ H 
u,H (uHy) =) ydl 
H (HRo) =) Roh 
Roh (CDSR) =) ydh 
Rol (Ci'ZIT) *RC 
RC (CDSR) =) yc 
RC (SSTF) =) WC 

.368 .204 .090 .028 I 0.4  .077  .026 

0.0 .073  .l14  .062 I 0.0 .l10 ,052 

0.0 -.l14  .073  .l14 I 0.0 .l35 .l10 

0.0 0.0 0.0 .l35 I 0.0 0.0 .l87 
"_ "_ "_ "- _ I_  "- "- "- 
0.0 .W1 0.0 1.0 I 0.0 1.0  .284 

1.0 0.0 0.0 0.0 I .368  .016 .W3 

As in Example 1 of Section 4.6 the following  tables give the structural 
information  regarding  the  D-T  model. The "best" controllable and  observable 
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structures  are  specified by PC1 = {1,2,1) and POI = {1,3}, respectively, 
which  are  again  different  from  the  corresponding  unique  controllability and 
observability  indices, {2,1,  l} and {2,2). 

TABLE 5.1 PC1 

(nc, n, nc3) degree rank 

(1 2 l} 

(1 1 2) 

.46E-01 4 

.llE-03 4 (2 1 1) 

.25E-01 4 

l 

WJZ) 

dd(Z) 
Transfer Function Matrix GAz) = - 

where 

W1 1 

W2 1 

W12 

W22 

w13 

w23 

Z0  Z1   Z2  z3 z4 

0 0 

-.W1 .W 
_"" "" - 

.W1 -.016 

0.0 -.m3 
""_ ""- 
-.W1 .W9 

0.0 .m 

0 0 

-.060  .l61 
- - - - - - - - - - 

.l42 -.M9 

.015 .067 
""_ ""- 

-.056 .W3 

.019 . 0 2 4  

The  characteristic  polynomial d,(z) is  given by: 

0 

.368 
_"" 
1.0 

.016 
""- 

.284 

.m3 

~ = W&Z) 
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Left Coprime MFD 

This  form is given by Di'(z)N,(Z) where D,(z) is monic and column- 
reduced, i.e.: 

specifically, the  D-T  left  coprime  MFD  form  is  presented, with column 
degrees { 1,3) corresponding to the  selected POI above.  Compare with the C-T 
left  coprime  MFD in Example 1, Section 4.6. 

zo z' Z2 z3 

-.l35 1.0 0.0  0.0 

41 = D,(z) -.W 0.0 0.0 0.0 
""_ ""_ "-" ----- 

4 2  0.0 .m2 -.m5 0.0 

4, -.W7 .072 -.512 1.0 - 

Z0 Z 1  z2 z3 

n11 

n2 1 

and 
n12 

n22 

n1 3 

n23 

l 0.0 -.m1 -.m2 0.0 

.005 -.032 .211 
.368 1 ""_ ""_  ""_ ""- 

-.l35 1.0 0.0 0.0 

-303 .025 .069 .016 
"_" ""_ ""_ _"" 

.l48 .284 0.0 0.0 

.m .022 .ow .W3 
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Markov Parameters H, 

The  first few  terms  of  the  3-column  polynomial  matrix H@') = (h&-')} 
are given  below.  Because  the  terms  decrease so fast,  it  is  not necessary to 
extend  the  series. 

z o  z-l z-2 z - 3  z4 2-s z 4  

0.0 

.3680 
"" 

1.oooO 

.0160 
"" 

.2838 

. m 7  

0.0  0.0 

.3998  .l471 
"" "" 

.o001 .m 

.077 1 .063 1 
"" "" 

.l870 .m53 

.m55 .0352 

0.0 

.OS41 
"" 

0.0 

.0278 
"" 

.m34 

.m15 

0.0 

.0199 
"" 

0.0 

.01m 
"" 

.o005 

. W 4  

0.0 

. W 3  
"" 

0.0 

.m37 
"" 

. o o o o  

.W36 

0.0 

. m 7  
"" 

0.0 

.W14 
"" 

.m 

.001? 1 

By the 12" element in the  above  series all terms are zero  to 4 decimal  places. 

System  Identification 

One  of  the  most  useful  "conversions"  is  that  from  input/output  data  to a 
system  model,  system  identification. An important  aspect is determining  and 
using  the  most  appropriate  structural  information,  e.g.  the  most  numerically 
stable POF. This  part  of  the  example  presents  the  results  of  such  an 
identification  process,  using  the  sampled  data  from  the  given  C-T  system  model 
to  obtain an observable  form D-T model,  which is subseqently continualized 
using  the  methods  established in Chapter 2. The  following  C-T  model is the 
result  of  this  series  of  conversions: 
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R =  

'-2.001 0.0 -.012  .030 I 0.0 0.0 1.0 

.281  -2.934  11.130  -15.963 I 1.0  ,001  -.W1 

-.W -.l07 -1.789  2.934 I .368 . O N  .028 
.W8 .020 -.318 -282 I .l35 .M3 .037 
-"- "" "" -"- -1- ""  "" "" 
1.0 0.0 0.0 0.0 I 0.0 1.0 0.0 

0.0 1.0 0.0  0.0 I 0.0 0.0  0.0 

The  inputloutput data from  the C-T system  that was used in the 
identification of the  D-T  models, Rol,  (D1,Nl) and H (see Fig.5.1), are 
presented  in Figs. 5.2 and 5.3. 

- In& 1 
3 - """ Input 2 

I I 

- 

l 1 

0 10 20 30 

Figure 5.2 Pseudo-Random System  Excitation 
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4 1  I I I 

I -  output 1 
. . . . . . . output 2 

0 10 20 30 

Figure 5.3 C-T System  Responses 

It is  interesting  to  compare  the  eigenvalues  (poles) of the C-T state space 
model  that  was  given  initially  with  the  identified C-T model,  i.e. with the 
model  obtained  by conrinualizing the  identified  D-T  model: 

Poles of the  original  C-T  system: 
-2 i- jl, -2, -1 

Poles of the  identified  C-T  system: 
-2.003 kjl.001, -2.0, -1.0 

As  derived  from  the  identified D-T system  with  poles: 
0.073  j0.114,  0.135,  0.368 

which  confirms  that a  series of conversions  that  "loops"  back  on  itself is 
numerically  stable.  By  the  procedure  described  in  Appendix  B, degrees of 
observability of the  modes in the  C-T  model can be  checked. It has  been 
shown that  the  mode -2 f jl has a considerably  smaller  "degree of observabi- 
lity" than  do the  other two modes. 
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5.5 Summary 

In this  chapter  the  process  of  conversion  from  system inpudoutput data 
to  various  representations  was  stressed.  This  process is referred to as system 
identification. If we  consider  the  inputloutput  data to be a  system  "representa- 
tion," then the  algorithms in this  chapter fit with the many algorithms of 
Chapter  4 in the sense of Table  4.1. On the  other  hand, system identification 
plays an eminent role in  that it is this  process  that is generally  required first, 
to  obtain  a  more  standard  model  with  which to work.  Because  of  this 
importance,  this  chapter was  presented  to  emphasize  this  conversion  type. 

5.6 References 

There are many  good references  written for system  identification. To 
mention  and  recommend for  further  reading just a few of these:  Sinha  and 
Kuszta  (1983)  and  Ljung  (1987) for a  general  survey of identification  methods. 
For more  specific  background and information,  particularly on identification 
of MIMO systems  using  pseudo-observable  forms,  several  other  articles  and 
chapters are listed  below. 

Bingulac, S. and D.L.  Cooper  (1991),  "Identification  of  first-order  hold 
continuous-time  systems," Proceedings of the IFAC Symposium on 
Identification, Budapest,  Hungary,  August  20-25,  1991,  pp.  1185-1190. 

Bingulac, S. and D.L. Cooper  (1991), "Use of pseudo-observability  indices  in 
identification  of  continuous-time  multivariable  models, I' Identification of 
Continuous-Time  Systems (N.K.  Sinha  and  G.P.  Rao, editors), Kluwer 
Academic Publishers, Amsterdam. 

Bingulac, S. and R. Krtolica  (1988), "An algorithm  for  simultaneous order and 
parameter  identification  in  multivariable  systems," Proceedings ofthe 8" '  ZFAC 
Symposium on Identification and  System Parameter Estimation, Beijing, August 
27-31,  1988,  pp.  1020-1025. 

Bingulac, S. and R. Krtolica  (1985),  "Generalized ARMA  model for MIMO 
system identification," Proceedings of the American Control Conference, 
Boston MA, June  11-14,  1985,  pp.  1336-1341. 
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Bingulac, S. and  N.K. Sinha  (1990),  "Identification of continuous " 0  
systems  from  input/output data," Journal of  Mathematical  and  Computer 
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5.1 Given the state space  representation R = (A, B, C, D} of a stable  D-T 
'system,  where: 

R ; [ "  C D  ' ] =  

-.l5  -.l .l -.05 I 1 -3 

.05 -.3 .l -.05 I 1 ' .S 

.05 .l -.2 .OS I O S 
-.05 -.l -.l -.35 I O -5 
"- "- -" -" -1- --- --- 
- 1 2 0 1 1 0 0  

- 1 2 1 2 l l O  

0 1 2 1 I O O  

Calculate: 
(a)  -the state space  representation R,, in a POF using Y = {1,2, l}, 
@) -the left  coprime  MFD {D(z),   N(z)} corresponding  to R,,, 
(c) -the transfer  function  matrix G(z) = W(z)/d(z), and 
(d)  -the first 14 Markov  parameters H,, i=[0,13], in H(Z'). 

Define: 
(e) -an (m x Nj pseudo-random  matrix U containing  samples U,, 

k=[O,N-l], of the  input  vector u(k). For u(0) use an m-dimensional zero 
vector. For N use N=3 1. 

Calculate: 
(f) -the response y(k) of R to u(k) with zero  initial  conditions. 

Using the inputloutput  pairs { U@), y(k) }; identify: 
(g) -a corresponding  D-T model R, in POF using v = ( 1,2,1}, 
(h) -a left coprime  MFD  having  column  degrees n = v, 
(i) -the first 14 Markov  parameters Hi, i=[O, 131  in H(z"), 
(j) -the  individual  observability  indices  and  transfer  functions of G(z) = 

(k) From  the  individual  transfer  functions g,(z) determine G(z) as: W(z)/d(z). 
(l) Check  that  the  results  obtained in parts (b), (c), (d)  and (e) correspond 

to the  identified  models  obtained in parts  (g), (h), (i) and (k), respective- 

{g,(z)}, where g,(z) = w,(z)/d(z). 

lY * 

Hints: 
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For  part  (a): 
For  part (b): 
For  part  (c): 
For  part  (d): 
For  part  (e): 
For  part (0: 
For  part (g): 
For  part  (h): 
For  part (i): 
For  part Q):  
For  part (k): 
For  part (l): 

To define R and v, use  the DMA operator. 
Use  subroutine  SSRo.SUB. 
Use  operator S S T .  
Use  subroutine  SSH.SUB. 
Use  operators  DPM and SHR. 
Use  subroutine  CDSR. 
Use  subroutine  uyRo.SBR. 
Use  subroutine  uyDN.SBR. 
Use  subroutine  uyH.SUB. 
Use  subroutine  uyTF.SBR. 
Use  subroutine  ComD.SBR. 
Use  operators - and OUT in  the  MOS, as: 
A,Ai(-) ,B,Bi(-) . . . . (out)= 

A version  of an L-A-S program  which  solves  this  exercise  is  available in the 
L-A-S subdirectory  C:\LAS\DPF\EXERS 1 .DPF. 

5.2 Given  the  state  space  representation R = (A,  B, C, D} of a  stable C-T 
system,  where: 

"1.5 -1 1 -.5 I 1 -.5 

.5 -3 l -.5 I 1 .5 

.5 1 -2 .5 I 0 .5 

-.5 -1  -1 -3.5 I 0 .5 
-" --- -" -" -1- "- -" 
- 1 2 0 1 1 0 0  

- 1 2 1 2 1 1 0  

L o 1 2 1 1 0 0  

Note  that  the  matrix A in this  exercise  is  equal  to 10 times A of  Exercise 5.1. 

Calculate: 
(a)  -the  transfer  function  matrix C(z) = W(z)/d(z). 

Define: 
(b) -an (m X N) pseudo-random  matrix U containing  values U@&, 

k=[O,N-l], of  the input vector U@). For u(0) use an m-dimensional  zero 
vector.  For N use N=31. 

Calculate: 
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(c) -the response y(f) of R to u(f) with zero  initial  conditions. For the 
"total"  (simulation)  time T,  use T = 10  sec. The sampling  interval is, 
of course, dT = 'f/(iV-l),  and 

(d)  -the  eigenvalues of A. 

Using the input/output  pairs { u(fJ, y(tJ 1, identify: 

(e) -a corresponding  D-T  model R, in POF using Y = {1,2, l}. 

(f) From  the  "four"  matrix  D-T  model R,, determine  a  corresponding  four 
matrix  C-T  model R, = {A,, B,, C,, D,} using the ramp  invariant (TU) 
approximation. 

(g) Calculate the transfer  function  matrix G,@) of R,. 
(h)  Calculate  the  response y(r)  of R, to u(t) with zero  initial  conditions. 
(i)  Find  the  eigenvalues of A,. 
(j) Check  that  the  results in parts (a), (c)  and  (d)  correspond to the  identified 

models  in parts (g), (h)  and (i), respectively. 

Hints: 

To  define R and v, use operator DMA. 
The scalars Nand Tcould be  defined  using  DMA or "interactively" 
with DSc. 

For part (a):  Use  operator  SSTF. 
For part (b): Use  operators DPM and SHR. 
For part  (c):  Use  subroutine  CDSR.SUB. 
For part (d):  Use operator EGV. 
For part (e):  Use subroutine uyRo.SBR. 
For part (0: Use either  subroutine  CTDT.SBR, with Zsrb=-2, or a 

corresponding  sequence  of  operators: LNh4, EATF, ... and 
the  subroutine  R5R4.  Also,  subroutine  SRDC.SBR  could 
be used. 

A version  of an L-A-S program which solves  this  exercise  is  available in the 
L-A-S subdirectory  C:\LAS\DPF\EXER52.DPF. 



This Page Intentionally Left Blank



Appendix  A  Matrix  Algebra 

In this appendix  we  will  review  a  few  basic  ideas in dealing with vectors and 
matrices. It is assumed  that the reader  is  already  familiar  with  the  concepts  and 
needs only  a  brief  review of  the  topics. 

A.1 Linear  Equations 

Consider  a common  problem  in analysis, namely that  of  solving  a  set of 
simultaneous  linear  algebraic  equations: 

allxl + a12% + ... + a,, = b, 

aZlxl + aZ2x2 + ... + a2,xn = b2 

amlxl + am2% + ... + a,,x, = b, 

. . .  (A. 1) 

We  may represent the set of equations in Eq.(A. 1) in "matrix-vector"  form: 

Ax = b 

where A is the  array (matrix) of coefficients: 

I ... 

and  both x and b are vectors: 

x =  

x1 

x2 , b =  

' n  

The matrix A is said  to  have  dimensions m X n, the  number  of  rows  by  the  number 
of  columns.  Similarly, x is  an n X 1 matrix, or an n-dimensional  (column)  vector; 
and, b is an  m-vector (for  short). 

Typically,  the problem  is to find, or solve for, x which satisfies Eq(A.1) 
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when  both A and b are known arrays. An elementary  case  to  begin  with is n = 
m. In  this  case A is  a  "square"  matrix, say n X n,  and the  "solution"  is: 

X = A" b (A.5) 

Equation (A.5) assumes  that  the  matrix A is  "invertible,"  or  "non-singular," which 
is  true  if  the  determinant  of A is  not  equal  to  zero. 

A useful  interpretation of Eq.(A.2) is to  think  of the matrix A as an 
"operator"  that  transfers,  or  maps,  the  vector x to  the  vector b. As such,  then, for 
a solution x to  exist, b must  be  in  the range of  A,  the  set  of  vectors  that are images 
of  some  vector  under  the  mapping A. Any vector y in  the  range  of A can be 
written as a linear combination of  the  columns  of A; that  is, 

y = cla, + c2% + ... + c,a, (A.6) 

where 
A = [a1 3 ... 

an 1 
The a, are columns  of A, i.e.  m-vectors;  and,  the c, are  appropriate  (constant) 
coefficients,  for i = 1, 2, .. ., n. The  concept  of  "linear  combination," as in 
Eq.(A.6), is  used  to  formulate  the  following  definition. 

Definition A.l: A set  of  vectors  is linearly independent if no vector  in  the  set can 
be  written  as a  linear  combination of the  others. 

Example A.l: Linear  Independence 
Consider  the  matrix A given  by 

1 0 0  

A =  0 1 0  lo 0 L: 
It is straightforward  to  show  that  there  are no constants cl and c2 such  that  any  one 
column  of A is  a  linear  combination of the  other  two.  Consequently,  the  column 
vectors  of A are. linearly  independent. 

Returning  to Eq.(A.2), we  can  say  that a solution x exists  if  and  only  if b is 
linearly dependem on the  columns  of A. In fact, we  already  know  that for  a  square 
matrix A, Eq.(A.5) holds  when  the  columns  of A are  linearly  independent.  This 
is due  to  the  equivalence between  (linearly)  independent  columns  of a  square  matrix 
and  the  fact  that  the  det(A) # 0. More  generally,  we  present  the  following  defini- 
tion : 

Definition A.2: The rank of a matrix A equals  the  number  of  linearly  independent 
columns of A. 

A recommended  technique  for  determining  the rank of a matrix is to  use "row 
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reduction"  on  the  array  to  "zero  out" the elements  below  the  diagonal.  It is then 
easy to  determine  the  number  of  linearly  independent  columns (or rows)  by 
inspection. 

Finally, we can summarize  with  the  following  statement: 

Remark: In  the  set of equations  represented by Eqs.(A.l), or (A.2), a solution 
x exists  if  and  only if: 

rank[A I b]  = rank[A] (A.7) 

i.e. the rank of A is not  changed  by  adding  the  extra  column b. 

Let us now  return  to  the  original  problem.  There are two  important cases 
to  consider;  namely,  when  the  number  of  equations  in Eq.(A.l) is  greater  than, or 
less  than,  the  number  of  unknowns  (components of x): 

(1) Overdetermined  equations: m > n , or 
(2) Underdetermined  equations: m < n . 

Case 1: Overdetermined  Equations 

For  this  case, m > n, there  are  more  equations than unknowns. This is often 
true when, ' e.g.  multiple  measurements  are  taken  to  overcome  measurement 
inaccuracies.  Typically,  this  set  of  equations may  even  be  inconsistent  in  that b is 
mt in  the  range  of A, as "required" by Eq.(A.7). Because Eq.(A.7) is not 
satisfied,  there  is,  strictly  speaking, no solution;  however,  even  in  this  situation a 
"best," or "closest,"  solution  can  be  calculated. 

The  so-called least squares solurion can  be  derived  by  premultiplying 
Eq(A.2) on  the  left by the  transpose of A, and  then  inverting (ATA) to  obtain: 

k = [ (ATA)" AT] b B(A.8) 

Eq(A.8) assume  that A is full column  rank.  Since  there is normally  no  exact 
solution, 2 is the  "least  squared  error  solution"  in  the  sense  that 

minIAx-b l  = I A k - b l  (A.9) 
X 

where  the "error," e = Ax - b, is  the  equation error.  The norm  is the  Euclidian 
norm,  i.e. 

r m 1112 
(A. 10) 

Thus, is the  "solution"  that  most  nearly  reduces Eq(A.2) to an equality,  even 
though  no x will do it  exactly. For this  reason  the  solution is known as a  "least 
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squares"  solution  because  minimizes Eq.(A.9), which is  equivalent  to  minimizing 
the sum  of  the  squares  of  the  components  of  the error  vector e. Notice  that  the 
factor  in  the  brackets  in Eq.(A.8) serves  as A' and,  for  this  reason,  is  called  a 
pseudo-inverse of A. See the Glossary of  Symbols for  pseudo-inverse  matrices. 

Example A.2: Least Squares Solution o f  Overdetermined  Equations 
Consider  the  set  of  equations  given by 

a,  + a2 = 2 
-a ,  + a2 = -2 

a2 = 3 

In matrix  form  we  have 

1 1  2 

-1 1 [ 0 1 -  3 -  

Applying Eq.(A.8), we first find 
that 

ATA = [ '0 i] 1 -  
1 2  

confirming  that  it  is  invertible. dl i 
Completing  the  solution, i 3" 

[::]-[:l 
I 

FIGURE A. 1 Graphical Solution to 
Example A.2 

This  solution  may  be  interpreted 
graphically  if  we  think  of  the  original  equations  as  measurements  relating an x 
variable  with a y variable  as  follows: 

y(x) = a,x + a2 

Having  solved  for a, we  now  have  the  "best"  straight  line fit. The  solution is 
illustrated  graphically  in  Fig. A. 1, showing  the "fit" as a  line with slope=2 and 
intercept=l. It may  be  verified  that  this  solution  is  identical with the  solution to 
minimizing 

where  the  distances dl, i=[1,3] are shown  in  Fig A.l, e.g. dl =-2 - y(-l) =-2 + 
c y I  - m2, which can be  done  by  setting  the  partial  derivatives  with  respect  to a1 and 
a2 to  zero and solving  simultaneously  the  two  resulting  equations. 



Section A.l  Linear  Equations 265 

Case 2: Underdetermined  Equations 

For  this case,  m < n, there  are more  unknowns than equations.  Again  we 
will  assume  that  the  matrix A of Eq(A.2) is full rank,  that is, rank(A) = m, the 
smaller  dimension.  This  means  that  all  dependent  equations  have been eliminated. 
We  now  assume an arbitrary  vector 

x = x 1 + x 2  (A.  11) 

where x1 is in  the  range  of AT and x2 is  in  the  null  space  of A, that  is, Ax, = 0. 
In particular,  if r, is  a  1 X n array representing the J" row  of A, then r,xz = 0 for 
j = [ l , m ] ;  and, x1 is some  linear  combination  of  the  rows  taken as vectors (xl being 
in the range  of A): 

Thus,  if 

then 

Ax, = b 

AATv = b OT V = ( A A  

and,  finally, 

(A. 12) 

.T)" b 

bt = x1 = [AT(AAT)"]b .(A.  13) 

Equation (A. 13) is  the second  form  of  solution  we  desired.  In  this  case x1 is the 
(unique)  orthogonal  projection  of x onto  the  range  space  of A, and thereby 
represents  the minimum-nom vector  that  satisfies Eq(A.2). In other  words,  there 
are many exact  solutions, and we are  selecting  that  one  that  has  minimum  length. 

Example A.3: Minimum Norm Solution for Underdetermined  Equations 
Given the set  of  two  equations in four  unknowns 

x1 - 3 + x, - 2x4 = 1 

23 4. x3 - x4 = 2 

we will  first  solve  for x, and x, in terms  of x, and x, and,  second,  determine  the 
solution  according  to Eq.(A.13). The  results  of  the  first  step  are: 

x, = -(4 - 3x3 + 5x4) 1 
2 

xz = -(2 l - x3 + x4) 
2 
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For the second part we  rewrite  the  original  equations  in  vector  form: 

[ l  0 -1 2 1 - 1  1 -"].=[:l 

In applying Eq.(A.13), we  first  calculate 

Completing  the  indicated  operations,  the  minimum-norm  solution is 

2 = -[ 1 4 22  17  -21 I r  
41 

The norm, or length,  of  this  vector is 

12 1 = 0.855 

and any other of the many solutions  will be longer. For example,  setting  both x, 
and x, to zero, we  obtain  the  solution 

x'=[2 1 0  01' 

whose  norm is 1 x' 1 = 2.236. 

A.2 Eigensystems 

The eigenvalues X and eigenvectors e of  a  (square)  matrix A must  satisfy  that 

Ae = Xe 

%.(A. 14) may be rewritten  as 

(A. 14) 

(A - I I ) e  = 0 (A. 15) 

In order that  a  nontrivial  solution (e # 0) exist, (A - XI) must be singular;  that is, 
det(A - XI) = 0. However,  if A is an n X n matrix,  then  there are n (possibly 
some  repeated)  roots  of  this na order polynomial  equation.  These  roots are called 
the eigenvdues of A. Corresponding  to  each  distinct  eigenvalue, there is at least 
a  one  dimensional  solution e to Eq.(A.14), called  an eigenvector. The collection 
of  eigenvalues and  corresponding  eigenvectors is called  the eigensystem of A. 

Whenever  there are n distinct  eigenvalues  for  an n x n matrix, there will be 
n linearly  independent  eigenvectors. By collecting  these  eigenvectors to form  an 
n X n matrix E, we can write from Eq.(A.14) that 

AE = E A  or E"AE = A  (A.  16) 

where E = [e, e, ... e,J is called  the modal m a r k  of A and A = diag(X, ... X,} 
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is the  diagonal  (or  Jordan)  form  of A. The  relation  between A and A through  the 
matrix E, Eq.(A.16), is known  as a similarity transformation. 

Special Cases: 

0 If A is  a symmetric  matrix,  i.e. aii = a,i, then  there  will  always  exist 

The  eigenvectors  of a symmetric  matrix A are mutually  orthogonal: 
n linearly  independent  eigenvectors. 

ei ej = 0 for i # j T (A. 17) 

0 Generally,  when A has  repeated  eigenvalues,  there  will  not  be n 
linearly  independent  eigenvectors,  and A cannot  be  "diagonalized." A 
generalization  is  the  Jordan  form,  which is block  diagonal; see Section 
3.1.3 and Appendix B. 

Example A.4: A Modal Matrix 

Determine  the  modal  matrix P for  the  matrix A given  below  and  show  that: 

P ' A P = J  
where J is  a diagonal  matrix. 

1.5 0 -.5 

A = ! O  1 0 

-.5 0 1.5 

(1) Eigenvalues  (roots  of  det[XI - A] = 0): 

h - 1.5 0 .5 

0 A - 1  0 = ( h - l y ( h - 2 )  
.5 0 A-3.5 

Therefore,  the  set  of  eigenvalues are { 1, 1, 2 } = { }. 
(2) Eigenvectors  (nontrivial  solutions vi of [&I - A]vi = 0): 

For X, = 1 : 

We  find  that  the  rank  of  the  coefficient  matrix  (dimension  of  the  largest  non- 
zero  determinant)  is 1, therefore, n-1=2 linearly  independent  vector 
solutions.  The  constraints on  the  components vi are: 



Appendix  A Matrix Algebra 

v, = v, and v, is arbitrary. 
We  choose two linearly  independent  solutions,  say 

1 1 

v l =  0 , v 2 =  1 

l 1 -  
For x, = 2 : 

i .5 0 .5 - 

.5 0 .5 
v , = o  0 l 0  

0 v1 

v3 0 -  

We find that  the rank of the coefficient  matrix  is 2, (therefore n-2=1 
independent  vector  solution). The constraints on the components v, are: 

We choose 
VI  = -v3 and V* = 0. 

1 

v3 = 0 

-1 

(3) Modal matrix: P = [ v, v2 v3 ] : 

1 1  0 1 o 1  
P = ,5 -1 .S 1 0 0 , P" = 

, l  1 -1 l 1  y 5  0 - .5*  
(4) From (3) it is easy  to  show  that 

1 0 0  
J = P"AP = = diag( X , ,  A2, X,) 0 1 0 

0 0 2 -  

A.3 Rank and Null Space 

Two important  concepts in dealing  with  matrices  are: (1) the range space of 
the  matrix, and (2) the null space of  the  matrix. We think  of an m X n matrix as 
a  transformation of vectors in an n-dimensional domain space  into  vectors in an m- 
dimensional range space, just as  a  mathematical  function can map, or transform, 
values in x-space  into  values in y-space.  Consider  the  following  definitions: 
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Definition A.3: The  range  space  of  the m X n matrix A is  the  collection of m- 
dimensional  vectors y, such  that A x = y for  some  n-dimensional  vector x. 

Definition A.4: The null space of the m x n matrix A is  the  collection of n- 
dimensional  vectors x, such  that A x = 0. 

The  first of the  previous  two  definitions  is  directly  related  to  the  columns of 
A in  that a vector y in the  range  space  must  be a  linear  combination of the  columns 
of A, with  the  components  of x as  coefficients.  In  the  second  of  the two 
definitions,  we see that  the null space  contains  the  vectors x that  are mapped  to 0. 
I t  may  be  shown  that  both  the  range  and  the  null  space are "subspaces,"  i.e. their 
vectors are closed  under  vector  addition  and  scalar  multiplication. It is useful to 
have  special  terms  for  the  dimensions  of  these  two  spaces  associated  with  the 
matrix A. Thus, we  have: 

Definition A S :  The rank  of  the m X n matrix A is  the  dimension  of its  range 
space. 

Definition A.6: The nullify  of  the m x n matrix A is  the  dimension of its  null 
space. 

Although  complicated  operations  for  matrices  are  implemented  easily  in L-A- 
S, it is instructive  to  apply  the  concepts  "manually"  to an example. 

Example A S :  Range  and  Null  Space  Calculations 

Determine  the  rank and nullity of  the 3 x 5 matrix A given  by 

1 2 3 4 5  

A = 2  3 4 1 2  

3 4 5 0 0 -  

and  calculate a set  of  basis  vectors  (a  linearly  independent  set  of  vectors 
which  span  the  space, i.e. any vector in the  space  can  be  written as a  linear 
combination  of  the  basis  vectors)  for  both  the  range and the  null  spaces. 

(1) Using  elementary  row  operations, it can  be  shown  that A can  be  reduced  to 

1 2 3 4 5  

A = O  1 2  7 8 

0 0 0 2 1 -  

Therefore,  the rank is 3, the  number of independent  columns,  say  columns 
1, 2 and 4. The nullity is  the  number  of  columns  less  the rank, 5 - 3 = 2. 
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(2) As mentioned  in (l), columns 1, 2 and 4 are  linearly  independent;  therefore, 
they  could  serve  as a basis  of  the  3-dimensional  range  space. As a check  on 
their  linearly  independence,  let  us  calculate  the  non-zero  determinant  of these 
three  columns: 

1 2 4  

2 3 1  

3 4 0  

(3) To calculate a set of 2 linearly  independent  vectors  which can serve as a basis 
set  for  the  null  space,  the  row  reduced  version  of A given  above  will be used: 

= - 2 # O  

Thus,  the  constraints on  the  components xi, taken  from  these  three  scalar 
equations  can  be  rewritten in terms of, say, x, and x, as  follows: 

X1 

-2x3 + 9x4 x2 

-x3 - 3x4 

x4 x4 

x3 = x3 

*xs ,  . - 2x4 

Choosing [ 1 0 ] and [ 0 1 ] for [ x,  x, 3 respectively,  we  obtain  the 
following  basis  set  for  the null space: 

-1 

0 and % =  1 x l =  

9 -2 

-3 

0 1 

0 -  -2 
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A.4 Singular  Value  Decomposition (SW) 

Singular  value  decomposition can be thought  of as a  generalization of the 
eigensystem  calculation  for  matrices  which are rectangular.  Consider  a  matrix A 
which is (m x n) and  has  rank r. We  will  assume  that m 2 n, although  the 
development  applies  equally  well  if the reverse  is  true. The objective is to 
represent A as 

A = UWVT (A. 18) 

where W is an (m x n) diagonal  matrix, i.e. the elements wv, i # j ,  are zero;  and 
U and V are (m x m) and (n x n) orthogonal  matrices,  respectively. 

We first note  that AAT is an (m X m) positive  semi-definite  (symmetric) 
matrix, and  that ATA is  likewise an (n X n) positive  semi-definite  (symmetric) 
matrix.  Consequently, we  can  find a  set of orthonormal  "left  singular  vectors" U,, 

i=[l, m] and a  set of orthonormal "right singular  vectors" v,, i=[l ,  n] from  these 
two symmetric  matrices.  Thus, 

A A T  ui  = o;ui a d  ATA vi = $vj (A.19) 

for i=[l, m] andj=[l, n]. The use  of "squares" of  the  singular  vallues is justified 
since both products are positive  semi-definite, i.e. they  have  only  non-negative 
eigenvalues.  It can be shown  (See  Section A S )  that the non-zero  eigenvalues  of 
AB and BA are equal, so that the (non-zero) (a,} equal  the  (non-zero) (A,). In 
addition,  since ATu, = z, can be shown  to be an eigenvector  of ATA, we  have  from 
@.(A. 19) 

A zi = ui ui 2 (A.20) 

But,  unlike U,, the  vector zi is not  necessarily  a  unit  vector.  In fact, for a  non-zero 
a,, using  a  symbolic  scalar  product  notation,  we  find the length  of z, to be a,, i.e. 

[z ,  1' = (ATui,ATui) = (AATui,ui) = ai (ul,ui) = 0; 
2 

Since from  Eq.(A.  19) ATA v, = a: v,, (X, = a>, and ATA z, = a: z,, it follows  that 
z, = qvp Thus, dividing Eq(A.20) by U,, and  concatenating  all  the  resulting 
equations, 

L 0 1 
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Finally,  since V" = V', because its columns {vt) form  an  orthonormal set, the 
objective  of Eq.(A.18) is attained. The last  columns  of U, and the corresponding 
zeros of W can be deleted, in this  case U, W and V become (m X n), (n X n) and 
(n X n), matrices,  respectively. Also, when A is less than full rank, the final  rows 
of VT and the  corresponding zero columns  of W can be omitted  leaving U, W and 
VT as (m X r),  (r X r) and (r X n), matrices,  respectively. 

We  will now present  two  related  algorithms. The first, MZS, calculates  the 
range and  null  spaces  of  a  rectangular  matrix. The second, INOU, provides  a 
decomposition of a  matrix Q into  two subspaces: Qr, the  projection  of Q into the 
range  space  of R; and Qou, the  projection of Q to  the  subspace outside of the 
range  space of R. 

Algorithm: NRS 

Syntax: A, eps (W =) N, R, 

Purpose: The calculation  of  the  rank  and  the  range  and  null  space  matrices 
of an (m x n) matrix A. 

InputlOutput Arguments: 

0 A = (m x n)matrix. 
0 eps = small  positive sca~ar, suggested  value; eps = IO5. 
0 N = (n x n-r) null  space  matrix of A, where AN = Om,(n+. 
0 R = (m X r) range  space  matrix  of A, where p@) = p(A). 
0 r = rank  of  the  matrix A, r = p(A), where r 5 min(m,n). 

Description: 

The rank  of an (m x n) matrix A is defined  as: 

(i) the  size  of the largest  non-vanishing  determinant  that can be  formed  from 

(ii) the maximum  number  of  linearly  independent  columns, or rows, in A. 
A, or 

The range and  null  space  matrices, R and N satisfy: 

r = P(R) = A A )  5 AN (A.22) 

The easiest and  computationally  most  reliable  way  of  calculating r, R and N 
consists of performing  the  singular-value  decomposition ( S W )  of the matrix 
A, i.e.  decomposing A into: 

A = UWVT (A.23) 
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I where (m x n), (n x n) and (n x n) matrices  U, W and V are given  by: 

U = [ U, * * e  U, ... U" ] , v = [ v, a.. v, *e* 

(A.24) 
and W = diag{ ul, ..., U,,  ..., U , )  

Matrices  U  and V are  "unitary,"  i.e.  columns U, and v,, i= [ l ,n ] ,  are 
orthonormal,  i.e.: 

UTU = VTV = I, (A.  25) 

The  positive  scalars U,, i = [ 1 ,n] are  referred to as  the singular values of A. 

order,  i.e.: 
All SVD calculation  procedures  arrange  the scalars U, in  decreasing 

U,  L u , + ~  , i = [ l ,   n - l ]  (A.26) 

If  the  positive  scalar eps satisfies: eps < < 1, then for  all  practical  purposes 
the rank of A may  be  defined  as  the  index r of  the  singular  value U,,, 

satisfying: 

1 eps ( A m  

or, the total  number  of U, satisfying U, > eps, i = [ l , r ] .  

partitioning  U and V as  follows: 

where: 

Thus,  the  range and null space  matrices R and N could  be  defined  by 

U = [ R  I X ]  and V = [ Y  I NI (A.28) 

0 R  contains  the  first r columns U, from U, i = [ l , r ] ,  while 
0 N contains  the  last n-r columns v, from V, i=[r+l,n-r].  

The  integer v = n-r, representing  the  dimension  of  the  null  space  of A, is 
referred  to  as  the nullity of A. The SVD of A is performed  by the algorithm 
S W :  

Syntax: A (Sm) * W, U, V 
where  the ( 1  x n) row W contains  the  singular  values U,, i= [ l ,n ] .  

Algorithm: 

1. Define  the (m x n) matrix A and  the  scalar eps 
2.  Set A ( S W )  * W, U, V 
3. If U, eps, set U,/, = 1 =) x, ; else, set 0 * x, 
4. SetxxT* r 
5.SetU*[R I X ]  
6.  Set V * [ Y I NI 
7. stop 
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l Algorithm  Implementation: 

The listing of Algorithm NRS, implemented  using the L-A-S language is 
given in Appendix C. Algorithm S W  is  performed  using  the L-A-S operator 
S W .  The m-dimensional  row x containing r unities  and m-r zeros is 
calculated  by  the  operator F/. The rank  of A is then  obviously  given  by t = 
x xT. The partitioning of U and V in Steps 5 and 6 is done using the L-A-S 
operator CTC. 

Algorithm: INOU 

Syntax: R, Q, eps (INOW j Qr, Qou 

Purpose: To decompose the matrix Q into two  subspaces Qr (the  projection 
of Q into R) and Qou (the  subspace  outside the range  space of R). 

Inputloutput Arguments: 

0 R = (n x m) matrix 
0 Q = (n x k)  full column  rank  matrix,  i.e. p(Q) = k 
0 eps = small  positive  scalar,  suggested  value: eps = IO5 
0 Qr = (n X r) matrix;  projection of Q into R 
0 Qou = (n x S) matrix;  part of Q outside  the  range  space of R 

Description: 
Matrices Qr and Qou satisfy: 

P [ R I Q ~ I = P [ R I ,   p [ Q I Q r I = p [ Q l ,   ~ [ Q r l = r  
and  (A.29) 

~ [ R l Q o u l   = ~ [ R l + s ,   ~ [ Q l Q o u l  = p [ Q I ,  p [ Q o u I = a  

Since p(Q) = k,  then r + S = k. 

r) and (k X S) matrices N, and N,, i.e.: 
The matrices Qr and Qou are obtained by postmultipying Q with (k X 

Qr = QN, and Qou = Q Nqn (A.30) 

where N, and N, are calculated  from  null  space  matrices: 

[ Q I R ] [ = 0 and NrN,, = 0 (A.31) 



From Eq(A.31) it is evident  that Qr = Q Nq is in the  range  space  of R since: 

QN, = -RN, 

Similarly,  since [ N,  N, ] is  a (k X k)  nonsingular  matrix, it follows  that 
Qou = Q N, is outslde  the  range  space  of R. 

The null  space  matrices  required in  Eq.(A.31) are calculated  by the 
algorithm NRS discussed  above. 

Algorithm: 

1. Define (n X m) and (n X k)  matrices R and Q and the  scalar eps. 
2. Set  number  of  columns in Q =) k 
3 .Se t [Q  I R ] * Q R  
4. Set QR, eps (NRS) * N,, Y ,  x 
5. Set the  first k rows  from N, =) N, 
6. Set N:, eps (NRS) =) N,, Y ,  x 
7. Set Q N, * Qr 
8. Set Q N, =) Qou 
9. stop 

Algorithm  Implementation 

The listing of Algorithm INOU, implemented  using  the L-A-S language 
is given in  Appendix  C.  Algorithm NRS is performed  using  the L-A-S operator 
NRS. The subroutine  version is given in Appendix C.  Matrix  transposition 
is performed by the L-A-S operator T. 

A S  Useful  Results  with  Matrices 

for some  corresponding  (non-zero)  eigenvector x. Premultiplying by A, 
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AB(Ax) = X(Ax) (A.34) 

which  shows  that X is  automatically an eigenvalue of AB (with corresponding 
eigenvector Ax). Consequently, the m eigenvalues of BA are also  eigenvalues  of 
AB and vice  versa, so that the remaining (n - m) eigenvalues of AB must  be zero. 

Applying  this  result to C and D of  Eq.(A.32), the m eigenvalues  of D are also 
eigenvalues of C, and  the  remaining  eigenvalues  of C are unity.  Therefore, the 
product of the  eigenvalues of C equals the product  of  the  eigenvalues  of D; or, in 
other  words,  the  determinants are equal: 

det(1 + AB) = det(1 + BA) U(A.35) 

Partitioned  Matrices: Using  the  Laplace  expansion  of  a  determinant, it is readily 
shown  that: 

det (AB) = (det A) (det B) W(A.36) 

det(A) = det(AT) U(A.37) 

and ,et[ A ] = det(A)det(C) 
B C  

U(A.38) 

The fact  that  partitioned  matrices  obey the same  rules as ordinary  matrices 
with  respect  to  multiplication  and  addition  permits  us  to  generate  some  interesting 
expressions for inverse  matrices.  Suppose  that B = A', then,  assuming  compatible 
partitions: 

(A.39) 

Thus, 

and 

A,B, + b B 3  = I 

(A.40) 

&B1 + A4B3 = 0 

are the (1,l) and (2,l) elements  of  the  product.  Solving for B, and B,, we  obtain: 

B, = (A, - 4A,"p5)" 

and 

(A.41) 

B, = -A;'AJA, - ~ A ; I A J ~  (A.42) 

Similarly, the  remaining  equations  permit  solving for B, and B,: 
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B, = - A ; ' ~ ( A ,  - ~ A ; ' A . J - ~  (A.43) 

and 

completing B = A-'. 
Many  matrix  identities  can  be  developed  by  repeating the above process with 

a reversed  product order, BA = I, and equating the two expressions for B, since 
A-' is unique for any  non-singular  matrix A. In particular,  the matrix inversion 
lemma is 

(A-' + CTBH)" = A - ACT(CACT + B - ~ ) - ~ c A  W(A.45) 

A final  result can be realized  using the fact  that for any  matrix M 

det[ M I  I " 1  = 1 (A.46) 

Therefore, using the property  of Eq.(A.36), and  assuming  that A is nonsingular, 

det[ A C D  '1 = det[ [ -CA-' I 0 I ][ A B  C D ]] 
Multiplying out the  previous  expression, 

A B  A 

C D  o D - C A - ~ B  " I  det [ ] = det [ 
Finally, using  properties  from  Eqs.(A.37) and (A.38), 

,et[ A '1 = det(A)det(D-CA"B) 
C D  

(A.48) 

W(A.49) 

A.6 The  Cayley-Hamilton  Theorem 

We know  from  Section  A.2  that a matrix A with distinct  eigenvalues is 
similar to a diagonal  matrix. Recall that 

A = diag{ I , ,   I , ,  .-, In } = E"AE (A.50) 

where {AJ, i=[l,n], are the (assumed distinct)  eigenvalues of the n X n matrix A, 
and E is the modal  matrix  of A whose  columns are the  eigenvectors  corresponding 
to the eigenvalues in A. 
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Note that an integer  power of A takes  the  form 

A'" = (E"AE),(E"AE)2 ... (E"AE), = E"A"E (A.51) 

It follow  that for any  polynomial p(X), the  corresponding  matrix  polynomial is 

p(  A) = E p ( h )  E" 
And since A is a diagonal  matrix, 

(A.52) 

P ( 4  = di%IP(X,)Y P ( Q Y  " ' 9  P(1, )  1 (A.53) 

For the particular  polynomial  which is the  characteristic  polynomial of A, we have 
that 

u(A) = E a(A) E" = 0 (A.54) 

since a(AJ = 0 for i=[ 1 ,n] by the  definition of eigenvalues. This result may be 
summarized  in  the  statement  that "the matrix A satisfies  its own characteristic 
equation. I' 

Cayley-Hamilton  Theorem: If a(X) = det[XI - A] is the  characteristic  polynomial 
of the (square)  matrix A,  then a(A) is the  zero  matrix. 

Our  development assumed distinct  eigenvalues for A, but it can  be  shown  that 
the Cayley-Hamilton  Theorem is valid for any  square  matrix. See also Algorithm 
POL& which is discussed  at  the  end  of the examples in Section 2.4. 
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Appendix B Special  Topics 

In this  appendix  we  discuss  several  items  of  theoretical, as well as practical, 
interest.  Some of the  topics  continue  to  build on the  review  material  of  Appendix 
A. For example,  the  first section  in  this  appendix  concerns  the  problem  of  linear 
algebraic  equations.  Other  topics  include  the  three  minimal  realization  techniques, 
Hessenberg, Kalman  and Jordan.  One  section  discusses  a  useful,  relatively  simple 
method  of  measuring  the  relative  controllability  and  observability  of M M 0  system 
poles. 

B.1 Linear  Algebraic  Equations 

Consider  the  following system  of  linear  algebraic  equations: 

AX = B (B. 1) 
where  the [n(m+l) X m] matrix A has rank = n, and B is a  given [n(m+l) X 
m] matrix. It is known  that one among  many  solutions for the [m X m] matrix 
X of Eq.p.1) has  the  form: 

Recall that  this  problem  was  encountered in Algorithm HT, Section 4.3.5, 
Eq(4.74). We are interested in obtaining  the  scalars di, i=[O,n-l], satisfying 
Eqs.(F3.1) and (F3.2). 

Procedure: 

The general  solution X of Eq(B.1) may be  written  as: 

X = Y + N T  (B. 3) 

where Y is any  nontrivial  solution  of Eq.(B.l), N is  the [m x n(n-l)] null  space 
matrix  of A satisfying: 

279 
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AN = 0 (3.4) 

while T is an arbitrary [n(n-l) X m] matrix. 

For  additional notation let: 

I, = [ el ... 
em 1 

Y = [ y1 .*e 

ym 1 
I T = [ t, * * e  

then, taking into  account Eq.(B.2) the l* column x, of the general  solution X in 
Eq(B.3) may  be  expressed  as: 

Eliminating  from Eq.m.6) elements with the  indices: 

i ,  i+m,  i+2m, ..., i+jm, ..., i+(n-l)m (B.7) 

Eq.P.6) yields a system of (m-l)m equations of the  form: 

where N, and yti represent  an [(m-l)m X (m-l)m] matrix  and (m-l)m columns 
obtained  from N and yi in Eq.p.6) by  eliminating  the rows with  indices  given  by 
Eq.p.7). By definition, N is  a full column  rank  matrix.  However,  the  square 
matrices N, obtained  from N by eliminating n rows are not  necessarily of full  rank 
for each i. But, according  to  the  assumption  of Eq.(B.2), it may  be  concluded  that 
there  is  some  index i ,   i = [ l , m ] ,  for  which  the  matrix N, is  nonsingular.  Using  this 
N,, a column t, of  the  unknown  matrix T may  be  calculated  from Eq.(B.8) as: 

ti = -Nf' ~yu (B.9) 

Having t, from Eq.(B.9), the scalars d,, j=[O,n-l] ,  may  be  readily  obtained  from 
Eq.(B.6). 
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B .2 Hessenberg  Transformations 

The  basic  idea  of  the  Hessenberg  transformation  is  to  apply a sequence of n-p 
similarity  transformations by  which a given  unobservable pair (A,C} with a  full 
rank C is transformed  into  the  form: 

In  other  words,  after  this  sequence  of  similarity  transformations,  the  matrix C is 
"column"  reduced,  i.e.  only  the  first p columns  have  elements different  from  zero. 
The matrix A has an (no x n-no) block  of  zeros in the  "upper  right"  comer,  while 
B has  no  special  structure.  Obviously  the  modes,  i.e.  eigenvalues of the  block A, 
are not  observable  since,  due  to  the  structure of {A,C}, they  do  not  contribute  to 
the  output y(f) = C x( f ) .  

Thus,  the  observable  part  of a given {A,B,C} becomes an n: order 
representation  given  by: 

To check  the  controllability  of {A,, B,, C,}, i.e.  to  eliminate  possible 
uncontrollable  modes, it is  recommended  that  one  consider  the  dual  system 

of  the  obtained R,, and eliminate  its  unobservable  modes,  which are, of  course,  the 
uncotrollable  modes  of R,, to  obtain: 

Finally,  a  desired  minimal  realization  corresponding  to  the  given {A,B,C) is qual 
to the  dual  of R,,, i.e. 

The  algorithm MIN given  below  performs  only  the  elimination of the  unobservable 
part,  i.e.  the  transformation: 

R =$ R, 



282 Appendix B Special Topics 

Algorithm M I N  

1. SetC*R,n*k 
2. Set R (SW) =) s,U,V ; where R = USV , S = diag{ sl,. . . , S, 1 
3. SetV-T,, k - p * k ,  1 *i,pfl *j 
4. Set A,B,C,V(STR) = A',B',C' 

5.  Partition A' rs X I R I p , R is (p X k) such  that rll = uty 

6. Set R (SW) * s,U,V 

8. Set A',B',C',T(STR) * A',B',C' 
9. Set k-l * k , j + l  * j ,  i+ l  * i 
10. I f j  S n, go  to 5;  else, go to 11 
11. Set A,B,C,T,(STR) = A,,B,,C, 
12. Set n =) no, 0 = i 
13. Set i+ l  i ,  n-i * k 

1 : 3' i - l  

7. Set  diag{ I,-,, v } 3 T, ThT * Th 

x I z '  

Y I W  

14. Partition A, * --- 

15. If 11 Z 11 > e i s ,  go  to  17; dse, go  to 16 
16. Set k =) no 
17. If i < n-p, go  to  13;  else, go to 18 

+ "- ; Z is  the (k X i )  upper  right block of A, 

18. Paritition A, =) --- + --- ; Bh --- 
> Y  I z -  X 

R, = {A,,B,,C,J is an n," order  observable  representation. 

Note  that R' = {A',B',C'}, obtained  in  the  last  passage  through  Step 8, is the 
same  as R,, = {Ah,Bh,Ch}, obtained in Step  11,  since  the  transformation  matrix 
Th accumulates  all  transformations  performed  in  the  loop,  Steps 5 to 10. 

Singular Value Decomoposition: For a given (p x k) matrix R, Algorithm SW, 
singular  value  decomposition, in Steps 2 and 6, calculates  arrays S, U and V where: 

S is  a k-dimensional row array  containing  the  singular  values S,, 

U is a (p X k) matrix  containing  the  "left"  singular vectors. 
V is  a (k X k)  matrix  containing  the  "right"  singular  vectors. 

i= [ l , k ] ,  S, 2 0. 
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The  arrays S, U and V satisfy: 

R = USVT , where S = diag{ sI, ..., st 1 

and sI 2 s2 2 ... 2 S, 2 0. Matrices U and V are  "unitary"  i.e. VV = I, and 
W = $, if p S k, or in  other  words,  the  columns  of U and V are orthonormal. 

The main  property  of the Hessenberg  similarity  transformation  matrix Th is 
that in the  transformed  triple R,, = {A,,,B,,,C,,} the (n, X n-nJ upper  right 
submatrix  of A,, and  the  last n-no columns  in Ch contain  zero  elements.  This is  a 
consequence  of  the  fact  that  the  last k-r columns  of V, where r = rank@), are 
in  the  null  space  of R, i.e. in  the  product X = RV all non-zero  elements are 
"concentrated"  in  the  first r columns  of X. Thus, it is  clear  that  the  last n-n, modes 
of R,, are unobservable,  and in order  to  obtain  an  observable  part,  these  modes 
should  be  eliminated  from R,,. Similarly,  to  eliminate  possible  uncontrollable 
modes,  the  same  Hessenberg  transformation  should  be  applied  to  the  representation 
which is dual  to  the  above  obtained R,. 

For more  details on the  Hessenberg  trasnformation  readers are referred  to  the 
reference  section  in  Chapter 4. 

B.3 The  Kalman  Decomposition 

Consider a not  necessarily  minimal  state  space  representation {A,B,C}, with 
order n, m 5. n inputs  and p 5 n outputs.  The  Kalman  Canonical  decomposition 
is defined  as  the  procedure  of  decomposing a given  state  space  representation 
(A,B,C} into  the  following  four  coupled  subsystems  referred  to  as  the: 

1. Controllable  and  unobservable  subsystem,  denoted  by c c ,  
2. Controllable  and  observable,  denoted  by CO, 

3. Uncontrollable  and  unobservable,  denoted by c';, and 
4. Uncontrollable  and  observable,  denoted by Co. 

The  problem  is  to find a  similarity  transformation  matrix T which  will  transform 
the  given {A,B,C} into  a form {Ad,Bd,Cd} where: 

A, = T-IAT 
B, = T"B (B. 11) 
C, = CT 

The  structure of  the  matrices  in &.(B. 11)  is  as  follows: 
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FIGURE B. I Kalman Canonical Decomposition 

L 

c d = [  0 c, 0 C ; ]  

The structures  given by Eq.(B. 12)  can  be represented by the block  diagram  given 
in Fig. B.l. In Fig.B.l,  as well as in Eq.(B.12), c and c stand for  controllable 
and  uncontrollable  subsystems,  while o and 0' stand for  observable and 
unobservable  subsystems,  respectively.  However,  Fig. B.l does  not  show  all 
internal  connections  between  the  four  subsystems. A more  detailed  block  diagram 
is given in Fig. B.2. 

I r 

U 

FIGURE B.2 Detailed Kalman Decomposition 
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Normally,  only  procedures for the  determination  of  the CO subsystem are 
considered;  however,  our  purpose  here  is  to  suggest a possible  algorithm for 
performing a Kalman  canonical  decomposition,  i.e.  a  constructive  procedure for 
calculating  a  similarity  transformation  matrix T performing  the  decomposition  in 
Eq4B.12). 

Decomposition Procedure 

The transformation  matrix T should  be  given by the  concatenation  of the 
following  submatrices: 

T = [ Tc, T,, TFz TLl ] (B. 13) 
where: 

Tc = [ Tc, TC, ] (B. 14) 

should  span  the  controllable  subspace  of the pair {A,B}, while: 

T,- = [ T,, T,, ] (B. 15) 

should span the unobservable  subspace of the pair (A,C). 

controllability  matrix of the pair (A,B}: 
Thus,  the  matrix T, could be  obtained by calculating  the  range  space  of  the 

Q, = [ B AB A2B A'""B ] (B. 16) 

i.e. T, = R(QJ (B. 17) 

Similarly, the matrix T, could  be  calculated  from the observability  matrix  of  the 
pair (A,C}: 

C 

CA 

Q, = CA2 

CA'"P 

using T, = N(Roo) T (B. 19) 

where R, is the range  space  of Q, i.e. 

Re = R(QJ (B.20) 

The matrices  Q,  and Q, could be  calculated by Algorithms QC and Q0 given in 
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Chapter 1 and  Appendix  C. In Eqs.(B.17), (B.19) and (B.20) the  symbols R@) 
and N(X) denote the range and  null  spaces of X, respectively,  while X' denotes 
matrix  transposition. The range and nuil spaces of a  given  matrix can be calculated 
by  Algorithm NRS given  in  Appendix  C. 

Having  matrices T, and T,, defined  by Fxp(B.14) and (B.15), the  sub- 
matrices of T, entering  into the similarity  transformation  matrix T, &.@. 13), can 
be obtained  by  decomposing T, into a part  spanned  by the  columns  in T; and a part 
which is not.  Similarly,  the  sub-matrices in Eq.(B.15) can be  obtained  by 
decomposing T, into  a  part spanned  by the  columns  in T, and a  part which is not. 

The above  decompositions  into  the  desired  sub-matrices can be obtained  by 
Algorithm InOu given in Appendix C, i.e.: 

T; 9 T, E ( I O U )  0 TCc 3 T,, 

T, , T, , E ( Inch)  - '?,.;, TT; 

(Note: T,, and '?,; are not unique,  but  both  versions  span the same  sub-space.) 
Finally,  the  sub-matrix T,, which  has  not  yet  been determined, can be 

obtained as the null  space of T,', i.e. 

T~~ = N(T;) (B.21) 

where TI = [ Tc, Tco TZ ] (B.22) 

Using the  above mentioned algorithms, we are now ready  to  formulate  the 
algorithm for Kalman  canonical  decomposition. 

I Kalman Canonical Decomposition Algorithm 

1. 

2. 
3. 
4. 
S. 
6. 

7. 
8. 
9. 
10. 

Define  a state space  representation {A,B,C} and the scalar eps satisfying: 
0 < eps < 1. 
Set A, B(Qc) =) Q, &.(B. 16) 
Set A, C(Qo) * Q,,, Eq.(B. 18) 
Set Q,, eps (NRS) * X, T,, r,; T, is  the  controllability  subspace 
Set Q:, eps (NRS) * X, Rqot, x; Eq(B.20) 
Set Rqot', eps (NRS) =) T,, X, r,,; T, is  the  unobservability  subspace 

Set T,, T,, eps (InOu) T,,, Tc,; Eq(B.14) 
Set T,, Tc, eps (InOu) =) To-, Tc; Eq.(B.lS) 
Set [ T,,  T,, T, 3' TI; Eq(B.24) 
Set T,T, eps (NRS) =) TF,, X, x 
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11. Set [ T, T, 1- T, Eq.(B.13) 
12. Set [ dim(T,,-) dim(T,,) dim(T=)  dim(TF,) ] d 

14. Stop 
13.  Set A, B, C, T (STR) * Ad,  Bd, C,; Q.@. 11) 

Algorithm Implementation 

The listing  of  Algorithm KALD implemented  using  the L-A-S language 
is given  in  Appendix C. Algorithms QC, Qo and NRS are implemented  using 
corresponding L-A-S operators,  while InOu is  implemented  by  the  subroutine 
InOu. The matrix  denoted  by Rqot, determined in Step 5 and used in Step 6, 
is the  range  space of Q:. Algorithm STR, used  in Step 13 is performed  using 
the L-A-S operator STR. The  four  dimensional  row d calculated in Step  12, 
containing  subspace  dimensions,  is  calculated using the L-A-S operators CD1 
and CTI. 

B.4 Computation of Generalized  Eigenvectors 

In  this  section  a method is suggested for computing  the  eigenvectors  and 
generalized  eigenvectors of a  matrix,  given  that  the  eigenvalues are already known. 
The algorithm  is  straightforward, and an L-A-S implementation  is  provided. The 
following  algorithms are associated  with  the  general  problem.  Each  algorithm  is 
described in detail. 

Algorithm: MODM 

Syntax: A,  Egv, eps (MODM) * P 

Purpose: Calculation of the  eigenvector  (modal)  matrix of a  matrix 
with  multiple real or complex  eigenvalues. 

Input/Output arguments: 

0 A = (n x n) real matrix with multiple  real or complex-conjugate 
eigenvalues. 

0 Egv = (m x 2)  matrix, m 5 n, containing  distinct  eigenvalues, X, 
= a/ + jw j ,  j =  [ 1 ,m], of A; first column contains real parts,  second 
column  contains  imaginary  parts.  In  the  case  of  a  complex- 
conjugate  pair of eigenvalues, Egv contains  only one eigenvalue  of 
the  pair. 

0 eps, a  sufficiently  small  positive  scalar;  suggested  value: eps= 10’. 
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0 P = (n X n) eigenvector  matrix  transforming A into  the  "real 
number"  Jordan  form. 

Description: 

The (n X n) modal  matrix: 

p = [ p, ... pi ... 
p, 1 03.23) 

is related  to  a  given A by: 

AP = PA, OT A, = P"AP 03-24) 

where A, is an (n x n) block  diagonal  Jordan  form  matrix  given  by: 

A, = diag( A,, , ... , AJj, ... , A,, ) 03-25} 

The (n x nj) and (nj x nj), j = [ l , m ] ,  matrices Pi and All in Ep(B.23) and 
(B.25) satisfy: 

m 

APj = PjA,j where c nj = n  03-26) 
j - l  

Integers nj are the algebraic  multiplicities of the eigenvalues 4, j = [  l ,m],  of the 
matrix A. 

Matrices PI and AI could  be  partitioned  as: 

Integer vi, referred to as the gcomerric  multiplicity of  (multiple)  eigenvalue 4, 
is given by the  nullity  of  the  matrix Bj = A - 41, i.e. 5 is the  dimension  of the 
null  space  of Bp 

The (n x njb matrices Pjk, k=[l ,vj], contain nj! eigenvectors  belonging 
to the Kh eigenvector  chain  of  length njk associated  with the eigenvalue 4, 

VI 

Pjk = [ piu ... pjkr ... pia ] where nj = c njt 03-28) 
k- I 

The (njk X nj& matrix A,jk, referred  to  as  the Kh Jordan  block  associated  with 
AI, satisfies: 
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In the  case of a real  eigenvalue X, = uj, the Jordan  block AJjk is an  upper 
triangular  matrix  consisting of 5 on  the  diagonal  and  a  super  diagonal of 
unities  of  the form 

'Jjk = 

In the case of a  complex-conjugate  pair of eigenvalues X, = ai f ioj, the ( 2 5  
x 2njb Jordan  block AJjk is  associated  with  both  eigenvalues of the pair and is 
in "real number"  form  given  by: 

AJjk = 

In order to  satisfy Eq(B.29) with AJjk in the real number  form  given  by 
Eq.(B.31), the (n X 2nj& eigenvector  matrix Pjk is associated  with  both 
eigenvalues in the complex-conjugate  pair a/ f ioi. The first two columns  of 
Pjk are given by the real and  imaginary  parts  of  the  eigenvector  corresponding 
to the eigenvalue uj + ioj. Similarly, the next two  columns are the real  and 
imaginary  parts  of  the  first  generalized  eigenvector  corresponding to 9 +io,. 

The eigenvector  chains Pjk in  the (n X nj) matrix Pi corresponding to a 



290 Appendix B Special Topics 

real  eigenvalue Aj = 5 with a multiplicity nj are calculated by  Algorithm 
CHAR. The eigenvector  chains Pjk in the (n X 2n,) matrix P, corresponding 
to both  eigenvalues of the  complex  conjugate  pair a, f jo, with multiplicity n, 
are calculated by  Algorithm CHAC. 

Algorithm: 

1. Define (n x n) matrix A, distinct  eigenvalues Egv and  the scalar eps. 
2. Set  number of columns in A * n 
3. Set number of rows in Egv * m 
4. Set =$ P 
5.  SetO-j  
6. Setj+l  * j  
7. Extract$ row of Egv * Aj 
8.  Partition Aj  =$ [ q oj 3 
9. If U, = 0, go to 12; else, go to 10 
10. Set A, q, mi, eps (CHAC) =$ P, 
11. Go to 13 
12. Set A, 5, eps (CHAR) =$ pj 
13. Set [ P I P, ] * P 
14. If j < m, go  to 6; else,  stop. 

Algorithm  Implementation 

The listing of  Algorithm MODM implemented  using the L-A-S language 
is given  in  Appendix C. Algorithms CHAR and CHAC are implemented  using 
the L-A-S subroutines CHAR  and CHAC,  respectively. These two algorithms 
are presented  next. 

Algorithm: CHAR 

Syntax: A , a, , eps (CHAR) =$ pi 

Purpose: 

The calculation of the eigenvector  chains  corresponding to a real  eigenvalue a, 
with multiplicity nj, nj 2 1. 

Inputloutput Arguments: 

0 A = (n x n) matrix. 
0 uj = scalar  corresponding to a real eigenvalue of A with 
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multiplicity nj, nj 2 1 .  
eps = sufficiently  small  positive  scalar;  suggested  value: eps=105. 

0 Pj = (n x nj) matrix  containing  all  eigenvector  chains 
corresponding to U,. 

Description: 

Let U, be  a  real  eigenvalue  of A with  multiplicity 5. Then 9, the nuZZity 
of B, = A - 51, i.e. the dimension  of the null  space  of  the  matrix Bj , satisfies: 

In the matrix Pi there are vi proper  and (nj - 5) generalized  eigenvectors 
corresponding  to 5. According  to Eqs.(B.27) and (B.28), these Vectors are 
arranged in P, as 3 eigenvector  chains Pj, of  lengths 5. Without IOSS of 
generality it may be assumed  that: 

n,, S nJ2 S ... S n 
j”l 

The vectors pjb, r=[ l , v j ] ,  in the  chains qk satisfy: 

(B.33) 

Bjpjk, = 0 and Bjpjb = P ~ , ( ~ . ~ ,  for r=[2,vjl 03.34) 

(Bjypjb = 0 for r=[l,vj] (B.35) 
or 

From Eq.(B.34) it follows  that  the  vectors pjb for r = [ l , y - l ]  are in the  range 
space of B,, while  the  vectors pjkn , which are last in the chains are outside  the 
range  space of Bj, i.e.: 

I t  

rank[ Bj I pjkr] = rank[ Bj] for k = [ 1, njr- 1 ] and 
(B.36) rank[ B, I Pjknlk] = &I: Bjl + 1 

From Eq.(B.35) it follows  that  all  of  the  vectors pjb are in null space  of (Bj),. 

In Algorithm CHAR first  the matrix Bj is  built  and  its  nullity vi and range 
space R are calculated.  Then the vector pjln,, i.e. the last  vector in the 
shortest  eigenvector  chain,  is  determined.  This  is  done by determining  the 
smallest  integer k such  that  the  null  space N, of the matrix (B,), contains 
vectors m,, i = [ l , q ] ,  which are outside R. If q > 1, i.e. if there  is  more than 
one vector  satisfying  this  condition,  then  there are q chains with  length k = nj,. 
These  vectors are then  used as  the  last  vector in their  respective  chains, and the 
other  vectors in those  chains are calculated  using Eq.(B.34) by a simple 
premultiplication of mi with B,. 

These  eigenvector  chains are of  the  form: 
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If q < v,, more  chains,  longer than n,,, are needed. Again,  the  last  vectors in 
these  chains  are  obtained  by  detecting  the  next  smallest  integer k such  that  the 
null  space of the  matrix (B$ contains  vectors  outside  the  range  space  of  the 
matrix  obtained  by  concatenating R and the  matrix M consisting  of  the q 
vectors m,, i=[l,q], used  in Eq.p.37) for  building  the q eigenvector  chains 
of  length n.. 

Calculation  of  the  range  and  null  spaces is done  using  Algorithm NRS. 
Calculation  of  the  vectors  which are  outside  the  range  space of a given  matrix 
is done  using  Algorithm INOU. 

Algorithm: 

1. Define (n x n) matrix A, real  eigenvalue U, and the  scalar eps. 
2. Set  number  of  columns in A * n 
3. Set I,,,n * I 
4. Set On,o * P, 
5 .  Set A - u,I *B, 
6. Set  Bj, eps (IVES) * N ,  R, x 
7. Set  number  of  columns  in N * v, 

9. Set k+l * k 

11. Set  B,, eps (MS) N,, Y, x 
12. Set R, N,, eps (INOU) * Y, M 
13. Set  number of columns  in M 4 q 
14. Set M =$ M, 
15. If q > 0, go to 16; else,  go to 9 
16. Set M, 4 [ m I M, ] 
17. Set On,o r) P,, Set 0 4 i 
18. Set i+l * i 
19. Set [ m I P, ] =$ P, 
20. Set B p  * m 
21. If i k, go  to 18; else,  go  to 22 
22. Set [ P, I P, ] * P, 
23. If  number of columns in M, > 0, go  to 16; else,  go  to 24 
24. Set [ R I M ] * R 
25. Set r+q 4 r 
26. If r < v,, go  to 9; else,  stop 

8. set I *Bk, 0 4 k, 0 =) T' 

10. Set B,  B, * Bk 
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Algorithm  Implementation: 

The listing of  Algorithm CHAR, implemented  using the L-A-S language is 
given  in  Appendix  C.  Algorithms NRS and INOU are performed using the L- 
A-S operator NRS  and subroutine 1NOU.SUB. The matrix  partitioning  in  Step 
16 is done by the L-A-S operator  CTC.  Matrix  concatenation in Steps 19 and 
22 is uses the operator  CTI. 

Algorithm: CHAC 

Syntax: A, q, oj, ePs (CHAC) =) p, 

Purpose: 

Calculation of the  eigenvector  chains  corresponding  to  a  pair  of  complex- 
conjugate  eigenvalues uj & jo,, with  multiplicity nj, nj 5: 1 .  

Input/Output Arguments: 

0 A = (n x n) matrix. 
0 U, and wj = scalars  representing  real and imaginary  parts  of  a 

complex-conjugate  pair of eigenvalues, 5 It jo,, of A with 
multiplicity n,,  n, 2 1. 
eps = sufficiently small positive  scalar;  suggested  value: eps=lO”. 
P, = (n X 2n,) matrix  containing  all of the eigenvector  chains 
corresponding to the  pair of eigenvalues U, i- io,. 

Description: 

Let  a  matrix A have  a  complex-conjugate  pair of eigenvalues X, =,U, + 
jo, and A,+l = - jo, with  multiplicity ni. Then 9, given  by the nullity of 
either Bj = A - 41 or Bj+, = A - Xj+lI , satisfies: 

1 1 9 ‘ n ,  03.38) 

Proper complex-conjugate  eigenvectors p, = U, + jv, and = U, - jv, 
associated  with  eigenvalues A, and A,+,, respectively,  satisfy: 

It may be  verified by inspection  that  real  vectors uj and v, defining the 
complex-conjugate  eigenvectors p, and  can be  calculated  from: 
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[ B;, 1 [ ;] = O 
03.40) 

where Bjr = A - qI and Bji = @,I. By definition, the complexconjugate 
eigenvectors p, and  satisfy: 

Again, it may be  verified  that the vectors u, and v, satisfy: 

Note  that in Eq(B.41) the  (2 x 2)  diagonal  block  contains  in the main 
diagonal  the  complex-conjugate  pair of eigenvalues X, and  while  in 
Fq(B.42) the (2 x 2) block consists of the real  numbers a/ and m,, i.e.  the real 
and  imaginary  parts  of  both 4 and X,+,. Similarly, in Eq.(B.41) p, and are 
complex  vectors,  while in Eq.(B.42)  only the real vectors U, and v, are used. 

The algorithm CHAC determines  all  eigenvector  chains  associated  with 
both X, and X,+l  in a  similar manner  as is done in CHAR. The only  differences 
are: 

(i) Instead of the (n X n) matrix Bj, given  by Eq.(B.32), the  following  (2n 
X 2n) matrix B, is  built: 

= [ -;i ] (B.43) 

where B,? = A - ujI and Bji = wjI.  

(ii) The nullity  of B, is 2vj,  and its null  space  consists of 2n-dimensional 
vectors m, which  can  be  represented  by: 

03.44) 

# 

where the n-dimensional  vectors ui and v, are defined by  Eqs.(B.41)  and 
(B.42). 

(iii) In the  eigenvector  chains,  instead of complex-conjugate  eigenvectors p, 

I 
and p,+,, only  the real number  vectors U, and v, are used. 
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Calculation of range and  null  spaces is done using  Algorithm NRS. 
Calculation of vectors which are outside  the  range  space of a  given  matrix is 
done using  Algorithm INOU. 

Algorithm: 

1. Define (n X n) matrix A, real and imaginary parts a, + j w j  of a 
complex-conjugate  pair of eigenvalues of A and the scalar eps. 

2. Set number of columns in A * n. 
3. Set n+n * 5 
4. Set I,,, * I 

l 5.  Set I,,,% =) I2 
6. Set * Pi 
7. Set  A - 41 * Bjr , Set wjI * Bji 

8' Set [ -:, Bjr ] 
9. Set Bj, eps (NRS) =) N, R, x 
10. Set  number of columns in N =) y 
11. Set I, =) B,, 0 * k, 0 * r 
12. Set k+l * k 
13. Set B, Bj =) B, 
14. Set B,, eps (NRS) =) N,, Y, x 
15. Set R, N,, eps (INOU) =) Y, M 
16. Set number of columns in M q 
17. Set  the first q/2 columns from M * M, 
18. If q > 0, go to 19; else, go to 12 
19. Set M, * [ m I M, 3 

B/L * Bj 

20. 

21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
25. 
26. 

Set m =) [ 
Set * Pi, Set 0 * i 
Set i + l  * i 
Set [ m, I m, I Pi 3 * Pi 
Set Bj m * m 
I f  i < k ,  go to 22; else, go to 26 
Set [ Pi I Pi ] * Pj 
If number of columns in M, > 0, go to 19; else, go to 28 
Se t [R  M ] * R  
Set r+q =) r 
If r < vi, go to 12; else, stop 

I n  
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Algorithm Implementation: 

The listing of Algorithm CHAC, implemented  using the L-A-S language is 
given in  Appendix  C. The algorithms NRS and INOU are performed  using  the 
L-A-S operator NRS and  subroutine INOU. Matrix  partitioning in Steps 19 and 
20 is done by the L-A-S operators CTC  and  CTR.  Matrix  concatenation  in 
Steps 23, 26 and 28 is  done  using the operator  CTI. 

In  Example 1 of  Section 2.4 the real-number  Jordan form, A,, and the 
corresponding  modal  matrix, Q,  was  calculated  for  a (5 X 5 )  matrix A having  both 
repeated  roots  and  complex-conjugate  roots.  These  two  matrices can be obtained 
using the subroutine MODM as follows: 

B.5 Modal Controllability/Observability Tests 

This  section  differs  from  the  tests  presented in Chapter 1 in  that the method 
provides  a  "degree of controllability and observability"  that  goes beyond the  "yes" 
or "no"  tests  studied  there. 

Introduction 

It is well  known  that  there are numerous  procedures  for  checking  the 
controllability and  observability  of  state  space  representations  of  linear  MIMO 
dynamic  systems.  Among  the  most  popular  are: 

(1) Calculation  of  the  ranks  of  controllability  and  observability  matrices, 
(2) Similarity  transformation  into  the  Jordan  form  state  space  representation, 
(3) Kalman  canonical  decomposition, 
(4) Transformation  into  the  Hessenberg form, and  the 
(5) Popov-Belevitch-Hautus (PBH) test. 

These  procedures, being  of different  natures, have  their  own properties,  advantages 
and  disadvantages.  Some are computationally  ill-conditioned,  some  require 
extensive  computation. And some  procedures are not  well  suited  in the case of 
multiple  eigenvalues  since they then require  additional  extensive  computation. On 
the other  hand,  some  procedures  do  not  give  information  about  the  "degree" of 
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controllability and/or observability, which is  important in practical  applications for 
numerical  reasons. 

In this  section  a  simplified controllability/observability test is suggested. It 
is based  on the PBH test, mentioned above,  but it does  not  require  calculation  of 
the rank of n"' order  matrices, n being  the  system  order.  Instead, it reduces  to  the 
calculation  of  the  eigenvalues  of a single matrix  having an order less than the 
system order n. The calculation  of  this  matrix  is  computationally  straightforward. 
In  addition  to  the  information  about  controllability  and  observability,  the  present 
test also gives  information  about  the degree of controllability and observability. 
The purpose of this  section  is  to  suggest  a  simplification  of the PBH test. 

A Simplified Observability/Controllability Test 

Consider  a  sequence of  equivalent n"' order state  space  representations 
{A,B,C,D}, corresponding to a  given  linear MIMO dynamic  system  with m inputs 
and p outputs defined  by a not  necessarily  minimal  state  space  representation R, = 
{A,, B,,  C,,  D,) where: 

( A ,  B ,   C }  = {T"A,T, T"B,, COT} 03.45) 

In Eq.03.45) T is an arbitrary, random (n X n) non-singular  matrix. 
Without loss of generality,  it may  be  assumed that  there are no  redundant 

inputs and outputs, i.e. that  the  rank  of B is m and  that  the rank of C is p .  The 
eigenvalues of A, which are, of  course,  equal to those  of A,, will be  denoted  by 
the  set: 

A(A,) = h(A) = h  = { A , )  , i=[l ,n] 03.46) 

Let Nb and N, be  orthonormal (n X n-m) and (n X n-p) matrices  satisfying: 

NIB = 0 ,  N:Nb = I , ,  k = n - m  and 

CN, = 0 ,  N,N, = I , ,  r = n - p  T 
03.47) 

The easiest way of calculating  the  orthonormal null space  matrices Nb and N, in 
E4.03.47) consists of  performing  the SVD of BT and C, respectively,  i.e.: 
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It should be pointed  out  that  all  matrices in Eqs.03.47) and 03.48) depend on a 
similarity  transformation T, i.e.: 

B = B(T) , C = C(T) , N, = N,(T) , N, = N,(T) , etc. (B.49) 

For simplicity of notation,  however,  the  explicit  dependence on T will be dropped. 
Before  stating  the main result  we  need  the  following  definition: 

Definition: Let  P = P o  be  a (k x k) matrix-valued  function of the (n X n) 
matrix T defined  for  almost  every  matrix T. A set  of  fixed  eigenvalues p,, j =  [l, 
k'] ,  k' S k ,  of P(T) is a  set of eigenvalues of P(T) that is invariant  with  respect 
to arbitrary variations of the matrix T. 

We can now prove the following  results. 

Theorem 1: The pair {A,,, B,,} is controllable if the  following (k X k), k = n-m 
matrix: 

P = N ~ A N ,  03.50) 

depending on the  similarity  transformation T, has no fixed  eigenvalues  with  respect 
to  arbitrary  variations of  matrix T. 

Theorem 2 (dual to Theorem 1): The pair {A,,, C,,) is  observable if the  following 
matrix  which  has  dimensions ( r  X r), r=n-p: 

R = N,TAN, 03.51) 

has no  fixed  eigenvalues  with  respect to arbitrary  variations  of  matrix T. 

Proof of Theorem 1: 

The PBH controllability test  requires  that the following [n X @+m)] matrices Qd, 
i=[l,n], are of full rank, where 

Q , ~  = [ A - ai l  1 B 3 03.52) 

Premultiplying a. with  the (k x n), k=n-m, orthonormal null space  matrix NbT, 
defined in Eq.(B.47), yields: 

N ~ Q , ~  = [ N ~ A  - A,N: I o ] (B.53) 

From  Sylvester's  inequality, and for  a  controllable  eigenvalue h, it follows that: 

rank [ N:QCi ] = k 03.54) 
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leading to: 

rank[W] = k where W = N:A - h,Nr 03.55) 

Now,  postmultipying  the (n X k)  matrix W in Eq.(B.55) with Nb and  taking  into 
account Eqs.(B.47) and (B.50), one  obtains: 

WN, = P - I,X, (B.56) 

Using  the  Sylvester  inequality  again,  since k < n, it follows  that in the general 
case: 

rank[P - Ikhi] i k (B.57) 

Of course, the  equality in Eq.p.57) guarantees  that  no  eigenvalue  of the (k X k) 
matrix P is equal  to X,, while in the case of strict  inequality  at  least one eigenvalue 
of P is equal  to X,. 

Considering Eq.(B.56), it may be concluded  that in Eq.(B.57), in the  case of 
a  controllable  eigenvalue Xi, the  inequality  will  hold  only  when  some  column  of Nb 
is in the null space  of W. However,  since the similarity  transformation  matrix T 
influences  matrices W and Nb in different  ways,  for an arbitrary  matrix T we  have: 

rank[P-Ikh,] = k i=[l ,n] (B.58) 

almost  always, which  proves  Theorem  1,  since  from Eq.(B.58) it follows  that  no 
eigenvalue of P = P(T) is  equal  to Xi. 

Equation (B.57) also  indicates  that, for a  special  selection  of the matrix T, it 
might  happen  that  some  of the eigenvalues  of P are equal  to  some A,, even  when 
this X, is a  controllable mode  of the pair (A,B}. However, as was  pointed  out 
earlier, in the  case  of an arbitrary T, it may  be  concluded  that the  condition: 

rank [ P(T) - Ikhi] c k (B.59) 

will  hold  only for fixed  eigenvalues  of P(T), which are exactly the uncontrollable 
eigenvalues in the pair {A,B).  This  proves  Theorem 1 as well as the following 
corollary. The proof of Theorem 2 is  the  dual  of  this proof. 

Corollary: All  fixed  eigenvalues  of  matrices P or R are equal to some  eigenvalues 
X, of A, and they represent  uncontrollable or unobservable  eigenvalues  of the pairs 
{A,,B,} or {Ao,Co}, respectively. 

Degree of Controllability/Observnbility: 

In the  case  that an  eigenvalue X, is  "almost"  uncontrollable, it is  natural to 
expect  that  some  eigenvalue pi of P Q  will be "almost"  fixed, i.e. for various 
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matrices T the eigenvalue p, will  be  located  in the s-plane  within  a  small circle 
around b. Therefore, as the degree r, of controllability  of A,, one may define the 
radius of the smallest circle in the s-plane,  centered at the  eigenvalue h, 
encompassing  all  locations  where, for various  arbitrary  matrices T, the 
corresponding  almost-fixed  eigenvaluep,  falls.  Thus, the degree r, of controllability 
of X, can be written  as: 

In other words, the "maximum"  operation  is  taken  for  that p, that is closest to h,, 
i.e. only  those p, which  correspond  to the mode A,. 

Since  the  concepts of controllability and observability  were  introduced in 
Chapter 1, an example  is  included with the end-of-chapter  exercises there to 
illustrate  the  application of  this  method. 

Algorithm Implementation 

The L-A-S listing  of  Algorithm COTS, which  performs  the  calculations for 
this  method, can be found in  Appendix  C. 
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In this  appendix  a  detailed  introduction  to  the L-A-S language is given. 
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List of Algorithms 

CHAPTER 1 
par,zo,dz(Lin,sbr)=A,B,diff 
par,z(gz,sub) =g 
A,B(qc,sub)=Qc 
A,C(qo,sub)=Qo 
A,eps(nrs,sub)=N,R,r 
A,B,C,D,xo,u,T(cdsr,sub) =y 
A(Reso,sub)=p,Rr,R 
A,B,C,D(Lalg,sub)=p,Rr,R 
A,B,C,D(sstf,sub)=p,W 

CHAPTER 2 
A,B,C,D,T,Eps,Isrb(CTDT,sbr)=Al,Bl,Cl,Dl 
Ac,Bc,Cc,Dc,T,Eps(SRcd,sbr)=Ad,Bds,Bdr,Cd,Dds,Ddr 
Ad,Bd,Cd,Dd,T,Eps(SRdc,sbr)=Ac,Bcs,Bcr,Cc,Dcs,Dcr 
Ac,Bc,Cc,Dc,T,Eps(BLd,sbr)=Ad,Bd,Cd,Dd 
Ad,Bd,Cd,Dd,T,Eps(BLdc,sbr)=Ac,Bc,Cc,Dc 
T,Ac,Nrm,N(Eat,sbr)=Ad 
T,Ac,Eps(Eatj,sub)=Ad 
T,Ac,B,Nrm,N(SIcd,sbr)=Ad,Bd 
T,Ac,B,Nrm,N(RIcd,sbr)=Ad,Bdo,Bdl 
T,Ac,Nrm,N(EATF,sbr)=Ad,E,F 
T,Ad,Egm,N,eps(Lnm,sbr)=Ac 
T,Ad,Eps(Lnmj,sub)=Ac 
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r,A@om,sub)=R 
p,A@olr,sub)=r 
n(fact,sub)=f 
N(fln,sub)=f 
A~,B~,T,~c~c(J~c~c,su~)=A~,B~o,B~~,P 
A,Bo,P,C,D,Eps(rSr4,sub)=Be,De 
A,Be,P,C,De,Eps(r4rS,sub)=Bon,Dn 
A,Eps(sqm,sub)=X 

CHAPTER 3 
A,B,C,T(str,sub)=At,Bt,Ct 
Ind(SMat,sub) =Sa,Si,Sli,Sld 
Q,mp,cut,Eps(Ind,sub)=Ind 
A(C#,sub)=Adeg 
vli,m(cind,sub)=Ind 
A,B,Eps(cfpp,sbr)=Tc,Ind 
A,B,Eps(cfns,sbr)=Tc,Ind 

CHAPTER 4 
Section 4.1 

A,B,C,D,no,Eps(SSRo,sub) = Ao,Bo,Co,Do,Deg 
A,B,C,D,nc,Eps(SSRc,sub)=Ac,Bc,Cc,Dc,Deg 
A,B,C,D,M(SSH,sub)=H,hM 
Ao,Bo,Co,Do,no(RoDN,sub) =D,N 
Ac,Bc,Cc,Dc,nc(RcND,sub)=N,D 

Section 4.2 
d,W,Eps,nos(TFRo,sbr)=Ao,Bo,Co,Do,no,Cond 
d,W,Eps,ncs(TfRc,sbr)=Ac,Bc,Cc,Dc,nc,Cond 
d,W(TRon,sbr)=Ao,Bo,Co 
d,W(TRcn,sbr)=Ac,Bc,Cc 
d,W,Eps,nos(TFDN,sbr)=D,N,no,Cond 
d,W,Eps,ncs(TFND,sbr)=N,D,nc,Cond 
d,W,u,T(cdtr,sbr)=y 
d,W,M(TFH,sbr)=H,hM 
.A,B,C(getd,sub)=n,m,p 
p,m(dpm,sub)=P 
m,L(ImL,sub)=ImL 
den,num(ccf,sub)=A,b,c,d 
d,GD(exD,sub)=G,D 
d,GD(exD,sbr)=G,D 
d,G,D(fgd,sbr)=GD 
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Section 4.3 
H,Eps,nos(HRo,sbr)=Ao,Bo,Co,Do,no,Cond 
H,Eps,ncs(HRc,sbr)  =Ac,Bc,Cc,Dc,nc,Cond 
H,Eps(HTF,sbr)=d,W 
H,Eps(HTFp,sbr)=d,W 
H,Eps(HTFm,sbr)=d,W 
H,Eps,nos(HDN,sbr)=D,N,no,Cond 
H,Eps,ncs(HND,sbr)=N,D,nc,Cond 
u,H(uhy,sub)=y 
H,f(Hf,sub)=Hf 

Section 4.4 
D,N,Eps(DNRo,sub)=Ao,Bo,Co,Do,no 
N,D,Eps(NDRc,sub)=Ac,Bc,Cc,Dc,nc 
D,N,M(DNH,sub)=H,hM 
N,D,M(NDH,sub)=H,hM 
D,N,Eps(DNTf,sbr)=d,W 
N,D,Eps(NDTf,sbr)=d,W 
no,n,f(Tscl,sub)=S 
D,N,Eps,ncs(DNRc,sbr)=Ac,Bc,Cc,Dc,nc,Cond 
N,D,Eps,nos(NDRo,sbr)=Ao,Bo,Co,Do,no,Cond 
Dl,Nl,Eps,ncs@NND,sbr)=Nr,Dr,nc,Cond 
Nr,Dr,Eps,nos(NDDN,sbr)=Dl,Nl,no,Cond 

CHAPTER 5 
u,y,Eps,nos(uyRo,sbr)=Ao,Bo,Co,Do,no,xo,Cond 
u,y,Eps,nos(uyDN,sbr)=D,N,no,Cond 
u,y,Eps,nos(uyTF,sbr)=dtt,Wt,no,C# 
N(pmt,sub)=Nt 
G,Eps(Elzc,sub)=Gr 
u,y,M(uyh,sub)=H,hM 
Do,Eps(ComD,sbr)=comd,F 

APPENDIX B 
A,B,C,Eps(Min,sub)=Ao,Bo,Co,Tt 
A,B,C,Eps(Min,sbr)=Am,Bm,Cm 
A,B,C,Eps(Kald,sbr)=Ad,Bd,Cd,T,dim 
R,Q,Eps(InOu,sub)=Qr,Qou 
A,Egv,Eps(ModM,sbr)=P 
A,sj,oj,Eps(ChaC,sbr)=Pj 
A,sig,Eps(ChaR,sbr)=Pj 
A,B,C,im,Eps(COts,sbr)=Resc,Reso,xxc,xxo 
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c.1 Introduction 

The Linear Algebra and Systems (L-A-S) language is a high  level  interactive 
conversational  language useful for  the  analysis  and  design  of  linear  control  systems. 
L-A-S is intended  to  be  a  handy,  easy-to-use  tool  for  verifying an analysis  technique 
or a control  design.  Some  of its unique  features are: 

1. As the user  types  and  executes L-A-S commands,  they are stored  in  the 
L-A-S interpreter memory,  allowing  them  to  be  reexecuted  within  the  same 
session  using the same or different  input. 

2. Within  the  same  session,  the  stored  sequence  of  commands can be: 
a. -saved  to disk  for future execution, 
b. “reexecuted sequentially  from the first command to the last, 
c. -reexecuted starting from any command  in the sequence, 
d. The user  can enter the TRACE mode where  commands are executed 

e. During  the  reexecution, it is  possible  to  stop  the  sequential  execution 
one at a  time. 

at any  point  in the sequence. 

3. When  the  execution of an L-A-S program is stopped, it is possible  to: 
a.  -display and/or change any variable  previously  defined, 
b.  -type  and  execute  any  additional  command  using  previously  defined 

c. --define  new variables, 
d. -modify  any  existing  command, 
e. -delete  any  existing  command, 
f. -include  new  commands, 
g. “reexecute existing  commands  individually, 
h. -resume  normal  sequential  execution  of  the  modified  sequence  of 

i.  -save  the  modified  sequence  to  disk, 
j. “declare the  sequence as an L-A-S subroutine, which allows  the 

sequence  to  be  invoked in a  later session  simply  by  specifying the 
name  of the subroutine as well as the  names  of  inputloutput  variables 
to  be  used/defined by the  subroutine, and 

variables, 

commands, 

k.  -obtain  on-line  help  on  any  aspect  of L-A-S usage. 

These  features make the L-A-S software/language  a  unique  computational 
environment  for quick  and  user-friendly  development  and  testing  of  a  wide  variety 
of algorithms in control,  systems and  signals  areas.  Once the algorithm  has been 
tested  and  developed  using L-A-S, it could  later  be  easily  implemented  and  repro- 
grammed  using  any  programming  language or CAD  package. Also noteworthy is 
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the availability  of  interface  programs  to  exchange  data between L-A-S and other 
engineering  design/analysis  packages.  This  is  discussed  later in  this  appendix. 

All of the  more than 200 existing L-A-S commands  and  subroutines are 
based  on  reliable  public  domain  software  packages,  such as Eispack and Linpack, 
or on  numerically  proven  algorithms  published in technical journals. These 
commands  and  subroutines  include: 

standard  matrix  manipulation 
array  definition  and  plotting  (including  3-dimensional  plotting) 
classical SISO system analysis and  design  procedures  (Bode, 
Nyquist,  Root-Locus) 
solution  of  differential  and  difference  equations 
calculation  of  system  responses  in  frequency  domain 
Fast  Fourier  transforms 
digital  filter  design 
optimal  control 
solution  of  Riccati  and  Lyapunov  matrix  equations 
controllability and  observability  tests 
state and  output  feedback  pole-placement  in MIMO systems 
singular  value  decomposition 
similarity  transformation 
eigenvalue and  eigenvector  calculation 
full or reduced order  observer  design 
LQR,  LQG,  and  LQG/LTR  design 
minimal  realization 
system  identification 
system  linearization 
transformation  from  continuous-time  system  representation  to  an 
equivalent  discrete-time  representation and vice  versa 
polynomial  matrix  manipulation 
operations with linear  spaces  and  subspaces 

L-A-S lends  itself to simple  modification  of  existing  subroutines or 
developement  and  inclusion  of  user  written  subroutines. The on-line  help  facility 
contains  quick  information  about the syntax  and  semantics  of  all L-A-S commands 
and subroutines.  This  appendix  contains more  in-depth descriptions  of the L-A-S 
commands as well as helpful  examples of their use. 

LA-S Language: The L-A-S language  is  similar  to  reverse  Polish  notation in 
that  inputs  to a function are entered first, then the operator or function  followed  by 
an  equals sign and, then,  the  output  variables. As each  statement  is entered, the 
operation  defined by  that statement  is  performed prior to  allowing the user  to  input 
the next statement. 
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Consider  the  following  simple  example  program  consisting  of one comment 
line and 7 L-A-S statements: 

- ExampCl 
/ 1 ~ / 2 l 3 1  I (dma,t)=B 
, l/ I , 112 I I -3 (dma) =A 

A,B(+)=C 
C (-1 , t) =Ci , det 
Ci,C(*)=D 
Ci,B(-) ,A(+,t)=Res 
C,Ci,D,Res(out)= 

The first line, Statement 1, is  a  comment. It usually contains  a  program  name, 
which, in turn, corresponds  to the file name  with  the  extension ".DPF" containing 
this  program. The next  two  statements, 2 and 3, define  matrices A and B given  by: 

i o  1 0 ;  I O  0 0 ;  

; 2  0 - 3 ;  1 2  3 0 ;  
A = I O  0 l !  ; B = I O  1 O I  

The above  matrices A and B could also  be defined  by the following  more  obvious, 
but  more  involved  statements: 

Q11,0/0,0,1/2,0,-3(dma)=A 
olo,o/o,l,o/2,3,0(dma)=B 

It is our feeling  that  the  versions which  avoid entering of  both  leading  and trailing 
zeros are more  convenient,  particularly  for more  experienced  users.  We  believe  that 
the readers  will soon  become  proficient in L-A-S and  that  they  will  prefer  to  use  a 
more  concise  version of  the  DMA (define  matrix)  operator.  Note  that  in  the 
suggested  version of the DMA operator, instead  of entering  zeros  explicitly, it 
suffice  to enter a comma "," as an element  delimiter and the slash "P' as a  row 
delimiter. 

In  Statement 4 the  matrices A and B are added  to  form  matrix  C.  Statement 
5 calculates the inverse of  matrix C and its determinant. The results are assigned 
to Ci and det, respectively.  Multiplying Ci  with C, Statement 6 places  the result, 
the  identity  matrix, in D. Statement 7 subtracts  matrix B from  Ci  and  then  adds 
matrix A to  the  difference. The result  is  placed  in  matrix  Res. Finally,  Statement 
8 types matrices C, Ci, D and Res  to the screen. 

The results  obtained on the  screen are as follows: 

C 
.ooo 1.000 .ooo 
.ooo 1.000 1.000 

4.000 3.000 -3.000 
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Ci 
-1.500 .750 .250 
1.000 .000 .000 

-1.000 1.000 .000 

D 
1.000 .000 .000 
.000 1.000 .000 
.000 .000 1.000 

Res 
-1.500 1.750 .250 
1.000 -1.000 1.000 

-1.000 -2.000 -3.000 

Organization of LA-S: L-A-S consists of  two  different  types  of  functions. 
The  first,  called interpreter commands (IC) are usually  initiated by typing  the  three, 
or four,  letter  command, or its  abbreviated  version  consisting  of  one, or two, 
characters. L-A-S then  performs  some  task  which  allows  the  user  to  view,  change 
or otherwise  manipulate  the  current L-A-S program  and  data.  The  second type of 
statement  is  called  an operaor sraremenf (OS). Operator  statements  have  the 
following  structure: 

<label>:<inp-field>( <op-field> )=<out-field> 

The  terminal  symbols ":", "(", ")" and "=" are used  as  field  delimiters. 

The label, ( <label> ) which  is  optional,  is  used in conjunction  with  program 
control  operators for iterative and  recursive  calculations. 

The input-field, ( <inp-f ield> ), contains  variable  names  to  be  used by the 
operator. 

The operator-field, ( <op-field> ), contains  the  mnemonic  name  of  the 
function  to  be  performed. An operator  field  is  always  enclosed  in  parentheses. 

The output-field, ( <out-f ield> ), contains  the  variable  names  to  which  the 
outputs of the  operator are  assigned. 

Statements 2 through 6 and 8 in  the  previous  example  program are  examples 
of single operator sfatements (SOS), i.e. each  statement  contains  only  one  operator. 
Statement 7 shows  the  use  of multiple operator statements (MOS) since  it  contains 
more than one  operator. 

Note  that  the  operator  fields  in  Statements 3, 5 and 7, in  addition  to the 
operator  name,  contain  the  operator  flag "t", separated  by  comma. If  used,  the flag 
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"t" instructs  the L-A-S interpreter  to  display on screen the results  of  this  operator. 
In  addition to the  flag "t", it is also possible  to  use  either: 

"El , IILII or IIJJEII ( or llell , "1" or "1,e" ) 

The functions of  these  operator  flags are, respectively: 

0 -to  display  results on screen in "E" scientific  format with 5 

0 -to print  results on the specified  print file 
0 -to print  results on the  specified  print file in "E" format 

"significant digits 

Other  options are described in the  on-line Help file. 

Multiple  Operator  Statements: To emphasize  the  usefulness of the multiple 
operator  statement, (MOS), and  to illustrate the  use  of some  other L-A-S operators, 
consider  the  task of  building  the (n x n) matrix A,, Eq.(3.13) defined  by: 

AC = 

0 0 1 ... 0 I 
I 

. I  

- 1  

- 1  
0 0 0 ... 1 ; 

-a, -a, ... -%-l I 

given an (n+ 1)-dimensional  row a = I U, a, . , . U,,-, a, containing the coefficients 
U, of  the  characteristic  polynomial a@), u(s) = det(s1-Ac),  of  Ac. 

Thus,  given  the row a, the matrix  Ac  may  be built by the  following two 
L-A-S multiple  operator  statements,  see the L-A-S subroutine CCF.SUB: 

1 a (cdi) (dec) =n 
2 n(dec) ,n(dim) (shr) ,a,n(ctc)  ,-l(s*)  (rti,t)=Ac 

Instead  of  these  two MOS, the  matrix  Ac  may also  be  built by the following 
sequence of single operator stutements (SOS): 

7 
8 

a (cdi) =T1 
T1 (dec) =n 
n (dec) =T1 
Tl,n(dim)=T2 
T2 (shr) =T3 
a,n(ctc)=T4 

TI,-l(S*)=TS 
T3,TS(rti,t)=Ac 

Extract column  dimension of a =$ T1 
Decrement T1 =$ n 
Decrement n =$ T1 
Define Identity matrix IT,,n =) T2 
Shift T2 by one column to right =) T3 
Cut (partition) by column  a =) T4;  T4 
has n  columns 
Multiply T4 by the scalar -1 =) T5 
Concatenate T3 and T5 (row tie) by 
rows =) Ac and display  result on 
screen 
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Each MOS defines  a number  of  temporary  variables Ti,  i=[l,k-l], k  being 
equal  to the number  of  operators in a MOS. After  completion  of  a MOS, these 
variables are deleted  and they are not  available  for  further  use.  Up to ten operators 
may be  combined in a MOS. Only  variables  appearing  in  the  operator  fields  may 
be used in input  fields of subsequent  statements. 

To better understand the implementation  and  use of MOS, consider  once 
more  the MOS 2 discussed  above. In accordance  with  the  algorithm  representation 
given in the  Preface, each operator may be  represented  by a block  which  performs 
a  specific  calculation. In other  words, the MOS 2 from before may be  interpreted 
by the sequence  of  calculations  represented in Fig. C. 1. The variables Ti, i=[l,5], 
appearing in Fig. C. 1, are referred  to as generalized  variables <gen-var>. The 
syntax of a  generalized  variable may be  represented  by  the  following  recursive 
definition: 
<gen-var> := <inp-field> ( <op-field> ) 
<inp-field> := <blank>l<inp-arg>l<gen-var>l<inp-arg> 

<inp-field>l<gen-var> , <inp-field> 

.................................................................................... 

.................................................................................... 
Figure C. 1. Calculation Sequence for MOS AC 

where: <blank> indicates  a  blank  space, 
drip-arg> indicates an input  argument, and 

I 'l represents  a  possible  option. 

In other  words, an input field "through" an operator, i.e. 

( cop-f ield> ) 
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defines  a  generalized  variable <gen-var>, consisting  of  a "list" of  both 

<inp-arg> and <gen-var> 

* ope,<operator-name> 

Also,  recall  that  some  of  operators  used in defining  a  generalized  variable may have 
more than one output  argument, as is  the  case in our  example with the CTC 
operator. By the  very  definition  of  the MOS and  the  concept  of  a  generalized 
variable, it should  be  realized  that  a  generalized  variable  always  corresponds to the 
first output  argument of  the operator used. 

Post-Fix Notation: To  get  full  benefit  from the L-A-S software,  users are 
urged  to  master  the  reverse  Polish  (post-fix)  notation  and  the structure and 
operation of the MOS. 

To assist  readers in this  task,  let us  review  briefly the basic  characteristics 
of the  conventional  "in-fix"  notation. 

If it is  desired  to  add (or multiply)  two  numbers (or matrices), say A and 
B, and  to  place  the  result  in C, the  conventional  in-fix  notation  is: 

C = A + E  

where  the  opertor "+", addition, is  placed in between the input  arguments A and 
B. The result of the opertion,  variable C, is on the left, separated  from the 
structure "A + B" by the delimiter "= ' l ,  the  equal  sign. 

This  in-fix  notation  works  fine  for  "binary"  operators,  i.e. for operators 
requiring  two  input  arguments. The operator can  easily  be  placed  between  these 
two  input  arguments. In the case of "unary"  operators,  operators  requiring  only 
one input  argument, say  matrix  transposition or inversion, it is  customary  to  use 
superscripts  as "T and "-l", i.e. 

AT and B-' 

leading,  for  instance, to: 
D = A" + B' 

The real  problem  occurs in scientific  calculations  where one is faced  with "ternary" 
and, more  generally,"n-nary"  operators  (algorithms)  requiring  three or more  input 
arguments. As an example  of  a  ternary  operator  consider  building  of  the  con- 
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trollability matrix Q,, Definition 1.4, Section 1.3.4, which,  in  general,  depends  on 
three  input  arguments {A,B,k}, i.e.: 

Q, = [ B I AB I I Ak"B ] (C.2) 

where  the  integer k satisfies 1 5 k 5 n. 
A good  example of an "n-nary"  operator, for n=4, is the algorithm L W ,  

natural  log  of  a  square  matrix A, Eq.(2.63),  Section 2.3.1, which, as is explained 
there,  depends on the  following  four  input  arguments: (A, T, N, X,,,} and is given 
by: 

N 

h ( A )  -1: C ( I  - A"')' 
T i - 1  i 

where r is related  to A and X,,, by Eq.(2.64). 
The in-fix  notation  "followers"  attempted  to  resolve  these  notational 

problems by resorting  to  the  concept  of the "subroutine" or "macro" widely  used 
by various  computer  languages.  Thus,  the  extensions of the in-fix  notation  to n-ary 
operators is: 

Q, = Qc(A,B,kj and In A = LNM(A,T,N,XJ 

in the  cases of Eq~(c .2)  and (C.3), respectively. 

either: 
Consider now the  unlikely  situation for which it is  required  to  calculate 

-the  product  of QC and In A, or even 
"just In A where A contains  the  first n columns  of QC in Eq(C.2). 

Then, the  in-fix  approach,  provided  that  all  input  arguments are already  defined, 
would be, for example: 

QC = Qc(AtB,k) 
In A = LNM(A,T,N,X,) 
Res1 = QC * In A 

in the  first  case, and 

QC = Qc(A,B,k) 
QC1 = first n columns from QC 
Res2 = LNM(Qcl,T,N,X,) 

in the second  case.  However,  the  post-fix, or reverse  Polish,  notation offers the 
following  unified  notation: 

A,B,k(Qc) ,A,T,N,h,(LNM) (*)=Res1 
or A,B,k(qc) ,n(ctc) ,T,N,X,(LNM)=Res2 
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in the above  two  considered  cases,  provided,  of course, that: 

ternary operator A,B,k(Qc)=Tl or A,B,k(Qc) =) QC 
binary  operator Tl,n(ctc)=T2 or X,n(ctc) =. Xn and 
n-nary, for n=4, operator n,N,T,A,,,,,(LNM) =Res or A,N,T,X(LNM) =) Ac 

are defined and available. Similarly, a  version  of  the  in-fix  expression for D, given 
by Eq.(C.l), is: 

D = A" + inv(A) 

while the post-fix  notation  becomes: 
A(t),B(-l)(+)=D 

where  symbols (t), (-1) and (+) denote: 

-unary operator of  matrix transposition: ( t ) 
-unary operator of matrix  inversion (-1 ) 
-binary  operator of matrix addition (+) 

It  is worth  mentioning  at  this  point  that  the  way the algorithms are described in this 
book (see the Glossary)  "mimics"  the  post-fix  notation  discussed  here. This is the 
same  notation  adopted by Hewlett-Packard for their  calculators. 

Output  Operator  Options: Some of the useful options of the operator 
(out) = will be briefly reviewed here. The versions of the operator (out) = given 
below: 

Res (out) = 
Res(out,t,O)= 
Res(out,t,l)= 
Res(out,t,2)= 
Res  (out,  e) = 

display the previously  mentioned  matrix  Res on the  screen  in the following forms: 

Res 
-1.500 1.750 .250 
1.000 -1.000 1.000 

-1,000 -2.000 -3.000 

Res 
-2. 2. 0. 
1. -1. 1. 
-1. -2. -3. 
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Res 
-1.5 1.8 .3 
1.0 -1.0 1.0 
-1.0 -2.0 -3.0 

Res 
-1.50 1.75 .25 
1.00 -1.00 1.00 

-1.00 -2.00 -3.00 

Res 
-.15000E+01 .17500E+01 .25000E+00 
.10000E+01 -.10000E+01 .10000E+01 

-.10000E+01 -.20000E+01 -.30000E+01 

On the other  hand,  the  versions: 

A(out,L)= 
A(out,L,O)= 
A(out,L,l)= 
A(out,L,2)= 
A(out,L,e)= 

print the matrix  Res  on  the  specified  print  file in the  same  forms as given  above. 

The  versions: 
Res(out,t,3)= and  Res(out) = 

as well as 
Res(out,L,3)= and Res(out,L)= 

are equivalent.  More  details on these  and  other  options are available in the  Help 
file. 

Getting Started: L-A-S software may be accessed in any subdirectory  provided 
that in this  subdirectory  the  file DEFDSK has  been  copied from the master 
subdirectory,  e.g.  C:\LAS\. To begin  an L-A-S session,  simply  type LAS, then, 
after two  screens, the L-A-S interpreter  issues  a  prompt: "*", informing the user 
that it is ready  to  accept L-A-S commands. Both interpreter  commands and 
operator statements may be typed either by upper or lower  case  letters,  However, 
the L-A-S interpreter makes the distinction between  upper  and  lower cases in 
variable  names and  statement  labels. 

During an L-A-S session, DOS commands,  such as changing  directories, 
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etc., may be  sent to the command processor by first  typing an exclaimation  mark 
"!" and then the  system  command. This allows file manipulation  without  exiting 
L-A-S. 

On-line  help is available on every  aspect  of L-A-S by typing: 

HELP (for help  subjects) 
HELP,ALL (for general  help on  the L-A-S interpreter) 
HELP,OPE (for a  brief  description of all  operators) 
HELP,IC (for a  brief  description of all  interpreter  commands) 
HELP,SUB (for a  brief  description  of  available  subroutines) 
HELP,EXA (for example  programs) 
HELP,LIM (for a  description of  the  limitations  of L-A-S) 

To wipe  out  all  existing  variables  and  program  statements  and  reset the 
program  controls  to  their  default  values  during an L-A-S session,  simply type BEG 
(B) (for BEGIN). 

To end the  current  session of L-A-S type either END or QUIT (Q). 

Program Creation: An L-A-S program may be either read  in  from  disk or 
typed  in interactively on the keyboard by typing  a  sequence  of  operator  statements. 
All operator statements which are typed are memorized  and  will  remain  in the 
interpreter memory until they are manually  removed or the session is ended. 
Therefore, the user  may type in a  sequence  of  statements  to  solve a problem with 
particular  input data, recieve  the  output,  change or modify the sequence  of 
statements if desired, and reexecute  the  same  sequence of operator  statements with 
the same  input  data or different  input  data.  Note  that  statements which evoke error 
messages are not  saved in the current program. 

Another  aspect of program  creation  is the echo feature in L-A-S. During the 
current L-A-S session, all  user  input is written to a file named ECHO.DAT. This 
file is erased at the beginning  of  each new L-A-S session. The content of the 
ECHO.DAT file can  be  extremely  useful  by allowing  the  user  to  review the entire 
L-A-S session after the  session  has  ended.  Also, the content  of  this file may be 
used  in  conjunction  with  the  interpreter  command FILE to  repeat the previously 
executed L-A-S session  exactly. 

Also  note  that  all  printer  output  from L-A-S goes  to  a  specified "print file" 
rather than directly  to  the  printer. The default  print file name is LASR but can be 
changed. The user  can  access the print file after the current L-A-S session to 
modify or view  the  contents  using  any  ASCII  text editor. This feature also enables 
the user to write  some  output to the print file, rename the default print file, and 
then  view the previously  specified  print file from  within the current L-A-S session. 
Be forewarned that the current default  print file may  not be viewed  while it is the 
default. This is inherently  obvious  since  a file cannot  be  opened if it is already 
opened. 
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Data  Types: Scalars,  vectors,  matrices,  polynamials,  polynomial  matrices and 
character  variables may be defined  in L-A-S. All variable names  however are 
required  to be four  characters long or less. 

Simple Example: A simple  example  is  included  next  to  illustrate the use of L- 
A-S. Each OS and IC is  reviewed. The following L-A-S program, named  Sim-Ex 
(Simple  Example),  illustrates  some  basic L-A-S features. 

1 S im-Ex 

3 Matrix-definition-Inversion 
2 0,1,0/0,0,1/-4,-6,-4(dma)=Ao 

4 Eigenvalues-&-Display 
5 a:,l/,,l/-4,-6,-4(dma,t)=A 
6 Ao,A(-,t)=difA 

8 A  (egv, t) =eg 

- 

- 
- 

7 A (-1) =Ai 

9 eg(out,t,l)= 
10 - Enter-nli-t-nty 
11 and- j , a 
12 Tsto) = 
13 A ( t )  ,A(*,e)=AtA 
14 AtA(out,L,2)= 
15 A, eg,  {Data} (wbf) = 

Statements 1, 3, 4, 10 and 11 are comments  containing  various 
information  and  suggestions. 
Statements 2 and 5 define  equal (3 x 3) matrices Ao and A. 
Statement 5 has  the label "a". 
Statement 6 calculates Ao - A * difA; which is  a  zero  matrix. 
Statement 7 calculates  the  inverse  of A; A' =) Ai. 
Statement 8 calculates  and  displays  eigenvalues of A; A(Egv) 3 eg. 
Statement 9 displays  eg with only one decimal digit. 
Statement 12 is a "dummy," but a  very  useful, "STOP" statement. 
Statement 13 calculates ATA =) AtA, and displays  result in the  E 
format. 
Statement 14 writes the array AtA on the print file LASR  with two 
decimal  digits. 
Statement 15 stores  arrays A and eg on the "Disk  Binary  File:" 
Data.DBF.  These  arrays  could be  used as input data in any 
subsequent L-A-S session. 

After  initiating an L-A-S session  and  typing  the above  statements one at a 
time, the following  should  be  obtained  on the screen: 

* - Sim-Ex 
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* 0,1,0/0,0,1/-4,-6,-4(d~a)=Ao 

* - Matrix-definition-Inversion 
* - Eigenvalues-h-Display 
* a:,l/,,l/-4,-6,-4(dmart)=A 

A 
.ooo 1.000 .ooo 
.ooo ,000 1.000 

-4.000 -6.000 -4.000 

* Ao,A(-,t)=difA 

<A0 >- <A > = < d i f A >  
.ooo .ooo .ooo 
.ooo .ooo .ooo 
.ooo .ooo  .ooo 

-3 
-2.000 .ooo 
-1.000 1.000 
-1.000 -1.000 

* eg(out,t,l)= 
eg 

-2.0 .o 
-1.0 1.0 
-1.0 -1.0 

* - Enter-nli-h-nty 

* - and-j ,a  

* (sto)= 

* A(t)  ,A(*,e)=AtA 

<.T1 > * <A > = < A t A  > 
.160003+02 .240003+02 .160003+02 
.240003+02 .370003+02 .240003+02 
.160003+02 .240003+02 .170003+02 

* AtA(out,L,Z)= 
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* A, eg,  {Data} (wbf) = 

At this  point it is  suggested  that  the  reader  enter  the  following  interpreter 
commands  and  monitor  their  effects on the  program  execution,  although it may 
Seem boring and time  consuming.  After  that  you  will  grasp  the  basic  features 
which  will  enable you to effectively use  the software in solving  more  complicated 
problems,  even  without the necessity  of  the  rest  of  this  appendix! 

* P12110 
* n  
* S  

* y  * ,a 

* nl 
* j,a 
* l  
* nt 
* S  

* j,a 
* nl 
* j,a 
* t  
* l  
* c  
* tra 

* c  
* S  
* ntr 

* b  
* S  
* n  

* e,10,12 
* e,3,4 

* jra 

* w,prgl 

* rrprg1 

(or: pro,2,10; or: program,2,10) 
(or: names) 
(or: status) 
(or: prlisting) 
(or:m jump,a; or: jump,5) 
(or: nlist) 

(or: list) 
(or: ntype) 

(or: type) 

(or: con; or: continue) 
(or: trace) 

<three times> 

(or: ntrace) 
(or: wpf,prW) 
(or : begin) 

(or : rpf , prgl) 

* P  * inc,2,_New_version (or: include,2,-xxx) 
* cha,l,Ex\Example (or: change,l,Ex\New-Vers.) 
* Pr * w,prg2 (or: wpf,pgr2) 
* P  
" 4  (or: quit; or: end) 

These interpreter  commands  perform the  following: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

(1) "display on screen  listing  of  Statements 2 to 10 of current L-A-S program, 
(2) "display names  and  dimensions  of  currently  defined  arrays  (matrices),  i.e.: 
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A0 A difA  Ai eg AtA 
<'3, 3 > < 3 ,  3 >  < 3 ,  3 >  < 3 ,   3 >   < 3 , 2 >   < 3 , 3 >  

(3) "display information  about  the L-A-S interpreter "status," i.e.: 

Instr,PrgC,Char,Mem,List,TyperTrace,F-keylTestl#Datal 
15 15 246 0 0 0 0 0 0 51 

#Matr 
6 

This information  includes: 

Instr = 15; Program in L-A-S interpreter  working  memory  has 15 statements 
PrgC = 15; Program  counter is at Statement 15, i.e. at the end 
Char = 246;  Program  has  246  characters 
Mem = 0; Interpreter  is in the "MEMORIZE"  mode,  i.e. 

List = 0; Interpreter is in the "LIST" mode 
Type = 0; Interpreter  is in the  "TYPE" mode 
Trace = 0; Interpreter  is in the "NO TRACE" mode 
F-key = 0; Interpreter is in the "NO Function-KEY"  mode 
Test = 0; Interpreter  is in the "NO TEST" mode 
#Data = 51 ; Total  number  of  elements in defined arrays is = 51 
#Matr = 6; Total  number of defined arrays is = 6 

any  newly  typed operator  statement  will be added  to the program 

The above  interpreter  "modes" are the  "default" modes. More details about  the 
modes  will  be  given  later. To continue with the above  listing of ICs,  number: 

-writes  all  program  statements on the print file LASR, 
"jumps back  to  the  statement with the  label "a", and reexecute  sequentially 
all  statements up  to the  first  encountered (sto)= statement  (At  that  point 
interpreter is ready to  accept any operator  statement or interpreter 
command.), 
"sets interpreter  status to  the "NO LIST"  mode, i.e. during  subsequent 
program  reexecution  the  statements wil l  not  be  displayed  on screen, 
-"jumps" to the statement  with  the  label "a" and reexecutes down to  the 
'(sto)= statement, but  no  statement  will  be  displayed, 
-sets interpreter  status back  to  the default "LIST" mode, 
"sets interpreter  status to  the "NO TYPE mode, i.e. during  reexecution 
the operator  field  flags "t", "e" or "L" will  be  ignored, 
Interpreter  "status" has  been changed:  PrgC = 12, Mem = 1, Type = 1, 
i.e. it is in "NO MEMORIZE" and "NO TYPE" modes.  (Any  typed 
statement will only  be  executed,  but it will not be  added  to the program.) 
-same as ( 3 ,  but  now during  the  reexecution,  only  the  statements  will be 
displayed (All operdtor field flags are suppressed.), 
-sets interpreter to the "NO LIST" mode, 
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-same as (7), but now neither  of the operator  flags are in effect, nor the 
will  any  statements  be  displayed  during  reexection  (Note  that in this  case 
only  the  responses  to (out)= operators  are shown  on the screen.), 
"sets the  interpreter back to the  default TYPE mode, 
-sets the interpreter back  to  the  default LIST mode, 
-reexecutes  that  part  of  the  program after the (sto)= statement  until 
eiither  the  last  statement, or the  next (sto)= statement, 
-sets  the  interpreter  status  to  the  "TRACE"  mode, 
-jumps  back  to the statement  with  the  label "a", but  now since  the  status 
is "TRACE",  only  that  statement will be  reexecuted.  (After  that  the  inter- 
preter  "halts" in the same  manner  as if it encountered  the  (sto) = statement.) 
At this  point the user  may  type any operator  statement or interpreter 
command. I t  is suggested, as a response to prompt "*'l, to  type, for 
instance: 

* eg(out)= 

* (rbf)=x,y,  (Data) 
* x,y(out)= 
* S  
* n  

* AO(-l,t)=X,y 

and  to  observe  changes in the interpreter  status as well as number of arrays 
defined, 
-the  three "c" (or: continue)  interpreter  commands  permit  execution  of  the 
three  statements  located  below  the  statement  labeled "a", 
The program  counter  is now at 5+3 = 8, since  Statement 5 has label "a". 
"sets the  interpreter back  to  the  default "NO TRACE"  mode  (As  a  result, 
all statements up to  the first (sto)= statement  will  be  reexecuted se- 
quentially.), 
The current L-A-S program is stored in the  program file under  the  name 
Prgl. 

The file name is Prgl.DPF. "DPF" (Disk  Program  File)  is  the  standard file 
extension. The programs  stored on DPF can  be retrieved  and  reexecuted  with the 
same or different input data. Also, if desired, as will be seen  below,  some of the 
statements may  be changed,  deleted, or new ones may  be included. 

(23) "deletes all  existing  arrays  and  statements,  and  all  interpreter  flags are reset 
to their  default  values  (This  is  equivalent to  ending the L - A S  session  and 
initiating  another  one.), 

(24) -the  message: 

The L-A-S symbol  table is empty 
Insrt,Prg.C,Char,Mem,List,Type,Trace,F-key,Test,#.Data, 
0 0 0 0  0 0 0 0 0 0 

# . Matr 
0 
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indicates  that system  table is empty;  neither  program  nor arrays have  yet  been 
defined, 

-the  message: 

The L-A-S symbol t a b l e  is empty 

indicates  that  no  arrays  have yet  been defined, 

-reads the program  previously  stored  on  the DPF and prepares for 
reexecution and/or modifications, 
"erases that  part  of  the  program  between  Statements 10 to 12 (Statement 
numbers are automatically  resequenced.), 
"erases that  part  of the program  between  Statements 3 to 4, 
"displays the  modified  program  on  the  screen, 
"adds a new comment after Statement  2  (This new statement has the 
statement  number 3.), 
-changes the string of characters "Ex" in statement 1 to  "Example", 
-prints  the  listing  of the modified  program  on  print file LASR, 
"stores the  current  program on DPF  under the name Prg2, 
-displays  the  current  program  on  screen,  and 
"quits (ends)  the  current L-A-S session. 

To get  more  insight  into  the L-A-S interpreter  functioning, it is suggested  that the 
reader  use  any  text  editor to examine  the  contents of: 

print  file: LASR 
and "ECHO" file:  ECHO.DAT 

More details  about  the used operator  statement  and  interpreter  commands  may be 
found  in the Help file. 

c.2 A List of LA-S Operators 

MNEMONIC NAME DESCRIPTION 

* Matrix  (array)  multiplication . 
+ Matrix  (array)  addition 
- Matrix (amy) subtraction 
-1 Matrix  (array)  inversion (and determinant  calculation) 
ABS Absolute  value  of an (n X m) array or integer 
ALT Alternate  polynomial  matrix  forms (PMF-c & PMF-r) 
ATG ArcTanGent  of an (n X m) array or integer 
BEL Activates  computer  bell 
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Calculation  of the frequency  (Bode)  diagram 
Complex  function  multiplication 
Complex  function  division 
Alternate  PMF-c =$ PMF-r 
Cascade  connection  of  two  subsystems 
Define  column  dimension of matrix 
Response of a  linear  continuous  system in state space 
Continuous  roots of a discrete characteristic  polynomial 
Polynomial  roots.  (Char.  poly. * Eigenvalues) 
Closed  loop SlSO system 
Copy  matrix into  the  polynomial  matrix  form (PMF) 
Copy  integer  into  a  scalar  variable 
COS(x)  of  an array or integer 
Controllability and observability  test 
Copy  polynomial  matrix  into  a  genetal  matrix 
Matrix  (array)  cut by columns  (partition) 
Matrix (array) column  concatenation  (columns  tie) 
Matrix (array) cut by  row (partition) 
Cube  root of an array or integer 
D(s)  in PMF-r  (monic) =) PCI/POI 
Define  character  string  (variable) 
Define  column  vector  with  integer  entries 
Define  diagonal  matrix 
Simulation of nonlinear discrete systems 
Decrement (n X m) array  elements by one 
Define file with  ASCII characters 
Direct  fast  Fourier  transform 
Definition  of "inverted" identity matrix 
Definition of an  identity  matrix 
Time response  plotting 
Time  response  plot-only  points are displayed 
Plot with log (logarithmic)  scale 
Plot with log scale-only  points are displayed 
Define  matrix with real  number  entries 
Define  pseudo-random  matrix 
Define  scalars  (input  from  terminal  keyboard) 
Define  selector  (permutation)  matrix 
Define  vector (joins scalars  into a row vector) 
Definition of a  zero  matrix 
Matrices;  exp(A7), E and F; discretization 
Diag  matrix  of  f(egi);  f(x) =x  I exp(x)  ln(x) I sq(x) 
Eigenvalues =) characteristic  polynomial 
Eigenvalues of a square matrix 
Eliminate  matrices from L-A-S working  memory 

BOD 
C* 
C/ 
C2R 
CCON 
CD1 
CE3 
CHD 
CHE 
CLS 
CMP 
COIN 
cos 
COT 
CPM 
CTC 
CTI 
CTR 
CUR 
D2NV 
DCH 
DCV 
DDM 
DEI-DE9 
DEC 
DFI 
DFT 
DIIM 
DIM 
DIS 
DISD 
DISL 
DLD 
DMA 
DPM 
DSC 
DSM 
DVC 
DZM 
EATF 
EFJF 
EGC 
EGV 
ELM 
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ELZ 
EMD 
EXM 
EXP 
F* 
F/ 
FCON 
GS 

GTS 
IFJ 
IFT 
INC 
LNP 
WPM 
INT 
INV 
J F R  

JMP 
KRPR 
LAP 
LIS 
LNM 
LOG 
LYP 
MAX 
MCP 
MIN 
MTF 
MTV 
NBE 
NIK 
NINP 

NLI 
NOP 
NRC 
NRR 
M S  
NTE 
NTR 
NTY 
NYQ 
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Eliminate  last  zeros in a row 
Extract main  diagonal  from  a  matrix 
Extract  matrix (or scalar)  from  a  matrix 
The exponential  function  element-by-element of an array 
Function  multiplication 
Function  division 
Feedback  connection  of two subsystems 
Evaluation  of G($); G = polynomial  matrix; S = a+jb, a 
complex  number 
Generate  time  scale 
If jump (conditional jump) 
Inverse  fast Fourier transform 
Increment (n X m) array  elements by one 
Matrix/array  input from  terminal  keyboard 
Matrix/array  input with specified  dimensions 
Integer  parts of (n x m) array  elements 
Pseudo  matrix-inversion  using  singular  value  decomposition 
Modal  matrix  and  Jordan  form  of  a  square  matrix  without 
generalized  eigenvectors 
Unconditional jump 
Kronecker  product  of  two  matrices 
Solution of the  linear  matrix  Lyapunov  equation 
Enter  list  mode 
Ln(A) of  an (n  X n) array  (square  matrix) 
Ln(x), element-by-element, of  an (n x m) array 
Solution  of  the  matrix e q .  AX + XB = C 
Maximum element of  an array 
Matrix  copy 
Determination  of  the  minimal  realization  (Hessenberg) 
Calculation  of  the  matrix  transfer  function 
Matrix  to  vector  transformation 
Deactivates  computer bell 
Frequency  (Nyquist)  response  plotting (x-y plot) 
Define  column  dimension  of  a  polynomial  matrix  in PMF, 
i.e. # of inputs 
No list-exit  list  node 
No  operation 
Matrix  norm  and  norms  of  each  column 
Matrix  norm  and  norms  of  each row 
Null-  ,range-space and  rank 
Exit  test  mode 
Exit  trace mode 
No  type-exit  type  mode 
Calculation of the  frequency  (Nyquist)  diagram 
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Ordering  of  vector  elements 
Display the results on the terminal  screen 
Print the results  to  the  print file 
Polynomial  multiplication 
Polynomial  addition 
Inversion of polynomial  matrix 
T h r e e  dimensional  (3-D)  plot 
Print character  variables 
Parallel  connection of  two  subsystems 
Print file (write a file to the  print  file) 
Printer  plot  to  print file 
Printer plot on  terminal 
Polynomial  matrix  addition 
Alternate  PMF-c * polynomial  matrix  form (PMF) 
Alternate  PMF-r * polynomial  matrix  form (PMF) 
Polynomial  matrix  input  from  terminal  keyboard 
Polynomial  matrix  multiplication 
Polynomial  normalization  (reduction  to  monic form) 
Pseudo-observabilitykontrollability indices 
Polynomial  reduction  using C-H Theorem 
Polynomial of a square  matrix A; c(A) =) R 
Polynomial  reduction  to  the coprime form 
Polar to rectangular  transformation 
Controllability matrix  of  the pair {A,B} 
Observability  matrix of the pair {A,C} 
Alternate  PMF-r  PMF-c 
Read binary  file; read data  from  a  binary  data file 
Response  of a  continuous  system in state space 
Response of a  continuous  system  given by a  transfer 
function  matrix 
Read data  file;  reading from  an ASCII data file 
Define row  dimension  of  matrix 
Response  of  a  discrete  system in state space 
Response  of  a  discrete  system  given by a  transfer  function 
matrix 
Solution of the algebraic matrix  Riccati  equation  using 
eigenvector  Hamiltonian  approach 
Rank  calculation  and  separation  of  linearly  independent and 
dependent  columns 
Rank calculation and separation of linearly  independent and 
dependent  rows 
Root-locus  calculation 
Replace  matrix  part 
Rectangular  to  polar  transformation 

ORD 
OUT 
OuT,L 
P* 
P+ 
P-l 
P3D 
PCH 
PCON 
PFI 
PLL 
PLT 
PMA 
PMFC 
PMFR 
PM1 
P" 
PNR 
POI 
POLR 
POM 
PRD 
PRT 
QC 
Q0 
R2C 
RBF 
RCS 
RCT 

RDF 
RDI 
RDS 
RDT 

RIC 

RKC 

RKR 

RLC 
RMP 
RPT 
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RTI 
S* 
SI 
SIX 
SHD 
SHL 
SHR 
SHU 
SIN 
SLE 
SQM 
SQR 
SSTF 
STEP 
ST0 
STR 
svc 
SVD 
T 
TCH 
TES 
TFI 
TFSS 
TIME 
TOEP 
TR 
TRA 
TVC 
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TXT,L,fcrr 
TXT,T,fext 
TYP 
TZS 
VTM 
WBF 
WDF 
XLAB 
XYP 
YLAB 
YXSC 

Matrix  (array) row  concatenation (tie by rows) 
Matrix  (array)  multiplication by a  scalar 
Matrix  (array)  division by a  scalar 
(sinx)/x of  an array or integer 
Matrix  (array)  shift down one row 
Matrix (array)  shift  left one column 
Matrix  (array)  shift  right one column 
Matrix  (array)  shift up one row 
sin(x) of  an array or integer 
Solution  of  linear  equations 
Square root of a  square  matrix 
Square root of an array or integer 
Calculation  of  the  matrix  transfer  function. 
Define an array with all  entries  equal  to one 
Stop  program  execution 
State  space  transfornation 
Singular-value  decomposition of  complex  matrix 
Singular-value  decomposition 
Matrix  (array)  transposition 
Type  character  variables 
Enter  test  mode-not to be used  by L-A-S users 
Type file with  ASCII characters 
Transfer function  matrix * state space  (Hessenberg) 
Get  time in seconds  since  beginning  of L-A-S session 
Building a  Toeplitz matrix 
Trace of a matrix (array) 
Enter  trace  mode 
Transforms  (partitions) row  vector  into  scalars 
Writes  arbitrary text to the print file 
Displays  arbitrary text  on the  terminal  screen 
Type-enter type mode 
Transmission  zeros  (generalized  eigenvalue  problem) 
Vector to matrix  transformation 
Write  binary  file;  write  data  to  a  binary  data file 
Write  data file; write to an  ASCII data file 
Label x-axis of  the  plot 
x-y  Plotting  (Nyquist  and  root-locus) 
Label  y-axis  of  the  plot 
Set  scales for y- and x-axes of a  plot 

325 

Detailed  syntactical  description  of  each  operator  statement may be obtained  by 
typing HELP,xyz; where xyz stands for the  mnemonic  name of an operator 
statement. 
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c.3 L-A-S Subroutines 

In addition  to  the L-A-S operators listed above, the L-A-S software  contains 
large  number  of "macros," referred to as L-A-S subroutines. In the  software there 
are two type  of  subroutine,  namely: 

0 -subroutines  of  the  type  "SUB"  and 
"subroutines of the type "SBR" 

Both subroutine  types  have a syntax  similar to the syntax  of L-A-S operators.  They 
consist  of a sequence  of L-A-S statements,  but  can be executed by referring  to  the 
subroutine name only, i.e. 

<label>:<inp-field>( <sub-n>,SUB )=<out-field, or 
<label>:<inp-field>( (sbr-n>,SBR )=<out-field> 

for  "SUB"  and  "SBR"  subroutine,  respectively,  where < sub-n> and <sbr-n> 
are subroutine  names assigned during the subroutine  definition. 

Note  that  the  only  difference  with  respect  to an L-A-S operator  statement is 
that the "operator field," in addition  to  the  name,  contains  also a specifier: 

, SUB for a IISUB" subroutine  and 
, SBR for a 11SBR8t subroutine, 

separated by a comma ",". 
All current L-A-S subroutines  reside in L-A-S master  subdirectories: 

C:\LAS\SUB and  C:\LAS\SBR 

respectively. 
Once in  an L-A-S session, a subroutine may  be  checked  by: 

* r I <sub-n>. SUB or 
* r, (sbr-n>.SBR and 
* P  or program,nlIn2 

By checking  listings  of  available  subroutines, it is  relatively  easy to figure  out how 
it is possible  to  define  other  subroutine  solving a specific  analysis/design  problem. 

The  information  about  names and input/output  arguments of currently 
available  subroutines may  be  obtained by the  IC: 

* h, sub 

It is worth  mentioning  that  subroutines  of  the  "SUB"  type  can  not call another 
subroutine. Also operators (STO)= and (DMA)= are not  permitted. On the 
other  hand,  subroutines  of  the  type  "SBR" may contain  calls  to  other  defined 
subroutines of either type. A subroutine of type "SBR"  can  even  call  itself,  thus 
is capable  performing  recursive  calculations  very  effectively. In return, execution 
of subroutines of  the  type  "SUB"  is  slightly  shorter  than  that  of  "SBR"  subroutines. 
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Omitting Input, Output  and  Operator  Fields: The number  of  elements 
in the  input  and  output  fields  is  determined  by the operator  statement  syntax, see 
the  Help file for more  details. If the input or output  fields  contain  an  insufficient 
number  of  array  names,  the L-A-S Interpreter  issues an appropriate error message. 
However,  if  the entire field  is  omitted, then the L-A-S interpreter  prompts  the  user 
to enter the  desired  array  names.  This  is  convenient  for  performing  calculations 
with different input  data and/or to  define  different  data using the single  statement. 
As an example,  consider  that an (n x n) matrix A and three (n X m) matrices B1, 
B2 and B3 are already  defined. Then, for  instance, the operator  statement: 

A, B1 (QC)  =QC1 

calculates  the  controllability matrix Q, of  the  pair {A,Bl). However,  if the 
following  "incomplete"  statement  is typed: 

(QC)= 

then, at execution  time,  the  user  has an opportunity  to  specify  the arrays to be used 
by  the operator, as well as the  names of the arrays  containing the results. In the 
above  case, if: 

At B3 is typed for the input field, and 
Q3 is typed  for  output  field 

then,  of course, the  operator QC calculates the controllability  matrix Q3 of the pair 
{A,B3}. This idea has  been  extended  to the operator  field as well.  Thus, the 
following  "completely  incomplete"  statement: 

o =  
may be  considered as a  "general"  operator  statement. by  which  any operator using 
any  input arrays and  defining  any  output  array  may  be  executed.  It  may  be  said 
that in this  case L-A-S enters  into  a  "question and answer" mode,  which 
experienced  users  tend  to  avoid.  Note  that  whenever  in the current L-A-S program 
an "incompletely"  specified  operator  statement is to  be executed, the user  has to 
specify  the  missing  field  (input,  operator or output). 

Using  Integers in Input  Fields: Operators, as well as subroutines of  the 
type "SUB" requiring  scalars as input arguments,  may, if the scalar is equal  to an 
integer, be executed  by specifying the integer  directly in the  input  field. For 
example,  if n=2 and m=3,  then the statement: 

n,m(Dim)= I 

defines the identity  matrix 
1 0  

1 = [ 0  1 O 1  0 
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In  the  cases Of 2,3(Dim)=I1 , or n,3(Dim)=I2 , etc., the Same results are 
obtained.  Similarly,  the "SUB" subroutine: 

* n,m,p(RbCB,sub)=A,B,C,D 

defines an arbitrary, random nu order MIMO state  space  representation 
R={A,B,C,D} with m inputs  and p outputs.  Thus,  if the following  statement is 
typed: * 5,3,2(AbCd,SUb)=Al,Bl,Cl,Dl 

then R1 ={Al,Bl,Cl,Dl} corresponds to a S" order MIMO  system  with 3 inputs 
and 2 outputs.  Note  that  this is not applicable  to  subroutines of the type "SBR." 

Interactive  Data  Definition: So far,  as operators  for  defining data, only the 
operators DMA  and RBF have  been  mentioned. In order to allow  more  flexibility 
in the L-A-S software,  there are several interactive data  definition  operators. At 
execution  time  these  operators  prompt  user  to  enter  desired data, which is very 
useful for  checking  algorithms with different input data. An example  illustrating 
the two most  commonly used input operators is  given  below: 

* (dsc) =k 
* k, 3 (inpm) =A 

The operator DSC (Define  Scalar)  types  the  name "k" on the screen  and  prompts 
user  to  specify  the  scalar k, while  the INF" (Input  Matrix) operator, in the above 
statement  types  the  name "A" on  the  screen  and  prompts  user  to  type elements  of 
the (k x 3) matrix A. Assuming  that k = 3, then, if the  following  matrix A is to 
be  defined: 

1.0 0.0 2.5 
A = 1.2~10'~ 0.0 0.0 

0.0 -5.5 0.0 

the user  has  to  type: 

1,  ,2.5 <return> 
1.2e-5 <return> 
, - 5 . 5  <return> 

or : 
1,0,2.5 <return> , 
0.000012,0,0 <return> 
0,-5.5,O <return> 

As was  mentioned earlier, see  Example C. 1, Section C. 1, the  first  version which 
avoids  entering of  both  leading  and trailing  zeros is  considered  more  convenient. 
For better  readability  arbitrary  number  of  blank  characters may be  added, if 
desired. 
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Default  Values  for L-A-S Operators: Some L-A-S operators may be 
executed  using  a  lesser  number  of  input  arguments  than  the  maximum  number 
defined in the Help file. In this  case  for  unspecified  input  arguments  the default 
values are used. The information  about  the  default  values  is  contained  in  the  Help 
file. To clarify  this  feature  consider  some  examples: 

The statements: 

* A,B(QC)=QC 
* A,B,k(Qc)=QCl 

calculate: 

QC = I B I A B I ... 
Qcl= I B I A B I ... I 

I An-m B I 

I Ak-1 B I 

respectively. In other  words,  the  default  value  of  the  third  argument  in  the Qc 
operator  is k = n-m+ 1. 

The statements: 

* A(sstf) = d 
* A,B,C(Sstf)=d,WSp 
* A,B,C,D(SStf)=d,W 

calculate row d, and  matrices Wsp and W in PMF representing d(z) = det(zI-A), 
Wsp(z) = C adj(z1-A) B and W(z) = C adj(z1-A) B + d(z) D. 

In other  words,  the  default  value  for the  fourth  argument  in  operator SSTF 
is a zero  matrix. Also, if only one  input  argument  is  specified,  then SSTF 
calculates  only the row d. 

The statement: 

* T,Ac,Nrm,N(Eatf)=AdfE,F 

calculates  matrices  Ad, E and F, see Chapter 2 ,  using  the  specified  values for Nnn 
and N, while  the  statement 

* T,Ac(Eatf) = Adl,El,Fl 
uses for the  third  and  fourth  arguments the default  values given  by: N m  = 0.5 and 
N = 16. Let us  mention  that  the  statement: 

* T,Ac(Eatf)=Ad 

defines  only  the matrix Ad. 
The statement: 

* TfAd,EgItI,N,EpS(LNI)=AC 

calculates Ac = Ln(Ad)/T, seechapter 2, using for Egm, Nand Eps the specified 
values. The statement: 

* T,Ad (Lnm) =Acl 

calculates Acl using for Egm and N the default  values given  by: Egm=O.25 and 
N=36,  while Eps is  either equal to 1 0 l 6  or to a value  set  previously by the IC Eps. 
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The statement: 
* XO,N,T,ApBpU(CSR)=X,tV 

calculates  a  continuous system  response  to  both  initial  condition x0 and input u(t), 
i.e.  a  solution x( t )  of  the  linear  differential  equation: 

k(r) = Ax@) + B u(r) , x(0) = x0 

for 0 S t 5 T, in N points,  with the N dimensional  column tv equal to: 

tv = [ 0 dr 2dr ... (N-l)& I T ,  dr=- T 
(N - 1) 

On the other hand: 
* XO,N,T,A,B(CSR)=XS 

defines xs(t) as the system  response  to  a  step  input  and x0, while 
* XO,N,T,A(CSR)=Xi 

calculates xi@) as the  response  to  initial  conditions only, i.e.  assumes  that  both B 
and U are zero.  Specific  details  about  default  values are given in Help file. 

Number of Output Arguments: If  an operator  statement  has  more  than one 
output  argument, then it not  always  necessary  to  specify  all  outputs  arguments. 
The operator  defines only the specified  output  variables. 

Consider,  for example: 

* A(Jfr)=M,Aj 
* A(Jfr)=M 

In the  first version  both  the  modal  matrix M and  the  corresponding  diagonal  Jordan 
form Aj of  the diaganaliznhle square  matrix A are defined,  while  the second 
version  defines  only  the modal  matrix M. 

Similarly, given  matrices A and B, the  following  statements: 

* A,k(ctc)=Al,AZ 
* B,k(ctr)=Bl,B2 

partition  (cut by columns/rows) the  matrices A and B into 
I B1 

A =) I A 1 1 A 2  I and B =) I - - l  

I B2 I 
I 1  

where A1 and B1 have k columns  and  rows,  respectively,  while the statements: 

* A, k (eta) =A1 
* B,k(Ctr)=Bl 



Section C.3 L-A-S Subroutines 331 

define  only A1 and B1. Note  that if k = 0, then A 1  has zero columns  and B1 has 
zero rows. Also, if only one input  argument  is  specified,  both  operators  prompt 
the  user  to  specify  the  value  of k. 

&fining Matrices in the P m :  Since  this  text  deals  extensively with 
polynomial  matrices,  possible  ways  of  defining  and  manipulating  matrices in the 
PMF are important. 

Consider  two  polynomial  matrices W and V given  by: 

S 2 + 3 s  

S' 2+3s  S+&' 
1 +S s+4s2 

Obviously W is (2 x 3), while V is (3 x 2). Some  polynomial  elements W&) in 
W(s) have  been  selected  to  be  equal  to  some  elements in V@). The non-standard, 
but  nevertheless  convenient way  of defining  matrices W and V in PMF, which 
allows  their  manipulation in L-A-S is  as  follows: 

Define  a gencruf (6 x 3) matrix X: 

I O  1 0 ;  
1 0  0 1 1  

I 1  0 1 ;  
x = ; 2  3 0 ;  

I - 1  1 0 :  
1 0  1 4 1  

which,  of  course, can  be done by: 

* , l/,, Ill,, 1/2,3/-1,1/, 1 , 4  (dma, t)=X 

Then, using  the  CMP  operator  (Copy  Matrix  into  PMF), i.e. 

* X,3(cmp)=W 
* X, 2 (cmp) =V 

defines W and V to be in PMF. To realize what  the  operator  CMP  actually does, 
note  that  the  following OUT statement: 

* X,W,V(out,t,2)= 

displays on the screen: 
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.. 
A 

.oo 1.00 . 00 

.oo .oo 1.00 
1.00 -00 1 .oo 
2 . 0 0  3.00 .oo  
-1.00 1.00 .oo 

.oo 1.00 4 . 0 0  

W 
.oo 1.00 .oo  
.oo .oo 1.00 

1.00 .oo  1.00 
2 . 0 0  3.00 .oo 
-1.00 1.00 .oo 

.oo 1.00 4.00 
Polynomial matrix <W > has 3 columns 

V 
.oo 1.00 .oo 
.oo .oo 1.00 

1.00 .oo 1.00 
2 . 0 0  3.00 .oo 
-1.00 1.00 .oo 

.oo 1.00 4.00 
Polynomial matrix <V > has 2 columns 

In  other  words,  the  operator  CMP  "copies" X into W and V but, at the same  time, 
declares them as matrices in PMF, i.e.  matrices  whose rows contain  the  coefficients 
of  the  polynomials WO($) and vij(s) in (2 X 3) and (3 X 2) polynomial  matrices 
W(s) and V@), respectively.  This  allows  matrices in PMF to be used as input 
arguments in the "polynomial  matrix"  manipulation  operators  and  subroutines,  such 
as: 
PMA, P", P-l , ALT, TFSS, CCON, FCON, PCON, RCT, RDT, 

PMT.SUB , DNRo.SUB,  NDRo.SBR, etc. 
For instance,  the  sequence: 

* w,v (pmm) =WV 
* W (pmt, sub) =wt 
* WV(p-l)=WVad,det 
* Wt , V (pma) =WtV 
* WV,Wt,W(Tad,det,WtV(out,t,l)= 

calculates  polynomials  matrices, all in the PMF,  corresponding  to: 

wv(s) = W(s)*V(s) 
Wt(s) = W1(S) 

WtV(s) = W'"(s) + V ( s )  

WVad(s) = adj{ W ( s )  } 
det ( S )  = det{ W ( s )  } 

and displays on the screen: 
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wv 
-1.0 1.0 1.0 1.0 1.0 

.o 1.0 6.0 5.0 4.0 
-1.0 2.0 -1.0 5.0 .o 
-2.0 -1.0 6.0 11.0 16.0 

Polynomial matrix <WV has 2 columns 

Wt 
.o 1.0 .o 

1.0 .o 1.0 
-1.0 1.0 .o 

.o .o 1.0 
2.0 3.0 .o  

.o 1.0 4.0 
Polynomial matrix <Wt > has 2 columns 

W a d  
-2.0 -1.0 6.0 11.0 16.0 

. O  -1.0 -6.0 -5.0 -4.0 
1.0 -2.0 1.0 -5.0 .o 

-1.0 1.0 1.0 1.0 1.0 
Polynomial matrix <Wad> has 2 columns 

det 
2.0 . O  - 5 . 0  -14.0 -7.0  -1.0 12.0 7.0 16.0 

WtV 
.o 2.0 .o  

1.0 .o 2.0 
.o 1.0 1.0 

2.0 3.0 1.0 
1.0 4.0 .o 

.o 2.0 8.0 
Polynomial matrix <WtV > has 2 columns 

The L-A-S operator CPM  (copy  PMF  into  a  matrix) may be  considered as an 
"inverse" to the  operator  CMP, in the  sense  that the statement: 

* W (cpm) =XX as well as * V (cpm) =XXX 

would produce (6 X 3) "general"  matrices XX and XXX exactly  equal to the 
matrix X mentioned  above. 

The so-called  "standard  way"  of  defining  polynomial  matrices,  i.e.  matrices 
in PMF, consists of  using the PM1 (polynomial  matrix  input) operator. To define 
W and V by the PM1 operator, the  following  should be done. In an L-A-S session 
type: 

* (pmi,m)=W,V 

The PM1 operator  prompts  the  user to enter the  dimensions and maximum orders 
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of the polynomials, i.e. to  enter  values for: 

p,  m ,  n (for both W(s) and V(s)) 

If for W the  values 2,3,2 are typed, and for V the values 3,2,2, see the example 
below, then the PM1 operator  expects  (for both W and V in PMF): 

pm = 6 rows and n + l  = 3 columns. 

If it is desired  to  define W and V as before, then it is  necessary  to  type  exactly  the 
same  numbers as were used in defining the (6 x 3) matrix X above. The complete 
man-machine  conversation is, after  typing the OS: (pmi I m) =W I V 

Enter  dimensions <plm> and  max  order  <n> of polynomials 
for [p*m x  (n+l)] PMF <W > : 2,3,2 
Enter  dimensions  <p,m> and  max  order  <n> of polynomials 
for [p*m  x  (n+l)] PMF <V > : 3,2,2 
PMF Matrix <W > has 6> rows and < 3> columns 
PMF Matrix <V > has < 6> rows and < 3> columns 

W 
1 1  

1 1 1  

1 1 1 1  

2,3 
-1,l 
I 1 , 4  

V 

Building "SUB" and "SBR" Subroutines: In order  to  encourage  users 
to  build their own subroutines,  consider the  following  two  examples: 

(a)  Subroutine  SMat.SUB 
@) Subroutine Exd.SBR 

mentioned in Section 3.3.4. and 4.2. l . ,  respectively. 

The listing  of these subroutines is  given  below: 

1 no(SMat ,sub)=nx,Sa,Si , s l i , s ld  
2 (nli)= 
3 no(poi)=n,nx,va,vi,vli,vld 
4 va  (dsm) I vi  (dsm)  (mcp)  =Sa I Si 
5 vli(dsm)  ,vld(dsm) (mcp)=Sli,Sld 
6 (lis) = 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

f,GD(exD,sbr)=G,D 
nli 
ntY 
1,2 (dzm) (tvc)=G, D 
GD (ninp, t) =m 
f (cdi) (dec,t)=nl 
GD,nl(ctc,t)=G,D 
f,nl(ctc) ,m(dpm,sub)=flp 
D,m(cmp)  ,flp(Pmm) ,-l(s*) ,G,m(cmP) (Pma,t)=G 
D(t) ,m(vtm,t)=D 
tYP 
lis 

1 p,m(dpm,sub)=P 
2 (nli) = 

4 P(t) ,m(cmp)=P 
5 (lis) = 

3 ' p(t)  ,m,m(dim)  (mtv)  (*,t)=P 

Consulting  the  Help file, it may be  concluded  that in SMAT.SUB: 

0 -that for  the  operator  POI: 
Given set of POI, or PCI, no = { no, } POI  generates: 

n = the sum  of { no, } 
nx = the max  of { no, } 
va, vi, vli,  vld = the  selector  vectors  defined in Section 
3.3.4,  Eq~.(3.75)-(3.78) 

m "while for  the  operator DSM: 
Using the  previously  obtained  selector  vectors,  DSM  generates the 
selector  matrices Sa, Si, Sli and Sld, Eq. (3.79) 

0 "similarly, for  the  subroutine  EXD.SBR: 
Given the (n+ 1) dimensional  row d containing  the  coefficients di of 
d(z), and  the [pm x (n+ l)] matrix in PMF  corresponding to a non- 
strictly  proper  polynomial matrix W(z) EXD calculates: 

-the strictly  proper  part Wsp in PMF and the corresponding 
(p x m) matrix D. 

In doing  this,  another  "SUB"  subroutine, namely  DPM.SUB  (diagonal  polynomial 
matrix) is executed  within  the  EXD.SBR. This is, in fact, the only  reason  why it 
was  necessary  to  define  the  subroutine  EXD  as a "SBR" type. The listing of the 
DPM.SUB is given  above. By incorporating the code of  DPM.SUB into subroutine 
EXD, it would  be  possible  to  define  EXD as a subroutine of the "SUB"  type,  and 
in this way to speed  up considerably  its  execution. The listing of the  modified 
subroutine  EXD, now  of  the "SUB" type,  follows: 



336 Appendix C Introduction to L-A-S 

1 f,GD(exD,sub)=G,D 
2 (nli) = 
3 GD(ninp,t)=m 
4 f (cdi)  (dec,t)=nl 
5 GD,nl(ctc,t)=G,D 

7 flp(t)  ,m(cmp)=flp 

9 D(t)  ,m(vtm,t)=D 

In the above  subroutines the statements: 
(NLI)= , NLI and NTY 

are included at the  beginning  to  transfer the L-A-S interpreter into NO LIST and 
NO TYPE modes. Similarly, the statements: 

(LIS)= , TYP and LIS 
are added at the  end  to  return  the  interpreter  to  the  default  LIST  and TYPE modes. 
The purpose of Statement 4 in EXD.SBR  will  be  explained  later. 

To assess the faster  execution  of  subroutines of the "SUB" type, a simple, 
self-explanatory  program BUILDSB is given  below. 

6 f  (t)  ,nl(ctr)  ,m,m(dim)  (mtv)  (*,t)=flp 

8 D,m(cmp)  ,flP(Pmm)  ,-l(S*) ,Grm(cmP) (Pma,t)=G 

10 (lis) = 

1 

3 - and-checking-execution-time 
- BuildSB 

2 Building-SUB-t-SBR-subroutines 

4  5,3,2(abcd,sub)=A,B,C,D 
5  A,B,C,D(sstf)=d,W 

7 (time)=tl 
8 d,W(EXD,SBR)=Wspl,Dl 
9 (time)  =t2 
10 d,W(exdrsub)=Wsp2,D2 
11 (time) =t3 
12 t3, t2 (-) , t2 , tl (-) (mcp,  t)  =tsub, tsbr 

- 

6 A,B,C(sstf)=d,Wsp 

13 Wsp,Wsp1(-)  ,WSp,Wsp2(-)  (out)= 

15 tsub,  tsbr  (out, 1,l) = 
, 14 D,Dl(-)  ,D,D2(-)  (out)= 

The program  BUILDSB: 
"defines an arbitrary  state  space  representation R={A,B,C,D) with 

"calculates arrays d and W, where C(z1-A)"B + D = W(z)/d(z), 
"calculates arrays d and Wsp where C(z1-A)"B = Wsp(z)/d(z), 
"assigns current  time in seconds  to the scalar c l ,  
"calls EXD.SBR, i.e. generates Wspl and Dl,  
"assigns current  time to scalar t2, 
"calls EXD.SUB, i.e. generates Wsp2 and D2, 
"assigns current  time to  the  scalar t3, and 
"defines scalars tsub = r3-r2 and tsbr = &cl and displays their 

n=5, m=3 and p=2, 

values on the  screen,  etc. 
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In the above case tsub = 8 seconds,  while tsbr = 26 seconds. 
The purpose of giving  this  simple  example is to show  that  names  of  "SUB" 

and  "SBR"  subroutine  may  be  equal.  Also,  a  subroutine  name  may be equal to the 
name of an existing operator statement.  Another purpose is to illustrate the use of 
the operator TIME. 

Hints for SBR Subroutine Execution: During the execution of an SBR 
subroutine, the interpreter  commands INCLUDE,  ELIMINAlE or CHANGE should 
not be used, i.e. the total  number of characters of the  subroutine  should  not  be 
altered  during its execution. This is a consequence of the way the L-A-S Interpreter 
executes an  SBR subroutine. In particular, when a call to an SBR subroutine is 
encountered  in  a  calling  program,  the  calling  statement is replaced  by all statements 
of the  subroutine, and the execution of the subroutine  begins. At that  moment the 
total  number of statements  (as  well as the number  of  characters)  in the current 
program is increased. At  completion  of the subroutine  execution, all subroutine 
statements are removed,  the initial calling  statement is replaced  and  execution is 
resumed.  Although  this  process is usually  transparent to the user, it may be 
observed when the SBR subroutine is executed  in TRACE mode. 

Function-KEY Mode: It is well  known  that the DOS operating  system  allows 
the user  to  type  "in  advance"  several  characters before they are actually  processed, 
Similarly, in  an L-A-S session it is possible to type in advance  answers to 
anticipated L-A-S prompts 'I * 'I . In fact, this is possible  only in the default NO 
Function-KEY  mode. To explain the reasons  why  the  Function-KEY  mode  has 
been  implemented  consider  a  simple  recursive  scheme  intended  to  sum  positive 
integers i for 1 5 i 5 Zmux, i.e. 

1. Set 0 * Summ, 0 * i, Define  Imax 
2. Set i+l - i, Set summ+i * summ 
3. If i < Imax, go to 2; Else, go to 4 
4. Display Summ 

The correct, and  two  incorrect L-A-S implementations of the above recursive 
scheme for Imax = 15, are as follows: 

1 
2 0 (coin) , 0 (coin) ,l5 (coin) (mcp) =Summ, i , Imax 
3 i:i(inc)=i 
4 Summ, i (+, t) =summ 
5 i,Imax(ifj)=i,k,k 

- SummC-Correct-version 

6 k:Summ(out,t,O)= 



338 Appendix C Introduction to L-A-S 

1 SummI 
2 Incorrect-version 
3 0 (coin) , 0 (coin) ,l5 (coin) (mcp) =summ, i, Imax 
4 i:i(inc)=i 
5 Summ,  i (+, t) =Summ 
6 i,Imax(ifj)=i,i,i 
7 k:Summ(out,t,O)= 

- 
- 

- SummIS 
- Incorrect-version;-with_(STO)=-statement 
O(coin) ,o(coin) ,15(coin) (mcp)=summ,i,Imax 

i: i (inc) =i 
Summ,i(+,t)=Summ 
(sto)  = 
i,Imax(ifj)=i,i,i 

k:Summ(out,t,O)= 

Obviously,  the  version  SummC  is correct, since  for i < Imar, the operator IFJ 
transfers control  to the statement  with the label "i", i.e.  Statement 4, while for 
i>Imar, execution  goes to the  statement with the  label "k". However, if, by 
accident, in Statement 6, the  output field reads: i,i,i instead  of: i,k,k then we 
have an "infinite" loop; see version  SummI  above. The only  possibility  to "exit" 
is to end the L-A-S session by "force," i.e. to  type  either: 

<Ctrl>-<Break> or 
<Ctrl>-<Alt>-<Del> 

A "conservative"  (good)  programming  practice is to include  a ST0 
statement in  all  loops  which  may  lead  to infinite  loops; see the version  SummIS 
above.  Note  that, as was  explained earlier, whenever in sequential  execution, the 
statement ST0 is  encountered,  the  execution "HALTS," and  then  by typing, for 
instance, jump, k (or j ,  k), it is  possible  to  exit the loop.  After  that,  of  course, it 
is necessary  to  correct  the  output  field in the IFJ statement.  Once we are sure that 
loop  works correctly, it is  possible  to  eliminate  the (STO)= statement. 

Another way  to  avoid  ending  a L-A-S session by "force," once in an infinite 
loop, is to  use  the  Function-KEY  mode. This can be done by the interpreter 
command: 

FKE (or fk) 

Then, during  any  sequential  execution, by simply  pressing  the  function  key <F1 > 
the L-A-S interpreter will enter  into  the TRACE mode,  causing the sequential 
execution to "halt" immediately. Then, again, by typing  any IC or OS the user 
may either exit a  loop or verify  what  is  happening in the program.  However, 
unfortunately, when the interpreter is in the  Function-KEY  mode, it is not  possible 
to  type "in advance"  characters  as  responses  to  anticipated future interpreter 
prompts,  but it is necessary  to  wait until the  prompt is actually  issued. This is due 
to  the  implementation of this  mode  and  its interaction with other parts of the L-A-S 
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interpreter. Once in FKE  mode, it is  possible by pressing other function  keys, F2 
to F7, to entedexit other L-A-S modes,  such  as  LIST, TYPE, etc. More details are 
available in the  HELP file under "Help,Fke." 

Creation  and  Execution Modes of Operation: The above example 
program  SUMMC,  involving  recursive  calculation,  i.e.  the L-A-S statement IFJ 
(conditional jump) will  be  used  to introduce  the  important  concepts  of the Creation 
and Execution modes  of  operation. The mode of  operation of the L-A-S software 
corresponding  to the interpreter  being in the MEM  mode,  i.e.  when all correctly 
typed  and  executed  statements are stored in the interpreter  working  memory is 
referred  to as the Creation mode  of operation. The mode  of operation  in which the 
program  residing in interpreter memory  is  reexecuted  is  referred  to as the Execution 
mode. 

Consider now  that  the interpreter  is in the Creation  mode and that the user 
types  (one at a  time)  the  statements of the  above  program  SUMMC. If Statement 
6 is typed as 

the L-A-S interpreter will issue  a  warning: 

* i , I r n a x ( i f j ) = i , k , k  

SELAB - Label = k does not exist 

indicating  that it expects that in the sequel,  a  statement with the  label "k" will be 
entered.  Also,  note  that  although, for i < fmux, the above IFJ statement is 
supposed  to  transfer  control  to  the  statement  with  label " i " ,  the interpreter, being 
currently in the Creation  mode, will simply  issue the prompt "*", expecting the 
next  statetement to  be  typed.  After  typing  all  the  statements  of  program  SUMMC, 
including, of course, the statement with label "k", and once the user enters the  IC: 

* jump,l or 
* j , i  or even j , 4  

since  Statement 4 has  the  label " i " ,  the  interpreter will automatically enter into the 
Execution  mode, i.e. sequential  execution  of  existing  statements. Then, when the 
IFJ  statement is encountered,  the  control will he rrunsferred either to: 

-the  statement with label " i "  for i < Imux or to 
-the  statement with label "k" for i 1 fmux. 

This distinction  between the Creation and  Execution  modes  has  been  introduced 
solely  to  allow  typing  of  IFJ  and JMP operator  statements, which in their output 
fields may refer to  statement  labels  not  currently  existing in a  program  being typed. 
Note  that as far as other  "calculation  oriented  operator  statements'' are concerned, 
there is no  distinction between  the  Creation  mode  and  the  Execution  mode. 
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Recovery from Execution  Errors: Assume  that  during a sequential 
reexecution  of an L-A-S program an error occurs. This error might be  due to an 
incompatibility  of  dimensions  of  arguments in the  input field, or an insufficient 
number  of  arguments in the input/output  fields. In this case an appropriate error 
message is issued  and  sequential  execution  halts  immediately. The program counter 
corresponds to the  number  of the statement  where  the error occurred. To find out 
what  caused the error, it is  suggested  to enter some  interpreter  commands such  as: 

Status , Pro, n,, n, , or Names 

to display the part of  the  program  containing  the  statement  where the error 
occurred, and to  check  the  dimensions  of  the arrays used. Also OUT operator 
statements  might  help.  Note that at that  moment  any operator  statement may be 
typed,  including  a  statement which will change  some of the  previously  defined 
arrays or define new ones.  Since  the  interpreter  is in NO-MEM  mode, operator 
statements will  only  perform  required  operations,  but will not be stored in the 
interpreter memory. Of course, by  using the IC: 

ELI  , CHA or INC 

it is possible to eliminate and/or change an existing  statement, or to  include new 
ones.  Once the user  is  sure  that  the  cause of error is  eliminated, by  using the IC: 

* j,-% or j , <st-#-er> 
where <&-#-er> stands  for  the  number of the  statement which  caused the error, 
sequential  execution will be  resumed  starting  from  that  statement.  However,  if the 
user is not  completely  sure that  all  causes  of error have  been removed, it is 
advisable  first to enter in the TRACE mode  and  then  to type j , -1. Then, of 
course, only  one  statement  will  be  executed,  and  the  user  should  enter: 

* con (01: c) 

after each  executed  statement.  Once the user  is  convinced  that the program  works 
correctly, it is possible by using the IC NTRA to exit from TRACE mode  and 
resume  normal  default  sequential  execution  of  all  remaining  statements. 

Recovery from Errors in Subroutines: Note  that the first four statements 
in all SBR type  subroutines are as follows: 

The first  statement  defining  the  subroutine  name  and  type, as well 
as input/output  arguments, has  the  general  form: 

A1, ..., An(XYZ,SBR)=Bl,..,Bm 
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0 The next  two  statements are the interpreter  commands:  NLI  and 
NTY, mentioned  under Building "SUB" and "SBR" subroutines, 
(see exD.sbr). 

0 The fourth  statement  is  a MOS of the  form: 

l,m(dzm) (tvc)=Bl,, ,Bm 

whose  purpose  is to define all  output  arguments  "temporarily."  It may be 
concluded  that  this MOS sets  zeros in all  output  arguments,  Bi's, i=[l,m]. It 
should  be  mentioned  that in the  case  that  during the subroutine  execution there are 
no syntax or execution errors, this  statement  does  not  have  an active role, since 
some other statements in the  subroutine  "body"  again define all these  output 
arguments. On the other  hand, if an execution or syntax error occurs, then, in the 
case of a SBR subroutine,  (which  also  happens in the case of a  "main"  program), 
the sequential  executions  "halts"  immediately. Then, the user may follow a 
procedure explained  under  the  subtitle Recovery from Execution Errors. How- 
ever, if it is preferred  to  exit from the  subroutine,  the user  may type  the  IC: 

* j,q or * j,<st-#-first-q> 

where est-f-f irst-q> is  the  statement  number  of thefirst statement  having the 
label "q". Then, since  the  last-but-one  statement in the  subroutine  body  usually  has 
the label "q" (for quit), i.e.: 

* q:typ 

the control will  be  transfered  to  the  subroutine  end. In order to  exit  from the 
subroutine "normally," all output  arguments should  be defined, which  would  not 
be the case if the  above mentioned MOS, temporarily  defining  all  output 
arguments,  is not  included in the  begining of the  subroutine  body. 

Since the  label "q" is  reserved  for  that  purpose,  a  "qood  programming 
practice"  is  not  to use the  label "q" in main programs. If, in spite of that, the user 
"insists" on  using  the  label "q" in a main  program  calling  a SBR subroutine,  then, 
when an error occurs within a SBR subroutine,  instead of the above mentioned  IC 
j , q r  the user  has  to determine  the <st-#-f  irst-q>, which  could be done by 
the IC: 

* f,q: or * find,q: 

In the case of  an error within SUB  type  subroutine: 

0 an appropriate error message is issued, 
0 sequential  execution  halts,  and 
0 control  is  transferred  to  the  program  calling  this  subroutine, 
0 the  program  counter  indicates  the  statement  containing the call to the 

SUB  subroutine  where the error occurred. 
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If it is  desired  to  "override"  the (NLI)= operator  statement  which is, as has  been 
mentioned previously, usually  used as the  second  statement  in  the  subroutine  body, 
the IC: 

* 1,sub or list, sub 

may be typed before the SUB subroutine  execution.  If in the FKE mode,  instead 
of the IC 1 , sub , the  function key F3 may be pressed. 

Changing  Elements in Defined Arrays: ~eca l l  that  the L-A-S software 
is well  suited for reexecuting  a  sequence of operator  statements  residing  in  the 
Interpreter  working memory with the same, or different,  input  data. Therefore, it 
is our feeling  that  at  this  point it is  worthwhile  to  illustrate  the  possibilities of 
changing  elements in arrays  already  defined.  There are, of course, a number  of 
ways that  this can  be accomplished, but here only  two  ways  will  be  mentioned. 

Assume  that in a  current L-A-S session  matrix A with  dimension (6 X 7) 
and  matrix B with  dimension (2 x 4) have  been  defined  and  used,  and  that the user 
has  decided  to  modify  some  of  their elements. 

1. If single  elements in A and B are to  be  replaced "interactively," say it is  desired 
to substitute: 

-2.5 * ass ; 101.2 * a26  and  1.2*1@ 3 bz,3 

then,  the  incompletely  specified INP operator  statement may  be  used, i.e. 

* (inp,e)= 

In this  case  the  user-machine  conversation  is as follows: 

Type matrix  names you want to change via keyboard 
or type either < N . >  I <NAM.> or <ALL.> : A,B 
Enter indices (1,J) and value A(1,J) of matrix  element 

I,J, A(1,J) : 4,5,-2.5 <return> 
I,J, A(1,J) : 2,6,101.2 <return> 
I,J, A(1,J) : <return> 

I,J, B(1,J) : 2,3,1.2e5 <return> 
I,J, B(1,J) : <return> 

Enter  indices  (I I J) and value B (  I, J) of matrix  element 

* A,B(out)= 

The  last  statement, i.e. A,B(out)= , was  used  to verify if the desired  substitutions 
were  made. 

2. The second way  is "less"  interactive, but it allows  a  complete  block  (submatrix) 
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in a  defined  matrix to be  substituted  into  another  matrix.  Assume  now  that  in the 
above mentioned (6 x 7) matrix A it  is  desired to replace the sub-array  elements: 

with an already  defined (2 x 4) matrix B. This can  be  done by typing the 
following operator statement: 

* A,B,2,3(rmp)=A 

which places the whole  matrix B into A starting at location (2,3), keeping other 
elements  unchanged. 

Using  the  operator  RMP  (Replace  Matrix Part), the  task of the previously 
mentioned  incompletely  specified  operator  statement (INP,e)= may be "non- 
interactively"  performed by the sequence: 

* AI-2.5(dma),4,5(rmp)=A 
* A1101.2(dma),2,6(rmp)=A 
* 1.2eS(dma),2,3(rmp)=B 

If desired, the first two statements may be  combined  into  the  following  single 
MOS: 

* A,-2.5(dma),4,5(rmp),l01.2(dma),2,6(~p)=A 

Plotting  Capabilities: To illustrate  plotting  capabilities of L-A-S software 
consider  the L-A-S program  given  below: 

1 Exerc 
2 - Plotting - 
3 -.l,l/-l,-.l(dma,t)=A 
4 2,l  (dim) =x0 
5 Use-N=201-&-T=40 

7 xo,N,T,A(rcs)=x 

9 Time [ sec]  (xlab) = 

6 n:Tdsc)=N,T 

8 Time-Response (ylab) = 

10 -1,1, , T (dma)  =sc 
11 sc  (yxsc) = 
12 x,T(dis)= 
13 -1 , 1, -2,2 (dma)  =sc2 
14 sc2  (yxsc) = 
15 Phase-plane-x2 [ t] (ylab) = 
16 xl[t]-(xlab)= 
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17 x(nik)= 
18 N,T(out)= 
19 A,xo(out,t,l)= 
20 N,T(out,l,O)= 

Its name is EXERC  and it can .be found in the directory  C:\LAS\DPF\. The 
program  defines  a  (2 x 2) matrix A and initial  condition  vector x(0) given by: 

I -0.1 1.0 1 1 1  
I I x ( 0 )  = I I 

-1.0 -0.1 I 1 0 1  
A =  1 I .  

By Statement 6 ,  with the  label "n", the quantities N and T should be defined 
interactively.  Suggested  values are N=201 and T=40. The differential  equation: 

" dx(f)  - Ax(t) , ~(0) = % 
dt  

for 0 I t S T, given by the N data  points  is  solved by Statement 6,  operator RCS. 
Note  that  operator  RCS  is  executed within the  algorithm CDSR, i.e. L-A-S 
subroutine  CDSR.SUB. 

The two elements xi(t), i=[  1,2], of  the state vector x(t) are displayed  versus 
time by Statement  12,  operator  DIS,  while  Statement 17, operator NIK (Nyqist 
diagram),  i.e. X-Y Plotting,  displays xz(t) versus x,(t) in  the  "Phase-Plane"  plot of 
Fig.C.3. Operators YLAB, XLAB and  YXSC,  executed before the "plotting" 
operators DIS  and NIK, allow  the  user  to  label the y- and x-axes, as well as to set 
axis  scales.  For  more  details  see  the Help tile. The plots  obtained are shown  in 
Figs.C.2 and C.3.  For an illustration  of  three  dimensional  plotting  capabilities the 
reader is referred to  the L-A-S program  PLTALL.DPF in the  subdirectory 
C:\LAS\PLT\. 

Interface with  Other CAD Packages: This  section  pertains to using data 
generated by other  programs or packages. In the  master  subdirecory  C:\LAS\ there 
is the independent  main  program 

1NDAT.EXE 

which may be used for reading data files  containing  arbitrary ASCII data and 
preparing them for inclusion in the L-A-S package. The use  of INDAT  will  be 
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Figure C.3. L-A-S Phase-Plane  Plot 

illustrated by an example.  Consider  that  we  have  a file INP.DAT of the form 
given  below: 

A 
-1.000 1.000 , 000  ,000 

,000 - 2 . 0 0 0  1.000 .000  
.000  -1.000 - 2 . 0 0 0  1.000 
.Q00 .Q00 ,000 - 2 . 0 0 0  



346 Appendix C Introduction to L-A-S 

B 
1.000 -000 .ooo 
.001 .ooo .ooo 
.ooo 1.000 .ooo 
.ooo .ooo 1.000 

C 
.00000E+00 .10000E-04 .00000E+00 .10000E+01 
.10000E+01 .00000E+00 .10000E+07 .00000E+00 

D 
.ooo 1.000 -000 
.ooo -000 .ooo 

and  we  want  to  use  this  data in the L-A-S software. To this  end, the following is 
suggested. Using  any  text editor, delete  all  blank  lines and eliminate all non 
numeric  characters.  After  this  intervention,  the file INP.DAT  should  have the 
following  form: 

-1.000  1.000 .ooo  .ooo Modified file 1NP.DAT 
.ooo -2.000 1.000 ,000 
.ooo -1.000 -2.000 1.000 
.ooo .ooo ,000 -2.000 

1.000 .ooo .ooo 
.001 .ooo .ooo 
,000 1.000 ,000 
.ooo .ooo 1.000 
.00000E+00 .10000E-04 .00000E+00 .10000E+01 
.10000E+01 .00000E+00 .10000E+07 .00000E+00 

.ooo 1.000 .ooo 

.ooo .ooo ,000 

Then, run the program  INDAT,  i.e.  type: INDAT 
The program  INDAT  prompts  user  for: 

file name containing  data to be read, in our case the answer should 

file name  were  the  modified  data  will  be  written, in our case answer 

0 the L-A-S variable name to which data to be  read  will be assigned, 

be: INP.DAT 

might  be:  Temp 

a  possible  name is: Abcd 

The complete  user - machine  conversation  is  given  below: 

Please enter File  name  containing ASCII characters 
corresponding to  the array to be transferred  into 
the L-A-S package. To exit, Enter: STOP/stop  or S 

Inp. Dat 
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File <Inp.Dat > has  <nr> = 12 non-blank rows 

Please enter the file  name  where the modified  array 
to be read by the L-A-S package will be written. You 
may use any string of up to 8 characters. Suggested 
names are: tl,  t2 , tmpl, . . . 
Temp 

Please enter any string of up to 4 characters to be 
used as  the L-A-S variable name. Suggested names 
are: tl, t2, tmpl, A, . . . If  you have used  a 
string of up to four  characters for the  file  name 
above, you may use the  same string  for the L-A-S 
variable  name 

Abed 

The array <Abed> has 12 rows and 
4 columns 

File <Temp > created 

Please enter file name  containing  ASCII  characters 
corresponding to  the array to be transferred  into the 
L-A-S package. To exit, enter: STOP/stop or S 

S 

Stop - Program terminated. 

The file TEMP, created by the  program  INDAT, is given  below: 

( Inp , m) =Abcd 

-1.000,1.000,.000,.000, 
.ooo,-2.000,1.000,.000, 
.ooo,-1.000,-2.000,1.000, 
.ooo,.ooo,.ooo,-2.000, 
1.000,.000,.000, . 001 , :ooo , . 000 , 
.000,1.000,.000, 
.000,.000,1.000, 

12 I 4 

.00000E+00,.10000E-04,.00000E+00,.10000E+01, 

.10000E+01,.00000E+00,.10000E+07,.00000E+00, 

.000,1.000,.000, 

.ooo,.ooo,.ooo, 
Abcd (Out) = 

After  having  the  tile TEMP created,  enter L-A-S and as an answer to the L-A-S 
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prompt "*", type: 
* file, Temp 

According  to the function  of  the  interpreter  command FILE, on the screen the 
following  will  appear: 

Temp 

* 
Read  statement = (Inp,m)=Abcd 

* 
Read statemc 
-.10000E+01 
.00000E+00 
.00000E+00 
.00000E+00 
.10000E+01 
.10000E-02 
.00000E+00 
.00000E+00 
.00000E+00 
.10000E+01 
.0000OE+00 
.00000E+00 

!nt = Abcd(O1 
.10000E+01 

-.20000E+01 
-.10000E+01 
.00000E+00 
.00000E+00 
.00000E+00 
.10000E+01 
.00000E+00 
.10000E-04 
.00000E+00 
.10000E+01 
.00000E+00 

lt) = 
.00000E+00 
.10000E+01 

-.20000E+01 
.00000E+00 
.00000E+00 
.00000E+00 
.00000E+00 
.10000E+01 
.00000E+00 
.10000E+07 
.00000E+00 
.00000E+00 

.00000E+00 

.00000E+00 

.10000E+01 
..20000E+01 
.00000E+00 
.00000E+00 
.00000E+00 
.00000E+00 
.10000E+01 
.00000E+00 
.00000E+00 
.00000E+00 

* 

Since in this way within the L-A-S, a (12 x 4) array Abcd has  been created, it is 
now  easy  to  extract  matrices A,B,C and D from the obtained Abcd. This can be 
done, for instance, by the following  sequence of L-A-S operators: 

* Abcd,8(ctr)=AB,CD 
* AB, 4 (Ctr) =A, B 
* B, 3 (&c) =B 
* CD,2  (ctr)=C,D 
* D, 3 (ctc) =D 

After  that, of course,  arrays A,B,C and D of appropriate  dimensions are available 
and can subsequently  be used as input arguments in any L-A-S operator or 
subroutine. 

Recovering from a Trash:" I t  will occasionally  happen  that an inadvertent 
command  will  cause an L-A-S program  to  "crash"  and  send  the  user  back  to DOS. 
Fortunately,  the L-A-S interpreter  stores  all  data from the  terminal  keyboard  to the 
file ECHO.DAT. In the  case of a  fatal  execution error, for example  a  floating 
point overflow, the  current L-A-S session  "crashes" and the  user  is  back at the DOS 
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prompt. In order to  recover the lost  session,  without  retyping all the statements 
again, the following  should  be  done: 

0 Rename  the file ECHO.DAT  to  an arbitrary  name, e.g. ECHO.DDD 
0 Edit  this  file and delete (or comment  out)  the  last L-A-S statement 

which  caused  the "crash." Also,  all  other  statements  which  caused 
the execution and/or syntax error should be deleted (or commented 
out). 

0 Save  that  modified file. 
0 Enter the L-A-S interpreter, and following the first interpreter 

prompt: " * 'I , enter the following  Interpreter  command: 

* file, ECHO.DDD 

In the case that in the  edited tile ECHO.DDD  there are no L-A-S 
statements which cause an execution and/or syntax error, all 
statements from  that file will be  sequentially  executed.  After the 
execution of the  last  statement,  the L-A-S Interpreter  will issue the 
standard  prompt " * ' I ,  and  will be  ready to accept  any  statement 
from  the  terminal  keyboard.  All  executed  statements  will  again be 
stored  on  the  newly  created  ECHO.DAT  file. 

In order to gain experience in using the  ECHO feature, three  examples of 
ECHO  files are presented.  The  first  one  is  the  non-edited  version  obtained after 
the  program  due to the  last  statement: 

* ff,f(*,t)=ff 

has  returned  to  DOS.  Note that in this  example  the  following  statements: 

1,2,4,3(dam,t)=verr 

vIv(*fe)=vv 
ss 

are incorrect. Therefore, these  three  statements,  together  with  the last one should 
be either deleted, or commented out, as has  been done in the  second  version,  which 
was  renamed to ECHO.DDD. The third version  of the ECHO.DAT file was 
created  during  the  reading of the  edited  and  renamed  ECHO  file. 

L - A - S ECHO.DAT  file - Version l 

- created  7/31/1992 at 11:20 ECHO-DAT  file  created 

- Echo-Example by L-A-S Interpreter 
1,3,2(dma)=v when overflow occurred 
lf2,4,3(dam,t)=verr Operator DAM does not  exist 

Syntax  error  above A - 
ss I.C. SS does not exist 
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- I.C. Syntax Error above A ! 
S 
v(0ut,t,2)= 

v,v(t)(*,t)=vv 
lelOO(dma,t)=f 
f,f(*,t)=ff 
ff,f(*,t)=ff 
ff,f(*,t)=ff 

v,v(*,e)=vv 
Syntax error above A - 

- L - A - S ECHO.DAT file 

- 
Echo-Example 

created 7/31/1992 at  11:20 
- 
1,3,2(dma)=v - Comm_1,2,4,3(dam,t)=verr 
Syntax error above A 

I.C. Syntax Error above A ! 

- - corn-ss 

v(0ut,t,2)= 

- 
S 

- Corn-v,v(*,e)=vv 
- Syntax error above A 

v,v(t)(*,t)=vv 

f,f(*,t)=ff 
ff,f(*,t)=ff - Comm-ff,f(*,t)=ff 

lelOO(dma,t)=f 

- L - A - S ECHO.DAT file 

- created 7/31/1992 at  11:30 
file,echo.ddd 

- L - A - S ECHO.DAT file 

- created 7/31/1992 at  11:20 
- 
1,3,2(dma)=v - Corn_1,2,4,3(darn,t)=verr 
- Syntax error above A 

Echo-Example 

comm-ss 
- - 

I.C. Syntax Error above A ! 
S 
V(OUt,t,2)E 

v,v(t)(*,t)=vv 

f,f(*,t)=ff 
ff,f(*,t)=ff - COmm_ff,f(*,t)=ff 

Comm-v,v(*,e)=vv 
- - 

Syntax error  above A 

lelOO(dma,t)=f 

- NOW L-A-S interpreter is back - in Ferminal Keyboard {ode 
- Soiie-additi&al-stat~ments-are-typed 

v is ( l  x 3) row, multipli- 
cation v*v is  not  permitted 

-here f = I O r m  

-here ff = IOm 

"overflow" and consequently 
This  statement  has  created 

this L-A-S session  is  ended 
"in  a crash." 

Version 2 

File ECHO.DAT modified  and 
renamed ECHO.DDD 

execution  errors  are com- 
Lines  creating  syntax or 

mented out by adding  a 
leading "-Corn-". 

New  ECHO.DAT file  created 
during the L-A-S session 
in which  the I.C FILE was 
used and the  file ECHO.DDD 
was read. 

Version 3 

Note  that  this ECHO file  was 
created 10 minutes  after  the 
first version. 
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ff (out)= 

v(out,t,O)= 
P 

- 
q 
Now,-to-quit-"q"-should-be-typed 

C.4 A List of L-A-S Interpreter  Commands 

MNEMONIC  NAME  DESCRIPTION 
! < Sys. Corn. > 

BEG (B) 
BEL 
CHA 
CLE 
CON (C) 
COP (CO) 
DSP 
ELI  (E) 
ELM 
END 
EPS 
FIL 
FIN (F) 
FKE  (FK) 
GRA 
HELP (H) 
INC 
INF 
JUM (J) 
LIS (L) 
LOA (LO) 
MEM (M) 
MOV WO) 
NAM (W 
NBE 
NFK OVF) 
NLI (NL) 
NME 
NTE 
NTR 
NTY (NT) 
OPE (0) 

PFI  (PF) 

Execution of  any  DOS operating  system  command 
Begin; the current L-A-S program  and  variables are deleted 
Activates the computer  bell 
Change  any  string of characters in an operator statement 
Clear  the  terminal  screen 
Continue 
Copy  part of the L-A-S program 
Display  status  of  the L-A-S interpreter 
Eliminate  operator  statements 
Eliminate  matrices 
End;  ends  the L-A-S session 
Definition  of the default  "machine  zero" 
All inputs to  the L-A-S interpreter are from  a specified file 
Find  string of characters in L-A-S program 
Enter  Function-KEY  mode 
CGA  high  resolution  graphics  mode 
Syntactical  description  of L-A-S statements 
Include an operator  statement or interpreter command 
Include  a  program file into  the current L-A-S program 
Jump; jump to  any  statement in the current L-A-S program 
List  operator  statements - enter  List mode 
Loads arrays  into  the L-A-S Interpreter  memory 
Memorize  entered  operator  statements - enter Memorize  mode 
Move part of the L-A-S program 
Names;  display of  names  and dimensions  of  all arrays 
Deactivates  the  computer  bell 
Exit  Function-KEY  mode  (default) 
No listing of operator  statements - exit  List  mode 
No memorizing of operator  statements - exit Mem.  mode 
No test;  exit  test mode 
No tracing of L-A-S program  execution - exit Trace mode 
No typing  of  operator  statement  results - exit Type mode 
Display  of  compatibility  conditions for dimension  of  input 
arrays 
Print  file  specification 
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Print L-A-S program  listing 
Display L-A-S program on terminal  screen 
Quit;  ends L-A-S session 
Read external file; read L-A-S program  created  by  any  text 
editor 
Read program  file; L-A-S program  from the DPF (Disk 
Program  File)  is  read  and  added  to  the current L-A-S 
program 
Restore  all  variables 
All variables are stored  (saved)  on  a  file. 
Status;  displays  status of L-A-S program 
Store all  variables 
Total  change;  global  substitute of  an  old  name  by a new one 
in an L-A-S program 
Test;  display of additional  intermediate  information during 
execution, (used only in L-A-S software implementation) 
Time in [sec] for plots to stay  on the screen 
Trace; trace L-A-S program  execution - enter Trace mode 
Type;  cancels NTY - enter Type mode 
Write  program  file; the current L-A-S program is saved 
Label the X-axis of the plot 
Label  the  Y-axis  of  the  plot 

PRL (PR) 
PRO  (P) 
QUI (Q) 
REF 

RPF (R) 

RSV 
SAV 
STA (S) 
STV 
TCH 

TES 

TIM 
TRA 
TYP (TI 
WPF (W) 
XLAB 
YLAB 

Detailed  syntactical  description of each interpreter command  may  be obtained by 
typing HELP,xyz ; where xyz stands  for  the  mnemonic name o f  an interpreter 
command. 

c.5 On-Line  Help File 

This section  reviews "help" descriptions of some L-A-S operators. This type 
of  information  is  available in the on-line Help file. Initially,  three  examples which 
indicate the type of help  that is available are presented.  Following  these  examples, 
a  selection of actual  Help file responses  is  given.  Although  not  exhaustive, the few 
examples of  this  section  should  convey  that  the L-A-S Help file provides  adequate 
information to make  good  use of the  corresponding operators. 
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Example 1: 

PURPOSE Matrix  inversion with optional  determinant  calculation. 

USAGE A ( -1 [fl )= AI [ , D], Thefl (flag) option is used to 
specify the output  format: t corresponds  to X W . ~  and e, to an exponential 
form for  a  wider  range of  values. 

DESCRIPTION: AI is  the  inverse of the (n X n) matrix A. D is the 
determinant of the  matrix A. 

See also: I N ,  P-l  

EXAMPLE 
Given  the  matrix  (previously  defined in L-A-S): 

A =  

- 2 1  0 0  

0 - 1 1  0 

0 -1 -1 1 

0 0 0 - 3  

The L-A-S statement: A ( -1, t ) = AI, D will  yield 

"0.5  -0.25  -0.25  -0.083 

0 -0.5 -0.5  -0.167 

0 0.5  -0.5  -0.167 

0 0 0 -0.333- 

A I =  

with the determinant D = 12.000 

Example 2: 

PURPOSE: Complex  function  multiplication 

USAGE X,  Y ( C* [,fl 3 ) = Z 

DESCRIPTION: The matrix X of  dimension (n X 2) has  the  complex 
form x, = real(xb + j imu,g(xJ, where k = 1, -., n and j = ( - l ) l R .  The 
matrices Y and Z have the same  form. The operation  represents  a  term by 
term  complex  multiplication. 

See also: *, C/, F*, P*, PMM, S* 
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EXAMPLE: Given  the arrays (previously  defined in L-A-S): 

The L-A-S statement X, Y (C*) = Z will  yield: 

5 0  
3 4  

z =  
2 0  

0 2 

"4 0- 

Example 3: 

PURPOSE To calculate  the  eigenvalues of a square  matrix. 

USAGE A (EGV [,fll) = EG 

DESCRIPTION: Given  the (n X n) matrix A, the two columns of the 
(n X 2) matrix EG contain  the  real  and  imaginary  parts of the eigenvalues 
of the matrix A. 

See also: EGC, CHE, CHD 

EXAMPLE: Given the matrix  (previousl: 

I 0 1 0  

A =  0 0 1 

-2 -4 -3 

The L-A-S statement A (EGV) = EG 

-1 1 

EG = -1 -1 

"l 0 

y defined in L-A-S): 

will yield: 
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The following is a list of several examples taken directly from the L-A-S 
Help  file: 

* T,Ad[,Egm,N,Eps](Lnm[,fl])=Ac Natural  log of (n  x n)  matrix  Ad 

T(l x 1) scalar  or  integer 
Ad(n x n)  given  matrix 
Egm(1 x 1) scaling  factor < 1, default  value = 0.25,  leads  to: 

N(l x 1) truncation  coefficient,  default  values  N=36. 
Eps(1 x 1) << 1, sufficiently  small  positive  scalar 

Ln(Ad)/T ==> AC 

I W [  I-Ad"(l/r) ] I < Egm;  r = 2"j ; j & r  scaling  coefficients 

Preset  default  value:  Eps = lo"(-16) 
Default  value  of  Eps  could  be  changed  by  the I.C. EPS 

Algorithm, see Chapter 2: 
Given  T,Ad,Egm ==> j,r;  then 
Ac = -r/T*  sum { [ I - Ad"(l/r) ]"i * (l/i 1 ; i=[l,N] 

See also:  EATF 

* c,A(POLR[,fl)=r  Polynomial  reduction  using the C-H-Theorem 
c(1 x N);  A(n x n);  r(1 x n); N > n 
r(8)  and  c(s)  satisfy:  r(A) = c(A) 

Algorithm,  see  Chapter 2: 

2. k-l ==> k 
1. c ==> r, N ==> k; det(1s-A) ==> f(s) 

3.  r(k-n+j)-r(k)*f(j) ==> r(k-n+j),  for  j=[o,n-l] 
4. For k > n go to 2;  Else,  Stop. 

See also:  POM 

A(n x n);  B(n x m) 
* A,B[,k](QC[,fl))=Qc  Controllability  matrix 

k(1 x 1)  specifies # of blocks  in QC; default  value: k = n-m+l 

Qc(n x  h) = Controllability  matrix = IBIA*Bi..~A"(k-l)*B~,  h=m*k 

See also: QO,  RKC,  RKR,  NRS 

If k = 0, Operator  uses k = n-m+l 

* xo,N,Tt,A[,B,u](RCS[,fl])=x[,T] ; Continuous  system  response 
xo(n x 1) = intial  condition  vector 

Tt(1 x 1) = total  time,  scalar  or  integer 
A (n x  n) = system  matrix 
B (n x  m) = input  matrix 
U (N x m) = input  vector 
x (N x n) = state  vector - solution 
The operator  calculates  the  solution  of  the  following  diff. eq. 

dx(t)/dt = A * x(t) + B * u(t) ; x(o)=xo 
for: t = [O,Tt]  in N points. 

T(N x 1) = values  of  independent  variable t - obtained 
from  values N and Tt ; initial  value = 0. 

If U omitted,  calculates  step  response;  assumes: U = step 
If  both B and U omitted,  calculates  response  to xo; assumes: B = 0 

N(l x 1) = # of  points,  scalar  or  integer 

See also:  CE1, CE2,  CE3,  CE4,  CES 
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* v(DSM[,fl])=S ; Define Selector Matrix S - Oper.  stmt. 
V(1 x  n) ; S (n X m) ; where m = # of non-zero elements in selector 
vector v. 
v = {vi}; S = {sij} 

0 0 0  Non-zero elements 
1 0 0  in the  row  v  are 

0 0 0  
0 0 2  

Example: for v = [ 0 1 3 0 2 ] ; S = o 3 o typically unity. 

A(n  x  m) given matrlx 
* A[,Eps](NRS[,fl!)=N[,R,rJ - Null- , Range-apace and Rank 
Eps = sufficiently small postive scalar. Preset default value: 

Eps 10*(-16) 

N(m x v) Null space of A, satisfies: A * N = 0, v = m - r = Nullity 
Of A 
R(n  x r) Range apace of A,  aatisfies: r = rank[A] = rank[AIR] 
r(l x  1)  Rank of A, satisfies: m = v + r 

Default value of Eps could be changed by the I.C. EPS 

See also: RKC, RKR, QC, Q0 

* Q[,eps](RKC[,fl])=[Qli][,Qld][,sv] RanK of Q and separation of 
linear independent Columna. Q[n x m], Qli[n x r] contains L.I. 

Qld[n  x  (m-r)]  contains L.D. columns. ; 
columns, 

sv[l x m] ; selector vector; elementa are equal either to  one or zero 
The i-th element of  av equal to  one signifies that the 
i-th column of Q is linearly independent on previous 

eps = auff. amall positive scalar. Preset default value: epa- 10A(-16) 
j columns of Q ; j = [l,i-l].  and that column qi is in Qli 

The default value could be changed using the I.C. EPS 

See also: RKR 

A(n X m) = {aij) ; an = aqrt{ sum of aij-2 } ; Avi = sqrt{ aum of 
* A(NRR[,fll)=an[,Av] NoRm P Row norms; Frobenious norm 

aijAZ } 
an[l X 11 = norm of A ; Av[l x n] = norms of rows  of A 

See alao:  NRc 

It is our  hope that with this  brief  introduction  the  reader will be  able  to  strike  out 
on  his or her  own,  making  ample  use of the  on-line  help and the  lists in the  next 
section. 

Authors' Remarks: 

Although L-A-S might  seem  "complicated"  to a new  user, it does, in fact, 
follow  the  book's  motto: 

"Everything  should  be  made us simple as possible, but  not simpler. " 
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L-A-S has  more  features than  most  existing  CAD  packages,  some  not  found 
in any  other CAD  software.  Some  paticularly  useful  features are the  "modes:" 

as well as the  flexible  multiple-operator  statements (MOS) and  subroutines. 

To get full  benefit  from  the  software, it is necessary to invest  time to get 
acquainted  with  all L-A-S features. On the  other  hand, the features  required  to  use 
the  software as a simple  matrix  "calculator,"  which is what  the  majority  of  other 
existing  CAD  packages  basically offer, see examples ExampCl, Section  C. 1, and 
ExerC,  Section  C.3, may be  learned  in  virtually no time. 

MEM , TRACE , LIST , TYPE , Function-KEY 

C.6 L-A-S Code for  Specific  Algorithms 

CHAPTER 1 

LIN.SBR 

2 nli 
1 par,zo,dz(Lin,sbr)=A,B,diff  

3 nty 
4 -{A,B} linearized model of 

6 -in the vicinity-of-zo 
5 -dx(t)7dt=g(xru,py;-z=I~~ul 

8 _Message-LIN-displayed 
7 1,3Tdzm~(tvc)=A,B,diff 

10 (stO)= 
11 zo (rdi) =h 
12 h,l(dzm)=zerv 
13 zerv(inc)=onv 
14 onv(t),-l(s*),h,h(dim) 

15 par,zo(gz,sub)=go 
16 go,go(rdi)(mcp)=H,n 
17 0 (coin)  =i 
18 i:i(inc)=i 
19 dz,i,l(exm)=dzi 
20 ~ o ~ ~ o ~ i ~ l ~ l ~ l ( e x m ) ~ d z i  

21 par,zi(gz,sub)=gi 
(+)ritl(rmprt)=zi 

22 H,gi(cti,t)=H 

24 j:(nop)= 
25 dz(t) (ddm)=D 
26 H,T(*,t)=H 
27 H,D(-l)(*,t)=H 
28 H,n(ctc)=A,B 
29 go,H,dz(*)(+,t)=gla 
30 par,zo,dz(+)(gz,sub)=gl 
31 gl,gla(-,e)=diff 
32 q:typ 
33 lis 

(rti,t)=T 

23 irh(ifj)zirjrj 

GZ.SUB 

2 (nli)= 
1 par, z (gz , sub) =g 
3 -Generates-nonlinear 

4 -z=ixiul-Xefining 

5 -for-2-Deg-of-Freedom 

6 ICallea-by-LIN.SBR 
7 par(tvc,t)=a,b,c,d,e 
8 z(t) (tvc,t)= 

9 z4,2(s*)(sin)=s2~4 
10  z2,2(s*)(sin)=s2~2 
11 z4(cos)=cz4 
12 z4(sin)=sz4 
13  b,c,cz4(*),cz4(*)(+),dr 

14 a,zl(*),z3(*),~2z2(*), 
sz4(*),sz4(*)(+,t)=den 

15  gl,den(s/,t)=gl 
25(+),26(-,t)=gl 

16 ZlrZl(*),S2Z4(*),e(*), 
-l(s**t)fg3 

17 g3rz6ra(s/)(+rt)=g3 
18 glrzl,g3,z3(rti,t)=g 
19 (lis)= 

QC.SUB 

- function g(z,p) 
dx(t)/dt=g(xrurP) - 
Robot Arm 

~1,22,23,24,25~26 

1 A,B(qc,eub)=Qc 
2 (nli)= 
3 -Implemented-also-as 

4 -Qc~-Controllability 
QC operator 

matrix of {A,B} 
5 -QC is Tn x h); h=(n-m+l)m 
6 A(cai)TB(-ddx)  (mcp)=n,m 
7 n,m(-)(inc)=im 
8 B(mcp)=X 

- 
- 
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10 0 (coin)=i 
11 i:i(inc)=i 
12 Qc,X(cti,t)=Qc 
13 A,X(*)=X 
14 i,im(ifj)=i,j,j 
15 j:(lis)= 

QO.SUl3 

9 n,O(dzm)=Qc 

1 A,C(qo,sub)=Qo 
2 (nli)= 
3 -Implemented-also-as 

4 -Qo=-Observability 

5 -Qo-is-(h-x-n);pp(n-P+l)P 
6 A(cdi),C(rdi)(mcp)=n,k 
7 n,k(-)(inc)=im 
8 C(mcp)=X 
9 O,n(dzm)=Qo 

- QC-operator 
- matrix-of-{A,C:) 

. .  . 
10 n,n(-)=i 
11 i:i(inc)=i 
12 Qo,X(rti 
13 X,A(*)=X 
14 i,im(ifj 
15 j:(lis)= 

NRs.suB 
1 
2 
3 

4 
5 
6 
7 
8 

10 
9 

11 

A,eps(nrs,SUb)=N,Rrr 
(nli) - Implemented-also-as - NRS-operator 

-N,-R-=-Null-and-Range-space 
- of-A;-r=rank(A) 
w,w,eps(f/)=x 
A(svd)=w,U,V 

x,x(t)(*,t)=r 
U, r (ctc)  =R 
V,r(ctc)=x,N 
(lis)= 

CDSR.SuB 

2 (nli)= 
1 A,B,C,D,xo,u,T(cdsr,Sub)=y 

3 -General-SS-(C-T)-or 

4 Response-to-u-&-xo 

6 -For-D-T case  use-T= 

7 T(ifjy=d,d,c 
8 d: (nop)= 
9 D-T  system  response 

(D-T) ==> - 
5 Z(t)=ut 

-neg. integer- 

IO Zi,~,E,ut,xoTrds)=yo 

12 (jmp)=f 
13 c:(nop)= 
14 -C-T-system-response 
15 ut  (rdi)  =N 

11 yO,utrD(t)(*)(+)=Y 

REs0.suB 
2 (nli)= 
1 A(Reso,sub)=p,Rr,R 

3 Implemented-by-SSTF-and-ALT 
4 "operators.  Use: 

5 R(alt)=Rc,Rr 
6 II=Identity-matrix 

8 n, n (dim) =I 
7 A(cdi)=n 

9 n,O(dzm)=Rr 
10 n,n(dim)=Ri 
11 n,n(*),O(dzm)=R 
12 l(coin)=p 
13 0 (coin)=i 
14 i:i(inc)=i 
15 Ri,A(  *)=E 
16 E!tr),i!s/),-l(s*)=pi 

18 Ri,Rr(cti,t)=Rr 
17 pI,p(Ctl,t)=p 

19 Ri(mtv)(t),R(cti,t)=R 
20 E,I,pi(s*)(+)=Ri 
21 i,n(ifj)-i,j,j 
22 j:(nop)= 
23 R, n (cmp)  =R 
24 (11s)= 

A,I,I(SSTF~=P,R - 

LALG.SUB 
1 A,B,C,D(Lalg,sub)=p,Rr,R 
2 (nli)= 
3 -Implemented-by-SSTF-and 

4 ~Use~A,B,C,D(sstf)=p,R 
5 R(alt)=Rc,Rr 

ALT  operators 

" 

6 A(cdi)=n 

8 D,I(mcp)=Rr,Ri 
7 n,n(dim)=I 

9 D(mtv)  (t)=R 
10 1 (coin) =p 
11 0 (coin) =i 

13 Ri,A(*)=E 
12 i:i(inc)=i 

14 E(tr),i(s/),-l(s* 
15 C,Ri,B(*)  (*),Drpi 
16 pi,p(cti,t)=p 
17 Ri.Rr(cti,t)=Rr 

)=pi 
( S * )  

18 Ri(mtv)  (t)  ,R(cti,t)=R 

20 i,n(ifj)=i,j,j 
19 E,I,pi(s*)(+)=Ri 

21 j: (nop)= 
22 R,B(cdi)(cmp)=R 
23 (lis)= 

(+) =Ri 
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ssTF.suB 
1  ArB,C,D(BStfrSub)=PrW 
2  (nli)= 
3  -Implemented-by-the 

4 -Calculates  Transfer 
function  ma'trix 

6 W  is  in  the  PMF 
7 l(%di3  ,BycdiT  ,C(rdi) 

8 n, 1 (dm) =zv 
(mcp)=n,mtP 

9 p,m(*!,l(dzm)=zpm 

- SSTF  operator 

S -w(s)/P(s~=c(Is-A)(~-~)B+D 
- 

10 n,n(dm)=I 
11 0 (coin) =z 
12 z (mcp) = j 
13  n,O(dzm)=WC 
14 0, n (dm) =BWC 
15 k: j(inc)=j 
16 C,j,l,l,n(exm)=ci 
17  O,n(dzm)=Wc 
18 z (mcp) =i 
19  i:i(inc)=i 
20 A,-l(S*),ci,i,l(rmp)=Aci 
21 Aci(mtv)=Aciv 
22 I,zv(t),i,l(nnp)=Iei 
23  Iei(mtv)=Ieiv 
24 Aciv,Ieiv(rti)(t),n(cmp) 

25 Wcpl(p-l)=Adj,det 
26 -det(out)= 
27 Wc,det,n(ctc)(rti,t)=Wc 
28 i,n(ifj)=i,j,j 
29  j:(nop)= 
30 WC,Wc(cti,t)=WC 
31 j,p(ifj)=k,l,l 
32 l:(nop)= 
33 z (mcp)  =l 
34 L:l(inc)=l 
35  B,l,l,n,l(exm)(t,t)=blt 
36  blt,WC(*,t)=btWC 
37 btWC,p(vtm)(t)=blWC 
38  BWC,blWC(rti,t)=BWC 
39  l,m(ifj)=L,K,K 
40 K:(nop)= 
41 D  (mtv)  =Dv 
42 A(mtf)=P 
43  BWC,zpm(cti),Dv(t),P(*) 

44 W,m(cmp)=W 

=Wcpl 

(+,t)=w 

45  (lis)= 

CHAPTER 2 

CTDT.SBR 

5 i. 4 (&m) (?%c) =xl,  Bi,  ClyDl 
for  (SI)  (RI)  and  (BL  Tr. 

6 Isrb(ifj)=c,q,d 
7  d:(nop)= 

9  Isrb,P(ifj)=s,r,b 
8 -C-T==>D-T 

10 s:(nop)= 

12 A,B,C,D,T,eps(SRcd,SBR)= 

13  nli 
14  nty 

16  r:(nop)= 

18 A,B,C,D,T,epS(SRcd,SBR) 

20 nty 
19  nli 

21  (jmp)=s 
22  b:(nop)= 
23  -(Bl.Tr.) 
24  A,B,C,D,T,eps(BLcd,SBR) 

25  nli 
26  nty 

28 c:(nop)= 

30 Isrb,-Z(ifj)=B,R,S 
31 S:(nop)= 

33  A,B,C,D,T,eps(SRdc,SBR) 

34 nli 
35  nty 
36  (jmP)=q 
37 R:  (nop)= 
38 -(RI) 

11 -(SI) 

Al,Bl,x,Cl,Dl,y 

15  (jmp)=s 

17 -(RI) 

=Al,x,B1,ClryrD1 

=AlrB1,C1,D1 

27  (jmp)=s 

29  -D-T==>C-T 

32 -(SI) 

=AlrBlrxrC1,Dlry 

39  A,B,C,D,T,eps(SRdC,SBR) 

40 nli 
41 nty 

43 B:(nop)= 
44 -(Bl.Tr.) 
45  A,B,C,D,T,eps(BLdc,SBR) 

46 nli 
47 nty 
48 q:typ 
49 lis 

SRCDSBR 

=Al,x,Bl,Cl,y,Dl 

42  (jmP)=q 

=AlrB1,C1,D1 

1 Ac,Bc,Cc,Dc,T,eps(SRcd,sbr) 
=Ad,Bds,Bdr,Cd,Dds,Ddr 

1 A,B,C,D,T,eps,Isrb 2 nli 
(CTDTrsbr)=A1,B1,C1,D1 3  nty 

2 nli 4 -(CT)==>(DT)  Transformation 
3  nty into-(SI)-afid-(RI) 
4 -General-(CT)-<==>-(DT) 5 -{Ad,Bds,Cd,Dds}=(SI) 

- 
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6 

7 

8 

10 
9 

11 
12 

13 

- (DT)-model - 
(DT) model 
{Ad,Bdr,Cd,Ddr}=(RI) 

T,6(d%1) (tvc)= 
Ad,Bds,Bdr,Cd,Dds,Ddr 
T,Ac(eatf,t)=Ad,E,F 
FrEIF(-)(-l)(*,t)=P 
E,Bc(*),T(s*)=Bds 
Bds,F,Bc(*),T(s*)(-,t)=Bdo 
Ad,Bdo,P,Cc,Dc,eps 

Cc,Dc(mcpl=Cd.Dds 
(R5R4,sub)=Bdr,Ddr 

14 q:typ 
15 lis 

. _ .  

SRDC.SBR 
1 

2 
3 
4 

5 

6 

7 

8 

10 
9 

11 

12 

13 
14 
15 q:typ 
16 lis 

. _ .  

Ad,Bd,Cd,Dd,T,eps(SRdc,sbr) 

nli 
=Ac,Bcs,Bcr,Cc,Dcs,Dcr 

ntY 
- 
into-(SI)-aEd-(RI) 
(DT)==>(CT) Transformation 

(DT)-model 
{Ac,Bcs,Cc,Dcs}=(SI) 

(DT)-model 

- - - - {Ac,Bcr,Cc,Dcr}=(RI) - 
1,6(dzm)(tvc)= 
Ac,Bcs,Bcr,Cc,Dcs,Dcr 
T,Ad(lnm,t)=Ac 
T,Ac(eatf,t)=x,E,F 

Ad,Bd,P,Cd,Dd,eps 
(R4RSrsub)=Bdo,Dcr 

E(-l),Bd(*),T(s/,t)=Bcs 
=Bcr 

Cd,Dd(mcpl=Cc,Dcs 

F,E,F(-)(-l)(*,t)=P 

E,F(-)(-l)rBdo(*),T(s/,t) 

BLCD.SBR 
1 A c , B c , C c , D c , T , e p s ( B L c d , s b r )  

2 nli 

4 -(CT)==>(DT) Bilinear 
3  nty 

- Transform irto 4  matrix- 
5 State space moaeis 
6 T,4(dzm)(tvcy=Ad,BdrCdrDd 
7  Ac,Bc,T,l(Bcdc,sub)- 

8 Ad,Bo,P,Cc,Dc,eps 

9 Cc (mcp) =Cd 

=Ad,Bd,Cd,Dd 

Ad,Bo,Bl,P 

(RSRQ,sub)=Bd,Dd 

10 q:typ 
11 lis 

BLDC.SBR 
1  Ad,Bd,Cd,Dd,T,eps 

2 nli 
3 nty 
4 -(DT)==>(CT) Bilinear 

Transformatron: 
5  4 term State space models 
6 i,~(dzm~(tvc)~Ac,Bc~Cc,Dc 
7 Ad,Bd,T,Z(Bcdc,sub)= 

8 Ac,Bo,P,Cd,Dd,eps 

9 Cd (mcp ) =Cc 

(BLdc,sbr)=Ac,Bc,Cc,Dc 

- 

Ac,Bo,Bl,P 

(R5R4,sub)=BcrDc 

10 q:typ 
11 lis 

EAT.SBR 

2 nli 
1  T,Ac,Nrm,N(Eat,sbr)=Ad 

3 nty 
4 -Implemented-also-by-EATF 

operator 
5 Ad=exp(Ac*T) 
6  Nrm satisfies 

7 i5fcoml=Ad 
-I I AFT I I /Nrm-c-r;-r=2A ( j ) 

8 Ad(nrrj,T(*),Nrm(s/)(log),Z 

9 jr2(log)(*)(exp,t)=r 
(los)(s/)(int)(inc,t)=j 

11 j,Tl(out)= 
10 T,r(s/,t)=Tl 

12 N(fact,sub)=f 
13 O(coin),l(coin),N(inc) 

14 f,vc(gts)(t),Tl(log)(s*) 

15 C,Ac(polr)=Cr 
16 Cr,Ac(pom)=Ad 
17 j (ifj  )=Sr c 
18 C:(nop)= 
19 0 (coin) =i 

21 Ad,Ad(*)=Ad 
20 e:i(inc)=i 

22 i,j(ifj)=e,q,q 
23  q:(nop)= 

25 11s 

=(cti)=vc 

(exp)(f*)=C 

24  tYP 

EATJ.SUB 

2 Inli\= 
1  T,Ac,eps(Eatj,sub)=Ad 

3 ~Implemented-by-EATF 

4 rAd=exp(Ac*T)-only-for 
operator 
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5 -Diagonalizable Ac 11 jr2(1og)(*)(exprt)=r 
6 Ac( jfr,t)=Mc,Acj 12 T,r(s/,t)=Tl 
7 Ac(egv),T(s*)=egcT 13  j,Tl(out)= 
8 egcTr2,eps(efjf)=ExJf 14 N(fact,sub)=f 
9 MC,ExJf,MC(-l)(*)(*rt)=Ad 15  O(coin),l(coin),N(inc) 
10 (lis)= 

SICD.SBR 17 C.Tlls/l=C 

16 f,vc(gts)(t),Tl(log)(s*) 
(cti)=vc 

(exp)(f*)=C 

1 
2 
3 
4 

5 

6 
7 
8 
9 

10 
11 
12 
13 
14 

15 

16 
17 
18 
19 

T,Ac,B,Nrm,N(SIcd,sbr)=Ad,Bd 
nli 
nty 
- Step Invariant - Disci?etization - exp(Ac,T)==>Ad; 
{Ad,Bd} DTgair 

T,2(dzm)Ttvc)=AdrBd 
Ac (cdi) =n 
n,n(dim)=I 
Ac(nrr),T(*),Nrm(s/)(lOg),2 
(log)(s/)(int)(inc,t)=j 

T,r(s/,t)=Tl 
j,Tl(out)= 
N(fact,sub)=f 
O(coin),l(coin),N(inc) 

jr2(log)(*)(ex~rt)=r 

(cti)=vc 
frvc(gts)(t)rTl(log) 

C,Tl(s/)=C 
(s*)(exp)(f*)=C 

C(shl),Ac(polr)=Cr 
Cr,AC(pom)=E 
j(ifj)=FrFrC 

20  c:(nopj- 
21 0 (coin) =F 
22 e: i( inc)=i 
23 ACrE(*)rTl(S*),2(S/)rI 

24  Tlr2(s*)=T1 
25 i,j(ifj)=e,F,F 
26 F:(nop)= 
27 Ac,E(*),Tl(s*),I(+)=Ad 
28 E,B(*),Tl(s*)=Bd 

(+)rE(*)=E 

29 q:typ 
30 lis 

IUCD.SBR 
1 T,Ac,B,Nrm,N(RIcd,sbr)= 

2 nli 
3 nty 
4 -Ramp Invariant 

5 exp(Ac*T)==>Ad; 

Ad,Bdo,Bdl 

- Discretization - 
{Ad,Bdo,Bdl}-DT- 

6 -&iple in five matrix model 
7 1,3(dz?iil(~vcl=jid,Bdo,~dl 

l 8  C(shi)'('shl) ,Tl(s/) ,Ac 

19 Crf,Ac(pom)=F 
20 j(ifj)=F,F,C 
21 C:(nop)= 
22 O(coin)=i 
23 e:i(inc)=i 
24 Ac,F(*),Tl(s*),I(+)=AFI 
25 AFIr2(s/)=AFI 
26 AFIrAFI(*),F,2(s/)(+)=F 
27 Tlr2(s*)=T1 
28 i,j(ifj)=e,F,F 
29  F:(nop)= 
30 Ac,F(*),Tl(s*),I(+)=E 
31 Ac,E(*),Tl(s*),I(+)=Ad 
32 E,B(*),Tl(s*)=Bd 
33 F,B(*),Tl(s*)=Bdl 

(polr)=Crf 

34 Bd,Bdl(-)=Bdo 
35 q:typ 
36 lis 

EATF.SBR 

2 nli 
1 T,Ac,Nrm,N(EATF,sbr)=Ad,E,F 

3 ntv - ." 

4 -~mplemented-also-by-EATF 

5 -Discretization-Ad=exp(Ac*T) 
6 -E-and-F-satisfy: 
7 -Ac*F*T=E-&-Ac*E*T=Ad 
8 1,3(dzm)(tvc)=Ad,E,F 

- operator 

9 Ac (cdi) =n 
10 n,n(dim)=I 
11 Ac(nrr) rT(1) rNv(s/) (lOg),2 

(log)(s/)(xnt)(lnc,t)=) 
12 jr2(log)(*)(exp,t)=r 
13  T,r(s/,t)=Tl 
14 j,Tl(out)= 
15 N(fact,sub)=f 
16 O(coin),l(coin),N(inc) 

17 f,vc(gts)(t),Tl(log)(s*) 

18 C,Tl(s/)=C 
19 C(shl)(shl),Tl(s/),Ac 

20 Crf,Ac(pom)=F 
(polr)=Crf 

21  j(ifj)=FrFrC 
22 C:(nop)= 
23 O(coin)=i 
24 e:i(inc)=i 
25 Ac,F(*),Tl(s*),I(+)=AFI 

(cti)=vc 

(exp)(f*)=C 
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26 AFI,2(s/)=AFI 
27 AFI,AFI(*),F,2(s/)(+)=F 
28 T1,2(s*)=T1 
29 i,j(ifj)=e,F,F 
30 F:(nop)= 
31 Ac,F(*),Tl(s*),I(+)=E 
32 Ac,E(*),Tl(s*),I(+)=Ad 

34  1LS 
33 q:typ 

LNM.SBR 
1 T,Ad,Egm,N,eps(Lnm,sbr)=Ac 
2 nli 

nty - Implemented-also-by-LNM 
- Ac=Ln(Ad)/T - Egm-satisfies: 
- operator 

eg[I-AdA(l/r) 1-<_Egm 
E(coin)=Ac 
Ad (cdi) =n 

10 T,Ad(mcp)=Tr,Aj 
11 j:I,Aj(-)=L 
12 L(egv)(rpt),l,l,l,l 

13 emax,Egm(ifj)=z,z,p 
14 p:Tr,2(s/)=Tr 

16  (mp)=j 
15 Aj,eps(sqm,t)=Aj 

9  n,n(dim)=I 

(exm) =emax 

18 T,Tr(s/)=r 
17 z:(nop)= 

20 N(fln,sub)=f 
19 r(out)= 

21 f ,L(polr)=vr 
22 vr,L(pom)=Ac 
23 Ac,Tr(s/),-l(s*,t)=Ac 
24 q:typ 
25 lis 

LNh2T.SUB 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

T,Ad,eps(Lnmj,sub)=Ac 
(nli)= 

- Implemented-by  LNM-operator - Ac=Ln(Ad)/T-oKly-for - 
Ad(  jfr,t)=M 
Ad(egv,t)=egd 
egd,3,eps(efjf,t)=LnJf 
M,LnJf,M(-l)(*)(*),T 
(s/,t)=Ac 

Diagonalizable-Ad 

(lis)= 

POM.SUB 
1  r,A(pom,sub)=R 
2 (nli)= 

4 -R=r(A)-pol~no%ial<of 
3 -Implemented by POM operator 

5 r(mcp)=p 
6  p(cdi)=k 
7 A(cdi)m 
8 n,n(dim)=I 
9 n,n(dzm)=R 
10 i:k(dec)=k 
11 p,k(ctC)=PprPk 
12 R,A(*),IrPk!S*)(+)=R 
13 k(ifj)=j,J,l 

15 (lis)= 

P0LR.SUB 

14 j:(nop)= 

1  p,A(polr,sub)=r 
(nli)= 

-(n-l)-order  pol.-r(x)-and- 
- operator 

-r(A)=P(A) - Algorithm-uses-C-H-Theorem 
A(sstf)=f 

- Implemented-by-POLR 

- N-ordsr-polTg(x)-satisfy 

10 A(cdi)=n 
9 p(mcp)=r 

11 f,n(ctc,t)=f,fn 
12 r (cdi) =N 
13 i:N(dec)=N 
14 r,N(ctc,t)=r,rN 
15  N,n(-)=m 
16 l,m(dzm),f,rN(s*)(cti,t)=X 
17 r,x(-,t)=y 
18 m(~fj)=j,],i 
19  j:(nop)= 
20 (lis)= 

FACT.SUB 
1 n(fact,sub)=f 
2 (nli)= 
3 -Generates-f= 
4 -fi=l/il 
5  l (coin) =one 
6 n (coin) =N 
7 one,one,N(cti 
8  v(gts) (t)=v 
9 v(mcp)=fa 
10 1, n (step) =st 

12 I:i(inc\=i 
11 O(coin)=i 

{fi},i=[o,n] 

, ) =v 

13 v;N,i(-) (ctc,t)=vl,x 
14 st,i(ctc,t)=onev,x 
15 fa,onev,vl(cti)(f*,t)=fa 
16 i.,n(ifj)=I,j,j 
17 j:(nop)= 
18 st,fa(f/,t)=ss 
19 one,ss(cti,e)=f 
20 (lis)= 

FLN.SUB 
1  N(fln,sub)=f 
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BCDC.SUB 
1 A4,B4,Tricdc(Bcdc,sub)= 

2 (nli)= 
3 -Bilinear  Transformation: 
4 -For-icdc=1;-4-term-(CT) 

A5,B50,B5lrP 

- {A4,B4}-==>-5-term-(DT) 
{A5,B5o,B51,P} 

5 " For-icdc=2;-4ferm-(DT) - {A4,B4}-==>-5-term-(CT) 
{A5,B50rB51,P} 

6 Ax( cdi)  =n 
7 n,n(dim)=I 
8 2(coin),T(s/,t)=a 
9 icdc,l(ifj)=c,c,d 
10 c:(nop)= 
11 I,a(s*)=Ia 
12  IarA4(-)(-l)=IAin 
13 IAin,Ia,A4(+)(*),IAinrB4 

14  BSo,I(mcp)=B51,P 
15 (jmp)=f 
16 d:(nop)= 
17 A4,1(+)(-1)=AIin 
18 AIinra(s*),A4,I(-)(*),AIin, 

19 B5l,a(s*),-l(s*),I,a 

(*)(mcp,t)=AS,BSO 

B4(*),-l(s*)(mcprt)=A5,B51 

( s ! ) , - l ( s* ) (mcp , t )=BSo ,~  
20 f:(lrs)= 

1 

RsR4.suB 
1 A,Bo,P,C,D,eps'(r5r4,sub) 

2 (nli)= 
=Be,  De 

3 -5 matrix  model-==>-4 

4 A(cdi),Bo(cdi),C(rdi)(mcp) 

5 n,n(dim)=I 
=n,m,k 

6 A,I,C(mtf,t)=f,V 
7 V(alt)=Vm,x 
8 Vm,eps(nrs)=N,R,r 
9 I (mcp)  =InN 

rn=trix-m=del - 

10 r,n(ifj)=s,n,n 
11 s:(nop)= 
12 IrNrN(t)rN(*)(-l)rN(t) 

(*)(*)(-)=InN 
13 n:(nop)= 
14 InN,I,A,P(*)(+),Bo(*)(*)=Be 

15' C,P,Bo(*)(*),D(+)=De 
16  (lie)= 

R4R5.SUB 
1 A,Be,P,C,De,epe(r4rSrsub) 

2 (nli)= 
3 -4 matrix  model-==>-S 

4 A(cdi)TBe(cdi),C(rdi)(mcp) 
=nrmrk 

5 n,n(dim)=I 
6 A,I,C(mtf,t)=f,V 
7 V(alt)=Vm,x 
8 Vm,eps(nrs)=N,R,r 
9 I(mcp)=InN 

=Bon , Dn 

mctrix  mgdel - 

10 rrn(ifj)=srnrn 
11 s:(nop)= 
12  I,N,N(t),N(*)(-l),N(t) 

13  n:(nop)= 
14 InN,I,A,P(*)(+)(-l)(*),Be 

15  De,C,P,Bon(*)(*)(-)=Dn 
16  (lis)= 

(*)(*)(-)=InN 

(*)=Bon 

SQM.SUB 
1 A,eps(sqm,sub)=X 
2 (rill)= 
3 -Implemented  by SQM operator 
4 -X-satisfiei-XzX=A- 
5 A(cdi)=n 
6 n,n(dim)=I 

8 20  (coin)  =im 
7 I (mcp)=X 

9 0 (coin) =i 
10 i:i(inc)=i 
11 i,im(ifj)=c,j,j 
12  c:(nop)= 
13 XrA,X(-1)(*)(+),2(s/,t)=Xn 
14 X,Xn(-)(nrr)=del 
15 Xn  (mcp)  =X 
16 del,eps(ifj)=j,j,i 
17 j:(lis)= 

CHAPTER 3 

sTR.sUB 
2 (nli)= 
1 A , B , C , T ( s t r , s u b ) = A t , B t , C t  

3 -Similarity-Transformation 
4 -Implemented-by-operator-STR 
5 T(-l),A,T(*)(*)=At 
6 T(-l)  ,B(*)=Bt 

8 (lis)= 
7 C,T(*)=Ct 
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SMAT.SUB 
1 Ind(SMat,sub)= 

2 Inli\= 
nx,Sa,Si,Sli,Sld 

3 “PC; or POI-==>-Selector 

4 hd(poi)=n,nx,va,vi,vli,vld 
Matr’ice5 

. .  
5 va(dsm),vi(dsm)(mcp)=Sa,si 
6 vli(dsm),vld(dem)(mcp) 

7 (lis)= 
=Sli, Sld 

IND.SUB 
1 Q,m,cut,epe(Ind,eub)=Ind 
2 (nli)= 

4 
3 

5 
6 
7 
8 

10 
9 

11 
12 
13 
14 
15 

16 

- vlit-aux.-eel.-vector 
vlit,cut(Etc)=x,vli 
vli eel. vector - 

vli(cdi);m(s/,tj=k 

(*,t)=Ind 
l,k(step),vli,k(vtm)(t) 

(lis)= 

3 Adeg=Min(eing.-Val.) / 

4 -Adeg = Adkesibllitv 
Max(sing. Val.)  0f-A- 

-deg;=ez= l/Cond.# * 

5 X(rdi),A(Edi) (mcp)=n,m 
6 n,m(ifj)=s,f,f 
7 srA(t)(svd)=w 
8 (jmp)=F 

10  F:w(cdi)mc 
9 f:A(svd)=w 

11 w,l,nc,l,l(exm),w,l(ctc) 

12 Adeg (out, e) = 
13 (lis)= 

(e/,e)=Adeg 

cIND.sUB 
2 (nli)= 
1 vli,m(cind,sub)=Ind 

3 ~Sel;gector-vli-==>-Ind 
4 -Ind-=-PCI  or-POI 
5 Zm-=-#-of-inputs/outputs 

6 vli(cdi),m(e/,t)=n 
7 l,n(etep),vli,n(vtm)(t) 

8 (lis)= 
(*,t)=Ind 

CFPP.SBR 

2 nli 
1 A,B,eps(CFpp,sbr)=Tc,Ind 

4 -Tc-= Sim. Tr.  itito 
3 nty 

FeedFack E FoFm 
5 -1nd = UnrGe C1 
6 i,2(&ii)(tvc)=Tc,Ind 
7 A(cdi),B(cdi)(mcp)=n,m 

10 -By substituting CIND.SUB 
9 Qc,eps(rkc)=Qcl,x,vli 

witli its code,- - 
11 -CFPP-maybe-converted 

12  ~li,mTcind,eub)=Ind 
13 Ind(poi)=nn,nx,va,vi,vli,vld 
14 A,B,nx(inc)(qc)=Qc 
15 vli(dsm),vld(dsm)(mcp)= 

Sli8Sld 
16 Qc,Sli(*)=qcl 
17 Qcl(-1) =Qcri 
18 Qcri,n,m(-)(ctr)=x,Pco 

20 A,Pc(Qo)=Tt 
19 va(dsm)(t),Qcri(*,t)=Pc 

21 Tt,eps(rkr,t)=Tc,x,ro 

23 lie 

8 A,B(qc)=Qc 

7 n t o - s ~ ~ -  

22 q:typ 

CFNS.SBR 

2 nli 
1 A,B,eps(CFne,sbr)=Tc,Ind 

3 nty 
4 -Tc-=-Sim.-Tr.-into-Feedback 

5 -Iiid-=-Unique-CI 
6 -Using Null space  approach 
7 ir2(dziii)  (tv;)=Tc,ynd 

C Form 

8 A(cdi)  ,B(cdi) (mcp)=n,m 

10 Qc,eps(rkc)=Qcl,y,vli 
11 vli,m(cind,eub)=Ind 
12 Ind(poi)=nn,nx,va,vi,vli,vld 
13 O,n(dzm),l,n(step),va(dsm) 

9 A,B(qc)=Qc 

(t),O(coin)(mcp) 
=rows,onv,Sat,i 

14 i:i(inc)=i 

16 Qcl,onv,ai(-)(dsm)(*,t)=Mi 
15 Sat,l(ctr)=si,Sat 

17 Qcl,si(t)(*,t)=qi 
18 Mi(t),ePS(nrs)(t),gi(*,t) 

19 Mi(t),eps(nra)(t,t)=ti 
20 ti,ti,qi(*)(s/,t)=ti 
21 rows,ti(rti,t)=rows 

=ali 
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22 irm(ifj)=i,jrj 10 n:n,-(out)= 
23 j:(nop)= 11  PC1 nc not-compatible 
24 A,rows(qo)=Qo -witii-A- 
25 Qo,eps(rkr)=Tc 12 Tjmp)=o 
26 q:typ 13 e:(nop)= 
27 lis 14 c:A,B,C(t)=Ac,Cc,Bc 

15 AC,CC,nx(inc)(qo)=Qo 
16 vli(dsm)(t),Qo(*,t)=T 
17 T (svd) =w 
18 w,n(dec)(ctc)=x,wn 
19 wn,w,l(ctc)(s/)=Deg 
20 Deg (out , e) = 

1 A,B,C,D,no,eps(SSRo,sub) 
21 Deg,eps(ifj)=x,x,w 
22 x:Deg(out,e)= 

=Ao,Bo,Co,Do,Deg 23 -(out)= 
2 (nli)= 24 -PCI-not-admissible 
3 -Genl-SS-==>-POF-based-on-no 25 (jmp)=O 
4 D (mcp) =Do 26 w:(nop)= 
5 no(poi,t) 27 Ac,BC,Cc,T(-l)(Str,t) 

=nn,nx,va,vi,vli,vld 
6  eps,eps,eps,epS(mcp) 

=Ao,Bo,Co,Deg 
28 C:Ac,Bc,Cc(t)=Ac,Cc,Bc 
29 O:(nop)= 

7 no (mcp) =- 30 (lis)= 
8 A(cdi)=n 

SECTION 4.1 

SSRO.SUB 

=Ac , BC , Cc 

10 n:n,-(out)= 
11  POI no not-compatible 

with-A- 

9  n,nn(ifj)=n,e,n 

12 (jmP)=o 
- 

13 e:(nop)= 
14 o:A,B,C(mcp)=Ao,Bo,Co 
15 Ao,Co,nx(inc)(qo)=Qo 
16 vli(dsm)(t),Qo(*,t)=T 
17 T (svd) =w 
18 w,n(dec)(ctc)=x,wn 
19 wn,w,l(ctc) (s/)=Deg 
20 Deg(out,e)= 
21 Deg,eps(ifj)=x,x,w 
22 x:Deg(out,e)= 
23 -tout)= 
24 -POI-not-admissible 
25 (jmp)=O 
26 w:(nop)= 
27 Ao,Bo,Co,T(-l)(str,t) 

28 O:(nop)= 
29 (lis)= 

=Ao , Bo , CO 

SSRC.SUB 
1 A,B,C,D,nc,eps(SSRc,eub) 

2 (nli)= 
3 -Genl-SS-==>-PCF-based-on-nc 
4 D (mcp) =DC 
5 nc(poi,t) 

=nn,nx,va,vi,vli,vld 
6 eps,epsreps,eps(mcp) 

=Ac,Bc,Cc,Deg 
7 nc(mcp)=- 
8 A(cdi)=n 
9  n,nn(ifj)=n,e,n 

-Ac,Bc,Cc,Dc,Deg 

SSH.SUB 
1 A,B,C,D,M(SSH,sub)=H,hM 
2 (nli)= 
3  General-SS-==>-Uarkov 
4 Iparameters-H-in-PMF 
5 B(cdil=m 
6  D,C,A,B,M(dec) (qc) ( * )  (cti)=H 
7  H,m,M(dec)(*)(ctc)=x,hM 
8 hM(nrr,e)=hM 
9 H,m(pmfr)=H 
10 (lis)= 

RODN.SUB 
1 A o , B o , C o , D O , n o ( R O D N , s u b )  

=Dl, N1 
2 Inlib= 
3 

4 

5 
6 
7 
8 

10 
9 

11 
12 
13 
14 
15 
16 
17 
18 

- 
tDlrN1) 

' POF-==>-Left-coprime-MFD 

AiS(cdi),Bo(cdi),Co(rdi)(mcp) 
=nrmrp 
Ao,Bo;Co,Do(mtf)=do,Wo 
Wo(alt)=Wc,Wr 
no(poi)=nn,nx,va,vi,vli,vld 
va(dsm),vi(dsm),vli(dsm), 
vld(dsm)(mcp)=Sa,Si,Sli,Sld 

Sld(t),Ar,Sli(t)(*)(-,t)=Dr 
Sa(t),Ao(*,t)=Ar 

Dr,p(pmfr)=Dl 
Dl(p-l)=Dli,det 
det(elz)(pnr,t)=x,dnn 
det(elz)=det 

Dli,dnn(e/)=Dli 
det(pnr)=x,dnn 

Dli(alt)=Dic,x 
Dic,p,nx(inc),l(Toep),n 
(inc),p(*)(ctr,t)=Dmt 
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19 Dmt,Wc(sle,t)=Ncc 
20 Ncc,p(pmfc)=Nl 
21 (lie)= 

RCND.SUB 
1 

2 
3 

4 
5 
6 

8 
7 

10 
9 

11 

13 
12 

14 
15 
16 
17 
18 

19 
20 
21 

=Nr , Dr 
Ac,Bc,Cc,Dc,nc(RcND,sub) 

tnli)= . -  
- PCF==>-Right_coprime-MFD 28 del  (if j )=&K, k 

. - .  

{Nr,Dr)  29  K:(nop)= 
30 k,nx(inc)(ifj)=k,w,w 

- -  

Ac,Bc,Cc,Dc(mtf,t)=dc,Wc 
Bc(cdi),Cc(rdi)(mcp)=m,p 

20 k:k(inc)=k 
21 k,m(*)=km 
22 Drr(t),m,k,l(Toep),Nrr(t), 

m,k,l(Toep),-l(s*)(cti)=DNrt 
23  DNrt,eps(nrs)=w,x,n 
24 n,km(-,t)=n 
25  k(dec),n,nol(cti)=inno 
26 n,nol(-),n(mcp)=del,nol 
27 inno(out,t,O)= 

Wcjalt)=Wcl;Wr 
nc(poi)=n,nx,va,vi,vli,vld 
va(dsm),vi(dsm),vli(dsm), 
vld(dsm)(mcp)=Sa,Si,Sli,Sld 
Ac,Sa(*,t)=Acl 
Sld,Sli,Acl(*)(-,t)=Drc 
Drc,m(pmfc,t)=Dr 
Dr(p-l)=Dri,det 
det(elz)(pnr,t)=x,dnn 
det(elz)=det 
det(pnr)=x,dnn 
Dri,dnn(s/)=Dri 
Dri(alt)=x,Dri 

(t),n(inc),m(*)(ctc,t)=Dmt 
Dri(t),m,nx(inc),l(Toep) 

Dmt(t),Wr(t)(sle)(t,t)=Nr 
Nr,m(pmfr,t)=Nr 

- .  - 

(lie)= 

SECTION 4.2 

TFR0.SBR 
1 

2 
3 
4 

5 

6 

7 
8 
9 

11 
10 

12 
13 

d,W,eps,nos(TFRo,sbr) 
=Ao,BorCorDo,no,Cond 
nli 
ntv 

=Ao,~Bo,Cd,Do;no,Cond 
nos,l(coin),O(coin)(mcp) 
=no,  k,giv 
giv(mcp)=nx 
W(alt)=x,Nrr 
Nrr(rdi),x(cdi)(mcp)=p,m 
d,m(dpm,sub)=Dr 
Dr(alt)=x,Drt 

no(cdi),l(ifj)=N,N,G 
O(coin),O(coin)(mcp)=Ind,nol 

14 G:l(dma)=giv 
15 no(poi)=nn,nx,va,vi,vli,vld 
16 nx ( inc)  =k 
17 Drr(t),m,k,l(Toep),Nrr(t), 

m,k,l(Toep).-l(s*)(cti)=DNrt 

.. 

18 (jmP)=x 
19  N:(nop)= 

31 w:(nop)= 
32  n,p(cti)=np 
33  Ind,l(ifj)=a,d,x 
34 a:  (nop)= 
35 DNtt,p,k,m(*),eps(Ind,sub) 

=no 
36 1 (coin)=Ind 

38 d:(nop)= 
37  (jmp)=C 

39 np,no(out,t,O)= 
4 0  l,p(inpm)=no 
41 C:(nop)= 
42 no(poi)=nn,nx,va,vi,vli,vld 
43  nn,n(ifj)=d,o,d 
44 o:(nop)= 
45  Ind(inc)=Ind 
46  k,nx(inc)(ifj)=k,x,x 
47 x:(nop)= 
48 
49 

50 
51 
52 
53 

54 

55 
56 
57 
58 
59 
60 

l,k;p(*)  (dzm)=zv 

=vli,vld 
k,m(*)=km 
l,km(step),vli(cti)=vli 
l,km(dzm),vld(cti)=vld 
vli(dsm),vld(dsm)(mcp) 
=Sli,Sld 

H1 (svd) =w 
=H1 , H2 
w,w(cdi)(dec)(ctc)=x,wn 
wn,w,l(ctc)(s/)=Cond 
no(out,t,O)= 
Cond(out,e)= 
qiv(ifj)=t,t,J 

zv,vli(p+),zv,eld(p+)(mcp) 

DNrt,Sli(*),DNrt,Sld(*)(mcp) 

61 t:(nop)=- 
62 -For-different-POI; 

63  -5therwTse  Enter;-c(dch)=chZ 
Enter  j,d(dch)=chl 

64 chl  (tch) =- 
65  ch2  (tch) = 
66 (sto)= 
67 J:(nop)= 
68 Hl,HZ(sle)(t),-l(s*,t)=NDl 
69  NDl,km(ctc,t)=Nlr,Dlr 
70 no(poi)=n,nx,va,vi,vli,vld 
71 va(dsm),vi(dsm),vli(dsm), 

72 n,n(dim),p(ctr)=Co,A2 
73 SirA2(*),Sa,D1r(*)(-,t)=AO 
74 Nlr.m(rZc)=Nc 

vld(dsm)(mcp)=Sa,Si ,Sl i ,Sld 
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75 Ao,Sa,nx(inc)(Qc),Nc(*,t)=Bo 
76 d,p(dpm,sub)=Dr 
77 Nrr,m,d(cdi)(dec)(*)(ctc) 

78 q:typ 
l9 lis 

=x , Do 

TFRC.SBR 
1 d,W,eps,ncs(TFRc,sbr) 

2 nli 
3 nty 
4 -TF-{d,W}-==>-PCF-Rc - based-on-nc 
5 l,d(dzm) (tvc) 

=Ac,Bc,Cc,DcrncrCond 
6 ncs,l(coin),O(coin)(mcp) 

7 giv(mcp)=nx 
=nc, k, giv 

8 W(alt)=Nc,x 
9 Nc(cdi),x(rdi)(mcp)=m,p 

=Ac,BcrCc,DcrncrCond 

10 d,p(dpm,sub)=Dl 

12 giv,giv(mcp)=Ind,nol 
13 nc(cdi),l(ifj)=k,k,G 
14 G:l(dma)=giv 
15 nc(poi)=nn,nx,va,vi,vli ,vld 
16 nx ( inc) =k 
17 Dc,prkrl(Toep)rNcrprkrl 

11 Dl(alt)=Dc 

(Toep),-l(s*)(cti)=DNl 
18  (jmP)=x 

20 k,p(*)=kp 
19 k: k( mc)=k 

21 Dc,Prkrl(ToeP)rNcrPrkrl 
(Toep),-l(s*)(cti)=DNl 

22 DNl,eps(nrs)=w,x,n 
23 n,kp(-,t)=n 
24 k(dec),n,nol(cti)=inno 
25 n,nol(-),n(mcp)=del,nol 
26 inno(out,t,O)= 
27 del(ifj)=K,K,k 
28 K:(nop)= 
29 k,nx(inc) (ifj)=k,w,w 
30 w:(nop)= 
31 n,m(cti)=nm 
32  Indrl(ifj)=a,drx 
33 a:(nop)= 
34 DNl,m,k,p(*),eps(Ind,sub)=nc 
35 1 (coin) =Ind 
36 ( jmp)=C 
37 d:(nop)= 
38 nm,nc(out,t,O)= 

40 C:(nop)= 
39 1, m ( inpm) =nc 

41 nc(poi)=nn,nx,va,vi,vli,vld 
42 nn,n(ifj)=d,o,d 
43 o:(nop)= 
44 Ind ( inc) =Ind 
45 k,nx(inc)(ifj)=k,x,x 
46 x:(nop)= 
47 k,p(*)=kp 

48 l,k,m(*)(dzm)=zv 
49 zv,vli(p+),zv,vld(p+)(mcp) 

50 l,kp(step),vlf(cti)=vli 
51 l.kp(dzm),vld(cti)=vld 

=vli,vld 

52 vl~(dsm)~,vld(dsm)~(mcp) 

53 DNl,Sli(*),DNl,Sld(*)(~Cp) 

54  H1 (svd)=w 
55 w,w(cdi)(dec)(ctc)=x,wn 
56 wn,w,l(ctc)(s/)=Cond 
57  nc(out,t,O)= 
58 Cond (out , e) = 
59  giv(ifj)=t,t,J 
60 t:(nop)= 
61 For different-PCI- 

62 Otherw'Zse Enter;-c(dch)=ch2 
63 -chl(tch)=- 
64 ch2 (tch)= 
65 (sto)= 
66 J:(nop)= 
67 Hl,H2(sle),-l(s*,t)=NDr 
68 NDr,kp(ctr)=Ncc,Dcc 
69 nc(poi)=n,nx,va,vi,vli,vld 
70 va(dsm),vi(dsm),vli(dsm), 

71 n,n(dim),m(ctc)=Bc,AZ 
72 AZ,Si(t)(*),Dcc,Sa(t)(*) 

73 Ncc,p(cZr)=Nr 
74 Nr,Ac,Sa(t),nx(inc)(Qo) 

(*,t)'CC 
75 d,m(dpm,sub)=Dl 
76 Nc,p,d(cdi)(dec)(*)(ctr) 

=Sli,Sld 

=H1 , H2 

- -Ent& j , d( dch) =chl 

vld(dsrn)(mcp)=Sa,Si,Sli,Sld 

(-,t)=Ac 

77 q:typ 
=x,Dc 

78 lis 

TRON.SBR 
1 d,W(Tron,sbr)=Ao,Bo,Co 
2 nli 
3 nty 
4 Strictly-proper-MIMO 

Transfer function-W(z)/d(z)-==> 

7 1,3(dzm)(tvc)=Ao,Bo,Co 
8 d(cdi)(dec),W(ninp),W(rdi) 

9 Prm(s/)=P 

- 5  

-6 - Obzervable-uncontr.-Ro 

(mcp)=n,m,pm 

10 l,p(steP),m(dec),p(dzm) 

11 m,p(*),O(dzm)=st 
12 0 (coin)  =i 
13  i:i(inc)=i 
14 St,s(dsm)(cti,t)=St 
15 B (shr) =S 

16 i,m(ifj)=irjrj 
17 j:(nop)= 

(rti)(mtv,t)=s 
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18 St,W(*,t)=SW 
19 SW,m(cZr)(t,t)=Bo 
20 d,d(ccf,sub)=ac,bc,x,y 
21 n,m(*),n,p(*)(mcp)=nm,np 
22 nm,nm(dzm),np,np(dzm)(mcp) 

=Ac , Ao 
23 nm,m(dzm),p,np(dzm)(mcp) 

=BC , CO 
24 1 (coin) =io 
25 0 (coin) =i 
26 a: i( inc)=i 
27 Ao,ac(t),io,io(rmp,t)=Ao 
28 Co,bc(t),i,io(rmp,t)=Co 
29 io,n(+)=io 
30 i,p(ifj)=a,b,b 
31 b:(nop)= 

33 lis 
32 W t Y P  

TRCN.SBR 

2 nli 
1 d,W(TRcn,sbr)-Ac,Bc,Cc 

3 nty 
4 Strictly-proper-MIMO 

Transfer-function-W(z)/d(z)-==> 

7 c3(dzm) (tvc)=&,Bc,C~ 
8 d(cdi) (dec) ,W(ninp) ,W 

(rdi)(mcp)=nrm,pm 

10 d,d(ccf,sub)=ac,bc,x,y 

. 12 n,m(*),n,p(*)(mcp)=nm,nP 
11 W,p(cZr,t)=Cc 

13 nm,nm(dzm),np,np(dzm)(mcp) 
=Ac , A0 

14 nm,m(dzm),p,np(dzm)(mcp) 
=BC , CO 

15 1 (coin) =ic 
16 0 (coin) =i 
17 I:i(inc)=i 
18 Ac,ac,ic,ic(rmp,t)=Ac 

20 ic,n(+)=ic 
21 i,m(ifj)=I,J,J 
22 J:(nop)= 
23 q:typ 
24 lis 

- 5  

-6 Controllable Unobs. RC 

9 pmrm(s/)=P 

19 BC,bC,iC,i(rItlp,t)=BC 

TFDN.SBR 
1  d,W,eps,nos(TFDN,sbr) 

2 nli 
3 nty 
4 TF {d,~} S=> Left coprime 

5 ~,4(azm)(tvci=Dl,N~,no,Cond 
HFD-{D~,NT) bzsed on no 

6 nos,l(coin),O(coin)(mcp) 
=no, k, giv 

7 W(alt)=x,Nrr 

=Dl,Nl,no,Cond 

8 giv(mcp)=nx 
9 Nrr(rdi),x(cdi)(mcp)rp,m 
10 d,m(dpm,sub)=Dr 
11 Dr(alt)=x,Drr 
12 giv,giv(mcp)=Ind,nol 
13 no(cdi),l(ifj)=k,k,G 
14 G:l(dma)=giv 
15 no(poi)=nn,nx,va,vi,vli,vld 
16 nx ( inc) =k 
17 Drr(t),m,k,l(Toep),Nrr(t), 

18 ( jmp)=x 
m,k,l(Toep),-l(s*)(cti)=DNrt 

19 k: k( inc) =k 
20 k,m(*)=km 
21 Drr(t),m,k,l(Toep),Nrr(t), 

m,k,l(Toep),-l(=*)(cti)=DNrt 
22 DNrt,eps(nrs)=w,x,n 
23 n,km(-,t)=n 
24 k(dec),n,nol(cti)=inno 
25 n,nol(-),n(mcp)=del,nol 
26 inno(out,t,O)= 
27 del(ifj)=X,K,k 
28 X:(nop)= 
29  k,nx(inc)(ifj)=k,w,w 
30 w:(nop)= 
31 n,p(cti)=np 
32 Ind,l(ifj)=a,d,x 
33 a:(nop)= 
34 DNrt,p,k,m(*),epS(Ind,sub) 

35 1 (coin) SInd 
36 (jmP)=c 
37 d:(nop)= 
38 np,no(out,t,O)= 
39 1, p ( inpm) =no 
40 C:(nop)= 
41 no(poi)=nn,nx,va,vi,vli,vld 
42 nn,n(ifj)=d,o,d 
43 o:(nop)= 
44 Ind  (inc)=Ind 
45 k,nx(inc)(ifj)=k,x,x 
46 x:(nop)= 
47 k,m(*)=km 
48 l,k,p(*)(dzm)=zv 
49 zv,vli(p+),zv,vld(p+)(mcp) 

50 l,km(step) ,vli(cti)=vli 
51 l,km(dzm),vld(cti)=vld 
52 vli(dsm),vld(dsm)(mcP) 

=no 

=vli , vld 

=Sli.Sld 
53 DNrt,Sli(*),DNrt,Sld(*) (mcp) 

=H1 , H2 
54  H1 (svd)rw 
55 w,w(cdi)(dec)(ctc)=x,wn 
56 wn,w,l(ctc)(s/)=Cond 
57 no(out,t,O)= 
58 Cond (out , e) = 
59 giV(ifj)PtlttJ 
60 t:(nop)= 
61 For different POI- - -Enter j , d (dchF=chl 
62 -OtherwTse-Entet;-c(dch)=ch2 
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63 
64 
65 
66 
67 
68 
69 
70 
71 

72 
73 
74 
7 5- 

chl(tch)= 41 nc(poi)=nn,nx,va,vi,vli,vld 
ch2  (tch) = 42 nn,n(ifj)=d,o,d 

Hl,HZ(sle)(t),-l(s*,t)=NDl 45 k,nx(inc)(ifj)=k,x,x 
NDl,km(ctc,t)=Nlr,Dlr 46 x:(nop)= 
vli,km(ctc)=x,vlii 47 k,P(*)=kP 
vld,km(ctc)=x,vldd 
Dlr,vlii(dsm)(t)(*),vldd 

48 l,k,m(*)(dzm)=zv 
49 zv,vli(p+),zv,vld(p+)(mcp) 

(dsm)(t)(+,t)=Dlr =vli,vld 
Dlr,p(pmfr)=Dl 50 l,kp(step),vli(cti)=vli 
Nlr,m(pmfr)=Nl 51 l,kp(dzm),vld(cti)=vld 

lis 

J: (nop) = 
( StO) = 43 o:(nop)= 

44 Ind(inc)=Ind 

q: tYP 52 vli(dsm),Vld(dsm)(mcp) 

53 DNl,Sli(*),DNl,Sld(*)(mcp) 
=Sli,Sld 

TFND.SBR 
1 d,W,eps,ncs(TFND,sbr) 

2 nli 
3 nty 
4 TF {d,w)-==> Right coprime 

5 ~,4(&m)(tvc~=Nr,D~,n~,Cond 
“FE  {Nr,Dr} Eased on nC 

6 ncs,l(coin),O(coin)(mcp) 

7 giv  (mcp ) m x  
8 W(alt)=Nc,x 
9  Nc(cdi),x(rdi)(mcp)=m,p 

=Nr,Dr,nc,Cond 

=nc,  k, giv 

10 d,p(dpm,sub)=Dl 
11 Dl(alt)=Dc 
12 giv,giv(mcp)=Ind,nol 
13 nc(cdi),l(ifj)=k,k,G 
14 G:l(dma)-giv 
15 nc(poi)=nn,Nc,va,vi,vli,vld 
16 nx ( inc)  =k 
17 Dc,p,k,l(Toep),Nc,p,k,l 

18 (jmP)=x 

20 k,P(*)=kP 
21 Dc,p,k,l(Toep),Nc,p,k,l 

22 DNl,eps(nrs)lw,x,n 
23 n,kp(-,t)=n 
24 k(dec),n,nol(cti)=inno 
25 n,nol(-),n(mcp)=del,nol 

(Toep),-l(s*)(cti)=DNl 

19 kr k( inc) =k 

(Toep),-l(a*)(cti)=DNl 

54 H1  (svd) =w 
55 w,w(cdi)(dec)(ctc)=x,wn 
56 wn,w,l(ctc)(s/)=cond 
57 nc(out,t,O)= 
58 Cond (out, e) = 

60 tr(nop)= 
61 For-different-PCI- 

-Enter j,d(dch)=chl 
62 &herwTse-Enter;_c(dch)=chZ 
63 -chl(tch)= 
64  ch2  (tch) = 
65  (sto)= 
66 J:(nop)= 
67 Hl,HZ(ele),-l(s*,t)=NDr 
68 NDr,kp(ctr,t)=Ncc,Dcc 
69 vli,kp(ctc)=x,vlii 

71 vlii(dsm),Dcc(*),vldd(dsm) 

72 Dcc,m(pmfc)=Dr 
(+,t)=Dcc 

73 Ncc,p(pmfc)=Nr 
74 q:typ 
75 lis 

=H1, H2 

59 giv(ifj)=t,t,J 

70 vld,kp(ctC)=x,vldd 

CDTR.SBR 

2 nli 
1  d,W,u,T(cdtr,sbr)=y 

3 nty 
4 -(CD)-or-(DT)-TF-response 

26 inno(out,t,O)= 
27 del(ifj)=K,K,k 5 For-D-T tesponse;-T=O 
28 Rr(nop)= 6  B(coTn)=? 
29 k,nx(inc)(ifj)=k,w,w  7 d,W(EXD,sub)=Wsp,D 
30 w:(nop)= 8 T(ifj)=d,d,c 
31 n,m(cti)=nm 9  d:(nop)= 
32 Ind,l(ifj)=a,d,x 10  D-T-response 
33  ar(nop)=  11 a,Wsp,u(t)(rdt)(t)=y 
34 DNl,m,k,p(*),eps(Ind,sub)=nc 12 y,D,u(*)(+,t)=y 
35 llcoin)=Ind 13 (jmp)=s 

==> y - 

36  (jmp)=C 
37 d:(nop)= 
38 nm,nc(out,t,O)= 
39 l,m(inpm)=nc 
40 C:(nop)= 

14 c:(nop)= 
15 -C-T response 
16 N= 3 of  points  in U 
17  IshzuTd satisfy-N-5 

-T-*- I pC1e-max I - 

.. ” - 
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18 d,Wsp,u(t),T(rct)=y 

20 g: (nop)= 

22  lis 

19 Y(t)rD,u(*)(+)=Y 

21  typ 

TFH.SBR 

2 nli 
1 d,W,L(TFH,sbr)=H,hL 

3 nty 
4 TF  {d,W}-==>  Markov 

3aFarneters H- 
5 1,2(dzm)(tvE)=H,hL 
6 W(alt)=m,Wr 
7 d(cdi)(dec),m(cdi),Wr(rdi) 

8 m,n(inc)(ImL,sub)=InL 
(mcp)=n,m,p 

9 Wr,InL(*,t)=Wr 
10 d,n(ctc),-l(s*),l(coin) 

(cti,t)=dn 
11 dn,m(dpm,sub)=D 

13  D,n,m(*)(ctr)=x,D 
12  D(alt),m,L,l(Toep)=D 

14 p,L,m(*)(dzm),Wr,l,l 

15 1 (coin)  =id 
16 0 (coin) =i 
17  i:i(inc)=i 
18 D,l,id,L,m(*),m(exm)=Di 
19 H,Di(*,t)=Hni 
20 H,Hni,l,id(rmp,t)=H 
21 id,m(+)=id 
22  i,L(ifj)=i,j,j 
23  j:(nop)= 
24 H,L(dec),m(*)(ctc)=x,hL 
25  hL(nrr)=hL 
26  H,m(pmfr,t)=H 
27 q:typ 
28 lis 

(mP,t)=H 

GETD.SUB 

2 (nli)= 
1 A,B,C(getd,sub)=n,m,p 

4 :Dimensions 
3 {A,B,C)-==>-{n,m,P} 

5 A(cdi),B(cdi),C(rdi)(mcp) 

6 (lis)= 
=n,m,p 

DPM.SUB 
1 p,m(dpm,sub)=P 
2 (nli)= 
3 -P(z)=diag{p(z)) 
4 -P is  in-PMF 
5 p(~),iii,m(dim)(mtv)(*,t)=P 
6 P(t),m(cmp)=P 
7 (lis)= 

IML.SUB 
1 m,L(ImL,sub)=ImL 
2 (nli)= 
3 -ImL="Inverted"-diag{-Im-} 

4 iii(coin),L(coin)(mcp)=M,d 
5 M,d(*),M(dim),M,d,-2 

6 (lis)= 
(Toep),M,d(*)(ctr,t)=ImL 

L-t  imes 

CCF.SUB 
1 den,num(ccf,sub)=A,b,c,d 
2 (nli)= 
3 -SISO Transfer-Function 

4 ==> State-space-model 

5 Zen(cdi)  (dec)=n 
6 num(  cdi)  =nn 
7 l(dec)=d 
8 den,n(ctc)=dl 
9 num(mcp)=nl 

num(=)/den(z) - 
-{Atg,c,d} 

10 n,nn(ifj)=d,a,a 
11  d:num,n(ctc,t)=nl,d 
12 nl,dl,d(s*),-l(s*)(p+,t)=nl 
13 a:n(dec),n(dim)(shr),dl,-l 

(s*)(rti,t)=A 

15 l,n(dzm),nl(rmp)=c 
14 n,l(dzm),O(inc),n,l(rmp)=b 

16 (lie)= 

EXDSUB 
1 d,GD(exD,sub)=G,D 
2 (nli)= 
3 -GD(z)/d(z)-==> 

4 -Extracts  strictly-proper 
Sart-of-GT z)  

5 -and-matrix-D 
6 GD  (rdi)  =pm 
7 pm,l(ifj)=a,a,c 
8 a:GD,l(cmp)=GD 
9 c:(nop)= 
10 GD(ninp,t)=m 
11  d(cdi)  (dec,t)=nl 
12  GD(rdi),nl(inc)(dzm),m 

(cmp),GD(pma),nl(ctc,t)=G,D 
13 d(t),nl(ctr),m,m(dim)(mtv) 

(*,t)=dlp 
14 dlp(t),m(cmp)=dlp 
15 D,m(cmp),dlp(pmm),-l(s*),G, 

-[G(z)/d(z)+Dl 

16 D(t),m(vtm,t)=D 
m(cmp)(pma,t)=G 

17  (lis)= 

EXD.SBR 
1 d,GD(exD,sbr)=G,D 
2 nli 
3 nty 
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4 GD(z)/d(z)-==> 

5 Extracts-strictly-proper 
jlart-of-G( z )  

6  -and-matrix-D 
7 1,2(dzm)(tvc)=G,D 
8 GD  (rdi) =pm 
9  pm,l(ifj)=a,a,c 
10 a:GD,l(cmp)=GD 
11 c:(nop)= 
12 GD (ninp, t) =m 
13 d(cdi)(dec,t)=nl 
14 GD(rdi),nl(inc)(dzm),m 

15 d,nl(ctc),m(dpm,sub)=dlp 
16 D,m(cmp),dlp(pmm),-l 

17 D(t),m(vtm,t)=D 
18 q:typ 
19 lis 

3(z)/d(z)+DI 

(cmp),GD(pma),nl(ctc,t)=G,D 

(s*),G,m(cmp)(pma,t)=G 

FGD.SBR 

2 nli 
1  d,G,D(fgd,sbr)=GD 

3 nty 
4 -G(z)/d(z)+D-==>-GD(z)/d(z) 
5 -Strictly-propergart 

6 0 (coin) =GD 
7 G(ninp,t)=m 
8 d,m(dpm,sub)=dp 
9 G,D(mtv)(t),m(cmP),dP 

- G(z)-and-D 

10 q:typ 
11 lis 

(pmm)(Pma,t)=GD 

GED0.SUB 
1  Ao,Bo,CO,D,N,epS 

2 (nli)= 
3 _Generate-Do=D(s)^(-l)*N(s)- 

(GeDo,sub)=DO 

4 --Co*(Is-Ao)^(-l)*BO 
- for  s=either 

5 s = O r  S=/= system pole 
6 ?io(rai)TCo(rai),N(ait)(mcp) 

'nrPrNC 
7 D(alt)=x,Dr 
8 Ao  (egv) =eg 
9 egrn,lrlrl(exm)(abs)=em 
10 ern,eps(ifj)=s,s,g 
11 s:eg(rpt),l,l,l,l(exm) 

12 s,s,s(-)(cti)=sc 
(inc,t)=s 

13 D,sc(gs)=Ds 
14 N,sc(gs)=Ns 
15 Ao,n,n(dim),s(s*)(-)(-l)=Aoi 
16 Co,Aoi,Bo(*)(*),Ds(-l),Ns 

17 (jmp)=f 
18 g:(nop)= 

(*)(+,t)=Do 

19 Co,Ao(-l),Bo(*)(*),Dr,p(ctc) 

20 f:(nop)= 
(-l),Nc,p(ctr)(*)(+,t)=DO 

21  (lis)= 

GEDC.SUB 
1  Ac,BC,Cc,N,D,eps 

2 (nli)= 
(GeDc,sub)=Dc 

3  -Generate' DclN(~)*D(s)~(-l)- 
4 --CC*(IS:AC)̂ (-I)*BC 

5 -s=O-or_s=/=-system-pole 
6 Ac(c3i)  ,Bc(cdi)  ,D(alt) 

7 N(alt)=x,Nr 
8 Ac (egv) =eg 
9 eg,n,lrl,l(exm)(abs)=em 

- for s=either 

(mcp)=n,m,Dc 

10 em,eps(ifj)=s,s,g 
11 s:eg(rpt),l,l,l,l(exm) 

12 s,s,s(-)(Cti)=SC 
(inc,t)=s 

13 D,sc(gs)=Ds 
14 N,sc(gs)=Ns 
15 Ac,n,n(dim),s(s*)(-)(-1)=Aci 
16 Cc,Aci,Bc(*)(*),Ns,Ds(-l) 

17 (jmP)-f 
(*)(+,t)=Dc 

18 g:(nop)= 
19  Cc,Ac(-l).Bc(*)(*),Nr,m 

(ctc),Dc,m(ctr)(-l)(*) 
(+,t)=Dc 

20 f:(nop)= 
21  (lis)= 

SECTION 4.3 

HR0.SBR 
1 Hp,eps,nos(HRo,sbr) 

2 nli 
3 nty 
4  -Markov-parameters-==> 

5 IHp-b-Tn-PMF- 
6 1,6(dzm) (tvc) 

=Ao,Bo,Co,Do,no,Cond 
7 nos,l(coin),O(coin)(mcp) 

=no, k, giv 
8 giv  (mcp) =nx 
9 Hp(alt)=Hc,p 

=Ao,Bo,CO,DO,nO,Cond 

POF Ro based on-no 

10 Hc(cdi),p(rdi)(mcp)=m,p 
11 giv,giv(mcp)=Ind,nol 
12 no(cdi),l(ifj)=k,k,G 
13 G:l(dma)=giv 
14 no(poi)=nn,nx,va,vi,vli,vld 
15 nn(mcp)=n 
16  nx(inc)=k 
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17 k,p(*)=kp 
18 Hc,kp,2(s*)(ctr),p,k,-2 

(Toep),kp(ctr,t)=x,H 

20  k:k(mc)=k 

22  Hc,kp12(s*)(ctr),p,k,-2 

23 H,eps(nrs)=w,x,n 
24 k(dec),n,nol(cti)=inno 
25  n,nol(-),n(mcp)=del,nol 
26 inno(out,t,O)= 
27 del(ifj)=K,K,k 
28 K:(nop)= 
29  k,nx(inc)(ifj)=k,w,w 
30 w:(nop)= 
31 n,p(cti)=np 
32  Ind,l(ifj)=a,d,x 
33  a:(nop)= 
34 H(t),p,O,eps(Ind,sub)=no 
35  1 (coin) =Ind 
36 (jmp)=C 
37 d:(nop)= 

39 1, p ( inpm) =no 
38 np,no(out,t,O)= 

40 C:(nop)= 
41 no(poi)=nn,nx,va,vi,vli,vld 
42 nn,n(ifj)=d,o,d 
43 o:(nop)= 
44 Ind(inc)=Ind 
45 k,nx(inc)(ifj)=k,x,x 
46 x:(nop)= 
47 H,nx,p(*)(ctr)=Hl 
48 vli,nx,p(*)(ctc)(dsm)=S 
49  S(t),Hl(*)=Hl 

51 w,w(cdi)(dec)(ctc)=x,wn 
50 H1 (t)  (svd)  =w 

52  wn,w,l(ctc)(s/)=Cond 
53  no(out,t,O)= 
54 Cond(out,e)= 
55  giv(ifj)=t,t,J 
56  t:inool= 

19 (jmP)=x 

21 k,P(*)=kP 

(Toep),kp(ctr,t)=x,H 

- ' F&-dif  ferent-POI 
Enter j,d(dch)=chr 

&herwhe_Enter;_c(dch)=ch2 
-chl(tch\= 

57 

58 
59 
60 ch2(tchj= 
61 (sto)= 
62 J: (nop)= 
63 H,p(ctr)=x,H2 
64 Ha,nx,p(*)(ctr)=HZ 
65 Hl(t),s(t),HZ(*)(t)(sle) 

66 Hl,m(ctc),p,n(dim),Hc,p(ctr) 

67 q:typ 
68 lis 

(t,t)=Ao 

(mcp,t)=ao,co,~o 

2 nli 
3  nty 
4  Markov  parameters-==> 

-PCF Rcbased on-nc 
5  zHp-h-in_PMF- 
6 1,6(dzm)(tvc)= 

7 ncs,l(coin),O(coin)(mcp) 
Ac,Bc,Cc,Dc,nc,Cond 

=nc,k,giv 
8  giv (mcp) =nx 
9  Hp(alt)=Hc,p 
10 Hc(cdi),p(rdi)(mcp)=m,p 
11  giv,giv(mcp)=Ind,nol 
12  nc(cdi),l(ifj)=k,k,G 
13  G:l(dma)=giv 
14 nc(poi)=nn,nx,va,vi,vli,vld 
15  nn(mcp)=n 
16  nx ( inc) =k 
17  k,p(*)=kp 
18 Hc,kpr2(s*)(ctr),p,k,-2 

(Toep),kp(ctr,t)=x,H 

20 k:k(inc)=k 

22  Hc,kpr2(s*)(ctr),p,k,-2 

23  H,eps(nrs)=w,x,n 
24 k(dec),n,nol(cti)=inno 
25  n,nol(-),n(mcp)=del,nol 
26  inno(out,t,O)= 
27  del(ifj)=K,K,k 
28 K:(nop)= 
29  k,nx(inc)(ifj)=k,w,w 
30 w:(nop)= 
31  n,m(cti)=nm 
32  Ind,l(ifj)=a,d,x 
33  a:(nop)= 
34 H(t),m,O,eps(Ind,sub)=nc 
35  1 (coin) =Ind 
36 (jmP)=c 
37 d:(nop)= 
38 nm,nc(out,t,O)= 
39  l,m(inpm)=nc 
40 C:(nop)= 
41 nc(poi)=nn,nx,va,vi,vli,vld 
42 nn,n(ifj)=d,o,d 
43  o:(nop)= 
44 Ind(inc)=Ind 
45 k,nx(inc)(ifj)=k,x,x 
46 x:(nop)= 
47 H,nx,m(*)(ctc)=Hl 
48 vli,nx,m(*)(ctc)(dsm)=S 
49  Hl,S(*)=Hl 
50 H1 (svd) =w 
51  w,w(cdi)(dec)(ctc)=x,wn 
52  wn,w,l(ctc)(e/)*Cond 
53  nc(out,t,O)= 
54  Condiout.el= 

19 (jmP)=x 

21 k,P(*)=kP 

(Toep),kp(ctr,t)=x,H 

HRC.SBR 55 giv(ifj)=t;t,J 
56  t:(nop)= 
57  For  different PCI- 1  Hp,eps,ncs(HRc,sbr) 

=Ac,Bc,Cc,Dc,nc,Cond - -Entr-j,d(dchr=chl 
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58 Otherwise-Entar;-c(dch)==chZ 
59  -chl(tch)= 
60 ch2 (tch)= 
61 (sto)= 
62 J: (nop)= 
63 H,m(ctc)=x,HZ 
64 H2,nxrm(*)(ctc)=H2 
65 H1,H2,S(*)(s1ert)=Ac 
66 n,m(dim),Hl,p(ctr),Hcrp 

(ctr)(mcp)=Bc,Cc,Dc 
67 q:typ 
68 lis 

HTF.SBR 

2 nli 
1 H,eps(HTF,sbr)=d,W 

3 nty 
4 -Markovgarameters--> 

5 -Hp is in PMF 
6 -Ca?l"xher-HTFp.SBR 

7 1.2~dzmlltvc\=d.W 
or HTFm.SBR 

-W(z)/d(z) 

- 
8 Hirdi) ,Hininp) (mcp,t)=pm,m 
9 Prm(s/rt)=p 
10 p,m(ifj)=prprm 
11 p:(nop)= 
12 H,eps(HTFp,sbr)=d,W 
13 nli 
14 nty 

16 m:(nop)= 
17 H,epa(HTFm,sbr)=d,W 
18  nli 
19 nty 
20 q:(nop)= 
21  tYP 
22 lis 

15 (jmP)=s 

HTFP.SBR 
1  Hp,eps(HTFp,sbr)=d,W 
2 nli 
3  nty 
4 -Markov-parameters-==> 

5 Hp is in PMF 
6 -Carlea b? HTF.SBR 
7 Tr2(dzm~(t~c)=d,W 
8 Hp(alt)=Hc,p 
9 Hc(cdi),p(rdi)(mcp)=m,p 

-W(z)/d(z) 

10 1 (coin)  =k 
11 k:k(inc)=k 

13 Hc,kp,2(a*)(ctr),prk,2 
(Toep),kp(ctrrt)=T1,T2 

14 T2,eps(nrs)=wrx,n 
15 k(dec),n(cti)=in 
16 in(out,t,O)= 
17 k(dec),n(ifj)=k,K,K 
18 K:(nop)= 

12 krP(*)=kP 

19 T2,prn(*)(ctr)=H1,H2 
20 H1,H2(t)=HlrH2 
21 Hl,eps(nrs)=Ns 
22 Hl,HZ(sle)=Ac 
23  l,n(step),p(dec),n(dzm) 

24 O(coin)=i 
25 i:i(inc)=i 
26 s,-l(s*)(inc,t)=sin 
27 s,s(shr)(mcp)=so,s 
28 sin(dsm)(t),Ns(*,t)=Nsi 
29 NSi,eps(nrs)=x,y,r 
30 i,r,n,p(dec)(*)(cti)=irn 
31 irn(out,t,O)= 
32 r,n,p(dec)(*)(ifj)=s,e,e 
33 e:(nop)= 
34 Ac,l,i,n,p(*),l(exrn,t)=Aci 
35 sin(dsm)(t),Aci(*,t)=Acii 
36 N s i ( - l ) , A C i i ( * ) , - l ( s * r t ) = t i  
37 Ns,ti(*),Aci(+,t)=d 
38 so(dsm)(t),d(*),-l(s*)(t),l 

39 (jmp)=j 
40 s:(nop)= 

42 j:(nop)= 
43 d,p(dpm,sub)=D 
44 D(alt)=x,Dr 
45 Dr,Tl(*),m(pmfr,t)=W 
46 q:typ 
47 lis 

(rti)(mtv,t)=s 

(coin)(cti,t)=d 

41 irP(ifj)=irjrj 

HTFM.SBR 

2 nli 
1  Hp,eps(HTFm,sbr)=d,W 

3 nty 
4 Hp(alt)=m,Hr 
5 -Markov-parameters==> 

10 1 (coin)  =k 
11  k:k(inc)=k 
12 k,m(*)=km 
13 Hr(t),km,2(s*)(ctt),m,kr2 

14 T2,eps(nrs)=w,x,n 
15 k(dec),n(cti)=in 
16 in(out,t,O)= 
17 k(dec),n(ifj)=k,K,K 
18 K:(nop)= 
19 T2,mrn(*)(ctc)=H1,H2 
20 Hl,epe(nrs)=Ns 
21 Hl,HZ(sle)=Ac 
22 l,n(atep),m(dec),n(dzm) 

23 0 (coin) =i 
24 i:i(inc)=i 
25  S,-l(s*)(inc,t)=sin 

9 micdi) ,Hk(rdi) (mcp)=m,p 

(Toep)(t),km(ctcrt)=T1,T2 

(rti)(mtv,t)=s 
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26 e,s(shr)(mcp)=so,s 
27 ein(dsm)(t),Ns(*,t)=Nsi 
28  Nsireps(nrs)=xry,r 
29 i,r,n,m(dec)(*)(cti)=irn 
30 irn(out,t,O)= 
31 r,n,m(dec)(*)(ifj)=s,e,e 
32 e: (nop)= 

34 sin(dsm)(t),Aci(*,t)=Acii 
33 Ac,l,i,n,m(*),l(exm,t)=Aci 

35 N s i ( - l ) , A c i i ( * ) , - l ( s * , t ) = t i  
36 Ns,ti(*),Aci(+,t)=d 
37 so(dsm)(t),d(*),-l(s*) 

38 (3nP)l.j 
39 s:(nop)= 
40 i,m(ifj)=i,j,j 
41 j:(nop)= 

43 Tl,D(alt)(*),p(pmfc,t)=W 
42 d,m(dpm,sub)=D 

45 lis 

(t),l(com)(cti,t)=d 

44 q:typ 

HDN.SBR 
1 Hp,eps,nos(HDN,sbr) 

2 nli 
3 nty 
4 -Markovgarameters-==> 

5 ~with~column-aegrees-no 
6 Hp-, D and N-are-in-PMF 
7 T,4(d%ni(tvz)=D,N,no,Cond 
8 nos,l(coin),O(coin)(mcp) 

9 giv(mcp)=nx 
10 Hp(alt)=Hc,p 
11 Hc(cdi),p(rdi)(mcp)=m,p 
12 giv,giv(mcp)=Ind,nol 
13  no(cdi),l(ifj)=k,k,G 
14 G:l(dma)=giv 
15 no(poi)=nn,nx,va,vi,vli,vld 
16 nn(mcp)=n 
17 nx ( inc) =k 

19 Hc,kp,2(s*)(ctr),plk,2 
(Toep),kp(ctr,t)=Tl,T2 

=D,N,no,Cond 

Left coprime {D(z),N(z)) 

=no,k,giv 

18 ktP(*)=kP 

20 (jmP)=x 

22 ktP(*)=kP 
21 k:k(inc)=k 

23 Hc,kp,2(s*)(ctr),ptk,2 

24 T2,eps(nrs)=wtx,n 
(Toep),kp(ctr,t)=Tl,T2 

25  k(dec),n,nol(cti)=inno 
26 n,nol(-),n(mcp)=del,nol 
27 inno(out,t,O)= 
28 del (if j )=K,K, k 
29 K:(nop)= 
30 k,nx(inc)(ifj)=k,w,w 
31 W: (nop)= 
32 n,p(cti)=np 
33 Ind,l(ifj)=a,d,x 

34 a:(nop)= 

36 1 (coin)=Ind 
35 T2(t),p,O,eps(Ind,sub)=no 

37 (jmp)=C 
38 d:(nop)= 

40 1 , p ( inpm) =no 
39  np,no(out,t,O)= 

41 C:(nop)= 
42 no(poi)=nn,nx,va,vi,vli,vld 
43 nn,n(ifj)=d,o,d 
44 0 :  (nop) = 
45 Ind (inc) =Ind 
46 k,nx(inc)(ifj)=k,x,x 
47 x:(nop)= 
48 1, kp( dzm) =zv 
49 zv,vli(p+),zv,vld(p+) 

50 vli(dsm),vld(dsm)(mcp) 
(mcp)=vli,vld 

51 Sli(t),T2(*),Sld(t),T2 
=Sli,Sld 

52 Hl(t) (svd)=w 
(*)(mcp,t)=Hl,HZ 

53 w,w(cdi)(dec)(ctc)=x,wn 

55 no(out,t,O)= 
54 wn,w,l(ctc)(a/)=Cond 

56 Condfout.el= 
51  giv(ifj)&;t,J 
58 t:lnoD\= 
59  -For-different-POI- - Enter j,d(dch)=chl 
60 -Otherwhe-Enter;-c(dch)=ch2 
61 chl (tch) = 
62 ch2 (tch) = 
63 (sto)= 
64 J:(nop)= 
65 Hl(t),H2(t)(sle)(t),-l 

66 Ar,Sli(t)(*),Sld(t)(+,t)=Dr 
67 Dr,p(pmfr)=D 
68 Dr,Tl(*),m(pmfr,t)=N 
69 q:typ 
70 lis 

. A .  

(s*,t)=Ar 

HND.SBR 
1  Hp,eps,ncs(HND,sbr) 

2 nli 
3  nty 
4 -Markov  parameters-==> 

5  -with-row-degrees nc 
Right-coprime-{N(z),D(z)) 

6 -Hp-,-N-,-and  D-aFe-in PMF 
7 1,4(dzm)(tvc)=NN,D,nc,C~nd 
8 ncs,l(coin),O(coin)(mcp) 

9 giv (mcp ) =nx 
10 Hp(alt)=m,Hr 
11 m(cdi),Hr(rdi)(mcp)=m,p 
12 giv,giv(mcp)=Ind,nol 
13 nc(cdi),l(ifj)=k,k,G 
14 G:l(dma)=giv 

=N,D,nc,Cond 

- 

=nc,k,giv 
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15 nc(poi)=nn,nx,va,vi,vli,vld 
16 nn(mcp)=n 
17 nx ( inc)  =k 
18 k,m(*)=km 
19 Hr(t),km,2(s*)(ctr),m,k,2 

(Toep)(t),km(ctc,t)=Tl,TZ 
20  (jmP)=x 
21 k:k(inc)=k 
22 k,m(*)=km 
23 Hr(t),km,2(s*)(ctr),m,k,2 

24 TZ,eps(nrs)=w,x,n 
25 k(dec),n,nol(cti)=inno 
26 n,nol(-),n(mcp)=del,nol 
27 inno(out,t,O)= 
28 del(ifj)=K,K,k 
29 K:(nop)= 
30 k,nx(inc)(ifj)=k,w,w 
31 w:(nop)= 
32 n,m(cti)=nm 
33 Ind,l(ifj)=a,d,x 
34 a:(nop)= 
35 T2,m,O,eps(Ind,sub)=nc 
36 l(coin)=Ind 
37 ( jmp)=C 
38 d:(nop)= 
39  nm,nc(out,t,O)= 
40 l,m(inpm)=nc 
41 C:(nop)= 
42 nc(poi)mn,nx,va,vi,vli,vld 
43 nn,n(ifj)=d,o,d 
44 o:(nop)= 
45 Ind ( inc) =Ind 
46 k,nx(inc)(ifj)=k,x,x 
47 x:(nop)= 
48 l,km(dzm)=zv 
49 zv,vli(p+),zv,vld(p+)(mcp) 

=vli,vld 
50 vli(dsm),vld(dsm)(mcp) 

=Sli,Sld 
51 T2,Sli(*),TZISld(*)(mcp,t) 

=H1, H2 
52 H1  (svd) =w 
53 w,w(cdi)(dec)(ctc)=x,wn 
54 wn,w,l(ctc)(s/)=Cond 
55 nc(out,t,O)= 
56 Cond (out, e) = 
57  giv(ifj)=t,t,J 
58 t:(nop)= 
59  -For  different-PCI- - Enter j , d (dch) =chl 
60 -Othenuhe_Enter;-c(dch)=ch2 
61 chl (tch)= 
62 ch2 (tch)= 
63  (sto)= 
64 J:(nop)= 
65 Hl,H2(sle),-l(s*,t)=Ac 
66 Sli,Ac(*),Sld(+,t)=Dc 
67 Dc,m(pmfc)=D 
68 Tl,Dc(*),p(pmfc,t)=N 
69 q:typ 
70 lis 

(Toep)(t),km(ctc,t)=Tl,T2 

UFIY.SUB 
1  u,H(uhy,sub)=y 

=m,N,M 
9 H(alt)=Hc,p 
10 p(rdi)=p 

12 l:M(mcp)=N 
13 g:(nop)= 
14 u, N ( ctc) =uc 
15 uc,l(r2c)=uc 
16 Hc,p,N,P(toep)=Hc 
17 Hc,uc(*),p(C2r)=y 
18 y,N(ctc)=y 

11 M,N(ifj)=l,g,g 

19 (lis)= 

HF.SUB 
1 H,f(Hf,sub)=Hf 
2 (nli)= 
3 -Time-scaling-"up"-of-H 
4 -with  f < 1 
5  O(coi>)ylTcoin),H(cdi) 

(cti,t)=v 
6 v(gts)(t),-l(s*)=v 
7 v,f(log)(s*)(exp)(dsm,t)=SS 
8 H,SS(*)=Hf 
9 Hf,H(ninp)(cmp)=Hf 
10 (lis)= 

SECTION 4.4 

DNRO.SUB 
1 D,N,eps(DNRo,sub) 

2 (nli)= 
3 -Left-coprime-(D(z),N(z)} 

==B POF Ro based on no 
4 po-ls_e-~a~_to-c;jlu~n 

5 D(alt)=x,Dr 
6 N(alt),N(rdi),N(ninp)(mcp) 

7  mp,m(s/,t)=p 
=Nc,mp,m 

8 Dr,eps(DZnv,t)=no 

10 va(dsm),vi(dsm),vli(dsm), 
9 no(poi)=n,nx,va,vi,vli,vld 

11 n,n(dim),p(ctr)=Co,AZ 
12 Si,A2(*),Sa,Dr,Sli(*)(*) 

13 Ao,Sa,nx(inc)(Qc),Nc(*,t)=Bo 
14  Ao  (egv) =eg 
15  eg,n,l,l,l(exm)(abs)=em 

=Ao,Bo,Co,Do,nO 

- 
- degrees-of-D(z) 

vld(dsm)(mcp)=Sa,Si,Sli,Sld 

(-,t)=AO 
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16 em,eps(ifj)=s,s,g 
17 s:eg(rpt),l,l,l,l(exm) 

18 s,s,s(-)(cti)=sc 
(inc,t)=s 

19 D.sc(gs)=Ds 
20 N,sc(gs)=Ns 
21 Ao,n,n(dim),s(s*)(-)(-l)=Aoi 
22 Co,Aoi,Bo(*)(*),Ds(-l), 

23 (jmp)=f 
24 g:(nop)= 
25 Co,Ao(-l),Bo(*)(*),Dr,p 

Ns(*)(+,t)=Do 

(ctc)(-l),Nc,p(ctr)(*) 
(+,t)=Do 

26 f: (nop)= 
27 (lis)= 

NDRCSUB 
1 

2 
3 

4 

5 
6 

l 
8 

10 
9 

11 
12 

13 

14 
15 
16 

A’ 
18 
19 
20 
21 
22 

23 
24 
25 

26 
27 

N,D,epe(NDRc,sub) 
=Ac,Bc,Cc,Dc,nc 
(nli)= 
- 
E*> PCF Rc-based  on-nc 
Right-coprime-{N(z),D(z)} 

- - nc-ls-e-wal to  rZw - degrees of,r( 7.r 
N(alt)=xTNr 
D(alt),N(rdi),N(ninp) 

mplm(s/lt)=l 
(mcp)=Drc,mp,m 

Drc(t),eps(D2nv,t)=nc 
nc(poi)=n,nx,va,vi,vli,vld 

vld(dsm)(mcp)=Sa,Si,Sli,Sld 
va(dsm),vi(dsm),vli(dsm), 

n,n(dim),m(ctc)=Bc,A2 

Sa(t)(*)(*)(-,t)=Ac 
A2,Si(t)(*),Sli(t),Drc, 

Nr,Ac,Sa(t),nx(inc)(Qo) 
(*,t)PCC 
Ac(egv)=eg 
eg,n,l,l,l(exm)(abs)=em 

s:eg(rpt),l,l,l,l(exm) 
em,eps(ifj)=s,s,g 

(inc,t)=s 

D,sc(gs)=Ds 
s,B,s(-)(Cti)=sC 

Ac,n,n(dim),s(s*)(-)(-1)=Aci 
Cc,Aci,Bc(*)(*),Ns,DS(-l) 
(*)(+&)=DC 

N,SC(gS)nNS 

(jmP)=f 
4: (noP)= 

Cc,Ac(-l),Bc(*)(*),Nr,m 

(+,t)=Dc 
(ctc),Drc,m(ctr)(-l)(*) 

f: (nop)= 
(lis)= 

DNH.SUB 
1 
2 
3 

4 
5 

6 

8 
7 

10 
9 

11 
12 
13 
14 
15 

D,M,L(DNH,sub)=H,nrm 
(nli)= - Left-coprime-{D(z),N(z)} 
=e> 

- First L Markov parameters - Appli<a%le-onl~-for - DT-stable-systems 
6(aTty,N(ali)(mEp)=Dc,Nc 
D, N  and  H are in-PMF 

Dc(cdi),Nc(cdi),Dc(rdi) 
(mcp)=p,m,kp 
Dc,p,L,-l(Toep,t)=Dm 
p,L(dec)(*),m(dzm),Nc 
(rti)=Nm 
Dm,Nm(sle)=H 
H,L(dec),P(*)(ctr)=x,y 
H,P(pmfc)=H 

(lis)= 
y(nrr)=nrm 

NDH.SUB 

2 (nli)= 
1  N,D,L(NDH,sub)=H,nrm 

3 -Right-coprime-{N(z),D(z)) 

4 -First  L Markovgarameters 
5 ~Appli<a%le-only-for 

DT-stable system6 
6 :N,-D-,-anz-H-are-in-PMF 
7  D(alt)=x,Dr 
8 N(alt)=x,Nr 
9 Dr(rdi),Nr(rdi),Dr(cdi) 

10 Dr(t),m,L,-l(Toep)(t)=Dm 
11 p,L(dec),m(*)(dzm),Nr 

12 Dm(t),Nm(t)(sle)(t)=H 
13 H,L(dec),m(*)(ctc)=x,y 
14 H,m(pmfr)=H 
15 y (nrr) =nrm 
16 (lis)= 

rt, 

(mcp)=m,p,km 

(cti)=Nm 

DNTF.SBR 

2 nli 
l D,N,eps(DNTf,sbr)=d,W 

3 nty 
4 -Left-coprime-{D(z),N(z)} 

=I, 

5 

6 

8 
7 

10 
9 

11 
12 
13 
14 

- 
Transfer function 

-w(z)/d(zi 
T12(dzm)(tvc)=d,W 

Dlad,N(pmm,t)=W 
D(p-l,t)=Dlad,d 

W,eps(elzc,sub)=W 
d(elz)=d 
d(pnr)=x,dn 
d,dn(s/),W,dn(s/)(mcp)rd,W 

11s 
W t Y P  
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NDTFSBR 

2 nli 
1 N,D,eps(NDTf,sbr)=d,W 

3 nty 
4 -Right-coprime-{N(z),D(z)) 

==> 
5 

6 
7 
8 
9 
10 
11 
12 
13 
14 

- - Transfer-function 

D(p-l,t)=Drad,d 
1,2(dzm)(tvc)=d,W 

N,Drad(pmm,t)=W 
W,eps(elzc,sub)=W 
d(elz)=d 
d(pnr)=x,dn 
d,dn(s/),w,dn(s/)(mcp)=d,W 

q: tYP 
lis 

-W(z)/d(z) 

DNTS.SBR 

2 nli 
1 Dl,Nl,f(DNte,ebr)=Dlf,Nlf 

3 ntv 

7 Di(ninpj=p 
8 Dl(alt)=x,Dr 
9  le-5 (dma) =epe 
10 Dr, eps  (d2nv)  =no 
11 no,Dl(cdi),f(tecl,sub)=So 
12 So,Dl(alt)(*),p(pmfc)=Dlf 
13 So,Nl(alt)(*),p(pmfc)=Nlf 
14 q:typ 
15 lie 

NDTS.SBR 

2 nli 
1 Nr,Dr,f(NDts,ebr)=Nrf,Drf 

3 nty 
4 Time scaling-of-Right 

5 -{Nr(z),Dr(z)}-"down" f-C-l 
6  r,2(dzrn) (tvc)=Nrf,Drf- 
7 Dr  (ninp) =m 
8 Nr(alt)=x,Nrr 

10 le-5 (dma)=eps 
9 Dr(alt)=x,Drr 

11 x(t),eps(d2nv)mc 
12 nc,Dr(cdi),f(tscl,eub)=Sc 
13 Nrr,Sc(*),m(pmfr)=Nrf 
14 Drr,Sc(*),m(pmfr)=Drf 
15 q:typ 
16 lis 

-copr Tme 

TsCL.SuB 

2 (nli)= 
1 no,n,f (tscl,sub)=S 

3 -S-=-"Time-scaling"-diag 

matrix 
4 - f < l  
5  lC=lied-by-DNTS.  SBR-& 

6  O,n(dzm)=e 
7 no  (cdi)  =p 
8 no(ord),p,p(diim)(*)=noo 
9 0 (coin) =i 

NDTS. SBR - 

10 I:i(inc)=i 
11 noo,l,i(exm,t)=noi 
12 noi,-l(coin),n(cti)=x 
13 x(gts)(t),f(log)(s*) 

(exp,t)=vec 
14 s,vec(rti,t)-S 

16 J:(nop)= 
17 e(mtv)(ddm,t)=S 
18  (lis)= 

DNRC.SBR 

15 i,p(ifj)nI,J,J 

1 D,N,eps,nce(DNRc,ebr) 

2 nli 
3 nty 
4 -Left-coprime-{D(z),N(z)) 

=Ac,Bc,Cc,Dc,nc,Cond 

S==> 
5 PCF RC based on-nc 

- 
6 T, 6 (a~m? ( ~ V C  

7 nce,l(coin),O(coin)(mcp) 

8 giv(mcp)=nx 

10 Dc(cdi),Nc(cdi)(mcp,t)=p,m 
9 D(alt),N(alt)(mcp)=Dc,Nc 

11 giv,giv(mcp)=Ind,nol 
12 nc(cdi),l(ifj)=k,k,G 
13 G:l(dma)=giv 
14 nc(poi)=nn,nx,va,vi,vlirvld 
15 nx ( inc) =k 
16 k,p(*)=kp 

Ac,Bc,Cc,.Dc,nc,Cond 

=nc, k, giv 

17 DcrPrk,l(ToeP)rNc,P,krl 

18 (jmP)=x 

20 k,P(*)=kP 
19 k:k(inc)=k 

21 Dc,p,k,l(ToeP),Nc,P,krl 

22 DN,epe(nre)=w,x,n 
23 n,kp(-,t)=n 
24 k(dec),n,nol(cti)=inno 
25 n,nol(-),n(mcp)=del,nol 
26 inno(out,t,O)= 
27 del(ifj)=K,K,k 
28 K:(nop)= 
29  k,nx(inc)(ifj)=k,w,w 
30 w:(nop)= 
31 n,m(cti)=nm 
32 Ind,l(ifj)=a,d,x 
33 a:(nop)= 
34 DN,m,k,p(*),eps(Ind,sub)=nc 
35 l(coin)=Ind 

(Toep),-l(e*)(cti)=DN 

(Toep),-l(s*)(cti)=DN 
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36 (jmP)=c 
37 d:(nop)= 
38 nm,nc(out,t,O)= 
39  l,m(inpm)=nc 
40 C:(nop)= 
41 nc(poi)=nn,nx,va,vi,vli,vld 
42 nn,n(ifj)=d,o,d 
43 o:(nop)= 
44 Ind ( inc)  =Ind 
45 k,nx(Fnc)(ifj)=k,x,x 
46 x:(nop)= 

48 l,krm(,*)  (dzm)=zv 
49 zv,vl~(p+),zv,vld(p+) 

50 l.kp(step),vli(cti)=vli 
51 l,kp(dzm)  ,vld(cti)=vld 
52  vli(dsm),vld(dsm)(mcp) 

53 DN.Sli(*),DN,Sld(*)(mcp) 

54 H1 (svd) =w 
55  w,w(cdi)(dec)(ctc)=x,wn 
56  wn,w,l(ctc)(e/)=Cond 

.58 Cond(out,e)= 
57  nc(out,t,O)= . 
59  giv(ifj)=t,t,J 
60 t:(nop)= 
61 -For-different-PCI- 

Enter  j,d(dch)=chl 
62 6therwIse Enter;-c(dch)=ch2 
63 -chl(tch)=- 
64 ch2 (tch) = 
65 (sto)= 

47 k,P(*)=kP 

(mcp)=vli,vld 

=Sli,Sld 

=H1 , H2 

66 J:(nop)= 
67 HlIH2(sle),-1(S*,t)~NDr 
68 NDr,kp(ctr)=Ncc,Dcc 
69 nc(poi)=n,nx,va,vi,vli,vld 
70 va(dsm),vi(dsm),vli(dsm), 

71 n,n(dim),m(ctc)=Bc,A2 
72 A2,Si(t)(*),DcclSa(t)(*) 

73  Ncc,p(cZr)=Nr 
(-,t)=AC 

74 Nr,Ac,Sa(t),nx(inc)(Qo) 
(*,t)=Cc 

75 vli(dsm),Dcc(*),vld(dsm) 
(+,t)=Dcc 

76 Dcc,m(pmfc)=Dl 
77 Ncc,p(pmfc)=Nl 
78 Ac,Bc,Cc,Nl,Dl,epa 

(GeDc,sub)=Dc 

vld(dsm)(mcp)=Sa,Si,Sli,Sld 

79 q:typ 
80 lis 

NDR0.SBR 
1  N,D,eps,nos(NDRo,sbr) 

2 nli 
3  nty 
4 -Right-coprime-(N(z),D(z)) 

=Ao,Bo,Co,Do,no,Cond 

==> 
5 -POF Ro based on-no 
6 l, 6 (&mi (tvc 1: 

7 nos,l(coin),O(coin)(mcp) 
Ao , Bo , CO ,.Do , no, Cond 
=no,k,giv 

8 giv(mcp)=nx 

10 D(alt)=x,Drr 
9 N(alt)=x,Nrr 

11 Nrr(rdi),Drr(rdi)(mcp)=p,m 
12  giv,giv(mcp)=Ind,nol 
13  no(cdi),l(ifj)=k,k,G 
14 G:l(dma)=giv 
15 no(poi)=nn,nx,va,vi,vli,vld 
16 nx(inc)=k 
17  k,m(*)=km 
18 Drr(t),m,k,l(Toep),Nrr(t), 

19 ( jmp)=x 
20 k:k(inc)=k 
21 k,m( *)=km 
22 Drr(t),m,k,l(Toep),Nrr(t), 

23  DN,eps(nrs)=w,x,n 
24 n,km(-,t)=n 
25  k(dec),n,nol(cti)=inno 
26 n,nol(-),n(mcp)=del,nol 
27 inno(out,t,O)= 
28 del(ifj)=K,K,k 
29 K: (nop)= 
30 k,nx(inc)(ifj)=k,w,w 
31 w:(nop)= 
32  n,p(cti)=np 
33  Ind,l(ifj)=a,d,x 
34 a:(nop)= 
35 DN,p,k,m(*),epe(Ind,sub)=no 
36  l(coin)=Ind 
37  (jmp)=C 
38 d:(nop)= 
39  np,no(out,t,O)= 
40 l,p(inpm)=no 
41 C: (nop)= 
42 no(poi )=nn,nx,va ,v i ,v l i ,v ld  , 
43 nn,n(ifj)=d,o,d 
44 o:(nop)= 
45 Ind(inc)=Ind 
46 k,nx(inC)(ifj)=krXrX 
47 x:(nop)= 
48 k,m(*)=km 
49 l,k,p(*)(dzm)=zv 
50 zv,vli(p+),zv,vld(p+)(mcp) 

51 l,km(step),vli(cti)=vli 
52  l,km(dzm)  ,vld(cti)=vld 
53 vli(dsm),vld(dsm)(mcp) 

54 DN,Sli(*),DN,Sld(*)(mcP) 

55  H1  (svd)=w 
56  w,w(cdi)(dec)(ctc)=x,wn 
57  wn,w,l(ctc)(s/)=Cond 
58 no(oUt,t,O)= 

m,k,l(Toep),-l(s*)(cti)=DN 

m,k,l(Toep),-l(s*)(cti)=DN 

=vli,vld 

=Sli,Sld 

=HlrH2 
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59 Cond (out, e) = 
60 giv(ifj)=t,t,J 
61 t:(nop)= 
62 -For different POI- 

63 _~therw~se_Enter;-c(dch)=ch2 
Enter j , d (dch Tach1 

64 chl  (tch) = 
65 ch2(tch)= 
66 (sto)= 
67 J:(nop)= 
68 Hl,H2(sle)(t),-l(s*,t)=ND 
69 ND,km(ctc,t)=Nlr,Dlr 
70 no(poi)=n,nx,va,vi,vli,vld 
71 va(dsm),vi(dsm),vli(dsm), 

72 n,n(dim),p(ctr)=Co,A2 
73 SiIA2(*),Sa,Dlr(*)(-,t)=A0 
74 Nlr,m(rZc)=Nc 
75 Ao,Sa,nx(inc)(Qc),Nc(*,t)=Bo 
76 Dlr,vli(dsm)(t)(*),vld(dsm) 

77 Dlr,p(pmfr)=Dl 
78 Nlr,m(pmfr)=Nl 
79 Ao,Bo,Co,Dl,Nl,eps 

80 q:typ 
(GeDo,sub)=Do 

81 lis 

vld(dam)(mcp)=Sa,Si,Sli,Sld 

(t)(+,t)=Dlr 

DNND.SBR 
1 Dl,Nl,eps,ncs(DNND,sbr) 

2 nli 
3 nty 
4 -Left MFD {Dl(z),Nl(z))-==> 
5  -Righx-coprime 

6 -with-row_degrees-nc 
-tNr(z)rDr(z)> 

7 1,4(dzm)(tvc)=Nr,Dr,nc,Cond 
8 ncs,l(coin),O(coin)(mcp) 

9 giv(mcp)=nx 

=Nr , Dr , nc , Cond 

=nc,  k, giv 

10 Dl(alt),Nl(alt)(mcp)=Dc,Nc 
11 Dc(cdi),Nc(cdi)(mcp,t)=p,m 
12 giv,giv(mcp)=Ind,nol 
13 nc(cdi),l(ifj)=k,k,G 
14 G:l(dma)=giv 
15 nc(poi)=nn,nx,va,vi,vli,vld 
16 nx ( inc) =k 
17 k,p(*)=kp 
18 Dc,P,k,l(ToeP),Nc,p,k,l 

19 (jmP)=x 
(Toep),-l(s*)(cti)=DNl 

20 k:k(lnc)=k 
21 k,p(*)=kp 
22 Dc,P,k,l(Toep),Nc,p,k,l 

(Toep),-l(s*)(cti)=DNl 
23 DNl,eps(nrs)=w,x,n 
24 n,kp(-,t)=n 
25 k(dec),n,nol(cti)=inno 
26 n,nol(-),n(mcp)=del,nol 
27 inno(out,t,O)= 

28 del(ifj)=K,K,k 
29  K:(nop)= 
30 k,nx(inc)(ifj)=k,w,w 
31 w:(nop)= 
32 n,m(cti)=nm 
33 Ind,l(ifj)=a,d,x 
34 a:(nop)= 
35 DNl,m,k,p(*),eps(Ind,sub)=nc 
36 1 (coin)=Ind 
37 (jmp)=c 
38 d:(nop)= 
39 nm,nc(out,t,O)= 
40 l,m(inpm)-nc 
41 C:(nop)= 
42 nc(poi)=nn,nx,va,vi,vli,vld 
43 nn,n(ifj)=d,o,d 
44 o:(nop)= 
45 Ind(inc)=Ind 
46 k,nx(inc)(ifj)=k,x,x 
47 x:(nop)= 
48 k,p(*)=kp 
49 l,k,m(*)(dzm)=zv 
50 zv,vli(p+),zv,vld(p+)(mcp) 

51 l,kp(step),vli(cti)=vli 
52 l,kp(dzm),vld(cti)=vld 
53 vli(dsm),vld(dsm)(mcp) 

54 DNl,Sli(*),DNl,Sld(*)(mcp) 

55  H1 ( svd) =W 
56 w,w(cdi)(dec)(ctc)=x,wn 
57 wn,w,l(ctc)(s/)=Cond 
58 nc(out,t,O)= 
59 Cond(out,e)= 
60 giv(ifj)=t,t,J 
61 t:(nop)= 
62 _For-different-PCI- 

63 -Etherwhe_Enter;_c(dch)=ch2 
Enter j,d(dch)=chl 

64 chl  (tch) = 
65  ch2  (tch) = 
66 (sto)= 
67 J:(nop)= 
68 Hl,H2(ale),-l(s*,t)=NDr 
69 NDr,kp(ctr,t)=Ncc,Dcc 
70 vli,kp(ctc)=x,vlii 
71 vld,kp(ctc)=x,vldd 
72 vlii(dsm),Dcc(*),vldd 

(dsm)(+,t)=Dcc 
73 Dcc,m(pmfc)=Dr 
74 Ncc,p(pmfc)=Nr 

76 lis 

=vli,vld 

=Sli,Sld 

=H1, H2 

75 q:typ 

NDDN.SBR 
1 Nr,Dr,eps,nos(NDDN,sbr) 

2 nli 
3 nty 
4 -Right_MFD-{Nr(z),Dr(z))-==> 

=Dl,Nl,no,Cond 
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5 Left coprime {Dl(z),Nl(z)} 
6 -with-column aegrees  no 

8 nos,l(coin),O(coin)(mcp) 
7 i,4(d~m)(tvc~=Dl,Nl,Fio,Cond 

=no,  k, giv 
9 Nr(alt)=x,Nrr 

11 Dr(alt)=x,Drr 
10 giv(mcp)=nx 

12 Nrr(rdi),Drr(rdi)(mcp)rp,m 
13 giv,g+v(mcp)=Ind,nol 
14 no(cdl),l(ifj)=k,k,G 
15 G:l(dma)=giv 
16 no(poi)=nn,nx,va,vi,vli,vld 
17 nx ( inc)=k 
18 k,m(*)=km 
19 Drr(t),m,k,l(Toep),Nrr(t), 

m,k,l(Toep),-l(s*)(cti)=DNrt 
20 (jmp)=:x 
21 k:k(lnc)=k 
22 k,m(*)=km 
23 Drr(t),m,k,l(Toep),Nrr(t), 

m,k,l(Toep),-l(s*)(cti)=DNrt 
24 DNrt,eps(nrs)=w,x,n 

26 k(dec),n,nol(cti)=inno 
25 n,km(-,t)=n 

27 n,nol(-),n(mcp)=del,nol 
28 inno(out,t,O)= 
29 del(ifj)=K,K,k 
30 K:(nop)= 
31 k,nx(inc)(ifj)=k,w,w 
32 w:(nop)= 
33 n,p(cti)=np 
34 Ind,l(ifj)=a,d,x 

36 DNrt,p,k,m(*),eps 
35 ar(nop)n 

(Ind,sub)=no 
37 1 (coin)=Ind 

39 d:(nop)= 
40 np,no(outlt,O)= 
41 1 , p ( inpm)  =no 
42 C: (nop)= 
43 no(poi)=nn,nxrvarvirvlirvld 
44 nn,n(ifj)=d,o,d 
45 0 :  (nop)= 
46 Ind( inc)=Ind 
47 k,nx(inc) (ifj)=k,x,x 

49 k,m(*)=km 
48 x:(nop)= 

50 l,k,p(*)(dzm)=zv 
51 Zv,vli(p+)rzVrvld(p+)(mcp) 

38  (jmp)=C 

52 
53 
54 

55 

56 
57 
58 
59 

=vli,vld 
l,km(step),vli(cti)=vli 
l,km(dzm),vld(cti)=vld 

=Sli,Sld 
vli(dem),vld(dsm)(mcp) 

=H1 , H2 
w,w(cdi)(dec)(ctc)=x,wn 
H1  (svd) =w 

wn,w,l(ctc)(s/)=Cond 
no(out,t,O)= 

DNrt,Sli(*),DNrt,Sld(*)(mcp) 

60 Cond(out,e)= 
61 giv(ifj)=t,t,J 
62 t:(nop)= 
63 -For-different-POI- 

64 -0therwhe_Enter;-c(dch)=ch2 

66 ch2  (tch)= 
65  chl  (tch) = 

67  (sto)= 
68 J:(nop)= 
69 HlrH2(sle)(t),-l(s*,t)=ND1 
70 NDl,km(ctc,t)=Nlr,Dlr 
71 vli,km(ctc)=x,vlii 
72 vld,km(ctc)=x,vldd 
73 Dlr,vlii(dsm)(t)(*),vldd 

74 Dlr,p(pmfr)=Dl 
75 Nlr.mlDmfrI=Nl 

- Enter j,d(dch)=chl 

(dsm)(t)(+,t)=Dlr 

76 q:typ 
77  lis 

. .- . 

CHAPTER 5 

UYR0.SBR 
1 uryteps,nos(uyRo,sbr) 

2 nli 
3  nty 
4 -Input/Output-Data-==> 

5 - DeFeriiiinistIc h4O-system 
6 -ir7(dzm)  (tvc)= 

=Ao,Bo,Co,Do,no,xo,Cond 

POF R0 based on no 

Tdentification- 

A o ~ B o , C O , D O , ~ ~ , X O , C ~ ~ ~  
7  Ury(t)=Ury 
8 nos,O(coln),O(coin)(mcp) 

9 giv  (mcp ) =nx 

11 O(coln),O(coin),u(rdi),u 
10 giv(mcp)=Ind 

=no,i,giv 

(cdi!,y(cdi)(mcp)= 
nol,l,N,m,p 

12 u,y(mcp)=U,Y 
13 no(cdi),l(ifj)=i,i,G 
14 G:l(dma)==giv 
15 no(poi)=nn,nx,va,vi,vli,vld 

17 N,i(dec)(-)=Ni 
16 nx(inc),nn(mcp)=i,n 

18 u,l,i,-2(toep),yrl,i,-2 

20 Y,i(dec)(ctr)=x,Y 
19 U,i(dec)(ctr)=x,U 

21 (jmp)=x 
22 i:i(inc)=i 
23 u(shu),y(shu)(mcp)=u,y 
24 U,u(cti),Y,y(cti)(mcp)=U,Y 
25 U,Y(cti),N,i(-)(ctr),eps 

26 r,i(inc),m(*)(-,t)=n 

(toep)(mcp)=U,Y 

(nrs)=xx,yy,r 



Se 

27 
28 
29 
30 
31 

33 
32 

34 
35 

37 
36 

38 
39 

40 
41 
42 
43 

45 
44 

46 
47 
48 
49 

51 
50 

52 

53 

54 

55 

56 
57 
58 
59 
60 
61 
62 
63 
64 

65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 

79 

ction C.6 L-A-S Code forSpe 

n,nol(-),n(mcp,t)=del,nol 
i,n,nol(cti)=inno 

del(ifj)=c,c,i 
inno(out,t,O)= 

i,nx(ifj)=i,w,w 

n,p(cti)=np 
N,i(-)=Ni 
Ind,l(ifj)=a,d,x 

U,Y(cti),Ni(ctr)=Z 
Z,p,i(inc),m(*),eps 

l(coin)=Ind 
(Ind,sub)=no 

(jmP)=c 

c: (nop) = 

W :  (nop) = 

a: (nop) = 

d: (nop) = 
no,np(out,t,O)= 
l,p(inpm)=no 

no(poi)=nn,nx,va,vi,vli,vld 
n,nn(ifj)=d,o,d 

Ind(mc)=Ind 
i,nx(ifj)=i,x,x 

va(dsm),vi(dsm),vli(dsm), 
vld(dsm)(mcp)=Sa,Si,Sli,Sld 
U,Ni(ctr),Y,Ni(ctr)(mcp) 
=uc,yc 
Uc,nx(inc),m(*)(ctc),Yc,nx 
(inc),p(*)(ctc)(mcp)=Uc,Yc 

XYl,Y2 
Yc,Sli(*),Yc,Sld(*)(mcp) 

Uc,Yl(cti)=Z 
2 ( svd) =w 
w,w(cdi)(dec)(ctc)=x,wn 
wn,w,l(ctc)(s/)=Cond 
no(out,t,O)= 
Cond(out,e)= 
giv(ifj)=t,t,J 

C: (nop)= 

0 :  (nap!= 

x: (nop) = 

t: (nop)= 
- 
Enter j,  d( dchi=chl 
For different POI 

- - OtherwTee_Enter;-c(dch)=ch2 
chi (tch) = 
ch2 (tch)= 
( StO) = 

Z,Y2(sle)(t),nx(inc),m(*) 

n,n(dim),p(ctr)=Co,AZ 
(ctc,t)=Bt,At 

Sa,At(*),Si,A2(*)(+,t)=Ao 
Ao,Sa,nx(inc)(qc)=Qc 

Qc,Btt(*,t)=Bo 
Bt,m(rPc)=Btt 

Bt,m(ctc)=Btl 
Bt,m(pmfr)=Np 

J: (nop) = 

Sld(<) ,At,Sfi(t) ( * )  (-),p 
( pmf r) =Dp 
Ao,Bo,Co,Dp,Np,epe 
(GeDo,sub)=Do 
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80 Yl(t),l(ctc),Uc(t),l(ctc) 
(mcp)=Yll,Ul 

81 Do,A~,Co,nx(Qo),Bo(*) 
(rti),p,nx,2(Toep)=SS 

82 Yll,Sli(t),SS(*),Ul,nx,m 

83 q:(nop)= 
84  typ 
85 lis 

(*)(ctr)(*)(-,t)=xo 

UYDN.SBR 
1 u,y,eps,nos(uyDN,sbr) 

2 nli 
3  nty 
4 -Input/Output-pair-==> 

5 _Det&minist'Zc  MIMO-system 

6  T,4(dzm)(tvc)=Dp,Np,no,Cond 

8 nos,O(coin),O(coin)(mcp) 

10 giv(mcp)=Ind 
9 giv(mcp)=nx 

11 O(com),O(coin),u(rdi),u 

=Dp,Np,no,Cond 

- Left Coprime {D(z),N(z)) 
Identification- 

7  u,Y(t)=u,Y 

=no,i,giv 

(cdi) rY(Cdi) W P )  

12 u,y(mcp)=U,Y 
=nol,i,N,m,p 

13 no(cdi),l(ifj)=i,i,G 
14 G:l(dma)=giv 
15 no(poi)=nn,nx,va,vi,vli,vld 
16 nx(inc),nn(mcp)=i,n 
17 N,i(dec)  (-)=Ni 
18 u,l,i,-2(toep),y,l,i,-2 

20 Y,i(dec)(ctr)=x,Y 
19 U,i(dec)(ctr)=x,U 

21 (jmp)=x 
22 i: (nop)= 
23 here nofcdi\=l 

(toep)(mcp)=U,Y 

24 ~for-~=l~go-~o-N 

26 ~ , l ( ~ f j i = ~ , N ~ I -  
25  for no = or > 1-go-to-G 

27 N:no,l(ifj)=I,G,G 
28 I:i(inc)=i 
29 u(shu)!y(shu)(mcp)=u,y 
30 U,u(ctl),Y,y(cti)(mcp)=U,Y 
31 U,Y(cti),N,i(-)(ctr),eps 

(nrs!=xx,yy,r 
32 r,i(mc),m(*)(-,t)=n 
33 i,n,nol(cti)=inno 
34 n,nol(-),n(mcp,t)=del,nol 
35 inno(out,t,O)= 
36 del(ifj)=c,c,i 
37 c:(nop)= 
38 i,nx(ifj)=I,w,w 

40 n,p(cti)=np 
39 w:(nop)= 

42 Ind,l(ifj)=a,d,x 
41 N,i(-)=Ni 
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43 a: (nop)= 
44 U,Y(cti),Ni(ctr)=Z 
45 Z,p,i(inc),m(*),e~s 

(Ind,sub)=no 
46 1 (coin) =Ind 
47  (jmp)=C 
48 d:(nop)= 
49 no,np(out,t,O)= 
50 l, p ( inpm) =no 
51 C:(nop)= 
52 no(poi)mn,nx,va,vi,vli,vld 
53 n,nn(ifj)=d,o,d 
54 o:(nop)= 
55 Ind (inc) =Ind 
56 i,nx(ifj)=i,x,x 
57 x:(nop)= 
58 va(dsm),vi(dsm),vli(dsm), 

vld(dem)(mcp)=Sa,Si,Sli,Sld 
59 U,Ni(ctr),Y,Ni(ctr)(mcp) 

EUC, Yc 
60 uc,nx(inc),m(*)(ctc),Yc, 

nx(inc),p(*)(ctc)(mcp)=Uc,Yc 
61 Yc,Sli(*),Yc,Sld(*)(mcp) 

SYl,Y2 
62 Uc,Yl(cti)=Z 
63 Z(svd)=w 
64 w,w(cdi)(dec)(ctc)=x,wn 
65 wn,w,l(ctc)(s/)=Cond 
66 no(out,t,O)= 
67 Cond (out, e) = 
68 giv(ifj)=t,t,J 
69 t:(nop)= 
70 -For-different-POI 

71 -5therwjtse  Enter;-c(dch)=chZ 

73 ch2 (tch) = 
72 chl (tch) =- 

74 tsto\= 

Enter j,d(dch)=chl 

10 Y (mcp)=YY 
11 U(rdi),Y(rdi)(mcp)=m,p 
12 0,lO ( d m )  =Wt 
13  Wt (mcp) =dt 
14 0 (coin)  =i 
15 i:i(inc)=i 
16 YY,l(ctr)syl,YY 
17 epsl(mcp)=noai 
18 dim,l(ifj)=o,o,g 
19 g:nos,l(ctc)=nosi,nos 
20 o:(nop)= 
21 U,yl,epsl,nosF(uydn,sbr) 

22  nli 
23 nty 
24 dt,l,lO(dzm),dl,l,l(rmp) 

25 Wt,m,lO(dzm),W1,1,1(rmp) 

26 C#,C#i(cti),no,noi(cti) 

27 i,p(ifj)=i,j,j 
28 j:(nop)= 
29 Wt,p(cmp),epsl(elzc,sub)=Wtt 
30 Wtt,p(cmp)(pmt,sub)=Wt 
31 dt,l(cmp),epel(elzc,sub)=dtt 
32 q:typ 
33 lis 

=dl,Wl,noi,C#i 

(rti,t)=dt 

(rti,t)=Wt 

(mcp)=C#,no 

PMT.SuB 

2 (nli)= 
1 N (pmt, sub) =Nt 

3 -Polynomial matrix 

4 k(a1t) (t) ,N(rdi) ,N(ninp) 
Tr anspos it Ton 

(s!)(pmfr,t)=Nt 
5 (hs)= 

75 J: {nopi= 
76 z,YZ(sle)(t),nx(inc), 

m(*)(ctc,t)=Bt,At 
CTCP.SUB 

77 Bt,m(pmfr,t)=Np 
78 Sld(t),At,Sli(t)(*)(-),p 

79 q:(nop)= - 
81 lis 

1 G,ml(CTCp,sub)=Gl,GZ 
2 (nli)= 
3 -Cut by-columns-Polynomial 

4 _G(s)==>(Gl(s)(G2)8)( 
5 -G1 has m1 columns 
6 m1 (Zo ins=&l 

(pmfr,t)=Dp matrTx 

80 tYP 

WTF.SBR 
1 U,Y,epsl,nos(uyTF,sbr) 

2 nli 
3 nty 
4 -Input/outputgair-==> 

5 ZDeterminTstic-MIMO 
Transfer Function 

6 -using one output at a time 
7 1 , 4  (dziii)  (ti&) =dttTWtTnE, C# 
8 l,O(dzm),l,O(dzm)(mcp)=C#,no 
9 nos (cdi) =dim 

=dtt,Wt,no,C# 

- Identification 

8 pm,m(s/)=p 
7 G(rdi) ,G(ninp) (mcp)=pm,m 

10 Gl,ml(cmp),G2,m,m~(-) 
9 G,ml,p(*)(ctr)=G1,02 

11 (lis)= 
(cmp)(mcp,t)=Gl,GZ 

cTRP.suB 
1 G,pl(CTRp,sub)=Gl,G2 
2 (nli)= 
3 Cut  by  rows-Polynomial 

iiatrlx - 
4 !Gl(S)! 
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10 

11 
12 
13 
14 
15 
16 
17 
18 

20 
19 

21 

22 

(mcp)=p,n,ppl 
PrPP1(-),O,n(dzm),G(mcp) 
=pP,Gl,X 
Gl,O(coin)(mcp)=G2,i 

i:i(inc)=i 
x,ppl(ctr)=x,X 
x (cpm) =x 
Gl,x(rti)=Gl 
X,pZ(ctr)=x,X 
x (cpm) =x 
G2,x(rti)=G2 
i,m(ifj)=i,j,j 

j: (nop)= 

=G1, G2 
(lie)= 

Gl,m(cmp),G2,m(cmp)(mc~,t) 

RTPM.SUB 
1 A,B(RTpm,sub)=C 
2 
3 
4 
5 
6 
7 

8 

9 

10 
11 
12 

13 

Row-tie-Polynomial-matrices 
(nli) = 

-jA(s)! 
- 1  ---- 
- 

I ==>C( S) 
-IB(S) I 
A(rdi),A(cdi),A(ninp)(mcp) 
=pml,nl,ml 

=pm2,n2,m2 
pml,ml(s/),pm2,m2(s/),nl 
(mcp)=pl,p2,nl2 
ml,m2(ifj)=e,a,e 

B(rdi),B(cdi),B(ninp)(mcp) 

e: Inou\= 
' A-& B  should-have-same-# 
ofIc5l'umns 

mlrm2(cti)=- 
- - 

14 -(outj= 
15 0 (coin)  =C 
16  (jmp)=s 
17 a:n2,nl2(ifj)=s,s,g 
18 g:n2(mcp)=n12 

20 A(cpm),B(cpm),O(coin),l 
19 s:pml,pm2(+),nl2(dzm)=C 

(coin)(mcp)=Ax,Bx,i,l 
21 i:i(inc)=i 
22 Ax,pl(ctr,t)=x,Ax 
23 C,x,l,l(rmp,t)=C 
24 l,pl,p2(+)(+)=1 
25 i,ml(ifj)=i,j,j 
26 j:O(coin),pl(inc)(mcp)=i,l 
27 I:i(inc)=i 
28 Bx,p2(ctr,t)=x,Bx 
29 C,x,l,l(rmp,t)=C 
30 l,pl,p2(+)(+)=1 
31 i,m2(ifj)=I,J,J 
32 J:C,ml(cmp,t)=C 
33 g: (lis)= 

cTPM.sUB 
1  A,B(CTpm,sub)=C 
2 (nli)= 
3  -Column-tie-Polynomial 

4 ::A(s)~B(s)!==>c(s! 
5 A(rdi),A(cdi),A(nznp)(mcp) 

6 B(rdi),B(cdi),B(ninp)(mcp) 

7  pml,ml(s/),pm2,m2(s/),nl 

8 pl,pZ(ifj)=e,a,e 
9  e:(nop)= 

matrices 

=pml,nl,ml 

=pm2,n2,m2 

(mcp)=pl,p2,nl2 

10 -A-&-B-should-have-same-# - of-rows 
11 pl,pZ(cti)=- 
12 -(out)= 
13 0 (coin) =C 

15 a:n2,n12(ifj)=sls,g 
16 g:n2(mcp)=nl2 
17 s:pml,pm2(+),n12(dzm)=C 
18 c,A(cpm),l,l(rmp),B(cpm), 

pml(inc),l(rmp,t)=C 
19  C,ml,m2(+) (cmp,t)=C 

14 (jmp)=s 

20 q:(lis)= 

ELZC.SUB 
1 G,eps(Elzc,sub)=Gr 
2 (nli)= 
3 G(mcp)=Gi 
4 0 (coin) =Gr 
5 -Elimination-of-last-zero 

6 -from-G(z)-in PMF 
7 Gi  (cdi) (inc) ,Zi (rdi) 

8  i:i(dec)=i 
9  Gi,l,i,pm,l(exm)(t)=x 
10 x,x(t)(*)(ssr),eps(ifj) 

11 c:i,l(ifj)=f,f,i 
12 f:Gi,i(ctc,t)=Gr 
13 Gr,Gi(ninp)(cmp)=Gr 
14 q:(lis)= 

columns - 

(mcp)=i,pm 

=c,c,f 

UYH.SUB 
1  u,y,L(uyh,sub)=H,nnn 
2 inli\= 
3 

4 
5 

6 
7 
8 

10 
9 

- ' Input/Output-data-==> 
Markov - - parameters H(z) in PMF 
ApplicableIonlyIto- 
DT-stable-systems - - 

m,m(mcp)=H,nrm 
u(rdi)=m 

u(t),l,L,2(Toep)=U 
U(rdi),U(cdi)(cti)=- 
-(out)= 
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8 C(svd)=w,u,v 
9 A,B,Crv(Str)=A1,BlrC1 
10 v (mcp) =Tt 
11 n,O(inc),p(inc)(mcp)=np,i,j 
12 np.p(-)=nP 
13 i: (nop) = 
14 Al,i,j,p,np(exm,t)=Aij 
15 Aij(svd)=w,u,v 
16 I,v,  j, j (mp,t)=T 
17 Tt,T(*)=Tt 
18 Al,B1,C1,T(str)=AlrBlrCl 
19 i(inc),j(inc),np(dec)(mcp) 

20  j,n(ifj)=irirG 
21 G:(nop)-- 
22 A,B,C,Tt(str)=At,Bt,Ct 
23 n(mcp)=deg 
24 1 (dec) mi 
2 5  I:i(inc)=i 
26 n,i(-)=ni 

28 At,l,nil,ni,i(exm)=z 
27 ni(inc)=nil 

29 z(nrr,t)=z 
30 z,eps(ifj)=a,a,g 
31 a:i(mcp,t)=deg 
32 ni (mcp) =deg 
33 g:(nop)= 
34 i,n,p(-)(ifj)=f,K,K 

36 At,l,l,deg,deg(exm)=Ao 
35 K:(nop)= 

37 B(cdi)=m 
38 Ct,l,l,p,deg(exm)=Co 
39  Bt,l,l,deg,m(exm)=Bo 
40 (lis)= 

litjrnp 

MIN.SBR 
1 A,B,C,epa(min,sbr)=Am,Bm,Cm 
2 nli 
3 nty 
4 -Minimal Realization using 
5 -Hessenb&g-transfor~ation 
6 -Callsfwice-MIN.SUB 
7 A,B,C,eps(min,sub) 

=Ao,BorCorTl 

(min,sub)=Amd,Bmd,Cmd,T2 
8 Ao(t),Co(t),BO(t),epS 

9 Amd,Cmd,Bmd(t,t)=Am,Bm,Cm 
10  tYP 
11 lis 

11 U(rdi ) ,U(cdi ) ( i f j )=e ,e ,O 
i2 o:(nop)= 
13  U,y(t)(sle)(t)=H 
14 H,m,L(dec)(*)(ctC)=x,U 
15 U (nrr) =nrm 
16 e:(nop)= 
17 H,m(pnfr)=H 
18 (lis)= 

C0MD.SBR 
1  Do,eps(ComD,sbr)=comd,F 
2 nli 
3 nty 
4 -Column-Do(z)-==> 

Comm.-Den d(z)-comd 
5 T,Z(dzm)(tik)=comd,F 
6 Do ( rdi) =p 

8 D,l(ctr)=di,D 

10 i:i(inc)=i 
9  di( elz) =comd 

11 D,l(ctr)=di,D 

13 comd,di,eps(prd,t) 
12 di(elz)=di 

=cdr , dir , corn 
14 cdr,dir,com(p*)(p*,t)=comd 

16 j:(nop)= 
17 comd(cdi)=dim 
18 O,comd(cdi)(bzm)=fpol 

20 0 (coin) =i 
19 Do  (mcp) =D 

21 Ixi(inc)=i 
22 D,l(ctr)=di,D 
23 di(elz)=di 
24 comd,di,epe(prd,t)=fi,x,y 
25 fpol,p(inc) ,dim(dzm) 

26 i,p(ifj)=I,J,J 
27 J: (nop)= 
28 fpol,p,p(*)(ctr,t)=F 
29 F,p(cmp),eps(elzc,sub)=F 

31 lis 
30 q:typ 

7 Do,l(coin)(mcp)=D,i 

15 irP(ifj)=irjrj 

fI,l,l(rmp) (rti,t)=fpol 

APPENDIX B 

MIN.SUB 
1  A, B,  C, eps (Min, sub) 

2 (nli)= 
=Ao,Bo,Co,Tt 

3  -Elimination-of 

4 --sing Hessenberg - TransFormation 
6 X(rdi),~(rdi)~mc~)=n,p 
S Called twice by  MIN.SBR 

7 n,n(dim)=I 

unobservable-modes 

KALDSBR 
1  A,B,C,eps(Kald,sbr) 

2 nli 
=AdrBdrCd,T,dim 

ntv _ " ~  
- 
IA,B,C) is  nC  nO 
Kalman-decomposition 

zrBarEd) 
'simziaritv transform 
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8 
9 
10 
11 
12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 

lT5(dzm)(tvc)=Ad,Bd,Cd,T,dim 
dimensions 

B(cdi),C(rdi)(mcP)~,P 
A,B(qc)=Qc 
A,C(qO)=QO 
Qc,eps(nrs)=x,Tc,X 
Qo(t),eps(nrs)=x,Rqot,X 
Rqot(t),eps(nrs)=Tob 
Tc,Tob,eps(INOU,sub) 

Tob,Tc,eps(INOU,sub)=COb,CO 
=Cob, CbOb 

COb,CO,CbOb(cti,t)=Tl 
Tl(t),eps(nrs)=CbO 
cob(cdi),CO(cdi),CbOb 
(cdi),CbO(cdi)(cti)=dim 
Tl,CbO(cti)=T 
dim(tvc)=cbo,co,bcbo,bco 
ebolinc.t\=i . .~ . . - - - - r - ,  ~ 

A,B,C,T(str)=Ad,Bd,Cd 
Ad,i,i,co,co(exm)=Ad 
Bd,i,l,co,m(exm,t)=Bd 
Cd,l,i,p,co(exm,t)=Cd 

27 q:typ 
28 lis 

IN0u.suB 
2 fnli\= 
1 R,Q,eps(InOu,sub)=Qr,Qou 

3 ‘_Q_is-decomposed-into-Qr 

4 -Q7 is in range of R 
5 I~oii iZ oiit-of-~an~e-of-R 
6 QtcdTl-E 

& Qou 

7 b;R(cti),eps(nrs)=Nqr 
8 Nqr,k(ctr)=Nq 
9 Nq(t),eps(nrs)=Nqn 
10 Q,Nq(*)=Qr 
11 Q,Nqn(*)=Qou 
12 (lis)= 

M0DM.SBR 

2 nli 
1 A,Egv,eps(ModM,sbr)=P 

3 nty 
4 -Calculates-Modal-matrix-of 
5 -non-diagonalizable A 
6 -Satisfies A*P=P*Aj- 
7 -Aj-=-BlocE-diagonal-Jordan 

Form 
8 eps  (mcp) =P 
9 A(rdi)=n 
10 Egv ( rdi) =m 
11 O(dma)=z 
12 n,O(dzm)=Zm 
13 Zm (mcp) =P 

15 j: j (mc)=j 
16 Egv,j,l,l,2(exm)=egj 
17 j(out)= 
18 egj,l(ctc)=sj,oj 

- 

14  (VCP) =j 

19 oj(ifj)=C,R,C 
20 c:oj (abs)=oj 
21 A,sj,oj,eps(ChaC,sbr)=Pj 
22 nli 
23 nty 

25 R:(nop)= 
26 A,sj,eps(ChaR,sbr)=Pj 
27 nll 
28 nty 
29  y:(nop)= 
30 P,Pj(cti,t)=P 
31 P(out)= 
32 j,m(ifj)=j,f,f 
33 f:(nop)= 
34 q:typ 
35 lis 

CHAC.SBR 

24 (jmP)=Y 

1 A,sj,oj,eps(ChaC,sbr)=Pj 
2 nli 
3 nty 
4 calculates-eigenvectors 

5 -associated-with-complex 

6 fz?ifl-?*o j .Satisfies - A*Pj=Pj*Aj 
7 -Aj=Jordan-block-associated - with-wj 
8 eps (mcp ) =P j 
9 A(rdi)=n 
10 n,n(+)=n2 
11 O(dma)=z 
12 n,n(dim)=I 
13 n2,n2(dim)=I2 
14 n,O(dzm)=Zm 
15 Zm(mcp)=Pj 
16 A,I,sj(s*)(-)=Bjr 
17 I,oj(s*)=Bji 
18 Bjr,Bji(cti),Bji,-l(s*), 

19 Bj,eps(nrs)=N,R,r 
20 N(cdi)=vj 
21 12,~,z(mcp)=Bk,k,r 
22 k:k(inc)=k 
23 Bk,Bj(*)=Bk 
24 Bk,eps(nrs)=Nk 
25  R,Nk,eps(InOu,sub)=Y,M 
26 M(cdi)=q 
27 M,q12(s/)(ctc)=Mt 
28 q(rf))=k,k,a 
29 a:(nop)= 
30 Mt,l(ctc)=m,Mt 
31 z,Zm(mcp)=i,Pi 
32 i:i(inc)=i 
33 m,n(ctr)=mr,mi 
34 mr,mi,Pi(cti,t)=Pi 
35 Bj,m(*)=m 
36 i,k(ifj)=i,z,z 
37 z:(nop)= 

-In-pj 

Bjr(cti) (rti)=Bj 
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38 Pj,Pi(cti,t)=Pj 
39 Mt(cdi)(ifj)=x.x,a 
40 x:(nop)= 
41 R,M(cti,t)=R 
42 r,q(+,t)=r 

44 q:(nop)= 
43 r,vj(ifj,t)=k,q,q 

45  tYP 
46 lis 

CIIAR.SBR 
1 A,sig,eps(ChaR,sbr)=Pj 
2 nli 
3 nty 
4 Calculates-Eigenvectors 

5 zasiociated with-real 

6 Satisfies-A*Pj=Pj*Aj 
7 ZAj = Jordan  block 

8 Zps (mcp) =P j 
9 A(rdi)=n 
10 0 (dma)=z 
11 n, n (dim) =I 
12 n,O(dzm)=Zm 
13  Zm(mcp)=Pj 
14 A,I,sig(s*)(-)=Bj 

16 N(cdi)=vj 
15 Bj,eps(ntS)=N,R,x 

17 I,z,z(mcp)=Bk,k,r 
18 k:k(inc)=k 
19 Bk,Bj(*)=Bk 
20 Bk,eps(nrs)=Nk 
21 R,Nk,eps(InOu,sub)=Y,M 
22  M(cdi)=q 
23 M(mcp)=Mt 
24 q(ifj)=k,k,a 
25 a: (nop)= 
26 Mt,l(ctc)=m,Mt 
27 z,Zm(mcp)=i,Pi 
28 i:i(inc)=r 
29 m,Pi(cti,t)=Pi 
30 Bj,m(*)=m 
31 i,k(ifj)=i,z,z 
32 z:(nop)= 
33 Pj,Pi(cti,t)=Pj 
34 Mt(cdi)(ifj)=x,x,a 

36 R,M(cti,t)=R 
35 x:(nop)= 

37 r,q(+,t)=r 
38 r,vj(ifj,t)=krqtq 
39 q:(nop)= 
40 tYP 
41 lis 

I n  Pj 

- eigenvalueIsig 

asFoFiated :with-real-sig 

COTS.SBR 
1 A,B,C,im,eps(COtS,sbr) 

2 nli 
=ReBCrResO,XXC,XXO 

3 nty 
4 -Degrees-of-Controllability 

5 -Re%c-&-Reso-contain-n- 

6 -and-im*  (n-mi / G *  (n-p) 

8 -Arrays-xxc/xxo-are-to-be 
7 -auxiliary-mstrices-Acc/Aoo 

10 -outside-subroutine 
9 with-xx<z/o>(NIK)= 

11 l,C(dzm)(tvc)=Xesc,Xeso, 

12 A,B,C(getd,sub)=n,mrp 
13 n,m(-),n,p(-)(+),O(dzm)=Res 
14 A,B,C(mcp)=Ao,BO,CO 
15 0 (coin) =i 
16 b:(nop)= 
17 i(inc)=i 
18 B(t),eps(nrs,t)=Nr 
19 C,eps(nrs,t)=Nc 

21 Nr(t),A,Nr(*)(*,t)=Acc 
20 Nc(t),A,Nc(*)(*,t)=Aoo 

22 Acc(egv,t)=egc 
23 Aoo(egv,t)=ego 
24 egc,ego(rti)=egco 
25 n,n,l,l(dpm)=T 
26 Ao,Bo,Co,T(str)=A,B,C 
27 ReB,egco(cti,t)=Res 
28 i,im(ifj)=b,f,f 
29 f:(nop)= 
30 A( egv) =egg 
31 egg(out)= 
32 Res,n,m(-)(ctr)=Resc,Reso 
33 Reso02(r2c,t)=Xeso 
34 egg,Reso(rti)=Reso 
35 Reso(polp,sub)=xxo 

37 egg,Resc(rti)=Resc 
36 Rescr2(r2crt)=ResC 

38 Resc(polp,sub)=xxc 

40 11s 

- or Observability 
- eigenvalues of A 
- eigenvalues of 

- used for plotting 
- 
if desiredl - 

xxc , xxo 

39 q:typ 
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