

Fllgorithms for
Computer-Flided Design

of multivcxriable
Control Systems

ELECTRICAL ENGINEERING AND ELECTRONICS
A Series of Reference Books and Textbooks

EXECUTIVE EDITORS

Marlin 0. Thurston
Department of Electrical Engineering
The Ohio State University
Columbus, Ohio

EDITORIAL BOARD

Maurice Bellanger
TBlBcommunications, Radidlectriques,
et T616phoniques (TRT)
Le Plessis-Robinson, France

J. Lewis Blackburn
Bothell, Washington

Sing-Tze Bow
Department of Electrical Engineering
Northern Illinois University
De Kalb, Illinois

Nonnan B. Fuqua
Reliability Analysis Center
Griffiss Air Force Base, New York

Charles A. Haver
Westinghouse Electrical Engineering
and Technology Seminars, Inc.
Timonium, Maryland

Nairn A. Kheir
Department of Electrical and
Systems Engineering
Oakland University
Rochester, Michigan

William Middendolf
Department of Electrical
and Computer Engineering
University of Cincinnati
Cincinnati, Ohio

Lionel M. Levinson
General Electric Company
Schenectady, New York

V. Rajagopalan
Department of Engineering
Universit6 du Qu6bec
21 Trois-RiviBres
Trois-RiviBres, Quebec, Canada

Earl E. Swarklander
TRW Defense Systems Group
Redondo Beach, California

Sprros G. Tzafestas
Department of Electrical
Engineering
National Technical University
of Athens
Athens. Greece

Sakae Yamamura
Central Research Institute of
the Electric Power Industry
Tokyo, Japan

1.
2.

3.
4.
5.

6.
7.
8.

9.
10.

11.
12.
13.

14.
15.

16.
17.
18.
19.
20 *

21.
22.
23.

24.

25.
26.

27.

28.
29.

30.

31.

Rational Fault Analysis, edited by Richard Saeks and S. R. Liberty
Nonparametric Methods in Communications, edited by P. Papantoni-
Kazakos and Dimitri Kazakos
Interactive Pattern Recognition, Yi-tzuu Chien
Solid-state Electronics, Lawrence E. Murr
Electronic, Magnetic, and Thermal Properties of 'Solid Materials, Klaus
Schr6der
Magnetic-Bubble Memory Technology, Hsu Chang
Transformer and Inductor Design Handbook, Colonel Wm. T. McLyman
Electromagnetics: Classical and Modern Theory and Applications,
Samuel Seely and Alexander D. Poularikas
One-Dimensional Digital Signal Processing, Chi-Tsong Chen
Interconnected Dynamical Systems, Raymond A. DeCarlo and Richard
Saeks
Modern Digital Control Systems, Raymond G. Jacquot
Hybrid Circuit Design and Manufacture, Roydn D. Jones
Magnetic Core Selection for Transformers and Inductors: A User's
Guide to Practice and Specification, Colonel Wm. T. McLyman
Static and Rotating Electromagnetic Devices, Richard H. Engelmann
Energy-Efficient Electric Motors: Selection and Application, John C.
An dreas
Electromagnetic Compossibility, Heinz M. Schlicke
Electronics: Models, Analysis, and Systems, James G. Gottling
Digital Filter Design Handbook, Fred J. Taylor
Multivariable Control: An Introduction, P. K. Sinha
Flexible Circuits: Design and Applications, Steve Gurley, with con-
tributions by Carl A. Edstrom, Jr., Ray D. Greenway, and William P.
Kelly
Circuit Interruption: Theory and Techniques, Thomas E. Browne, Jr.
Switch Mode Power Conversion: Basic Theory and Design, K. Kit Sum
Pattern Recognition: Applications to Large Data-Set Problems, Sing-Tze
Bo W

Custom-Specific Integrated Circuits: Design and Fabrication, Stanley L.
Hurst
Digital Circuits: Logic and Design, Ronald C. Emery
Large-scale Control Systems: Theories and Techniques, Magdi S.
Mahmoud, Mohamed F. Hassan, and Mohamed G. Datwish
Microprocessor Software Project Management, Eli T. Fathi and Cedric
V. W. Armstrong (Sponsored by Ontario Centre for Microelectronics)
Low Frequency Electromagnetic Design, Michael P. Perry
Multidimensional Systems: Techniques and Applications, edited by
Spyros G. Tzafestas
AC Motors for High-Performance Applications: Analysis and Control,
Sakae Yamamura
Ceramic Motors for Electronics: Processing, Properties, and Applica-
tions, edited by Relva C. Buchanan

32.

33.
34.
35.

36.

37.

39.
40.

38.

41.
42.
43.
44.

45 *
46.
47.

48.

49.

50.

51.
52.

53.

54.
55.
56.
57.
58.

59.

60.
61.

62.

Microcomputer Bus Structures and Bus Interface Design, Arthur L.
Dexter
End User's Guide to Innovative Flexible Circuit Packaging, Jay J. Miniet
Reliability Engineering for Electronic Design, Norman B. Fuqua
Design Fundamentals for Low-Voltage Distribution and Control, Frank
W. Kussy and Jack L. Warren
Encapsulation of Electronic Devices and Components, Edward R.
Salmon
Protective Relaying: Principles and Applications, J. Lewis Blackburn
Testing Active and Passive Electronic Components, Richard F. Powell
Adaptive Control Systems: Techniques and Applications, V. V. Chalam
Computer-Aided Analysis of Power Electronic Systems, Venkatachari
Rajagopalan
Integrated Circuit Quality and Reliability, Eugene R. Hnatek
Systolic Signal Processing Systems, edited by Earl E. Swartzlander, Jr.
Adaptive Digital Filters and Signal Analysis, Maurice G. Bellanger
Electronic Ceramics: Properties, Configuration, and Applications, edited
by Lionel M. Levinson
Computer Systems Engineering Management, Robert S. Alford
Systems Modeling and Computer Simulation, edited by Naim A. Kheir
Rigid-Flex Printed Wiring Design for Production Readiness, Walter S.
Rigling
Analog Methods for Computer-Aided Circuit Analysis and Diagnosis,
edited by Taka0 Ozawa
Transformer and Inductor Design Handbook: Second Edition, Revised
and Expanded, Colonel Wm. T. McLymari
Power System Grounding and Transients: An Introduction, A. P. Sakis
Meliopoulos
Signal Processing Handbook, edited by C. H. Chen
Electronic Product Design for Automated Manufacturing, H. Richard
Stillwell
Dynamic Models and Discrete Event Simulation, William Delaney and
Erminia Vaccari
FET Technology and Application: An Introduction, Edwin S. Oxner
Digital Speech Processing, Synthesis, and Recognition, Sadaoki Furui
VLSl RlSC Architecture and Organization, Stephen B. Furber
Surface Mount and Related Technologies, Gerald Ginsberg
Uninterruptible Power Supplies: Power Conditioners for Critical Equip-
ment, David C. Griffith
Polyphase Induction Motors: Analysis, Design, and Application, Paul L.
Cochran
Battery Technology Handbook, edited by H. A. Kiehne
Network Modeling, Simulation, and Analysis, editedby Ricardo F. Garzia
and Mario R. Garzia
Linear Circuits, Systems, and Signal Processing: Advanced Theory and
Applications, edited by Nobuo Nagai

63.
64.

65.
66.

67.
68.
69.
70.
71.
72.

73.

74.
75.

76.

77.
78.

79.

80.
81.

82.
83.

84.

85.

High-Voltage Engineering: Theory and Practice, edited by M. Khalifa
Large-scale Systems Control and Decision Making, edited by Hiroyuki
Tamura and Tsuneo Yoshikawa
Industrial Power Distribution and Illuminating Systems, Kao Chen
Distributed Computer Control for Industrial Automation, Dobrivoje
Popovic and Vgay P. Bhatkar
Computer-Aided Analysis of Active Circuits, Adrian loinovici
Designing with Analog Switches, Steve Moore
Contamination Effects on Electronic Products, Carl J. Tautscher
Computer-Operated Systems Control, Magdi S. Mahmoud
Integrated Microwave Circuits, edited by Yoshihiro Konishi
Ceramic Materials for Electronics: Processing, Properties, and Appli-
cations, Second Edition, Revised and Expanded, edited by Relva C.
Buchanan
Electromagnetic Compatibility: Principles and Applications, David A.
Weston
Intelligent Robotic Systems, edited by Spyros G. Tzafestas
Switching Phenomena in High-Voltage Circuit Breakers, edited by Kunio
Nakanishi
Advances in Speech Signal Processing, edited by Sadaoki Furuiand M.
Mohan Sondhi
Pattern Recognition and Image Preprocessing, Sing-Tze Bow
Energy-Efficient Electric Motors: Selection and Application, Second
Edition, John C. Andreas
Stochastic Large-scale Engineering Systems, edited by Spyros G.
Tzafestas and Keigo Watanabe
Two-Dimensional Digital Filters, Wu-Sheng Lu and Andreas Antoniou
Computer-Aided Analysis and Design of Switch-Mode Power Supplies,
Yim-Shu Lee
Placement and Routing of Electronic Modules, edited by Michael Pecht
Applied Control: Current Trends and Modern Methodologies, edited by
Spyros G. Tzafestas
Algorithms for Computer-Aided Design of Multivariable Control
Systems, Stanoje Bingulac and Hugh F. VanLandingham
Symmetrical Components for Power Systems Engineering, .J. Lewis
Blackburn

Additional Volumes in Preparation

Digital Filter Design and Signal Processing, Glen Zelniker and Fred Taylor

ELECTRICAL ENGINEERING-ELECTRONICS SOFTWARE

1. Transformer and Inductor Design Software for the IBM PC, Colonel Wm.

2. Transformer and Inductor Design Software for the Macintosh, Colonel

3. Digital Filter Design Software for the IBM PC, Fred J. Taylorand Thanos

T. McL yman

Wm. T. McLyman

Stouraitis

Alaorithms for
CompuGr-Aided Design

of multivariable
-

Control Systems

Stanoje Bingulnc
Kuwait University

Safat, Kuwait

Hugh F. Vanlandingham
Virginia Polytechnic Institute and State University

Blacksburg, Virginia

Marcel Dekker, Inc. New York.Basel.Hong Kong

Library of Congross Cstabgiig-in-Publicltion Data

Bingulac, Stanoje
Algorithms for computer-aided design of multivariable control

p. cm. - (Electrical engineering and electronics ; 84)
systems I Stanoje Bingulac, Hugh P. Vanlandingham.

Includes bibliographical references and index.

1. Control theory-Data processing. 2. Automatic control-Data
processing. 3. Algebras, Linear-Data processing. 4. Compukr
-aided design. 1. Vanlandingham, Hugh P. 11. Title.
m. Series.
QA402.3.BS25 1993 93-10191
003’.74-dc20 CIP

ISBN 0-8247-8913-X

Marcel Dekker, Inc. and the authors make no warranty with regard to Linear Algebra and Systems (L-A-S), its
accuracy, or its suitability for any purpose other than that specified in this text. This software is licensed solely
on an “as is” basis. The only warranty made with respect to the L-A-S software disks is that the disk medium
on which the software is recorded is free of defects. Marcel Dekker, Inc. will replace a disk found to be
defective if such defect is not attributable to misuse by the purchaser or the purchaserb agent. The defective
disk must be returned within ten (10) days to:

Customer Service
Marcel Dekker, Inc.
Post Office Box 5005
Cimarron Road
Monticello, NY 12701

Comments, suggestions, or bug reports conserning the L-A-S software are welcome and should be sent to:

Professor S. Bingulac or Professor H.F. Vanhdingham
Electrical and Computer Engineering Electrical Engineering Department
Kuwait University Virginia Polytechnic Institute and State University
P.O. Box 5969 Blacksburg, VA 24061 - 0111
13060 Safat, KUWAIT

The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to
Special SalesProfessional Marketing at the address below.

This book is printed on acid-free paper.

COPYRIGHT o 1993 by MARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

ALL RIGHTS RESERVED

Neither this book, nor any part, may be reproduced or transmitted in any form or by m y means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval
system, without permission in writing from the publisher.

Linear Algebra and Systems (L-A-S)
Copyright Q 1988 by Stanoje Bingulac. All rights reserved.
The disks contained herein may not be reproduced in whole or in part without written permission of Stanoje
Bingulac.

Current printing (last digit):
l 0 9 8 7 6 5 4 3 2 1
PRINTED IN THE UNITED STATES OF AMERICA

To our families:

Svetlana, Slavko and Slavica

and

Patricia, Peter, Mark and Lisa

without whose support and patience
this book would not have been possible.

This Page Intentionally Left Blank

Preface

Practicing professionals increasingly find themselves in a position of
modeling complex systems for understanding and/or control and require a more
comprehensive knowledge of multivariable systems. This book focuses on the
computer-aided approach as the most effective way of introducing the advanced
topics of multivariable systems. Emphasis is placed on computer-aided modeling
and analysis techniques to help both professionals and advanced students to extend
their understanding well beyond a first course in automatic control systems. This
book is also appropriate as a text for a senior or first-year graduate course in
engineering. It is realistically possible to cover all essential contents of the book
in one semester, and, with some selection, in one academic quarter. Appendices
A and B and Chapter 1 present a summary of the essential material that is needed;
this should be primarily a review for the reader.

The intent of the text is to supply only the most relevant mathematical
developments, keeping proofs and detailed derivations to a minimum, while
maximizing the utility of computer algorithms. These referenced and well-tested
algorithms have been gathered together in a computer-aided design (CAD) package
called Linear Algebra and Systems (L-A-S). L-A-S is an interactive conversational
software language that is supplied with this text. It is used extensively in the
illustrative examples throughout the book, but the utility of L-A-S goes well beyond
the scope of this text. The reader will find L-A-S to be a handy and easy-to-use
tool for verifying an analysis technique or control design. It is assumed that the
reader has access to a personal computer to work with L-A-S. The hardware
recomendations are an IBM PC, AT, PS-2 or compatible with a minimum of 640k
of memory, MS-DOS version 3!0 or higher, math co-processor and hard disk, CGA
or higher graphics, dot-matrix or laser printer.

The motivation for this text is the underlying conviction that control
engineers are not well prepared for significant design work at the completion of a
basic undergraduate course. Computer technology has, on the other hand, brought
a great deal of computing power to the desk of individual engineers and applied
scientists. We believe that this text can provide a suitable bridge for students or
professionals to learn complex modeling and analysis methods. To enhance the
speed of learning, the main chapters provide a special section of application
problems along with their solutions.

V

vi Preface

The book may be considered to emphasize three important areas:

(1) the theory of multivariable linear systems,
(2) the developmknt of algorithms from the theory, and
(3) the L-A-S software to implement the algorithms.

This book is unique in the balanced presentation of these three areas. Other texts,
e.g. those by Kailath, Brogan, and Chen, dealing with the same topics, offer only
the first part. Texts which do offer areas (1) and (3), such as those by Jamshidi
and others which combine M A T L A P with control theory, generally do so at a
beginning level and do not contain significant multivariable system discussion.
Although one may extract "algorithms" from theoretical developments, it is,
nevertheless, time-consuming and tedious work requiring good programming skills.

The subject matter is captured in the five chapter titles:

1. Introduction
2. System Discretization
3. System Modeling
4. Intermodel Conversion
5 . System Identification

In Chapter 1 various basic concepts are presented in a review mode to
bridge the gap between a first course in control systems and the multivariable
system material. The topics of Chapter 2 concentrate on the conversion of system
representations between the discrete-time (D-T) and the continuous-time (C-T)
domains, including several conversion methods based on different assumptions
regarding the sampling process. In addition to discretization procedures, Chapter
2 also offers robust algorithms for the inverse problem of continualization, which
converts a D-T model into an ''equivalent" C-T model. The understanding of
multi-input, multi-output (MIMO) system structure is the subject of Chapter 3. In
addition to the standard "canonical" forms, special emphasis is given to the use of
pseudo-controllable (and -observable) fom, which generalize the standard forms
and provide greater flexibility in achieving higher numerical accuracy in the
modeling process. Also included in Chapter 3 is a detailed discussion of matrix

fraction descriptions (MFDS). MFDs represent an important alternative to the more
standard state space and transfer function matrix models. Having presented the
various system modeling concepts in the earlier chapters, Chapter 4 then provides
a multitude of useful algorithms which can be used to convert any one form into
any other. Finally, in Chapter 5 the "conversion" from input/output data to some
specific system model, i.e. identiJicution, is presented. The special identification
techniques are based on the flexible structural considerations of Chapter 3.

In summary, this text presents a unified theory of linear MIMO system
models, containing material that is unavailable outside of the "technical journal"
literature. At this time there is no other published book which provides the depth

Preface vii

and scope, as well as a professional level software package, on the topic of MIMO
systems. Perhaps, more importantly, the material is presented in a fashion to be
of immediate use to the reader due to its "algorithmic" approach.

The typical format for presenting material is to provide a brief introduction
and discussion of the concepts followed by one or more algorithms for performing
the required operations. The algorithms themselves are also implemented in L-A-S
code and used in a few explanatory examples. Detailed code listings are included
in Appendix C. The algorithms in this book are represented in a pscudo-code
format as a neutral way of defining the algorithms. With this pseudo-code
structure, the user may implement his or her own code using any available, or
preferred, software package (such as MATLAB, MatrixIX, or Control-C), or a
standard computer language (such as FORTRAN, Pascal, or C). If the user has no
such preference, the L-A-S software will be found to be both powerful and efficient.
The additional advantage of using L-A-S, is that the computer code is available,
ready for use.

All algorithms in the book follow the same general format. The process can
be illustrated by the "system block" diagram below. The simple, yet powerful,
idea is that the algorithm implements a single command that "transforms" the input
data into the desired output data. Both sets of data are usually combinations of
arrays representing specific elements of a particular system model. The
corresponding syntax used throughout the text is

A, ... A, (Algorithm) - B,, ... , B,,,

where the Ai, i=[l,n], are the required input arrays, and the Bi, i=[l,m], are the
desired output arrays.

Algorithm

As an aid to using this book as a classroom text, we recommend the
following order of study:

Appendix A, as a review of matrix fundamentals. This review could

Appendix C, to develop an early familiarity with the L-A-S software.
0 Chapter 1, for an introduction to the notation and definitions used in

the text. The instructor should determine if this chapter is a
sufficient review, and, if not, provide some supplementary material.

0 Chapter 2 is basic to the understanding of sampled systems and
should follow next.

be supplemented by the instructor.

viii Preface

Chapter 3 then provides the major link from SISO to MIMO

0 Appendix B may be useful to study at this point.
Next, Chapter 4 is the culmination of the modeling process and
should be exercised in analysis, or design, problems chosen by the
instructor.
If time permits, Chapter 5 presents a general approach to system
identification, based on the previously studied MIMO structure.

systems.

We hope that you, the reader, find that our method of presentation facilitates
your learning of the theoretical concepts, as well as helping you to apply them to
nontrivial problems.

The authors would like to recognize the interest and help of the graduate
students at Virginia Polytechnic Institute and State University, as well as those from
Yugoslavia, Brazil and Kuwait; and also the co-authors of the research which led
to the creation of this text, who in a special way inspired us and greatly contributed
to this material.

S. Bingulac and H.F. VanLandingham

Contents

Preface ... v

Glossary of Symbols and Abbreviations ;W

Chapter 1 Introduction

1.1 Systems . 1

1.2 Scope of the Text . 1

1.3 Background Material . 2

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9

Linearization . 2
State Models for C-T Systems 7
D-T State Models . 10
Controllability and Observability 17
Responses of State Space Models 23
C-T Transfer Matrices . 23
D-T Transfer Matrices 24
Leverrier’s Algorithm . 25
Transfer Function Matrix Calculation 29 .

1.4 Matrix Fraction Description (MFD) . 38

1.5 Summary . 40

1.6 References . 40

1.7 Exercises . 42

X Contents

Chapter 2 System Discretization

2.1 Introduction 45 .
2.2 Discretization Procedures . 46

2.2.1 The Step-Invariant Model 47
2.2.2 RampInvariant (Linearly Interpolated) Model 50
2.2.3 Bilinear Transformation . 53

2.3 Continualization Procedures . 59

2.3.1 SI to Continuous-Time Model ; . . 59
2.3.2 RI to Continuous-Time Model 62
2.3.3 Bilinear to Continuous-Time Model 63

2.4 Examples 64 .
2.5 Summary . 77

2.6 References 80

2.7 Exercises 82

.

.

Chapter 3 System Modeling

3.1 Canonical Forms for SISO Systems . 87

3.1.1 The Controllable Canonical Form 88
3.1.2 The Observable Canonical Form 91
3.1.3 The Jordan Canonical Form . 93

3.2 Equivalent State Space Models . 96

3.2.1 Transformations between State Models 98
3.2.2 Controllability and Observability Forms 99
3.2.3 Transformation to Feedback Controllable Form 101
3.2.4 Transformations: g(s) * SISO Canonical Forms 105

Contents xi

3.3 Canonical Forms for MIMO Systems . 109

3.3. l Controllability Forms . General Discussion 110
3.3.2 Observability Forms . General Discussion 115
3.3.3 Pseudo-Controllability Indices (PCI) 116

3.3.5 MIMO Feedback and Observer Forms 122
3.3.4 Pseudo-Observability Indices (POI) 117

3.3.6 Modeling Example . 127

3.4 Matrix Fraction Description (MFD) . 131

3.5 Summary . 136

3.6 References . 136

3.7 Exercises . 138

Chapter 4 Intermodel Conversion

4.1 Conversions from a State Space Model 143

4.1.1 General State Space to Observable Form 144

4.1.3 State Space to Transfer Function 145

4.1.5 Continuous-Time State Space Response 147
4.1.6 Discrete-Time State Space Response 148
4.1.7 Observable State Space to MFD Model 148
4.1.8 Controllable State Space to MFD Model 153

4.1.2 General State Space to Controllable Form 144

4.1.4 State Space to Markov Parameters 145

4.2 Conversions from a Transfer Function Matrix 156

4.2.1 Transfer Function to State Space Model 156

4.2.3 Continuous-Time Transfer Function Response 165
4.2.4 Discrete-Time Transfer Function Response 166

4.2.2 Transfer Function to Markov Parameters 163

4.2.5 Transfer Function to Left Coprime MFD 167
4.2.6 Transfer Function to Right Coprime MFD 171
4.2.7 Transfer Function to State Space Forms 173

xii Contents

4.3 Conversions from Markov Parameters 177

4.3.1 Markov Parameters to Observable State Form 177
4.3.2 Markov Parameters to Controllable State Form 180
4.3.3 Markov Parameters to Left Coprime MFD 182
4.3.4 Markov Parameters to Right Coprime MFD 186
4.3.5 Markov Parameters to Transfer Function 189
4.3.6 D-T Response from Markov Parameters 192

4.4 Conversions from MFD Models . 193

4.4.1 MFD to Observable State Model 194

4.4.3 Left Coprime MFD to Markov Parameters 196

4.4.5 Left Coprime MFD to Transfer Function 200

4.4.2 MFD to Controllable State Model 195

4.4.4 Right Coprime MFD to Markov Parameters 198

4.4.6 Right Coprime MFD to Transfer Function 201
4.4.7 Other MFD Conversion Algorithms 202

4.5 Summary of Conversion Options . 205

4.6 Examples . 208

4.6.1 Example 1 (Model Conversions) 208
4.6.2 Example 2 (Time Scaling) . 214

4.7 Summary . 221

4.8 References . 224

4.9 Exercises . 225

Chapter 5 System Identification

5.1 The Identification Identity . 233

Contents xiii

5.2 Conversions from InputfOutput Samples 235

5.2.1 InputfOutput Data to Observable State Form 235
5.2.2 InputlOutput Data to Left Coprime MFD 240
5.2.3 InputfOutput Data to Markov Parameters 241
5.2.4 InputlOutput Data to Transfer Function 243

5.3 Conversions between D-T and C-T 246

5.4 Identification Examples . 248

5.5 Summary . 255

5.6 References . 255

5.7 Exercises . 257

Appendix A Matrix Algebra

A . 1
A.2
A.3
A.4
A S
A.6
A.7

B . 1
B.2
B.3
B.4
B.5
B.6

Linear Equations . 261
Eigensystems . 266
Rank and Null Space . 268
Singular Value Decomposition (SVD) 271
Useful Results with Matrices 275
The Cayley-Hamilton Theorem 277
References . 278

Appendix B Special Topics

Linear Algebraic Equations . 279
Hessenberg Transformations . 281
The Kalman Decomposition . 283
Computation of Generalized Eigenvectors 287
Modal Controllability/Observability Tests 296
References . 300

xiv Contents

Appendix C Introduction to L-A-S

Detailed Contents . 301

c . 1 Introduction . 305
c.2 A List of L-A-S Operators 321
c.3 L-A-S Subroutines . 326
c.4 A List of L-A-S Interpreter Commands 351
C S On-Line Help Files 352

c.7 References . 387
C.6 L-A-S Code for Specific Algorithms 357

Index ... 389

Glossary of Symbols and
Abbreviations

This symbol denotes the end of a development or
example or an important equation.

Boldface, capital letters denote matrices.

Boldface, lowercase letters denote vectors.

Italic, lowercase letters represent scalar valued functions.

Greek letters typically denote scalar factors.

Boldface, italic letters denote the corresponding

Laplace or z-transformed quantity. For example, the vector
x(s) = 2[x(t)l.

The rank of the matrix A.

The nullity of the matrix A.

The set of eigenvalues of the matrix A.

The transpose of the matrix A and the vector x.

The determinant of the matrix A.

The degree of the vector of polynomials g(s) = {gi(s)}.

Denotes a diagonal matrix with the given values as diagonal
elements.

Denotes the adjoint matrix of the matrix A.

xv

xvi

t r (4

II A II

S

"l

M+

on,,

%,m

N(A)

R(A)

C-T, D-T
ADC,DAC
ZOH
SISO
s1,so
"0
M1,MO
PCI,POI
PCF,POF
CCF,OCF
PMF

Glossary of Symbols and Abbreviations

Denotes the trace of the matrix A.

Computer representation of polynomials:

U

An n" order polynomial u(s) = c ais' (G 1)

is represented in the computer by the (n+l)-dimensional row array:

a = [ao al ... U,,] = (a,)

1-0

c

The norm of the matrix A, also Norm(A). The Frobenius
norm, the square-root of the sum of the squares of all entries
of A, is used throughout the text.

Equals approximately

Inverse of a (square) nonsingulax matrix

Pseudo- (generalized) inverse of an (nxm) matrix M,
satisfying:

M + M M + = M + and M M + M = M

(n xm) zero matrix, n or m may be zero

(nxm) identity matrix, I = {ee), e, = 1, eB = 0 for i C j .

(mXs) null space matrix of the (nxm) matrix A, satisfying:
A N(A) = On,, where S = m-r, r = rank(A)

(nxr) range space matrix of an (nxm) matrix A, satisfying:
r = rankm(A)] = rank(A).

Continuous-time, discrete-time, as in D-T system
Analog-to-digital converter, digital-to-analog converter
Zero-order hold
Single-input and single-output
Single-input, single-output
Multiple-input and/or multiple output
Multiple-input, multiple-output
Pseudo-controllability and pseudo-observability indices
Pseudo-controllable and pseudo-observable forms
Controllable canonical form, observable canonical form
Polynomial matrix form

Glossary of Symbols and Abbreviations xvii

The relationship between the polynomial a(s) and the row a could formally
be written as

0 An n"' order, (p x m) polynomial matrix

where a&), 1 4 i 4 p and 1 5 j S m are polynomials of up to n"' order,
i.e. with a@ = [a@ aL ... sun] = { a#,, }

n

a&) = c Qijh h =
h -0

are represented in the following two forms:

1. Polynomial mat& form (PMF), A,, a (pm x (n+ 1)) matrix defined by

A, =

a1 1

%l

...

aP 1

a12
=

...

aP2

aPm .

...

a110 Q111

a210 $11

Uplo up11

Q120 a121

Up20 up21

Qpmo 'pm1

... 't tn

. "21,

...
Qptn

* * * '12n

...
'p2n

...
'pm

2. "Row" equivalent polynomial matrix form (PMF-r), A,, a (p x
m(n+ 1)) matrix defined by

A, = [A, A, * a * An] = {A, } (G7)

xviii Glossary of Symbols and Abbreviations

The relationships between the polynomial matrix A(s) and coefficient
matrices A, and A, are given by:

with I,,, the (m X m) identity matrix.
Sometimes, if it is more convenient, a polynomial, a@), may be represented
by the transpose of Eq.(G3), i.e.

a(s) = i"(s) .a* ((39)
Similarly, a polynomial matrix A(s) may sometimes be represented by its
"column" equivalent polynomial matrix form (PMF-c), A,, i.e.

A(s) = ',(S) A, , where ',(S) = [I, Ips Ips"] (G101

Computational Procedures:

In this text the compulational procedures are alternatively referred to as
algorithms. Computational procedures operate on, or manipulate, input data
-YS

to produce (desired) output arrays

which may be interpreted in specific ways. Algorithms will be presented
symbolically using specific input variables, output variables and the
algorithm abbreviation. For the generic algorithm (abbreviated ComProc
for computational procedure) and the associated inputloutput variables above
the procedure would be represented as:

Glossary of Symbols and Abbreviations XiX

A,, A2, . . . , A,, (ComProc) * B,, 5, . . . , B,,, (G1 1)

Such a procedure can be visualized in the "operator" form as a "black box"
block diagram as illustrated in the figure below.

A (COmPrOC) t + B
n m

(a)

Block Diagrams Representing a Generic Algorithm
with Input and Output Variables: (a) Complete Form,

(b) Abbreviated Form.

Either representation, symbolical or graphical, should be interpreted the same;
namely, "Apply the Algorithm 'ComProc' to the input data { A, , 1 I i I n 1
in order to generate the output data { B] , 1 j 5 m 1." It is worth mentioning
that the above algorithm representation resembles the "post-fw," or reverse Polish
notation, where the input arguments are specified first, followed by the algorithm
name and ended by the output arguments.

This Page Intentionally Left Blank

Chapter l Introduction

"

A brief treatment of the background assumed for the remainder of the text is
presented in this chapter. The presentation is not meant to be complete, but only
indicative of the level of knowledge required. It is also appropriate that the reader
review Appendix A for more details.

1.1 Systems

The investigations of engineers and applied mathematicians often require them
to study complicated physical systems for the purpose of understanding and/or
modifying their operation. A physical system is the starting point for the modeling
process in which the engineer tries to formulate a mathematical description of the
physical operation. The art of deriving a plant model is usually an iterative
procedure of adding or deleting complexity to match observed performance, always
with an eye toward obtaining the simplest model which matches the physical system
measurements. The resulting model is an engineering compromise between
complexity and model match which is naturally influenced by the computational
power available for working with the model. For the remainder of the text the
word system will refer to a mathematical model, not a physical system. The actual
modeling process is not within the scope of the present study.

Models generally fall into one of two categories. One, input output models,
also known as external models, are constructed from input output measurements
without detailed knowledge of the internal mechanisms which produce the
responses. The other, internal models, are usually well structured from "first
principles," such as the laws of Newton for mechanical elements or of Kirchhoff
for electrical interconnections. In the subsequent chapters different forms of
models and their interrelations are considered. One form, trunsfrfuncn'ons, is a
basic external model type while another, state models, is an internal model type.

1.2 Scope of the Text

Most of the material in this text is oriented toward multivariable, linear,
constant-parameter systems and deals with modeling and representation of such
systems. Many different algorithms will be presented along with the theory of
MIMO systems. The emphasis is on "learning by doing," working with the L-A-S
software, or other means of implementing the algorithms, to more easily understand
the theory and limitations of multivariable system modeling.

1

2 Chapter 1 Introduction

1.3 Background Material

The reader is assumed to have had a first course in control systems which
typically covers single-input single-output (SISO) systems using classical frequency
domain methods. This section provides a brief review of definitions from basic
control theory. The topics include both the continuous-time (C-T) and discrete-time
(D-T) state space models as well as transfer function matrices for both domains.
In the next chapter additional discussion will be presented regarding the trans-
formation of models between C-T and D-T domains.

1.3.1 Linearization

The basic techniques of this text deal with linear constant-parameter systems.
The utility of these methods is based on the fact that such idealized system models
are good representations of most physical systems near a controlled equilibrium
point. For example, a large class of models can be represented in the C-T domain
as follows:

H0 = f(X(0, U(O), x(rJ

where x(t) is the (n x 1) state vector of the system, u(t) is an (m x 1) vector of input
signals and y(t) is the @ X 1) vector of output signals. The general nonlinear
dynamics are captured in the (assumed smooth) functions f(x,u) and h(x,u). It is
because of these nonlinear dynamics that the system is typically analytically in-
tractable. One method of reducing the scope of the model is to consider the linear-
ization of Eqs.(l. 1) about a known equilibrium solution given by (&, uo, yo) which,
for simplicity, is taken to be a constant solution, i.e. each element of the 3-tuple
is a constant vector and together they satisfy Eq~(l .1) as shown in Eq.(1.3).

By formally expanding the above system in a Taylor series about the
equilibrium point,

x c f l , + ~,x(x-xJ + au lox(u-uJ
x af

where the t-dependence has been dropped for notational convenience. The subscript
notation of Eq.(1.2) indicates vectors or matrices evaluated at the equilibrium
solution. Noting that by assumption,

Section 1.3 Background Material

The linearized system becomes

-g(t) = A%($) + BE@), f(tJ d
dr

f(r) = C%(t) + DC@)

where the notation is that

%=x-%, ii=u-uo, Q=y-yO

and

3

(1.3)

W(1.4)

In keeping with the structure of the book we will introduce the first of many
algorithms used to implement the theoretical developments. It is recommended that
the reader implement the algorithm using the L-A-S code found in Appendix C.
The best use of this text is to operate in a "hands-on" mode of exercising the
algorithms as they appear in the reading. Some end-of-chapter problems are
included to encourage computer usage. The purpose of this algorithm, denoted
LIN, is to numerically calculate the linearized dynamic model (1.4) given a
nonlinear model (1.1).

Algorithm LZN

I Syntax: p, zo, dz (LIN) * A, B, dif

Purpose: Linearization of a system of nonlinear differential or difference
equations, i.e. determination of the corresponding linearized state.space
representation.

Input/Output Arguments:

the nonlinear system.
0 p = (pi}, i = 1, . . . , k, row containing parameters used in defining

4 Chapter 1 Introduction

z, = (h X 1) column defining the nominal point at which the
linearization is to be performed; h = n + m, n and m being the
dimensions of the state, x(t), and input, u(t), vectors, respectively,
i.e. z, = [I uOTlT.
dz = (h X 1) column containing finite difference values; dx, and du,,
fori = 1, ..., n andj = 1, ..., m; i.e. dz = [d x T I duTIT.

0 A = (n X n) system matrix of the linearized model.
B = (n X m) input matrix of the linearized model.

0 dii = (n X l) column defining the accuracy of the linearization.

Description: The system of nonlinear differential equations is given by:

= g r m , u(0 9 P1 (a)
where x(t), u(t) and p are the state, input and parameter vectors of
dimensions n, m and k, respectively, while g(, , 0) = { g,(, , 9) } is a
n-dimensional vector-valued function.

The linearized model in the state space corresponding to (a) evaluated
at

~ (t) = and u(t) = ~0 @)

is given by

X = A ~ (t) + B u(t) (c)

where the elements of A = { a, } and B = { b, } are calculated according
to Eq.(1.6) by approximating the partial derivatives by finite differences.

The accuracy of the linearization process is measured by

If g matches f in Eq.(l.l), then the first equation of Eq(1.4) is
forthcoming. Similarly, if g matches h in @.(l. l), then the second
equation of Eq.(l.4) is obtained.

Note that in order to p e ~ o n n a linearization, a nonlinear vector-valued
function g appearing in (a) shouldfirst be defined. The following notation
is used in the algorithm steps:

z = [X T , UT]T

Algorithm:
1. Define vectors p, z, and dz
2. Define Algorithm G2 performing p, z (GZ) * g , i.e. calculating the

vector-valued function g
3. Set the number of rows (elements) in 20 * h

Section 1.3 Background Material

4.

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Set P, z, (Gz) =) go
Set the number of rows (elements) in g,, * n
Set g, * H
Set 0 * i
Seti + l * i
Extract the 1"' element &(i) * dz,
Set 1 at the 1"' location of the (h x 1) zero-vector, e, * e,
Set z, + e, d . , * z,
Set P, 2, (GZ) * gi

Se t [H I g , l*H
If i < h , go to 9; else, go to 16
Set diag(dzl, . . . , d.,} =) D
Set H T D-' * H
Partition H * [A I B 3. A has n columns
Set zo + dz =) zI

Set g, - (g,, + H dz) * dif
Set P, 2 1 (Gz) * g1

Algorithm Implementation:

The listing of the Algorithm LIN implemented using the L-A-S language is
given in Appendix C. The vectors h, g, and g, in Steps 5, 13, and 20 are
calculated by the L-A-S subroutine GZ. As was emphasized earlier, prior
to using Algorithm LIN, Algorithm G2 should be developed to calculate the
vector function g(x, U, p).

Example 1.1 As an example of system linearization, consider the robot arm
illustrated in Fig. 1.1. For a particular set of arm masses, lengths and inertias, the
nonlinear equations of motion for the system are as follows:

*l = -[T, - T~ + .OIW,W,S~~(~BJ~
1
Z

where

e, = w1 , 8, = w2 , a d z = .07 + .06 cos2(e,) + .os sin2@,)

6 Chapter 1 Introduction

FIGURE 1.1 A Two Degree-of-Freedom @OF) Robot Arm

Let the state vector, x, and input vector, u, be defined as follows:

x = [wl el w2 e21T
u = [TI T*]T

Thus, the four-dimensional vector-valued function g(x, u, p) = g(z, p) which
depends on the six-dimensional vector z = [x', u']' is given by:

g = [g , g2 g3 g41T

where

2 &6
g3 = -p5z1 sin(2z4) + - , g4 = 23

p1

The parameters in the above equation are the components of the parameter vector

p = [.01 .07 .06 .05 501

The nonlinear differential equations described, i.e. the vector-valued function
g(z, p), is linearized using Algorithm LIN for two nominal operating points: zol
= 0 and zm = [. l .2 . 3 .4 .5 .6 1' while the "finite difference" vector dz

Using Algorithm GZ to develop the function g(z, p), and the vectors zol and
dz, previously defined, Algorithm LIN gives the following linearized pair (A, B)

= [l 1 1 1 1 13' x l o ?

Section 1.3 Background Material

A =

7

1 0 0 0

0 0 0 0

0 0 1 0

B =

yo 0 0 01

.009 ,004 .003 -.043

1 0 0 0

-.072 0 0 -.007

0 0 1 0

A =

7.783 -7.783

0 0

0 100

0 0

B =

7.692 -7.692

0 0

0 100

0 0

1.3.2 State Models for Continuous-Time Systems

Based on the development of the previous section, we define a basic class of
models for multi-input multi-output (MIMO) systems and discuss several
fundamental system properties using this representation. Figure 1.2 illustrates the
corresponding vector block diagram.

Definition 1.1 The continuous-time state (variable) model is given by

x(t) = Ax(t) + Bu(t), x(tJ

y(t) = Cx(t) + Du(t)

where x is an (n X 1) vector, u is an (nzx 1) vector, y is a @ X 1) vector
and the matrices A, B, C, and D are constant with compatible dimensions.

Typically, the coefficient matrices A, B, C and D are known numerically
along with the initial state, x(ro). By analogy to the scalar equation

8 Chapter 1 Introduction

FIGURE 1.2 Vector Block Diagram of the State Model

-x(t) = a%(t) d
dt

whose solution is x(t) = c'" x@,,)

we introduce the definition of exp(At) for a square constant matrix, A, through the
familiar infinite series for an exponential function.

Definition 1.2 The transition matrix, exp(At), for the (nxn) constant
matrix A is

2
exp(h) p I + ~t + A ~ L + ... + A ~ L + ... k

21 kl

It is important to recognize that exp(At) has meaning only through Eq.(1.8),
which itself is well defined since Ak is simply A multiplied by itself k times. The
series Eq.(1.8) is absolutely convergent for any finite matrix At, this permits
manipulation of the series on a term by term basis.

Several important results are reviewed in the following developments.

-exp(At) = A + A2t + ... + Ak"- + ... d t k
dt kt

Clearly, by factoring out A as a pre- or post-multiplier,

-exp(At) = A exp(At) = exp(At) A d rn(1.10)
dt

showing that the matrices A and exp(At) commute.
Another important result is the familiar property of exponential function

Section l .3 Background Material 9

multiplication. Consider that

exp(A(t-r)) = I + (t-r)A + + ...
21

(1.11)

Separately, it can be shown that

Thus, comparing Eqs.(l.ll) and (1.12),

eAte -AT = e A (t - ~) M(1.13)

Since it follows from Eq.(l. 11) that

= e0 = I

we readily deduce that

6" = [e*]-'

m(1.14)

M(1.15)

by letting 7 = t in Eq.(1.13), since the substitution gives e"' e-& = I.

developed. Rewriting Eq.(1.7),

d
dt

With the above results the general solution to the state model will now be

-X(t) - AX(t) = Bu(t) (1.16)

Upon premultiplication by exp(-At), the left-hand side becomes an exact derivative.
The reader can easily check this using the relation that for C = AB, then

C = AB + AB (1.17)

Integrating Eq(1.16) from to to t ,

t
d

I

/-[e-A'x(r)]dr = /e-A'Bu(s)dz
b dr b

Finally,

(1.18)

M(1.19)

10 Chapter 1 Introduction

is the general solution to the state in Eq.(1.7). Introducing Eq(1.19) into the
output equation of Eq.(1.7) with to = 0,

m = Y&) + S&) M(1.20)

where

is the zero-input response and

t

= [CeA(t”)lu(T)ds + Dn(z) M(1.22)
0

is the zero-state response.

1.3.3 Discrete-Time State Models

In many cases the C-T system is to be interfaced with a digital computer.
The usual analog-todigital converters (ADCs) and digital-to-analog converters
WACS) are available on electronic boards which are connected to the computer and
are jointly controlled by a synchronizing clock signal. The output of an ADC is
therefore a sequence of numbers to be manipulated by the computer; however, each
number is quantized due to the necessity of being represented as a finite length
computer word. If the (usually small) errors between the ADC output and the ideal
samples of the input signal are neglected, an acceptable model of the ADC interface
is an ideal sampler, sampling at uniform intervals in time.

Similarly, the digital number sequence which is fed into the DAC is converted
to a C-T signal by holding each sample constant until the next sample arrives.
Control engineers refer to this type of action as a zero-order hold (ZOH).

Thus, if the above simplifications are made, a sampled-data system can be
represented as shown in Fig. 1.3. The notation is that a D-T signal is given an
argument of time equal to kT signifying that the values are defined only at integer
multiples of the sample interval, T. The DAC interface is represented as a zero-
order hold and the ADC interface, by an ideal sampler which is synchronized to the
ZOH by a system clock signal, not explicitly shown in Fig.l.3.

The effect of the signal conversion into and out of the C-T system in Fig. 1.3
is to create an equivalent D-T system with input vector u(k7‘) and output vector
y(kl) . To establish the ZOH equivalent model, assume that the sampled state
vector is known at to = kT. From Eq.(l. 19) with t = kT+T,

kT+T

x(kT+T) = eArx(&T) + I eA(kr+T-‘)Bdr u(k3) (1.23)
LT

Section 1.3 Background Material 11

F!IQURE 1.3 Sampled-Data System

where use has been made of the fact that u(f) is the output of the ZOH, i.e. that

n(f) = u(RT) far RT S f < KT + T (1.24)

The resulting discrete-time model is given by

x(k+l) = A,x(k) + B,u(R) , ~ (0)

y(R) = C x(k) + D ~ (k)
M(1.25)

and is called the ZOH equivalent model. The notation is that

x(k) = x(RT), n(R) = u(RT), y(R) = y(kT) (1.26)

where T is the sample interval. The matrices A,, and B,, are obtained from
Eq.(l.23) with the change of variable t = kT+T-r for the integral. The results are

A, = eAT, B, = /eA'Bdr M(1.27)

The output equation in Eq.(1.25) is simply the ideal sampled version of the output
in Eq(1.7). An alternative representation for B,, when A is nonsingular is given

T

0

by

As was done earlier in the chapter, we introduce the second algorithm used
to implement the previous theoretical developments. Again, it is recommended that
the reader implement the algorithm using the L-A-S code found in Appendix C.
After having worked through the algorithms and the end-of-chapter exercises in this
chapter, the reader will feel comfortable reviewing and exercising the algorithms
in the remaining chapters. The purpose of this algorithm, denoted EAT, is to
numerically calculate the transition matrix for a particular A matrix and scalar
sampling interval, T.

12 Chapter 1 Introduction

I Algorithm liXT
Syntax: T, A, Nnn, N (EA'I) =) Ad

Purpose: cakulation of the state transition matrix, Ad = P

Input/Output Arguments:
0 T = positive scalar

A = (nxn) matrix
Nnn = positive scalar, suggested value: 0.5 < Nnn < 1

0 N = integer defining number of terms in power series of Eq.(a)
Ad = (nxn) matrix satisfying: Ad = exp[ATJ

Description: The matrix Ad is calculated using the truncated power series:

The integerj is given by:

Equation @) guarantees that (see the Glossary for matrix norm)

IATIrl Nnn (c)

In order to save computational time and to reduce round-off errors, the
which leads to the satisfactory convergence of the power series of Eq.(a).

N" order polynomial c(A) used in -.(a),

N

c(A) = c A'c, , where ci =
i = O

is evaluated by calculating the (n-l)" order polynomial c,(A) given by

R - l

C,(A) = c A'cr,
i-0

where, according to the Cayley-Hamilton Theorem:

c,@,) = c@,) for i = 1, -,PI

where { A i l = 1(A)

The coeficients = Ui!, i=[l,NJ, are calculated by Algorithm FACT.
Calculation of the coefficients c,, of the polynomial c&) is done using
Algorithm POLR. Calculation of the polynomial c,(A) in Eq.(e) is

Section 1.3 Background Material 13

accomplished with the POM algorithm. Algorithms such as FACT, POL8 and
POM below, not specifically discussed, are listed in Appendix C.

Algorithm:
1. Define input arrays: T, A, Nrm and N

3. Set 2 * r
4. Set T/r * TI
5. Set lli! *J; and J; Tli =) c, , for i = 0, - S , N
6. Set [C, c1 ... CM] =) C
7. Set C, A (POLR) =) C,

9. I f j I 0, stop; else, go to 10
10. Set O * i
11. Set i+l * i

13. If i < j, go to 11; else, stop

8. Set c,, A (P o w =$ Ad

12. set Ad Ad =) Ad

Algorithm Implementation:

The listing of Algorithm EAT implemented using the L-A-S language is given
in Appendix C. Algorithms POLR and POM are other algorithms also listed
in Appendix C. The coefficients.& of the (1 X N+1) row array f used by the
algorithm are calculated by the L-A-S subroutine FACT. For more details see
Chapter 2.

As is mentioned in Chapter 2, if the matrix (n x n) A is "diagonalizable,"
then Ad = PT may also be calculated using Eq.(2.1), i.e.:

A, = M diag{e*tT} M-'

where A, are eigenvalues of A, and M is an (n X n) "modal" matrix containing n
"ordinary" eigenvectors of A associated with eigenvalues A,. For more details see
Chapter 2 as well as Appendices A and B.

In this speciftc case the matrix Ad may be calculated by Algorithm EAi'j given
below which, in fact, implements Eq(2.1).

Algorithm EATj

Syntax: T, A (Mg) =) Ad

For inputloutput arguments see Algorithm MT.

14 Chapter 1 Introduction

l A'gorithm:
1. Define input arrays T and A
2. Set A (JFR) =) M
3. Set A (EGV) =) eg = { A, }
4. Set diag{ exp(A,n } ExJf
5. Set M ExJf M" =+ A,,

The listing of Algorithm EA", implemented using the L-A-S language, is given
in Appendix C. The calculations in Steps 2, 3 and 4 are performed using the
algorithms:

JFR (the Jordan form of a diagonalizable square matrix),
EGV (the eigenvalues of a general square matrix), and

Wf (a diagonal "Jordan" form having the scalars ellT on the main
diagonal),

respectively. All these algorithms are available in L-A-S as simple "operators. "
For details on the concept of L-A-S operators see Appendix C.

Linearly Interpolated Model

In a similar development one can .work with higher-order hold devices,
although they are not as commonly found in hardware form. A more accurate
model is given by a linear interpolation between sampled values. This is referred
to as the trapezoidal rule when used as an approximate integration technique.
Thus, the C-T input signals are represented as straight lines between adjacent
samples as illustrated in Fig. 1.4. From Fig. 1.4, for kT I t < kT+T, we can
write the relation

With this more elaborate model of the inputs the general solution to the state
equation can be used (in much the same manner as was done in the previous
development for the ZOH model) to arrive at the linearly interpolated model

x(&+l) = A,,x(k) + Bdou(k) + Bd,u(k+l) M(1.28)

where the notation of Eq(1.26) has been used to simplify the expression and

Section 1.3 Background Material 15

FIGURE 1.4 Linearly Interpalated Data

Ti
i.o i t

Ad = c "A'

M(1.29)

Equation (1.28) evaluates the present state as a weighted sum of present input,
past input, and past state. The coefficient matrices would have to be handled
numerically as e.g. truncated versions of Eq~(1.29). We will not pursue higher-
order developments along this line; however, more details will be presented in the
next chapter on algorithms for implementing this discretization. We summarize
with the following definition.

Definition 1.3 The discrete-time state (variable) model is given by

x(k+l) = A,x(k) + B&), x(0)

~ (k) = C ~ (k) + D ~ (k)
(1.30)

where x is an (nX 1) vector, U is an (m X 1) vector, y is a @X 1) vector
and the matrices A,, B,, C and D have corresponding compatible
dimensions. Figure 1.5 illustrates the vector block diagram for this
model.

Recursive Solution In the following development the subscript d is omitted for
convenience. Working with Definition 1.3 and assuming that x(0) and u(k) are
known for k 2 0,

16 Chapter 1 Introduction

FIGURE 1.5 Discrete-Time State Model

x(1) = Ax(0) + Bu(0)

~ (2) = Ax(1) + Bu(1) = A2x(0) + ABu(0) + Bu(1)

Continuing this recursive process leads to the general solution:

k - l

x(k) = A'x(0) + c A'""Bu(~)
i-0

m(1.31)

Introducing Eq(1.31) into the output equation of Eq.(1.30),

Y(4 = Y&) + S#) m(1.32)

where the zero-input response, yz.k) is

= CA'x(0) m(1.33)

and the zero-state response, ydk) is
k - l

y&) = c CAk""Bu(i) + Du(k) m(1.34)
i -0

We will also review transform descriptions from the background of the state
variable models. The Laplace and z-transforms provide these alternative
descriptions of the systems of Definitions 1.1 and 1.3.

Section 1.3 Background Material

1.3.4 Controllability and Observability

17

Both controllability and observability are fundamental concepts in the design
of control systems. The first answers the question of whether we can be assured
of being able to influence the state of a system using the available inputs; and, the
second answers a related question of whether all state variation is "visible" in some
way through the measurements. In the following developments a D-T state space
model of the form of Eq.(1.30) will be assumed as a starting point; but, since it is
the structure of the state space model that is important and not whether the model
is D-T or C-T, the end results will hold for both Eq.(1.30), as well as Eq.(1.7).

Controllability

By "controlling" a plant, we mean to use its available dynamic inputs
(variables capable of being manipulated) and specify their time variations in order
to obtain some desired response. We begin the discussion with the assumption that
the D-T model in Eq(1.30) is completely known and completely representative of
the system to be controlled. Equation (1.30) has the general solution for its state
given by Fq(1.31). Here we recognize that it is the internal state and not just the
output that is of concern.

Definition 1.4 The discrete-time state (variable) model given by
Eq.(1.30) is (completely state) controllable if it is possible to force the
state from.any initial state x. to an arbitrary "target" state xf in a finite
number of steps.

We will use this definition to derive a simple rank calculation to test for the.
property of controllability in a linear system. It is noted that for linear systems the
problems concerning the transfer from an arbitrary initial state x. to the origin 0,
or the transfer from the origin 0 to an arbitrary final state xfare equivalent. This
latter perspective is often used to define the related concept of reachability.
Recalling %.(l .31), x(k) is the state after k steps. Intuitively, if we can drive a
system from one state to any other, then we can control the system in some more
complicated manner. Expanding Eq(1.31) and equating x(k) to 4, we can write

x,-A'x(O) = [B AB

This expression is suggestive of solving for the set of input vectors which, when

18 Chapter 1 Introduction

applied to the system, will cause the state to end up at 9 after k steps. Since the
left side of the equation is arbitrary, the coefficient (partitioned) matrix must have
full rank, i.e. n. However, we have not, as yet, specified k. Is it possible that the
partitions A'"' B continue to generate linearly independent columns as k increases?
In fact this is not the case. The Cayley-Hamilton theorem of matrix algebra tells
us that A" (where A is an (n X n) matrix) satisfies its own characteristic polynomial
and, therefore, A" can be written as a linear combination of powers of A less than
n. Thus, with k = n in Eq.(1.35) we maximize the number of linearly independent
columns of the coefficient matrix. In this case the coefficient matrix is given a
special name, i.e. the system controllability matrix.

Definition 1.5 The contro2lability matrix for the discrete-time state
model given by Eq(l.30) is defined as

Q, = [B AB A'"'B]

Controllability is an inherent structural property of a system model, and
equivalent systems will exhibit the same test results. The simple knowledge of
whether a system is controllable, or not, is crucial to the subsequent state space
control methods. Without controllability not all of the states can be "guided" by
input manipulation. Unfortunately, the question of controllability gives rise to ayes
or no answer and dues not directly indicate the "degree of controllability," a
measure of how close the system is to being uncontrollable. Yet another perspec-
tive is that if a particular model is not controllable, it simply means that additional
actuation capability must be designed into the system.

We summarize this discussion with the following test and a subsequent
algorithm for calculating the controllability matrix. It may be noted that in the
Algorithm QC, the definition of Q, is slightly modified. In particular, it is known
that for MIMO systems no new linearly independent columns of Q are added
beyond the partition A"" B, where m is the number of (independent) columns in B.
Therefore, Q, can be defined to end with the partition A"" B, rather than A"" B.

Controllability Test: The system described by Eq.(1.30), or that described by
Eq.(1.7), is controllable if and only if its controllability matrix, Q,, given in Dsf.
1.5 has rank n, where n is the order of the system.

Algorithm QC

Syntax:

I. Purpose: To calculate the n X (n-m+l)m matrix Q,=[B AB ... A""B 3

Section 1.3 Background Material 19

Description: The matrix Q, is calculated by the following recursive process:

Qi = I A"'B] , for i= l to (n-m+l)

with initial condition that = On,,. The matrix Q, is equal to Q,-+,).

Notation: represents a zero matrix with n rows and zero columns, and
[X, I X,] * X refers to concatenation "by columns," i.e.

I Algorithm:

1. Define matrices A and B
2. Set the number of columns in A =) n
3. Set the number of columns in B =) m
4. Set n-m+l =) i,,,
5. Set B =5 X
6. Set On,o =) Q,
7. Set 0 =5 i
8. Set i + 1 * i

10. Set A X * X
11. If i < i,,,, go to 8; else, stop

9. Set [Q, I XI *Q, .

Algorithm Implementation:

The listing of the Algorithm QC implemented using the L-A-S language is
given in Appendix C. Note the striking similarlity of the algorithm steps
and the corresponding GA-S operator statements.

Observability

As in the previous discussion, the D-T model of Eiq(1.30) will be assumed
to accurately represent the system at hand. The concept of ObservabiZity is a
fundamental property of systems related to how the measurements, or outputs,
interact with the system states. It has been shown that the simple problem of
identifying the initial state, x(O), by observing a finite number of outputs is
equivalent to knowing that the complete state information is transmitted to the
outputs. Although we know from Eq(1.32) that the general solution consists of
two parts, only the zero-input response need be used to develop the condition under
which the initial state can be identified from a finite number of outputs. The reason
for this is that, since the model and inputs are known, the zero-state response could
simply be calculated and subtracted away from the total solution.

20 Chapter 1 Introduction

Definition 1.6 The discrete-time state model given by Eq(1.30) is
(complerely sfate) observable if it is possible to determine x(0) from
knowledge of u(k) and y(k) over a finite number of time steps.

This definition will be used to develop a simple rank test for the property of
observability of a system, similar to that developed for controllability above. Since
without loss of generality we can assume that u(k) = 0, as discussed previously,
we can expand Eq.(1.33) to obtain

... I CA'
x(0) =

We can solve for x(0) given the known vector on the right if and only if the n
columns of the coefficient matrix on the left are linearly independent. Since the
number of linearly independent columns of a matrix equals the number of linearly
independent rows, we can add partitions (C A') to have this affect. Again, as in
the case of the controllability test, the maximal rank of the coefficient matrix is
assured when the final partition is (C A""). For this case the observability matrix .

is defined as follows.

Definition 1.7 The observability matrix for the discrete-time state model
given by Eiq(l.30) is defined as

C
CA

Q, = ...
CA'"'-

Since Q, has n columns and np rows, the maximum rank of Q, is n. Thus, for an
arbitrary set of n output measurements, we can solve for x(0) above if and only if
Q, has n linearly independent columns. Consequently, we have the following test.

Observability Test: The system described by Eq.(1.30), or that described by
Eq.(1.7), is observuble if and only if its observability matrix, Q,, given in Def. 1.7
has rank n, where n is the order of the system.

Section 1.3 Background Material 21

Like controllability, observability is an intrinsic property of a system.
Equivalent state models exhibit identical test results. The test above provides a yes
or m answer and, as with controllability, no direct measure of the "degree of
observability." Since observability deals with how the sensors relate to the system
dynamics, lack of observability can be interpreted as a need for more sensors for
the system.

Algorithm Qo

Purpose: To calculate the (n-p+l)p x n matrix

where p is the number of rows in C. Note that as in algorithm QC,
the rows of Q have been truncated, thereby redefining Q, for ease of
computation.

Description: The matrix Q, is calculated by the following recursive process:

Q00-1)

Q . = _ _ _ _
OI

, for i = l to (n - p + l)
CA"'

with initial condition that Q& = O0,.. The matrix Q, is equal to

Notation: Oor = a zero matrix with zero rows and n columns. And

Txl 1 I -- I - X , meansthat X =

i.e. concatenation "by rows."

Algorithm:

1. Define matrices A and C
2. Set the number of columns in A =) n
3. Set the number of rows in C * p

22 Chapter 1 Introduction

4. Set n-p+l * ip
5. Set C - X
6. Set O,, * Q,
7. Set 0 - i
8. Set i + 1 i

10. Set X A * X
11. If i < ip, go to 8; else, stop

Algorithm Implementation:
The listing of the Algorithm Qo implemented using the GA-S language is
given in Appendix C.

Duality Principle: It is found that for many types of calculations that a certain
similarity exists. For example, in the previous tests for controllability and observa-
bility, there is a noticeable similarity in the calculations. Since this phenomenon
shows up in several places, we will begin to explain with the following definition
of dual systems.

Definition 1.8 If the discrete-time state model, S, is defined as

x(k+l) = Ax(k) + Bu(&)

~ (k) = C ~ (k) + D u(k)

then the dual system, S', is given by

X '&+l) = ATx '(k) + CTu '(k)

y'(k) = BTx'(k) + DTu'(k)

with its own states, inputs and outputs.

It is easy to see that the relationship of duality is "reflexive," i.e. if a system
S is the dual of a system S', then S' is also the dual of S. With regard to the
previous tests of controllability and observability, we can say that:

A system is controllable (observable) if and only if its dual system is
observable (controllable). Specifically, Q may be calculated using QC as follows:

AT, C* (QC) * X
XT * Q,

and similarly Q, can be calculated using Qo. More will be said on this later.

Section 1.3 Background Material

1.3.5 Responses of State Space Models

23

Having created models of systems such as given in Eqs.(l.7) or (1.30), it is
frequently necessary to numerically calculate and plot the responses of these
systems from known initial conditions and input functions. In L-A-S it is
convenient to symbolically represent the response of either D-T or C-T in the Same
way:

A, B, c, D, xo, U, T (CDSR) - 9

where A, B, C and D represent the D-T or C-T state space model; x, is the initial
state; U is the (m X N) array of input vector samples, where N is the number of
samples. The parameter T, shown as an input to Algorithm CDSR above, is a
scalar which represents the total solution time for C-T models; for D-T models it
should be set to zero or any negative scalar.

In the case of a C-T system, i.e. for u(f), the Kh column of U contains the
vector u(Q, where

The values of u(f) between samples are assumed to be linearly interpolated as
illustrated in Fig. 1.4 and further described in the previous discussion of Linearly
Interpolated Models. Finally, y is a (p X N) matrix containing solutions of either
of the state models, Eqs.(l.7) or (1.30).

Plotting of the responses y may be accomplished in L-A-S by the commands:

* Y(T)=Ytr or by the MOS * y(T) ,T(DIS)=
* ytr,T(DIS)=

where (I+) is a matrix transpose operator. For more details see Appendix C.

1.3.6 Continuous-Time Transfer Matrices

Applying the Laplace transform to the state space model of Definition 1.1
with to= 0,

SX(S) - ~(0) = AX(@ + B@)
y(s) = Cx(s) + D u(s)

(1.36)

Solving for y(s),

Y(S) = C(SI-A)"X(O) + [C(sI-A)"B + D]u(s) m(1-37)

24 Chapter 1 Introduction

Definition 1.9 The continuous-time trunsfer matrix, G(s), is the zero-state
relation between the transformed input and output vectors, e.g.

G(s) = C(sI-A)"B + D W(1.38)

Definition 1.10 The characteristic polynomial of the generic state model
is the n"' order polynomial

a(s) = det(s1 - A) W(1.39)

The transfer matrix G(s) reduces to a scalar and is called the trunsferfunction when
the system has only one input and one output.

Definition 1.11 The transfer matrix G(s) is said to be aproper transfer
matrix if

W(1.40)

where Go is a constant (finite) matrix, not dependent on S.

Definition 1.12 The transfer matrix G(s) is said to be a strictly proper
transfer matrix if

lim C(S) = 0
S"

m(1.41)

1.3.7 Discrete-Time Transfer Matrices

In a similar manner to the previous development the z-transform can be
applied to the system of Definition 1.3, where the subscript d is omitted for
convenience,

ZX(Z) - ZX(O) = Ax(z) + Bu(z)
y(z) = Cx(z) + Du(z)

(1.42)

Thus, Y(Z) = C(ZI -A)"zx(O) + [C(zI -A)"B + D] u(z) W(1.43)

Section 1.3 Background Material 25

Definition 1.13 The discrete-time trmfer mafrix G(z) is the zero state
relation between the z-transformed input and output vectors, e.g.

G(z) = C(ZI - A)"B + D M(1.44)

The reader should recognize the similarity between the D-T and the C-T transfer
matrices. Both are algebraic quantities so that Definitions 1.10, 1.11 and 1.12, as
well as many others, may be interpreted in either the s- or the zdomain. In many
places throughout this text we will rely on the readers' recognition that a certain
operation performed in the s-domain would be identical in the zdomain. The
following algorithm is one such case.

1.3.8 Leverrier's Algorithm

In the previous section it was seen that the resolvent matrix, (SI - A)-', played
an important roll in formulating the transfer matrix from the state-space model.
Formally,

M(1.45)

where the denominator of Eq(l.45) is an n"' order polynomial, a@), called the
characteristic polynomial of the matrix A. Explicitly,

a(s) = S " + a,-lsn-l + a,-2 + ... + a l s + a, M (1.46)

From Eq.(1.45),

adj (SI -A) -(SI - A) = det (SI - A) = U(S) I (1.47)

The adjoint matrix can be expanded as

adj(s1 - A) = IS'"^ + (A + a,-lI)s"-2 + (A2 + and1A + ~ , - , I) s " - ~
(1.48)

+ ... + (An-' + a,-lAn-z + ... + alI)

To see that this expansion is valid, the reader should take time to multiply
Eq(1.48) by (SI - A), thereby checking Eq(1.47). Note that the Cayley-Hamilton
llteorem requires that a (square) matrix satisfy its own characteristic equation, i.e.
a(A)=O, where a(s) is given in Eq.(1.46). Let us formally write that

(SI -A)-' = - [R,-,s'"' + R,-z~'"2 + ... + R,s + %] = - R(s) (1.49) l
4s) 4s)

26 Chapter 1 Introduction

The numerator polynomial matrix R(s) = (r&)} is an (n X n) matrix of (n-l)"
order polynomials, rff(s), which can be expressed as follows:

It should be clear that the relation between the (n X n) real matrices R, and the
coefficients rffl of the polynomials rff(s) is given by:

Comparing Eqs.(1.48) and (1.49), it may be concluded that:

Also, since the matrix A satisfies its own characteristic equation, a(A) = 0,

%A + a,I = 0 (1.52)

Levemer's algorithm is a recursive method that calculates the coefficients of
the characteristic polynomial in Eq.(1.46) as well as the matrix coefficients of
adj(s1- A), as shown in Eq(1.51). The recursion steps begin with a matrix result
that the coefficient in Eq.(1.46) is the negative of the sum of the eigenvalues
of A, which, in turn, is equal to the negative of the trace of A. The trace of A is
defined as the sum of the main diagonal elements of A, denoted tr(A).

% = R , A + a , I , a. = --@(%A) 1
n

Equation (1.52) can be used as a numerical check on the above calculations.

Example 1.2 (Levemer's Algorithm) Given the following matrix

We will calculate (SI - A)-] using Algorithm RES0 to implement Eq(1.53) and
check the result with Eq(1.52). Following the recursion steps of Eq.(1.53),

Section 1.3 Background Material 27

R , = R , A + a , I =

% = R , A + a l I = 1 4 -2 0 3 0 11 , a,=2

1 0 -2 01

Equation (1.52) is satisfied identically; therefore,

(SI -A)-' =
S3 + 3s2 4.4s + 2

"

4s)

or, equally,

(SI - A)-' = [S* '2," -2s + 4 - 4 s - 2 S' f 1 - " { r,,(s) I

The reader is invited to further check the results by direct calculation of (SI - A)".
In the following we will discuss algorithms which not only calculate the

resolvent matrix (Algorithm RESO), but also calculate the complete transfer matrix
from a state space description (Algorithm LALG, using Leverrier's algorithm and
Algorithm S S P , which is not based on Levemer's algorithm). In the sequel
important notation is developed as well as additional examples for better
understanding of MIMO system descriptions.

S3 + 3s2 + 4 s + 2 4s)

Algorithm RES0

Syntax: A (RESO) =) a, R,, R

Purpose: Calculation of coefficients of the characteristic polynomial U(S)

and the numerator polynomial matrix R(s) defining the resolvent (SI - A)"
of the given (square) matrix A using the Leverrier algorithm.

Input/Output Arguments
0 A = given (n X n) matrix

28 Chapter 1 Introduction

a = (1 X n+l) row containing coefficients U,, 0 5 i 5 n, of
a@). Coefficients are ordered by indices in increasing order.
R, = (n X nZ) matrix containing n (n X n) matrices &, 0 S
i 5 n-l, defining the (n x n) polynomial matrix R(s). Matrices
R, are ordered by indices in increasing order.
R = (nz X n) matrix whose rows contain n coefficients, rth, 0
I h s n - l , of the polynomials r&s) defining the polynomial
matrix R(s). Rows rt are ordered ”columnwise,” i.e.

row 1 contains coefficients of rll(s),
row 2 contains coefficients of rzI(s),

row n contains coefficients of rnl(s),
row n+l contains coefficients of r&),

row 2n contains coefficients of m,&),

row n2 contains coefficients of r,,,,(s).

...

...

...

The matrix R is said to be in polynomial matrix form (PMF). The rows rv
of R are:

‘I, = ‘,,a ‘ill ... ri,(”-l) 1

Description: The expressions in (1.53) can be represented by the following
recursive process:

Rn+* = %-,A + 1, Qn- i

- *(Rn-,_, A) (b) - -
an-1-1 i + l

for 0 s i 5 n, with initial conditions R,, = 0 and CY,, = 1.
Note that the matrix Rl = + cxJ calculated in the last step, i.e. for
i = n, is not used in defining the numerator polynomial matrix R(s), The
norm of this matrix could be used for checking the accuracy of the
calculation since:

U

R-, = c a, A’
1-0

which according to the Cayley-Hamilton Theorem should be equal to the
zero matrix.

In addition to the (1 x n+l) row a and the (n X nz) matrix R,,
namely

Section 1.3 Background Material 29

a = [a. a, ... anel a ,]

R = RfJ R, ..* R”-1 1 (4

Algorithm RES0 also calculates the (nz x n) matrix R whose rows contain
the coefficients, ‘@h , of the (n-l)“ order polynomials r&), defining the
numerator polynomial matrix R($) in Eq(1.50). The arrays R, and R
contain the same scalars, , but arranged differently. The reason for
calculating both arrays is, as will become clear later, that some control
algorithms require the form of while others make use of the polynomials
of R more directly.

Algorithm:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Define square matrix A
Set number of columns in A * n
Set I,,,,, * I
Set - R,
Set I *
Set n2 * nn
Set --j R
Set 1 =$ a
Set 0 =$ i
Set i+l i
Set Ri x A * E
Set -tr(E)li =) a,
Set [a, I a] * a
Set [R, R,] *R,
Set all n columns of R, into a single nz dimensional column * ri
Set[r i I R] - R
Set E + a, I * R,
If i < n, go to 10; else, stop

I Algorithm Implementation: (See Appendix C for the L-A-S listing.)

1.3.9 Transfer Function Matrix Calculation

From the previous discussion it is clear that in addition to the resolvent
matrix of Eq(1.45) the transfer function matrix G($), defined in Eq.(1.38), or G(z)
in Eq.(1.44), is an important representation of a system. The next two algorithms
were designed to calculate the transfer matrix from a given state space
representation, {A,B,C,D). Algorithm M G , based on Levemer’s algorithm will

30 Chapter 1 Introduction

be considered first. This algorithm calculates the coefficients of the characteristic
polynomial u(s) and the (m X p) numerator polynomial matrix, W@), related to the
transfer matrix by

G(s) = C(s1 -A)"B + D = -
0 (4
W@) (1.54)

for a given n* order system with m-inputs and p-outputs.

represented as
Similarly, as in Eq.(1.49), the (p X m) polynomial matrix W(s) can be

(1 . S)
h -0

where W, = {w~,,,}, l s i s p , l s j s m , O s h r n

Algorithm LALG

Syntax: A, B, C, D (L A L G) * a, W,, W

Purpose: Calculation of coefficients of the characteristic polynomial u(s)
and the (p X m) numerator polynomial matrix W(s) defining the transfer
matrix G(s) of a given state space representation (A, B, C, D} using the
Leverrier algorithm.

Input/Output Arguments:

(A, B, C, D) = state space representation of given system with n
states, m inputs and p outputs.
a = (1 X n+l) row array containing coefficients U,, 0 5 i S; n, of
a($). Coefficients are ordered by indices in increasing order.
W, = (p X (n+ 1)m) matrix containing n+ 1 (p X m) matrices W,,
for 0 I; i I n, defining the (R x m) polynomial matrix W(s) in
(1.55). The matrices W, are ordered by indices in increasing order.
W = (pm x n+l) matrix whose rows contain n + l coefficients W,,,,,
for 0 I; h I n, of polynomials W&) defining the polynomial matrix
W@). As was true for Algorithm RESO, the rows wu, 1 5 i 5 p ,
1 I j I m, are ordered "columnwise," i.e.

row 1 contains coefficients of wII(s),
row 2 contains coefficients of W&),

row p contains coefficients of wkI(s),
row p + 1 contains coefficients of W&),

...

Section 1.3 Background Material 31

row 2p contains coefficients of W&),

row pm contains coefficients of W&).

...

...

The matrix W is said to be in the polynomial mac& form (P M q . The rows
W,, of W are :

Wij = [wijo Wijl ... Wt/n 1

Description: The calculation of the coefficients of a(s) and matrices W,,
0 I i 5 n, defining G(s) c a n , as in algorithm RESO, be represented by the
following recursive process:

R,+ = %-,A + Inan - ,

for 0 5 i I n, with initial conditions R,, = 0 and a, = 1.
Again note that the matrix R-, calculated in the last step, i.e. for i = n,
could be used for checking the accuracy of the algorithm.

In addition to the (1 X n+ 1) row matrix a and the (p X (n+ 1)m)
matrix W,, namely

a = [a. a1 a n - l a n]

W, = [WO W, *.* wn-, W, 1 (4

Algorithm LALG also calculates the (pm X n+l) matrix W whose rows
contain the coefficients, wUh, of the (n-1)" order polynomials W,,@), defining
the numerator polynomial matrix W($) as in Eq.(1.55), i.e.

where wh = { w i j h } , l s i s - p , 1 s j s m , O s h s n

Algorithm:

1. Define square matrix A
2. Set number of columns in A e n
3. Set I,,. =) I
4. Set D =) W, and I Ri

32 Chapter 1 Introduction

5. Set all m columns of D into a pm dimensional column * W
6. Set 1 * a
7. Set 0 i
8. Set i+l =+ i
9. SetR, x A * E
10. Set -t@)/i * a,
11. Se tCR,B + D a , * W ,
12. Set [a, I Q 3 * a
13. Set [W, I W,] * W,
14. Set all m columns of W, into a single pm dimensional column * w,
15. Set [W, I W] * W
16. Set E + a, I * R,
17. If i < n, go to 8; else, stop

Algorithm Implementation: (See Appendix C for the L A - S listing.)

Example 1.3 (Transfer Matrix Calculation) For this example the given " 0
system {A, B, C, D} is (in system matrix form)

0 1 0 1 0 1 -

0 0 1 I 1 0

-2 -4 -3 I 1 0

1 0 0 I 1 0

L o 0 2 I 0 0 -

[: :] = "- "- -" -1- "_ "-
(1.56)

Note that state matrix, A, is identical to that used in Example 1.2 to illustrate the
calculation of the resolvent matrix (SI - A)". In this example we are looking for
the transfer matrix

From applying Algorithm LALG

a = [ao a, a2 a3] = [2 4 3 l]

The characteristic polynomial is interpreted from this to be

a(s) = 2 + 4s 4. 3s2 4- S3

In addition the algorithm provides W, , as follows

Section 1.3 Background Material 33

6 4 1 5 3 1 3 1 1 1 0
= [wo w2 w3] = [- 4 0 1 - 8 - 4 1 2 0 I O O 1

and W, which contains the same information in different form,

W11

-4 -8 2 0 W21

6 5 3 1

*wZz-

4 3 1 0 W12

-

W = - -

0 -4 0 0 -

From W we directly interpret that W($) is

W(s) = i" + 5s + 3s2 + s3 4 + 3s + S 2

-4 - 8s -+ 2s2 -4 S 1
which completes the transfer matrix G($) = W(s)/u(s).

As can be seen from the previous discussion, the Leverrier algorithm is both
simple to understand and easy to inplement, but due to its recursive nature, it is
susceptible to the accumulation of round-off errors. The next algorithm offers an
alternative means for calculating the transfer matrix G(s) without using the
Levemer algorithm.

Algorithm S S V

Syntax: A, B, C, D (SSTF) * a, W

Purpose: Calculation of coefficients of the characteristic polynomial a(s)
and the (p X m) numerator polynomial matrix W(s) defining the transfer
matrix G(s) of a given state space representation (A, B, C, D) using
polynomial manipulation.

Inpuffoutput Arguments:

(A, B, C, D) = state space representation of given system with n
states, m inputs and p outputs.

e a = (1 X n+ 1) row array containing coefficients U,, 0 5 i I n, of
a($). Coefficients are ordered by indices in increasing order.

0 W = (pm X n+ 1) matrix whose rows contain n+ 1 coefficients wYh,
for 0 5 h I n, of polynomials W&) defining the polynomial matrix

34 Chapter 1 Introduction

W(@. As in the case of Algorithm RESO, the rows W#, 1 S i S p , 1 S
j S m, are ordered "columnwise," i.e.

row 1 contains coefficients of wI,(s),
row 2 contains coefficients of wZ,(s),

row p contains coefficients of W&,
row p + l contains coefficients of W&),

row 2p contains coefficients of W,&,

row pm contains coefficients of W&).

...

...

...

The matrix W is said to be in polynomial mafrix form (PMF). The rows W,
of W are

Description: The polynomials W&) in the (p x m) matrix W(S) can be
calculated differently from Algorithm LALG starting with the following
result:

where a($) is the characteristic polynomial of A, d, is the 0'" element of D,
and v&) is the (n-l)" order polynomial given by

R

where bM is the hf" element of the input matrix B and the @-l)* order
polynomial rut(@ is defined by

and &,(S) is the (n X n) polynomial matrix obtained by substituting the h"'
row in (SI - A) by the 1'" row, c,, of the output matrix C,

Section 1.3 Background Material 35

C =

C1

. . .
=i

. . .
cP

Assuming that a computational procedure for calculating the characteristic
polynomial of a square matrix is available (without using Levemer's
algorithm), the calculation of the polynomials r,(s) could be performed by

rih(S) = - rhz(s) (e)

where r&(s) and r&) are characteristic polynomials of the (n x n) matrices
R, and R,, respectively, defined by

Rihc =

Q1

...
4 - 1

c i

'h+1

. . .
an

Q1

. . .
' h - 1

z

' h + ,

. . .
'n

, where A =

Q1

. . .
4 - 1

ah

' h + l

. . .
Q"

In other words, R, is obtained from A by substituting the h* row with the
z* row of C, and R, is obtained from A by substituting the h* row with the
n-dimensional zero row, z.

The alternate expression for calculating the polynomials v&) in
Eq.(a), to be used when p > m, is

I

= c Cih qhks) 03)
h - l

where c, is the ih* element of the output matrix C and the @-l)* order
polynomial g,,,@) is defined by

qhj(s) = det Q&) 01)

36 Chapter 1 Introduction

The (n X n) polynomial matrix &(S) is obtained by substituting the h*
column in (SI - A) by the$ column of the input matrix B,

B = [b , ... b, ... bnl1 0)

The calculation of polynomials q,&) can be performed by:

In other words, QIJa is obtained from A by substituting the h" column with
the J" column of B, and is obtained from A by substituting the h*
column with the n-dimensional zero column, z.

Algorithm:

1. Set the number of columns in A 3 n
2. Set the number of columns in B 9 m
3. Set the number of rows in C =) p
4. Set n + l * nl
5. Set =) z
6. Set I,,, =) I
7. Set On,O * W,
8. Set OO,nl =) W,,
9. Set 0 * j
10. Setj+l * j
11. Extract j " row from C =) c,
12. Set OO,nl * W,
13. Set O * i
14. Set i+l * i
15. Replace i' row of A by cj 3 A,
16. Replace i"' row of A by z =) A,
17. Set coefficients of det (SI - AgJ row U,
18. Set coefficients of det (SI - AJ =$ row U,

19. Set U, - U, =) det

Section 1.3 Background Material 37

20.

21.
22.
23.
24.
25.
26.
27.
28.

If i < n, go to 14; else, go to 22

I f j < p, go to 10; else, go to 24
Set 0 =) i
Set i+l H i
Extract i Ib column from B =) b,
Set b: W, * W,
Rearrange k n, elements in the row W, =) (k X n,) matrix W,

set [W, I WC1 =) W C

29. Set [*WBc

30. If i < m, go to 25; else, go to 31
31. Set all m columns of D into a pm dimensional column =$ dc
32. Set coefficients of det (SI - A) =) row a
33. Set W, + d, a * W.

Remarks:

0 Matrices R&, R,, and coefficients of the polynomials r&(s), r&) and
rut($) are calculated in Steps 15 - 19;
The matrix R, contains the coefficients of rut@), 0 I h I n, in Step
20; while the matrix R contains the coefficients of r,,,(s), 1 L; i I
p , 0 L; h I n, in Step 22;

0 In Step 27 the matrix V,, containing coefficients of the polynomials
v&$), 1 L; i I k, is formed;
The matrix V, formed by concatenating matrices V, in Step 29,
contains coefficients of all v&); and, finally,
The matrix W, formed in Step 33, contains all coefficients of the
polynomials W&), defined by Eq.(a).

I Algorithm Implementation: (See Appendix C for the L-A-S listing.)

It has been computationally verified that for higher-order systems, i.e. for n > 10,
Algorithm SSTF is more accurate than Algorithm LALG.

The listing of Algorithm SSTF above, corresponding to Eqs.(a) to (Q, should
be used when m < p. The L-A-S implementation is given in Appendix C. I fp >
m, instead of using Eqs.(g) to (k), it is more convenient to use the concept of
dualiry and apply the algorithm to the system representation given by

38 Chapter 1 Introduction

R, = {A', CT, B', D')

and then to transpose the obtained W(s). This sequence of operations is represented
by the following three steps:

Set AT, BT , CT , DT =) A,, C, , B, , D,.
Set A, , C, , B, , D, (SS?") =) a , W, .
Set W: =$ W .

1.4 Matrix Fraction Description (MFD)

An alternative representation to either the state space description or the
transfer matrix description is the mufrixfracron description (Mm). For a C-T
"0 system the MFD model is of the form

W Y (4 = m W (1.57)
where y(s) is the (p x 1) system output and u(s) is the (m X 1) system input. The
matrices D(s) = { d&) } and N(s) = { n&) } are Zefl coprime (p x p) and (pxm)
polynomial matrices. The orders of polynomials d&) and n&s) satisfy:

(1.58)

where k S n, n being the order of the system.

will be represented by:
In keeping with the notation already established, polynomials d&s) and n&s)

Similarly, polynomial matrices D(s) and N(s) may be written as:
k k

(1.59)

Section 1.4 Matrix Fraction Description 39

r a n k [D (S) I N (S)] = p for all S

In other words, it is assumed that all existing common terms in @S) and N(s) have
been cancelled. In some relevant literature the MFD model is referred to as an
awe-regressive-moving average (ARUA) model. As is the case with state space
models, the MFD representation is not unique, i.e. there are more than one pair of
polynomial matrices {@S), N(s)) that will represent a given system.

One variation of an MFD model is the following model:

y(s) = f i (S) B"(s) U(S)

Y (d = f i (4 W
$(S) V(S) = U(S)

which is sometimes expressed as

(1.61)

(1.62)

where v(s) is an auxiliary m dimensional vector.

matrix, G(s) by
It can be concluded that the MFD model is related to the system transfer

G@) = D"(s) N(s) = fi(s) B"@) (1.63)

Similarly, the (p xm) and (mxm) matrices fi(s) and B(s) are rig& coprime if:

It is worth mentioning that in the case of SISO models, i.e. for p = m = 1,
matrices D(s) and N(s) become scalar polynomials d(s) and n(s), respectively, and
the coprime condition reduces to:

rank[d(s) I n(s)] = 1 for all S (1.65)

The condition of Eq.(1.65), in fact, implies that polynomials d(s) and n(s) have no
common factors, i.e. there is no value s = so for which both d(sJ and n(sJ are
equal to zero. In other words, for s = p,, i=[l,n], i.e. system poles, d(pJ = 0,
but n(pJ # 0; i.e. the transfer function g(s) = n(s)/d(s) does not have any pole-
zero cancellations. Similarly, if there are no common factors, then for s = %, i.e.
system zeros for which n(zj) = 0, d(zj) # 0.

In the case of SISO systems, it is typically assumed that d(s) is a monic
polynomial, i.e.

In Chapter 3 we extend

n

d(s) = c di s i where d, = 1 (1.66)

this "normalization" concept to MIMO systems.

i-l

40 Chapter l Introduction

1.5 Summary

In this chapter a general background of knowledge has been set. The reader
is expected to have a basic understanding of linear control systems such as one
might acquire with a first course in Control Systems. The direction of the material
of this text is to extend this fundamental knowledge to include a working
computational facility with MIMO linear systems. The authors feel that under-
standing MIMO systems is complemented by the exercise obtained from studying
the algorithms that are used to work with these systems.

The concept of system Zineurizarion was discussed early in the chapter since
linearization is the basis of obtaining the models of concern from real-world
models. In the remainder of the chapter state space models were used to describe
various fundamental relationships between models of different types. The two most
important relationships are:

(1) The relation between the continuous-time (C-7) models and the
corresponding discrete-time (D-7) models which is required for most
computer-aided calculations; and
(2) The relation between the time domain models, either C-T or D-T,
usually specified as state space models, and the corresponding pequency
domain models. The reader is expected to be familiar with both the s-domain
and the z-domain.

In the latter portions of the chapter, starting with Levemer’s algorithm, the
important problem of converting from a state space representation to a transfer
matrix representation was considered. In the process of presenting the computa-
tional algorithms useful notation was introduced. Finally, in Section 1.4 the useful
matrix fraction description (MFD) method of system representation was introduced.

The emphasis in this chapter has been on definitions and notation. In the
subsequent chapters the emphasis will be on computational methods of converting
between model types as well as accomplishing various operations that are useful in
the analysis and design of control systems.

1.6 References

Although this chapter is presented as a transition chapter between the expected
background of a classical control course and the subsequent study of multivariable
systems, there are, no doubt, several topics for which the reader might want to
obtain further information. This is a typical reference section in that at the end of
each chapter a similar section gives suggestions for further reading, more or less,
by chapter section.

Section 1.6 References 41

Much of the material in this chapter can be found in more detailed form in
many existing texts. One that is very attractive because of the many worked-out
problems is Brogan (1991). In Chapter 15 of Brogan the reader can find an
excellent review of nonlinear system linearim*on. Similarly, Chapters 3 , 9 and 11
of Brogan offer relevant discussions of this chapter's topics. Other books that fall
in the catagory of general references for this chapter are listed below. Another
general text which emphasizes a similar "computer-aided" approach is Jamshidi
(1992), particularly Chapters 2 and 3.

Specific references for the D-T models developed in Section 1.3.3 are
VanLandingham (1985) and Haykin (1972). For details on the calculation of
transfer functions see Bingulac (1975a and 1975b), and for controllability and
observability, Bingulac and Luse (1990).

Bingulac, S. (1975), "On the calculation of the transfer function matrix," IEEE
Trans. on Automatic Control, AC-20, 1, 134-135.

Bingulac, S. (1975), "On the calculation of matrix polynomials," IEEE Trans. on
Automatic Control, AC-20, 3, 435-437.

Bingulac, S. and W. Luse (1990), "Computational simplification in controllability
and Observability tests," Proceeding of the 28"' Allerton Conference, University of
Illinois, October 3-5, 1990, 527-528.

Brogan, W.L. (1991), Modern Control Theory, 3"' Edition, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Haykin, S.S. (1972), "A unified treatment of recursive digital filtering," IEEE
Trans. on Automatic Control, February 1972, pp 113-116.

Jamshidi, M. et al (1992), Computer-Aided Analysis and Design of Linear Control
Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ.

VanLandingham, H.F. (1985), Introduction to Digital Control Systems, Macmillan
Publishing Co., New York, NY.

42

1.7 Exercises

Chapter 1 Introduction

1.1 Using the following system state space representation, given in the system
matrix partitioned form:

namely,

R, =

-1.0 1.0 1.0 .o .o I 1.0 .o .o
-.5 -1.5 .5 -.5 .O I .5 .5 .O

-.5 .5 -1.5 .5 .O I -.5 .5 .O

.o 1.0 .o -2.0 1.0 I .o .o 1.0

.5 -.5 -.5 -.5 -2.0
- - - - - - - - - - - - - - -

.o 1.0 1.0 1.0 2.0

.o 1.0 .o 2.0 1.0

Calculate:

(a) -the controllability matrix Q, of the pair (A,B},
@) -the observability matrix Q, of the pair {A,C),
(c) -the ranks of both Q and Q, to check the controllability and observability

(d) -the resolvent matrix R in PMF and the characteristic polynomial a(s) of A,
(e) -the resolvent matrix R, in a PMF-r form, and
(0 -the system transfer function matrix G($) in the form G(s) = W(s)/d(s).

of R,,

Express W(s) in PMF, i.e. determine the array W.

Hints:
0 Define the matrices of R, and the scalar E using the L-A-S operator

0 Use operators Qo and QC to calculate Q, and Q,., respectively.
The rank of a matrix is obtained using the operator NRS.
Calculate the resolvent matrices R and R, with the L-A-S subroutine

0 The transfer function matrix W in PMF may be obtained with the

DMA.

RES0.SUB.

operator S S T .

Section 1.7 Exercises 43

The results may be displayed on screen by using the flag T with the
operator OUT.
The results may be written to the LA-S print file by using the flag L
with the operator OUT.
Use the subroutine SYSMXJB to build the system matrix R,.
The individual matrices of R, may be extracted by the subroutine
M14.SUB.
Store your program on a Disk Program file using the Interpreter
Command (IC) WPF (or simply W).
Recall your program from a Disk Program file using the IC RPF (or
simply R).
Remember that information on L-A-S operators or IC syntax may be
obtained by: HELP, <xyz> or simply h, <xyz> and for
subroutine syntax: HELP, SUB, <xyz> or h , sub<xyz>.

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXERl 1.DPF.

1.2 Linearize the nonlinear mathematical model of the robot arm, Fig. 1.1,
Section 1.3.1. As elements of the parameter vector p, defining the system
dynamics, use

p = [0.0125 0.07 0.06 0.05 0.4]
Linearize the model around the following nominal point, z,

q, = [0.2 0.2 0.4 0.4 0.6 0.6 3'
using for "finite differences," dz = [1 1 1 1 1 1 IT lo-'.
Your results should show the resulting matrices A and B, as well as estimate the
accuracy of the linearization.

Hints:

0 Define vectors using the DMA operator.
0 The subroutine LIN.SBR can be used for performing the linearization.
0 The subroutine GZ.SUB, defining the system dynamics, is available in

the L-A-S master subdirectory C:\LAS\SUB\ and will be called by
LIN.SBR.

0 See also the hints following Exercise 1.1.

A version of an LA-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER12.DPF.

44 Chapter 1 Introduction

1.3 A 5"' order "weakly" controllable and "weakly" observable state space
representation with m= 1 input and p = 2 outputs is given below:

Determine:

(a) -the eigenvalues A,7 i=[l ,n], of A,
(b) -the degrees of controllability and observability of each A , 7 i=[l,n], of A.
(c) Estimate the least controllable and the least observable eigenvalue A,, i=[l,n],

of A.

R, =

-1.0 2.0 -.2 .6 .O I -.202
-2.0 -1.0 .4 .8 .O I .405

.O .O -2.0 1.0 .O I -.W6

.o .o -1.0 -2.0 .o I -.012

"_ "_ "_ "_ "_ -1- ""

-.03 1.06 -2.0 1.03 1.0 1 .O
-.06 -.03 -1.0 -2.0 .O I .O

2.0 2.0 -.4 -.8 1.0 I 395

Hints:

Define the representation R using either the operator DMA or INPM.
The eigenvalues of A may be calculated using the operator EGV.

0 The degrees of controllability and observability may be estimated using
the subroutine COTS.SBR. See Section B.5 for more details on this
topic.
To plot the eigenvalues of the "auxiliary" matrices A, and A,, use
operator NIK. For scaling of the axes operator YXSC may be used.

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER13.DPF.

Chapter 2 System Discretization

As pointed out in Chapter 1, with the widespread use of computers in control
loops it is inevitable that control engineers will face problems associated with
sampled-data systems. Such systems by their very definition contain a mixture of
continuous-time and discrete-time signals. A common problem that arises with
sampled-data control systems is to find the equivalent effect of continuous-time
operations as seen by the computer in the loop. Typically, the modeling of the
signal converters assumes an ideal uniform sampler for the analog-to-digital
converter and a simple (zero-order) hold device synchronized with the samples for
a digital-to-analog converter. With these assumptions one may find in many
references the standard zero-order hold model, also known as the step invariant (Sl)
model which will be discussed subsequently.

2.1 Introduction

In addition to simple plant modeling with SI equivalents there are occasions,
such as in digital redesign or system identification, that demand more accuracy
between a given continuous-time (C-T) system and its discrete-time (D-T)
equivalent model. In these instances higher-order discrete models are required.
Two models which have been introduced for this purpose are the bilinear
transformation (BQ (without prewarping) and a method which assumes a linearly
interpolated input, also known as the trapezoidal rule. This latter method is
referred to as a ramp-invariant (Rl) model in contrast to the standard ZOH model
being a step-invariant (SI) model. This model was introduced as a linearly
inferpolated (input) model in Chapter 1; see Eq.(1.29). There are many other
useful models, but this chapter will focus on only these three methods of discretiza-
tion as being the most useful in practice.

The reverse problem, called continualization, is that of reconstructing a C-T
model from a given D-T model. This problem could arise, for instance, when
measured discrete data are used to identify a C-T system. The particular method
of continualization selected would depend on how the discrete data was derived (if
known). The method of continualization is presented for each of the three
discretization techniques, thereby offering the designer a great deal of flexibility in
going between the continuous and the discrete domains.

For the SI and RI models both the forward, discretization, and reverse,
continualization, problems may be viewed as functional transformations on a given
matrix A, i.e. in calculating exp(A,Q for discretization or ln(A&/Tfor continualiza-
tion. If the matrix A is transformed into its Jordan canonical form, A,, then

45

46 Chapter 2 System Discretization

A = QA,Q"

The modal matrix Q contains as columns the eigenvectors and/or generalized
eigenvectors of A, depending on the eigenstructure of A. Then, relating the
problem at hand, it is well known that

when the scalar functionAx) is analytic at the eigenvalues of A. This approach is
convenient if AJ is diagonal becauseAA,) is then itself diagonal. However, in the
general case this approach is very restrictive in that it is not so straightforward to
evaluate either the matrix Q orAA,). Since it is desired to have robust algorithms
to solve the continualization and discretization problems which are completely
general, this method will not be pursued here.

Using basic properties of the exponential and logarithmic functions, a unified
approach is presented in this chapter which provides simple robust algorithms for
system discretization, as well as system continualization, using the three methods
mentioned above. Examples are presented to illustrate the effectiveness of the
algorithms, showing convergence properties versus the computation parameters used
for truncation and scaling. In addition, practical guidelines are discussed,
specifically for selecting the computation parameters and, more generally, for
efficient computation of the matrix power series involved in the procedures.

2.2 Discretization Procedures

In the area of systems and controls, as well as related areas such as signal
processing, it is useful to be able to discretize a given continuous-time system.
This problem and its reverse problem of continualizing a discrete-time system are
considered here. We assume a basic state variable representation for a continuous-
time system as follows. A sfafe space realization for a linear, continuous-time,
constant parameter system consists of a 4-tuple of matrices; namely,

which defines the state model

where x@), u(f) and y(f) are the state, input and output vectors with dimensions n,
m and p , respectively, while the matrices A,, B,, C, and D, are constant matrices
with compatible dimensions.

Section 2.2 Discretization Procedures 47

2.2.1 The Step-Invariant Model

The familiar srepinvuriunf (SI) or ZOH equivalent discrete-time @-p model
introduced in Section 1.3.3 assumes that the input vector u(f) in Eq.(2.2) is constant
between (uniform) samples. The equivalent D-T model can be represented as

= {Ad, B,, c,, D,) (2.3)

which implies the D-T state model

x(k+l) = A,x(k) + B,u(k)

y(k) = cdx(k) + Ddu(k)
(2.4)

The matrices A,, and B,, are related to A, and B, in Eq.(2.2) by the relations,
repeated here from Chapter 1:

and

Also, if A, is nonsingular,

And since the output y(r) in Eq.(2.2) is assumed to be ideally sampled, the matrices
C,, = C, and D,, = D,.

The following algorithm, (SI-C-D), can be used to calculate the SI (ZOH)
equivalent model of a continuous-time linear system. In particular, this algorithm
is a numerically robust procedure for calculating A, and B,, described above. The
standard general method for calculating A,, is to compute a truncated version of
Eq.(2.5). The problem with this approach is that for matrices A, and sampling
intervals T satisfying that

a truncated version of Eq(2.5) may either require large N, leading to considerable
round-off errors, or may not converge at all. The algorithm presented here is
completely general.

It is easily shown that the SI model can be calculated using an intermediate
matrix E as follows:

A, = I + EAcT and B, = EB,T where E = c - - (2.9)
1-0 (i + l) l

48 Chapter 2 System Discretization

To resolve the problem associated with 4.(2.8), it is possible to utilize the
property of the exponential function that

exp(x) = e x = (eCr'r))r (2.10)

The following algorithm extends this technique to permit calculation of both Ad and
Bd under the condition of Eq(2.8) as well as the condition that A, may be singular.

First let us define a scaling factor r = 2' in terms of the scalar Nm, Nrm <
0.5, and the integer scaling parameter j given by

j =

W

The series

(AcT/rY
Adl = c 7

1-0

(2.11)

(2.12)

will converge satisfactorily with the value of j given in Eq(2.11) since 11 &T/rII
< Nnn. It is easily developed from the property in Fq(2.10) that the series in
Eq.(2.5), truncated to N+ 1 terms, satisfies the following recursive process

(A&+I = (A& for k = (2.13)

From Eq(2.9) we formally obtain the recursion relationships

(A,,), = 1 + EkAcTk
(2.14)

(Ad)k+l I + Ek+IAcTk+l

Introducing Eq.(2.14) into Eq.(2.13), we obtain the following:

(r + E,AcTk)2 = I + Ek+lAcTk+l
(2.15)

I + 2EkAcTk + (EkAcTk)2 = 1 + Ek+lAcTk+l

This last equation leads us to the final recursion

Tk+l = 2Tk

Ek+1 = Ek(I + EkAcTk/2)

which must be initialized with

(2.16)

Section 2.2 Discretization Procedures 49

The desired E = Ej+,. By the arguments given above for Eq.(2.12), the
convergence of Eq(2.17) is guaranteed. Once E has been calculated, A, and B,
can be obtained using Eq.(2.9). Thus, this algorithm is similar to the introductory
algorithm of Chapter 1, EAT, but it is more powerful in that the complete discrete-
time SI equivalent model can be determined, not just the transition matrix. The
algorithm is summarized in the following.

Algorithm SI-C-D

Syntax: T, A,, B,, Nm, N (SI-c-D) =) A,, B,

Purpose: Calculation of the SI D-T model

Input/Output Arguments:

T = positive scalar
A, = (n x n) matrix
B, = (nxm) matrix
Nrm = positive scalar, I 0.5, defining the norm of the matrix A,Th
N = integer for truncation (suggested value N 2 16)
A, = (nxn) matrix satisfying Eq.(2.5)
B, = (nxm) matrix satisfying Eq.(2.6)

Description: The matrices A, and B,, are calculated using the truncated
power series:

(2.18)

modified according to the development given in Eqs.(2.11) to (2.17).
Subsequently,

A, = I + EA,T, B, = EB,T (2.19)

as stated in Eq(2.9).

Algorithm:

1. Define input arrays A, and B,, scalars T and Nnn and integer N . The

2. Calculatej using Eq.(2.11)
3. Calculate E, and T, using Eq.(2.17)
4. For k = 1, 2, ... , j calculate E,+, recursively from Eq.(2.16)
5. Set Ej+, =) E and I + EA,T =) A,, B, * EB,T from Eq.(2.19)

suggested values for Nrm and N are Nnn I 0.5 and N 2 16

50 Chapter 2 System Discretization

Algorithm Implementation:

The listing of Algorithm SI-C-D implemented using the L-A-S language is
given in Appendix C. As in Algorithm EAT, Section 1.3.3, the matrix E,
in Eq.(2.17) is calculated using Algorithms POLR and POM, while the
mfficientsJ = W!, i=[O,m, are obtained by Algorithm FACT,

2.2.2 Ramp-Invariant (Linearly Interpolated) Model

In Chapter 1 the linearly intepolated model was introduced which assumed
that the input samples are interpolated as in Fig. 1.4, i.e. straight lines connecting
the individual sampled values. Since this model is ramp invarianr in the same way
that the SI (ZOH) equivalent is step invariant, we will refer to this model as the
ramp-invuriunt (RI) equivalent model. This model may be used for situations
which require increased accuracy of discretization over the SI equivalent model of
the previous section.

Although Eq~(l.28) to (1.30) describe the basic approach, several important
developments are necessary before achieving the desired robust conversion
algorithm. First we note that there is one extra input matrix. The five-matrix state
space model in the discrete domain will be represented by

which, in turn, can be written as

Later in the chapter an algoiithm will be presented for the conversion of such five-
matrix models to a standard four-matrix model.

The matrices A,,, E, C,, and D,, were described in the previous section, see
Eqs.(2.9) and (2.10). To specify the remaining matrices, we define the series

(2.22)

from which we obtain

Bdo = (E - F)BcT, Bd, = FB,T (2.23)

Also, if A, is nonsingular,

F = (Ad - I - AcT)(AcT)-2 (2.24)

Section 2.2 Discretization Procedures 51

Following the guidelines of Algorithm SI-C-D, it is desirable to create an algorithm
which allows the condition of Eq(2.8) and singular A, matrices. The following is
a development of this algorithm, referred to as Algorithm RI-C-D.

By comparing the power series in Eq(2.9) with that of Eq.(2.22), it may be
determined that the matrices E and F satisfy the following relation:

E = I + FACT (2.3)

With j and r as previously defined in Eq(2.11) let

(2.26)

Using Eq.(2.25), we can write, as was done to arrive at Eq.(2.15), the
recursion equations

E, = I + F,A,T, (2.27)

(2.28)

Now using Eq(2.16) and eliminating E, and E,,, from Eq~(2.27) and (2.28),
the following relationship between Fk and F,,, can be derived:

'k+I = 'k

= 0.5 F, + 0.25 (I + F,

which must be initialized with

(2.29)

(2.30)

The desired F = F,,,. The series will obviously converge satisfactorily with
the value of j given in Eq(2.11) since 11 A,T/rII < Nrm. Once F has been
calculated, Ad, BdD and B, can be obtained using Eqs.(2.25), (2.19) and (2.23).
Thus, this algorithm is similar to SI-C-D, but it is more powerful in that the more
accurate discrete-time RI equivalent model can be determined. The algorithm is
summarized in the following.

Algorithm RI-C-D

Syntax: T, A,, B,, Nrm, N (RI-C-D) * Ad , Ba , B,

Purpose: Calculation of the RI D-T model

52 Chapter 2 System Discretization

Input/Output Arguments:

T = positive scalar
A, = (nxn) matrix
B, = (nxm) matrix
Nnn = positive scalar, S 0.5, defining the norm of matrix A,T/r
N = integer for truncation (suggested value N = 16)
A, = (n x n) matrix satisfying Eq(2.5)
B,,,, = (nxm) matrix satisfying Eq.(2.23)
B, = (nxm) matrix satisfying Eq(2.23)

Description: The matrices A, , Bdo and B, are calculated using the
truncated power series:

(2.31)

in the derived recursive form of Eq~(2.29) and (2.30). Subsequently, once
~ F i s known

' and

E = I + FACT, A, = I + EA,T (2.32)

' Bdo = (E - F)B,T, Bdl = FBcT (2.33)

, as stated in Eq.(2.23).

l Algorithm:

1. Define input arrays A, and B,, scalars T and Nrm and integer N. The
suggested values for Nrm and N are Nnn I 0.5 and N 2 16.

2. Calculatej using Eq(2.11).
3. Calculate F, and TI using Eq.(2.30).
4. For k = 1 , 2, ... , j calculate Fk+, recursively from Eq(2.29).
5 . Set F,+, =) F and solve for E, Eq.(2.25), Ad, Eq.(2.19), B,,,, and Bdl,

Eq.(2.23).

1 Algorithm Implementation:

The listing of Algorithm RI-C-D implemented using the L-A-S language is
given in Appendix C. See also Algorithm R5R4 below. For more details
see either Algorithm SI-C-D, or Algorithm EAT, in Section 1.3.3.

Section 2.2 Discretization Procedures ' 53

General C-T * D-T Algorithm EATF

Recall that in order to calculate the output arrays A,, Bdo and B,,,, Algorithm
RI-C-D must calculate matrices F and E given by Eq~(2.31) and (2.32),
respectively. Note also that the same matrix E is needed in Algorithm SI-C-D for
calculating B,, Eq(2.19). Thus, both SI D-T and RI D-T models could be
calculated using a single algorithm if it has as output arguments the arrays:

A,, E and F

Then, the desired SI or RI D-T model (or both) could be obtained simply by using
Eq~(2.19) and (2.33). To achieve this, the algorithm referred as EATF (the name
stems from the calculation of @T using the matrix F) is formulated:

Syntax: T, A,, Nnn, N (EATF) * A,, E, F

while the input arguments are exactly the same as in EAT, SI-C-D and RI-C-D.
It is interesting to note that in the version:

where only one output argument is specified, Algorithm EATF is "formally" equal
to Algorithm EAT, discussed in Chapter 1.

The listing of Algorithm EATF, implemented using the L-A-S language is
given in Appendix C. Due to its generality and flexibility, it is recommended that
this algorithm be used whenever either of the SI D-T or RI D-T models, or even
just the matrix A, is sought. In fact, this algorithm may be considered numerically
advantageous over both of the Algorithms EAT and SI-C-D, since the terms in the
truncated power series, Eq.(2.30), are divided by (i+2)!, while in EAT and SI-C-D
the same terms are divided by i! and (i+ l) ! , respectively, see Eqs.(2.12) and
(2.17), which improves the convergence properties of the Algorithm EATF.

2.2.3 Bilinear Transformation

This algorithm is included because of its popularity with the signal processing
community. The method is also known in the signal processing literature as
Twin's approximation. We will see in the development that the technique was
designed for models in the transform domain. This algorithm, referred to as (BT-
C-D), is known in the transform domain as a conversion from the s-domain to the
z-domain using the direct substitution:

S = " 2 (z - 1)
T (z + 1)

(2.34)

54 Chapter 2 System Discretization

Thus, introducing Eq(2.34) into the C-T state equation of Eq.(1.36) and collecting
terms to match Eq.(1.28), the ET-C-D Algorithm provides a five matrix discrete-
time model as in Eq(2.21) where, in this case, (with a = 2 / T)

A, = (a1 - AC)-'(aI + A,)

Bdo = Bdl = (uI - A,)"B,
(2.35)

And, as in the previous results, C,, = C, and D,, = D,. Algorithm BT-C-D may
be symbolically represented by:

The listing of Algorithm ET-C-D, implemented using the L-A-S language, is given
in Appendix C. Note that in the L-A-S implementation its name is BCDC, and the
syntax is:

A,, BC, T, M C (BCDC) * A,,, B&, Bdl, P

where, for reasons explained later, the algorithm "flag" Zcdc should have the value
Zcdc = 1. For more details see also Section 2.5.

Algorithm R5R4

Since both Algorithm RI-C-D and Algorithm BT-C-D result in a non-standard
five-matrix model, it is useful to have a method of converting to a standard model
as given in Eq.(2.4). Specifically, we describe the transformation from Eq.(2.21)
to the following equivalent model:

(2.36)

The simplest computational procedure for obtaining the conversion to standard
state model is derived using the identity of transfer function matrices, i.e.

C,(ZI - AJ1@,o + ZB,,) + D,
(2.37)

= C,,(zI - Ade)-'BdC + D,

The detailed algorithm, referred to as Algorithm R5R4, is presented in the
following.

In this development first consider the two D-T state space representations:

defining the state models of E q ~ (2 . 2 1) and (2.4), respectively, where the d notation

Section 2.2 Discretization Procedures 55

has been dropped for convenience. Since these two models represent the same D-T
system, the corresponding transfer function matrices should be the same. Thus, we
obtain the following equality:

C(z1- A)-' (B, + zB,) + D = C, (21 - A,)-' B, + D, (2.39)

Also the two transfer matrices should have identical characteristic polynomials. So,
without loss of generality, it may be assumed that in both representations the
system and output matrices are equal, i.e.

A, = A and C, = C (2.40)

In each of the five-matrix representations given in Eqs.(2.21) and (2.35), as
well as in the conversions yet to come, there is a distinct relationship between
matrices B, and B,. It can be verified from Eqs.(2.23) and (2.35), respectively,
that this reiationship is given be

B, = PB,

where the nXn matrix P is expressible in each case by

P = F(E -F)-' and P = I,

respectively. Using Eq(2.41) and the identity

(zI - A)"z = I + (21 -A)-'A

Eq(2.39) may be written as

C(z1-A)"[(I+AP)B, - B,] + (CPB,+D-D,) = 0

Since Eq.(2.44) should be satisfied for all z, it reduces to

C(zI - A)-* [(I + AP)B, - B,] = 0

D, = CPBo+D

We now introduce the following notation

where V(z) = C adj[zI -A] , d(z) = det[zI -AI

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

The p x n polynomial matrix V(z) = {v,(z)}, consisting generally of (n-l)" order
polynomials, can also be represented as a matrix polynomial with real-numberp x n
matrices, i.e.

56 Chapter 2 System Discretization

.-l

V(Z) = c yz'
i -0

Using Eqs.(2.47) and (2.48) and defining the arrays

(2.48)

(2.49)

Eq(2.45) becomes

V [(I + AP)Bo -B,] = 0 (2.50)

It is easily shown that if the pair {A, C} is observable, V is a full (column) rank
matrix and that the unknown matrix B, becomes

B, = (I +AP)Bo (2.51)

However, if {A, C) is not an observable pair, the general solution to Eq.(2.50)
may be written as

B, = (I + AP)Bo + NT (2.52)

where N is an nxh "null space" matrix (h is the nulhy or dimension of the null
space of V) satisfying that

VN = 0 (2.53)
and T is an arbitrary hxm matrix, which, if desired, may be chosen to be a zero
matrix. If, however, T is selected as

T = -N+(I +AP)Bo (2.54)

where

N' = (N ~ N) - ~ N ~

is thepseudo-inverse of N, then B, may be written as

B, = (I -NN')(I +AP)B, (2.55)

which represents the minimum norm solution for B,. It should be mentioned that
even when the pair {A, C) is unobservable, the matrix B, given in Eq(2.51)
satisfies the transfer function matrix identity Eq.(2.39).

The result of the previous development is the following computational
procedure for converting from a five-matrix model to a four-matrix model.

Section 2.2 Discretization Procedures 1 Algorithm R5R4

57

Syntax: A,B, ,P,C,D (R5R4) B,,D,

Purpose: Transformation from a five-matrix model to a (standard) four-
matrix model.

Inputloutput Variables:

A = (nxn) system matrix of the five-matrix model
B, = (nxm) first-input matrix of the five-matrix model
P = (n x n) transform matrix between B, and B, (see Eq(2.41))
C = @ x n) output matrix of the five-matrix model
D = (p x m) feedthrough matrix of the five-matrix model
B, = (nxm) input matrix of the four-matrix model
D, = @ x m) feedthrough matrix of the four-matrix model

Description: From a givenpvc-matrix model, e.g. Eq.(2.21) or Eq.(2.35)
and Eq.(2.41), a standard four-matrix model with equivalent transfer matrix
is generated using Eq.(2.45).

Algorithm:

1. Define the matrices A, B,,, P, C and D.
2. If the pair {A, C} is observable, calculate the unknown matrices B,

and D, from Eq~(2.51) and (2.45), respectively.
3. If {A, C} is an unobservable pair, Eq.(2.51) may be substituted for

Eq.(2.55) which requires the evaluation of the polynomial matrix V(z),
Eq.(2.47), building the @nxn) matrix V, Eq.(2.49), and calculation
of the null space matrix N, Eq.(2.53).

The listing of Algorithm R5R4, implemented in L-A-S, is given in Appendix
C.

Algorithm R4R5

Transformation from a standard four-matrix representation to an equivalent five-
matrix representation is the reverse process of the previous Algorithm, R5R4, and
is used primarily as an intermediate step in the subsequent continualization
procedure of Algorithm RI-C-D. The relation indicated in Eq~(2.41) and (2.42)
will be used in this procedure to ensure that a unique four-matrix state space
representation is obtained. Thus, assuming Eqs.(2.40) and (2.41), only B, and D

58 Chapter 2 System Discretization

are unknown. Following the same line of reasoning as in the previous algorithm,
if the pair {A, C} is observable, then from Eq.(2.51) we obtain

B, = (I + AP)-'B,

while from Eq(2.45)

(2.56)

D = D, - CPB, (2.57)

If {A, C} is an unobservable pair, the minimum norm solution for B,, can be
obtained in a manner similar to the development of Eq.(2.55) from

B, = (I -NN')(I +AP)"B, (2.58)

where N was defined above, see Eq.(2.53).
Thus, from the transfer matrix equivalency Eq(2.39) we are led to the

following algorithm for converting from a standard four-matrix model to an
equivalent five-matrix model. 1 Algorithm R4R5

Syntax: A, B, , c, D,, p (R40 - B,, D

Purpose: Transformation from a (standard) four-matrix model to a five-
matrix model.

Input/Output Arguments:

A = (nxn) system matrix of the four-matrix model
B, = (nxm) input matrix of the four-matrix model
C = @Xn) output matrix of the four-matrix model
D, = (pxm) feedthrough matrix of the four-matrix model
P = (nxn) transform matrix between Bo and B, (see Eq(2.41))
B, = (nxm) first input matrix of the five-matrix model
D = (pxm) feedthrough matrix of the five-matrix model

Description: From a given four-matrix model a jive-matrix model is
generated using the transfer matrix equivalency of Eq.(2.39).

Algorithm:

1. Define the matrices A, B,, C, D, and P.
2. If the pair {A, C} is observable, calculate the unknown martices B,

and D from Eq~(2.56) and (2.57), respectively.
3. If {A, C} is an unobservable pair, Eq(2.58) may be used in place of

Eq(2.56). This necessitates the evaluation of the polynomial matrix

Section 2.3 Continualization Procedures 59

V(z), Eq.(2.47), building V, Eq.(2.49), and calculation of the matrix
N in Eq(2.53).

The listing of Algorithm R4R5, implemented using L-A-S, can be found in
Appendix C.

2.3 Continualization Procedures

The reverse process of converting from a D-T model to an equivalent C-T
model will now be considered, i.e. converting from the model in Eq.(2.4) to the
model in Eq.(2.2), Rd + R, in the SI case, or from Eq(2.21) to Eq.(2.2), Rdf+ R,
in the RI sense and from Eq.(2.35) to Eq(2.2) in the BT sense. Of course, by
itself Rd has no information regarding the signal values between samples so that
model conversion in this direction should be taken in the context of some prior
knowledge regarding the type of inputs used.

2.3.1 SI to Continuous-Time Model

The algorithms for continualization require logarithmic operations instead of
matrix exponentiation. When (Ad - I) or A, is invertible, it is easily concluded that
the matrices of R, in Eq.(2.2) can be found from Eqs.(2.5) and (2.7) by:

A, = - h(Ad) , B, = (Ad - 1 p A c B d (2.59)

with the understanding that C, = cd and D, = Dd as before, thus completing the
continuous-time model in Eq42.2). To begin the development, consider the Taylor
series expansion for the function ln(x) in the neighborhood of x = 1 which leads
to

1
T

The problem of using a truncated version of Eq.(2.60) is that for matrices Ad with

h, P 1h-l 0.5 (2.61)

where X, is the maximum magnitude eigenvalue of (Ad - l),the series may require
large N, leading to considerable round-off errors if it converges at all. As will be
seen, the present algorithm will resolve this problem by using the following basic
property of the logarithm function.

60 Chapter 2 System Discretization

With this approach the truncated series for calculation becomes

(2.63)

where the integerj satisfies that

I A(Ad" - I)I, < A.,,, , with t = 2' (2.64)

An algorithm which calculates A, according to Eq.(2.63) is referred to as
Algorithm LNM. It has been experimentally verified that the accuracy of using
Eq.(2.63) is satisfactory even for matrices A, where some eigenvalues of L =
A,-I have magnitude greater than one. From the previous development the
following algorithm is formalized.

Algorithm LNM

Syntax: T, A,, L, N, (LNW =$ A,

Purpose: The calculation of the natural logarithm of an (nxn) matrix A,,.

Input/Output Arguments:

T = sampling interval used in the discrete-time model
A, = (nxn) system matrix of the discrete-time model
X,,, = scaling parameter, see Eq(2.64)
N = series truncation parameter
A, = (n x n) system matrix of the continuous-time model

Description: A continuous-time equivalent system matrix is constructed
from a corresponding discrete-time system matrix.

Algorithm:

1. Define the matrix A,, scalars T and X,,, and integer N - (suggested
values for Nand X,,, are N 2 36 and A,,, I 0.25)

2. set 0 =$ j and A, =$ AI
3. Set I - AI * L
4. If lX(L)l, < A,,,, go to 6; else, go to 5
5. Setj+l * j ; (A,) l n * Aj and go to 3
6. Set 21 =$ r and calculate A, using Ai =$ Ai" in Eq(2.63)

The square root of the matrix A, is calculated by Algorithm SQM, described later.
Calculation of A, in Step 6 is accomplished using Algorithms POLR and POM,
mentioned earlier. Calculation of the coefficienbJ = M, i=[l,N, required by

Section 2.3 Continualization Procedures 61

POLR is done by Algorithm E N . The listing of Algorithm LNM, implemented
using L-A-S, is given in Appendix C.

Having determined A,, the remaining matrices in the SI C-T equivalent state
space model of Eq(2.2) could be calculated using Eq(2.59) if A, is nonsingular.
If, however, A, is singular, then the matrix E, appearing in Eq.(2.9) should be
calculated using the procedure given in Algorithm SI-C-D. It follows that C, = c,,
D, = Dd and

B, = -E"B, 1 (2.65)
T

In the spirit of algorithm formulation and algorithm "naming," Eq~(2.59) and
(2.65) could be symbolically represented by Algorithm SI-D-C, i.e.

Ad, Bd, T (SI-D-c) * A,, B,

For reasons explained later, there is no direct L-A-S "counter-part" to Algorithm
SI-D-C. However, as will be shown in Section 2.5, there is an L-A-S algorithm
which, among other tasks, performs the task of Algorithm SI-D-C.

Algorithm LNMj

An alternate algorithm, referred to as LNMj, applicable for calculating A,,
given by (2.59), in the specijk case when the matrix Ad is "diagonalizable," is
given below. It is worth mentioning that this algorithm is "in a way" equivalent
to Algorithm E4T, mentioned in Chapter 1, Section 1.3.3.

Syntax:

For input/output arguments see Algorithm LNM.

Algorithm:

1. Define the matrix Ad and the scalar T
2. set A d (JFR) * M
3. Set A d (EGV) * egd = { x, }
4. Set diag{ In(&) 1 =+ LnJf
5. Set M LnJf M"/T* A,

The listing of Algorithm LNMj, implemented using L-A-S, is given in
Appendix C. Note that the steps in this algorithm are similar to the steps of
Algorithm EA", discussed in Section 1.3.3. The only difference is that in
Step 4 the array LnJf contains in its main diagonal the natural log of the
eigenvalues X,, i.e.

62 Chapter 2 System Discretization

W X,)
while in Algorithm EATj, the array ExTf contains the terms exp&").

Algorithm SQM

The .square root of the matrix A,, required in Step 5 of Algorithm LMM, could
be calculated by Algorithm SQM given below. This algorithm is based on the
standard recursive procedure:

x,+l = O.S(x, + -)
b

xi
(2.66)

used to determine the square root x = @)ln of a positive scalar b.

I Algorithm sQM
Syntax: A, E (SQM) =) X

Purpose: To calculate the square root of a positive-definite matrix.

Inputloutput Arguments:
A = Given square positive definite matrix

E = Small scalar parameter used to terminate the recursion
X = The square-root matrix of A

Description: Determination of the square root of an n x n matrix A, X =
(A)'".

Algorithm:
1. Define the matrix A and a small scalar parameter E < < 1
2. SetX, ,=Iandi=O
3. Set i = i+l and Xi+, = 0.5 (X i + A X;')
4. If 11 X,+, - X, 11 > E , go to 3; else, stop

The listing of Algorithm SQM, implemented using LA-S, can be found in
Appendix C.

2.3.2 RI to Continuous-Time Model

It is easily determined that the C-T model in Eq(2.2) can be obtained from
the five-matrix model in Eq(2.21) by using Algorithm LNM to calculate A,, and

Section 2.3 Continualization Procedures 63

from the availability of F in Eq.(2.31), i.e. Algorithm RI-C-D, solving Eq(2.33)
to get

B, = -F"B,, = -(E -F)"Bdo 1 l
T T

Note that from Eq.(2.67), or from Eq.(2.42)

(2.67)

Bdl = PBdo , where P = F(E -F)-' (2.68)

The required five-matrix D-T model of Eq(2.21) can be obtained as an initial step
from a standard four-matrix D-T model in Eq.(2.36) by applying Algorithm R4R5
presented earlier. Similarly, as in the case of Algorithm SZ-D-C, Section 2.3.1,
Eq.(2.59), together with Eq~(2.67) and (2.68), could symbolically be represented
by

A,, Y Bdl 2 (RI-D-c) 9

As has already been mentioned, there is no L-A-S algorithm which directly
corresponds to RI-D-C. This will be made clear in Section 2.5.

2.3.3 Bilinear to Continuous-Time Model

The C-T model of Eq.(2.2), which corresponds to the bilinear transformed
model specified in Eq.(2.35), can be obtained by a direct substitution of

a + S , where a = - 2
a - S T

z = - (2.69)

into the z-domain transfer function, thereby providing an sdomain transfer function
from which R, could be derived. Specifically, taking the z-transform of Eq.(2.4),
introducing Eq(2.69) and converting back to the time domain:

= A,x(t) + Bcon(t) + BclU(t)

S(0 = C,x(t) + D,n(t)

where (with a = 2/T)

(2.70)

B,, = -(Ad+I)"Bd, C, = C , , and D, = D,
. I

As was discussed previously in terms of the five-term model of Eq.(2.21), if a
four-term C-T model is required, Algorithm R5R4 can be applied to Eiq(2.70) to
obtain an equivalent standard model of the form in Eq.(2.2). Note that in this case
Eq(2.41) holds with

64 Chapter 2 System Discretization

P = "I, T
2

(2.72)

Similarly, as with Eq~(2.35) and Algorithm BT-C-D, Fkp(2.71) may be symboli-
cally represented by Algorithm BT-D-C, i.e.

However, its L-A-S implementation requires:

where now, as opposed to the case of Algorithm BT-D-C, the algorithm flag IC&
should have the value Icdc = 2. The listing of Algorithm BCDC, implemented
using L-A-S, and performing the tasks of both BT-D-C and BT-C-D, is given in
Appendix C. For more details see also Section 2.5.

This completes the three methods of continualization. The reader now has
the algorithmic tools to discretize a C-T system using piecewise constant inputs
(SI), piecewise linear inputs (RI) and the bilinear transformation (BT), as well as
to perform the inverse operation of continualization corresponding to each of these
methods. In converting a physically sampled C-T system to a D-T model the SI
method most closely approximates the common digital-to-analog device operation.
However, any one of the three techniques may be used when it is desired to mimic
a linear C-T process with a D-T model. Such a situation might arise, for instance,
for preprocessing data in a computer by developing a filter algorithm from a known
frequency filter in the C-T domain. In this instance, it would be prudent to
compare the frequency responses of the D-T models with the desired frequency
response. Yet another area of utility is system identification. The RI method can
be an effective approach to identifying a system from discrete data because of the
additional accuracy inherent in the method. In the remainder of this chapter we
present several examples which illustrate the convergence and robustness of both
the discretization and the continualization procedures.

2.4 Examples

Three examples are presented in this section. They have been selected to
illustrate the computational accuracy that can be achieved using the exponential and
the logarithmic matrix calculations discussed previously. The first example
demonstrates convergence rates when calculating Ad from a given 5 X 5 singular
matrix A,, followed by a similar development in the second example in calculating
A, given A,. The third example illustrates the remaining discretization and
continualization procedures mentioned in the chapter. The calculations were
performed using the algorithms discussed earlier.

Section 2.4 Examples 65

Example 1. For this example the matrix A, is given by

- 0 1 0 0 0

0 0 1 0 0

A, = -4 -4 -3 1 4

0 0 0 - 1 0

0 .5 0 0 0-

The eigenvalues o

(2.73)

If A, are 1(A,) = {O, -1, -1, -1 +jl, -1 -jl} (2.74)

Note that A, is singular and has multiple eigenvalues. In addition, the Jordan form,
A,, corresponding to A, is not diagonal. The selection of this matrix was motivated
by the fact that some widely used software packages are not capable of calcuating
either the Jordan form, or the natural logarithm, of non-diagonalizable matrices.
The well known packages MATLAB and MATHEMATICA are examples of this
deficiency. It is suggested that the reader repeat the calculations in these examples
with another package at his or her disposal. The desired sampling interval for the
discretization is T = 2 sec.; and the norm of ACT is calculated to be 15.65.
Eqs.(2.5) and (2.10) to (2.12) combined provide the following truncated summa-
tion, which is similar to Algorithm SI-C-D for calculating the exponential matrix.

(2.75)

As in SI-C-D, r = 2’ where j is given in Eq.(2.11). Both the truncation number
N and the scaling parameter j are of key interest to this development. To
emphasize the dependence of our calculated matrix A, on these parameters, we will
use the notation A~NJ) . Results will be presented for the following 36 parameter
combinations:

j = 0, 1, 2, 3, 4, 5
and N = 16, 14, 12, 10, 8, 6 (2.76)

Each A,, is compared to the “exact“ matrix A, given by

-.g9900 E-l .50637 E+O .l9165 E+O .l4761 E+O .l0999 E+l

-.76662 E+O -.31657 E+O -.68595 E-l .44044 E-l .76662 E+O

Ads= .27438 E+O -.l0893 E+O -.l1078 E+O -.l1264 E+O -.27438 E+O

.00000E+O .00000E+O .00000E+O .13534E+O .00000E+O

&-.54995 E+O .25318 E+O .g5827 E-l .73805 E-l .l5500 E+l

The “exact” matrix A, above was calculated by transforming A, munuuZZy into its
Jordan canonical form A, and then using

66 Chapter 2 System Discretization

e W Q ~ A J T Q - I

It may be verified that for A, given in Eq.(2.73),

AI =

-1 l 0 0 0

-1 -1 0 0 0

0 0 - 1 1 0

0 0 0 - 1 0

0 0 0 0 0

, Q =

and for T = 2 seconds

e-TcosT e-TsinT 0 0 0

-e-TsinT e-TCosT 0 0 0
eAJr = 0 0 e-* Te-T 0

0 0 o e-T 0

0 0 0 0 1

2 0 2 0 1

-2 2 -2 2 0

0 -4 2 -4 0

0 0 0 2 0

1 0 1 0 1

,056 .l23 0 0 0-

-.l23 .056 0 0 0

0 0 .l35 .271 0

0 0 0 .l35 0

0 0 0 0 1 -

Note that A, is given in the real number Jordan form. See Section B.4.
The log,,, of the norm of the error matrix E, = Adc - AAN,j) is tabulated for

each combination in Eq.(2.76) in Table 2.1 below. Since the particular norm used
is not critical, the Frobenius norm, defined as the square root of the sum of squares
of all matrix elements, is used. From Table 2.1 and corresponding Fig. 2.1 it can
be seen that N = 16 terms is sufficient for A, in Eq(2.75) even for matrices ACT
with relatively high norms. And, as we can see from Table 2.1, N may be chosen
as low as N = 6 with judicious choice of the scaling parameterj.

TABLE 2.1.
Loglo(1 Ed 1) vs. Truncation Number N

and Scaling Parameter j

, 1/ :..:lo; 1 -2.601 1 -4.965

-1.155 -2.180

j=3 j=4 j=5 "-
-14.448 -14.551 -14.551

-14.613 -14.551 -14.551

Section 2.4 Examples 67

FIGURE 2.1 Log (Norm&)) vs. Computation Parameters

Example 2. In this example the matrix Ad is taken to be A, given above. The
calculation used to determine A, is the truncated series in Eq.(2.63). We note that
the eigenvalues of L = I - A,, influencing the convergence of the series, can
exceed unit magnitude. In particular, X(L) are:

A(I-Ad) = IO,-0.86, -0.86, -1.06+j0.12, -1.06-j0.12] (2.78)

To illustrate the convergence properties, the power series Eq.(2.63) was evaluated
for all combinations of the parameters Nand j given by

and
j = 0, 1, 2, 3, 4, 5

N = 35, 30, 25, 20, 15, 10

AS in Example 1, the error matrix is defined to be

E, = A, - A , W)

(2.79)

(2.80)

where the explicit notation A,(NJ) is used to emphasize the dependence of the
calculated matrix on the computation parameters Nand j . The log,, of the norm
of the matrix E, is tabulated for the combinations indicated in Eqs.(2.79) in Table
2.2. As in Example 1 the Frobenius norm is used for convenience.

68 Chapter 2 System Discretization

We see from the results in Table 2.2 that the series Eq.(2.63) can be
truncated as high as N = 35 even when the maximum eigenvalue of L is greater
than unity. It is also noted that the truncation may be as low as N = 10 provided
that the scaling parameterj is appropriately selected. In practice, N can be fixed
at a nominal value, say 20, and j can be varied over 3 or 4 values to ensure good
convergence to the desired matrix. This is true whether the problem requires
discretizaxion or continualization.

As before, the information of Table 2.2 is given in graphical form in Fig. 2.2
to illustrate the convergence of the series Eq(2.63).

2-

0-

-2 -

-4-

a _.

-8 -

-10-

-1 2
0 1

I I I I

FIGURE 2.2 Log (Norm(E3) vs. Computation Parameters

Section 2.4 Examples 69

Example 3. In this example the following C-T state space representation is
considered:

0 1 0 0 0 ~ 0 0 0

0 0 1 0 0 ~ 0 0 0

-4 -4 -3 1 4 I O 0 1
0 0 0 - 1 O I O 1 0

0 0.5 0 0 0 I 1 0 0
- - - - - + ” -

l o 0 0 0 ~ 1 0 0
0 1 0 0 0 ~ 0 0 0

(2.81)

Note that A, is the same matrix used in Example 1, Eq.(2.73). The input signal
u(t) is specified over the interval 0 < t < 8T, with T = 2 seconds by the
components defined in Table 2.3.

TABLE 2.3. Input Signal for Example 3.

Time Interval

0.5 (COs(d(47)) - 1) sin(d(42)) r44n O S t t 4 T

u3(0 W) U , (O

Discretization: Using the sampling interval T = 2, the representation R, is
discretized into the following equivalents, each represented in the partitioned sysfem
mat& form of the given state space model in Eq.(2.81):

(a) R& = { A, , B& , C, , D& } , D-T step-invariant (SI) equivalent
(b) R,+ = { A, , B, , C, , Ddr } , D-T ramp-invariant (RI) equivalent
(c) R, = { A, , B, , C, , D, } , D-T bilinear transform (BT) equivalent

As was pointed out in Sec. 2.2, in the cases of (b) and (c) the five-matrix D-T
models of Eqs.(2.21) and (2.35) were first calculated. This was followed by a
conversion to the standard four-matrix D-T model using Algorithm R5R4. These
three results are given below:

70 Chapter 2 System Discretization

‘-.l00 506 .l92 .l48 1.100 I .787 .l27 .275
-.767 -.317 - M 9 .W .767 I 1.100 .l48 ,192
.274 -.l09 -.l11 -.l13 -.274 I .767 .W -M9

R~ =r ‘ds] =
0 0 0 .l35 0 I 0 .S65 0

C , Dds -550 .253 .O% .074 1.550 I 2.394 .W .l37

I -.l00 506 .l92 .l48 1.100

-.767 -.317 -.069 .W .767
I 2.084 .238 .309
I 1.235 .070 -.034

.274 -.l09 -.l11 -.l13 -.274 I -.l35 -.l04 -.l77

0 0 0 .l35 0 I 0 .374 0

-550 .253 .096 .074 1.550 I 3.042 .l19 .l54
- - - - - + - - -
1 0 0 0 0 I 1.1% .035 .W8

0 1 0 0 0 I .394 . 0 6 4 .l37

.200 .800 .200 .l00 .800 I 1.840
-.S00 -.200 .200 .l00 .800

-.800 -1.200 -.S00 .l00 .800
0 0 0 0 0

“0 .400 .l00 .050 1.400
- - - - -

I 1.040

I
I O
I 2.920
+ -

l 0 0 0 0 I 1.400
0 1 0 0 0 1 . 4 0 0

.l80 260-

.OS0 .060
-.020 -.l40

500 0

.090 .l30
- -

.050 .l00

.050 .l00

Responses of these models to samples of the input signal u(r) at f, = iT for i = 0,
1, 2, 3, 4, are given in Table 2.4 below. Also included in Table 2.4 for
comparison are the samples of the C-T system response. The norms of the
differences between the C-T response, y,(t,), and those of the three D-T models are:

A, =
Ab =
A,,,, =

y,(tJ - y&(tJ = 1.6975

y,(tJ - y,,,,(tJ I/ I = 0.87992 X 10”
y,(tJ - yJtJ = 0.59173 X lo”

Section 2.4 Examples 71

TABLE 2.4. Simulation Results for D-T Equivalents

I y2 I O.OO0 0.123 0.555 0.966 1.374

O.OO0 0.250 0.747 2.107 4.290

O.OO0 O.OO0 0.351 0.790 1.171

0.0oO 0.309 1.228 3.011 5.594

O.OO0 0.123 0.555 0.966 1.374

O.OO0 0.371 1.249 2.994 5.615

O.OO0 0.121 0.508 0.987 1.383

3 3
3 3
In order to illustrate the application of continualization procedures, i.e. the

determination of C-T models from a given D-T model, we will first "generate" a
D-T model using an inpudoutput identification procedure which will be presented
in Chapter 5 in detail.

Identification from Sampled Input/Output Data: As is well known, in order to
perform a successful identification, the input signal selected should be sufficiently
long and suflcienfly rich. To this end the selected input vector u'(f) is defined by

U,'(f) = U&) + U& - 10'1)
U z u = 40) + W - 12'1)
U;(t) = U3(t) + - 14n

where &(f) are given in Table 2.3. Using u'(f), the response y'(f) of the system in
Eq.(2.81) was calculated in the time interval 0 I t I 22T = 44 seconds. The
simulation of the C-T system in Eq(2.81) was accomplished by solving the state-
space differential equations at points 0.5 seconds apart. No measurement noise was
added to the system response. The signals (u*(f), y'(f)), shown in Figs. 2.3 and
2.4, were then sampled at intervals of T = 2 seconds yielding the input-output
samples (u'(fJ, y'(tJ} of a C-T system to be identified. For present purposes it
suffices that we obtain the "identified D-T" four-matrix model given by the
following system matrix:

72 Chapter 2 System Discretization

0

0

.l24

0

-.030
-

1

0

0

0

.058

0

-.017
-
0

1

1

0

376

0

.030
-

0

0

0 0

1 0

1.020 1.530

0 1

-.086 .281
- -
0 0

0 0

2.084

1.235

3.737

,352

.015
-

1.196

.394

.238

.070

.l78

- . O N

-.037
-
.035

,064

.309

-.034

.088

-.096

-.W8
-

.098

.l37

With the identification procedure used, the representation Rd is in the pseudo-
observable form. (Canonical forms will be discussed in detail in Chapter 3). As
an admissible set of pseudo-observability indices, {n,}, the following was selected,
namely {nil = (2, 3). The unique set of observability indices of R, is {ni} = (3,
2). As was mentioned earlier, more details on this identification procedure will be
presented in Chapter 5. Finally, the "identified D-T model" will now be used as
a basis for illustrating the continualization techniques.

Continualization: Using the sampling interval T = 2, the D-T representation Rd
above is continualized into:

(a) R, - C-T step-invariant (SI) equivalent
(b) Rcr - C-T ramp-invariant (RI) equivalent
(c) R, - C-T bilinear transform (BT) equivalent

As was pointed out in Sec. 2.3, to determine R,, it was first necessary to convert
Rd into an equivalent five-matrix representation, Rd5, using Algorithm R4R5.
Subsequently, using Eqs.(2.63), (2.64) and (2.67, the desired R,, was obtained.
To determine R&, the identified Rd was first converted to a five-matrix C-T repre-

FIGURE 2.3 Excitations for Example 3

Section 2.4 Examples 73

0 IO 20 30 40 t -
FIGURE 2.4 Responses for Example 3

sentation using Eqs.(2.69) to (2.71). Following this, Algorithm R5R4 was used to
obtain the desired four-matrix model, R,. The C-T representations thus obtained
are given below:

- -.W1 1.Ooo .m1 -.m2 -.010 I .394 .W
-4.070 -3.712 4.070 -6.702 5.474 I S52 .076

.OOO .OOO -.WO 1.001 -.W4 I 1.629 .l34

.344 .l47 -.344 -.033 1.061 I .415 -.030
R, =

-.074 -.038 ,074 -.295 -.260 I .033 -.036
- - - - + - -

1 0 0 0 0 1 1.196 .035
0 1 0 0 0 I .394 .064

-301

-4.070

.OOO

.344

-.074
-
1

0

1 .om
-3.712

.000

.l47

-.038
-
0

1

.m1
4.070

.ooo
-.344

.074
-
0

0

-.m2 -.010 I
-6.702 5.474 I
1.001 -.004 I
-.033 1.061 I
-.295 -.260 I
- - +

0 0 1

0 0 1

-.m3 -.W5
.012 .016

1.100 .l48

.766 .044

.l21 -.OS7
- -

1.Ooo .m1
-.m3 -.W

.l37

.096

,104

-.08 :
-.01!
-
.098

.l37

.OW

-.m3
.l92

-B69

-.M
-

.WO

.oo 1

74 Chapter 2

-1.158 -.076 1.158 -1.148 -.487

-.051 -1.028 .051 1.847 -1.502

.l58 .076 -.l58 1.148 .487

.051 .028 -.051 -.847. 1.502

-.051 -B28 .051 -.l53 -.502
- - - - -

System Discretization

-.832 -.030 .285

1.142 .316 .265

1.507 .222 .l63

.651 -.059 -.l58

.026 -.056 -.017
- - -

0 0 0 0 I .858 - M 1 -.l26

1 0 0 0 I -S03 "4 .084

It is worth mentioning that the eigenvalues of the matrix A, (= A,) obtained by
the continualization of Ad are:

(0 , -0.9844 , -1.0211 , -1.0004 +jl.o002 , -1.OOO4 - jl.o002}

which are only slightly different from those of A, given by Eq(2.74).

Having determined the C-T models above, the responses of these models to
the four samples of the input signal u(f), Table 2.3, were calculated, as was done
for the D-T models, Table 2.4. In order to assess the accuracy of the proposed
continualization procedures, only the samples of these C-T responses at the
sampling instants are considered. Table 2.5 contains these results as well as the
samples of the identified D-T model for comparison. The norms of the differences
between yd(fi) and the responses of the three derived C-T models are as follows:

From the normed differences, both for the discretization and the continualiz-
ation, it may be concluded that the RI transformation is superior to either of the
other two, primarily because of the particular selection of u'(f) which does not
contain step discontinuities. This should be expected since the SI transformation
assumes constant values of input between samples, and the bilinear transformation
(BT) is only satisfactory if lp,Tl < 0.5 for all poles p , of the C-T system, which
is not the case for this example.

Section 2.4 Examples 75

TABLE 2.5. Simulation Results for C-T Equivalents

4 (=.l 8 6 4 2 0

m- m m: m

O.OO0

7.110 4.108 1.927 0.567 O.OO0

1.374 0.966 0.555 0.123 O.OO0

5.594 3.011 1.228 0.309

O.OO0 0.322 0.765 1.161 1.585

O.OO0

1.374 0.966 0.555 0.123 O.OO0

5.594 3.011 1.228 0.309

O.OO0 0.253 1.219 3.001 5.578

O.OO0 0.164 0.561 0.956 1.374

With the accuracy given in Tables 2.4 and 2.5 it cannot be seen just how well
the C-T idenrzped system output y,(t,) matches that of the original C-T system, but
the largest magnitude difference between the two, component by component, is
0.421 X lo4. The reader is urged to verify parts of the above examples using the
same, or different, input data.

We conclude this chapter with a short section on an efficient method for the
calculation of truncated power series.

Polynomial Reduction Using the Cayley-Hamilton Theorem

In several developments presented earlier, it was required that an n x n matrix,
say A, be calculated using a truncated power series of the form

N
A = c ciX‘ (2.82)

i -0

In this section we discuss an efficient method for the calculation of truncated power
series, referred to as Algorithm POLR. The series of Eq(2.82) can be interpreted
as an evaluation of the matrix polynomial C(X) of the matrix X where the W‘‘ order
polynomial C@) is given by

N

C(S) = c C i S i (2.83)
i -0

As a result of the Cayley-Hamilton theorem, the calculation of Eq(2.82) can
be reduced to the evaluation of an @-l>” order matrix polynomial R@) of the
matrix X where the coefficients ri of the scalar polynomial R@) satisfy the
following n conditions:

76 Chapter 2 System Discretization

R(1,) - C(1J , for i - 1,2, .-,n (2.84)

where X, is the z?' eigenvalue of the n x n matrix X. Using this approach, it can be
verified that given the matrix X and the N+ 1 coefficients c, of the polynomial C(s),
the n coefficients of the polynomial R(s) can be obtained with the following:

Algorithm POLR

Syntax: C , X (POLR) * r

Algorithm:

1. Set c, * r, , for 0 S i I N
2. Set N+ 1 * k and det(s1 - X) * A s)
3. Set k-l * k
4. Set rk+,+, - rk$ * r,,,, for 0 I j S n-l
5. If k > n, go to 3; else, stop

A listing Of Algorithm POLR, implemented in L-A-S, may be found in
Appendix C.

If the coefficients$ define the (monic) characteristic polynomial of X,

n-l
f(s) = det(S1-X) A S" + E ~ S '

i -0
(2.85)

then,the first n coefficients 5, 0 I j S n-l define the (n-l)" order polynomial R(s)
satisfying Eq.(2.84).

From Algorithm POLR it is clear that evaluating the matrix A in Eq.(2.82)
is equivalent to evaluating

A = c r i X '
n-l

i - 0
(2.86)

thereby considerably reducing the computational time and, more importantly, the
accumulation of round-off errors. This method works well even if X is completely
general with multiple eigenvalues. The POLR algorithm given above may be
considered as a computational simplification of a standard procedure based on the
Cayley-Hamilton theorem of matrix algebra. This standard procedure calculates
coefficients r, of the polynomial r(s) from

r(k)(l,) - C (~) (A ~) , for i = 1,2, ..., m and k = 1,2, ..., n, (2.87)

Section 2.5 Summary n

where X, is an eigenvalue of X, n, is its algebraic multiplicity and m is the number
of distinct eigenvalues. Obviously, if all of the eigenvalues of X are distinct, then
m = n and n, = 1 for all i. The notation of Eq.(2.87) is defined by

(2.88)

The computational simplification of the POLR algorithm is useful in that when
X has multiple eigenvalues, it is neither necessary to determine the algebraic
multiplicities, nor to evaluate the derivatives in Eq.(2.88). The POLR algorithm
also works for matrices having a spectral radius greater than 0.5.

2.5 Summary

To summarize the developments in this chapter a set of numerically robust
algorithms was presented. These algorithms deal with the often encountered
problems of discretization of continuous-time (C-T) models as well as the inverse
problem of recreating a C-T model from a given discrete-time (D-T) model. This
latter operation we have referred to as continualization. The algorithms described
comprise, in addition to the standard SI (ZOH) procedures, two methods which are
commonly referred to in the signal processing literature, namely the bilinear
transformation (BT) and a method called the ramp-invariant (RI) method that is
equivalent to the next higher order approximation beyond the SI (ZOH), represent-
ing a piecewise linear approximation to the input functions. With these algorithms
the design engineer has complete flexibility to move between the continuous and
discrete model domains.

To assist readers in the "maze" of "time-domain" conversion algorithms
introduced in this chapter, as well as in Chapter 1, and to relate these algorithms
to their L-A-S implementations given in Appendix C, let us review these algorithms
once more in a slightly different way. The list below relates algorithms that have
been discussed with the names of their L-A-S "counter-parts," i.e. L-A-S operators,
or subroutines:

Algorithm
Name

LA-S Operator or
Subroutine Name

EAv EAv.SVB
EAT EAT. SBR
EATF EATF and EATF.SBR
LNM LNM and LNM.SBR
LNMj LNMj.SUB
SI-C-D SICD.SBR
RI-C-D RICD.SBR

78

BT-C-D
BT-D-C
SI-D-C
RI-D-C

SQM
POLR
POM
FACT
FLN
B R 4
R4R5
JFR
EGV
EFJF

Chapter 2 System Discretization

BCDC.SUB
BCDC.SUB
not available
not available

SQM and SQM.SUB
POLR and P0L.R.SUB
POM and POMSUB
FACT.SUB
FLN.SUB
IUR4.SUB
R4RS.SUB
JFR
EGV
EFJF

"Service" Algorithms:

Note that whenever an L-A-S operator is available, it is more convenient to
use the operator version, rather than the corresponding subroutine, since its
execution is much faster. The listings of certain subroutines,are given to show how
they might be implemented using the L-A-S language, or any other CAD package.
A close correspondence should be noticed between the steps of an algorithm and
the associated L-A-S implementation.

Historically, the development of the L-A-S language progressed by constantly
undergoing modifications and upgrading. Early on, all algorithms were implement-
ed as subroutines. As specific algorithms saw increasing use, users requested
"single step operations" for speed and convenience. As L-A-S continues to grow,
this trend of "upgrading" subroutines to operators will, no doubt, continue. Thus,
in the future some algorithms which are implemented as subroutines in this text will
be implemented as operators.

Recall that both Algorithms BT-C-D and BT-D-Care implemented by a single
L-A-S algorithm with the syntax:

A,, B,, T, Zcdc (BCDC) - 4, B,, P
where, in the case of the algorithm flag, Icdc:

Icdc = 1, it performs the task of BT-C-D, Eqs.(2.35), while for
lcdc = 2, Eqs.(2.71), required by BT-D-C are used.

Some of these algorithms, such as RI-C-D, BT-C-D and BT-D-C calculate five
matrix models from a standard four matrix model, albeit in a different time-domain,
while other algorithms, e.g. RI-D-C, calculate a four matrix model from a five
matrix model. To help this situation, a set of L-A-S algorithms has been developed
which greatly facilitates these various time-domain conversions. This is achieved
by developing algorithms which convert from a standard four-matrix model in one
domain into a corresponding standard four-matrix model in the other domain. All

Section 2.5 Summary 79

of these algorithms and subroutines use four matrices in R = (A,B,C,D} and

produce a corresponding "converted" representation I? = { &fl,c,fi). The
syntactical definitions of these algorithms are

For C-T 4 D-T conversions: (2.89)

A,, B,, c,, T, E (sRcD) L Ad, Ddr

As the names of the algorithms in Eq.(2.89) suggest, given a C-T state space
representation:

R, = {A,,B,,C,,Dc) and the sampling interval T

0 Algorithm SRCD calculates four matrix D-T models for both SI and RI
equivalents:

Rh = (A*,BhrChtDJ and Rdr = {A&,Bdr,C&,D&} (2.91)

where Ah = Adr = A d and c, = c d r = c, .
0 Algorithm BLCD calculates a four matrix D-T model using the bilinear

transformation:

Rdb = ~Adb,Bdb,Cdb,Ddb) (2.92)

Both algorithms, in addition to using the "basic" conversion algorithms, i.e.
E;qW and BT-C-D (or the subroutine BCDCSUB), also use Algorithm WR4 to
obtain the four matrix D-T model given by Eqs(2.91) and (2.92).

Similarly, considering the algorithms in Eq.(2.90), given a D-T state space
representation:

Rd = (Ad,Bd,Cd,Dd} and the samphlg interval T

0 Algorithm SRDC calculates four matrix C-T models for both SI and RI
equivalents:

R, = (Aa,Ba,Ca,D,} and R, = (A,B,,CWD,} (2.93)

where A, = A, = A, and C, = C, = C, .
Algorithm BLCD calculates a four matrix D-T model using the bilinear
transformation:

R, = {A,sB,*C,,D,} (2.94)

80 Chapter 2 System Discretization

In accordance with the developments in Section 2.3, Algorithm SRDC, in
addition to using the basic conversion Algorithm LNM, first uses Algorithm R4R5
in order to obtain the five matrix D-T model required by RZ-C-D. On the other
hand, Algorithm B D C , in a similar manner to the previously mentioned BLCD and
SRCD, uses Algorithm BT-C-D, i.e. subroutine BCDC.SUB, followed by Algorithm
R5R4 in order to obtain the desired four matrix model Rd, given by Eq(2.94).

In order to facilitate time domain conversions even further, a single
"unifying" algorithm, referred to as CZZIT, has been developed. Its syntax is:

A, B, C , D, E , Isrb (CTDT) -A,%, c, b (2.95)

where, given a state space representation in ONE domain (C-T or D-T)

R = {A,B,C,D}

it calculates the equivalenr model in THE OTHER domain (D-T or C-T)

The desired conversion is specified by the seventh input argument, i.e. algorithm
flag Isrb (where "srb" stands for the srep, ramp and bilinear transformations).
More specifically, for Isrb = 1, 2 or 3, Algorithm CZDT assumes that the given

R is a C-T model and that the representation I? is consequently a D-T model
corresponding to SI , RI or BT equivalents, respectively.

Conversely, if the algorithm flag Isrb = -1 , -2 or -3, the algorithm treats the

the given representation R as the D-T model and calculates a C-T model I? as an
SI , RI or BT equivalent.

For more details about this "unifying" algorithm readers are referred to
Chapter 5, where a full description of Algorithm C"DT from the user's point of
view is given. Listings of all algorithms mentioned in this section, implemented
using the L-A-S language, are given in Appendix C.

2.6 References

Brogan (1991), Chen (1984), Golub and Van Loan (1991) and Kailath (1980)
are a few of the better standard references in the general context of multivariable
systems. More specific references are Bingulac and Cooper (1990) for SI and RI
discretization techniques, and Cooper and Bingulac (1990), as well as Bingulac and
Vanhdingham (1992), for background on computing the corresponding "contin-
ualized" models. See also h u b (1985) and Moler and Van Loan (1978) for some
interesting reading on the topic of discretization.

Section 2.6 References 81

Bingulac, S. and D. Cooper (1990), "Derivation of discrete- and continuous-time
ramp invariant representations," EZectronics Letters, 26, 10, 664-666.

Bingulac, S. and H.F. VanLandingham (1991), "Robust algorithms for the
transformation of MIMO system between continuous- and discrete-time domains,"
Proceedings of the 29"h Allerton Conference, University of Illinois, October 1991,
pp.448-454.

Bingulac, S. and H.F. VanLandingham (1992), "A unified approach to the
discretization and 'continualization' of "0 systems," Control Theory and
Advanced Technology (C-TAT), Journal of the Mita Press, 8, 3.

Brogan, W.L. (1984), Modem Control Theory, 3" Edition, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Chen, C-T. (1984), Linear System 'Ilteory and Design, Holt, Rinehart and Winston,
Inc., New York, NY.

Cooper, D. and S. Bingulac (1990), "Computational improvement in the calculation
of the natural log of a square matrix," EZectronics Letters, 26, 13, 861-862.

Golub, G. and C.F. Van Loan (1991), Matrix Computations, The Johns Hopkins
University Press, Baltimore, MD.

Haykin, S.S. (1972), "A unified treatment of recursive digital filtering," IEEE
Trans. on Automatic Control, February 1972, pp 113-116.

Kailath, T. (1980), Linear Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ.

h u b , A.J. (1985), "Numerical linear algebra aspects of control design computa-
tions," IEEE Trans. on Automatic Control, AC-30, 2, 97-108.

Moler, C.B., and C.F. Van Loan (1978), "Nineteen dubious ways to compute the
exponential of a matrix," SIAM Review, 20, 801-836.

VanLandingham, H.F. (1985), Introduction to Digital Control Systems, Macmillan
Publishing Co., New York, NY.

82 Chapter 2 System Discretization

2.7 Exercises

2.1 Two (4 X 4) matrices A, and A,, are given below:

-1 1 0 -1

-1 -2 1 0

1 0 - 2 1

0 0 0 - 2

-1 1 0 -1

-1 -2 1 1

A, =

* c , =
1 0 -2 1

0 0 0 - 1 -

Calculate:

(a) The eigenvalues of A, and A,,.
(b) Verify that A,, is not diagonalizable.
(c) Determine A, = exp(A,1) and A,, = exp(A,,T) with a sampling interval

(d) Determine A,, = In(AJT and Acln, = In(A,,)/T
(e) Verify that A, = A,, and that A,, = A,,-.
(f) If available, use some other software package to perform the same calcula-

tions. Many such packages do not implement functions of a matrix if the
matrix is not diagonalizable.

of T = 2 sec.

Hints:

0 To calculate the eigenvalues of a matrix, use operator EGV.
0 To verify if a matrix A is diagonalizable, check the rank, or null space

To calculate the rank, or null space, use operator N R S .
0 To calculate the natural log of a matrix, use either (or both) the

operator LNM and/or the subroutine LNMj.SUB.
0 To calculate the matrix exponential function of a matrix, use either (or

both) the operator EATF and/or the subroutine EATj.SUB.
0 Verify that subroutines LNMj.SUB and EATj.SUB are not applicable

in the case of non-diagonalizable matrices.

of the matrix B = A - &In , where X, is an eigenvalue of A.

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER21+DPF.

Section 2.7 Exercises

2.2 Two (4 X 4) matrices A, and A, are given below:

I -.9 .8
-.8 .l

-1.4 .8

-.9 .8

-.8 .l

-1.4 .8 Ad1 =

1

0

1.5

0

1

0

1.5

0

-.8

1.7

.2

.8

-.8

1.4

.2

.5

83

Calculate:

(a) -the eigenvalues of A, and A,,.
(b) Verify that A, is not diagonalizable.
(c) Determine A, = ln(A,)/T and A, = ln(A,)/T with a sampling interval of

(d) Determine A-, = exp(A,I) and Adl- = exp(A,,q.
(e) Verify that A, = A,, and that A, = AdW.
(0 If available, use some other software package to perform the same calcula-

T = 2 sec.

tions.

Hints:

0 To calculate the eigenvalues of a matrix, use operator EGV.
0 To verify if a matrix A is diagonalizable, check the rank, or null space

0 To calculate the rank, or null space, use operator N R S .
To calculate the natural log of a matrix, use either (or both) the
operator LNM and/or the subroutine LNMj.SUB.

0 To calculate the matrix exponential function of a matrix, use either (or
both) the operator EAW and/or the subroutine EATj.SUB.

0 Verify that subroutines LNMj.SUB and EATj.SUB are not applicable
in the case of non-diagonalizable matrices.

of the matrix B = A - X,&, , where X, is an eigenvalue of A.

A version of an L-A-S program which solves this exercise is available in the L-AS
subdirectory C:\LAS\DPF\EXER22.DPF.

84 Chapter 2 System Discretization

2.3 Using the following system state space representation Rd of a D-T " 0
system:

1.1 .8 1 . 8 1 1 0

-.8 .l 0 .6 I 0 -1
-.6 -.8 -.S .2 I -1 0
0 0 0 . 5 1 0 1

1 0 0 0 1 1 0

1 0 1 0 1 0 0

-1- "- "_

with sampling interval T = 2 sec., and the number of samples N = 41, calculate:

-the response yd(k), k=[O,N-l], of Rd to zero initial conditions and an input
vector u(k), with u(O)=O. For non-zero values of u(k), i.e. U@), k=[l ,N-l] ,
use pseudo random numbers.
"equivalent C-T models using:
(1) -a step-invariant assumption - the SI-C-T model R,
(2) -a ramp-invariant assumption - the RI-C-T model R,
(3) -a bilinear transformation - the BT-C-T model Rcb
-the responses y,(t), y,(t) and yJt) of the obtained SI-C-T, RI-C-T and
BT-C-T models, respectively, to zero initial conditions and an input vector
u(t) having at t = kT, k=[O,N-l], the same values u(k) used in calculating the
response yAk) of the given system R,,.
Plot all responses and check the differences between yd(k) and the responses
of each obtained CLT equivalent model.
Determine which C-T model gives the response which is closest to ydk).

Define the matrices in Rd using either the DMA or the INF" operator.
Define the scalars T and N using either the DMA or the DSC operator.
The system order and number of inputs may be extracted from Ad and
Bd either by the operator CD1 or subroutine GETD.SUB.
The matrix U containing the samples u(k) may be defined using
operators DPM and SHR.
Zero initial conditions may be established using the DZM operator.
The responses of the D-T and C-T models may be calculated using
CDSR.SUB.
Response plotting may be performed using the DIS operator.
For axes labeling and scaling, operators YLAB, XLAB and YXSC may
be used.

Section 2.7 Exercises 85

0 The required C-T models can be calculated in the following two ways:
= The "easy" way, i.e. using subroutine CTDTSBR, where the

quantities Isrb = -1, -2 and -3 should be used for the algorithm
flag Isrb.
The "hard" way, i.e. for

(2.65) and (2.9).

(2.33), (2.67) and (2.68), as well as subroutine R4R5.SUB
for converting the given four-matrix D-T model R, into the
required five-matrix model given by Eq.(2.21).

0 -the BT-C-T model use Eq~(2.70) - (2.72) and subroutine
R5R4.SUB for converting the obtained five-matrix C-T model
into the required four-matrix model Reb.

0 Note that the matrix A, has multiple eigenvalues and that it is not
diagonalizable. Therefore, subroutines LNMj .SUB and EATj .SUB
should not be used!
The L-A-S program EXER23.DPF, residing in the subdirectory
C:\LAS\DPF\, contains a possible solution to Exercise 2.3.

0 -the SI-C-T model use operators LNM and EATF, Eqs.(2.63),

0 -the RI-C-T model use the same operators, but Eqs.(2.63),

2.4 Using the following system state space representation R, of a C-T MIMO
system:

-1 1 0 1 1 1 0

1 -1 1 0 1 0 - 1

1 -1 0 0 1 - 1 0

0 0 0 - 1 1 0 1
-1- "_ "_

1 0 0 0 1 1 0

1 0 1 0 1 0 0

with sampling interval T = 2 sec., and the number of samples N = 41, calculate:

(a) "the response y,(k), k=[O,N-l] , of R, to zero initial conditions and an input
vector U@), with u(O)=O. For samples u(kT), k=[l,N-l], use pseudo random
numbers.

(b) -equivalent D-T models using:

(1) -a step-invariant assumption - the SI-D-T model Rdr
(2) -a ramp-invariant assumption - the RI-D-T model Rdr
(3) -a bilinear transformation - the BT-D-T model Rdb

86 Chapter 2 System Discretization

(c) -the responses ydr(f), ydr(f) and y&) of the obtained SI-D-T, RI-D-T and
BT-D-T models, respectively, to zero initial conditions and an input vector
u(k) having the same values as u(kT), k=[O,N-l], used in calculating the
response y,(t) of the given system R,.

(d) Plot all responses and check the differences between y,(kT) and the responses
of each obtained D-T equivalent model.

(e) Determine which D-T model gives the response which is closest to y,(kT).

Define the matrices in R, using either the DMA or the INPM operator.
Define the scalars T and N using either the DMA or the DSC operator.
The system order and number of inputs may be extracted from A, and
B, either by the operator CD1 or subroutine GETD.SUB.
The matrix U containing the samples u(k2') may be defined using
operators DPM and SHR.
Zero initial conditions may be established using the DZM operator.
The responses of the C-T and D-T models may be calculated using
CDSR.SUB.
Response plotting may be performed using the DIS operator.
For axes labeling and scaling, operators YLAB, XLAB and YXSC may
be used.
The required D-T models can be calculated in the following two ways:
= The "easy" way, i.e. using subroutine CTDT.SBR, where for

the algorithm flag Isrb the quantities Isrb = 1, 2 and 3 should
be used.
The "hard" way, i.e. for

0 -the SI-D-T model use the operator EATF and Eq.(2.9).
0 -the RI-D-T model use the same uperator, but Eqs.(2.32),

(2.33) and the subroutine RSR4.SUB for converting the obtained
five-matrix D-T model, Eq.(2.21), into the required four-matrix

0 -the BT-D-T model use Eq~(2.35) and subroutine R5R4.SUB
for converting the obtained five-matrix D-T model into the
required four-matrix model R&.

model Rdr.

Note that the matrix A, is singular, has multiple eigenvalues and is not
diagonalizable. Therefore, the subroutines EATj.SUB should not be
used!

The L-A-S program EXER24.DPF, residing in the subdirectory
C:\LAS\DPF\. contains a Dossihle solution to Exercise 2.4.

Chapter 3 System Modeling

In this chapter we will elaborate on the brief introduction of system models
given in Chapter 1. In carrying out design problems engineers and analysts
frequently need to convert between various system descriptions for insight into the
different phases of the design process. The principal linear, time-invariant,
dynamic system model types considered in this chapter are:

(1) State space models,
(2) Transfer function matrices, and
(3) Matrix fraction description (MFD) models.

In the first section single-input, single-output (SISO) systems and their
canonical representations are considered.

3.1 Canonical Forms for SISO Systems

As an introduction to the special standard forms for representing systems in
state space, we will restrict our attention to SISO systems in this section. Later in
the chapter the concepts will be extended to MIMO systems. There are three main
state space structures that are recognized as "standard:"

e The controlluble canonical form,
e The observuble canonical form, and
0 The Jordun canonical form.

These three forms also have versions which have minor variations, which can arise,
for instance, from different labelings of the state variables. The following
discussion will be presented from the point of view of C-T systems and the Laplace
Transform variable, S; but the reader should keep in mind that exactly the same
canonical forms also hold for D-T systems with the corresponding z-Transform
notation.

In the following each of the three forms mentioned above will be studied as
they pertain to the SISO transfer function:

where the numerator and denominator of the transfer function g(S) are polynomials
given by

11 m

87

88 Chapter 3 System Modeling

Of course, it is well known that the transfer function of Eq.(3.1) represents a
system described by the differential equation

For the model in either form to be realizable, the order of the numerator, m, must
be less than or equal to the order of the denominator, n. In the subsequent
discussions it will be assumed that U,, = 1 and m = n, i.e. a proper system.

3.1.1 The Controllable Canonical Form

The first method to be presented is a state model based on a natural extension
of the phase variables of a differential equation, namely,

dy d""y
xl=Y , %=x, ... , x.=-

d P 1
In order to simplify the notation, a third-order transfer function will be used for the
development. However, because of the regularity of the canonical form, the
general case will be clear. Consider that the transfer function, g@), of Eq.(3.1) is
given by

Y(S) = b3s3 + b2s2 + bls +bo
= -

4s) s3 + u2s2 + u,s +ao

Alternatively, g(s) could be written as

y(s) = b3 + b2s" + b,s-* + b , ~ - ~
= -

1 +U&' + up-2 + u0s-3

(3.4)

(3.5)

From Eq43.5) we can solve for y(s) as

y(s) = (b3 + b2s" + bls-2 + b , ~ - ~) e (s) (3.6)

where

e(s) = W (3.7)

An equivalent expression for e(s) can be obtained by cross-multiplying in Eq.(3.7)
and solving for e($) in terms of itself and u(s), i.e.

1 + u2s" + up-2 + u0s-3

e(s) = u(s) - (5 s " + + ~,,s-~)e(s) (3.8)

The lower portion of Fig. 3.1 illustrates Eq(3.8) in that the signal e is the sum of

Section 3.1 Canonical Forms for SISO Systems 89

the four terms: U , -w-'e, -u,s2e and - ~ " e ; the last three terms are the "feedback"
terms in the diagram. It is easy to see how the diagram of Fig. 3.1 extends to
higher order systems by cascading the n integration blocks together for an n"' order
system.

By labeling the outputs of the integration blocks as state variables, as shown
in Fig. 3.1, the following equations may be derived:

q t) = x2(0

q t > = x3(0 (3.9)
S (t) = - uoxl(t) - U , x2(t) - %x3(r) + ~ (t)

Finally, from Eq.(3.6) the upper portion of Fig. 3.1 may be drawn; that is, y(s) is
a linear combination of the signal e(s) and its integrals. We may refer to S'e(s) as
the integral of e(s). Thus, the output equation is

r(t) = (bo -4b3)x l (f) + (b , -a1b3)@ + (b, -~2b3)x3(t) + b 3 W (3.10)

When Eq~(3.9) and (3.10) are put into a vector-matrix form, the following
structure of the state space model is obtained.

f i t) = [bo-uob3 b , - ~ , b ,

In general, the controllable canonical SISO model is given by

t(t) = A, x(t) + b, ~ (t)

y(t) = c, ~ (t) + d, ~ (t)

where

(3.11)

(3.12)

(3.13)

c, = [Cl e*. c, 1, d, = [b,I

with a = [ao ... and c i = bi-,-ui-,bn for O s i s n - l (3.14)

Note that for SISO systems A is an (n X n) matrix, b is an (n X 1) column, c is
a (1 x n) row, and d is a scalar.

Chapter 3 System Modeling

FTGURE 3.1 SISO Feedback (controllable) Form

As will be made clear later, the canonical form of Eqs.(3.11), represented in
Fig. 3.1, will be called the SISO feedback (controllable) form. Its main property
is that the input vector b, has a unit element at the location corresponding to the
row of A, with non-zerohon-unity elements. A modification of Eq~(3.11)
preferred by some authors is obtained by labeling the states in Fig. 3.1 in reverse
order. In this case, with x1 and xj interchanged in Fig. 3.1, the Eqx(3.11) become

(3.15)

which presents a different looking, but still, a controllable form.
The controllable canonical form of either version provides an extremely useful

method of obtaining a set of state equations from a given transfer function. With
sufficient practice the reader will be able to skip the intermediary diagram and fill
in the state model directly from the transfer function. For instance, in Eq~(3.11)
the upper rows of the state coefficient matrix are formed from a shifted identity
matrix, while the last row has a direct correspondence to the denominator of the
transfer function. The input matrix is all zeros except for the last entry, which is
unity. The output matrix and feedthrough element incorporate the numerator

Section 3.1 Canonical Forms for SlSO Systems 91

coefficients in a specific manner. Note that the absence of the 4 (feedthrough)
element greatly simplifies the output matrix.

3.1.2 The Observable Canonical Form

In this section a second state space form will be presented based on the same
transfer function g(s) in Eq.(3.4) or Eq(3.5). In a later section the concept of
equivalent state space descriptions, i.e. when two state models represent the same
system, will be discussed. For now it is sufficient to accept the non-uniqueness of
state space models.

As in the previous section the generic third-order system will be used for the
development. After cross-multiplying in Eq.(3.5) we isolate y and group terms as
follows.

where the argument S was omitted for simplification. The diagram for Eq(3.16)
is illustrated in Fig. 3.2. To elaborate, Eq.(3.16) contains four terms for y(s); one,
a direct feedthrough from U@), and three others which are associated with one, two,
or three integrations. The reader should be able to follow the contribution of each
term to the output signal. For instance, the single-integration term, s"(b,u - W),
is incorporated into the diagram of Fig. 3.2 by feeding the signals b,u(s) and -ary(s)
into the final integrator block.

As in the previous case of Fig. 3.1 state variables are assigned to the outputs
of the integrator elements in some order. With the assignment shown in Fig. 3.2
the resulting observable canonical form is given by the following structured
equations:

In general, the observable canonical SISO model is given by

k(r) = A, x(z) + bo u(r)

YO) = c, x(t) + do

(3.16)

Chapter 3 System Modeling

FIGURE 3.2 Observer (Observable) Canonical Form

where

(3.18)

with

To reiterate, for SISO systems A is an (n X n) matrix, b is an (n X 1)
column, c is a (1 x n) row, and d is a scalar. The canonical form Eqs.(3.18),
represented in Fig. 3.2, is called the SISO obseWr (observable) form. As a dual
property to the controllable form Eqs.(3.1 l), the row vector c,, has a unit element
at the location corresponding to the column of A, containing non-zerolnon-unity
elements.

Again, a variation of Eqs.(3.17) may be obtained by reversing the order of
the state variables. Thus, with x1 and xj interchanged in Fig. 3.2, the Eqs.(3.17)
become

Section 3.1 Canonical Forms for SlSO Systems 93

which presents another possible observable form.

3.1.3 The Jordan Canonical Form

The third specific form of state space representation of a system to be
discussed corresponds to a diagonal, or block diagonal, coefficient matrix, which,
as we will see, implies some form of decoupling of the system. This representation
is referred to as the Jordan canonical form because the resulting coefficient matrix
is that of a Jordan. canonical matrix. Before discussing the more general Jordan
form we will consider the simple, but important, case where the transfer function
g(s) has distinct poles. In this case the partial fraction expansion of g($) is

g@)=b3+-+-+”?- rl ‘2
r

S - l , S - l , S - l 3
(3.21)

The diagram for Eq(3.21) is illustrated in Fig. 3.3. Note the decoupling of the
dynamics into first-order blocks. With the state variables as labeled in Fig. 3.3,
the corresponding state space representation may be written directly as

0 0 A3
(3.22)

If the roots are not distinct, for instance, if A, = A,, then the partial fraction
expansion becomes

(3.23)

94 Chapter 3 System Modeling

U

0

X

X

PIGURE 3.3 Block Diagram for a System with Distinct Poles

Figure 3.4 illustrates the diagram corresponding to Eq(3.23). Note that the
dynamics associated with common pole, X,, are separated from the distinct pole,
X3. Thus, the Jordan form model results more generally in a "block diagonal"
structure, where each block is associated with one of the distinct poles. The
corresponding state equation for Fig. 3.4 is given by

(3.24)

Equation (3.22) or Eq(3.24) completes the third state model representing g@) in
Eq.(3.4). Based on previous knowledge, the reader should be able to extend this
third-order example to more general systems, including the extension to higher-
order systems with repeated poles of degree greater than two. The Jordan form
structure is discussed further in Appendices A and B. Obviously, state model
representations for a given system are not unique. In the next section the concept
of general state model equivalence is discussed. We summarize with some general
remarks regarding Jordan form models for SISO systems.

The generalization of Eqs.(3.22) is clearly a diagonal coefficient matrix and
column of ones for the input matrix, but when one or more pairs of poles
(eigenvalues) are complex conjugates, it is sometimes more convenient to write the

Section 3.1 Canonical Forms for SlSO Systems 95

RGURE 3.4 Block Diagram for System with Multiple Poles

coefficient matrix in a real number Jordan form. For example, if XI = U, + jo,
and X, = U, - j w I , where j represents (-l)'*, the real parameters, U, and W,, are
used instead of the complex values, X, and X,, as illustrated in the following:

A coefficient matrix as shown above corresponds to a partial fraction of second
order with complex conjugate roots, i.e.

4,s + 40

(S - a,)2 + 0,
2

in place of - + - rl '2

S - l , S - A ,

The generalization of Eqs.(3.24) is more involved. As we know, when a
matrix A has multiple eigenvalues, the resulting Jordan form matrix may, or may
not, be diagonal. It depends on the set of linear independent eigenvectors for A,

96 Chapter 3 System Modeling

as discussed in Appendix A. The general structure is, however, "block diagonal",
meaning that the Jordan form for A, say J, has r blocks along the diagonal, where
r is the number of linearly independent eigenvectors. Thus, if P is the modal
manix, i.e. the transformation matrix relating the similar matrices A and J, then

where the "Jordan blocks," J,, 1 5 i 5 r, are associated with a single eigenvalue
and may have dimension up to the multiplicity of the eigenvalue. The "block"
associated with a non-repeated eigenvalue is simply the scalar eigenvalue itself. All
of the nontrivial blocks have the following form:

I l L 1 0 ' " 0

0 L 1 - 0 0

where the same eigenvalue is repeated along the main diagonal with ones along the
super diagonal.

Appendix B contains a description of a realiable algorithm for calculating the
modal matrix of a general non-diagonalizable square matrix.

3.2 Equivalent State Space Models

Since we are familiar from the previous sections with the fact that the choice
of state variables for a system is not unique, let us consider the conditions under
which two state models represent the same system. Repeating the generic state
space representation from Qs.(1.7),

x(?) = Ax(?) + Bu(r), x(rJ

S(?) = Cx(r) + Dn(t)
(3.25)

Although Eqs.(3.25) is a C-T model, we could just as easily work with the D-T
model of Eqs.(l.30) as a starting point.

Let us refer to Eqs.(3.25) as system representation S. Then any other
representation must be associated with an invertible transformation of state vectors

Section 3.2 Equivalent State Space Models 97

in order to uniquely relate one representation to another. We formalize with the
following definition.

Definition 3.1 The C-T state model S given by

x(r) = Ax(r) + Bu(t), x(tJ

y(r) = Cx(r) + Dn(t)

where x is an (nx 1) vector, U is an (mx 1) vector, y is a (p X 1) vector
and the matrices A, B, C, and D are constant with compatible dimensions
is said to be equivalent to the C-T state model C given by

if and only if €(rd = P-' x(rJ ,

F = P " A P , G = P " B , and H = CP (3.26)

It should be clear that Def. 3.1 is derived from the transformation

x(t> = P W) (3.27)
where P is required to be an (n X n) nonsingular (invertible) constant matrix.

It is easy to show that the transfer matrices of the two representations S and
E are equal, as we would expect since they represent the same system. From
Eq.(1.38), Def. 1.9, the transfer matrix of S is given by

G(s) = C(SI -A)"B + D (3.28)

Similarly, the transfer matrix of C, using the results of Def. 3.1 above is

C(S) = (CP)[SI - (P"AP)]-'(P-'B) + D (3.29)

By introducing P'IP for the identity matrix I in Eq.(3.29), and factoring a P' to
the left and a P to the right from the bracketed expression,

G(s) (CP)[P"(SI - A)P]" (P"B) + D (3.30)

Simplifying the expression in brackets,

G(s) = (CP) P"(sI - A)-' P (P"B) + D (3.31)

98 Chapter 3 System Modeling

which reduces to Eq.(3.28) upon cancelation of the PIP factors.

3.2.1 Transformations between State Models

In Def. 3.1 the representation S, = {A,, B,, C,, Dl} is equivalent to
representation S, = {P'A,P, P'B,, CIP, Dl} = {A2, &, G, D,}. Reversing the
transformation, i.e. if T = P', then the representations S, = {A2, h, C,, D,} and
{TA2T1, T&, C2T', D,} are equivalent. It is easy to show that this last
representation is back to S,. Since the similarity, or equivalence, transformation
leaves the D matrix unchanged, it will be convenient in the sequel to represent the
algorithm used for this procedure as

A, > B, > C, y P (Sm) - 4 9 B2 9 C2 (3.32)

It is interesting to investigate the particular structure of T'AT for some
specific transformation matrices T or P. Consider the case for T satisfying

ti+l = Ati , for 1 S- i S- n-l (3.33)

where t, is the I* column of T. Therefore, with t = t, we may write

T = [t At ... An"t] (3.34)
Assuming that the column t assures the non-singularity of T, it may be easily
shown that the structure of the transformed (similar) matrix A, = T'AT is given
by

0 0 0 .*. 0 -a,

1 0 0 ... 0 ' U ,

A, = T"AT = 0 l 0 0 -3
. . .

0 0 0 ... 1 -a"-l

Eq(3.35) should be verified by considering the equation T As = A T.
In the dual sense, if A, = TAT' where now the rows ti satisfy

tl t

T =
t A G =

- t n - . t A""

(3.35)

(3.36)

then A, becomes

Section 3.2 Equivalent State Space Models 99

A, = TAT" = (3.37)

Again, it is assumed that the row t assures that T is nonsingular.

calculated using algorithms QC and Qo from Chapter 1, i.e.
The similarity transformation matrices T in Eqs.(3.34) and (3.36) may be

A , t (QC) - T and
A , t (Q01 - T

respectively.

3.2.2 Controllability and Observability Forms

It may be deduced that given the SISO system R = {A, b, c, d}, the
similarity transformations

A,b,c,Q,(STR)~A,,b,,c, (3.38)

and

A, b, c, Q;' (Sm) -A,, bo, c, (3.39)

where the (full rank) similarity transformation matrices Q and Q, are calculated

A, b (QC) -Q, and A, c (Q01 -Q, (3.40)

will produce the general "controllable" and "observable" models R, and R.
described in Eqs.(3.41) and (3.42), respectively, for third order systems (and
illustrated in Figs. 3.5 and 3.6). For convenience the feedthrough term is assumed
to be zero, i.e. d = 0.

by

(3.41)

100 Chapter 3 System Modeling

X

FIGURE 3.5 Controllability (Controllable) Canonical Form

0 1 0 b0

t,(r) = u(r) b, x&) + 0 0 1

-Uo -U1 -U2
I b2 -

(3.42)

r(r) = [1 0 0]X,(t)

Canonical forms of Eq~(3.41) and (3.42) are called the controllability
(controllable) and the observability (observable) forms, respectively. They have
the important property that their controllability or observability matrix is an n X n
identity matrix. As will be shown later, the observability form, because of its
useful properties in the MIMO case, is widely used in inputloutput identification
of D-T MIMO state space models.

Any SISO system that is controllable may be put into the forms of Eqs43.1 l),
(3.15) or (3.41) since these are all controllable forms. Every controllable form is
guaranteed to be controllable, i.e. the controllability matrix Q is full rank
independent of the system parameters. For example, the controllability matrix of
the form (3.41) is the identity matrix as a result of manner in which it was
constructed.

Similarly, any observable system may be put into the forms of Eqs.(3.16),
(3.20) or (3.42), the observable forms. As with the controllable forms, each
observable form is observable, i.e. the observability matrix Q, is full rank. As
previously mentioned, the form given in Eq~(3.42) has an observability matrix
equal to an identity matrix.

If we compare Figs. 3.1 and 3.2, or Figs. 3.5 and 3.6, we notice a certain
similarity of structure. In particular, they are dual systems. In Chapter 1, Def.
1.8, we briefly touched on the concept of duality. The equivalent block diagram

Section 3.2 Equivalent State Space Models 101

RGURE 3.6 Observability (Observable) Canonical Form

changes necessary to construct a dual system are: t6 exchange input and output,
reverse the order of labeling the state variables, reverse the signal flow directions
and replace tap-off points and summation junctions with summations and tap-offs,
respectively. Thus, for instance, Figs. 3.1 and 3.2 are dual diagrams. In the
sequel three computational procedures for calculating the representations in
Eqs.(3.41) and (3.42) will be presented. However, using the concept of duality,
only the transformation to controllable form will be given, with the understanding
that transformation of the dual system to controllable form results in the
transformation of the original system to observable form. Also at this point in the
text, since readers will have obtained some experience using algorithms, we will
begin to present the procedures in a slightly more abreviated manner. The reason
that more than one procedure is presented is that some ideas of these procedures
will be used in the subsequent discussions of canonical forms for MIMO systems.

3.2.3 Transformation to Feedback Controllable Form

Procedure 1:

The problem is to determine the similarity transformation matrix T which will
transform a given controllable representation R = {A, b, c) into the type of
representation shown in Eqs.(3.1 l), i.e.,

A , b , c , T" (SZR) -A, , b,, c, (3.43)

It is desired that T should be of the form given by Eq.(3.36), with the first
where, according to Eq.(3.32), A, = TAT', b, = Tb, and c, = cT'.

row of T selected to satisfy

102 Chapter 3 System Modeling

b, = T b (3.44)

where b, is specified as in Eq.(3.11). In scalar form Eq43.44) becomes

0 = t b
0 = t A b
0 = tA2b

0 = tAn-2b
1 = tA'"'b

. . . (3.45)

In turn, the Eqs.(3.45) may be collected into the following vector form

[0 0 0 -1. 0 l] = t[b Ab A2b ... A'"'b] (3.46)

Note that the right hand sideis simply tQ,, where Q, is the controllability matrix
of the given pair {A, b). Thus, t can be calculated from Eq(3.46) using the
inverse of Q since the system is assumed to be controllable.

The following steps summarize Procedure I:

l 1. Define a state representation {A, b, c}
2. Set A, b (QC) * Q,

3. Partition Q;' + , where t is the last row

I 4. Set A, t (eo) T
5. Set A, b, c, T' (STR) * A,, b,, c,

Procedure 2:

Again considering Eqs.(3.45), note that the first (n-l) equations can be
written in the vector form

t[b Ab A2b A'"'b] = 0 (3.47)

The interpretation of Eq.(3.47) is that t is a multiple of the transpose of the null
space matrix of (Q,,)', where Q,' contains the first (n-l) columns of Q, i.e.

t = a NT , where Q: N = 0 (3.48)

The factor a in Eq.(3.48) can be determined from the last row of Eqs(3.45) to satisfy

Section 3.2 Equivalent State Space Models

a NTAn" b = 1

This calculation leads to

1 a = -
NT 9,.

103

(3.49)

where 9, is the last column from Q. The following is a summary of this
procedure:

1. Define a state representation (A, b, c)
2. Set A, b (QC) =j Q

3. Partition Q, * [QC1 q, , where q, is the last column

4. Set QIT (Null) * N , so that QIT N = 0
5. Set]/(V q 3 * a
6. Set M a * t
7. Set A, t (Qo) * T
8. Set A, b, c, T' (SnZ) * A,, b,, c,

Procedure 3:

Consider the transfer function matrix G(s) of a strictly proper single input,
multi-output (SIMO) system {A, b, C}, where {A, b} is equal to {A,, b,} given by
the structure of Eqs.(3.1 l), while C = I,,, i.e.

(3.50)

In this case m = 1 and p = n, so that W,@) is (n X l), i.e. an n-dimensional
column:

(3.51)

Due to the special form of A, and b,, it may be easily verified that the polynomials
W&) are given by

WJS) = S"' , for 1 s i s n (3.52)

104 Chapter 3 System Modeling

leading to the matrix W, = I,,, see Algorithm S S P in Section 1.3.9. The z* row
of W, contains all n coefficients of the n-l* order polynomial W&).

Recall that a similarity transformation P does not change the transfer function.
Therefore, for an arbitrary state realization and nonsingular P, the following
equation holds

C (SI - A)" b = C P (sP" P - P" A P)" P" b (3.53)

If P = TI is selected to satisfy Eq.(3.43), then from Eqs.(3.50), (3.51) and (3.52),
Eq(3.53) can be written as

c W(s) = CP W&) (3.54)

where W,@) is defined in Eq(3.50) and W(s) is given by

W(S) = adj (SI - A) b (3.55)
Using the definition of the matrix W in the PMF introduced in Chapter 1,
Eq(3.54) may be formally written as

which, because W, = I,,, finally leads to P = W. The following steps summarize
the previous development:

1 . Define a state representation {A, b, c}
2. Set the number of columns of A =) n
3. Set On,, =$ d
4. Set &," I
5. Set A, b, I, d (SSTF) =$ a, W
6. Partition W * [P 21, where P is (n X n)
7. Set A, b, c, P (STR) A,, b,, c,

Note that in Step 5, where the SSTF algorithm is executed, the characteristic
polynomial a is not used. Only the second output argument in polynomial matrix
form (PMF) is required. Since d in Step 3 is defined as a zero vector, the last
(n+l)"' column in W contains zeros, and the first n columns contained in P, Step
6, are used as the required similarity transformation matrix.

In conclusion, the following comments are worth mentioning. Thefeedbuck
form of Eqs.(3.11) and Observability form of Eqs.(3.42) have the same system
matrix of the structure Eq.(3.37). In other words, in Eqs.(3.11) A, = TAT',
where T is the observability matrix of the pair {A,t}, given by Eq(3.36). In spite
of the fact that an observability matrix is used, the form Eqs.(3.11) is considered
to be a controllable form, since according to Eq(3.46) the row t exists only if the

Section 3.2 Equivalent State Space Models 105

pair {A,b} is controllable. Similarly, in Eq~(3.42) A, exists only if {A,c) is
observable. In the next section we will consider the calculation of SISO canonical
forms when the system transfer function is given.

3.2.4 Transformations: g(s) =+ SISO Canonical Forms

The above procedures, as well as Eq~(3.38) to (3.40), are applicable in the
case when, given an arbitrary SISO representation R = (A,b,c,d), it is required
to obtain a controllable or observable form. Note that in this case it is much
simpler to obtain the controllability or observability form, Eqs(3.38) to (3.40),
than the feedback or observer form. It frequently occurs, however, that given a
transfer function g(s) = b(s)/a(s) of a SISO system, a controllable or observable
form is sought. In the sequel four algorithms for calculating:

0 Feedback and observer forms, and
0 Controllability and observability forms

are given, assuming that a transfer function g(s) = b(s)/a(s) of a SISO system is
given. These algorithms will be compared with the previously given algorithms.
I t will be shown that when g(s) is given, the algorithms for calculating feedback
and observer forms are simpler than the procedures for calculating controllability
and observability forms. This discussion should also be considered as an "intro-
duction" to the M M 0 case, which is more challenging than the SISO case.

Algorithms: Algorithms g(s) =b(s)/a(s) I) Four SISO Canonical Forms

The numerator b(s) and the denominator a(s) are defined by:

n n

b(s) = c b,s' and a(s) = c ais' , with a,= 1
1.0 1.0

let:

where

W = [b bn]

b = [bo b, bn- ,]

a = [U , a, ... an-,]

while

S, = [l 0 0 01 and S,, = [0 0 *e* 0 l]

are the first and the n"' row of an (n x n) Identity matrix I,,. Note that

106 Chapter 3 System Modeling

where z is an appropriate row of zeros. Also, for a, # 0, let dl = b&,.
If 6 # 0 , then dl = b(s)/u(s) for an arbitrary S different from a root of a@),
i.e. pole of g(s).

canonical forms:
The following algorithms may be used for calculating desired state space

1. g(s) * Feedback form, R, = {A,, b,, c,, d,)

Symbolic form: a, W (Rcl) * A,, b,, c,, d,

2. Set S,,= * b,
3. Set b - a b,, * c,
4. Set b. =$ d,

2. g(s) * Observer form, R, = {A,, bo, c,, do)

Symbolic form: a, W (Rol) A,, b,, c,, do

2. Set bT - arbn * bo
3. Set S,, * c,
4. Set b,, =$ do

Obviously, due to duality: A, = A:, bo = c:, and c, = b:. Note that when
b,,=O, i.e. when g(s) is "strictly" proper, then:

in R,: c, = b and d, = 0, while
in R,: bo = bT and do = 0.

Section 3.2 Equivalent State Space Models

3. g(s) .e Controllability form, R, = {A,, b,, c,, d,}

Symbolic form: a, W (Rc2) =$ A,, b,, c,, d,

Z I

In -1 I
1. Set ---- + -a7

2. Set stT* b,

*

* A ,

3. Set A,, S, (Qo) =) Q, (Q, has n+ l rows)
4. Set W Q, * c,
5. Set cJ;'b, + dl * d,

4. g(s) * Observability form, R, = {A,, bo, c,, do)

Symbolic form: a, W (R02) * A,, bo, c,, do

107

2. Set A,, snT (QC) * Q, (Q, has n+l columns)
3. Set Q,w' * bo
4. Set S, =$ c,
5. Set cJ;'b, + dl do

Again by duality: {A,, bo, c,} = {A:, c:, b,?.
Since A, and A, in Algorithms Rc2 and R02 are of a simple structure, it is

relatively easy to verify these algorithms. It is interesting to note that A, in the
feedback form is equal to A, in the observability form, and also A, in the observer
form is equal to A, in the controllability form.

Comparing these algorithms, it may be concluded that when g(s) is given, it
is easier to calculate feedback and observer forms than controllability and
observability forms. However, recall that when an arbitrary R = {A,b,c,d} is
given, then it is much easier to obtain controllability and observability forms than
feedback and observer forms, since the controllability and observability forms are
simply derived by a similarity transformation where the controllability or
observability matrix, respectively, is used as a transformation matrix.

This situation might suggest the following "alternate" procedures:
Instead of a, W (Rc2) * A,, b,, c,, d, , one may use the sequence:

108 Chapter 3 System Modeling

1. a, W (Rcl) * A,, b,, c,, d,
2. A,, b, (QC) * Q,
3. A,, b,, c,, Q, (STR) =) A,, b,, c,

And according to the principle of duality, instead of a, W (Ro2) * A,, bo, c,, do ,
the sequence of Algorithms Rol, Qo and STR may be used. This is left as an
exercise for the reader.

On the other hand, if an arbitrary controllable realization R = {A,b,c,d) is
given, and the feedback form R, = {A,, b,, c,, d,} is sought, then, instead of
procedures discussed in Section 3.2.3, one may use the following sequence:

I 1. A, b, c, d (S S W * a, W
2. a, W (Rcl) * A,, b,, c,, d,

Again, duality may be applied if the observer form is required. As will be seen in
next sections, in the case of MIMO models the things are not as simple.

Examples Consider the 5"' order, non-strictly proper transfer function g(z) =
b(z)/u(z) where:

-numerator b(z) coefficients b,, i=[O,n], n=5, are:

.85 1.62 -4.43 -5.67 1.06 2.14

0 -denominator u(z) coefficients U,, i=[O,n] are:

12 .22 -.69 -.70 -1.34 1.00

Feedback Form [Algorithm Rcl]

I .oo 1.00 .oo .oo .oo I .oo
I .oo .oo 1.00 .oo .oo I .oo
I .oo .oo .oo 1.00 .oo I .oo
I -00 .oo .oo .oo 1.00 I .oo
I """"""""""""-""""+"""
I -.l2 -.22 .69 .70 1.34 I 1.00

I .59 1.15 -2.95 -4.17 3.93 I 2.14

Observer Form [Algorithm Roll

I .oo .oo .oo .oo -.l2 I .59
I 1.00 .OO .OO .OO -.22 I 1.15

.OO .OO 1.00 .OO .IO I -4.17
I .OO 1.00 .OO .OO .69 I -2.95

I .oo .oo .oo 1.00 1.34 I 3.93
I """"-""""""""""""+"""
I .OO .OO .OO .OO 1.00 I 2.14

Section 3.3 Canonical Forms for MIMO Systems 109

Controllability Form [Algorithm R c ~]
.oo .oo .oo .oo -.l2 i 1.00 I

1.00 .oo .oo .oo -.22 , -00 I
.oo .oo 1.00 .oo .70 -00 I
.oo .oo .oo 1.00 1.34 I .oo I

.OO 1.00 .OO .OO .69 I .OO I

,""""""""""""""""+"""" I

3.93 1.09 1.26 6.31 9.82 I 2.14 I

Observability Form [Algorithm R o ~]
.oo 1.00 .oo .oo .oo I 3.93 I
.oo .oo 1.00 -00 .oo I 1.09 I
.OO .OO .OO 1.00 .OO I 1.26 I

-.l2 -.22 .69 .70 1.34 I 9.82
.OO .OO .OO .OO 1.00 I 6.31

""""""""""""""""-+"""" I

1.00 .OO .OO .OO .OO 2.14

In the next section we will begin to extend our modeling techniques to include
multiple input, multiple output (MIMO) systems.

3.3 Canonical Forms for MIMO Systems

In order to discuss canonical forms for MIMO systems, it is first necessary
to define the concept of controllability and observability indices. Assume a given
(nxn) state matrix A, full column rank (nxrn) input matrix B and full row rank
@ x n) output matrix C describing a controllable and observable system. Then, the
controllability matrix Q, has dimensions (n x m) and the observability matrix Q,
has dimensions (np x n). Since, by assumption the system is controllable as well
as observable, there must be n linearly independent columns in Q, and n linearly
independent rows in Q. In each case a nonsingular n x n transformation matrix
may be formed and used to derive the corresponding controllable or observable
canonical forms.

Controllable and observable forms to be discussed in this section are MIMO
versions (generalizations) of the SISO controllability and SISO observability forms
calculated by Eqs.(3.38) to (3.40) and represented by Eqs.(3.41) to (3.42) and Figs.
3.5 and 3.6. Note that in the SISO case all n columns (rows) from Q, (Q,) are
used in the similarity matrices, while in the MIMO case, as we know, there are
more than n columns (rows) in Q, (Q,). Consequently, an appropriate selection of
linearly independent vectors is required. In the following general discussions, the
controllability and observability forms are treated separately, although there is much
similarity due to the principle of duality.

110 Chapter 3 System Modeling

3.3.1 Controllability Forms - General Discussion

A natural way to search for linearly independent columns of Q is to begin
from the left, as follows:

Q, = [bl b, ... b,,, I Ab, ... Ab,,, I . . . I A*"b, ... A""b,] (3.57)

Suppose that in the first q groupings of m columns each we find r, dependent
columns, 0 5 i I 9-1. In particular, r, dependent columns are found in B; r,, in
AB; etc.. For a full rank B, r, = 0. As a result of this choice of searching for
independent columns, it is easily seen that

0 5 r,, ?; rl S ... S r,,-l m

and rk = m , for k > p

where p is the smallest integer such that

rank[B AB ... A'B]- = rank[B AB ... A'+'B] (3.58)

Thus, at some point there are n linearly independent columns, and all subsequent
columns to the right are dependent. Notice that the controllability of the pair {A,
B) can be checked from [B AB A2B . .. Ap'B], where p is less than n. The
parameter p is defined to be the controllability index for the system with state
matrix A and input matrix B.

Searching by Columns: Since there are many ways, in general, that n
linearly independent columns may be chosen from Q, let us introduce a convenient
graphical device, called a crate diagram for "visualizing" the different possibilities.
The crate is a table consisting of m columns, one for each column of the B matrix;
and up to n rows, one for each power of A in Q,. In this manner the (j,i)"' cell
represents uniquely the column of Q, given by A'"bi. Selecting n independent
columns of Q corresponds to selecting n cells in the crate. Such a diagram is
illustrated in Fig. 3.7 for an m=3 input, n=7 state system. Once the basic
representation is understood, we will discuss two fairly natural ways to search the
crate for the required linearly independent columns. Remember that each cell
represents a vector; thus, e.g. the first Vow" of the crate diagram in Fig. 3.7
corresponds to the three columns of the B matrix (of the assumed 3-input system).
First b, is selected and a 1 is marked in cell (1,l). Next, continuing with the first
column, Ab, and A2b, are considered and found to be independent, so a 1 is
marked in cells (2,l) and (3,1), while A3bl is found to be dependent and a 0 is
marked in cell (4,l). Moving to the next column, b2 is added to the collection of
independent vectors. Also Ab2, A2b2 and A3b2 are added, but not A4b2, since it is
found to be dependent on the previously selected columns. At this juncture the
required n=7 linearly independent vectors have been selected, and the process is

Section 3.3 Canonical Forms for MIMO Systems 111

complete. Note that in this selection plan the last column of B is not represented,
although B is assumed to be full rank. This is an example of selecting the
independent columns of the transformation matrix T for a MIMO system, which is
a possible generalization of Fq(3.38) to the MIMO case. We will refer to this
method as searching by columns. The reader should note that the results can be
widely different with a simple re-ordering of the inputs. There is a tendency to
generate a few long "chains" with this method.

~ b, b2 b3

1

1

0 1

1 0

1 1

1

0

A0

A'

A2

A3

A4

FIGURE 3.7 Search-by-Column Example of a Crate Diagram

The resulting state space model obtained by performing a similarity
transformation using the collection of independent vectors found is a generalization
of the SISO system of Eqs.(3.41). In particular, the crate diagram of Fig. 3.7
indicates that using the similarity transformation

T = [bl Ab, A'b, b, Ab, A2b2 A3b,] (3.59)

the calculations A, = T"AT and B, = T"B

implemented by A , B , C , T (S T R) - A, , B,, C,

result in the following state space structure:

- 0 0 x ~ 0 0 0 x

1 0 x ~ 0 0 0 x

0 1 X I O O O X

0 0 x 1 0 0 o x

0 0 x 1 1 o o x

0 0 x 1 0 1 o x

0 0 x ~ 0 0 1 x

" "_ "_
A, =

+ - - - - - - - - - - -

- 1 0 x

o o x

0 0 %
" "- "

, B,=
0 1 x

o o x

0 0 %

o o x

112 Chapter 3 System Modeling

where the x's denote possibly non-zerohon-unity values. The C matrix has no
particular form.

Search by ROWS: Let us now consider a similar example (of order 7 with 3-
inputs) and search the crate by rows. Refemng to Fig. 3.8, we again begin with
a 1 in the (1,l) cell. Since the rank of B is m, both 9 and are linearly
independent. In the second row Ab, and Ab2 are found to add to the collection in
independent columns, but Ab3 is not. From the next rows only A2b, and A3b2 are
found to be linearly independent to complete the set. Once a vector A%* has been
found to be linearly dependent, it is not necessary to check other vectors within the
same crate column, AB,, k > j , since they are always dependent on previously
selected columns, as will be verified later. With this selection plan there is a
tendency to generate shorter chains, and when B is full rank, all columns of B are
represented in the selected set.

Ordering by Columns of the Crate Diagram: To obtain a controllable
form, the vectors of the selected set must be arranged to form a similarity
transformation matrix T. Two specific orderings have been used. The first is by
"chains" associated with a particular column of B, i.e. by columns of the crate
diagram (although the selection is done by rows). In this case T becomes

T = [bl Ab, b, Ab, A2b, A3b2 b3]

AO

A'

A2

A3

A4

FIGURE 3.8 Search-by-Row Example of a Crate Diagram

(3.61)

Using A, = T ' A T amd B, = T'B results in a state space model of the following
form:

Section 3.3 Canonical Forms for MlMO Systems

A, =

0 x ~ 0 0 0 x ~ x
1 x ~ 0 0 0 x ~ x

0 x ~ 0 0 0 x I x

0 x ~ 1 0 0 x ~ x

0 0 ~ 0 1 0 x ~ 0

0 0 ~ 0 0 1 x I 0

0 x ~ 0 0 0 x f x

" " + " " " " + "

" " + " " " " + "

l 0 0

0 0 0
" " "

0 1 0

0 0 0

0 0 0

0 0 0
" " "

0 0 1

113

(3.62)

where the x's are again possibly nonzero values. And as in previous case, the C
matrix has no particular form. The A and B given in Eq(3.62) represent another
generalization of the SISO system of Eqs.(3.41); the differences lie in the selection
of the particular n columns of Q to be used in the similarity transformation.

Ordering by Rows of the Crate Diagram: Another formulation of T is
more natural since it follows the process of selecting columns. In this case the
linearly independent columns are arranged according to the unit elements in the
rows of the crate diagram, and T is obtained as

T = [bl b, b, Ab, Ab, A2b, A'b,]

which results in a state space model given by:

A, =

o o x x o o x
o o x x o o x
o o x x o o x
1 0 x x 0 0 x

0 1 x x 0 0 x

0 0 0 0 1 0 x

0 0 0 0 0 1 x

9 B, =

1 0 0

0 1 0

0 0 1
0 0 0

0 0 0

0 0 0

0 0 0

The pair {A,,B,} given in Eq(3.62) is called a controllable Luenberger canonical
form, while the pair {A,,B,} in Eq(3.64) might be called a modped Luenberger
form, or simply a controllability form. The interesting property of Luenberger
forms, illustrated by Eq~(3.60) and (3.62), is that the matrix A, is of "block
diagonal" structure, having in the main diagonal blocks corresponding to h* order

114 Chapter 3 System Modeling

SISO systems, i = [l , m] . Because of this property, at its introduction this form
gained instant popularity within the systemdcontrols community. However, as will
be mentioned later, the Luenberger form does not prove to be particularly useful
in specific applications.

Since the transformation matrices T in Eqs.(3.61) and (3.63) contain the Same
columns, only arranged differently, the controllable forms of Eqs.(3.62) and (3.64)
are rather similar. In fact, they have the same elements, only arranged differently.
Note that, for instance, in Eq(3.64) the zeros at the end of columns 3 and 4 appear
in Eq.(3.62) at locations 5 and 6 in columns 2 and 7. Considering the structure of
Eq.(3.64) as being a more narural generalization of the SISO case, and, as will be
shown later, more convenient for use in various applications, only the structure
type of Eq(3.64) will be used in the sequel. A perhaps stronger justification of the
use of the modified form is that it is more natural (and convenient) to form the
columns of T in the order that they are checked for linear dependence (by rows of
the crate diagram) than to "rearrange" them into chains, i.e. by columns of the
crate diagram.

Controllability Indices: We previously defined the controllability index for
the pair (A,B} as the smallest integer, p , such that

rank[B AB ... Ap"B] = n

In the previous discussion the word chain was used to describe the string of linearly
independent vectors generated from a single column of B by continued
multiplication by A. Another way to view the controllability index is as the number
of vectors in the longest chain. In this context we define the controllability indices
(plural) as the set of integers { p , } , 1 I i I m, identifying the lengths of the chains
of each column of B. In terms of the crate diagram the controllability indices are
the number of l's in the columns. For instance, in the example of Fig. 3.8 the
controllability indices are {2, 4, l}. With these definitions one can see that

(3.65)

P, + P2 + ... +Pm i n (3.66)

The equality holds if the system is controllable. Note that for a given pair (A,B}
the set { p , } , 1 I i I m is unique. I t is noted that once a dependent column is
found in a search-from-the-left process on Q,, then any subsequent column
corresponding to that column of B, i.e. any element in that column of the crate
diagram, is also dependent on the columns of Q to its left. For example, suppose
that

Ab2 = a,b, + ... + ambm + am+,Ab,

Section 3.3 Canonical Forms for MlMO Systems 115

then, A2b, = a,Ab, + ... + a,Ab, + a,+lA2bl (3.68)

Likewise, Ai b2, 3 5 j 5 n- 1 are linearly dependent on their left-hand-side columns.
It may be shown that the set of controllability indices p of a pair {A,B} is

invariant under any similarity transformation. However, under the permutation of
columns b, of the input matrix B, the set p is not "completely" invariant. To be
precise, it may be stated that under an arbitrary permutation of columns b, the set
of controllability indices is invariant "modulo permutation." The conditions under
which the values p, of the set p remain invariant are presented in detail in the
references at the end of the chapter and will not be pursued here.

To summarize this subsection, any n linearly independent columns of Q can
be used to generate a "controllability form" state space model. The subsequent
discussion, corresponding to "observability form" models, will be brief, calling
upon duality for many developments.

3.3.2 Observability Forms - General Discussion

In a manner similar to the previous discussion, we will discuss possible
variations in constructing state space models which are generalizations of of the
observability SISO observable form Eqs.(3.42). Beginning with the observability
matrix Q,, we consider the problem of searching for linearly independent rows.
Recall that the dimensions of Q, are (np x n). Assuming that the system is
observable, Q, must have rank n and, therefore, n linearly independent rows.
Following E4.(3.57), let us display Q:

It is easily seen that the comments made regarding the columns of Q can be made
for the rows of Q, i.e. using the concept of duality. To summarize, the
observability index for the pair {A,C} is the smallest integer, v , such that

rank[CT ATCT ... (AT)"'CT] = n (3.69)

Observability indices (plural) are defined as the set of integers (v , } , 1 5 i S p ,
identifying the lengths of the chains of each row of C. For instance, the rows

generated by row i are linearly independent up to (and including) c1AVt". With
these definitions one can see that

v = VI, vp v3, -, vp l
and v p + v 2 + - . + v n

The equality above holds if the system is observable. To summarize, any n linearly
P

116 Chapter 3 System Modeling

independent rows of Q. can be used to generate an "observability form" state space
model. And, as was stated earlier, only the version which is dual to the structure
given in E4s.(3.64) will be used in the following developments.

3.3.3 Pseudo-Controllability Indices (PCI)

In generating controllable forms with complete flexibility, it is necessary to
investigate all possibilities of obtaining n linearly independent columns from Q,.
To achieve this flexibility, it has been realized that it is not necessary in a search-
from-the-left process of Q, to check each column A"br, j=[O,n-l], i=[l,m]. A
particular column may be skipped intentionally, even if it has been found to be
linearly independent with respect to the previously selected columns. However, in
order to obtain a useful set of n-linearly independent columns from Q,, if a column
A%, is skipped, then, in the spirit of EQ~(3.67) and (3.68), all other columns
Ai"'b,, for h = [l ,2,. . .], should be skipped, regardless of whether they are linearly
dependent, or not. It has been verified that under this "selection method," the total
number of combinations to check is k, given by

k = (n - l) = (n-l)! (3.70)
m - l (m-l) ! (n-m)!

We say that a particular selection of n columns is admissible if they are linearly
independent.

Since, for a given pair {A,B), there are now more sets of linearly
independent columns, there are consequently more sets of integers {pi) indicating
the lengths of chains A%,, j=[O,pi-l], for each b,. These sets are referred to as
admissible sets of pseudo-controllability indices (PCl). This same concept of PC1
is also called, by some authors, nice indices. To formalize the ideas, let us define
the following:

Definition 3.1 The set of individual controllability indices, (ai),
1 S i S m , is defined by

a, = rank [b, Ab, ... A""b,] (3.71)

where b, is the im column of the matrix B.

For convenience we will use a notation similar to the controllability indices
of Eq.(3.65), since the concept of pseudo-controllability indices is a generalization
of the notion of "standard" unique controllability indices discussed in the previous
section.

Section 3.3 Canonical Forms for MlMO Systems 117

Definition 3.2 The set of pseudo-controllability indices, {p,}, 1 < i s m ,
is any set of numbers satisfying

m

l s p f < n - m + l , a n d x p , = n
i -1

(3.72)

Definition 3.3 The set of pseudo-controllability indices, {p,}, 1 S i l m ,
is admissible if

(3.73)

It has been shown that an element p , of an admissible set satisfies:

Pi * ai (3.74)

If we make the reasonable assumption that B is full rank, i.e. that the
columns of B are linearly independent, then the individual controllability indices are
each constrained to be between 1 and n; while each pseudo-controllability index of
an admissible set {p,) is a number between 1 and (n-m+l) . If B is not full rank,
an input transformation may be performed to eliminate the "redundant" input(s).

3.3.4 Pseudo-Observability Indices (POI)

Pseudo-observability indices are used to establish Observability form state
space models. We will use the notation of the set {v,} in referring to either the
unique set of observability indices or a set of admissible pseudo-observability
indices. This is justified by the fact that the unique set of observability indices is
always one of the sets of POI. The same is true of the unique set of controllability
indices being a member of the PCI. Since this section provides an important
background for subsequent chapters, a detailed description is presented. A specific
example will help to illustrate the concept.

Consider a system with order n=7, m=2 inputs and p = 3 outputs. We are
not interested specifically in the unique set of observability indices,.but suppose that
the set of unique observability indices is given by

v = { v i] = {3,2,2)

118 Chapter 3 System Modeling

As we will show soon, the use of this unique set of observability indices does not
necessarily lead to the most convenient system representation. Taking into account
that the use of admissible sets of pseudo-observability indices offers more flexibility
in choosing the appropriate model, in the sequel we will pursue the selection of the
most convenient set of (pseudo) observability indices.

Knowing that the system order is 7 and that the number of outputs is 3, there
are several possible observable form structures that may be considered. According
to Eq.(3.70), the total number of sets of pseudo-observable indices {v,} is 15.
Specifically, the following combinations are possible:

v1

- -v3-

v , = 1 2 1 3 2 1 4 3 2 1 5 4 3 2 1

r s 4 4 3 3 3 2 2 2 2 1 1 1 1 1

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1
However, according to Eq.(3.70), the number of admissible sets is less than, or
equal to 15. To simplify the discussion, we will only consider the following sets
of possible POI with the assumption that they are admissible.

p 1
Indices

Note that in each case the "observability indices" sum to n=7. We can use a crate
diagram to represent each of these three cases. The crate's column entries
correspond to rows of Q, associated with a particular output. Both here and in
subsequent chapters the (reasonable) assumption is made that the outputs, i.e. rows
of C, are linearly independent. Consequently, the first row of the crate is always
selected. mi

0 0

m
0 0

mi
0 0

Section 3.3 Canonical Forms for MlMO Systems 119

Crate diagrams are simply a graphical method of visualizing the selection of
linearly independent rows from the given observability matrix. For example, with
the columns of the crate being associated with a particular row ci of C, the center
crate above indicates that, among the possible choices of n linearly independent
rows from Q, the independent elements selected are the rows:

c,, Q, c3, clA, c,A, c,A2, and c3A2.

From the crate diagrams several related "selector vectors" are generated:

0 By omitting the first row of, say the center diagram, corresponding to
the indices (3,1,3}, the vector v i is created by selecting the non-blank
elements row-wise:

v i = [l 0 1 1 1 0 01' (3.75)

From vi the binary complement is formed, and denoted as v,:

v , = [O 1 .o 0 0 1 l] ' (3.76)

0 By considering the blank elements to be zeros, vi i is formed in like
manner, but with row 1 included:

Vl, = [1 1 1 1 0 1 1 0 1 0 0 01' (3.77)

0 Finally, vid is formed by again including the first row, but now taking
the blank elements of the diagram to be unit valued, and finally taking
the binary complement, leading to:

vld = [O O O O 1 O O O O 1 O 1 3' (3.78)

The above selector vectors are uniquely determined by the particular set of pseudo-
observability indices, or equivalently, the location of the unity elements in the
corresponding crate diagram. As will be shown later, these selector vectors greatly
facilitate calculation of the observable forms based on the chosen set of
observability indices. In particular, the "selector matrices" given in Eqs(3.79)
below, derived from the associated selector vectors by a corresponding selection of
columns from an appropriately dimensioned identity matrix, are actually used in
obtaining the observable form.

120 Chapter 3 System Modeling

- l O O O O O O O O O O O - ~

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0
'1 0 0 0 0 0 d r

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

S, = , s , i = o o o l o o o o o o o o
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
(3.79)

0 0 0 0 0 0 0 0 1 0 0 0 ~

'0 1 0 0 0 0 0"

0 0 0 0 0 0 0 0 0 0 0 1 ~ 0 0 0 0 0 0 1 ,

- o O O O 1 O O O O O O o - T

s ~ = ~ o ~ ~ o ~ ~ ~ ~ ~ ~ = 0 0 0 0 0 0 0 0 0 1 0 0

The selection of rows (or columns) of a matrix may be accomplished by a pre- (or
post-) multiplication by a corresponding "selector" matrix. Thus, for instance,
since Si in Eq.(3.79) is a (7x4) selector matrix, the product S,", where M is a
(7x7) matrix, results in the "selection" of rows 1, 3, 4 and 5 from M into the
(4x7) product. It will be clear in a later development how useful the selector
matrices are in the formulation of various algorithms to be discussed.

To facilitate further discussion, the dependence of the above selector matrices
on the set of indices Y will be formally represented by the following algorithm:

v (SMat) -. v,,, , S,, S , , S,, , S,,, where v,,, = m[vi)

In the subsequent discussion we will relate the crate diagram, selector vectors and
selector matrices to the structural properties of a state space observable form R, =
{A,, B,, C,, D,). It will be shown that for the (3,1,3} example from above
matrices C, and A, have the following structure:

A, =

. 0 0 0 1 0 0 0

X X X X X X X

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

x x x x x x x

x x x x x x x

1 0 0 0 0 0 0

c, =

0 0 1 0 0 0 0 ~

(3.80) 0 1 0 0 0 0 0

The structure of the pair {A", C,} is characterized by the following points:

Section 3.3 Canonical Forms for MlMO Systems 121

0 C, consists of the first p=3 rows of the (nxn) identity matrix k.
0 At locations specified by the unities in the selector vector v,, the matrix A,

contains the last n-p = 4 rows of I,,.
0 At locations specified by the p =3 unities in the selector vector v,,, the matrix

A, contains rows of elements which are not necessarily of zero or unit Value.
0 The "observability matrix" Q, of the pair {A,, C,}, i.e.

Q, = [C: (C,A,)' ... (3.81)

contains all n rows of I,, at locations specified by the n=7 unities in the
selector vector v,,.

0 Thep=3 rows of A, containing not necessarily zero or unit elements appear
in Q, at locations specified by the unities in the selector vector vw

The results of Eqs.(3.80) derive from the basic similarity transformation, or change
of state,

A, = TAT" , B, = TB
C, = CT", D, = D

(3.82)

where R = {A, B, C, DJ is an arbitrary n"' order observable state space
representation. In order to obtain A, and C, given by Eqs.(3.80), the
transformation matrix T in Eq.(3.82), corresponding to the pseudo-observability
indices {3,1,3}, is given by

T = [c: < c: (C , A) ~ (c,A)* (c , A ~) ~ (c3A2)'IT (3.83)

It may be verified that all n=7 rows of T are located in the observability matrix
Q, of the pair {A, C}, i.e.

Q, = [CT (CA)T ...

at locations specified by n=7 unities in the selector vector vli, where Y = 3 is the
maximum length chain. The algorithmic representation of Eqs.(3.82) and (3.83)
is

v (SMat) - v , , S,, si, S l i , S,,

A , C (Q01 Q,

S f Q , - T

A , B , C , T" (S T R) - A , , B,, C,

Note that the structure of Eqs(3.80) is dual to the controllable form given in

122 , Chapter 3 System Modeling

Eq.(3.64), with the understanding that the sets of indices used in building these
forms are different. To emphasize the fact that MIMO controllability and
observability forms are not unique, and that they are based on sets of admissible
PC1 and POI, these forms sometimes will be referred to as pseudo-controllability
(PCF) and pseudo-observability forms (POF).

3.3.5 MIMO Feedback and Observer Forms

In discussing feedback and observer forms for SISO systems (Sections 3.1.1
and 3.1.2) it has been mentioned that these forms provide an extremely useful
method of obtaining state space equations from a given transfer function. Due to
this property, SISO feedback and observer forms gained great popularity. In the
case of MIMO systems, however, these forms are not particularly popular. The
following discussion will give more insight into this lack of popularity.

These forms are applicable only for solving state feedback pole placement and
full and reduced-order observer design problems. However, efficient algorithms
have been recently developed which solve these problems directly, using the given
state space representation, without the necessity of calculating canonical forms
explicitly.

Also, for a given pair {A,B} with unique set of controllability indices p =
{ pi }, the feedback form has a unique structure. In other words, there is no
flexibility even with the use of pseudo-controllability indices, as compared with the
case of controllability and observability forms discussed in Sections 3.3.1 - 3.3.4.
Specifically, as will be shown by examples, the structure of the matrix A, in the
feedback form (A,,B,} is based on the set ji obtained by ordering the set p of
controllability indices of {A,B} in ascending order. Thus, A, is of the same
structure for pairs (A,B) with different controllability indices provided that the sets
of controllability indices of these pairs have the same "ordered" set p. The
structure of the matrix B,, however, reflects actual controllability indices p of the
given pair {A,B}.

For these reasons the discussion of these forms will be relatively brief. Also,
only the feedback form will be discussed, since the observer form could be obtained
by invoking the principle of duality. The main properties of MIMO feedback forms
{A,,B,} are as follows:

The matrix A, has m rows with possibly non-zero elements. Locations of
these rows are determined by unities in the selector vector 8, generated by the set
of controllability indices fi obtained by ordering the set of controllability indices
p of the given pair {A,B} in ascending order. Similar to A, in Eqs.(3.80), the
remaining n-m rows contain the last n-m rows of an (n X n) identity matrix J,.
Unlike the matrix C, in Eqs.(3.80), which is always of the same structure, the (n
X m) matrix B, has non-zero elements in the same m rows determined by the m
unities in the selector vector ii,. Moreover, as will be shown by examples, these

Section 3.3 Canonical Forms for MlMO Systems 123

m rows are given by a particular permutation of the rows of the following (m X m)
upper triangular, nonsingular matrix:

1 x x ". x

1 x *.. x

B,,, = (3.84)

l x

1 -

where x represents a possible non-zero quantity. Specifically, if the actual
controllability indices are already ordered in ascending order, then the 2% non-zero

row of B, is equal to the l"' row of B,,,. In the general case, however, the 1"' non-
zero row of B, is equal to the ?' row of the product:

-
B,,, = TB,,, , where = p T (3.85)

where p and p are rows containing actual and ordered controllability indices,
respectively. For example, if p = [2 l 2 3 and p = [1 2 2 3, then T and B,,,
are:

0 1 0

T = 1 0 0 ,

0 0 1 -

0 1 x

B,,,= 1 x x

0 0 l *

(3.86)

It might be of some interest to mention that in B,,,, Eq.(3.84), the value of X at

locations (id), i < j , is zero if in the ordered set p', pi < To be specific
in the cases of p given by:

(2 1 2) and (2 2 l}, both leading to the set p = (1 2 2},

1 x 0 1 0 %
matrices B,,, are yielding for matrices T and B,,,: 1 x and 1 0

l 1

0 1 0

1 x 0 B,,,= 1 0 0 , T =

0 1 0

0 0 1 - 0 0 1 -

124 Chapter 3 System Modeling

and T = j o 0 1 0 0 l] , B,=[;::]

respectively.

The reason for insisting on the structure of B,,, and 8, for different sets p
which are equal modulo permutation, is to stress that the structure of A, is the same
and that a particular "distribution" of values pi in the set p is reflected in the non-
zero rows of matrix B,, i.e. m rows of B,,,.

In the sequel two algorithms for calculating the pair {A,,B,) in the feedback
form will be given. It is easy to verify that these two algorithms are MIMO
generalizations of SISO algorithms given in Sec. 3.2. We will refer to them as
Procedures 1 and 2. The dual version of the Procedure 1, calculating the observer
form (A,,B,) for multi-output systems is also given. It is worth mentioning that
there is no MIMO generalization of Procedure 3, Ekp(3.50) - (3.56), based on
using the (n x n) matrix P containing coefficients W,,, of the (n-l)" order
polynomials w,(s) in the transfer function matrix (column) "(x) of the following
single-input n-output system:

0 1 0 0 1 %

W@) = C adj(s1- A) b , where C = I,

I Procedure 1: Feedback controllable form for multi-input system

1. Define state space representation {A,B,C,D}
2. Set A,B(Qc) * Q; Set number of columns in B =) m
3. Set Q (I N D) * c,, unique controllability indices
4. Set p, (SMur) S,,S,,S,,,S,,,
5. Set Q S,, * Q,.
6. Set QC;' =) Q,.,
7. Set SeT Q,,, =) C,

9. Set the first linearly independent rows from Q, =) T,
8. Set A,Ca CQo) * Q ,

, 10. Set A,B,C,T;' (STR) =) A,,B,,C,

1 Procedure 1: Observer observable form for multi-output system

1. Define state space representation {A,B,C,D}
2. Set A,C(Qo) Q; Set number of columns in C * p
3. Set Q (I N D) v,, unique observability indices
4. Set v, (SMut) * S,,S,,S,,,S,
5. Set S: Q, * Q,
6. Set Q;] * Q,,,

Section 3.3 Canonical Forms for MIMO Systems

7. Set Q,, S, * B,
8. Set A,B, (QC) * Q,
9. Set the first linearly independent columns from Q, * T,
10. Set A,B,C,T, (ST') * A,,B,,C,

Procedure 2: Feedback controllable form for multi-input system
(obtained by calculating null spaces of some columns of Q,)

1. Define state space representation {A,B,C,D)
2. Set A,B(Qc) * Q; Set number of columns in B =) m
3. Set Q, (I N D) * pc, unique controllability indices
4. Set pc (SMaf) * S,,Si,S,,SU
5 . Set Q S,, =) Qr

6. Set number of columns in A * n
7. Set Oo,. * C,
8. Set [1 . .. 1 3 * 4; I, = n unities
9. Set S/* S
10. Set 0 * i
11. Set i + l * i
12. Set I, - t" row of S * v
13. Set v (DSW =) S,,
14. Set Q, S,, * M,
15. Set Q, vT * q,
16. Set null space of M: * ti, row t: M, = 0
17. Set t: QI * a,
18. Set t:/a, * c,,

19. Set [1 * C,

20. If i < m, go to 11; else, go to 21
21. Set A,C, (Qo) * Q,
22. Set the first linearly independent rows from Q, * Tc
23. Set A,B,C,T;' (STR) * Ac,B,,Cc

125

The algorithm for the observer form based on calculating null spaces of some rows
from Q, is left as an exercise for reader.

In the first 5 steps of the algorithm: Procedure 1, feedback form, the first n
linearly independent columns from Q, are selected in Qr and the selector matrix
S, has been generated. Then the "auxiliary" (m x n) output matrix C, is calculated
by:

126 Chapter 3 System Modeling

i.e. the m rows of C, are contained in C,' at locations determined by m unities in
the selector vector v,, which generates the selector matrix S,. Finally, the
similarity transformation matrix T, used in Step 10 to calculate R, = {Ac,B,,Cc},
obtained by selecting the first n linearly independent rows from the auxiliary
observability matrix Q, of the pair {A,C,}. It may be shown by inspection that
the observability indices of the "auxiliary" pair {A,C,] are equal to the
controllability indices of (A,B) ordered in ascending order, i.e. to j i .

In the algorithm of Procedure 2, feedback controllable form, the first 5 steps
are exactly the same as the first 5 steps of Procedure 1. By Steps 6 through 20,
the auxiliary (m X n) output matrix C, is calculated without explicitly calculating
the inverse of Qr. To visualize how this is done, consider a pair {A,B} with
controllability indices p = { 2 1 2) leading to the selector vector v, and selector
matrix S, given by:

-0 1 0 0 O - T

v , = [O 1 0 1 l] , S , =

0 0 0 0 1 ~

0 0 0 I O

In our example the first n = 5 linearly independent columns from Q are

Q,, = [bl b2 b3 Ab, Ab,] P [X X q 2 931

For convenience, by q,., i = [l , m] , m=3, are denoted columns in a whose
locations correspond to unities in the selector vector v,. Recall that these columns
correspond to the "end-of-chain" columns, i.e. to bz, Abl and Ab,. Note that these
columns are "associated" with the m columns bi of the matrix B in the order
determined by the ordered controllability indices p = { 1 2 21, corresponding to
actual indices: pz = l and p1 = p 3 = 2. Then, 1"' row c,, i=[l,m], of C, is
calculated by:

where N(X) = N represents the null space of X, satisfying X N = 0.
In Eq(3.87) the (n x n-I) matrix M, is obtained from Q, by eliminating

column Q, i=[l,m]. Finally, having calculated rows c,, i.e. the auxiliary matrix
C,, the last 3 steps of this algorithm are equal to the last 3 steps of the algorithm
implementing Procedure 1. It is relatively easy to verify that in the SISO case
these two algorithms (Procedures l and 2) reduce to the algorithms (Procedure 1
and 2) given in Section 3.2.3.

Section 3.3 Canonical Forms for MlMO Systems 127

3.3.6 Modeling Example

To illustrate usefulness and advantages of controllability and observability
forms over the feedback and observer forms the following example of S" order
system with m=2 inputs and p = 3 outputs is considered

Given System Representation

I .05 .OO .OO .OO .OO I 1.00 1.00 I

I .OO .OO .l5 .OO .OO I .02 1.00 I
I .oo .l0 .oo .oo .oo I .01 1.00 I

I .oo .oo .oo .20 .20 I .oo 1.00 I
I """"""""""""""""-+""""""" E I "+""l

I 1.00 .01 .oo .oo .oo I
f .oo .oo 1.00 .01 .oo I
I 1.00 1.00 1.00 1.00 1.00 I (a)

f .OO .OO .OO -.20 .20 I .OO 1.00 I I A I B I

I C I

The unique controllability and observability indices are

p = { 3 2) and v = (2 2 1) @)

According to Eq.(3.70) the possible sets of pseudo-controllability and pseudo-
observability indices are

4 3 2 1
v1 3 2 2 1 1 1

1 , v =
= 1 2 1 3 2 1 v2 1 2 3 4
[l 3] (c) L v 3 -

It has been verified that the first set of controllability indices (4 l} and the first set
of observability indices (3 1 1) are not admissible.

Comparing Eqs.(b) and (c), it may be concluded that the second set of PC1
is equal to the unique controllability indices. Similarly, the second set of POI is
equal to the unique observability indices. The unique feedback and observer forms
of Eq.(a) are given in Eqs.(e). As was mentioned previously, the structures of
matrices A, and A, are based on selector vectors ii, corresponding to the sets

2 = (2 3) and + = (l 2 2 1 (4
obtained by ordering the sets p and v in (b), respectively.

Feedback (unique controllable) Form

[Unique controllability indices (3 2); admissibility degree =. 12E-071

Chapter 3 System Modeling

1 .o .o 1.0 .o .o 1 .o .o I
I .o .o .o 1.0 .o I .o .o I
I .o .o .o .o 1.0 I . o .o I
1 """""""""""""""-+""-"-"""

I -2.2 .o 32.3 . O .02 I

1 - .08 .O .4 -0 -0 I .o 1.0 I
1 112.3 . O -291.9 .02 .3 I 1.0 -1562.5 I
1-255.4 .015 1563.7 -.25 1.0 I
1-260.0 .015 1614.4 -.25 1.0 1

Observer (observable) Form

Wnique observability indices (2 2 l}; admissibility degree =.53E-06]

1 -.l3 . O .o -87.9 -76.8 I -475.0 -741.6 I
1 .o -0 .o .o . o I -.l -.l 1
1 .001 .o
I .o 1.0

.o -.3 -.2 I -1.1 -1.7 1

.o .2
I .o .o 1.0 1.1 .7 I -0 1.0 I

. o I 1.0 1.0 I
I "--""""""""""""""+""""""""
I . o .o .o 1.0
I .o

.o 1
.o .o .o 1.0 f

I 1.0 .o .O 470.6 268.6 I (e21

In Eqs.(e), in addition to the indices from Eq.(b), the admissibility degree of the
indices are given. The udmissibility degree of a full rank matrix is defined as the
inverse of the condition number of that matrix, i.e. as the ratio of the smallest to
the largest singular value of the matrix. The reason for using the inverse of the
condition number is to avoid dealing with infinite numbers when the matrix is not
full rank.

Controllability and observability forms obtained using all admissible sets of
pseudo-cdntrollability and observability indices are given in Eqs.(f) together with
the sets of indices used, as well the admissibility degree of the corresponding
similarity transformation matrices used in obtaining these forms.

Controllability (pseudo-controllable) Forms

[Pseudo-controllability indices { 1,4}; admissibility degree = .66E-03]

I .051

1 .083
I .004

1 -.356
1 .732 I """
I 1.001
I .002
I 1.003

.o

1.0
.o

.o

.o

1.01
1.01
5.00

.""""

.o .o

.o .o

.o
1.0

. o

.o 1.0
.o

.051 .002

.l54 .023

.700 .035

.""""""_

.003
f002
.024 -. 194
.648

.001

.003

.027

"""_ I

.+

1.0
.o 1.0 1

.o I

.o .o 1

.o .o 1

.o .o I
"""""""

Section 3.3 Canonical Forms for MlMO Systems

[Pseudocontrollability indices (2 3); admissibility degree = .53E-031

.o .o .008 .O -.071 f 1.0 .o f

.o .o -000 .o .006 I -0 1.0 f
1.0 .o .213 . O 1.366 f .O .o I

.o 1.0 .002 .O -.l14 I . O .o I

.o .o .006 1.0 .486 I .O .o f
"""""""""""""""""+"""""""
1.00 1.01 .OS0 .OS1 .002 f
.02 1.01 .003 .l54 .021 I

1.03 5.00 .OS4 .700 .035 I

129

[Pseudo-controllability indices (3 2); admissibility degree =.91E-O5]

f -0 .o . O -12.7 .007 I 1.0 .o I
I .o .o
I 1.0
I .o 1.0

.o . O 333.1 -.027 I . O .o f
.o .40 .O I . O .o f

f .o .O 1.0-1562.5 .300 I -0 .o f
f """"""""""""""""+"""""""
f 1.0 1.0 .l .os .002 f
I .o 1.0 .o .l5 .o f
I 1.0 5 . 0 .l .70 .003

. O -.08 . O I . O 1.0 I

Observability (pseudo-observable) Forms

[Pseudo-observability indices { 1 1 3); admissibility degree = .16E-O1]

f .049 .OOO .001 -.004 .010 I 1.000 1.010 I
I ,000 .l50 -.001 .011 -.018 f -020 1.010 I

I -.003 .002 .008 -.l20 .SO1 I .003 .035 f
. O 1.0 I -054 .700 f

I .o .o .o 1.0 . O f 1.030 5.000 f
I .o .o .o
I """""""""""""""""+""""-"""
I 1.0 .o .o .o .o f
I .o 1.0 .o .o .o f
I .o . o 1.0 .o .o I

[Pseudo-observability indices { 1 2 2); admissibility degree = 30E-031

I -050 .085 -00 -.S71 .002 f 1.000 1.010
.o .o .o 1.0 .o I .020 1.010

f .o .o .o . O 1.0 I 1.030 5.000

I """""""""""""""""+"""""""
I 1.0 .o .o .o .o I
I .o 1.0 .o .o .o I
I .o .o 1.0 .o .o I

I .OOO .017 .OO .038 .002 I .003 .l54
f .023 8.491 -.OS -56.723 .612 f .OS4 .700

130 Chapter 3 System Modeling

pseudo-observability iIndices (2 1 2); admissibility degree = .17E-03]

I .o .o -0 1.0 .o 1 1.000 1.010 I

I .o .o .o . O 1.0 I 1.030 5.000 I

I """"-"""""""""""""+"""""""-
I 1.0
I .o 1.0

.o I
.o .o I

: .o .o 1.0 .o .o I

I .087 .l49 .001 -1.752 -004 f .020 1.010 I

I - .005 .OOO .OOO .l50 .OOO I . O S 0 .051 I
I -4.906 .043 -.080 99.384 .401 I .OS4 .700 f

.o .Q .o
.o

Pseudo-observability indices { 1 3 l}; admissibility degree = .14E-O3]

I .o .o .o 1.0 .o : .020 1.010 I
I .o
I """""""""""""""""-+""-"""""
I 1.0 .o .o .o
I .o 1.0

.o I
.o .o I

f .o .o 1.0 .o .o f

-049 .070 .001 -.60 .879 I 1.000 1.010 I

I - . O S 1 -6.894 .l01 -15.78 413.821 1.030 5.000 I

f .OOO .012 .OOO -.l4 . 5 5 0 I .OOO .023 I
.o .o . O 1.0 .003 .l54

. o

Pseudo-observability indices {2 2 l}; admissibility degree = .12E-O3]

Q

f .o .o .o 1.0 .o 1.000 1.010
I .o .o .o .o 1.0 I .020 1.010

.o .l50 .O f .050 .051
1 -23.342 -40.000 -.l37 470.581 268.581 1.030 5.000
f -.005 . O
I - .OS6 -.080 -.001 1.137 .687 f .003 .l54 I

"""""""""""""""""""+"""""""-
I 1.0
I .o

.o . o .o -0 I
1.0 . o .o .o I

I .o -0 1.0 .o .o (f8)

Comparing the forms in Eqs.(e) and (f), it may be concluded that among all
controllable forms, the forms corresponding to the sets of PC1

p = { l 4) and p = (2 3 }

are more "convenient" than the controllability form corresponding to the set of PC1
p = (3 2) which is the "unique" set of controllability indices of the pair {A,B),
as well as the unique feedback form. The advantages of these forms are judged on
the basis of absolute values of elements of matrices in these forms, which is a
direct consequence of the admissibility degree of the transformation matrix used for
the similarity transformation. Similarly, among all observable forms, it may be
concluded that the observability form based on Y = { 1 1 3) has the largest
admissibility degree and, consequently, the smallest absolute values of its elements.

Section 3.4 Matrix Fraction Description (MFD) 131

The main point of this example is to stress the necessity of checking the
admissibility degree of the similarity transformation matrix corresponding to each
admissible set of pseudo-controllability or pseudo-observability indices and to use
the set leading to the largest admissibility degree. Then, the absolute values of the
elements in a state space representation become relatively small, which is
computationally desirable. As was the case in this example, the most convenient
set of indices is not necessarily equal to the unique set of controllability or
observability indices.

3.4 Matrix Fraction Description (MFD)

As introduced in Chapter 1, an alternative representation to either the state
space description or the transfer matrix description is the matrirfraction description
(MFD). For a C-T MIMO system the MFD model is of the form

m) Y (4 = W) 4s) (3.88)
where y(s) is the (P x 1) system output and u(s) is the (m X 1) system input. The
matrices &S) = { d,(s) } and N(s) = { nu@) } are leJt coprime (PXp) and @Xm)
polynomial matrices. The orders of polynomials d,(s) and n,(s) satisfy:

(3.89)

where k I n, n being the order of the system.

will be represented by:
In accordance with the discussion in Chapter 1, polynomials d,(s) and n,,(s)

C k

diics> = c dij,s Ir and nij(s) = c nijhsh (3.90)
h -0 h -0

Similarly, polynomial matrices D(s) and N(s) may be written as

where

(3.91)

Two polynomial matrices are left coprime if they do not have common terms,
or if

132 Chapter 3 System Modeling

rank[D(s) I N(s) 3 = p for all s

In other words, it is assumed that all existing common terms in D(s) and N(s) have
been cancelled. In some relevant literature the MFD model is referred to as an
auto-regressive-moving-average (ARMA) model. As is the case with state space
models, the MFD representation is not unique, i.e. there is more than one pair of
polynomial matrices {D@), N(s)) that will represent a given system.

One variation of an MFD model is the following model:

y(s) = &S) &'(S) u(s)

which is sometimes expressed as

(3.92)

(3.93)

where v(s) is an auxiliary m dimensional vector.

matrix, G($) by
It is quickly concluded that the MFD model is related to the system transfer

G(s) = D"(s) N(s) = &) &'(S) (3.94)

Similarly, the (pxm) and (mxm) matrices #(S) and i(s) are right coprime if:

(3.95)

It is worth mentioning that in the case of SISO models, i.e. for p = m = 1,
matrices D($) and N(s) become scalar polynomials d(s) and n(s), respectively, and
the coprime condition reduces to:

rank[d(s) I n(s)] = 1 for all s (3.96)

The condition of Eq.(3.96), in fact, implies that polynomials d(s) and n(s) have no
common factors, i.e. there is no value s = so for which both d(s0) and n(so) are
equal to zero. In other words, for s = p,, i=[l,n], i.e. system poles, d@J = 0,
but n(pJ # 0; i.e. the transfer function g($) = n(s)/d(s) does not have any pole-
zero cancellations. Similarly, if there are no common factors, then for s = zf, i.e.
system zeros for which n(z,) = 0, d(zf) # 0.

Recall that in the case of SISO systems, it is typically assumed that d(s) is a
monic polynomial, i.e.

n

4 s) = c di s where dn = 1
i-l

(3.97)

Section 3.4 Matrix Fraction Description (MFDI 133

This type of "normalization," when applied to polynomial matrices requires some
additional consideration.

Definition 3.4 The degree of apolynomial vector (row or column), a(s):

4 s) = [q (s) ..* QP(S)]
is equal to the highest degree of all (polynomial) entries, a,(s),in the
vector. The polynomial vector a(s) is monic if its polynomial with highest
degree is monic in the sense of Eq.(3.97) and there is only one polynomial
with that degree.

Definition 3.5 A column-reduced polynomial matrix is defined as
follows: For a p x p polynomial matrix D(s) = { d&) }, let the degree of
the z* column be n,. In general,

P
deg det(D @)] = n S C n,

i - l

(3.98)

If equality holds in Eq.(3.98), D(s) is considered to be column reduced.

Definition 3.6 A pxp column-reduced polynomial matrix D($) is said
to be monic if in each column the polynomial with the highest degree is
monic.

Row-reduced and row-reduced monic polynomial matrices are defined in a
similar manner. Unless stated differently, the p xp matrix D(s) of the left coprime
pair {D@), N(s)} is taken to be both column-reduced and monic. In the

corresponding case of the right coprime pair {fi(s) , B(s) } the m x m matrixas)
is considered to be both row-reduced and monic.

Since the concept row-(or column-) reduced polynomial matrices is important
for our developments, some simple examples will be presented: Consider the 3 X3
column-reduced polynomial matrix D(s) with column degrees { n, } given by:

tn , ,n* ,n ,) = (2 , 2 , 2 1 (3.99)

D(s) has the general form

I D(s) = x + x s x + x s + s 2 x + x s (3.100)

I x + x s x +xs x +xs +S2 J
where x represents a possible non-zero value. The matrices in Eqs.(3.91) are:

134 Chapter 3 System Modeling

(3.101)

In the case for which the column degrees {nl} are not equal, e.g. if

{ n, ,n2 ,n3 l = I 2 , 1 , 3 1 (3.102)

then the corresponding description of Eq(3.100) becomes:

x+xs x + s x+xs+xs2

D(s) = x + x s + s 2 x x+xs+xs2

x+xs x x + x s + x s 2 + s 3 -

(3.103)

and the 3x3 matrices in Eqs.(3.91) become:

x x x ~ x l x ~ o o x ~ o o o

[Do I Dl I D, I D 3] = X X X I X 0 X I 1 0 X I O 0 0 (3.104)
x x x ~ x o x ~ o o x ~ o o l 1

Note that in both cases d(s) = det { D(s) } is an n=6"' order polynomial with the
coefficient associated with S' equal to f l . Also the fp X (k+l)p] matrix D,
defined by:

D, = [Do I D, 1 1 Dk] (3.105)

contains:
n=6 columns with non-zerolnon-unity elements,
p=3 columns of the pXp identity matrix, and
kp-n columns of zeros.

It may be verified that the locations of the non-zerohon-unity columns and
the columns of the identity matrix mentioned above are defined by the unity
elements of the selector vectors v,, and vu, respectively, generated by a set of POI
{ vi 1 equal to the column degrees { n, 1 of D(s). It is worth mentioning that
matrices D(s) given above are completely general, since it is always possible to
premultiply both D(s) and N(s) by a p xp "permutation" matrix to bring @S) to the
above form. The transfer matrix G($) = D'(s)N(s) is not altered by this multi-
plication.

Alternatively, with argument z replacing S, Eqs.(3.88) to (3.92) represent D-T
MFD or ARMA models. In particular, using the z-domain description, Eq.(3.88)
may be rewritten as

Section 3.4 Matrix Fraction Description (MFD) 135

where the matrices (DJ, O r i r k , and {Ni}, O l i s k in Eq(3.106) have the
dimensions @ x p) and @ x m) , respectively. The time domain equivalent of
Eq(3.106) is

D,y(t+k) + ... + D, y(t+l) + D,y(t) = N,u(t+k) + ... + N,u(t+l) +Non@)

(3.107)
where t has been used as the discrete time index, taking on only integer values.
More specifically, for the example above, the difference equation corresponding to
Eq.(3.101) is

y(t+2) + D, y(t + 1) + D, y(?) = N, u(t+2) + N, ~ (t + 1) + No ~ (t)

(3.108)
since D2 is an identity matrix. The vector y(t) has, of course, three components.

The special case for which all column degrees of D(s) are equal is sometimes
called the equi-observable case, and D(s) is then considered to be a regular
polynomial matrix. The time domain equivalent in the general case when the
column degrees are not necessarily equal is not as simple as for the regular case.
For instance, corresponding to the example of Eq.(3.102), we may write

where d,, is the]''' column of the matrix Di. In general, the left side of such a
description is a p dimensional vector containing samples y,(t+n,), j = [l , p] , but
arranged in ascending order of column degrees nl. In fact, the left-hand side of
(3.109) is

[Y,(f+nz) Yl(t+n,) y3(t+n3) 1'
since in the example, 4 I n, 5 n3.

When a left coprime pair of polynomial matrices { D(@, N(s) 1, (or with z
instead of S for a D-T system), as described previoulsy is available, it is relatively
easy to transform a left coprime MFD into an observable representation R, based
on a set of admissible POI corresponding to the column degrees of D(s). And,
conversely, given an observable representation R,, based on a set of POI, it is
possible to obtain a corresponding left coprime MFD. Similar statements can be

136 Chapter 3 System Modeling

made for the relationships between a right coprime row-reduced MFD and a
controllable state space representation. This is the subject of the next chapter
where the conversion between the various system models is considered.

3.5 Summary

In this chapter the important concepts of system structure and canonical forms
were presented. In Section 3.1 the systems under consideration were restricted to
be SISO systems. Controllable, observable and Jordan forms were discussed,
particularly with respect to their relation with the corresponding transfer functions.
In Section 3.2 the SISO controllable and observable forms were extended to MIMO
systems through the use of specific similarity transformations of the system state.
In Section 3.3 the discussion of MIMO canonical forms was continued. A very
flexible method is given for describing the structure of a MIMO system, using
pseudo-controllability and pseudo-observability indices (PC1 and POI). The pseudo-
controllable and pseudo-observable forms provide a selection of possible system
structures from which the "best" one can be chosen. This "best" structure is not
always the "unique" controllable or observable canonical form commonly used in
the control system community. With this chapter's thorough discussion and
exercises on MIMO system structure, the reader will be prepared to study Chapter
4, which presents an entire collection of algorithms for conversion between the
various system types. Finally, in Section 3.4 the matrix fraction description (MFD)
was presented in detail, tying the concepts of POFs and PCFs to left and right
coprime MFD forms.

3.6 References

The topic of system modeling covers a broad area, but we again refer to the
basic advanced texts of Kailath (1980), Chen (1984) and Brogan (1991) for well
written background reading. Luenberger (1967) is a classical paper on canonical
forms for MIMO systems. Ackermann (1985) discusses the various "Frobenius"
canonical forms used in this chapter in his Appendix A. For details on the
"modified" forms used here, i.e. the use of pseudo-controllable or observability
indices, see Bingulac and Krtolica (1987), or Gevers and Wertz (1982); also called
nice indices in Antoulas (1985). A related discussion on the invariance of
controllability indices is given in Bingulac and Vanhdingham (1992). Kailath
(1980) relates state space and matrix fraction descriptions in his Chapter 6.

Section 3.6 References 137

Ackermann, J. (1985), Sampled-Data Control Systems, Springer-Verlag, Berlin.

Antoulas, A.C. (1986), "On recursiveness and related topics in linear systems,"
IEEE Trans. on Automatic Control, AC-31, 12, 1121-1135.

Bingulac, S. and R. Krtolica (1987, "On admissibility of pseudo-observability
indices," IEEE Trans. on Automatic Control, AC-32, 920-922.

Bingulac, S. and H.F. VanLandingham (1992), "On the invariance of controllability
indices of linear MIMO systems under orderings of the inputs," Proceedings of the
3 6 Allerton Conference, University of Illinois, September 1992, pp 83-87.

Brogan, W.L. (1984), Modern Control Theory, Prentice-Hall, Pub. Co., Engle-
wood Cliffs, NJ.

Chen, C-T. (1984), Linear System Theory andDesign, Holt, Rinehart and Winston,
Inc., New York, NY.

Gevers, M. and V. Wertz (1982), "Uniquely identifiable state space and ARMA
parametrizations for multivariable linear systems," Automatica, 20, 333-347.

Kailath, T. (1980), Linear Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Luenberger D.G. (1967), "Canonical forms for linear multivariable systems," IEEE
Trans. on Automatic Control, AC-12, 290-293.

138 Chapter 3 System Modeling

3.7 Exercises

3.1 Given below is a state space representation of a strictly proper SISO system

R = [: :] =

-1 1 1 0 1 1

- 1 - 1 2 0 I O

0 0 - 1 1 1 0

0 0 0 - 2 1 2
”” ”” ”” ”” -1- -”

0 1 0 2 1 0

Determine:

(a) -the controllability (controllable) form,
(b) -the observability (observable) form,
(c) -the feedback (controllable) forms using Procedures 1 , 2 and 3 described

(4) -the observer (observable) form using the principle of duality.
in Section 3.2.3, and

Hints:

0 Define the representation R = (A,b,c) using the operator DMA, or

0 Calculate the controllability and observability matrices using the

0 Calculate the required canonical forms using the operator STR.
0 Find the null space by using the operator NRS.
0 Determine the transfer function, in Procedure 3, using the operator

0 Matrix partitioning could be done using the operator CTC.

IN€”.

operators QC and Qo.

SSTF.

A version of L-A-S program performing this exercise is available in the
subdirectory C:\LAS\DPF\EXER3 1 .DPF.

Section 3.7 Exercises 139

3.2 The coefficients W, and a,, i=[O,n], n=4, of a non-strictly proper SISO
transfer fuction g(s) = w(s)/a(s) are given below:

(W *] = [5 6 -3 -4 -2 3
(a i } = [2 6 7 4 l]

Determine:

(a) -the feedback (controllable) form R, = {A,, b,, c,, d,) using Algorithm RC],

@) -the observer (observable) form R, = {A,,, bo, c,, d,} using Algorithm Rol ,

(c) -the controllability (controllable) form R, = {A,, b,, c,, de} using Algorithm

(d) -the observability (observable) form R, = {Ao, bo, c,, do} using Algorithm

(e) -the transfer functions of all the obtained state space representations.

Section 3.4.2.

Section 3.4.2.

Rc2, Section 3.4.2.

R02 Section 3.4.2.

Hints:

0

0

0

0

0

0

0

0

Define the coefficients W, and a,, i=[O,n], n=4, using either operator
DMA, or INPM.
Row partitioning can be performed using operator CTC.
Extraction of the dimensions of a row/column/matrix can be done using
the operators RDI and CD1 of the subroutine GETD.SUB.
Rowlcolumnlmatrix transposition can be done using the operator T.
The controllability and observability matrices can be calculated using
the operators QC and Qo, respectively.
Rows S, and S, could be defined by partitioning an identity matrix 4,
where the identity matrix is generated by the operator DIM.
"Shifting" rowslcolumns/matrices up/downlleft/right can be done using
the operators SHU, SHD, SHL and SHR.
The transfer function can be calculated using the operator SSTF.

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER32.DPF.

140 Chapter 3 System Modeling

3.3 A 6" order C-T system with m=3 inputs andp=2 outputs is given below:

1 1 0 0 0 0 ~ . 0 1 1 0

- 1 1 0 0 0 0 ~ 0 0 0

0 0 1 0 0 - 4 1 1 0 0

2 2 0 2 0 0 ~ 0 0 1

0 0 0 0 1 2 l 0 0 0

0 0 0 0 - 2 1 I O 1 . 0 1
-" --- --- -" -" "- -1- --- "- ".

1 .M .01 .02 .m 0 I 0 0 0

0 3 1 1 3 O I O 1 0

Determine:

(a) -the unique sets of controllability and observability indices.
(b) Using Eq.(3.70) and Definition 3.2, determine all sets of PC1 and POI.
(c) Determine which sets are admissible.
(d) For all admissible sets of PC1 and POI determine the corresponding PCF and

(e) Calculate the degrees of admissibility for all admissibile sets.
(f) Determine the particular PC1 and POI which correspond to the "best

selection," i.e. having the largest admissibility degree.
(g) Are these "best" sets equal to the unique sets of controllability and

observability indices?

POF.

Hints:

0 To define the required arrays, use operator DMA.
To calculate Q, and Q,, use operators QC and Qo.

0 To calculate the unique controllability/observability indices, use either
operator RKC/RKR and then subroutine CIND.SUB, or subroutine
IND. SUB.
The calling sequence for IND is:

The calling sequence for CIND is: v (CIND , SUB) =Ind.

or the subroutine SMAT.SUB.
The calling sequence for SMAT is: Pind (SMAT I SUB) = Inmx I

Q,mp,cut,eps(IND,SUB)=Ind.

0 To calculate selector matrices, use either the operators POI and DSM

Sa,Si,Sli,Sld.

Section 3.7 Exercises 141

0 To calculate the admissibility degree of a particular realization, use
either the operator SVD, or the subroutine C#.SUB.
The calling sequence for C# is: T(c#,suB)=c#.

0 For additional hints see those following Exercises 3.1 and 3.2.

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER33.DPF.

3.4 A (5 X 5) matrix A and three input matrices B,, i=1,2,3, are given below:

A = diag(1, 2, 3, 4, 5)

0 1 1

0 0 1

B,= 2 l 1

0 0 1

.01 0 1

7 B, =

0 1 1

0 0 1

2 1 1

0 .01 1

, B,=

0 0 1 -

0 1 1

0 0 1

2 1 1

0 .01 1

.01 0 1

For the pairs {A, BJ, i=1,2,3, determine:
(a) -the three sets of unique controllability indices.
@) -the three pairs, {Ad, Bd}, of Feedback controllable forms.
(c) -the three pairs, {Ad, Bh}, of Controllability forms which correspond to the

set p = { 1 1 3 } of admissible PCI.

Hints:

0

0

0

0

To calculate a feedback controllable form, use procedure 1 or 2,
Section 3.3.5.
To calculate a controllability form, use the dual of the procedure given
in Section 3.3.4, or use Algorithm SSRc discussed in Chapter 4, Section
4.1.2.
Since the same calculations, but using different input matrices (B,),
should be performed, it is advisable to use an "incompletely" specified
operator statement. (See Appendix C, the subsection: "Omitting Input,
Output and Operator Fields").
For other hints see those following Exercises 3.1, 3.2 and 3.3.

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER34.DPF.

142 Chapter 3 System Modeling

Remark: Note that even though the matrices B, are rather similar, the feedback
controllable forms are quite different, while the controllability forms based on the
selected set p are nearly equal.

3.5 A Tb order non-diagonalizable matrix A is given below:

A =

. 2 0 - 1 0 0 - 2 - 2

0 3 2 0 0 2 2

0 -1 1 0 0 -1 -2

0 -1 -1 2 1 0 -1

0 0 0 - 1 2 0 1

0 1 1 0 0 3 2

0 0 - 1 0 0 - 2 1

Determine:

(a) -the eigenvalues of A. Verify that the eigenvalues are 2 f jl and 2 with

@) -the modal matrix P which transforms A into a block diagonal "real

(c) -the Jordan form A,.

multiplicities 2 and 3 respectively,

number" Jordan form AI satisfying AI = P' A P, and

Hints:

0 See Appendix B for more details on Jordan forms.
0 Define the matrix A using either the operator DMA or INF".
0 To calculate the modal matrix P, use the subroutine MODM.SBR. Note

that MODM.SBR calls either CHAR.SBR, or CHAC.SBR, for each
distinct eigenvalue of A.

0 Calculate the distinct eigenvalues of A using the operators EGV, DMA
and DSM.
To calculate A,, use the operators -1 and * (inversion and
multiplication).

A version of an L-A-S program which solves this exercise is available in the L A - S
subdirectory C:\LAS\DPF\EXER35.DPF.

Chapter 4 Intermodel Conversion

In the previous chapters several methods of system representation have been
discussed. The purpose of this chapter is to present the various algorithms that can
be used to convert between the different system models. As illustrated in Fig. 4.1,
we consider apentagon of five basic representations. The arrows refer to available
algorithms that may be invoked to perform the indicated conversion.

Our approach to presenting this material will be to focus on a particular block
of the "pentagon" in Fig. 4.1, e.g. the state space representation, and discuss the
algorithms used for converting this model to each of the other four.

4.1 Conversions from a State Space Model

Since we are most familiar with the state space representation, having used
this model as our fundamental system description in previous chapters, we will
begin by considering the different methods of converting this model to other forms.
Even though most of the techniques apply equally well to C-T models, our
concentration will be on the conversions of D-T models, as indicated in Fig. 4.1.
As is well known, state space representation for a specific system is not unique.

1 2
bU,CPI W(@, 4 2)

State 4

A A A
Punction Space
Transfer

I

v - V
3

Parameters
Markov

A t

W4 W , W
+ m

. $ A

{U&)* YQI
Input/output

.c-

5
* Data

FIGURE 4.1 Algorithms for Intermodel conversion

143

144 Chapter 4 lntermodel Conversion

In this section several options are discussed. Initially, we assume a general
state space representation. And anticipating the need to transform the general state
space form into one of the canonical forms, two algorithms are provided: one to
convert to an observable form, and a second, to controllable form. We will
consider exclusively the controllability and observability forms since they take
advantage of flexibility offered by pseudo-controllability and pseudo- observability
indices (PCI) and (POI). As was mentioned in Chapter 3, these forms will be
sometimes referred to as pseudo-controllable (PCF) and pseudo-observable forms
(POF). Another reason is that we found that controllability and observability forms
of the structure in Eq~(3.66) and (3.80) are best suited for all intermodel
conversions to be discussed. These forms are better than the feedback and observer
forms as well as forms of the Luenberger structure. This is in fact the reason why
we in Chapter 3 insisted on these forms and stated that they are more "natural" than
other possible canonical forms. The remaining algorithms in this section provide
for conversion to transfer function form, ARMA (or MFD) forms, as well as for
calculating the Markov parameters, and system responses.

4.1.1 General State Space to Observable Form

This algorithm transforms a general form R = (A, B, C, D} to an
observability (POF) form R, = (A,, B,, C,, D,}, bases on an admissible set Y of
POI as discussed in Chapter 3. To recall the basic steps of the procedure,

1. Set v (SMat) - v,,,,S,,Si,S,i,S,
2. Set A,C (Qo) * Q, (Q, has v,+ 1 blocks of CA' of p rows.)
3. Set S,' Q, * T,
4. Set T, (C#) C#
5. Set A,B,C,T;' (STR) * A,,B,,C,
6. Set D =) D,

The quantity E is a sufficiently small positive number used as "machine zero." The
algorithm C#, Step 4, determines the "degree of admissibility of the set Y by
calculating C#, the ratio of the smallest to the largest singular value of To. (C# is
the inverse of the "condition number" of To.) For more details on MIMO
observability forms see Section 3.3.4.

4.1.2 General State Space to Controllable Form

This algorithm transforms a general form R = {A, B, C, D} to a controllabil-

Section 4.1 Conversions from a State Space Model 145

ity (PCF) form R, = {A,, B,, C,, D,} based on an admissible set p of PCI.

1. Set P (SM@ * pmm,SmSi,Sii,Su
2. Set A,B (QC) * Q, (Q, has pm+l blocks A'B of m columns.)
3. Set Q, S,l * T,
4. Set T, (C#> =) C#
5. Set A,B,C,T, (SZR) * A,,B,,C,
6. Set D D,

Note that SSRc is the dual algorithm to SSRo. However, due to different sets p and
Y used,'representations R, and R. obtained by these algorithms are mc dual to each
other in the sense of the definition given in Section 3.2.2. For more details on
MIMO controllability forms see Section 3.3.

4.1.3 State Space to Transfer Function

This algorithm transforms a general form R = {A, B, C, D} to a transfer
function matrix G(s) = C(s1 - A)"B + D using Levemer's algorithm. The two
versions of this conversion are explained in Section 1.3.9. Recall the symbolic
notations

A,B,C,D(LQLG) - d, W,, W

and A,B,C,D(SSTfl - d, W

where W is a [pm X @+l)] matrix in a PMF, see Eq.(G6) in the Glossary.

4.1.4 State Space to Markov Parameters

This algorithm transforms a general form R = {A, B, C, D) to a set of
Markov parameters. The Markov parameters for a D-T system may be described
as the matrix response sequence of the system, initially at rest, to a collection of
unit pulses of excitation. Thus, given a state space model

x(k+ 1) = Ax&) + B U(&) , x(0)
y(k) = C x(&) + D U(&)

with x(0) = 0, and u(k) * l@)&,,, (6(k) = 1 if k = 0, otherwise 6(k) = 0):

(4.1)

146 Chapter 4 lntermodel Conversion

H(k) = c CAk""Bb(i) + Dtj(R;)
k - l

(4.2)
i - 0

The first few terms of this charucrerisric sequence are easily calculated to be

H(k) = { D , CB, CAB, CA'B, CA3B,) (4.3)

These matrix elements are the Murkovpurmefers of the system in Eq(4.1). For
convenience we will express the Markov parameters H, by a polynomial matrix in
P , i.e.

.D

H(z") = c H,z" (4.4)
i -0

where & = D and Hi = C Ai" B , for i=[l,m].

function matrix G(z) may be expressed by:
The reason for using Eq(4.4) is that it may be shown that the transfer

G(z) = H(z") (4.5)

It may be verified that if all eigenvalues of A are within unit circle, i.e. if

Il4A)U < 1 (4.6)
then IIHH-l 11 < < 1 for a sufficiently large finite h4 < W .

by:
If Eq.(4.6) holds, the polynomial matrix H(z") could formally be represented

H(z -l) A { h& -l) } = I,(z") H, = H, I:(z") (4.7)

where

Ip(Z-l) = [I, 1,z-1 . 'S I,z""]

qZ-1) = [I, 1,z-1 ... 1,z "+l J

For more details on this notation, see the Glossary of Symbols.
If Eq(4.6) does not hold, then instead of using the original representations

R, a "time scaling'' could be performed, which amounts to dividing A and B by a
scalarfsatisfying:

Section 4.1 Conversions from a State Space Model 147

f > n w g
In other words, a "time scaled" system representation R, should be used where:

l$ = (N ! ,Bf f ,C ,D 1 (4.8)

After performing a desired model conversion, the obtained model should, of course,
be "time scaled" back by the same used scalar$

Using Eq.(4.4) the following algorithm is suggested:

Syntax: A, B, C, D, M (SSH) =) H, hM

1. Set A,B (QC) * Q (Q, has M-l blocks A% of m columns.)
2. Set[D I C Q] * H ,
3. Set 11 H,, 11 =) h,
4. Set H,, m (PMFr) =) H

The matrix H is a @m X M] matrix in a PMF whose rows contain the first M
coefficients of the (M-1)st order polynomials h,(z-l) in z" defined by:

H(z") = { h i p - '))

For more details on the PMF see the Glossary of Symbols. Algorithm PMFr is a
polynomial "service" algorithm which transforms a [p x Mm] matrix H,, Eq.(4.7),
into the PMF, i.e. into the [pm x M] matrix H whose rows contain the coefficients
of the polynomials h,(.?) of H(z").

Using the duality principle, Algorithm SSH could also be implemented by:

1. Set A,C (Qo) * Q (Q, has M-l blocks CA' of p rows.)
2. Set [DT I (QJ%)T]T =) H,
3. Set IIHM., 11 =) h,,,
4. Set H,,p (PMFc) =) H

Again, PMFc is a "service" algorithm that transforms H, into H in the P m . The
reason for using Markov parameters as a "system model" is that Markov
parameters are a convenient vehicle for intermodel conversions between different
system models.

4.1.5 Continuous-Time State Space Response

This algorithm calculates the output response of a general C-T state space
model R = {A, B, C, D}, given the initial state vector and samples of the input
signals. The calculations are based on the assumption that the input signals are
linearly interpolated between samples.

148 Chapter 4 lntermodel Conversion

A general algorithm for simulating C-T systems is given in Section 1.3.5.

4.1.6 Discrete-Time State Space Response

This algorithm calculates the output response of a general D-T state space
model R = (A, B, C, D}, given the initial state vector and the sequence values of
the input signals. The general algorithm capable of simulating D-T systems is
given in Section 1.3.5.

Syntax: A,B,C,D,x(O),u,O (CDSR) * y

Note that in order to specify that the response of a D-T model is sought, the 7"'
input argument should be set to zero or any negative number.

4.1.7 Observable State Space to "D Model

This algorithm converts an observable form R, = {A,, B,, C,, D,} ,to a left
coprime column-reduced MFD, D(zY'N(z). Of course, this algorithm can equally
well be applied to a C-T state model to obtain the corresponding MFD representa-
tion. The algorithm furnishes a monic D(z) in the sense of Definition 3.6, given
in Chapter 3. Several of the intermodel conversions discussed in this chapter are
based on the relationship between the state space model in a POF and a correspond-
ing left coprime MFD. For this reason we will establish this relationship here and
then discuss individual algorithms as they arise.

To this end, consider the order-n system with m-inputs and p-outputs:

where t is used as an integer time index and R, = {Ao, B,, C,, D,) is in a POF
corresponding to a set of admissible POI, Y = {vi}. From Eq.(4.9) we may write

D, 0 ...

(4.10)

Section 4.1 Conversions from a State Space Model 149

Now we let r = v,,, = max{v,}. Clearly, Eq(4.10) holds for any t = [0, N-r] and
can be rewritten as

Y, = Q,x(O + Hut (4.11)

where y, and U, are (v,,,+ 1)p and (v,,,+l)m dimensional columns containing the
output and input vectors y(t+j) and u(t+j), j = [0, vJ. The matrix Q, is the
observability matrix of the pair {A,, C,}, while H is the (r+l)p x (r+l)m lower
block triangular matrix containing along the main diagonal the (pxm) blocks D,.
The other nonzero blocks of H are the p xm dimensional Markov parameters:

(4.12)

Our goal is to eliminate from Eq.(4.10) the x(r) terms, thereby obtaining an
expression which relates the sampled data to the elements in R,.

Equation (4.10) can be considered to represent (v,,,+ 1)p scalar equations in
the samples

Y, = ri(t +i) (4.13)

i.e. the I* component of the output vector y(r+j), i=[l, p],j=[O, v,,,]. In Section
3.4.3 it was shown that Q, has n rows of the identity matrix I, and p rows that
correspond to the rows of A, with non-zerohon-unity elements. Furthermore, the
location of these rows are determined by the selector vectors v,, and vu, respective- .

lY
Premultiplying Eq.(4.11) by the selector matrices SET and SuT defined by

Y,, = x(0 + Hlu, , and y2, = Ap(0 + %mt (4.14)

Eq.(3.79), we obtain, respectively,

where

Eliminating x(t) from Eq.(4.14),

(4.15)

The matrix A, in Eqs.(4.14) and (4.15) is a @xn) matrix containing the rows of
A, with non-zero non-unity elements, whose locations in A, are specified by the
selector vector v,. Equation (4.15) may be expressed in a more concise form by

150 Chapter 4 lntermodel Conversion

Y2k = [Nr I z k (4.16)

where N, = Hz - ABH, is a p X (vm+ 1)m matrix and z, is an h-dimensional vector
containing U, and y,,, where h = (v,+l)m + n. Equation (4.16) is referred to as
the idenfijicufion identity since it relates input-output data samples arranged into
columns yu and z, to parameters of the state space representation R,, i.e. in the
matrices A,, B, and D,. The idenfiJcaion identity is the basis for conversions
between input/output data and either state space or MFD models.

For the purpose of Algorithm RoDN, to be introduced here, Eq(4.16) may
be rewritten as

y2t - AJlt = Nrnt (4.17)

Note that Eq(4.17) is a time-domain input/output expression. Applying the z-
transform and taking into account the arrangements of the samples ui(f+]) and
y,(f+j) in the vectors U,, yl, and y,,, we obtain:

Y(Z) = W) 4 2) (4.18)
which is a left coprime MFD. Since in Eq.(4.17) the p dimensional vector yu is
multiplied by the identity matrix Ip, it may be concluded that D(z) in Eq.(4.18) is
monic. For further details see Section 3.4 and Eq(3.104). Thus, in order to
obtain the [p X (vm+l)p] matrix D,, which leads directly to D(z), it is first
necessary to obtain the matrix A,. From the discussion in Section 3.3.4 it is clear
that A, may be obtained from A, in a POF by:

S;A, - A, (4.19)

where S, is one of the selector matrices uniquely defined by the particular set of
admissible POI v and generated by Algorithm SMa:

Y (SMat) =) v,,,,S,,,SiS,,,S,
Then the matrix D, becomes

S: - A,$ = D, (4.20)

For more details see Section 3.3.4.

recall that:
In order to obtain the corresponding N(z) in the left coprime pair (D(z),N(z)},

C(z) = D"(z) N(z)
Thus, using G(z) = W(z)/d(z) and D'(z) = T(z)/d(z), where T(z) = adj D(z), d(z)
= det(zI - A,) = det{ D(z) 1 and W(z) = C adj(z I - A,) B + d(z) D, the above
equation may be expressed by:

W O = T(z) W Z) (4.21)

Section 4.1

leading to:

Conversions from a State Space Model

(with N, = 0 fori > k, where k = v,,,) which may be represente

NO

Nk

WO

W n

151

d by:

(4.22)

where T,, N, and W, are corresponding real number submatrices in the polynomial
matrices q z) , N(z) and W(z).

From the above discussion it is not difficult to conclude that given R, and the
associated set v, the following algorithm will calculate the corresponding left
coprime MFD (D(z), N(z) } .

Syntax: A,, B,, c,, D,, v (RODN) =) D, N

1. Set Y (SMat) =) vm,S,,Si,S,i,S,,,
2. Set S,' A, =) A,
3. Set SUT - AS; * D,
4. Set D,,p (PMFr) =) D
5. Set adj D(z) * T(z)
6. Set A,, B,, C,, D, (SSTF) =) d, W
7. From q z) and W, (Ti and Wi) build Eq(4.22) and solve for N,
8. Set N,,p (PMFc) =) N

As was mentioned earlier, the Algorithm PMFr used in Step 4 is a polynomial
matrix "service" algorithm which simply transforms D, into the PMF, i.e. into the
rp' X (vm+l)] matrix D whose rows contain coefficients of the polynomials d&z)
of D(z). From Eq.(4.22) it is clear that the submatrices N, are in the form of N,,
i.e.

N, =

NO

Nk

152 Chapter 4 lntermodel Conversion

This is why the service algorithm PMFc must be used in Step 8.
From the discussion in Section 3.4, as well as from the above algorithm, it

may be concluded that the column degrees {ni} of the monic D(z) of the left
coprime MFD {I)(z), N(z)} are equal to the POI used, i.e. {ni} = {vi} = Y .

Example:

The purpose of this example is to emphasize the relationships between a given
A, in a POF and Q(z) of the corresponding left coprime MFD {D,(z), Nxz)}, where
Dkz) is monic and column-reduced with column degrees {nil equal to the set of POI
Y = {v,} used in building A, (in a POF):

A,, (POI = { 1,3}):

"2.000 .002 .003 .W1

' 0 0 0 0 1

'T - 1
0 0 1 0 0

A, = = V,

L 1.000 -5.001 -9.001 -5.000- 1

-2.000 .m .003

1.OOO -5.001 -9.001 -5.000

where at the right of A, is a selector vector v,, specifying the non-zerohon-unity
rows of A, which are used to form the matrix A,.

Dlr (column degrees { 1,3}):

2.000 -.W 1 -.m3 0 ")l 0 0

-1.OOO 5.001 0 9.001 0 5.000 0 1 1 D,, = [
Vli = [1 1 0 1 0 l o o]

where the selector vector vL. marks the non-zerolnon-unity columns of D,. When
only these columns are selected, D, is formed:

2.000 -.m -.m3 -.m1
= -1.OOO 5.001 9.001 5.000 1

Note that A, = - D,. The corresponding polynomial matrix Di(z) can be
constructed from DIr = [D, D, D, D3] where {Di} are 2 X2 partitions associated
with the coefficients of J'. Thus,

Section 4.1 Conversions from a State Space Model 153

2.000 + 1s
D,@) =

-.m -.003s -.001s2

-1.OOO 5.001 +9.001s +5.000s2 +ls3

The selector vectors corresponding to {vi} = (ni} = (1,3} are:

v,=[1 0 0 l]
v , = [O l 1 0 1
vl,=[l 1 0 l 0 1 0 0 1

v l d = [0 0 1 0 0 0 0 l]

To formalize these ideas, we define the following:

Remark 4.1 For a given system the total number of equivalent left
coprime MFDs with column reduced and monic D(z), having column
degrees (n,}, is equal to the total number of POFs based on admissible
sets of POI (vi}. Thus, it may be said that there is a one-to-one corre-
spondence between a POF and associated left coprime MFD satisfying:

4.1.8 Controllable State Space to MFD Model

This algorithm converts a controllable form R, = {A,, B,, C,, D,} to a right
coprime row-reduced MFD, N(z)D'(z). As with the previous case, this algorithm
can be applied to a C-T state model to obtain the corresponding MFD representa-
tion. This algorithm is dual to Algorithm RoDN. Thus, it may be easily verified
that given R, in a PCF, based on an admissible set of PC1 p, the following
algorithm calculates a corresponding right coprime { N(z), D(z) } where D(z) is
row-reduced and monic, satisfying:

C (Z) = C, (zI - A=)-' B, + D, = N(z) W (Z) (4.23)

154 Chapter 4 lntermodel Conversion

4. Set D,,m (PMFc) =) D
5. Set adj D(z) =) T(z)
6. Set A,, B,, C,, D, (SSn;) =) d, W
7. From T(z) and W, (T, and N,) build Eq.(4.25) and solve for N,
8. Set N,,m (PMFr) N

Now, A, in Step 2 is an (n x m) matrix containing m columns from A, with non-
zero and non-unity elements, see Eq.(3.66), while D, is a [(p,+l)m x m] matrix
containing (m X m) submatrices Di of D(z). The structure of D, is dual to that of
D, shown in Eq(3.104).

Similarly, by duality, instead of Eq.(4.21) we have now

i c N j T i _ j = W i , for i = [l,n]
j - 0

(with N, = 0 fori > k) which may be represented by:

[No
Nk 1

TO

(4.24)

1 (4.25)

where k = p,,, while Ti, Ni and W, are corresponding real number submatrices in
the polynomial matrices T(z), N(z) and W(z).

From Eq.(4.25) it is clear thac submatrices N, are in the form of N,, i.e.

N, = [No
Nk 1

This is why the service algorithm PMFr has to be used in Step 8. It is important
to again note that the row degrees {nil of D(z) equal the PCI, i.e. {ni} = {p,} =
p. As in the previous section an example will be used to illustrate these results.

Example:

Consider the relationships between a given A, in a PCF and Dxz) of the
corresponding right coprime transfer function {Nr(z), Dr(z)}, where Dr(z) is monic
and row-reduced with row degrees (nil equal to the set of PC1 p = {p,} used in
building A, (in a PCF):

A, (PC1 = {1,2,1}):

Section 4.1 Conversions from a State Space Model 155

- -.999 0 .000 1.000

-.m3 0 1.000 -5.002
.000 0 -2.000 ,000

-.W1 l .000 -4.001-

A, =

v a = [1 0 1 1 1

The selector vector v, specifies the non-zerohon-unity columns of A,. These are
collected to form A,:

-.999 .000 1.OOo

-.W3 1.000 -5.002
=

.000 2.000 .000

-.W1 .000 -4.001

The matrix D, containing the submatrices Di, i=[O,k], of D(z) is:

.999

.003

.OOO
""

1

.001

0
""

0

0

0

.000

-1.OOO

2.000
""

0

.000

1
""

0

0

0

-1.000

5.002
.000
""

0

4.001

0
""

0

1

0

= Vli

Note that the selector vector vli marks the non-zerohon-unity rows of D, When
these rows are collected into a matrix D,,, it is clear that D,, = - A, As in the
previous section Dxs) can be formed, this time from the coefficients in D, Thus,

- .999+1s .000 -1.000

D,@) = .003 + .001s -1.000 5.002 + 4.001s + 1s'

.000 2.000 + 1s .000

156 Chapter 4 lnterrnodel Conversion

The selector vectors corresponding to {pi} = {ni} = { 1,2,1} are:

v a = [l 0 1 l]
v t = [0 1 0 0 1
v,,=[l 1 1 0 1 0 0 0 0 1

v l d = [0 0 0 1 0 1 0 1 0 1

As in Remark 4.1 we would like to formalize the ideas for this dual case:

Remark 4.2 For a given system the total number of equivalent right
coprime MFDs with row reduced and monic D@), having row degrees
{n,) , is equal to the total number of PCFs based on admissible sets of PC1
{p,}. Thus, it may be said that there is a one-to-one correspondence
between a PCF and associated right coprime MFD satisfying:

(P i 1 = { n , t

4.2 Conversions from a Transfer Function Matrix

Beginning with a transfer function matrix model, we may want to convert it
to a state space form; three useful versions of this conversion will be discussed in
this section. In addition, calculations of the system response as well as the Markov
parameters are presented. At the end of this section a novel approach to minimal
realization will be given.

4.2.1 Transfer Function to State Space Model

This algorithm transforms a transfer function matrix G(s) = C(sI - A)”B +
D to a specific state space form R = {A, B, C, D}. The conversion into state
space is a minimal realization, i.e. the state space model is of minimum order. The
options include conversion into a Hessenberg form, a Kalman decomposition or a
Jordan form, which will be explained in detail. The above mentioned minimal
realization procedures require as input arguments a non-minimal (uncontrollable or
unobservable or both uncontrollable and unobservable) state space representation
R = {A, B, C, D}. Therefore, the model conversion:

Section 4.2 Conversions from a Transfer Function Matrix 157

will be performed in the following two steps.

1. Conversion from transfer function matrix C(z) = W(z)/d(z) into a non-
minimal representation R = {A, B, C, D}, i.e.

TF* R

2. Minimal realization procedure, i.e. conversion from R into a minimal
representation R,,, = {A,,,, B,,,, C,,,, D}, i.e.

R * R,,,

Note that in R,,, the direct through matrix D is unchanged. Therefore, in our
minimal realization procedures we will consider only the strictly proper part of the
system, i.e. only matrices A, B and C. Also, we will assume that the given

transfer function &z) is "strictly" proper, i.e. that polynomial matrix w(z) and
polynomial d(z) satisfy:

= C,(zI - A,)"B,, or W(z) = C,adj(zI - A,)B, (4.26)
44

Of course, the non-strictly proper transfer function matrix G(z) is related to a z)
by: G(z) = G(z) + D. It is worth mentioning at this point that the "extraction" of

the strictly proper part G(z), or rt<z> from a given non-strictly proper transfer
function matrix C(z) = W(z)/d(z) may be performed by a simple procedure
symbolically represented by:

d , W (E x D) = W , D

The implementation of this procedure is based on the following equations:

n n

Obviously, since d,, = 1, all polynomials in @(z) are of up to (n-1)" order. Thus,

the transfer function matrix G(z) = m(z)/d(z) is strictly proper.

The easiest way of performing the conversion TF * R is to build either:

(1) -a controllable, but not necessarily observable, representation RI =

(2) -an observable, but not necessarily controllable, representation Rz =

{A,,Bl,Cl}, or

&,%C,)

158 Chapter 4 lntermodel Conversion

It may be shown that the following two representations R, and R2 with m inputs and
p outputs of orders m and np, respectively, where n is the order of the characteris-
tic polynomial d(z), each have a transfer function matrix equal to the given strictly

proper matrix 6(z) =@(z)/d(z). To facilitate the understanding of the process of
building these representations, a generic example of a system with m = 2 and p =
3 is considered. Generalization to different values of m and p is straightforward.

Conversions from a Transfer Function Matrix
to a (Non-Minimal) State Space Representation: TF 4 R

Here we will consider building non-minimal state space representations from
a given strictly proper transfer function matrix G(z) = W(z)/d(z) of a MIMO system.
In the case of an n"' order MIMO system with m=2 and p=3 , the (pm X n)
matrix W in the PMF has a structure

W1 1

W2 1

w3 1

W = ""

W1 2

W22

. w32

where W# is an n-dimensional row containing n coefficients defining the @-l)* order
polynomial w,,(z) in W(z) = { w,,(z) }. The first n coefficients di, i=[O,n-l], from
d(z) are arranged in the n dimensional row a. . . -

A controllable, but not necessarily observable, representation R, = {A,, B],
C,) is:

A, = diag(A, 1 , B, = diagl b,) m times:

W11 W12

A, = ["' A] B, = IC Cl = (4.27) W2r w22

w31 w32-

where A, is nm X m, B, is nm X m and C, is p X m. {Ac, b,) in Eq.(4.27) is

Section 4.2 Conversions from a Transfer Function Matrix 159

a controllable pair from the SISO feedback canonical form, Eq(3.13). Recall that
A, contains in its last row the row -a consisting of the coefficients dl of d(z). All
n rads of d(z), or the n eigenvalues of A,, appear in A, as multiple eigenvalues
with multiplicity m. The nmh order representation R, is controllable, but if m> 1,
it is unobservable. The number of unobservable modes is equal to (m-1)n.

Similarly, an observable, but not necessarily controllable, representation R,
= {A,, B,, C,} has the dual structure:

A, = dag{ A, 1 , C, = diag(c,) p times:

A 2 =

T T
A0 C O

W11 W12

A0 CO C, = W,] W,, B, = T T (4.28)

A O -
T T

w31 w32 - CO-

where A, is np X np, B, is np X m and C2 is p X np. {Ao, c,} in Eq.(4.28) is an
observable pair from the SISO observable canonical form, E4.(3.18). All n roots
of d(z), or the n eigenvalues of A,, appear in A, as multiple eigenvalues with
multiplicity p . The npu order representation R, is observable, but if p > 1, it is
uncontrollable. The number of uncontrollable modes is equal to (p-1)n.

The construction of these representations will be represented by the
algorithms:

and

where R, = {A,,B,,C,} corresponds to R,, while R, = {A,,B,,C,} is equal to R,
given above. Note that when m < p , it is more convenient to use Algorithm 7Rcn,
since then the order of matrix A, in R, is smaller than that of A, in R,.

Conversions from a Non-Minimal State Space Representation
to a Minimal State Space Representation: TF @ R

As far as the minimal realization procedures are concerned, it will suffice to
mention here that the following algorithms are available:

160 Chapter 4 Intermodel Conversion

i.e., performing the conversion R R,,, using a Hessenberg, Kalman decomposition
or a Jordan form approach, respectively. Detailed descriptions of these approaches
are given in Appendix B. Minimal representations obtained by these approaches
are not necessarily in a canonical form. So, if a specific procedure requires a
model in POF or PCF, then, of course, either SSRc or SSRo should subsequently
be used.

Examples

As an illustration of using the above mentioned minimal realization
algorithms, consider the following SISO, strictly proper, uncontrollable and
unobservable model R = (A, B, C } .

-.75 1.00 .21 -.01 .38 -.03 .07 .37

-1.08 -1.24 -.09 .03 .l0 .W .28 . 0 4

.03 -.07 -.g8 . 0 6 .32 .23 .38 .30
-.l8 -.l0 -.08 -2.06 .07 . 0 6 -.M - 5 1

.l6 .l1 .01 .l9 -1.89 .92 .40 -.l0

.99

.81

.82

.79

-.M

-.l5 -.28 -.20 -.23 -1.34 -2.11 -.41 -.65 1 -.49

-.05 .09 S2 S4 .23 .02 -1.12 2.59 I -.W
.M -.l4 -.l4 -.46 -.M -.38 -2.05 -2.82 I -.27

-" "- _" "_ "_ "_ "- -" - 1 - "-

1.59 1.05 .28 1.54 1.57 1.32 S8 .42 I 0

The representation R has been obtained from the "auxiliary"8 = {A, B, c}
where:

Section 4.2 Conversions from a Transfer Function Matrix 161

- 1 1 0 0 0 0 0 0 ~ 1

- 1 - 1 0 0 0 0 0 0 ~ 1

0 0 - 1 0 0 0 0 0 ~ 1

o o o - 2 0 0 0 0 ~ 1

o o o o - 2 l O O l O

o o o o - l - 2 0 0 l O

o o o o o o - 2 2 ~ o

0 0 0 0 0 0 - 2 - 2 1 0
" " _" "- "- "- "- --- -1- --

~ 1 1 0 1 1 1 0 0 I O]

by the similarity tansformation
A, B, e, T (S?7?) * A, B, C

where 'T was a "random" (n X n) similarity transformation matrix.
l l ~ e Jordan form minimal representation R,,, has been obtained by first

transforming R into the Jordan form R, = {AJ, B,, C,}. This was done by a
similarity transformation:

where the (n x n) similarity transformation matrix M, sometimes referred to as the
modal matrix, contains eigenvectors associated with all n eigenvalues X, of A, i.e.
the columns of M = [m, .. . m,] satisfy

A, B, c, M * AJ, B,, CJ (4.29)

(A$, -A)m, = 0

i.e. m, is in the null space of B, = XiI - A.
Using Eq.(4.29), the representation RJ becomes:

- 2 2 0 0

-2 -2 0 0

0 0 - 2 1

0 0 -1 -2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
_" "- "- "-

0 0 -.33 -1.35

0

0

0

0

-2

0
0

0
"-

-1.82

O O O I O
O O O I O

O O O I O

O O O I O

0 0 0 I .54

-1 1 0 I -.g5

-1 -1 0 I -1.20

"_ "_ "_ -1- -"
0 0 -1 I .86

-.80 -1.02 0 I 0

162 Chapter 4 lntermodel Conversion

Obviously, the first four modes in R, are uncontrollable, since the corresponding
elements in the vector B, are equal to zero. Similarly (dually) the modes with
indices 1, 2 and 8 are unobservable. In order to extract from R, the minimal part,
i.e. the modes which are both controllable and observable, the following selector
vector v = { v, 1 has been generated:

v = [O 0 0 0 1 l 1 0 l T

The elements v, are calculated by:

vi = 1 if bj,cji > E , otherwise v, = 0.

Finally, the minimal representation R,,,, obtained using the Jordan form approach
is:

-2.0 .o
A,, =

.O -1.0 -1.0 - 1.205

.O - 1.0 ;:] B,, [-.g53 -547

C,, = [1.829 -A07 -1.021 3

The sequence of algorithms is:
v (DSM) =) S

ST A, S =) AI,,,
STB, * B

The selector matrix S has dimension (8 x 3) containing the S " , 4 and Tb columns
of Ig. A service algorithm, DSM, (Define Selector Matrix), is used to generate the
matrix S.

The Kalman decomposition procedure generates the minimal representation

c, S =) C,a
Jm

R, = {A,, B,, c,1:
-2.01 .l0 -.l1 - 1.03

= . 0 9 B,,,, = -.22 -.g2 1.28

. 0 9 -.77 -1.06 I 1.29

C,,,, = [-1.23 . 2 4 1.33 3

This was obtained by the following algorithm:

A, B, C, E (KalD) =) A,, B,, C ,

As is explained in Appendix B, the Kalman decomposition procedure decomposes
the state space into four subspaces, namely:

Section 4.2 Conversions from a Transfer Function Matrix 163

c-no Controllable and unobservable
C-o Controllable and observable
nc-no Uncontrollable and unobservable and
nc-o Uncontrollable and observable

The dimensions of these subspaces in our example are given below:

c-no c-0 nc-no nc-o
1 3 2 2

The dimensions as well as the modes belonging to these subspaces may be checked
by considering the obtained Jordan form.

The Hessenberg minimal realization RH,,, = {AH,,,, B,,,,,, CH,,,} for our example
is:

-1.30 -.M .73 1.60

A,,,, =

' ::] 1.20 -1.03 -37] BH, =

.W - . 6 4 -1.67

C,, = [1.88 -.05 -.24]

This was obtained by the following algorithm:

Of course, all of the above three representationas are controllable and observable
and have the same transfer function matrix.

4.2.2 Transfer Function to Markov Parameters

This algorithm calculates the Markov parameters from a transfer function
matrix G(z) = C(z1 - A)"B + D. It is based on the obvious equation:

which using

n n

may be reduced to:

1

C dn-jHi-j = W,,_' for i=[O,n] and
j - 0

164 Chapter 4 lntermodel Conversion

I c dn-jHi-j = 0 for i= [n+ l , -]
j - 0

(4.30)

Since, by definition, d. = 1, Eq.(4.30) leads to the following recursive expressions
permitting calculation of H,,j=[O,M-l], for an arbitrary finite M, given d, and W,,
i=[O,n]:

1. Set W,, * H,,

2. Set - c dn-jHi-j - Hi for i=[l,n]
I

j - 0

These recursive expressions are implemented by Algorithm TFH having the syntax:

0 d is an (n+ 1) dimensional row containing the coefficients d,.
0 W is a [@m X (n+ l)] matrix in PMF. Rows of W contain coefficients

0 M is scalar specifying the number of Markov parameters H,, i=[O,M-

0 H is a Ipm X MJ matrix in PMF. Rows of H contain the first M

0 h, is a scalar equal to 11 H,, 11 , where H", is the last Markov parame

of the polynomials w&z) in W(z).

l], to be calculated.

coefficients of the polynomials h&") in H(,?).

ter calculated.

The reason for calcuating the quantity hM will be explained later. See the Glossary
for the particular matrix norm used. As was mentioned earlier, if all the roots of
d(z) are within the unit circle and if the scalar M is sufficiently large so that

h, << 1 (4.31)

then, coefficients in the matrix f i (z -l), representing the truncated polynomial
matrix:

M- 1

with sufficient accuracy satisfy:

Section 4.2 Conversions from a Transfer Function Matrix 165

It is worth mentioning that if Eq.(4..31) holds, Eq~(4.30) may be represented either
by:

DO

DO

I D,

Dn

or

H0

%-l

Do ...

[Bo ... B, l

(4.32)

= [0 0 WO * e * W”]

where B, = Zmdi

The forms of Eq~(4.32) could also be used for calculating Hj, given di and Wi.

4.2.3 Continuous-Time Transfer Function Response

This algorithm calculates the zero-state response of a general C-T transfer
function matrix G($) = W(s)/d(s) = C(s1- AY’B + D., given the samples of the
input signals. The calculations are based on the assumption that the input signals
are linearly interpolated between samples. The syntax of the algorithm is:

d,W,U,T(CDTR)=,Y

Input/Output Arguments:
0 d is an @+l) dimensional row containing the coefficients di, i=[O,n]

0 W is a pm X @+l)] matrix in the PMF. The rows of W contain the

0 U is an (m x N) matrix containing N samples of the m-dimensional

0 Tis total simulation time in seconds.

of d(s).

coefficients wvh of polynomials W&) in W@).

input vector u(c).

166 Chapter 4 Intermodel Conversion

y is a (p x N) matrix containing N samples of the C-T system re-
sponse.

The calculation is performed using a 4'" order Runge-Kutta method. Since no
prediction or correction is made, for sufficient accuracy the number of samples N
should satisfy:

N ST(I-1

where >b, is the maximum root of the denominator d(s). The multi-input case is
treated by summing the responses of m single-input multi-output subsystems. It is
fair to say that better accuracy in simulating C-T systems is offered by CDSR
discussed in 4.1 S . which calculates the response of systems defined in state space.

4.2.4 Discrete-Time Transfer Function Response

This algorithm calculates the zero-state response of a general D-T transfer
function matrix G(z) = W(z)/d(z) = C(z1 - A)"B + D, given the samples of the
input signals. The syntax of the algorithm is:

d,W,u,O (CDTR) =$ y

Inputloutput Arguments:

d is an (n+ l) dimensional row containing the coefficients d,, i=[O,n]

0 W is a [pm x (n+I)] matrix in the PMF. The rows of W contain the

U is an (m x N) matrix containing N samples of the m-dimensional

y is a (p X N) matrix containing N samples of the D-T system re-

of d(z).

coefficients wgh of polynomials wk(z) in W@).

input vector U@).

sponse.

The multi-imput case is treated by summing the responses of m single-input
multi-output subsystems. The execution time for the calculation of D-T system
responses using this algorithm is slightly longer than that of the Algorithm CDSR,
Section 4.1.6, although the accuracy in the case of D-T systems is the same.

Note that, formally, the same algorithm is used in simulating C-T and D-T
systems. The only difference is in the fourth input argument. If the fourth
argument is zero or negative, then the arrays d and W are interpreted by the
algorithm to describe a D-T system transfer function matrix. Otherwise, as is the
case in simulating C-T systems, the fourth argument contains the total simulation
time interval.

Section 4.2 Conversions from a Transfer Function Matrix 167

4.2.5 Transfer Function to Left Coprime MFD

This algorithm calculates a left coprime MFD {D(z), N(z)} from a transfer
function G(z) = W(z)ld(z). It is based on:

which may be rewritten as

N(z)&) - D(z) W(z) = 0 , where. f%z) = I,,&) (4.33)

Using

Eq.(4.33) may be represented by

which, for short, will be expressed by:

[N . I D r] T , = O

= o

(4.34)

N, and D, in Eq.(4.34) are p X (k+ I)m and p X (k+ l)p matrices, respectively,
containing N, and Q, while Tk is a [(k+ l)@+m) X m(n+k+ l)] matrix consisting

of known submatrices Bi and W,.
Since in this algorithm the matrix Tk is given, the unknown matrices N, and

D,, defining D(z) and N(z) are to be determined from the Null space of TC. Also,
the integer k must be determined. Recall that we are looking for a monic D(z)
whose matrix D, has the properties discussed in Section 3.4, i.e. it has:

n columns with non-zero, non-unity elements
p columns of the identity matrix I,
kp-n columns of zeros

168 Chapter 4 lntermodel Conversion

Similarly, as is the case in some other algorithms to be discussed later, it may be
shown that for a sufficiently large k the row rank of T, is given by:

leading to
rank [T k] = (k+l)m + n
n rank [T k] - (k+l)m (4.35)

The integer n in E4.(4.35) is the order of the polynomial given by det(D(z) 1,
where, of course, D(z) is a monic column-reduced polynomial matrix to be
determined. It is worth mentioning that if the given W(z) and d(z) are obtained
from C(zI-A)"B + D = W(z)/d(z), where R = {A,B,C,DJ is a minimal state space
representation of order n, then:

d(z) = det(z1 - A) = det{ D(z) }

Thus, in this algorithm it is first necessary to build the matrix Tk and then to
determine the smallest integer k satisfying E4.(4.35). Note that the integer k
defines the maximum value of the column degrees { n, 1 , k = max { n, } , by which
D(z) is to be represented. From the structure of the matrix TI it may be concluded
that since D,, = I&,,, with d,, = 1 , the first (k+ 1)m rows in Tk are linearly
independent and that among the remaining (k+l)p rows of Tk there are only n
additional linearly independent rows. Recall that in discussing Algorithm RoDN,
Section 4.1.7, it was established that a set of column degrees of D(z) is equal to a
corresponding set of admissible POI. Thus, it may be concluded here that the total
number of sets of II linearly independent rows from the "lower" part of Tk is equal
to the total number of admissible sets of POI, i.e. to the fofd number of
"admissible" sets of column degrees by which a monic column reduced D(z) may
be represented. Thus, from the structure of the matrix D,, Eq.(3.104), it follows
that any selection of n rows from the above mentioned (k+l)p rows of T,, made
in accordance with the selector vector v,,, generated by an admissible set of POI,
would yield n rows which are linearly independent with respect to the first (k+ 1)m
rows in T,. Let this selection be represented by:

SlT, = H, (4.36)

where the selector matrix S,, selects into H, all (k+l)m+n linearly independent

rows. The matrix S,, may be interpreted as the selector matrix generated by an
auxiliary selector vector given by:

qIi = [1 ... 1 I Vli]
" (4.37)

(k + l)m (k + 1)p
i.e. obtained by concatenating a row vector containing (k+l)m unities and the

Section 4.2 Conversions from a Transfer Function Matrix 169

vector v,, generated by an admissible set of POI, i. e. a corresponding set { n, }.
In order to determine the matrix N, and the non-zero non-unity columns in D,,

Eq.(4.34), denoted in Section 4.1.7, Eq.(4.17), by -4, a selector matrix S, should
be generated using another auxiliary vector qld defined by:

TI* = [0 a.. 0 I Vld]
"

(k + 1)m (k + 1)p
(4.38)

Recall that the vectors v,, and v, used in Eqs.(4.37) and (4.38) have n and p
unities, respectively, while all their other elements are equal to zero. These vectors
are generated by the set { n, }. Then, using:

the desired matrices N, and -A, may be calculated by solving the following system
of linear algebraic equations:

[N, I -A,]H1 -H, (4.39)

Having determined matrices N, and -A,, the desired polynomial matrices D(z)
and N(z) may be obtained using Eq.(4.20) given in Algorithm RoDN, i.e.

S: - A,$ - D,
and, finally, N,, m (PMFr) * N(z) and D,, p (PMFr) * D(z).

The algorithm may be considerably simplified if we know in advance the
system order n, i.e. an "admissible" set of column degrees { n, }. Then, it is
sufficient to determine k, build the matrix Tk and proceed with Eq(4.36). Details
are given in the algorithm formulation.

Thus, the following algorithm, permitting calculation of a left coprime MFD
{ D(z), N(z) } with D(z) monic and column-reduced, given a transfer function
matrix G(z), i.e. a (p X m) polynomial matrix W(z) and a characteristic polynomial
d(z), may be suggested.

Syntax: d,W, E, n, (TFDN) * D, N, n, C#

Input/Output Arguments:
0 d is an (n+ 1) dimensional row containing the coefficients of d(z).

W is a [pm X n+ l] matrix in the PMF. The rows of W contain

0 E is a sufficiently small positive number used in rank calculations.
n, = { ni } is the set of "desired" column degrees by which D(z)

the coefficients wy,, of the polynomials wy(z) in H(z).

170

0

0

e
0

Algorithm:

1.
2.

3.
4.
5.
6.
7.

8.
9.
10.

11.
12.
13.
14.
15.
16.

~ Chapter 4 lnterrnodel Conversion

is to be represented. If nd is not known, any scalar, e.g. E , may
be used as the fourth argument.
D is a [p2 X @+l)] matrix in the PMF. The rows of D contain
the coefficients dg,, of the polynomials $(z) in D(z).
N is a [pm X (k+l)] matrix in the PMF. The rows of N contain
the coefficients nu,, of the polynomials ng(z) in N(z).
n is the set of column degrees of D(z).
C# is the degree of admissibility of the set of column degrees of
W) .

Set W (Art) =$ W,, W, , I,&, =) f i i

If nd is specified, determine k, build T,, set nd =) { n, }, and go to
9; else, go to 3
Set 0 =) k and 0 * no
Set k+l * k
Build T,, in Eq.(4.34), and set rank(Tb - km * n
If n = no go to 7; else, set n =$ no and go to 4
From Tk determine the unique column degrees, i.e. T, (Im) =)

Define an appropriate set of column degrees {n,}

Using S,,, S, and k, define SIi and S,, Eqs.(4.37)-(4.38)

(4

Set {nil (SMut) * nm, So, S,, S,,, S,

Set SlT, * H, and SkT, =$ H,
Calculate the admissibility degree of H,, i.e. H, (C#) * C#
If C# is "too small," go to 8; else, go to 14
Solve X H, = -H2 for X, where X = [N, -A, 3
Set SUT - =) D,
Set D,,p (PMFr) =$ D and N,,m (PMFr) =) N

The polynomial matrix "service" algorithm All used in Step 1 rearranges
elements in the PMF W into the "alternate" forms W, and W,, given by Eq.(4.7).
The Algorithm I N D , in Step 7, determines the unique observability indices, i.e.
column degrees of D(z), by detecting the first linearly independent rows in Tk.
Note that in this case by detecting the first (k+ l)m + n linearly independent rows
in T,, Algorithm I h D first determines the auxiliary selector vector ql,, Eq.(4.37),
which is later partitioned into (k+ 1)m unities and the selector vector v, which leads
directly to the unique column degrees (or observability indices vJ. The admissibili-
ty degree algorithm (C#) in Step 12 defines C# as the ratio of the smallest to the
largest singular value of HIT.

Section 4.2 Conversions from a Transfer Function Matrix 171

4.2.6 Transfer Function to Right Coprime MFD

Although this algorithm is dual to TFDN, it will be briefly stated here. The
algorithm is based on:

which may be expressed as

B(z)N(z) - W(z)D(z) = 0 , where fi(z) = Ip4z) (4.40)

Eq(4.40) may also be represented by:

’0 l -W0

6, fi0 I -W, -W0

*.. I i

‘n Bo 1 -Wn

5. i I
fi, I

fin ’1 I -Wn

which, for short, will be expressed by:

Nc

D C

Tk = o ---

= o (4.41)

(4.42)

The relationships between the symbols in Eq~(4.41) and (4.42) should be clear.
Therefore, according to the duality principle, the first linearly independent

columns of Tk give information about the set of row degrees { n, } which are equal
to the unique controllability indices p, of the corresponding state space representa-

tion. Consequently, by postmultiplying Tk by a selector matrix g l i , corresponding
to an auxiliary selector vector fli, defined in the dual sense by Eq.(4.37), a full
column rank matrix is obtained, i.e.:

Tk& = H,

Similarly, by postmultiplying Tk by the selector matrix Sld, dual to Eq.(4.38), m
columns are selected from Th which are linearly dependent on the columns of HI.
In other words:

172 Chapter 4 lnterrnodel Conversion

From Section 4.1.8 it may be concluded that all n rows of the matrix -A, in
Eq.(4.43) correspond to n non-zero non-unity rows in D,, and also that the m
columns of A, correspond to the m non-zero non-unity columns in the system
matrix A, in a PCF R,, based on the admissible set of PC1 p = { pi } which are,
in turn, equal to the row degrees { n, } of the matrix D(z) that we are looking for
in this algorithm.

Therefore, having -A, from Eq.(4.43), the matrix D, may be calculated by:

Finally, the desired polynomial matrices D(z) and N(z) may be obtained from D,
and N, using the service algorithm PMFc.

Thus, the following algorithm, permitting calculation of a right coprime MFD
{ N(z), D(z) } with D(z) monic and row-reduced, given a transfer function matrix
G(z), i.e. a (p X m) polynomial matrix W(z) and a characteristic polynomial d(z),
may be suggested.

l d,W, e, n, (~ ~) * N, D, n, C#

Input/Output Arguments:
0 d is an (n+ 1) dimensional row containing the coefficients of d(z).
0 W is a [pm X n+ l] matrix in the PMF. The rows of W contain

0 E is a sufficiently small positive number used in rank calculations
0 n, = { n, 1 is the set of "desired" column degrees by which D(z)

is to be represented. If n, is not known, any scalar, e.g. E , may
be used as the fourth argument.

0 N is a [pm X (k+l)] matrix in the PMF. The rows of N contain
the coefficients nyh of the polynomials n&z) in N(z).

0 D is a [mz X (&+l)] matrix in the PMF. The rows of D contain
the coefficients dgh of the polynomials d,,(z) in D@).
n is the set of row degrees of D(z).

0 C# is the degree of admissibility of the set of row degrees of D(z).

the coefficients W@ of the polynomials W&Z) in H(z).

I Algorithm:

1. Set W (~ t) * W,, W, , Ipdi * fji

2. If n, is specified, determine k, build T,, set n, * { n, 1, and go to
9; else, go to 3

3. Set 0 * kand O * no

Section 4.2

4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.
15.
16.

Conversions from a Transfer Function Matrix 173

Set k + l * k
Build T,, Eq.(4.42), and set rank(T,) - kp =) n
If n = n, go to 7; else, set n =) no and go to 4
From T, determine the unique row degrees, i.e. T, (Z N D) * {n,}
Define an appropriate set of row degrees {ni}

Using S,,, S, and k, define S,, and S,d, Eqs.(4.37)-(4.38)
Set T,S,i * H, and T,S, Hz
Calculate the degree of admissibility of H,, i.e. H, (C#) =) C#
If C# is l'too small," go to 8; else, go to 14
Solve H,X = -H, for X, where X = [N,' I -AmT IT
Set S, - SUA, = D,
Set DC,m (PMFc) =) D and N,,p (PMFc) =) N

set (nil (SM4 =$ n,, S,, S,, S,{, S,

The service algorithms Alt, I N D and C# were explained in the previous section.

4.2.7 Transfer Function to State Space Forms

In this section the Algorithms TFRo and TFRc will be formulated. Since they
are obtained by slight modifications of Algorithms TFDN and TFND, respectively,
the algorithms will be given directly. The necessary modifications will be
discussed following the formal algorithm presentation.

It is worthwhile to compare these algorithms with the "classical" minimal
realization procedures, discussed in Section 4.2.1. The main advantage of the
ZFRo and TFRc algorithms is that they do not require a non-minimal state space
representation; but, instead, directly use the given W(z) and d(z), which consider-
ably simplifies the computational aspect. Taking into account the sizes of the
matrices involved, it may be concluded that TFRo should be used when m < p .
In this sense, Algorithms TFRo and TFRc may be considered as 'hovel" approaches
to minimal realization of MIMO systems.

I syntax:
d,W, E , v, (TFRo) R, = A,, B,, C,, D,, v, C#

I Inputloutput Arguments:

0 d is an (n+ 1) dimensional row containing the coefficients of d(z)
W is a [pm X n+l] matrix in the PMF. The rows of W contain

E is a sufficiently small positive number used in rank calculations
v, = { vi } is an admissible set of POI. If v, is not known, any

R, = {A,, B,, C,, D,}, state space model in a POF

the coefficients wQh of the polynomials W&) in H(z)

scalar, e.g. E , may be used as the fourth argument

174 Chapter 4 lntermodel Conversion

v is an admissible set of POI corresponding to R,
C# is the degree of admissibility of the set v

Algorithm:

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.

15.

16.
17.
18.
19.
20.

Set W (MC) * W,, W, , I,,,di * bi
If nd is specified, determine k, build T,, set n, * { n, }, and go to
9; else, go to 3
Set O*kandO*n,
Set k+l * k
Build T,, Eq.(4.34), and set rank(T,) - km =) n
If n = no go to 7; else, set n =$ no and go to 4
From T, find the unique column degrees, i.e. T, (Z W) * {vl}
Define an appropriate set of row degrees (v i }

Using S,i, S, and k, define S,i and S,, Eqs(4.37)-(4.38)
set {Vi} (SMQO * v,, S,, si, S,, S,

Set SiT, =) H, and SLT, * H,
Calculate the degree of admissibility of H,, i.e. H, (C#) =$ C#
If C# is "too small," go to 8; else, go to 14
Solve X H, = -H, for X, where X = [N, 1 -A,]

Partition I,, -. [Az] (C, hasp rows.)

Set SiA, + S A r * A,
Set N,, m (R2C) =) N,
Set A,, S, (QC) =) Q, , Q, has k + l blocks {Ads,} o f p columns

Partition W, * [Y I D, 1, D, contains the last m columns of W,

c*

Set Q& * B,

The service algorithm R2C in Step 17 rearranges alternate form N, into N,. For
details see Eq.(4.7). Matrices A,, and N, used in Step 20 contain the first p and
the first m columns from A, and N,, respectively.

Comparing Algorithms TFDN and TFRo, it may be concluded that the first
14 steps are exactly the same. Only the last 6 steps in TFRo differ from the last
2 steps in TFDN. This is a consequence of Remark 4.1 given in Section 4.1.7. As
may be noted, these 6 last steps in TFRo actually calculate the matrices in R, =
{Ao,Bo,Co,Do]. In the sequel a brief explanation of these steps will be given.
Some of these steps may be obvious, while others may be verified by direct
(straightforward) matrix calculation. It should be noted that these expressions will
be used in several algorithms to be discussed later.

Step 15 defines the matrix C, = [I, 0 1, consisting of the first p rows of
an (n X n) identity matrix I,,, as well as the auxiliary [(n-p) x n] matrix A,
containing the last n-p rows from I,. Obviously:

Section 4.3 Conversions from a Transfer Function Matrix 175

(4.44)

Step 16 defines A, as:

A, = S, 4 + S, A, , where A, = -D$,, (4.45)

which may be verified by considering the structure of the auxiliary matrix A2 and
selector matrices S,, S, and S, discussed in Section 3.3.4, Eq.(3.79).

Steps 17, 18 and 19 define the matrix B, by:

which is, in fact, a straightforward MM0 generalization of the procedure used in
calculating the observability state space form of a SISO system given a transfer fun-
ction g(s) = b(s)la(s), described in Procedure 4 in Section 3.2.4.

Finally, the matrix D, in Step 20 is calculated by:

D, C, A;' B, - No (4.46)

which is a direct consequence of:

D, = D"(z) N(z) - C, (zI - A,)-' B, (4.47)

and the assumption that the matrices A, and A,, the first p columns from A,, are
nonsingular, which is almost always the case in the case of discrete systems.

If it happens that A, is singular, i.e. that the system has at least one pole at
the origin, leading to a singular A, as well, then D, may be calculated by
evaluating D, using Eq.(4.47) for an arbitrary z not equal to a system pole. This
calculation, for matrices D, (and DJ, is performed by Algorithms GeDo (and
GeDc); both algorithms have L-A-S implementations listed in Appendix C.

176 Chapter 4 lntermodel Conversion

Inpuff Output Arguments:

0 d is an @+l) dimensional row containing the coefficients of d(z)
0 W is a p m X n+l] matrix in the PMF. The rows of W contain

0 E is a sufficiently small positive number used in rank calculations
pd = { pi } is an admissible set of PCI. If is not known, any
scalar, e.g. E , may be used as the fourth argument

0 R, = {A,, B,, C,, D,], state space model in a PCF
0 p is an admissible set of PC1 corresponding to R,
0 C# is the degree of admissibility of the set p

the coefficients W#,, of the polynomials W&) in H(z)

Algorithm:

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

Set W (~ t) * W,, W, , * f j i

If is specified, determine k, build T,, set pd =) { p, 1, and go to
9; else, go to 3
Set 0 =) k and 0 3 no
Set k+l =) k
Build T,, Eq.(4.42), and set rank(Tk) - kp * n
If n = no go to 7; else, set n =) no and go to 4
From T, determine the unique set of CI, i.e. T, (]M) * {p i }
Define an admissible set of PC1 {pi}

Using S,, S, and k, define Sli and Eqs.(4.37)-(4.38)

Set T$,, =$ H, and T,s, =) Hz
Calculate the degree of admissibility of H1, i.e. Hl (C#) =$ C#
If C# is "too small," go to 8; else, go to 14
Solve HIX = -H, for X, where X = [NCT I -AmT]'
Partition I,, =) [B, A, 3 (B, has m columns.)
Set AZST + A$3: * A,
Set N,, p (C2R) =) N,
Set A,,, S: (Qo) =) Q, (Q, has k+ 1 blocks {S,'A;) of m rows.)
Set N,Q, =) C,

set {P,} W a t) * pm, S,, S,, S,, S,

I y l
Partition W, * I 1, D, contains the last p rows of W,

Again, the first 14 steps in Algorithms V N D and TFRc are exactly the same.
Using the principle of duality, the last 6 steps of TFRc may be easily verified. For
convenience and reference the equations defining the matrices in R, = {A,, B,, C,,
D,} will be given in the sequel:

Section 4.3 Conversions from Markov Parameters 177

A, = 4s; + A,,s,T, where A,, = -s,,D, T

where now A, consists of the first m rows from the (n X m) matrix A,
Equations (4.48) are dual to Eqs44.44) - (4.47). For more details see Algorithm
RchD, Remark 4.2 and the included example in Section 4.1.8.

4.3 Conversions from Markov Parameters

Given a set of Markov parameters, there are algorithms for calculating
equivalent state space models (observable or controllable forms) as well as
equivalent AFWA (MFD) models (left or right coprime forms). If it is desired to
convert to a transfer function, it is recommended to use the state space representa-
tion or either left or right MFD as an intermediate stage, although there is an
algorithm for direct conversion to a transfer function matrix.

There are several procedures for calculating state space models from a given
set of Markov parameters. Some of them, known variations of the H o - K a h n
algorithm, eigensystem realization algorithm (ERA), etc. are mentioned in the end-
of-chapter references. Here, we will describe alternate procedures which take
advantage of the flexibility offered by PC1 and POI and, consequently, give state
space representations in either PCF or POF. In addition, the procedures to be
discussed here are less computationally "intensive" and more compatible with other
intermodel conversions discussed in this chapter.

4.3.1 Markov Parameters to Observable State Form

This algorithm calculates an observable form state space model R, = {A,, B,,

178 Chapter 4 lntermodel Conversion

C,, D,) in a POF, based on an admissible set of POI from a corresponding set of
Markov parameters.

To derive the algorithm HRo, consider a state space model R, = (Ao, B,, C,,
D,) in a POF, based on an admissible set of POI v = { v, }. Then it is relatively
easy to verify that the following relation holds:

H, 193 --- Hk+1

. H, =,+l .** % + l ,

Q,Q, = 4 H[kl (4.49)

where Q, and Q, are the observability and controllability matrices of the pairs (A,,
C,} and {A,, B,}, respectivly, while H,, i = [1 , 2 k + l] are Markov parameters given
by (4.3). The matrix H[k], Eq(4.49) is referred to as the Hunkel matrix. For
simplicity of notation, let k = v,, = max{v,} = p- = max{p,}. Since Markov
parameters do not depend on the particular similarity transformation matrix used,
they may also be expressed by:

H, = C,Ai" B,

Assuming that R, is minimal, i.e. both controllable and observable, then

&(Q,) = &(Q,) = n (4.50)

leading to:

rank(H[k]) = n (4.51)

From the definition of the unique observability indices v,,, Sec. 3.3.2, it may be
concluded that the first linearly independent rows of H[k] in Eq(4.49) determine
these indices in exactly the same manner as these indices are determined from the
rows of the observability matrix Q,.

From Eq(4.49) it may be concluded that:

H 2 H3 **. Hk.1

H3 H4 ... Hk+2

, H,+l Hk+2 ... b.?

Q,A,Q, = P H[k] .
(4.52)

...

Now, recall that in Chapter 3 for R, in a POF, it was stated that:
Q, has n rows equal to all n rows of the identity matrix I,,. The
locations of these rows correspond to the locations of unities in the
selector vector vu.

Thus, using the selector matrix, S,, defined in Eq.(3.79), it may be concluded that:

Section 4.3 Conversions from Markov Parameters 179

SLQo = I, (4.53)

Thus, premultipying H[k] and H[k] in Eqs44.49) and (4.52), respectively, with
S;, and using Eq.(4.53) yields:

AoHl = & and Q, = H,
where H, = SiH[k] and = SLH[k]

(4.54)

which, since H, is a full row rank matrix, may be used for calculating A,. Also,

B, may be obtained by taking the first m columns from H,. Finally, it is known
that:

C, = [I p 0 1 and D, =H,

Thus, from Eq~(4.49) - (4.54) the following algorithm may be formulated:

Syntax: H, € 9 vd (HRo) =) A,, B,, c,, D,, v, c#

Inputloutput Arguments:

0 H is a @m x M) matrix in PMF. The rows of H contain the first

E is a sufficiently small positive number used in rank calculations.
0 vd = { vi } is an admissible set of POI. If v, is not known, any

scalar, e.g. E , may be used as the third argument.
R, = {A,, B,, C,, D,}, a state space representation in a POF.
v = { vi 1, a set of admissible POI corresponding to R,.

0 C# is the degree of admissibility of the set v .

M coefficients of the polynomials h&-') in H(z").

Algorithm:

1.
2.

3.
4.
5.
6.
7.

8.
9.
10.

Set H (Ah) =) H,, H,
If v, is specified, determine k, build H[k], Eq.(4.49), set vd = {v f } ,
and go to 9; else, go to 3
Set 0 * k and 0 =) no
Set k+l * k
Build H[k], Eq.(4.49), and set rank(H[k]) =) n
If n = n, go to 6; else, set n =) n, and go to 4
From H[k] determine the unique observability indices v,,, i.e. H[k]
(I N D) * v,,
Define an appropriate admissible set of POI v
Set v (SMuc) =) v,,,, S,, Si, Sii, Su
Partition H[k] =) [H[k] I X 1, X has m columns

180 Chapter 4 lntermodel Conversion

11.

12.

13.
14.

15.

16.
17.
18.

Parition H[k] r=) [zkl] and H[k] r=) ["y"] ; X and Y have p

rows

Set S,%[k] * H, and SNTH[k] =) H,
Calculate the degree of admissibility of H,, i.e. E, (C#) * C#
If C# is "too small," go to 8; else, go to 15

Solve AoH, = for A,

Partition H I =$ [B, 1 X 1, B, has m columns
Set [I, I 0 3 =$ C,
Set H. r=) D,

Note that in Step 7 the loop "counter" k corresponds to v, + 1. That is why it was
necessary in Steps 10 and 11 to extract H[k] and H[k] as defined by Eqs.(4.49) and
(4.52) for k = v,,,. As was mentioned earlier, the "service" algorithm AZC used in
Step 1 rearranges elements in H into the "alternate" forms H, and H,, given by
Eq(4.7). The algorithm I h D , in Step 7, determines the unique observability
indices vu of R, by detecting the first n linearly independent rows in H[k]. The
algorithm C#, in Step 13 defines C# as the ratio of the smallest to the largest

singular value of H,.

4.3.2 Markov Parameters to Controllable State Form

This algorithm calculates a controllable form R, = {A,, B,, C,, D,) from a
corresponding set of Markov parameters. To derive the algorithm HRc, consider
a state space model R, = {Ac, B,, C,, D,] in a PCF, based on an admissible set of
PC1 p = { p, }. Then, considering Eqs.(4.49) - (4.52), and applying the principle
of duality, it may be stated for the controllability matrix Q of the pair {Ac, B,) in
a PCF that:

Q, has n columns equal to all n columns of the identity matrix &. The
locations of these columns correspond to the locations of unities in the
selector vector v,, based on p.

0 Q, has m columns equal to all m columns of A, containing non-zero
non-unity elements. Locations of these columns are determined by the
selector vector vW The corresponding locations of these "parameter"
columns in A, are specified by the selector vector v,.

See Section 3.3.4 for more details in the dual sense. Thus, using the selector
matrix, S,,, defined in Eq.(3.79), it may be concluded that:

(4.55)

Section 4.3 Conversions from Markov Parameters 181

Thus, postmultipying H[k] and H[k] in Eqs.(4.49) and (4.52), respectively, with
Sa, and using Eq.(4.55), we obtain:

H, A, = $ and Q, = E,
where H, = H[k] S,, and = H[k] S,,

(4.56)

which, since H, is a full column rank matrix, may be used for calculating A,.

Also, C, may be obtained by taking the first p rows from H,. Finally, it is known
that:

B, = [:] and D, = H ,

Thus, the following algorithm may be formulated:

Inputloutput Arguments:

0 H is a (pm X M) matrix in PMF. The rows of H contain the first

0 E is a sufficiently small positive number used in rank calculations.
0 pd = { p, } is an admissible set of PCI. If pd is not known, any

scalar, e.g. e , may be used as the third argument.
0 R, = {A,, B,, C,, D,}, a state space representation in a PCF.

p = { pi }, a set of admissible PC1 corresponding to R,.
0 C# is the degree of admissibility of the set p.

M coefficients of the polynomials h,@') in H(?).

Algorithm:

1.
2.

3.
4.
5.
6.
7.

8.
9.
10.

Set H (Ah) * H,, H,
If pd is specified, determine k, build H[k], Eq.(4.49), set =
{pi} , and go to 9; else, go to 3
Set 0 * k and 0 * no
Set k + l * k
Build H[k], Eq.(4.49), and set rank(H[k]) * n
If n = no go to 6; else, set n * no and go to 4
From H[k] determine the unique controllability indices p,,, i.e. H[&]
([m) * P,,
Define an appropriate admissible set of PC1 p
Set p (SMaO * p,,,, S,, Si, S,, S,
Partition H[k] * [H[k] I X 1, X has m columns

182 Chapter 4 Intermodel Conversion

11. Partition H[k] * ; X and Y havep

rows

12. Set H[k]SU * H, and H[klSU * @
13. Calculate the degree of admissibility of H,, i.e. H, (C#) * C#
14. If C# is "too small," go to 8; else, go to 15

15. Solve H, A, = $ for A,

16. Partition H, * [",.l , C, has p rows

17. Set [',. 1 = B,

18. Set H, D,

For more details see Algorithm HRo in Section 4.3.1.

4.3.3 Markov Parameters to Left Coprime MFD

This algorithm calculates a left coprime column-reduced ARMA @@D)
model, D(z)"N(z), from a corresponding set of Markov parameters. Of course, this
algorithm can equally well be applied to a C-T state model to obtain the corre-
sponding MFD representation. As in some previously discussed algorithms, this
algorithm is based on:

which using

may be reduced to:

i c Dk-jHi-j = Nk+ for i = [O,k] and
j -0 (4.58)

k c D,,H,, = 0 for i=[k+l,m]
j - 0

Section 4.3 Conversions from Markov Parameters 183

The important differences between Eqs.(4.58) and (4.30), see Section 4.2.2, are:

0 D,, in Eq.(4.58) is not necessarily a full rank matrix, while I$,, in

0 The integer k in Eq(4.58) is less than the system order n used in

To be specific, the value of k = max { ni 1, n, being the column degrees of D(z),
satisfies:

Eq(4.32) is.

Eq.(4.32).

k 5 n-p+l (4.59)

Equation (4.58) may also be represented by:

%+l H, .*. H,

H,+? %+l ... H,
[D, D, * * * D,] = o . . .

and

which, for short, will be expressed by:

D,T, = 0 and D,R, = N, (4.61)

respectively. The relationships between symbols in Eqs.(4.60) and (4.61) should
be clear.

It is interesting to note that the matrix Tk in Eqs.(4.60) and (4.61) contains
the same Markov parameters Hi, i = [1,2k+l], as the matrix H[k] in Eq.(4.49),
only arranged differently. Note that postmultiplying Tk by the [(k+ l)m X (k+ l)m]
permutation matrix P,,,, given by:

(4.62)

184 Chapter 4 lntermodel Conversion

gives TJ',,, = H[k], Therefore, as was stated in Section 4.3.1, the first linearly
independent rows of T, give the information about the unique observability indices
P. of the corresponding state space representation. Consequently, by premultiplying
Tk by a selector matrix S:, corresponding to a set of admissible POI, a full row
rank matrix is obtained, i. e.:

SiT, = T,

Similarly, by premultiplying T, by the selector matrix S,', p rows are selected from
T, which are linearly dependent on the rows of T,. In other words, Eq.(4.61)
yields:

-A,T, + T2 = 0

leading to:

A,T, = T2 , where T2 = SLTk (4.63)

The [p X 713 matrix A, defines the above mentioned linear dependence.
On the other hand, note that we are looking for a monic column-reduced

matrix Wz), whose structure was exemplified in Section 3.4, Eqs.(3.100) - (3.105).
In discussing this generic example it was stated that the matrix D,, appearing in
Eqs.(4.60) and (4.61), contains:

0 n columns with non-zero and non-unity elements
0 p columns of the identity matrix Ip

kp-n columns of zeros

Combining all what was stated above and with the help of Remark 4.1 and
Eq~(4.17) - (4.20), Section 4.1.7, derived discussing Algorithm RoDN, it is not
difficult to conclude that all n columns of the matrix A, in Eq.(4.17) correspond to
n non-zero non-unity columns in D, multiplied by -1, and also that the p rows of
A, correspond to p non-zero non-unity rows in the matrix A. in a POF, based on
the admissible set of POI Y = { vi } which is equal to the set of column degrees
{ n, 1 of the desired matrix D(z).

Having A, from Eq.(4.63), matrices D, and N, may be calculated by:

ST, - A,Sl 9 D,

N r

Finally, desired polynomial matrices D(z) and N(z) may be obtained from D, and
N, using the service algorithm PMFr.

Thus, the following algorithm, permitting calculation of a left coprime MFD
{ Wz), N(z) } with D(z) monic and column reduced, given the Markov parameters
H,, i = [0, 2k+l], is suggested.

Section 4.3 Conversions from Markov Parameters 185

The total number of Markov parameters required is equal to 2k+2, with:
k = mm{ n, 1

where { n, } is a selected set of column degrees with which a desired D(z) is to be
represented.

Syntax: H, E , n, (HDN) =) D, N, n, C#

Input/Output Arguments:

Algorithm:

1.
2.

3.
4.
5.
6.
7.

8.
9.
10.
11.
12.
13.
14.
15.
16.

H is a (pm X M) matrix in PMF. The rows of H contain the first
M coefficients of the polynomials h&') in H(z").
E is a sufficiently small positive number used in rank calculations.
nd = { ni } is an admissible set of column degrees. If n,, is not
known, any scalar, e.g. E , may be used as the third argument.
D is a I p 2 x (k+ l)] matrix in the PMF. The rows of D contain
the coefficients dsln of the polynomials d,,(z) in D(z).
N is a Ipm x (k+l)] matrix in the PMF. The rows of N contain
the coefficients ng,, of the polynomials n&z) in N(z).
n is the set of column degrees of D(z).
C# is the degree of admissibility of the set of column degrees.

Set H (All) =) H,, H,
If nd is specified, determine k , build T,, Eq.(4.61), set n, = {n,},
and go to 9; else, go to 3
Set 0 =) k and 0 =) no
Set k+l * k
Build T,, Eq.(4.61), and set rank(T,) =) n
If n = no go to 7; else, set n =) no and go to 4
From T, determine the unique column degrees, i.e. T, (MD) =)

Define a desired set of column degrees {nil

Set S U V , * T, and S H T , * T,
Calculate the degree of admissibility of T,, i.e. TI (C#) E) C#
If C# is "too small," go to 8; else, go to 13
Solve A,T, = T, for A,
Set SuT - A,SUT =) D,
Set D$, * N,
Set D, (PMFr) =, D and N, (PMFr) =) N

{nil

Set { d (SM4 =$ n,, S,, S,, S,,, S,

The service algorithms Alr, I N D and C# are explained under Algorithm ZWN,
Section 4.2.5.

186 Chapter 4 lntermodel Conversion

4.3.4 Markov Parameters to Right Coprime MFD

This algorithm calculates a right coprime row-reduced ARMA (MFD) model,
N(z)D'(z), from a corresponding set of Markov parameters. As with the previous
case, this algorithm can be applied to a C-T state model to obtain the corresponding
MFD representation. Although this algorithm is dual to HDN, it will be briefly
stated here. The algorithm is based on:

c(2) = H(Z-1) = N(Z)D"(Z)
which using Eq(4.57) may be reduces to

I c Hi-jDk, = Nkmi for i = [O,k] and

c Hi,Dk, = 0 for i = [R + l , -]
1-0

1-0 (4.65)
k

The comments stated after Eq(4.58) apply here in the dual sense. Equation (4.65)
may also be represented by:

and

which, for short, will be expressed by:

T,D, = 0 and R,D, = N,

(4.66)

respectively. The relationships between symbols in Eqs.(4.66) and (4.67) should
be clear.

Section 4.3 Conversions from Markov Parameters 187

It is interesting to note that the matrix Tk in Eqs.(4.66) and (4.67) contains
the same Markov parameters Hi, i = [1,2k+l], as the matrix H[k] in Eq.(4.49),
only arranged differently. Note that premultiplying Tk by the [(k+ 1)p X (k+ l)p]
permutation matrix P,, given by:

Pp =

IP

IP
(4.68)

gives PpTk = H[k]. Therefore, according to duality, the first linearly independent
columns of Tk give the information about the unique controllability indices p , of the
corresponding state space representation. Consequently, by postmultiplying Tk by
a selector matrix S,, corresponding to a set of admissible PCI, a full column rank
matrix is obtained, i.e.:

Similarly, by postmultiplying Tk by the selector matrix S,,,, m rows are selected
from Tk which are linearly dependent on the columns of T,. In other words:

T, A,, = T2 , where T2 = TkS,, (4.69)

The [n X m] matrix A, defines the above mentioned linear dependence.
On the other hand, note that we are looking for a monic row-reduced matrix

mz), whose structure in the dual sense was exemplified in Section 3.4, Eqs.(3.100)
to (3.105). Thus, the [(k+ 1)m x m] matrix D,, appearing in Eqs.(4.66) and
(4.63, contains:

0 n rows with non-zero and non-unity elements
0 m rows of the identity matrix I,

km-n rows of zeros

Thus, it may be concluded that all n rows of the matrix A, in Eq(4.69) correspond
to n non-zero non-unity rows in D, multiplied by - 1, and also that the m columns
of A, correspond to m non-zero non-unity rows in the matrix A, in a PCF, based
on the admissible set of PC1 p = { p, } which is equal to the set of row degrees
(nJ of the desired matrix D(z).

Having A, from Eq.(4.69), matrices D, and N, may be calculated by:

'Id - ' 1 ,

m

Finally, desired polynomial matrices D(z) and N(z) may be obtained from D, and

188 Chapter 4 Intermodel Conversion

N, using the service algorithm PMFc. Thus, the following algorithm, permitting
calculation of a right coprime MFD { N(z), D(z) } with D(z) monic and row
reduced, given the Markov parameters H,, i = [0, 2k+ l], k = mm{ n, }, is
suggested.

Syntax: H, e, n, (HAD) =$ N, D, n, C#

Input/Output Arguments:

H is a @m X M) matrix in PMF. The rows of H contain the first
M coefficients of the polynomials h&-') in H(z").
e is a sufficiently small positive number used in rank calculations.
n, = { n, } is an admissible set of row degrees. If n, is not
known, any scalar, e.g. e, may be used as the third argument.
N is a pm x @+l)] matrix in the PMF. The rows of N contain
the coefficients nu,, of the polynomials n,(z) in N(z).
D is a [mz x (k+l)] matrix in the PMF. The rows of D contain
the coefficients dilh of the polynomials $(z) in D(z).
n is the set of row degrees of D(z).
C# is the degree of admissibility of the set of row degrees.

Algorithm:

1.
2.

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

Set H (Ah) H,, H,
If n, is specified, determine k , build T,, Eq.(4.67), set n,, = {n,},
and go to 9; else, go to 3
Set 0 * k and 0 * no
Set k+l * k
Build T,, Eq.(4.67), and set rank(T,) =+ n
If n = no go to 7; else, set n 3 no and go to 4
From Tk determine the unique row degrees, i.e. T, (I N D) - {n,}
Define a desired set of row degrees {n,}

Set TA,, * T, and Tfi, * T2
Calculate the degree of admissibility of TI, i.e. TI (C#) =+ C#
If C#' is "too small," go to 8; else, go to 13
Solve T,A, = T2 for A,
Set S,,, - SUA, * D,
Set R& =$ N,
Set D,, m (PMFc) =$ D and Ne, p (PMFc) * N

Set { d * n,, S,, S,, Stis S,

The service algorithms Alr, I N D and C# were explained earlier under Algorithm
T l D N in Section 4.2.5.

Section 4.3 Conversions from Markov Parameters 189

4.3.5 Markov Parameters to Transfer Function

In this section we present a method for calculating the transfer function matrix
G(z) = W(z)/d(z) from given Markov parameters H,. Since this algorithm is the
"inverse" of TFH, Section 4.2.2, it is based on the same expressions Eq.(4.30),
i.e.:

which using

may be reduced to:

I c d,,-iHi-j = Wn-i for i=[O,n]
j - 0

and (4.70)

n c d,,-iHi-j = 0 for i= [n+ l , -]

Since in this algorithm the Markov parameters H,, j = [O , M - l] , are assumed known,
while W, and di, i = [1 ,n], are to be determined, Eq. (4.70), i.e. Eq. (4.30), will now
be represented differently, either by:

j - 0

and

H, 1
(4.71a)

=' *. I = [Wo W, ... W"]
e . . '

190

and

Chapter 4

I

lntermodel Conversion

= o

(4.71b)

where, now, 6, = Im di. Eqs.(4.71), for short, will be expressed by:

D,T = 0 and D,R = W, (4.72a)

TD, = 0 and RD, = W , (4.72b)

respectively, where the notation should be clear.
It is worthwhile to compare Eqs.(4.71b) and (4.66) in Algorithm HND, as

well as Eqs.(4.71a) with Eq(4.60) in HDN. Recall that in Eq.(4.71) n is used

instead of k, where k c n, and that D,, or fi,,, in Eq.(4.71) is, by definition, a full
rank matrix, while Dk in both HDN and HND might be non-singular. Also, the
non-zero, non-unity rows in D,, or the non-zero, non-unity columns in D, in HAD
or HDN, respectively, are determined by treating full column (or row) rank
matrices, while here, as will be seen, this is not the case. Thus, the present
problem requires a different approach in calculating d(z) and W(z) satisfying
Eq.(4.70).

It may be recognized that Eqs.(4.71) and (4.72) are based on

D(z) H(z") = W(z) where D(z) = I, d(z) (4.73a)

respectively, and that the first version is more convenient if p < m, and vice versa.
Because of that fact, we should have both versions available. In fact, Algorithm
HTF executes either HTFp (first version) or HTFm (second version), depending on
whether p C m or m < p , respectively, Since there is complete duality between
these two versions, only HTFm will be discussed in the sequel.

Section 4.3 Conversions from Markov Parameters 191

The basic steps of this algorithm are:

Determination of the system order n
0 Building the [p@+ 1) X m(n+ l)] matrices T and R, Eq.(4.72b)
0 Calculation of the [m@+ 1) x m] matrix D, as a null space of T, where

D, should have the structure:

D, = [d,I, dl I, * * a d,I,IT , d, = 1 (4.74)

0 Calculation of W, using W, = R D,

To take into account Eq.(4.74), specifically d, = 1, Eq.(4.72b) will be rewritten
as

T,D,, = -Tz (4.75)

while D,, contains the first n blocks dJ,, i=[O,n-l] from D,.
Equation (4.75) represents a system of algebraic equations, where TI is not

a full column rank matrix, leading to a non-unique solution for Dcl. A procedure
of calculating DC1 of the structure in Eq.(4.74) satisfying Eq(4.75) is given in
Appendix B. Algorithmic implementation of this procedure is included in
Algorithm HTFm, given in the following.

Algorithm HTFm:

Syntax: H, E (H T k t) * d, W

Input/Output Arguments:

0 H is a @m x M) matrix in PMF. The rows of H contain the first

0 E is a sufficiently small positive number used in rank calculations.
0 d is an (n+ 1) dimensional row containing the coefficients di.
0 W is a [pm x (n+l)] matrix in PMF. Its rows contain the

h4 coefficients of the polynomials h,(z") in H(z").

coefficients of the polynomials W&) in W(z).

Algorithm:

1. Set H (Alc) * H,, H,
2. Set 0 =) k and 0 * no

192

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Chapter 4 lntermodel Conversion

Set k+l * k
Build T, using in Eq.(4.72b) k instead of n, and set rank(T) * n
If n = no, go to 6; else, set n * no and go to 3
Set n * k and build T and R, Eq.(4.72b)
Partition T * [T, 1 T, 3, T, has m columns
Set T, (Null) * N, N satisfies TI N = 0
Solve T,Y = -T, for Y
Set [l 0 0 ... 01 (m-l zeros) =$ v and [v I v I... I v] * v,,
Set 0 * i and [l 1 ... l] 3 v, , v1 has mn unity elements
Set i+l * i
Set v1 - v,, * vt, vi (DSM) * S, and Si% * n,
If rank (N,) = n(m-l), go to 16; else, go to 15
Shift v,, by one column right, i.e. v,, (SHR) =$ v,, and go to 12
Extract the 1% column from Y * yi and set S:y, * y,
Set N;'y, ti and N ti * d
Set v, (DSM) * S, ST d 9 d
S e t [d T I l] * d
Using d, build D, and set R D, * W,
Set W,, p (PMFc) * W

It may be verified (see Appendix B) that Steps 7 to 19 of the above algorithm
calculate coefficients di, i=[O,n] defining D, satisfying Eqs.(4.72b) and (4.74). In
Step 10, the m dimensional row v has one unity and m-l zeros, while the mn
dimensional row v,, is obtained by concatenating the vector v n times. Algorithm
DSM used in Steps 13 and 18 generates a "selector" matrix corresponding to the
row used as the input argument. The relationship between the input and output
arguments in the "define selector matrix" (DSM) algorithm is explained in Section
3.3.4. and Eq(3.79). The "shift right" (SHR) algorithm used in step 15 simply
shifts input argument by one column to right. The last element (column) is lost,
while the zero element (or zero column) is added as the first element (column).

Using the principle of duality, it is relatively straightforward to develop
Algorithm HTFp which, considering the first of the two versions of Eqs.(4.71) to
(4.73) calculates d(z) and W(z) satisfying Eq(4.70). As was mentioned previously,
within Algorithm HTF, having the same inputloutput arguments as HTF>n, both
algorithms are available, and only one is called depending on the relationship
between m and p . It is left as an exercise for the reader to develop H W .
Interested readers may check the L-A-S implementations of these algorithms.

4.3.6 Discrete-Time Response from Markov Parameters

This algorithm calculates the zero-state response of a D-T system given the
Markov parameters and the samples of the input signals using D-T convolution,
derived from y(z) = H(z-l) u(z) i.e.

Section 4.4 Conversions from MFD Models 193

(4.76)

where ui and y, are I* and J" samples of the input and output vectors, respectively,
while Hk is the Kh Markov parameter. Equation (4.76) may be represented by:

where L = min {M, N), or for short by:

Y e = H% (4.78)

where y, and U, are Lp and Lm dimensional columns containing samples y, and q,
i=[O,L-l], respectively, while H is an (LP X Lm) matrix containing the Markov
parameters H,, j=[O,L-l] arranged according to Eq.(4.77).

Inputloutput Arguments:

0 U is an (m x N) matrix containing samples of the mdimensional input

0 H is a @m x M) matrix in PMF. The rows of H contain the coeffi-

0 y is the @ x L) matrix containing the samples of the system response.

vector.

cients h, of polynomials hv(z") in H(?).

L = min{M,NJ.

4.4 Conversions from MFD Models

Given either a left or right coprime ARMA (MFD) model, this section
discusses the conversion to either state space or transfer function models as well as
the calculation of a set of Markov parameters. If it is desired to calculate the
system response, it is recommended that the ARMA model first be converted to
state space form, then to use the state space representation to calculate the response.

194 Chapter 4 lntermodel Conversion

4.4.1 "D to Observable State Model

This algorithm calculates an observable form state space model R, = {A,, B,,
C,, D,) from a corresponding left coprime column-reduced ARMA (MFD) model,
D(z)"N(z). One may view this algorithm as an "inverse" of Algorithm RoDN,
described in Section 4.1.7. It is based on Eqs.(4.17) to (4.20), as well as
4s.(4.44) to (4.47). For completeness of the algorithm presentation, some of
these expressions will be repeated here.

From Section 3.4, where MFD system description was introduced, it is clear
that the locations of the p columns of the identity matrix I,, in the matrix D,,
4.(3.104), uniquely determine the column degrees of D(z). Also, as has been
already stated several times (Sections 4.2.3, the set of column degrees { n, } of
D(z) corresponds to a set of admissible POI v = { v, } used in building a state
space representation R, in a POF.

Thus, from a given left coprime MFD, where D(z) is column-reduced and
monic, it is first necessary to determine the set of column degrees. This is done
by another polynomial matrix "service" algorithm refered to as D2nv:

Sptax: D,, E (D2nv) * v (4.79)

Inputloutput Arguments:

D, is a Ip x (k+l)p] matrix of the structure in Eq(3.104).
e is a sufficiently small positive scalar used as "machine" zero.
Y is a p-diminsional row containing the column degrees of D(z), or, as
was mentioned earlier, a set of POI v to be used in building the
representation R,.

Having determined the set v, it is then necessary to extract the n columns
from D, containing non-zero non-unity elements. From the expression

YZ - Ar YI = N r U,

derived in Section 4.1.7, Fq(4.13, it is clear that these n p-dimensional columns
constitute the matrix -Ar. At the same time p rows in this A, represent the non-zero
non-unity "parametric" rows of the matrix A, in the representation R,. Thus, the
matrix A, can be obtained from Eq.(4.45), i.e.:

"'r% *r

where S, is a selector matrix, Eq.(3.79), corresponding to the set v. The complete
Algorithm DhRo is as follows.

Section 4.4 Conversions from MFD Models 195

1 Inputloutput Arguments:

0 D is a [p2 X (k+l)] matrix in the PMF. The rows of D contain

0 N is a [pm x (k+ l)] matrix in the PMF. The rows of N contain

0 E is a sufficiently small positive number used in evaluating the set

0 R, = {A,, B,, C,, Do}, state space model in a POF.
0 v = { vi } is an admissible set of POI corresponding to R,.

the coefficients dvh of the polynomials d&z) in D(z).

the coefficients nvh of the polynomials n&z) in N(z).

v using Eq.(4.79).

Algorithm:

1. Set D (M) * D,, D, , N (Ah) =$ N,, N,
2. Set D,, E (D2nv) * v
3. Set {v i) (SMut) =) v,, S,, S,, S,,, S,
4. Set -D,Sli * A,

C O
5 . Partition I, 1 Az l, C, has p rows

6. Set SiA, + S,& * A,
7. Set A,, S,, (QC) * Q, , Q, has v,+ 1 blocks {AjS,} of p columns
8. Set Q>, 3 B,
9. Set D;'(sJN,(s,) - C,(SJ-AJ-~B, 3 D, for any S, # a system pole

Note that Steps 5 to 8 in DNRo are the same as the corresponding steps at the end
of P R O , Section 4.2.7, which is to be expected since both algorithms determine
the state space model R, in a POF. For more details, and particularly for the case
when A, and A,, are singular, see Ekp(4.44) to (4.47).

4.4.2 MFD to Controllable State Model

This algorithm calculates a controllable form state space model R, = {A,, B,,
C,, D,) from a corresponding right coprime row-reduced ARMA (MFD) model,
N(z)D'(z). Since this algorithm is dual to the previously given DNRo, as well as
rather similar to Algorithm TFRc given in Section 4.2.7, it will only be listed here
for reference without discussion.

Syntax: N, D, E (MW * A,, B,, c,, DC, I'

Input/Output Arguments:

0 N is a [pm x @+l)] matrix in the PMF. The rows of N contain

196 Chapter 4 lntermodel Conversion

the coefficients nVh of the polynomials n&) in N(z).

the coefficients d,, of the polynomials d&z) in D(z).

p using Eq.(4.79).

0 D is a [m2 x @+l)] matrix in the P m . The rows of D contain

0 E is a sufficiently small positive number used in evaluating the set

R, = {A,, B,, C,, D,}, state space model in a PCF.
0 p = { p, } is an admissible set of PC1 corresponding to R,.

I A'gorithm:
1.
2.
3.
4.
5.
6.
7.
8.
9.

Set D (All) =) D,, D, , N (AZt) =) Ne, N,
Set D:, E (D2nv) * p

Set -F&%, * A,
Partition I,, - [B, 4 1, B, has m columns
Set A2ST -l A.$: * A,
Set A,, S/ (eo) =) Q, , Q, has pm+l blocks {S/A,? of m rows
Set N,Q, * C,
Set N(s,)D;'(sa) - C,(sJ-A,YIB, =) D, for any S,, # a system pole

Set {P,) (SMat) * P m , S,, S,, S,, SLI

Note that Steps 5 to 8 in hDRc are the same as the corresponding steps at the end
of TFRc, Section 4.2.7, which is to be expected since both algorithms determine
the state space model R, in a PCF. For more details, and particularly for the case
when A, and A, are singular, see Eqs.(4.44) to (4.47).

It is worth mentioning that the duality between Algorithms DNRo and hDRc
is quite apparent. In other words, instead of:

D, N, E (mw =) A,, B,, c,, D,, cc
the following sequence of algorithms may be used:

f l * N d , DT*&
Dd, Nd, E (Dmo) * Ad, p

A/* A,, B:* C,, C:* B,, D/*DD,

4.4.3 Left Coprime "D to Markov Parameters

This algorithm calculates the set of Markov parameters from a left coprime
column-reduced ARMA (MFD) model, D(z)"N(z). This algorithm is, in a way, the
"inverse" of Algorithm HDN, given in Section 4.3.3. Thus, it is based on the same
expressions given in Eq~(4.57) to (4.58), i.e.:

G(z) = H(z -1) = D"(z)N(z)

Section 4.4 Conversions from MFD Models 197

or

i c D,,H,, = N,-, for i = [O,k] and
j - 0

k c D,,H,, = 0 for i = [k + l , ~]

However, since here the submatrices D, and N,, i=[O,k] are given, and the first M
Markov parameters H,, j=[O,M-l], are sought, the above equations will now be
represented by:

j -0

H0

1

0

0

0

NO

N k

(4.80)

which could readily be used for calculating H,, given D, and N,. However, as was
mentioned in Section 4.2.2, Algorithm TFH, see Eq~(4.31) and (4.32), Eq.(4.80)
assumes that H,, satisfies:

1 Hbf-l I <<

Thus, the criterion for selecting the scalar M is that the norm of the last calculated
Markov parameter H",, with h, = 11 H,, (I, should be sufficiently small. In
other words, the algorithm based on Eq.(4.80) is applicable only to MFDs whose
characteristic polynomials d(z) = det{ D(z) } have all roots within unit circle. If
this is not the case, then either:

0 "time scaling" of D(z) and N(z) should be performed, or
0 one of the following sequences of algorithms could be used

or

198 Chapter 4 lntermodel Conversion

The "time d i n g " of D(z), N(z) is explained in the Example 2, given at the end
of this chapter. Algorithm DNH is as follows:

Input/Output Arguments:

0 D is a [p2 x (k+ l)] matrix in the PMF. The rows of D contain

0 N is a [pm x @+l)] matrix in the PMF. The rows of N contain

0 M is scalar specifying the number of Markov parameters Q, i =

0 H is a [pm x MJ matrix in PMF. Rows of H contain the first M

hM is a scalar equal to 11 H,, 11, where is the last Markov

the coefficients d$, of the polynomials d&z) in D(z).

the coefficients nSrh of the polynomials n&z) in N(z).

[0, M-l], to be calculated.

coefficients of the polynomials h&-') in H(<').

parameter calculated.

Algorithm:

1. Set D (Art) =) D,, D, , N (AZt) * Ne, N,
2. Build the matrices in Eq.(4.80) consisting of Dl and NI
3. Solve Eq.(4.80) for H, containing H,,j=[O,M-l]
4. Set 11 H,, 11 =) hM
5. Set H,, p (PMFc) * H

4.4.4 Right Coprime MFD to Markov Parameters

This algorithm calculates the set of Markov parameters from a right coprime
row-reduced ARMA (MFD) model, N(z)Dl(z). As was mentioned in the previous
algorithm, this algorithm is like an "inverse" to Algorithm HAD, given in Section
4.3.4. Thus, it is based on the same expressions given in Eqs.(4.64) to (4.65),
i.e.:

c(z) = H(2") = N(z)D"(z)

or

i c Hi-jDk-j = Nk-i for i = [O,k] and
1-0

k c Hi-jD,-j = 0 for i = [k+l,=]
j - 0

However, since here the submatrices Ni and D,, i=[O,k] are given, and the first M

Section 4.4 Conversions from MFD Models 199

I %-l]

p0

...

D&

(4.81)

Since this algorithm is dual to the previous algorithm, the comments about the
applicability of Algorithm D M , given above, hold also here in the dual sense.

The algorithm is described as follows:

Syntax: N, D, M * H,

InpuVOutput Arguments:

0 N is a [pm x (k+ l)] matrix in the PMF. The rows of N contain

0 D is a [mz x (k+ l)] matrix in the PMF. The rows of D contain

0 M is scalar specifying the number of Markov parameters H,, i =

0 H is a [pm x matrix in PMF. Rows of H contain the first M

h, is a scalar equal to 11 H,, 11, where H", is the last Markov

the coefficients nVh of the polynomials n&z) in N(z).

the coefficients dVh of the polynomials d,(z) in D(z).

[0, M-l], to be calculated.

coefficients of the polynomials h,(z") in H(.?").

parameter calculated.

Algorithm:

1. Set N (Ah) =) N,, N, , D (Ah) =$ D,, D,
2. Build the matrices in Eq(4.81) consisting of Nf and Df
3. Solve Eq.(4.81) for H, containing Hi, j=[O,M-l]
4. Set 11 H,, 11 * h,
5 . Set H,, m (PMFr) * H

200 Chapter 4 lntermodel Conversion

To stress the duality between Algorithms DNH and M I H , let us mention that
instead of

N, D, M (MW * H,

the following sequence of algorithms could be used:

NT* Nd, Dr- Dd
D,,, Nd, M (DNH) * Hd, hM

H;*H

4.4.5 Left Coprime MFD to Transfer Function

This algorithm converts a left coprime column-reduced C-T or D-T ARMA
(MFD) model, D'(z)N(z), to a matrix transfer function G(z) = C(z1- A)"B + D.
This algorithm is based on

D"(Z) N(z) = W(z)/d(z)

which, as has been shown in Section 4.1.7, Eq.(4.21), may be rewritten as:

where n z) = adj{ D(z) } and d(z) = det{ D(z) 1. Using Eq.(4.82), the calculation
of W(z) reduces to a simple multiplication of polynomial matrices T(z) and N(z).

It should be mentioned that the adjoint of a square polynomial matrix, i.e.
adj{ D(z) }, is calculated by applying the Laplace expansion and direct evaluation
of minors and cofactors involving polynomial manipulation, which has proven to
give satisfactory accuracy for polynomial matrices of orders up to 10.

Syntax: D, N, E (DNTF) * d, W

Input/Output Arguments:

0 D is a rp' x (k+ l)] matrix in the PMF. The rows of D contain

0 N is a [pm X (k+l)] matrix in the PMF. The rows of N contain

0 E is a small positive number used as machine zero.
d is an (n+l) dimensional row containing the coefficients of d(z).

0 W is a [pm X n+ l] matrix in the PMF. The rows of W contain

the coefficients dg,, of the polynomials d&) in D@).

the coefficients ngh of the polynomials n,,(z) in N(z).

the coefficients wgh of the polynomials W&) of W(@.

Section 4.4 Conversions from MFD Models

I The basic steps of the algorithm are:

201

1.
2.
3.

Set det{ D(z) } =) d(z)
Set adj(D(z) } =$ T(z)
If the highest order coefficient in d(z), d. = 1, go to 5;
else, go to 4

4. Set -d(z) =) d(z) and -T(z) =) T(z)
5 . Set T(z) N(z) W(z)

4.4.6 Right Coprime MFD to Transfer Function

This algoxdthm converts a right coprime row-reduced C-T or D-T ARMA
(MFD) model, N(z)D'(z), to a matrix transfer function G(z) = C(zI - A)"B + D.
This algorithm is based on

N(z) D'(z) = W(z)/d(z)

which, as has been shown in Section 4.1.8, Eq.(4.24), may be rewritten as:

N Z) m) = (4.83)

where T(z) = adj { D(z) } and d(z) = det{ D(z) 1. Using Eq.(4.83), the calculation
of W(z) reduces to a simple multiplication of polynomial matrices N(z) and T(z).

The syntax of the algorithm is:

N, D, E (NOZ'Q =) d, W

Input/Output Arguments:

N is a [pm X (k+ l)] matrix in the PMF. The rows of N contain the

0 D is a [m2 x (k+ l)] matrix in the PMF. The rows of D contain the

0 E is a small positive number used as machine zero.
0 d is an (n+ 1) dimensional row containing the coefficients of d(z).
0 W is a [pm x n+ l] matrix in the PMF. The rows of W contain the

coefficients ?$,h of the polynomials n,(z) in N(z).

coefficients dgh of the polynomials d&z) in D(z).

coefficients wyh of the polynomials w&z) of W(z).

For more details see Section 4.4.5, Algorithm D m .

202 Chapter 4 lntermodel Conversion

4.4.7 Other MFD Conversion Algorithms

For completeness in algorithm availability, the following four algorithms are
also available:

(1) DNRc: Left MFD (D(z), N(z)} into a state space model RC in a PCF

(2) D N m : Left MFD (D(z), N(z)} into a right Coprime MFD (f&) , &)

(3) NDRo: Right MFD {*(z), &z) } into a state space model R, in a POF

(4) NDDN Right MFD { f i(z) , ij(z) } into a left Coprime h4FD {D(z), N(z))

The syntax of these algorithms are as follows:

For input/output arguments see Algorithms:

=RC, TFND , TFRo and TFDN (4.85)

respectively, as well as some other previously discussed algorithms.

performed by the following sequences of algorithms already described:
It is worth mentioning that these model conversions may, for instance, be

0 Instead of (2): the sequence (5) and
nd =$ 1 PI

A,, BC, cc, DC, c * R , fi (4.86)

0 Instead of (4): the sequence (6) and
nd * vi

A,, B,, c,, D,, v (R O W * D, N

Section 4.4 Conversions from MFD Models 203

Of course, the algorithms to be described in this section are computationally more
convenient than the sequences suggested above. All four algorithms are based on:

D"(2) N(z) = i qz) B"(Z) (4.87)

which may be rewritten as:

D(z) fi(2) - N(z) 5 (z) = 0 (4.88)

(4.89)

Note that for a given system, the integers k and h, defining the numbers of terms
in the left and right MFDs, are not necessarily equal. Recall that in the case of
Algorithms (1) and (2), i.e. DArRc and DNND, the given left MFD (D(z), N(z)} is
not necessarily left coprime nor is D(z) required to be monic and column-reduced.
Similarly, i.e. dually, in the case of Algorithms (3) and (4), i.e. NDRo and NDDN,

the given right MFD (# (z) , ~ (z) } is not necessarily right coprime, nor is&)
required to be monic and row-reduced.

For the purpose of Algorithms (1) and (2), i.e. DNRc and DNND, Eq.(4.88),
should be represented by:

(4.90)

while for Algorithms (3) and (4), i.e. NDRo and NDDN, Eq.(4.89), becomes:

204 Chapter 4 lntermodel Conversion

Using the previously introduced notation, Eq~(4.90) and (4.91) may be represented
by:

- R C

D C

T, ---

respectively, where in both l

= O a d [N . I D,]*, = O (4.92)

cases matrices Th and f, are build out of known

submatrices, while matrices R, and D,, i=[O,h], entering in 8, and 6, in the
case of Eq.(4.90), and N, and D,, j=[O,k] , entering in N, and D, in the case of
Eq.(4.91), are unknown. Recall that, not only are the matrices unknown, but the
integers h and k should also be determined.

The reason for denoting the matrices in Eq.(4.92) by subscripts h and k is that
in the @(k+h+ 1) X (h+ l)(p+m)] matrix T,, and the [@+m)(k+ 1) X m(k+h+ l)]
matrix f, the integers h and k, respectively, are unknown. As will be shown later,

the values of these integers are determined by building Th and f, sequentially
starting with h = 1 and k = 1, and ending with:

h = max{ n, }, the row degrees of &) , or max { p , } of a corres-
ponding PCF R,, and

k = max{ n, }, the column degrees of D@), or max { v, } of a corres-
ponding POF R,, respectively.

Note that Eq~(4.90) and (4.91) are, respectively, similar to Eqs.(4.41) and (4.34),
which are used for the transfer function conversion algorithms listed in Eq(4.85).
Comparing the expression of Eq(4.90) with that of Fiq(4.41) and Eq.(4.91) with
Eq.(4.34), the similarities and differences are easily determined.

Section 4.5 Summary of Conversion Options 205

It should be mentioned that the implementation of the four algorithms in
Eq(4.84) is similar to the algorithms listed in Eq.(4.85). For example, the second
equation in Eqs.(4.92) is formally equal to Eq.(4.34) in TFDN. Thus here, it is

also necessary to build ?k and to determine the smallest integer k satisfying the
previously given Eq.(4.35), i.e.:

rank [?k] = (k+l)m + n
leading to

n = rank [T k] - (k+l)m (4.93)

which permits determination of the system order n and the value of the integer k.
After having the values of n and k , an "admissible" set of row degrees { n, }
satisfying:

should be determined. Similarly, as in Eqs.(4.36) to (4.38), this could be done by
checking the "auxiliary" selector vector Q l i , indicating linear independent rows in
T,, which, of course, leads to the unique set, p, of controllability indices of the
corresponding controllability form R,. If the admissibility degree, C#, correspond-
ing to this set is too small, which happens sometimes, then, it is advisable to select
an appropriate set { n, }, satisfying Eq(4.94) and check its degree C#.

Similar arguments hold for the first equation in Eqs.(4.92), i.e. for
Algorithms DNND and DNRc. For additional details see the steps of the algorithms
listed in Eq.(4.85). The reader is urged to examine the L-A-S implementation of
these algorithms as well as the listings of all other algorithms discussed in this
chapter.

4.5 Summary of Conversion Options

This chapter has presented the reader with a wide variety of numerically
stable algorithms with which to convert from one model form to another. Since so
many variations were covered, a brief summary is thought to be necessary. Table
4.1 below illustrates the large number of options that are accessible. All of the
algorithms indicated in Table 4.1, except for those associated with system
identification, i.e. conversion from input/output data to some model form, to be
discussed in Chapter 5, have been presented in this chapter.

206 Chapter 4 lntermodel Conversion

TABLE 4.1 Avai able Con

2

TF

SSTF

SSTF

SSTF

*
HTF

DNTF

NDTF

UYTF

ersion Algorithms m
SSH CDSR

SSH RoDN CDSR

SSH RcND CDSR

TFH TFDN TFND CDTR

* HDN HND

DNH' * DNND

N D R NDDN *

uyH' uyDN

uHy

*

Comments.

(1) In addition to P R O and TFRc, other available algorithms are "classical"
minimal realization procedures such as Hessenberg's, Kalman decomposition and
a Jordan form procedure.

Possible sequences of algorithms are given in the table below which represent
conversions from a transfer function matrix to one of the state space minimal
realizations. Of course, all of the resulting state space forms, SS,, have the same
transfer function matrix, i.e. SS, (SSTF) * TF,, where TF, = TF for all i=[1,6].

Section 4.5 Summary of Conversion Options 207

The problems with these procedures are that they require a non-minimal state
space representations which are in the case of MIMO system either of the order m
or np where n = order of characteristic polynomial d(z), and m and p are the
dimensions of the input and output vectors, respectively. Moreover, in the TF *
SS procedure we often "know*' that the order of the minimal state space representa-
tion is equal to n. Our TFRo and TFRc procedures are less computationally
"intensive" and are well "suited" for this intermodel conversion.

(2) In addition to HRo and HRc there are other "partial" realization algorithms
which, using "several" Markov parameters H,, i=O, 1,2, ... , determine SS, for
example, the Ho-Kalman, or ERA, procedure. The problem with these procedures
are that they determine just a state space (SS) representation, without investigating
whether there is another equivalent, computationally more convenient representa-
tion. Under the heading "computational convenience," we consider condition
numbers of the similarity transformation matrices, i.e. admissibility degrees of
those sets of POI and PC1 used.

(3) The algorithms DNH and h!VH are directly applicable only if the system is
"D-T" stable, i.e. if all roots of d(z) = det{ D(z) } are within the unit circle. If
not, then a "time scaling" of D(z) and N(z) should be performed first, and then the
obtained time scaled Markov parameters should be multiplied withf', wheref
is the "time scaling" factor.

The suggested sequence of algorithms is:

D(z) * d(z) * maximum root of (d(z) = 0) =$ time scaling factory
D(z), N(z) , f* (time scaling) * D,(z), N,(z)
D,(z), N,(z) (DNH) =) truncated and time scaled H,(z")
H d , A =) (time scaling "up") 3 H,, i=[O,M-l]

Algorithms for time scaling of MFD's and Markov parameters are also available.

This is equally applicable to a left or right coprime MFD, as has been illustrated
in the Example Section, see Section 4.6.

(4) The algorithm uyH is applicable only to stable D-T systems, i.e. to systems
where llHM-l 11 < < 1, for a sufficiently large finite M. Also all of these M
Markov parameters H,, i=[O,M-l], should be determined.

208 Chapter 4 lntermodel Conversion

4.6 Examples

In this section two comprehensive examples will be presented to illustrate the
power and flexibility of the conversion process. The first example begins with a
state space model of a 4'" order, 3-input, 2-output C-T system and generates six
different equivalent models. These six models are developed redundantly and
crosschecked by 22 distinct conversions to show that the various models are
compatible. These conversions are represented in Fig. 4.2 by arrows. In Example
2 additional conversions are presented which illustrate going from MFD models to
Markov parameters when the system is not D-T stable, i.e. requiring scaling.
Figures are presented with the examples to provide a graphical picture of the
conversions.

4.6.1 Example 1 (Model Conversions)

We will first look at the system given in state space form and the admissible
pseudo-controllability (PCI) and pseudo-observability (POI) indices:

R =

- 1 1 0 0 ~ 1 0 0

0 -2 l 0 1 . 0 0 1 0 0

0 - 1 - 2 1 I O 1 0

0 0 0 - 2 1 0 0 1
"_ "_ "_ -" - 1 - "- "- "-

0 . 0 0 1 0 l I O l o

1 0 0 0 ~ 0 0 0

Assuming independent inputs and outputs, the system has three possible sets of
controllability (PCI) indices and three possible sets of observability (POI) indices
given in Tables 4.2 and 4.3:

TABLE 4.2 PC1
l I *l

SOE-03

TABLE 4.3 POI

.20E-03

Section 4.6 Examples 209

FIGURE 4.2 Conversions for Example 1

In Tables 4.2 and 4.3 "degree" refers to the degree of admissibility, the inverse of
the condition number of the similarity transformation matrix T used in obtaining
the corresponding PCF or POF. Note that the last set of PC1 is not admissible
since the rank of T is less than n = 4. The best selection is associated with the
highest degree of admissibility, which is the first set in each case. Note that the
best selections in both cases are different from the unique controllability and
observability indices, which are {2,1,1} and {2,2}, respectively.

In the following development, which illustrates intermodel conversions
between SS , TF , H and MFD models, the same model may be repeatedly
generated by different methods. In all instances the models agree closely.

Sequence of algorithm executions:

R (SSRo) =$ Ro
R (SSRc) =) RC
R (S S W =$ TF
R (SSH) H
TF (TFH) * H1
H (HRo) =) Rol
H (HRc) =) Rcl
Ro (RoDN) =) DN
RC (RcND) =$ ND
DN (DNTF) =) TF1
ND (NDTF) =$ TF2

H (HDN) =$ DN1
H (HND) =$ ND1
DN (DNRo) =) R02
ND (NDRc) =$ Rc2
DN (DNND) =) ND2
ND (NDDN) =$ DN2
TF (TFND) =$ ND3
TF (TFDN) =) DN3
TF (TRRo) =$ R03
TF (TFRc) =) Rc3
H (HTF) =$ TF3

210 Chapter 4 Intermodel Conversion

Multiply-Generated Models:

Transfer function matrices: TF , TFl , TF2 , TF3
State Space representations in POF: Ro , Rol , R02 , R03
State Space Representations in PCF: RC , Rcl , Rc2 , Rc3
Markov Parameters in: H , HI
Left coprime MFD in: DN , DN1 , DN2 , DN3
Right coprime MFD in: ND , NDl , ND2 , ND3

Since the eigenvalues of A in R are not within unit circle, the algorithms
D M and NDH were not used. The use of these two algorithms will be illustrated
in Example 2.

Results:

Using the "best" sets of structural indices from Tables 4.2 and 4.3, the
following observable and controllable state space models were calculated:

Observable Form (v = {l ,3})

R, =

R, =

-2.0 ,002 .003 ,001

0 0 1 0

0 0 0 1

1.0 -5.001 -9.001 -5.0
"- -" "- "- -

0.0 0.0 1.0

1.0 0.0 0.0

-.g99 0.0 0.0

.g97 1.0 0.0
- "- "- ".

1 0 0 0 I 0.0 1.0 0.0

0 1 0 0 I 0.0 0.0 0.0

Controllable Form (Ir = {1,2,1))

".g99 0 0.0 1.0 I 1 0 0

-.m3 0 1.0 -5.002 I 0 1 0

0.0 0 -2.0 0.0 I 0 0 1

"- "- -" "- - 1 - "_ "_ ".

0.0 0.0 1.0 .001 I 0.0 1.0 0.0

1.0 0.0 0.0 0.0 I 0.0 0.0 0.0

-.W1 1 0.0 -4.001 I 0 0 0

Section 4.6 Examples 211

where

W1 1

W21

W12

W22

w1 3

w23

So S1 S2 s3

0 0

10.004 13.004
-""

10.002 23.003

2.0 1.0
"_" ""-
5.001 9.001

1 .o 0

0 0

6.001 1
_"" ""-

19.001 7.0

0 0
""_ ""-

5.0 1.0

0 0

S4

0

0
"".

1 .o
0

"".

0

0

For example, w12(s) = 10 + 23s + 19s2 + 7s3 + s4

which happens to be equal to the characteristic polynomial d(s).

Markov Parameters Hi

The first few terms of the 3-column polynomial matrix H($") = {h&')} are:

hll-O 0 0 0 0 0 0 0 0 0

0 1 -1 1 -1 1 -1 1 -1.2 1.4
-

~ 1 2 1 0 0 0 0 0 0 0 0 0.3

h22 0 0 0 1 -5 16 -40 81 -125 96
"_ "_ "- "_ "_ "- "- "_ "- "-

h13 0 l -2 4 -8 16 -32.1 64.2 -128.4 257.1

h,, 0 0 0 0 1 -7 30 -100 281 -6K/

212 Chapter 4 Intermodel Conversion

Left Coprime MFD

This form is given by D’(s)N(s) where D(s) is monic and column-reduced,
i.e.:

denoted by

and

4 1 - 2.0 1.0 0 0

41

-.m -.m3 -.m1 0.0 4 2

-1.0 0.0 0.0 0.0
”_” ”“_ -”” ””.

42 5.001 9.001 5.0 1.0

-.m
5.003
””_

2.0

0.0
””_

1 .o
0.0

-.m1 0

4.001 1
””- ””

1.0 0.0

0.0 0.0
””_ ”“

0.0 0.0

0.0 0.0

Right Coprime MFD

This form is given by N(s)D’(s) where D(s) is rnonic and row-reduced, i.e.:

Section 4.6 Examples 213

4 1

d 2 1

d3 1

denoted by d l 2

4 2

d32

d l 3

d23

d 3 3

n11

% l

and
n12

n 2 2

nl 3

n2 3

.g99

.003

0.0
""_
0.0

-1.0

2.0
""

-1.0

5.002
0.0

1 .o
.#l

0.0
""-

0.0

0.0

1 .o
""

0.0

4.001

0.0

0

0.0

0.0
""_
0.0

0.0

0.0
""

0.0

1.0

0.0

.m3
1 .o

""_
0.0

0.0 ""_
5.003

0.0

.W1
0.0

""_
0.0

0.0
""_
4.001

0.0

0 -

0.0
"_"
0.0

0.0
"_"
1.0

0.0

214 Chapter 4 Intermodel Conversion

D&) =

‘ l + s 0 -1

D$) = 0 -1 5 + 4 s + s 2

0 2 + s 0

Note that the column degrees of D,@) are { 1,3} corresponding to the set I, and that
the row degrees of D,(@ are { 1, 2, l} corresponding to the set p.

Figure 4.2 indicates the following (22) conversions:

R * R o , R C , T F , H
T F * R o , R c , D N , N D , H
H * R o , R c , T F , D N , N D
D N * R o , T F , N D
ND*Rc ,TF ,DN
Ro * DN
RC * ND

The repeated models are essentially the same and serve as checks on the others.

4.6.2 Example 2 (Time Scaling)

This example illustrates the conversion between MFD and the Markov
parameters when the system is not D-T stable. The given system is the same one
used in Example 1. Only additional results are presented for brevity. Figure 4.3
illustrates the 13 distinct conversions made.

Sequence of algorithm executions:

R (SSRo) * Ro
R (SSRc) * RC
R (SSH) * H
Ro (RoDN) * DN
RC (RcND) * ND
DN (DNfs) * DNs
ND (NDrs) * NDs

DNs (DNH) * Hsl
NDs (NDH) * Hs2
Hsl (Hfs) * H1
Hs2 (H@ =) H2
H2 (HRo) * Rol
H1 (HRc) * Rcl

Section 4.6 Examples

n

215

FIGURE 4.3 Conversions for Example 2

This example presents the following generated models:

State space representations in POF: Ro , Rol
State space representations in PCF: RC , Rcl
Left and right coprime MFD: DN , ND
Time-scaled left and right coprime MFD: DNs , NDs
Markov parameters in: H , H1 , H2
"Time scaled" Markov parameters in: Hsl , Hs2

The original model R , as well as the derived models R,, R,, G(@ and H (d)
are identical to those given in Example 1. Therefore, only an extension of H(.?)
will be given here, since the number of "useful" terms is larger than presented in
the results of Example 1:

so S-1 ... S-9

- 0 0 ... 0

0 1 ... 1.4
-" "- "- "_

1 0 ... 0.3

h22 0 0 96.0
"- -" "_ "_

h13

0 0 -687.0 h23

0 1 ... 257.8

-10

0

-2.0
"-

-1.2

240
"_

-513.2

1470

s-ll s-12

0 0

2.7 -2.9
"- "-

3.1 -6.5

-1439 4555
"_ _"
1025 -2047

-2700 3961

s-13 s-14

0 0

0.2 11.4
-" "-
10.2 -8.8

-11024 21320
"- "_
4088 -8166

-3367 - 4 2 ~

In order to illustrate scding in MTD, we will repeat some of the results from
Example 1. First, let us compare the unscaled and scaled left coprime MFD:

216 Chapter 4 lntermodel Conversion

Left Coprime MFD (unscaled)

This form is given by D'(s)N(s) where D(s) is monic and column-reduced.
These results are taken from Example 1:

denoted by

and

- 2.0 1.0 0 0

d21

-.m -.m3 -.m1 0.0 4 2

-1.0 0.0 0.0 0.0
"" "" ""- ""

d,, 5.001 9.001 5.0 1.0

"l1

%l

5 2

nz2

"13

%3

-.m -.m1
5.003 4.001
""_ ""_
2.0 1.0

0.0 0.0
""_ ""_

1.0 0.0

0.0 0.0

0

1 .
""

0.0

0.0
""

0.0

0.0

= D,@)

The scaling factor f is set at a value of 0.1. This "time scaling" is reflected into
the sdomain as a scaling factor on the S variable. A well known fact from Fourier
theory is that a contraction of the time axis corresponds to an expansion of the
frequency axis and vice versa. Here, because the system response becomes large
too quickly in normal time, we expand the time axis by a factorf=10. Thus, i fp

Section 4.6 Examples 217

represents the scaled Laplace variable, then S = lop, and e.g., a polynomial

d(S) = 1 + 5s" + 9 P
becomes

d(p) = 1 + 0.5~" + 0.09~"

The reader should compare the following scaled version with the above left coprime
MFD:

Left Coprime MFD (scaled)

4 1 - 0.2 1.0 0.0 0.0 -
4 1 = D,,(S) -.m1 0.0 0.0 0.0

"_" ""_ ""- -""
4 2 0.0 -.m3 -.01 0.0

dzz .W5 .090 0.5 1.0

and

"1 1

"2 l

"12

"22

"l3

"2 3

0.0

.m5

0.2

0.0
""_
0.1

0.0

-.001

.040
"_"

l .o
0.0

""-

0.0

0.0

0.0

0.1
""_
0.0

0.0
""_
0.0

0.0

Right Coprime MFD (unscaled)

This form is given by N(s)D'(s) where D(s) is monic and row-reduced. This
is the same scaling that was previously applied to the left coprime MFD above.
The unscaled results are repeated from Example 1:

218

denoted by

and

Chapter 4 lnterrnodel Conversion

4 1
4 1

d3 1

4 2
d 2 2

d32

'1 3

d2 3

d 3 3

'11

% l

n12

3 2

'13

n23

.g99 I .003
~

0.0
""_

0.0

-1.0

2.0
""

- 1.0

5.002

0.0

1 .o 0

.m1 0.0

0.0 0.0
""_ ""_

0.0 0.0

0.0 0.0

1.0 0.0
"" ""

0.0 0.0

4.001 1.0

0.0 0.0

.m3
1 .o

""_
0.0

0.0
""_
5.003

0.0

.001 0

0.0 0.0
""_ ""

0.0 0.0

0.0 0.0
""_ ""

4.001 1.0

0.0 0.0

Section 4.6 Examples

Right Coprime MFD (scaled)

and

dl 1

d2 1

d 3 1

d, 2

4 2

d3 2

'1 3

4 3

4 3

n 1 1

n 2 1

3 2

3 2

'13

$3

So

0.1

0.0

0.0
.""

0.0

-0.1

0.2
""

-.01

.05

0.0

So

0.0

0.1

S1 52

1.0 0.0

.m1 0.0

0.0 0.0
_"" ""-

0.0 0.0

0.0 0.0

1.0 0.0
"" ""

0.0 0.0

0.4 1.0

0.0 0.0

S1 52

.m1 0.0

0.0 0.0
_"" "" - ""-

0.0 0.0 0.0

0.0 0.0 0.0
"_" ""- "-"

.05 0.4 1.0

0.0 0.0 0.0

Markov Parameters (scaled)

219

The first few terms of the 3-column polynomial matrix H(.?) = {h&-')} were
given in Example 1 . That result illustrated the increasing values of the parameters.
A further extension was given earlier in this example. Now consider the scaled

220 Chapter 4 lntermodel Conversion

Markov parameters (again withf = 0. l), and note the dramatic change:

so s-l s-2 s-3 s -s sa s - ~ s-a

h11

0.0 43
0.0 h13

0.0 42

1.0 h12

0 h 2 1

- 0

"-

-"

0 0

.l -.01
"- -"

0.0 10-5

0.0 0.0
"- "-

0.1 -.m
0.0 0.0

0

.001
-"
0.0

.W1
-"

.W4

0.0

0

-.OoOl
"-
0.0

-.OOO5
"-

-.0008

.OOO1

0

10-5
-"
0.0

.OoO16
-"

.00016

- . m 7

0 0

0.0 0.0
-" -"
0.0 0.0

-.m 1 0 5

"_ "-

-.oooo3 10-5

. m 3 -10-5

0

0.0
-"
0.0

0.0
"-

0.0

0.0

These Markov parameters are obtained by Algorithms DNH and h?DH which
require D-T stable MFDs.

Explanation of time scaling of MFDs, time scaling with the factorf = 0.1:

Original left and right coprime MFDs (without scaling):

D,@) =
2 + 1s -.m -.003s -.oo1s2

-1 5.001 +9.001~ + 5s2 + l S 3

- .999+1s 0 -1

D,@) = ,003 .t .001~ -1 5.002 +4.001~ + IS'

0 2 + 1s 0

Left and right coprime MFDs with scaling:

1 3 column degrees

- .0999+1s 0 -.01

1 0 0.2 + 1s 0

2 .OOO3 + .OOIS -0.1 ,05002 + . 4001~ + Is2 D,@) =

- 1
rOW

degrees

Section 4.7 Summary 221

The coefficients d,,,, of D,(.$ in an l"' row where the polynomial with the

column degree 9 is located are multiplied with fni-*, h=[O,n,,J, n,,, = max { n, }.
Thus, the highest degree coefficients in all polynomials defining the column degrees
are unchanged and the time scaled polynomial matrix D&) remains monic.

Similarly, the coefficients cl,,,, of &(S) in a]"' column where the polynomial

with the row degree n, is located are multiplied with f n i - ' , h=[O,nJ, n,,, = max
{ n, }. Thus, the highest degree coefficients in all polynomials defining the row
degrees are unchanged and the time scaled polynomial matrix D&) remains monic.
Note the verification of these statements in the example above.

4.7 Summary

To summarize the developments in this chapter, a large collection of
algorithms was presented. These algorithms provide conversions between any two
types of system models: state space canonical forms, transfer function matrices and
matrix fraction descriptions (ARMA models), as well as the Markov parameter
(Hankel matrix) description. Appropriate application of this group of algorithms
will allow the designer to view the system from every "perspective," and to work
with the most convenient model.

In conclusion of this chapter it should be pointed out that the pseudo-
controllable and pseudo-observable forms, PCF and POF, used in the majority of
intermodel conversions, have not so far been widely used in the systems/controls
literature. The reason for that is, no doubt, due to the great popularity of
Luenberger canonical forms and the fact that PCFs and POFs used here are just
"permutations" of Luenberger forms. Recall that in Chapter 3 it was stated that our
versions of PCFs and POFs, based on admissible sets of pseudo-controllability and
pseudo-observability indices, POI and POI, are more "natural" than other
approaches in representing MIMO systems. This "naturalness" stems from the
extremely simple relationship between the state space and inputloutput, i.e. MFD,
models and the conclusion that there is a one-to-one correspondence between state
space and MFD models, which has been established by Remarks 4.1 and 4.2 and
illustrated by Examples 4.1 and 4.2.

To emphasize these simple, important and straightforward relationships let us
review them once more in a slightly different way. Consider a state space
representation:

R, = {Ao, B,, C,, D,} in a POF

based on an admissible set of POI:

v = { V ,) ' i = [l , p] , k=max(v ,]

and its one-to-one "counterpart," i.e. a left coprime MFD:

222 Chapter 4 lnterrnodel Conversion

where D(z) is monic and column-reduced having column degrees { n,) equal to
POI, i.e.:

(4 1 = { h }

Of course, these two models are related to each other by:

C,(zI - A,)"B, + D, = D'@) N(z)

In Section 4.1.7 it was established that the non-zero, non-unity elements in
A, and the negatives of the corresponding non-zero, non-unity coefficients dgh of
the polynomials in D(z) are equal to each other. Also, having these elements, it is
extremely easy to build either A, or D(z), since the locations of those elements in
both A, and D(z) are uniquely determined by the selector vectors v,, v,, v, and v,
(and associated selector matrices) generated by the underlying set { n, } or { U,).
In Section 3.3.4 it was shown that the selector vectors are a simple consequence of
(or easily obtainable from) the crate diagram based on the set POI.

It has been shown that the total number of above mentioned non-zero, non-
unity elements is np, and that they appear in A, in somep rows, while in D(z) they
appear in some n columns in the [p x (k+ l)p] matrix D,, where D, is related to
D(z) by:

k

D, = [Do 1 D, I m** Dk] a d NZ) = C Di Z'
i -0

If thep rows from A,, containing non-zero, non-unity elements, are arranged in the
(p x n) matrix A, and if the n columns from the matrix D, are arranged into
another (D X n) matrix, say D,, then it has been shown that:

Drr = -A,

It has also been established that the locations of the non-zero, non-unity rows in A,
are determined by the locations of unities in the selector vector v,, i.e. the selector
matrix S,, and that the locations of the non-zero, non-unity columns in D, are
determined by the location of unities in the selector vector v,, i.e. the selector
matrix S,.

Thus, as has been shown previously, and used effectively in a number of
algorithms in this chapter, the relationship between A, and D, may be expressed as:

A, = SZA, = -Dr S,, (4.95)

which, in fact, may be considered as the basis of almost all of the previously
described algorithms.

Section 4.7 Summary 223

With the help of two other selector vectors, namely, vi and v,,, (and selector
matrices S, and S,,,) we may:

Given A,, calculate D, by:

D, = S,, - S,, A, S,i T T T

or conversely,

0 Given D(z), i.e. D,, then A, may be obtained simply by:

A0 = %A, - S A sa

where A, = [0 I In-p 3, while the selector vectors and selector matrices used are
defined in Section 3.3.4.

Applying the principle of duality, it may be shown that the relationship
between A, in a PCF:

based on a set of PC1
R, = {A,, B,, c,, DJ

{ Pi 1, k = max { Pi 1, i=[l,mI

and its one-to-one counterpart, monic and row-reduced D(z) in a right coprime
MFD

W(z) 3 1

having row degrees { ni } equal to the PCI, i.e.:

{ n i } = { ~ i l
could be expressed by:

D,, = S,,, - SIi A, S,
or

where, now:

A,=

and of course:

C,(ZI - A,)"B, + D, = N(z) P (Z)

224 Chapter 4 lnterrnodel Conversion

4.8 References

In addition to the standard linear system books of Brogan (1991), Chen (1984)
and Kailath (1980), a classical paper concerning system identification is Ho and
Kalman (1965). A useful modification of Ho and Kalman's work is reported in
Bingulac et a1 (1990). Both Rosenbrock (1970) and Wolovich (1974) provide
alternative discussions on the relationships between the MFD and state space
models. See Ackermann (1985), Appendix A, for background on Hessenberg
forms. Bingulac and Djorovic (1975) and Bingulac and Sinha (1990) are
recommended reading for specific discussions on Jordan forms and C-T system
identification, respectively.

Ackermann, J. (1985), Sampled-Data Control Systems, Springer Verlag, Berlin.

Bingulac, S. and M. Djorovic (1975), "On the minimality of the Jordan form state
equations," IEEE Trans. on Automatic Control, AC-20, 5, 687-789.

Bingulac, S., B. Gorti and H.F. VanLandingham (1990), "Computational
simplification in the ERA (Eigensystem Realization Algorithm)," Proceedings of
d?e 28"' Allerron Coqfercnce, October 3-5, 1990, University of Illinois, pp. 529-
530.

Bingulac, S. and W. Luse (1989), "Calculation of generalized eigenvectors,"
Journal on Computers and Electrical Engineering, 15, 1, 29-32.

Bingulac, S. and N.K. Sinha (1990), "On the identification of continuous-time
multivariable systems from samples of input-output data," Math. Comput.
Modelling, 14, pp. 203-208.

Brogan, W.L. (1991), Modern Control Z%eory, 3"' Edition, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Chen, C-T. (1984), Linear System. Z%eory andDesign, Holt, Rinehart and Winston,
Inc., New York, NY.

Ho, B.L. and R.E. Kalman (1966), "Effective construction of linear state-variable
models from inpudoutput data," Proceedings of the 3"' Annual Allerton Conference
on Circuit and System Theory, University of Illinois, pp. 449-459.

Kailath, T. (1980), Linear Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Rosenbrock, H.H. (1970), State Space and Multivariable Theory, John Wiley and
Sons, Inc., New York, NY.

Wolovitch, W.A. (1974), Linear Multivariable Systems, Springer Verlag, Berlin.

Section 4.9 Exercises

4.9 Exercises

225

4.1 The first 8 Markov parameters, H,, i = [O , rJ , of a system are given below:

These Markov parameters arranged in the PMF, H@'), are:

' 0 - 1 0 1 1 1 2 4

0 0 0 - 1 0 1 1 1

0 1 1 1 2 4 7 1 2

0 0 0 1 1 1 2 4

Determine:

(a) -all admissible POFs and the corresponding sets of POI; use Algorithm

(b) -which set(s) of POI are not admissible,
(c) -all admissible PCFs and the corresponding sets of PCI; use Algorithm HRc,
(d) -which set(s) of PC1 are not admissible,
(e) -all admissible left coprime MFDs and the corresponding sets of column

(f) -all admissible right coprime MFDs and the corresponding sets of row

HRo,

degrees; use Algorithm HDN,

degrees; use Algorithm HIVD.

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER4 1 .DPF.

4.2 Given below is a right coprime MFD; D(s) is not row-reduced:

The matrices above can be written in PMF as follows:

226 Chapter 4 lntermodel Conversion

N =

Determine:

0 0 0 0

0 0 0 0

0 0 - 1 0

- 1 0 0 0

r-l 1 0 0 -

- 2 1 0 0

1 0 - 1 1
, D =

L 2 0 -1 O A

(a) -all admissible left coprime MFDs, {D,@), &(S)}, with D,@) column-
reduced; use Algorithm M D N ,

(b) -all admissible POFs, R,, and corresponding sets of POI; use Algorithm
NDRo.

(c) Using one of the obtained admissible left coprime MFDs in (a), calculate all
admissible right coprime MFDs, {TVr@), D,($)}, with D,($) row-reduced; use
Algorithm DNNZ).

(d) Using one of the obtained admissible left coprime MFDs in (a), calculate all
admissible PCFs, R,, and corresponding sets of PCI; use Algorithm DMc.

A version of an L-A-S program which solves this exercise is available in the L A 4
subdirectory C:\LAS\DPF\EXER42,DPF.

4.3 Given the transfer function matrix G(s) = W(s)/d(s) where:

W(s) = I s -S(1 +s)2 -S(1 +s)2 1 s(1 + s y

and

d(s) = (1 + s)2 (2 +

W in Ph4F and the coefficients of d(s) are:

0 1 0 0 0

0 -1 -2 -1 0

0 1 2 1 0
W =

10 -1 -2 -1 0 1
d = [4 12 13 6 l]

Calculate:

(a) -the order, n, of a minimal realization;
(b) -all admissible POFs and corresponding sets of POI, (Use FRO.) ;
(c) -all admissible PCFs and corresponding sets of PCI, (Use TFRc.);

Section 4.9 Exercises 227

(d) -all admissible left coprime MFDs, (Use either TEDN or RoDN, with all
POFs from (b) as input.);

(e) -all admissible right coprime MFDs; (Use either FND or RcND, with all
PCFs from (c) as input.);

(Q -the first 9 Markov parameters; Use either RoH or RcH, (As input
arguments, use any of the previously obtained admissible realizations, R, or
RC.).

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER43.DPF.

4.4 The purpose of these exercises is to provide a hands-on experience on almost
all algorithms discussed in Chapter 4, as well as on various details about the L-A-S
implementation of these algorithms. Various parts may be assigned, depending on
the particular topics desired.

(1) Define an arbitrary (random) 5"' order state space representation R, =

(2) Calculate the eigenvalues Xi = u, +j W, of A,.
(3) Divide A, with 3lh-l; i.e. AJ(3Ih-l) A.

{A,,B,C,D} with m=2 inputs and p=3 outputs.

Using R, calculate:

(4) -the transfer function G(z) = W(z)/d(z),
(5) -the first 15 Markov parameters H, in H(?),
(6) -the PCF R, = {A,,B,,C,,D,} corresponding to p = {4,1},
(7) -the POF R, = {A,,B,,C,,D,} corresponding to U = {1,3,1},
(8) -the right coprime MFD {Nr(z),Dr(z)l with { n, } = { p, },
(9) -the left coprime MFD {D,(z),N,(z)} with { n, } = { U, }.

Using the models (one at a time):

{ d(z), W(z) } , H@") and { Nr(z),Dr(z) 1 , determine:
(10) -the POF R,,, corresponding to the given { U, },
(1 1) -the POF RO2 corresponding to the given { vi },
(12) -the POF Rd corresponding to the given { U, }.

Using the models (one at a time):

228 Chapter 4 Intermodel Conversion

(14) -the left coprime MFD {D,(z),N,(z)} corresponding to { n, } = { U, },
(15) -the left coprime MFD {Dn(z),Nn(z)} corresponding to { n, } = { U, }.
(16) Check that all the R,, i=[l,3] obtained are equal to Ro.
(17) Check that all the {D,,(z),N,,(z)}, i=[1,3] obtained are equal to {D,(z),Nxz)}.

Using the models (one at a time):

{ d(z), W(Z) } , H(z") and { D,(z),N/(z) } determine:
(18) -the PCF R,, corresponding to the given { p, },
(19) -the PCF R, corresponding to the given { p, },
(20) -the PCF Rc3 corresponding to the given { p, }.

Using the models (one at a time):

{ d(z), W(z) } , H(z") and { D,(z),N,(z) } , determine:
(21) -the right coprime MFD {Nr,(z),Dr,(z)} corresponding to { n, } = { p, },
(22) -the right coprime MFD {N,(z),D,(z)} corresponding to { n, } = { p, },
(23) -the right coprime MFD {N,,(z),D,,(z)} corresponding to { n, } = { p, }.
(24) Check that all the Rd, i=[1,3] obtained are equal to R,.
(25) Check that all the {N,,(z),D,,(z)}, i=[1,3] obtained are equal to {N,(z),D,(z)}.
(26) Using {D,(z),N,(z)} calculate the first 15 Markov parameters in Hl(z-').
(27) Using {Nr(z),Dr(z)} calculate the first 15 Markov parameters in Hz(z-').
(28) Using {d(z), W(z)} calculate the first 15 Markov parameters in H3(z-').
(29) Check that all the H,(z-'), i=[1,3] obtained are equal to H(Z').
(30) Using H(z") calculate the transfer function {d,(z),Wl(z)}.
(31) Using {D,(z),N,(z)} calculate the transfer function {dz(z), Wz(z)}.
(32) Using {N,(z),D,(z)} calculate the transfer function {d3(z), W3(z)).
(33) Check that all the {d,(z),W,(z)}, i=[1,3] obtained are equal to {d(z),W(z)}.

Hints:

(1) Use either theL-A-S subroutine ABCD.SUB or the operator DPM four times.
(2) Use the operator EGV.
(3) Use the operators RPT , S* and S/ .
(4) Use the operator S S P .
(5) Use the subroutine SSH.SUB.
(6) Use the subroutine SSRc.SUB.
(7) Use the subroutine SSRo.SUB.
(8) Use the subroutine RcND.SUB.
(9) Use the subroutine RoDN.SUB.

(10) Use the subroutine TFRo.SBR.

Section 4.9 Exercises 229

(11) Use the subroutine HRo.SBR.
(12) Use the subroutine NDRo.SBR.
(13) Use the subroutine TFDN.SBR.
(14) Use the subroutine HDN.SBR.
(15) Use the subroutine NDDNSBR.
(16) Use the operators - and OUT in the MOS Roi,Ro(-)(out)= ; with

(17) Use the operators - and OUT in the MOS Dli,Dl(-),Nli,Nl(-)(out)= .
(18) Use the subroutine TFRc.SBR.
(19) Use the subroutine HRc.SBR.
(20) Use the subroutine DNRc.SBR.
(21) Use the subroutine TFND.SBR.
(22) Use the subroutine HND.SBR.
(23) Use the subroutine DNND.SBR.
(24) Use the operators - and OUT in the MOS Rci,Rc(-)(out)= ; with

(25) Use the operators - and OUT in the MOS Nri,Nr(-),Dri,Dr(-)(out)= .
(26) Use the subroutine DNH.SBR.
(27) Use the subroutine NDH.SBR.
(28) Use the subroutine TFH.SBR.
(29) Use the operators - and OUT in the MOS Hi,H(-)(out)= ; with i=[1,3].
(30) Use the subroutine HTF.SBR.
(31) Use the subroutine DNTF.SUB.
(32) Use the subroutine NDTF.SUB.
(33) Use the operators - and OUT in the MOS di,d(-),Wi,W(-)(out)= .

i=[1,3].

i=[1,3].

Additional "general" hints:

(1) From time to time enter the interpreter commands (IC) STATUS and
NAMES to check the number of arrays defined and the total number of
elements used by these arrays. I f necessary, by the IC ELM, or the operator
(ELM)= eliminate some of arrays. This can be done by either:

(IC version) or
(OS version)

(2) By using the IC HELP (H), syntactical descriptions of any operator statement
(OS) or interpreter command (IC), as well as any subroutine of the type SUB
or SBR can be obtained by:

* for any IC or OS * h,sub,xyz for any subroutine of type SUB or SBR

(3) At any time during the L-A-S session by using:

230 Chapter 4 lntermodel Conversion

* x,y,e(out)= or
* x,y,e(out,e)= or
* x,y,Z(out,t,<n>)= ; a>:= 0 1 2

the desired arrays may be displayed on the screen. Similarly, by using:

* X,y,Z(OUt,L)= or
* x,y,&(out,L,e)= or
* x,y,z(out,L,<n>)= ; a > : = 0 1 2

the arrays may be written to the LASR "print" file.

(4) Before ending the session, the use of:

* w,Prg or wpf ,Prg

stores the sequence of L-A-S operators, i.e. the L-A-S program, on the Disk
Program File. This program may later be retrieved from "DPF" and
executed without retyping all statements. This can be done by:

* r,Prg or rpf ,Prg

A version of an L-A-S program which solves this exercise is available in the
L-A-S subdirectory C:\LAS\DPF\EXER44.DPF.

4.5 A 5"' order uncontrollable and unobservable strictly proper system with m=2
inputs and p = 2 outputs is given below in the system matrix form:

namely,

R, =

1 .o
.O

.O

3.0

.O
"-
l .o
1 .o

-.5 -3.0

2.5 -1.0

.S 4.0

.5 3.0

-.S 1.0
-" "-
1.0 1.0

1.0 1.0

.O

.O

.O
4.0

.O
-"

.O

1 .o

-1.5 1 1.0
-1.5 I .O
1.5 I .O
1.5 I .O
3.5 I .o
"- -1- "-

1.0 I .o
2.0 I .o

-1.0

.O

1.0

1.0

.O
"-

.O

.O

Section 4.9 Exercises 231

Determine minimal state space representations using:

(a) -a Hessenberg transformation,
(b) -a Kalman decomposition. Calculate also the dimensions of the subspaces

(c) -the Jordan form decomposition.
CO', CO' and CO, and

Hints:

0

0

0

0

0

0

See Appendix B for a discussion on these methods of obtaining a
minimal realization.
Define the representation R, using the operator DMA, or W M .
For the Hessenberg transformation use either the operator MIN, subrou-
tine MIN.SUB (twice), or subroutine MIN.SBR. For extra effort use
each option. To check if all procedures give the same minimal
representation, use the operator SSTF.
For the Kalman decomposition use the subroutine KALD.SBR.
For the Jordan Form minimal representation use the operators JFR and
STR and eliminate the uncontrollable and/or unobservable modes. This
can be done, for instance, using the operator DSM.
Minimal representations R,,, = {A,,,,B,,,,C,,D,} can be built using the
subroutine SYSM.SUB.

A version of an L-A-S program which solves this exercise is available in the L-A-S
subdirectory C:\LAS\DPF\EXER45.DPF.

This Page Intentionally Left Blank

Chapter 5 System Identification

In the previous chapter several methods of conversion between system
representations were presented. The purpose of this chapter is to present the
important conversions between input/output data to various system models. This
special catagory of conversions is called idenrflcation. In the first section the
structural relationship, called the idenrflcation identity, which was discussed in
Chapter 4, is reviewed.

5. l The Identification Identity
Several of the intermodel conversions discussed in Chapter 4 were based on

the relationship between the state space model in a POF and a corresponding left
coprime MFD. Since this fundamental relation is also useful in system identifica-
tion, it will be, in large part, repeated here.

As was done in Section 4.1.7, consider the order-n D-T system with m-inputs
and p-outputs:

where R, = {A,, B,, C,, D,} is in a POF corresponding to a set of admissible POI,
v = {v,}. From Eq45.1) we may write

Now we let r = v,,, = max{v,}. Clearly, Eq.(5.2) holds for any integer t = [0, N-
r] and can be rewritten as

yt = Q,,x(O + Hut (5.3)

where y, and U, are (v,,+ 1)p and (v,,,+ 1)m dimensional columns containing output
and input vectors y(r+]] and u(r+]],j = [0, v,,]. The matrix Q, is the observabi-
lity matrix of the pair {Ao, CO), while H is the (r+ 1)p X (r+ 1)m lower block

. ,

233

234 Chapter 5 System Identification

triangular matrix containing along the main diagonal the (pxm) blocks D,. The
other nonzero blocks of H are the p x m dimensional Markov parameters:

c,AI,B, f o r i = LO, V,, , -I] (5.4)

Note that H in Eq.(5.3) equals Rk in Eq.(4.61), used in Algorithm HDN. Our goal
is to eliminate from Eq.(5.2) the x(t) terms, thereby obtaining an expression which
relates the sampled data to the elements in R,.

Equation (5.2) can be considered to represent (v,,,+l)p scalar equations in the
samples

Yi/ = Y i (t + j) (5.5)

i.e. the component of the output vector y(f+]], i = [l , p] , j = [O , v,,,]. In Section
3.3 it was shown that Q, has n rows of an identity matrix and p rows that
correspond to the rows of A, with non-zerolnon-unity elements. Furthermbre, the
location of these rows are determined by the selector vectors v,, and v,,,, respective-

Premultiplying Eq.(5.3) by the selector matrices SUT and SUT defined by
lY *

Eq.(3.79), we obtain, respectively,

Y1t = ~ (0 + H1 U t 2 and ~ 2 r = A,x(O + H,nt (5.6)

where

~ l t = SIiyt 92t = s,,Y, with H, = S:H > H, = S ~ H
T T

Eliminating x([) from Eq.(5.6),

The matrix A, in E q ~ (5 . 6) and (5.7) is a (pXn) matrix containing the rows of A,
with non-zero non-unity elements, whose locations in A, are specified by the
selector vector v,. Equation (5.7) may be expressed in a more concise form by

y2t = [Nr Ar] z t (5.8)
where N, = H, - AJI, is ap x (v,,,+l)m matrix and z, is an h-dimensional vector
containing U, and ytr, where h = (vm+l)m + n. Equation (5.8) is referred to as
the identijicurion identity since it relates input/output data samples arranged into
columns y2, and z, to parameters of the state space representation R,, i.e. in the
matrices A,, B, and D,. The idenriJcation identity is the basis for conversions
between input/output data and either state space or MFD models.

Equation (5.8) may now be rewritten as

~ 2 t -Arylt = Nrnr (5.9)
Note that Eq.(5.9) is a time-domain inpudoutput expression. Applying the z-

Section 5.2 Conversions from Input/Output Samples 235

transform and taking into account the arrangements of the samples dl+]> and
yk(t+]>, i=[l,m], k=[l ,p] , j=[O,u, ,J in the vectors U,, yrr and yu, we obtain:

(5.10)

which is a left coprime MFD. Since in Eq(5.9) thep dimensional vector yu is
multiplied by the identity matrix Ip, it may be concluded that D(z) in Eq.(5.10) is
monic. For further details see Section 3.4 and Eq(3.104). Thus, in order to
obtain the lp x (v,,,+l)p] matrix D,, which leads directly to D(z), it is first
necessary to obtain the matrix A, From the discussion in Section 3.3.4 it is clear
that A, may be obtained from A, in a POF by:

m) Y(Z) = N Z) 4 2)

SZA, - A, (5.11)

where S,, is one of the selector matrices uniquely defined by the particular set of
admissible POI Y and generated by Algorithm SMut:

S& - A,S$ = D,

For more details see Section 3.3.4.

(5.12)

5.2 Conversions from Input/Output Samples

Many times only inputloutput data is available, without a given system model.
The process of creating a system model from the data is called system identifica-
tion. The algorithms of this section can "identify" a system in either state space
form or as an ARMA (MFD) model. In addition, the Markov parameters may be
calculated from the inputloutput data. To obtain a matrix transfer function, it is
recommended that one of the above mentioned forms be calculated first, i.e. state
space or ARMA, although there is a procedure for the identification of the
corresponding transfer matrix directly.

5.2.1 Input/Output Data to Observable State Form

This algorithm performs a deterministic D-T system identification by
calculating an observable form state space model R, = {A,, B,, C,, D,} from a set
of input and corresponding output data. Certain restrictions are placed on the input
signals to ensure that the system excitation is "sufficiently rich." This will be
explained subsequently. The algorithm is based on the identification identity,

236 Chapter 5 System Identification

Eq(5.8). The reader is urged to review Section 5.1 since we will assume
familiarity here with the identification identity.

Thus, Eq.(5.8), i.e.

U1

y2, = [N, I A,] z t , where zI = (5.13) ---

- 911

establishes the linear dependance between the p dimensional vector yy, containing
samples y,(t+v;), i=[l,pl, of the output vector y(t) and:

(v,,,+l)m dimensional vector U, containing samples of the input vectors

0 n dimensional vector y,, containing the samples y, (t+~) , j=[O,v,-l] of
u(t+13, j=[O,vml and

the output vector y(t).

where Y is a set of admissible POI used in representing the system to be identified,
while k = v,,, = max { v, }. With h = (v,,,+ 1)m + n recall that (p x h) and (p x
n) matrices N, and A, defining linear dependence in Eq(5.8) contain:

0 matrices NI in the polynomial matrix N(z) of the left coprime MFD

p rows with non-zero non-unity elements in the matrix Ao, Fq.(5.11),
relating y(z) to U(& Eq.(5. lo), and

of the state space representation R. in a POF.

In order to determine N, and A,, as well as to select an appropriate set Y of POI,
the following is suggested. Concatenate the vectors ya and z, corresponding to
samples t =0,1,2, . . . , 9-1 into (D X q) and (h X q) matrices Yz and Z, respective-
ly, (where it is assumed that h < q and q+v,,, < N), yielding:

U }(v,+l)m
Yz = [N, I A,] Z , where Z = (5.14) ---

JI - In

Note that the structure of the matrix U is given by:

1 u(k) u(k+ 1) u(q+k-l) 1
(5.15)

where k = v,,,, while the matrices Y, and Y2 appearing in Eiq(5.14) may be
obtained by premultiplying the following [(k+ 1)p x 4 matrix Yk.

Section 5.2 Conversions from Input/Output Samples 237

by selector matrices S,: and SUT, respectively, i.e.

Y, = SiY, and Yz = S:Y,

(5.16)

(5.17)

Of course, the selector matrices used in Eq(5.17) are generated by the set v.
To emphasize similarities between this algorithm and the algorithms TFDN

(TFRo) and NDDN (NDRo) discussed in Sections 4.2.5, 4.2.7, 4.4.7, and to
facilitate understanding of the algorithm steps let:

(5.18)

where Z, is a [(k+ l)(m+p) X q] matrix obtained by concatenating U, and Y , of
the form in Eqs.(5. 16) and (5.17), but now with the integer k = 1 , 2 , . .., pm.

It is worth mentioning that Eq.(5.14) is similar to Eq.(4.34) used in
Algorithm TFDN as well as TFRo, (and likewise Eq.(4.91) in NDDN and NDRo),
which is to be expected since all these algorithms determine a left coprime MFD,
i.e. a model which corresponds to a state space model in POF. Therefore, these
algorithms are also rather similar. The following facts will also be seen from the
algorithm, but they do not make much of a difference:

0 -in the TFDN algorithm the transfer function matrix is given,
-in the NDDN algorithm the right MFD is given,
-while here only inputfoutput samples are available.

Only one difference in the case of Eq.(5.14) is worth mentioning. Recall
that, for instance, in Eq.(4.34) the first m(k+l) rows in T, are, by definition,
linearly independent, and that in the last p(k+ 1) rows of T, there are n additional
linearly independent rows. Since here, i.e. in Eq.(5.18), the same situation must
occur, all m(k+l) rows in the matrix U, must be linearly independent, i.e. U,,
containing only samples of the input vector u(t), must be a full row rank matrix,
leading to:

rank[Uk] = rn(k+l) , for all k = [l,~,,,] (5.19)

An input signal u(t) satisfying the condition of Eq.(5.19) will be referred to as a
"sufficiently rich" input, i.e. a persistem excitation capable of exciting all system
modes. Note that for a given u(t) the condition of Eq.(5.19) might be satisfied for
some value of k, but it might fail for a higher value of k.

238 Chapter 5 System Identification

As an example, consider a periodic input signal u(f), with m=1, given by:

u (t) = [l O ... 0 1 0 ... 0 1 0 ... 0 1 ...l

having in a period one unity and h zeros. Building the matrix U,, Eq.(5.15), for
various values of k, it may be concluded that U, would be of full row rank only for
k S h. Thus, this input signal may be used for identifying a D-T system of uny
order n, provided that the system may be represented by a POF having an
admissible set of POI satisfying:

max { v l } = v,,, 5 h

Therefore, before using this algorithm it is advisable to check the available input
and to determine the maximum value of k leading to a full row rank U,.

Input/Output Arguments:

Algorithm:

1.

2.
3.
4.

5.
6.

7.
8.

U is an (m X N) matrix containing samples of m dimensional input
vector.
y is an (p X N) matrix containing samples of the system response.
e is a sufficiently small positive number used in rank calculations.
vd = { vi }, the set of "desired" POI. If v, is not known, any
scalar, e.g. e, may be used as the fourth argument.
R,, = {A,, B,, C,, D,}, a state space representation in a POF.
v = { v, }, a set of admissible POI corresponding to R,.
x(0) is the initial condition of the state vector x(c) corresponding to

C# is the degree of admissibility of the set v.
R,.

If vd is specified, set vd =) v, set v,, =) k, build Z, Eq.(5.18) and go
to 8; else, go to 2
Set 0 =) k and 0 =) n,
Set k+l =) k
Using the current k, build Z,, Eq.(5.18), and set rank(Zb - mk *
n
If n = n, go to 6; else, set n =) n, and go to 3
From Z, determine the unique observability indices v,,, i.e. Z,

Define an appropriate admissible set of POI v
Set v (SMat) =) v,,,, S,, Si, S,, S,

=) v,,

Section 5.2

9.

10.
11.
12.
13.

14.

15.
16.
17.
18.
19.
20.
21.
22.
23.

Conversions from InputlOutput Samples 239

Using S,, S,,, and k, define the auxiliary matrices S,, and S,,
Eqx(4.37) to (4.38)

Set SiZ, * Z and SLZ, * Yz
Calculate the degree of admissibility of Z, i.e. Z (C#) * C#
If C# is "too small," go to 7; else, go to 13
Solve XZ = Y, for X, where X = [N, I A,]

Parition 1, * [1 p . C, has p rows

Set S,A2 + SA, * A,
Set N,, m (R2c) * N,
Set A,, S, (QC) * Q,, Q, has (k+ 1) blocks (A,'S,) of p columns

Set D;l(~,)N,(~,) - C,(sJ-A,)"B, =) D, for any S, # a system pole
Using R, calculate the matrix H in Eq.(5.3), set S,% =) H,
Extract the first column from Z 3 z,
Partition z, * [U,' I yl/IT, y,, has n elements
Set y,, - H,u, * x(0)

Set Q& * B,

Since this algorithm is, formally, rather similar to the previously mentioned
algorithms, TFDN and NDDN, it suffices to mention that Step 10 implements
Eq.(5.17) and that the matrix Z, used there corresponds to the matrix Z, given by

x(0). The calculation-is based on Eq.(5.6), i.e.:

where y,, and U, are the first columns of Y, and U,, Eqs.(5.17) and (5.15),
respectively, while H containing the first v,+ 1 Markov parameters of R, is defined
by Eq.(5.2).

The role of the fourth input argument, i.e. v,,, is very crucial in Algorithm
y R o . It should be realized that for the case when the input/output sequences u(t)
and y(t) are corrupted by measurement noise (or computational round-off errors for
that matter) then the determination of linearly dependent rows in Z,, done in Steps
4 and 6, leading to the unique set of Y might be rather unreliable. Computational
experience has revealed that in the case of significant noise, the algorithm tends to
"suggest" a system order higher than the true order. This is why Algorithm y R o
has an option of using v,. If v,, is specified, then, as may be seen from the
algorithm, the process of checking for linear dependent rows in Z, is bypassed, and
the algorithm operates in the "mode" of model reduction, where, of course, the

240 Chapter 5 System Identification

order of the reduced-order model is equal to the sum of the elements in v,,. In this
case it is advisable to use several sets of indices v,, having the same (or even a
different order n) and to select the one which gives the largest degree of admissibil-
ity C # . (Note that all algorithms calculate C# = the reciprocal of the "standard"
condition number to avoid infinite numbers when a set v, is not admissible, or when
Z is not a full row rank matrix.)

In fact, all other previously discussed algorithms having as the last input
argument the set of "desired" indices such as:

{-the set of POI p,,, or the set of PC1 pi, or the set of column or row degrees n,}

have an option of operating in the "model reduction mode" which should somehow
deviate problems resulting from accumulated round-off error leading to erroneous
rank determination and detection of linearly independent rows or columns.

The quantity E used in these algorithms has a similar role. Computational
experience reveals that a good value for E is on the order of magnitude of lo5 in
the case of double precision calculations and "moderately well conditioned"
problems and procedures leading to relatively small computational errors.

5.2.2 Input/Output Data to Left Coprime MFD

This algorithm calculates a left coprime column-reduced ARMA (MFD)
model, D(z)'N(z), from a corresponding set of inputloutput data. It is expected
that the reader has so far realized significant (even striking) similarities between
algorithms calculating a POF R, and a left coprime MFD { D(.), N(z) } as well as
between algorithms calculating a PCF R, and a right coprime MFD { N(z), D(.) }.
Checking previously given algorithms, it may be concluded that these algorithms
differ only in several last steps where the specific matrices in R, or in {D(z), N(z)}
are calculated. Thus, in this section we will, for completness, present an algorithm
and emphasize that everything that was stated in Section 5.2.1 holds here as well.

I syntax: I Input/Output Arguments:

0 U is an (m X N) matrix containing samples of the m dimensional

y is an (p X N) matrix containing samples of the system response.
e is a sufficiently small positive number used in rank calculations.

0 n, = { ni } is the set of "desired" column degrees. If n, is not

0 D is a I p 2 x (k+ l)] matrix in PMF. The rows of D contain the

input vector.

known, any scalar, e.g. e, may be used as the fourth argument.

Section 5.2 Conversions from InputlOutput Samples 241

coefficients dt,, of the polynomials d,(z) in D(z).

coefficients nu,, of the polynomials n&z) in N Z) .
0 N is a Ipm x (k+ l)] matrix in PMF. The rows of N contain the

0 C# is the degree of admissibility of the set n,,.

Algorithm:

5.2.3

1.

2.
3.
4.
5.
6.

7.
8.
9.

10.
11.
12.
13.
14.
15.

If n,, is specified, set n, = {n,), set n, * k, build zk, Eq.(5.18),
and go to 8; else, go to 2
Set 0 * k and 0 * no
Set k + l * k
Using the current k , build Zk, Eq.(5.18), and set rank(Z3 -mk =B n
If n = no go to 6; else, set n * no and go to 3
From Zk determine the unique observability indices n,, i.e. zk

Define an appropriate admissible set of column degrees n
Set n (SMat) =) n,, S,, S,, S,, S,
Using S,, S, and k, define the auxiliary matrices S,, and S,,

=) n,

Eqs.(4.37) - (4.38)
Set * z and sLzk =) Y,
Calculate the degree of admissibility of Z, i.e. Z (C#) C#
If C# is "too small," go to 7; else, go to 13
Solve XZ = Y, for X, where X = [N,. I A,]
Set SUT - AS,: * D,
Set D,,p(PMFr) * D and N,,m(PMFr) =) N

InpWOutput Data to Markov Parameters

This algorithm calculates the Markov parameters of a system from its
inputloutput data. It is based on Eq(4.76) in Algorithm uHy, i.e.:

but now, since the Markov parameters are unknown, this equation will be
represented by:

242 Chapter 5 System Identification

(5.20)

L
[Yo Yl *.* YN-l]

or, for short by:
H,U = y

where H, is a (p X Mm) matrix containing the Markov parameters H,, i=[O,M-l],
to be determined, U is an (Mm X IV) matrix containing the samples U,, i=[O,N-l],
of the input vector U arranged according to Eq.(5.20), while y is a (p X N-l)
matrix containing N samples of the output vector y.

In order to obtain the unique solution for the Markov parameters 6 satisfying
Eq~(4.76) and (5.20), the matrix U must be a full row rank matrix, i.e.:

rank(U) = Mm (5.21)

leading to the following constraint:
Mm S N (5.22)

Note that Eq.(5.20), as do some other equations, e.g. Eqs.(4.6), (4.32), (4.80) and
(4.81), assumes that:

h, = m,-, II < < 1 (5.23)

"tius, this algorithm is applicable only to stable D-T systems, under the condition
that the input/output sequences are sufficiently long to satisfy Eq~(5.21) - (5.23).
Note that Eq(5.21) requires that the rows of the input signal u(t) be linearly
independent, which is another condition specifying a "sufficiently rich" input. For
more details see Section 5.2.1.

Syntax: U, Y, M (l'YH) =) H,

Inpuffoutput Arguments:

0 U is an (m x IV) matrix containing samples of m dimensional input

0 y is an (p x IV) matrix containing samples of the system response.
0 M is an integer specifying the number of Markov parameters to be

0 H is a p m X M] matrix in the PMF. The rows of H contain the

0 h, is the norm of the last Markov parameter calculated, Eq(5.23).

vector.

calculated.

first M coefficients hgh of the polynomials h,(z") in H(z").

Section 5.2 Conversions from Input/Output Samples

5.2.4 Input/Output Data to Transfer Function

243

This algorithm calculates transfer function matrix G(z) of a D-T system from
its input/output data. It is based on:

Y (Z) = G(z) m (5.24)
where C(z) can be expressed as:

with individual transfer functions g&), relating the contribution of the$ input uj(z)
to the z* output yi(z),j=[l,m], i = [l , p] , by:

(5.26)

In other words, in this algorithm a given MIMO system is decomposed into a set
ofp MISO (multi-input, single-output) subsystems, and each subsystem is identified
one at a time. This is why the denominators d,(z) in Eq.(5.26) are different for
different values of i , i = [1 , p] . Of course, the common denominator d(z) for all d,(z)
used and calculated in previous algorithms satisfies:

It is worth mentioning that the orders n, of polynomials d,(z) are equal to the
"individual observability indices'' which are dual to the "individual controllability
indices" { ai } introduced by Definition 3.1 in Section 3.3.3. The roots of the
monic polynomialsJ(z), appearing in Eq.(5.27), correspond to modes (poles) of the
given MIMO system "not seen" by the I* MISO subsystem individually.

From the relationship between polynomials d(z) and di(z) in Eq.(5.27), it may
be concluded that the numerator polynomial matrix W(z) in Eq(5.27) is related to

the (p X m) matrix *(z) containing Gij(z) from Eq.(5.26), i.e.:

(5.28)

U is an (m x N) matrix containing samples of the m dimensional
input vector.

244 Chapter 5 System Identification

0 y is an @J X N) matrix containing samples of the system response.
e is a sufficiently small positive number used in rank calculations.

0 n, = { n, } is the set of "desired" individual observability indices
of p MISO subsystems. If n, is not known, any scalar, e.g. e, may
be used as the fourth argument.
D is a [p X (n,+l)] matrix in PMF. The rows of D contain the
coefficients d,,, of the polynomials d,(z), n, = max(ni}.

0 W is a pm x (n,,+ 111 matrix in PMF. The rows of W contain

the coefficients G,],, of the polynomials G,,(z) in W(z) , Eq.(5.26).
0 no is a set of individual observability indices {n,} containing the

orders of the polynomials di(z). If n, is used, then no = n,.
0 C# is the p-dimensional row vector containing the admissibility

degrees of the matrices used in identifying the individual MIS0
subsystems.

Remarks:

In order to obtain the transfer function matrix G(z), i.e. W(z) and d(z),
Eq(5.27, of the overall MIMO system, G(z) = W(z)/d(z), a service algorithm
"Common Denominator" (ComD) may be used. Its syntax is:

D, e (ComD) * d, F

The algorithm ComD uses the column D(z) = { d,(z) } and calculates a
common denominator d(z) and the diagonal polynomial matrix Qz), Eq.(5.28).
Then, the matrix W(z) of the overall MIMO system may be obtained using

Fq.(5.28), i.e. by premultiplying %'(z) with F(z).
In spite of the availability of this algorithm, as was mentioned in the

beginning of this subsection, due to the relatively involved procedure used, its
use is recommended only, if for some reasons, it is required to have the
individual transfer functions g&z) and denominators d,(z), Eq.(5.26), defining
the single output subsystems.

More details about the procedure used in the uyTF algorithm will be
given later.

Basic steps of the algorithm are:

1. Set O,,o =) C#, Ol,o * no, max{n,,J + 1 = k, Oo,k * D, O O , ~ * W
2. Set 0 * 1
3. Set i+ l =$ i
4. If nd is specified, set nd(i) * ndi, and go to 6; else, go to 5
5. Set e * nd,

Section 5.2 Conversions from InputlOutput Samples

I 6. Extract the I"' row from y * yi
7. Set U, y,, E, n, (uyDN) =) d,, n , C Y i

8. Set [C# I C#, 3 =) C# and [no I n, 1 =) no

245

9. Set [* D and [=) W

It is seen from the algorithm steps that Algorithm uyTF executes the
previously explained Algorithm uyDN, Step 7, p times. Since y, contains just one
row, the obtained d, is a single row containing an (nr + 1) dimensional row with

the coefficients of di(z), and W, contains the coefficients Cjil,,j=[l,m], h=[O,nJ,

of all the polyuomials Cjij(z) in the z"' row of *(z). This is the reason why in Step

9 the concatenation of D with d, and W with W i is done. In order to have the

matrix W-in the PMF "structure," it is necessary in Step 11 to perform a
polynomial matrix transposition, which is done by a service algorithm called PMT.

At this point it of some interest to compare the computational aspects of
Algorithms uyDN and uyTF. Recall that in treating MIMO systems, i.e. in treating
all p outputs simultaneously, Algorithm uyDN, the number of rows in the matrix
Z, Eq.(5.14), which greatly influences the computational aspect, is given by:

n + (vm + 1)m

where it may be shown that: [(n-l)/p] + 1 I v,,, 5 n-p+l with [x] being the
integer part of x.

In the case of treating MISO subsystems one at a time, Algorithm uyTF, the
numbers of rows in the matrices 2 are given by:

n, + (n, + 1)m for i=[l,p]

where, of course, the individual observability index ni satisfies: n, I n. However,
when at least one MISO subsystem "sees" all n MIMO system modes, then we have
n, = n.

From the above analysis it may be concluded that in Algorithm uym
0 The algorithm requires the building and manipulation of the matrix Z,

Eq.(5.14), p times.

246 Chapter 5 System Identification

0 In addition, it frequently occurs that the dimensions of the matrix Z are
considerably larger than the dimensions of the single 2 required in
Algorithm uyDN.

Recall that when the number of rows in Z is smaller, a smaller number of samples
is needed, which considerably reduces the computational effort of Algorithm uyDN
and, consequently, also of uyRo, since they are similar.

For example, in the case of an MIMO system with n=6 and m=p=3,
Algorithm uy7F may require building and manipulating the matrix Z three times
with:

6 + 7 x 3 = 27 rows

and at least 27 columns, while in the case of identifying the same MIMO system
using either uyDN or uyRo, it suffices to build only one Z having the number of
rows as low as

6 + 3 x 3 = 1 5

and at least 15 columns, which illustrates the computational advantage of
Algorithms uyDN and uyRo over uyTF.

The reason for insisting on Algorithm uyTF is that quite a number of papers
and books on system identification advocate treating individual outputs separately,
i.e. decomposing a particular MIMO system into a set of p MIS0 subsystems,
which clearly is not a good policy, particularly with the advent of algorithms such
as uyRo, and uyDN, which utilize to the fullest extent the structural properties of
MIMO systems. Another reason is to draw attention to Algorithms uyDN and uyRo
and to show how a judicious choice of a MIMO system "canonical" form can
reduce the computational effort of identification algorithms.

5.3 Conversions between D-T and C-T

We have already mentioned that many of the conversions presented for D-T
systems are useable for C-T systems as well. I t is also important to recall the
algorithms presented in Chapter 2 for converting between C-T and D-T domains.
For completeness these algorithms, which offer the user some flexibility in
converting between continuous and discrete domains, are listed below. The
possible conversions are listed in Table 5.1.

Section 5.3 Conversions between D-T and C-T 247

II Table 5.1
Conversions between D-T and C-T Domains II

Algorithm
Available Conversions

(Isrb)
Flag

1.

-3 D-T state space model =) C-T (bilinear transformation) 6.

-2 D-T state space model C-T (ramp invariant model) 5.

-1 D-T state space model =) C-T (step invariant model) 4.

3 C-T state space model * D-T (bilinear transformation) 3.

2 C-T state space model =) D-T (ramp invariant model) 2.

1 C-T state space model - D-T (step invariant model)

To perform all these conversions, a single algorithm referred to as CTDT has been
developed. The general syntax is:

I Algorithm CTDl?

Input/Output Arguments:

0 R = (A, B, C, D} is a state space representation in either the C-T
or D-T domain to be converted by one of the procedures discussed
in Chapter 2; see Table 5.1 above.
Tis the sampling interval.
E is a sufficiently small positive number used as machine zero.
Isrb is the algorithm flag, Isrb = [1, 2, 3, -1, -2, -3 3, specifying
a desired conversion.

0 R, = {A,, B,, C,, D,} is the representation obtained after the
conversion of R according to the specified value of the algorithm
flag Isrb.

248 Chapter 5 System Identification

To specify a desired conversion, the value of the algorithm flag Isrb (for
step, ramp, or bilinear transformation) should be selected in accordance with
a value given in Table 5.1.

For instance, if a conversion from C-T into D-T domain using the ramp
invariant model is desired, then the value of Isrb should be equal to 2. In the
case of converting a given D-T model into the C-T domain using the bilinear
transformation, the value of Isrb should be set to -3.

According to the expressions and examples given in Chapter 2, it may
be concluded that the following sequence of algorithms:

for any value of k = [1, 2, 31, produces a representation R, which is very
close, if not equal, to the given representation R.

For more specific details about the structure of Algorithm CTZIT, see
Chapter 2 and particularly Section 2.5.

Finally, Section 5.4 illustrates the conversion process between C-T and
D-T representations as well as within the same domain. A primary emphasis
in this example is system identification, i.e. "conversion" from inputloutput
data to state space, or other forms. Figure 5.1 is presented with the section
to provide a graphical picture of the conversions of that example.

5.4 Identification Examples

In this example we will begin with the C-T state space that was used in
the two examples of Section 4.6. The purpose here is to illustrate the process
of conversion between the continuous-time and the discrete-time domain, as
well as conversion among the different model forms within a given domain.
Figure 5.1 shows the particular operations, which are also listed below.

The differently derived responses: y, yt, yd, ydl, ydh and yc are
basically identical. The models developed are the continuous-time transfer
function matrices: TF and TFc, and the discrete-time state space representa-
tions in POF: Rdo , Rol and Roh, the discrete-time system Markov parameters
in Hd and H and the discrete-time left coprime MFD's: {D,N} and {Dl,Nl}.

The given C-T state space model and corresponding transfer function
were already presented in Example 1 and will not be repeated here. Conver-
sion from a C-T state space model to a D-T state space model, using a
sampling interval of 1 second, is first developed. Then, using a set of
admissible POI, the D-T models corresponding to the C-T models of Example
4.1 are obtained, including those models obtained by applying the identification
procedures of this chapter.

Section 5.4 Identification Examples

c- continous-time -! c- discrete-time -
i
I

FIGURE 5.1 Conversions for the Example

Sequence of algorithm executions:

R (SSTF) TF
R (CDSR) =) y
"F (CDTR) =) yt
R (m7) =) Rd
Rd (CDSR) =) yd
Rd (SSRo) =) Rdo
Rd (SSH) =$ Hd
Rdo (RoDN) =) D,N

Results:

D-T conversion to R,, = {Ad, B,,, C,,, Dd}:

Rd =

249

u,y (uyRo) =) Rol
U,Y (UYDN) =$ D1,Nl
U , Y N (VW =$ H
u,H (uHy) =) ydl
H (HRo) =) Roh
Roh (CDSR) =) ydh
Rol (Ci'ZIT) *RC
RC (CDSR) =) yc
RC (SSTF) =) WC

.368 .204 .090 .028 I 0.4 .077 .026

0.0 .073 .l14 .062 I 0.0 .l10 ,052

0.0 -.l14 .073 .l14 I 0.0 .l35 .l10

0.0 0.0 0.0 .l35 I 0.0 0.0 .l87
"_ "_ "_ "- _ I_ "- "- "-
0.0 .W1 0.0 1.0 I 0.0 1.0 .284

1.0 0.0 0.0 0.0 I .368 .016 .W3

As in Example 1 of Section 4.6 the following tables give the structural
information regarding the D-T model. The "best" controllable and observable

250 Chapter 5 System Identification

structures are specified by PC1 = {1,2,1) and POI = {1,3}, respectively,
which are again different from the corresponding unique controllability and
observability indices, {2,1, l} and {2,2).

TABLE 5.1 PC1

(nc, n, nc3) degree rank

(1 2 l}

(1 1 2)

.46E-01 4

.llE-03 4 (2 1 1)

.25E-01 4

l

WJZ)

dd(Z)
Transfer Function Matrix GAz) = -

where

W1 1

W2 1

W12

W22

w13

w23

Z0 Z1 Z2 z3 z4

0 0

-.W1 .W
_"" "" -

.W1 -.016

0.0 -.m3
""_ ""-
-.W1 .W9

0.0 .m

0 0

-.060 .l61
- - - - - - - - - -

.l42 -.M9

.015 .067
""_ ""-

-.056 .W3

.019 . 0 2 4

The characteristic polynomial d,(z) is given by:

0

.368
_""
1.0

.016
""-

.284

.m3

~ = W&Z)

Section 5.4 Identification Examples 251

Left Coprime MFD

This form is given by Di'(z)N,(Z) where D,(z) is monic and column-
reduced, i.e.:

specifically, the D-T left coprime MFD form is presented, with column
degrees { 1,3) corresponding to the selected POI above. Compare with the C-T
left coprime MFD in Example 1, Section 4.6.

zo z' Z2 z3

-.l35 1.0 0.0 0.0

41 = D,(z) -.W 0.0 0.0 0.0
""_ ""_ "-" -----

4 2 0.0 .m2 -.m5 0.0

4, -.W7 .072 -.512 1.0 -

Z0 Z 1 z2 z3

n11

n2 1

and
n12

n22

n1 3

n23

l 0.0 -.m1 -.m2 0.0

.005 -.032 .211
.368 1 ""_ ""_ ""_ ""-

-.l35 1.0 0.0 0.0

-303 .025 .069 .016
"_" ""_ ""_ _""

.l48 .284 0.0 0.0

.m .022 .ow .W3

252 Chapter 5 System Identification

Markov Parameters H,

The first few terms of the 3-column polynomial matrix H@') = (h&-')}
are given below. Because the terms decrease so fast, it is not necessary to
extend the series.

z o z-l z-2 z - 3 z4 2-s z 4

0.0

.3680
""

1.oooO

.0160
""

.2838

. m 7

0.0 0.0

.3998 .l471
"" ""

.o001 .m

.077 1 .063 1
"" ""

.l870 .m53

.m55 .0352

0.0

.OS41
""

0.0

.0278
""

.m34

.m15

0.0

.0199
""

0.0

.01m
""

.o005

. W 4

0.0

. W 3
""

0.0

.m37
""

. o o o o

.W36

0.0

. m 7
""

0.0

.W14
""

.m

.001? 1

By the 12" element in the above series all terms are zero to 4 decimal places.

System Identification

One of the most useful "conversions" is that from input/output data to a
system model, system identification. An important aspect is determining and
using the most appropriate structural information, e.g. the most numerically
stable POF. This part of the example presents the results of such an
identification process, using the sampled data from the given C-T system model
to obtain an observable form D-T model, which is subseqently continualized
using the methods established in Chapter 2. The following C-T model is the
result of this series of conversions:

Section 5.4 Identification Examples 253

R =

'-2.001 0.0 -.012 .030 I 0.0 0.0 1.0

.281 -2.934 11.130 -15.963 I 1.0 ,001 -.W1

-.W -.l07 -1.789 2.934 I .368 . O N .028
.W8 .020 -.318 -282 I .l35 .M3 .037
-"- "" "" -"- -1- "" "" ""
1.0 0.0 0.0 0.0 I 0.0 1.0 0.0

0.0 1.0 0.0 0.0 I 0.0 0.0 0.0

The inputloutput data from the C-T system that was used in the
identification of the D-T models, Rol, (D1,Nl) and H (see Fig.5.1), are
presented in Figs. 5.2 and 5.3.

- In& 1
3 - """ Input 2

I I

-

l 1

0 10 20 30

Figure 5.2 Pseudo-Random System Excitation

254 Chapter 5 System Identification

4 1 I I I

I - output 1
. output 2

0 10 20 30

Figure 5.3 C-T System Responses

It is interesting to compare the eigenvalues (poles) of the C-T state space
model that was given initially with the identified C-T model, i.e. with the
model obtained by conrinualizing the identified D-T model:

Poles of the original C-T system:
-2 i- jl, -2, -1

Poles of the identified C-T system:
-2.003 kjl.001, -2.0, -1.0

As derived from the identified D-T system with poles:
0.073 j0.114, 0.135, 0.368

which confirms that a series of conversions that "loops" back on itself is
numerically stable. By the procedure described in Appendix B, degrees of
observability of the modes in the C-T model can be checked. It has been
shown that the mode -2 f jl has a considerably smaller "degree of observabi-
lity" than do the other two modes.

Section 5.5 Summary 255

5.5 Summary

In this chapter the process of conversion from system inpudoutput data
to various representations was stressed. This process is referred to as system
identification. If we consider the inputloutput data to be a system "representa-
tion," then the algorithms in this chapter fit with the many algorithms of
Chapter 4 in the sense of Table 4.1. On the other hand, system identification
plays an eminent role in that it is this process that is generally required first,
to obtain a more standard model with which to work. Because of this
importance, this chapter was presented to emphasize this conversion type.

5.6 References

There are many good references written for system identification. To
mention and recommend for further reading just a few of these: Sinha and
Kuszta (1983) and Ljung (1987) for a general survey of identification methods.
For more specific background and information, particularly on identification
of MIMO systems using pseudo-observable forms, several other articles and
chapters are listed below.

Bingulac, S. and D.L. Cooper (1991), "Identification of first-order hold
continuous-time systems," Proceedings of the IFAC Symposium on
Identification, Budapest, Hungary, August 20-25, 1991, pp. 1185-1190.

Bingulac, S. and D.L. Cooper (1991), "Use of pseudo-observability indices in
identification of continuous-time multivariable models, I' Identification of
Continuous-Time Systems (N.K. Sinha and G.P. Rao, editors), Kluwer
Academic Publishers, Amsterdam.

Bingulac, S. and R. Krtolica (1988), "An algorithm for simultaneous order and
parameter identification in multivariable systems," Proceedings ofthe 8" ' ZFAC
Symposium on Identification and System Parameter Estimation, Beijing, August
27-31, 1988, pp. 1020-1025.

Bingulac, S. and R. Krtolica (1985), "Generalized ARMA model for MIMO
system identification," Proceedings of the American Control Conference,
Boston MA, June 11-14, 1985, pp. 1336-1341.

256 Chapter 5 System Identification

Bingulac, S. and N.K. Sinha (1990), "Identification of continuous " 0
systems from input/output data," Journal of Mathematical and Computer
Modelling, 5, 3, pp. 203-208.

Bingulac, S. and H.F. Vanhndingham (1992), "Multivariable system
identification with noisy data," Proceedings of the IEEE International
Symposium on Systems, Man and Cybernetics, October 5-8, 1992, Chicago IL.

Gorti, B., S. Bingulac and H.F. VanLandingham (1990), "Deterministic
identification of linear MIMO systems," Proceedings of the 22"' Southeastern
Symposuim on System Theory, CookevilleTN, April 19-22, 1990, pp. 126-131. '

Ljung, L. (1987), System Identijication: llteory for the User, Prentice-Hall,
Inc., Englewood Cliffs, NJ.

Sinha, N.K. and B. Kuszta (1983), Modeling and Identijication of Dynamic
Systems, Van Nostrand Reinhold, Inc., New York,

VanLandingham, H.F., S. Bingulac and M. Tran (1992), "A comparison of
conventional and neural network approaches to system identification," Journal
of Control 7hheory andAdvanced Technology, 8,4, MITA Press, Kyoto, Japan.

Section 5.7 Exercises

5.7 Exercises

257

5.1 Given the state space representation R = (A, B, C, D} of a stable D-T
'system, where:

R ; [" C D '] =

-.l5 -.l .l -.05 I 1 -3

.05 -.3 .l -.05 I 1 ' .S

.05 .l -.2 .OS I O S
-.05 -.l -.l -.35 I O -5
"- "- -" -" -1- --- ---
- 1 2 0 1 1 0 0

- 1 2 1 2 l l O

0 1 2 1 I O O

Calculate:
(a) -the state space representation R,, in a POF using Y = {1,2, l},
@) -the left coprime MFD {D(z), N(z)} corresponding to R,,,
(c) -the transfer function matrix G(z) = W(z)/d(z), and
(d) -the first 14 Markov parameters H,, i=[0,13], in H(Z').

Define:
(e) -an (m x Nj pseudo-random matrix U containing samples U,,

k=[O,N-l], of the input vector u(k). For u(0) use an m-dimensional zero
vector. For N use N=3 1.

Calculate:
(f) -the response y(k) of R to u(k) with zero initial conditions.

Using the inputloutput pairs { U@), y(k) }; identify:
(g) -a corresponding D-T model R, in POF using v = (1,2,1},
(h) -a left coprime MFD having column degrees n = v,
(i) -the first 14 Markov parameters Hi, i=[O, 131 in H(z"),
(j) -the individual observability indices and transfer functions of G(z) =

(k) From the individual transfer functions g,(z) determine G(z) as: W(z)/d(z).
(l) Check that the results obtained in parts (b), (c), (d) and (e) correspond

to the identified models obtained in parts (g), (h), (i) and (k), respective-

{g,(z)}, where g,(z) = w,(z)/d(z).

lY *

Hints:

258 Chapter 5 System Identification

For part (a):
For part (b):
For part (c):
For part (d):
For part (e):
For part (0:
For part (g):
For part (h):
For part (i):
For part Q):
For part (k):
For part (l):

To define R and v, use the DMA operator.
Use subroutine SSRo.SUB.
Use operator S S T .
Use subroutine SSH.SUB.
Use operators DPM and SHR.
Use subroutine CDSR.
Use subroutine uyRo.SBR.
Use subroutine uyDN.SBR.
Use subroutine uyH.SUB.
Use subroutine uyTF.SBR.
Use subroutine ComD.SBR.
Use operators - and OUT in the MOS, as:
A,Ai(-) ,B,Bi(-) (out)=

A version of an L-A-S program which solves this exercise is available in the
L-A-S subdirectory C:\LAS\DPF\EXERS 1 .DPF.

5.2 Given the state space representation R = (A, B, C, D} of a stable C-T
system, where:

"1.5 -1 1 -.5 I 1 -.5

.5 -3 l -.5 I 1 .5

.5 1 -2 .5 I 0 .5

-.5 -1 -1 -3.5 I 0 .5
-" --- -" -" -1- "- -"
- 1 2 0 1 1 0 0

- 1 2 1 2 1 1 0

L o 1 2 1 1 0 0

Note that the matrix A in this exercise is equal to 10 times A of Exercise 5.1.

Calculate:
(a) -the transfer function matrix C(z) = W(z)/d(z).

Define:
(b) -an (m X N) pseudo-random matrix U containing values U@&,

k=[O,N-l], of the input vector U@). For u(0) use an m-dimensional zero
vector. For N use N=31.

Calculate:

Section 5.7 Exercises 259

(c) -the response y(f) of R to u(f) with zero initial conditions. For the
"total" (simulation) time T, use T = 10 sec. The sampling interval is,
of course, dT = 'f/(iV-l), and

(d) -the eigenvalues of A.

Using the input/output pairs { u(fJ, y(tJ 1, identify:

(e) -a corresponding D-T model R, in POF using Y = {1,2, l}.

(f) From the "four" matrix D-T model R,, determine a corresponding four
matrix C-T model R, = {A,, B,, C,, D,} using the ramp invariant (TU)
approximation.

(g) Calculate the transfer function matrix G,@) of R,.
(h) Calculate the response y(r) of R, to u(t) with zero initial conditions.
(i) Find the eigenvalues of A,.
(j) Check that the results in parts (a), (c) and (d) correspond to the identified

models in parts (g), (h) and (i), respectively.

Hints:

To define R and v, use operator DMA.
The scalars Nand Tcould be defined using DMA or "interactively"
with DSc.

For part (a): Use operator SSTF.
For part (b): Use operators DPM and SHR.
For part (c): Use subroutine CDSR.SUB.
For part (d): Use operator EGV.
For part (e): Use subroutine uyRo.SBR.
For part (0: Use either subroutine CTDT.SBR, with Zsrb=-2, or a

corresponding sequence of operators: LNh4, EATF, ... and
the subroutine R5R4. Also, subroutine SRDC.SBR could
be used.

A version of an L-A-S program which solves this exercise is available in the
L-A-S subdirectory C:\LAS\DPF\EXER52.DPF.

This Page Intentionally Left Blank

Appendix A Matrix Algebra

In this appendix we will review a few basic ideas in dealing with vectors and
matrices. It is assumed that the reader is already familiar with the concepts and
needs only a brief review of the topics.

A.1 Linear Equations

Consider a common problem in analysis, namely that of solving a set of
simultaneous linear algebraic equations:

allxl + a12% + ... + a,, = b,

aZlxl + aZ2x2 + ... + a2,xn = b2

amlxl + am2% + ... + a,,x, = b,

. . . (A. 1)

We may represent the set of equations in Eq.(A. 1) in "matrix-vector" form:

Ax = b

where A is the array (matrix) of coefficients:

I ...

and both x and b are vectors:

x =

x1

x2 , b =

' n

The matrix A is said to have dimensions m X n, the number of rows by the number
of columns. Similarly, x is an n X 1 matrix, or an n-dimensional (column) vector;
and, b is an m-vector (for short).

Typically, the problem is to find, or solve for, x which satisfies Eq(A.1)

261

262 Appendix A Matrix Algebra

when both A and b are known arrays. An elementary case to begin with is n =
m. In this case A is a "square" matrix, say n X n, and the "solution" is:

X = A" b (A.5)

Equation (A.5) assumes that the matrix A is "invertible," or "non-singular," which
is true if the determinant of A is not equal to zero.

A useful interpretation of Eq.(A.2) is to think of the matrix A as an
"operator" that transfers, or maps, the vector x to the vector b. As such, then, for
a solution x to exist, b must be in the range of A, the set of vectors that are images
of some vector under the mapping A. Any vector y in the range of A can be
written as a linear combination of the columns of A; that is,

y = cla, + c2% + ... + c,a, (A.6)

where
A = [a1 3 ...

an 1
The a, are columns of A, i.e. m-vectors; and, the c, are appropriate (constant)
coefficients, for i = 1, 2, .. ., n. The concept of "linear combination," as in
Eq.(A.6), is used to formulate the following definition.

Definition A.l: A set of vectors is linearly independent if no vector in the set can
be written as a linear combination of the others.

Example A.l: Linear Independence
Consider the matrix A given by

1 0 0

A = 0 1 0 lo 0 L:
It is straightforward to show that there are no constants cl and c2 such that any one
column of A is a linear combination of the other two. Consequently, the column
vectors of A are. linearly independent.

Returning to Eq.(A.2), we can say that a solution x exists if and only if b is
linearly dependem on the columns of A. In fact, we already know that for a square
matrix A, Eq.(A.5) holds when the columns of A are linearly independent. This
is due to the equivalence between (linearly) independent columns of a square matrix
and the fact that the det(A) # 0. More generally, we present the following defini-
tion :

Definition A.2: The rank of a matrix A equals the number of linearly independent
columns of A.

A recommended technique for determining the rank of a matrix is to use "row

Section A. l Linear Equations 263

reduction" on the array to "zero out" the elements below the diagonal. It is then
easy to determine the number of linearly independent columns (or rows) by
inspection.

Finally, we can summarize with the following statement:

Remark: In the set of equations represented by Eqs.(A.l), or (A.2), a solution
x exists if and only if:

rank[A I b] = rank[A] (A.7)

i.e. the rank of A is not changed by adding the extra column b.

Let us now return to the original problem. There are two important cases
to consider; namely, when the number of equations in Eq.(A.l) is greater than, or
less than, the number of unknowns (components of x):

(1) Overdetermined equations: m > n , or
(2) Underdetermined equations: m < n .

Case 1: Overdetermined Equations

For this case, m > n, there are more equations than unknowns. This is often
true when, ' e.g. multiple measurements are taken to overcome measurement
inaccuracies. Typically, this set of equations may even be inconsistent in that b is
mt in the range of A, as "required" by Eq.(A.7). Because Eq.(A.7) is not
satisfied, there is, strictly speaking, no solution; however, even in this situation a
"best," or "closest," solution can be calculated.

The so-called least squares solurion can be derived by premultiplying
Eq(A.2) on the left by the transpose of A, and then inverting (ATA) to obtain:

k = [(ATA)" AT] b B(A.8)

Eq(A.8) assume that A is full column rank. Since there is normally no exact
solution, 2 is the "least squared error solution" in the sense that

minIAx-b l = I A k - b l (A.9)
X

where the "error," e = Ax - b, is the equation error. The norm is the Euclidian
norm, i.e.

r m 1112
(A. 10)

Thus, is the "solution" that most nearly reduces Eq(A.2) to an equality, even
though no x will do it exactly. For this reason the solution is known as a "least

264 Appendix A Matrix Algebra

squares" solution because minimizes Eq.(A.9), which is equivalent to minimizing
the sum of the squares of the components of the error vector e. Notice that the
factor in the brackets in Eq.(A.8) serves as A' and, for this reason, is called a
pseudo-inverse of A. See the Glossary of Symbols for pseudo-inverse matrices.

Example A.2: Least Squares Solution o f Overdetermined Equations
Consider the set of equations given by

a, + a2 = 2
-a , + a2 = -2

a2 = 3

In matrix form we have

1 1 2

-1 1 [0 1 - 3 -

Applying Eq.(A.8), we first find
that

ATA = ['0 i] 1 -
1 2

confirming that it is invertible. dl i
Completing the solution, i 3"

[::]-[:l
I

FIGURE A. 1 Graphical Solution to
Example A.2

This solution may be interpreted
graphically if we think of the original equations as measurements relating an x
variable with a y variable as follows:

y(x) = a,x + a2

Having solved for a, we now have the "best" straight line fit. The solution is
illustrated graphically in Fig. A. 1, showing the "fit" as a line with slope=2 and
intercept=l. It may be verified that this solution is identical with the solution to
minimizing

where the distances dl, i=[1,3] are shown in Fig A.l, e.g. dl =-2 - y(-l) =-2 +
c y I - m2, which can be done by setting the partial derivatives with respect to a1 and
a2 to zero and solving simultaneously the two resulting equations.

Section A.l Linear Equations 265

Case 2: Underdetermined Equations

For this case, m < n, there are more unknowns than equations. Again we
will assume that the matrix A of Eq(A.2) is full rank, that is, rank(A) = m, the
smaller dimension. This means that all dependent equations have been eliminated.
We now assume an arbitrary vector

x = x 1 + x 2 (A. 11)

where x1 is in the range of AT and x2 is in the null space of A, that is, Ax, = 0.
In particular, if r, is a 1 X n array representing the J" row of A, then r,xz = 0 for
j = [l , m] ; and, x1 is some linear combination of the rows taken as vectors (xl being
in the range of A):

Thus, if

then

Ax, = b

AATv = b OT V = (A A

and, finally,

(A. 12)

.T)" b

bt = x1 = [AT(AAT)"]b .(A. 13)

Equation (A. 13) is the second form of solution we desired. In this case x1 is the
(unique) orthogonal projection of x onto the range space of A, and thereby
represents the minimum-nom vector that satisfies Eq(A.2). In other words, there
are many exact solutions, and we are selecting that one that has minimum length.

Example A.3: Minimum Norm Solution for Underdetermined Equations
Given the set of two equations in four unknowns

x1 - 3 + x, - 2x4 = 1

23 4. x3 - x4 = 2

we will first solve for x, and x, in terms of x, and x, and, second, determine the
solution according to Eq.(A.13). The results of the first step are:

x, = -(4 - 3x3 + 5x4) 1
2

xz = -(2 l - x3 + x4)
2

266 Appendix A Matrix Algebra

For the second part we rewrite the original equations in vector form:

[l 0 -1 2 1 - 1 1 -"].=[:l

In applying Eq.(A.13), we first calculate

Completing the indicated operations, the minimum-norm solution is

2 = -[1 4 22 17 -21 I r
41

The norm, or length, of this vector is

12 1 = 0.855

and any other of the many solutions will be longer. For example, setting both x,
and x, to zero, we obtain the solution

x'=[2 1 0 01'

whose norm is 1 x' 1 = 2.236.

A.2 Eigensystems

The eigenvalues X and eigenvectors e of a (square) matrix A must satisfy that

Ae = Xe

%.(A. 14) may be rewritten as

(A. 14)

(A - I I) e = 0 (A. 15)

In order that a nontrivial solution (e # 0) exist, (A - XI) must be singular; that is,
det(A - XI) = 0. However, if A is an n X n matrix, then there are n (possibly
some repeated) roots of this na order polynomial equation. These roots are called
the eigenvdues of A. Corresponding to each distinct eigenvalue, there is at least
a one dimensional solution e to Eq.(A.14), called an eigenvector. The collection
of eigenvalues and corresponding eigenvectors is called the eigensystem of A.

Whenever there are n distinct eigenvalues for an n x n matrix, there will be
n linearly independent eigenvectors. By collecting these eigenvectors to form an
n X n matrix E, we can write from Eq.(A.14) that

AE = E A or E"AE = A (A. 16)

where E = [e, e, ... e,J is called the modal m a r k of A and A = diag(X, ... X,}

Section A.2 Eigensystems 267

is the diagonal (or Jordan) form of A. The relation between A and A through the
matrix E, Eq.(A.16), is known as a similarity transformation.

Special Cases:

0 If A is a symmetric matrix, i.e. aii = a,i, then there will always exist

The eigenvectors of a symmetric matrix A are mutually orthogonal:
n linearly independent eigenvectors.

ei ej = 0 for i # j T (A. 17)

0 Generally, when A has repeated eigenvalues, there will not be n
linearly independent eigenvectors, and A cannot be "diagonalized." A
generalization is the Jordan form, which is block diagonal; see Section
3.1.3 and Appendix B.

Example A.4: A Modal Matrix

Determine the modal matrix P for the matrix A given below and show that:

P ' A P = J
where J is a diagonal matrix.

1.5 0 -.5

A = ! O 1 0

-.5 0 1.5

(1) Eigenvalues (roots of det[XI - A] = 0):

h - 1.5 0 .5

0 A - 1 0 = (h - l y (h - 2)
.5 0 A-3.5

Therefore, the set of eigenvalues are { 1, 1, 2 } = { }.
(2) Eigenvectors (nontrivial solutions vi of [&I - A]vi = 0):

For X, = 1 :

We find that the rank of the coefficient matrix (dimension of the largest non-
zero determinant) is 1, therefore, n-1=2 linearly independent vector
solutions. The constraints on the components vi are:

Appendix A Matrix Algebra

v, = v, and v, is arbitrary.
We choose two linearly independent solutions, say

1 1

v l = 0 , v 2 = 1

l 1 -
For x, = 2 :

i .5 0 .5 -

.5 0 .5
v , = o 0 l 0

0 v1

v3 0 -

We find that the rank of the coefficient matrix is 2, (therefore n-2=1
independent vector solution). The constraints on the components v, are:

We choose
VI = -v3 and V* = 0.

1

v3 = 0

-1

(3) Modal matrix: P = [v, v2 v3] :

1 1 0 1 o 1
P = ,5 -1 .S 1 0 0 , P" =

, l 1 -1 l 1 y 5 0 - .5*
(4) From (3) it is easy to show that

1 0 0
J = P"AP = = diag(X , , A2, X,) 0 1 0

0 0 2 -

A.3 Rank and Null Space

Two important concepts in dealing with matrices are: (1) the range space of
the matrix, and (2) the null space of the matrix. We think of an m X n matrix as
a transformation of vectors in an n-dimensional domain space into vectors in an m-
dimensional range space, just as a mathematical function can map, or transform,
values in x-space into values in y-space. Consider the following definitions:

Section A.3 Rank and Null Space 269

Definition A.3: The range space of the m X n matrix A is the collection of m-
dimensional vectors y, such that A x = y for some n-dimensional vector x.

Definition A.4: The null space of the m x n matrix A is the collection of n-
dimensional vectors x, such that A x = 0.

The first of the previous two definitions is directly related to the columns of
A in that a vector y in the range space must be a linear combination of the columns
of A, with the components of x as coefficients. In the second of the two
definitions, we see that the null space contains the vectors x that are mapped to 0.
I t may be shown that both the range and the null space are "subspaces," i.e. their
vectors are closed under vector addition and scalar multiplication. It is useful to
have special terms for the dimensions of these two spaces associated with the
matrix A. Thus, we have:

Definition A S : The rank of the m X n matrix A is the dimension of its range
space.

Definition A.6: The nullify of the m x n matrix A is the dimension of its null
space.

Although complicated operations for matrices are implemented easily in L-A-
S, it is instructive to apply the concepts "manually" to an example.

Example A S : Range and Null Space Calculations

Determine the rank and nullity of the 3 x 5 matrix A given by

1 2 3 4 5

A = 2 3 4 1 2

3 4 5 0 0 -

and calculate a set of basis vectors (a linearly independent set of vectors
which span the space, i.e. any vector in the space can be written as a linear
combination of the basis vectors) for both the range and the null spaces.

(1) Using elementary row operations, it can be shown that A can be reduced to

1 2 3 4 5

A = O 1 2 7 8

0 0 0 2 1 -

Therefore, the rank is 3, the number of independent columns, say columns
1, 2 and 4. The nullity is the number of columns less the rank, 5 - 3 = 2.

270 Appendix A Matrix Algebra

(2) As mentioned in (l), columns 1, 2 and 4 are linearly independent; therefore,
they could serve as a basis of the 3-dimensional range space. As a check on
their linearly independence, let us calculate the non-zero determinant of these
three columns:

1 2 4

2 3 1

3 4 0

(3) To calculate a set of 2 linearly independent vectors which can serve as a basis
set for the null space, the row reduced version of A given above will be used:

= - 2 # O

Thus, the constraints on the components xi, taken from these three scalar
equations can be rewritten in terms of, say, x, and x, as follows:

X1

-2x3 + 9x4 x2

-x3 - 3x4

x4 x4

x3 = x3

*xs , . - 2x4

Choosing [1 0] and [0 1] for [x, x, 3 respectively, we obtain the
following basis set for the null space:

-1

0 and % = 1 x l =

9 -2

-3

0 1

0 - -2

Section A.4 Singular Value Decomposition (SVD) 271

A.4 Singular Value Decomposition (SW)

Singular value decomposition can be thought of as a generalization of the
eigensystem calculation for matrices which are rectangular. Consider a matrix A
which is (m x n) and has rank r. We will assume that m 2 n, although the
development applies equally well if the reverse is true. The objective is to
represent A as

A = UWVT (A. 18)

where W is an (m x n) diagonal matrix, i.e. the elements wv, i # j , are zero; and
U and V are (m x m) and (n x n) orthogonal matrices, respectively.

We first note that AAT is an (m X m) positive semi-definite (symmetric)
matrix, and that ATA is likewise an (n X n) positive semi-definite (symmetric)
matrix. Consequently, we can find a set of orthonormal "left singular vectors" U,,

i=[l, m] and a set of orthonormal "right singular vectors" v,, i=[l , n] from these
two symmetric matrices. Thus,

A A T ui = o;ui a d ATA vi = $vj (A.19)

for i=[l, m] andj=[l, n]. The use of "squares" of the singular vallues is justified
since both products are positive semi-definite, i.e. they have only non-negative
eigenvalues. It can be shown (See Section A S) that the non-zero eigenvalues of
AB and BA are equal, so that the (non-zero) (a,} equal the (non-zero) (A,). In
addition, since ATu, = z, can be shown to be an eigenvector of ATA, we have from
@.(A. 19)

A zi = ui ui 2 (A.20)

But, unlike U,, the vector zi is not necessarily a unit vector. In fact, for a non-zero
a,, using a symbolic scalar product notation, we find the length of z, to be a,, i.e.

[z , 1' = (ATui,ATui) = (AATui,ui) = ai (ul,ui) = 0;
2

Since from Eq.(A. 19) ATA v, = a: v,, (X, = a>, and ATA z, = a: z,, it follows that
z, = qvp Thus, dividing Eq(A.20) by U,, and concatenating all the resulting
equations,

L 0 1

272 Appendix A Matrix Algebra

Finally, since V" = V', because its columns {vt) form an orthonormal set, the
objective of Eq.(A.18) is attained. The last columns of U, and the corresponding
zeros of W can be deleted, in this case U, W and V become (m X n), (n X n) and
(n X n), matrices, respectively. Also, when A is less than full rank, the final rows
of VT and the corresponding zero columns of W can be omitted leaving U, W and
VT as (m X r), (r X r) and (r X n), matrices, respectively.

We will now present two related algorithms. The first, MZS, calculates the
range and null spaces of a rectangular matrix. The second, INOU, provides a
decomposition of a matrix Q into two subspaces: Qr, the projection of Q into the
range space of R; and Qou, the projection of Q to the subspace outside of the
range space of R.

Algorithm: NRS

Syntax: A, eps (W =) N, R,

Purpose: The calculation of the rank and the range and null space matrices
of an (m x n) matrix A.

InputlOutput Arguments:

0 A = (m x n)matrix.
0 eps = small positive sca~ar, suggested value; eps = IO5.
0 N = (n x n-r) null space matrix of A, where AN = Om,(n+.
0 R = (m X r) range space matrix of A, where p@) = p(A).
0 r = rank of the matrix A, r = p(A), where r 5 min(m,n).

Description:

The rank of an (m x n) matrix A is defined as:

(i) the size of the largest non-vanishing determinant that can be formed from

(ii) the maximum number of linearly independent columns, or rows, in A.
A, or

The range and null space matrices, R and N satisfy:

r = P(R) = A A) 5 AN (A.22)

The easiest and computationally most reliable way of calculating r, R and N
consists of performing the singular-value decomposition (S W) of the matrix
A, i.e. decomposing A into:

A = UWVT (A.23)

Section A.4 Singular Value Decomposition (SVD) 273

I where (m x n), (n x n) and (n x n) matrices U, W and V are given by:

U = [U, * * e U, ... U"] , v = [v, a.. v, *e*

(A.24)
and W = diag{ ul, ..., U,, ..., U ,)

Matrices U and V are "unitary," i.e. columns U, and v,, i= [l ,n] , are
orthonormal, i.e.:

UTU = VTV = I, (A. 25)

The positive scalars U,, i = [1 ,n] are referred to as the singular values of A.

order, i.e.:
All SVD calculation procedures arrange the scalars U, in decreasing

U, L u , + ~ , i = [l , n - l] (A.26)

If the positive scalar eps satisfies: eps < < 1, then for all practical purposes
the rank of A may be defined as the index r of the singular value U,,,

satisfying:

1 eps (A m

or, the total number of U, satisfying U, > eps, i = [l , r] .

partitioning U and V as follows:

where:

Thus, the range and null space matrices R and N could be defined by

U = [R I X] and V = [Y I NI (A.28)

0 R contains the first r columns U, from U, i = [l , r] , while
0 N contains the last n-r columns v, from V, i=[r+l,n-r].

The integer v = n-r, representing the dimension of the null space of A, is
referred to as the nullity of A. The SVD of A is performed by the algorithm
S W :

Syntax: A (Sm) * W, U, V
where the (1 x n) row W contains the singular values U,, i= [l ,n] .

Algorithm:

1. Define the (m x n) matrix A and the scalar eps
2. Set A (S W) * W, U, V
3. If U, eps, set U,/, = 1 =) x, ; else, set 0 * x,
4. SetxxT* r
5.SetU*[R I X]
6. Set V * [Y I NI
7. stop

274 Appendix A Matrix Algebra

l Algorithm Implementation:

The listing of Algorithm NRS, implemented using the L-A-S language is
given in Appendix C. Algorithm S W is performed using the L-A-S operator
S W . The m-dimensional row x containing r unities and m-r zeros is
calculated by the operator F/. The rank of A is then obviously given by t =
x xT. The partitioning of U and V in Steps 5 and 6 is done using the L-A-S
operator CTC.

Algorithm: INOU

Syntax: R, Q, eps (INOW j Qr, Qou

Purpose: To decompose the matrix Q into two subspaces Qr (the projection
of Q into R) and Qou (the subspace outside the range space of R).

Inputloutput Arguments:

0 R = (n x m) matrix
0 Q = (n x k) full column rank matrix, i.e. p(Q) = k
0 eps = small positive scalar, suggested value: eps = IO5
0 Qr = (n X r) matrix; projection of Q into R
0 Qou = (n x S) matrix; part of Q outside the range space of R

Description:
Matrices Qr and Qou satisfy:

P [R I Q ~ I = P [R I , p [Q I Q r I = p [Q l , ~ [Q r l = r
and (A.29)

~ [R l Q o u l = ~ [R l + s , ~ [Q l Q o u l = p [Q I , p [Q o u I = a

Since p(Q) = k, then r + S = k.

r) and (k X S) matrices N, and N,, i.e.:
The matrices Qr and Qou are obtained by postmultipying Q with (k X

Qr = QN, and Qou = Q Nqn (A.30)

where N, and N, are calculated from null space matrices:

[Q I R] [= 0 and NrN,, = 0 (A.31)

From Eq(A.31) it is evident that Qr = Q Nq is in the range space of R since:

QN, = -RN,

Similarly, since [N, N,] is a (k X k) nonsingular matrix, it follows that
Qou = Q N, is outslde the range space of R.

The null space matrices required in Eq.(A.31) are calculated by the
algorithm NRS discussed above.

Algorithm:

1. Define (n X m) and (n X k) matrices R and Q and the scalar eps.
2. Set number of columns in Q =) k
3 .Se t [Q I R] * Q R
4. Set QR, eps (NRS) * N,, Y , x
5. Set the first k rows from N, =) N,
6. Set N:, eps (NRS) =) N,, Y , x
7. Set Q N, * Qr
8. Set Q N, =) Qou
9. stop

Algorithm Implementation

The listing of Algorithm INOU, implemented using the L-A-S language
is given in Appendix C. Algorithm NRS is performed using the L-A-S operator
NRS. The subroutine version is given in Appendix C. Matrix transposition
is performed by the L-A-S operator T.

A S Useful Results with Matrices

for some corresponding (non-zero) eigenvector x. Premultiplying by A,

276 Appendix A Matrix Algebra

AB(Ax) = X(Ax) (A.34)

which shows that X is automatically an eigenvalue of AB (with corresponding
eigenvector Ax). Consequently, the m eigenvalues of BA are also eigenvalues of
AB and vice versa, so that the remaining (n - m) eigenvalues of AB must be zero.

Applying this result to C and D of Eq.(A.32), the m eigenvalues of D are also
eigenvalues of C, and the remaining eigenvalues of C are unity. Therefore, the
product of the eigenvalues of C equals the product of the eigenvalues of D; or, in
other words, the determinants are equal:

det(1 + AB) = det(1 + BA) U(A.35)

Partitioned Matrices: Using the Laplace expansion of a determinant, it is readily
shown that:

det (AB) = (det A) (det B) W(A.36)

det(A) = det(AT) U(A.37)

and ,et[A] = det(A)det(C)
B C

U(A.38)

The fact that partitioned matrices obey the same rules as ordinary matrices
with respect to multiplication and addition permits us to generate some interesting
expressions for inverse matrices. Suppose that B = A', then, assuming compatible
partitions:

(A.39)

Thus,

and

A,B, + b B 3 = I

(A.40)

&B1 + A4B3 = 0

are the (1,l) and (2,l) elements of the product. Solving for B, and B,, we obtain:

B, = (A, - 4A,"p5)"

and

(A.41)

B, = -A;'AJA, - ~ A ; I A J ~ (A.42)

Similarly, the remaining equations permit solving for B, and B,:

Section A.6 The Cayley-Hamilton Theorem 277

B, = - A ; ' ~ (A , - ~ A ; ' A . J - ~ (A.43)

and

completing B = A-'.
Many matrix identities can be developed by repeating the above process with

a reversed product order, BA = I, and equating the two expressions for B, since
A-' is unique for any non-singular matrix A. In particular, the matrix inversion
lemma is

(A-' + CTBH)" = A - ACT(CACT + B - ~) - ~ c A W(A.45)

A final result can be realized using the fact that for any matrix M

det[M I I " 1 = 1 (A.46)

Therefore, using the property of Eq.(A.36), and assuming that A is nonsingular,

det[A C D '1 = det[[-CA-' I 0 I][A B C D]]
Multiplying out the previous expression,

A B A

C D o D - C A - ~ B " I det [] = det [
Finally, using properties from Eqs.(A.37) and (A.38),

,et[A '1 = det(A)det(D-CA"B)
C D

(A.48)

W(A.49)

A.6 The Cayley-Hamilton Theorem

We know from Section A.2 that a matrix A with distinct eigenvalues is
similar to a diagonal matrix. Recall that

A = diag{ I , , I , , .-, In } = E"AE (A.50)

where {AJ, i=[l,n], are the (assumed distinct) eigenvalues of the n X n matrix A,
and E is the modal matrix of A whose columns are the eigenvectors corresponding
to the eigenvalues in A.

278 Appendix A Matrix Algebra

Note that an integer power of A takes the form

A'" = (E"AE),(E"AE)2 ... (E"AE), = E"A"E (A.51)

It follow that for any polynomial p(X), the corresponding matrix polynomial is

p(A) = E p (h) E"
And since A is a diagonal matrix,

(A.52)

P (4 = di%IP(X,)Y P (Q Y " ' 9 P(1,) 1 (A.53)

For the particular polynomial which is the characteristic polynomial of A, we have
that

u(A) = E a(A) E" = 0 (A.54)

since a(AJ = 0 for i=[1 ,n] by the definition of eigenvalues. This result may be
summarized in the statement that "the matrix A satisfies its own characteristic
equation. I'

Cayley-Hamilton Theorem: If a(X) = det[XI - A] is the characteristic polynomial
of the (square) matrix A, then a(A) is the zero matrix.

Our development assumed distinct eigenvalues for A, but it can be shown that
the Cayley-Hamilton Theorem is valid for any square matrix. See also Algorithm
POL& which is discussed at the end of the examples in Section 2.4.

A.7 References

Brogan, W.L. (1991), Modern Control Zleory, 3"' Edition, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Chen, C-T. (1984), Linear System 77zeoty and Design, Holt, Rinehart and Winston,
Inc., New York.

Kailath, T. (1980), Linear Systems, Prentice-Hall Inc., Englewood Cliffs, NJ.

Vanhdingham, H.F. (1985), Introduction to Digital Control System, Macmillan
Publishing Co., New York.

Appendix B Special Topics

In this appendix we discuss several items of theoretical, as well as practical,
interest. Some of the topics continue to build on the review material of Appendix
A. For example, the first section in this appendix concerns the problem of linear
algebraic equations. Other topics include the three minimal realization techniques,
Hessenberg, Kalman and Jordan. One section discusses a useful, relatively simple
method of measuring the relative controllability and observability of M M 0 system
poles.

B.1 Linear Algebraic Equations

Consider the following system of linear algebraic equations:

AX = B (B. 1)
where the [n(m+l) X m] matrix A has rank = n, and B is a given [n(m+l) X
m] matrix. It is known that one among many solutions for the [m X m] matrix
X of Eq.p.1) has the form:

Recall that this problem was encountered in Algorithm HT, Section 4.3.5,
Eq(4.74). We are interested in obtaining the scalars di, i=[O,n-l], satisfying
Eqs.(F3.1) and (F3.2).

Procedure:

The general solution X of Eq(B.1) may be written as:

X = Y + N T (B. 3)

where Y is any nontrivial solution of Eq.(B.l), N is the [m x n(n-l)] null space
matrix of A satisfying:

279

280 Appendix B Special Topics

AN = 0 (3.4)

while T is an arbitrary [n(n-l) X m] matrix.

For additional notation let:

I, = [el ...
em 1

Y = [y1 .*e

ym 1
I T = [t, * * e

then, taking into account Eq.(B.2) the l* column x, of the general solution X in
Eq(B.3) may be expressed as:

Eliminating from Eq.m.6) elements with the indices:

i , i+m, i+2m, ..., i+jm, ..., i+(n-l)m (B.7)

Eq.P.6) yields a system of (m-l)m equations of the form:

where N, and yti represent an [(m-l)m X (m-l)m] matrix and (m-l)m columns
obtained from N and yi in Eq.p.6) by eliminating the rows with indices given by
Eq.p.7). By definition, N is a full column rank matrix. However, the square
matrices N, obtained from N by eliminating n rows are not necessarily of full rank
for each i. But, according to the assumption of Eq.(B.2), it may be concluded that
there is some index i , i = [l , m] , for which the matrix N, is nonsingular. Using this
N,, a column t, of the unknown matrix T may be calculated from Eq.(B.8) as:

ti = -Nf' ~yu (B.9)

Having t, from Eq.(B.9), the scalars d,, j=[O,n-l] , may be readily obtained from
Eq.(B.6).

Section B.2 Hessenberg Transformations 281

B .2 Hessenberg Transformations

The basic idea of the Hessenberg transformation is to apply a sequence of n-p
similarity transformations by which a given unobservable pair (A,C} with a full
rank C is transformed into the form:

In other words, after this sequence of similarity transformations, the matrix C is
"column" reduced, i.e. only the first p columns have elements different from zero.
The matrix A has an (no x n-no) block of zeros in the "upper right" comer, while
B has no special structure. Obviously the modes, i.e. eigenvalues of the block A,
are not observable since, due to the structure of {A,C}, they do not contribute to
the output y(f) = C x(f) .

Thus, the observable part of a given {A,B,C} becomes an n: order
representation given by:

To check the controllability of {A,, B,, C,}, i.e. to eliminate possible
uncontrollable modes, it is recommended that one consider the dual system

of the obtained R,, and eliminate its unobservable modes, which are, of course, the
uncotrollable modes of R,, to obtain:

Finally, a desired minimal realization corresponding to the given {A,B,C) is qual
to the dual of R,,, i.e.

The algorithm MIN given below performs only the elimination of the unobservable
part, i.e. the transformation:

R =$ R,

282 Appendix B Special Topics

Algorithm M I N

1. SetC*R,n*k
2. Set R (SW) =) s,U,V ; where R = USV , S = diag{ sl,. . . , S, 1
3. SetV-T,, k - p * k , 1 *i,pfl *j
4. Set A,B,C,V(STR) = A',B',C'

5. Partition A' rs X I R I p , R is (p X k) such that rll = uty

6. Set R (SW) * s,U,V

8. Set A',B',C',T(STR) * A',B',C'
9. Set k-l * k , j + l * j , i+ l * i
10. I f j S n, go to 5; else, go to 11
11. Set A,B,C,T,(STR) = A,,B,,C,
12. Set n =) no, 0 = i
13. Set i+ l i , n-i * k

1 : 3' i - l

7. Set diag{ I,-,, v } 3 T, ThT * Th

x I z '

Y I W

14. Partition A, * ---

15. If 11 Z 11 > e i s , go to 17; dse, go to 16
16. Set k =) no
17. If i < n-p, go to 13; else, go to 18

+ "- ; Z is the (k X i) upper right block of A,

18. Paritition A, =) --- + --- ; Bh ---
> Y I z - X

R, = {A,,B,,C,J is an n," order observable representation.

Note that R' = {A',B',C'}, obtained in the last passage through Step 8, is the
same as R,, = {Ah,Bh,Ch}, obtained in Step 11, since the transformation matrix
Th accumulates all transformations performed in the loop, Steps 5 to 10.

Singular Value Decomoposition: For a given (p x k) matrix R, Algorithm SW,
singular value decomposition, in Steps 2 and 6, calculates arrays S, U and V where:

S is a k-dimensional row array containing the singular values S,,

U is a (p X k) matrix containing the "left" singular vectors.
V is a (k X k) matrix containing the "right" singular vectors.

i= [l , k] , S, 2 0.

Section B.3 The Kalman Decomposition 283

The arrays S, U and V satisfy:

R = USVT , where S = diag{ sI, ..., st 1

and sI 2 s2 2 ... 2 S, 2 0. Matrices U and V are "unitary" i.e. VV = I, and
W = $, if p S k, or in other words, the columns of U and V are orthonormal.

The main property of the Hessenberg similarity transformation matrix Th is
that in the transformed triple R,, = {A,,,B,,,C,,} the (n, X n-nJ upper right
submatrix of A,, and the last n-no columns in Ch contain zero elements. This is a
consequence of the fact that the last k-r columns of V, where r = rank@), are
in the null space of R, i.e. in the product X = RV all non-zero elements are
"concentrated" in the first r columns of X. Thus, it is clear that the last n-n, modes
of R,, are unobservable, and in order to obtain an observable part, these modes
should be eliminated from R,,. Similarly, to eliminate possible uncontrollable
modes, the same Hessenberg transformation should be applied to the representation
which is dual to the above obtained R,.

For more details on the Hessenberg trasnformation readers are referred to the
reference section in Chapter 4.

B.3 The Kalman Decomposition

Consider a not necessarily minimal state space representation {A,B,C}, with
order n, m 5. n inputs and p 5 n outputs. The Kalman Canonical decomposition
is defined as the procedure of decomposing a given state space representation
(A,B,C} into the following four coupled subsystems referred to as the:

1. Controllable and unobservable subsystem, denoted by c c ,
2. Controllable and observable, denoted by CO,

3. Uncontrollable and unobservable, denoted by c';, and
4. Uncontrollable and observable, denoted by Co.

The problem is to find a similarity transformation matrix T which will transform
the given {A,B,C} into a form {Ad,Bd,Cd} where:

A, = T-IAT
B, = T"B (B. 11)
C, = CT

The structure of the matrices in &.(B. 11) is as follows:

284 Appendix B Special Topics

FIGURE B. I Kalman Canonical Decomposition

L

c d = [0 c, 0 C ;]

The structures given by Eq.(B. 12) can be represented by the block diagram given
in Fig. B.l. In Fig.B.l, as well as in Eq.(B.12), c and c stand for controllable
and uncontrollable subsystems, while o and 0' stand for observable and
unobservable subsystems, respectively. However, Fig. B.l does not show all
internal connections between the four subsystems. A more detailed block diagram
is given in Fig. B.2.

I r

U

FIGURE B.2 Detailed Kalman Decomposition

Section B.3 The Kalman Decomposition 285

Normally, only procedures for the determination of the CO subsystem are
considered; however, our purpose here is to suggest a possible algorithm for
performing a Kalman canonical decomposition, i.e. a constructive procedure for
calculating a similarity transformation matrix T performing the decomposition in
Eq4B.12).

Decomposition Procedure

The transformation matrix T should be given by the concatenation of the
following submatrices:

T = [Tc, T,, TFz TLl] (B. 13)
where:

Tc = [Tc, TC,] (B. 14)

should span the controllable subspace of the pair {A,B}, while:

T,- = [T,, T,,] (B. 15)

should span the unobservable subspace of the pair (A,C).

controllability matrix of the pair (A,B}:
Thus, the matrix T, could be obtained by calculating the range space of the

Q, = [B AB A2B A'""B] (B. 16)

i.e. T, = R(QJ (B. 17)

Similarly, the matrix T, could be calculated from the observability matrix of the
pair (A,C}:

C

CA

Q, = CA2

CA'"P

using T, = N(Roo) T (B. 19)

where R, is the range space of Q, i.e.

Re = R(QJ (B.20)

The matrices Q, and Q, could be calculated by Algorithms QC and Q0 given in

286 Appendix B Special Topics

Chapter 1 and Appendix C. In Eqs.(B.17), (B.19) and (B.20) the symbols R@)
and N(X) denote the range and null spaces of X, respectively, while X' denotes
matrix transposition. The range and nuil spaces of a given matrix can be calculated
by Algorithm NRS given in Appendix C.

Having matrices T, and T,, defined by Fxp(B.14) and (B.15), the sub-
matrices of T, entering into the similarity transformation matrix T, &.@. 13), can
be obtained by decomposing T, into a part spanned by the columns in T; and a part
which is not. Similarly, the sub-matrices in Eq.(B.15) can be obtained by
decomposing T, into a part spanned by the columns in T, and a part which is not.

The above decompositions into the desired sub-matrices can be obtained by
Algorithm InOu given in Appendix C, i.e.:

T; 9 T, E (I O U) 0 TCc 3 T,,

T, , T, , E (Inch) - '?,.;, TT;

(Note: T,, and '?,; are not unique, but both versions span the same sub-space.)
Finally, the sub-matrix T,, which has not yet been determined, can be

obtained as the null space of T,', i.e.

T~~ = N(T;) (B.21)

where TI = [Tc, Tco TZ] (B.22)

Using the above mentioned algorithms, we are now ready to formulate the
algorithm for Kalman canonical decomposition.

I Kalman Canonical Decomposition Algorithm

1.

2.
3.
4.
S.
6.

7.
8.
9.
10.

Define a state space representation {A,B,C} and the scalar eps satisfying:
0 < eps < 1.
Set A, B(Qc) =) Q, &.(B. 16)
Set A, C(Qo) * Q,,, Eq.(B. 18)
Set Q,, eps (NRS) * X, T,, r,; T, is the controllability subspace
Set Q:, eps (NRS) * X, Rqot, x; Eq(B.20)
Set Rqot', eps (NRS) =) T,, X, r,,; T, is the unobservability subspace

Set T,, T,, eps (InOu) T,,, Tc,; Eq(B.14)
Set T,, Tc, eps (InOu) =) To-, Tc; Eq.(B.lS)
Set [T,, T,, T, 3' TI; Eq(B.24)
Set T,T, eps (NRS) =) TF,, X, x

Section B.4 Computation of Generalized Eigenvectors 287

11. Set [T, T, 1- T, Eq.(B.13)
12. Set [dim(T,,-) dim(T,,) dim(T=) dim(TF,)] d

14. Stop
13. Set A, B, C, T (STR) * Ad, Bd, C,; Q.@. 11)

Algorithm Implementation

The listing of Algorithm KALD implemented using the L-A-S language
is given in Appendix C. Algorithms QC, Qo and NRS are implemented using
corresponding L-A-S operators, while InOu is implemented by the subroutine
InOu. The matrix denoted by Rqot, determined in Step 5 and used in Step 6,
is the range space of Q:. Algorithm STR, used in Step 13 is performed using
the L-A-S operator STR. The four dimensional row d calculated in Step 12,
containing subspace dimensions, is calculated using the L-A-S operators CD1
and CTI.

B.4 Computation of Generalized Eigenvectors

In this section a method is suggested for computing the eigenvectors and
generalized eigenvectors of a matrix, given that the eigenvalues are already known.
The algorithm is straightforward, and an L-A-S implementation is provided. The
following algorithms are associated with the general problem. Each algorithm is
described in detail.

Algorithm: MODM

Syntax: A, Egv, eps (MODM) * P

Purpose: Calculation of the eigenvector (modal) matrix of a matrix
with multiple real or complex eigenvalues.

Input/Output arguments:

0 A = (n x n) real matrix with multiple real or complex-conjugate
eigenvalues.

0 Egv = (m x 2) matrix, m 5 n, containing distinct eigenvalues, X,
= a/ + jw j , j = [1 ,m], of A; first column contains real parts, second
column contains imaginary parts. In the case of a complex-
conjugate pair of eigenvalues, Egv contains only one eigenvalue of
the pair.

0 eps, a sufficiently small positive scalar; suggested value: eps= 10’.

288 Appendix B Special Topics

0 P = (n X n) eigenvector matrix transforming A into the "real
number" Jordan form.

Description:

The (n X n) modal matrix:

p = [p, ... pi ...
p, 1 03.23)

is related to a given A by:

AP = PA, OT A, = P"AP 03-24)

where A, is an (n x n) block diagonal Jordan form matrix given by:

A, = diag(A,, , ... , AJj, ... , A,,) 03-25}

The (n x nj) and (nj x nj), j = [l , m] , matrices Pi and All in Ep(B.23) and
(B.25) satisfy:

m

APj = PjA,j where c nj = n 03-26)
j - l

Integers nj are the algebraic multiplicities of the eigenvalues 4, j = [l ,m], of the
matrix A.

Matrices PI and AI could be partitioned as:

Integer vi, referred to as the gcomerric multiplicity of (multiple) eigenvalue 4,
is given by the nullity of the matrix Bj = A - 41, i.e. 5 is the dimension of the
null space of Bp

The (n x njb matrices Pjk, k=[l ,vj], contain nj! eigenvectors belonging
to the Kh eigenvector chain of length njk associated with the eigenvalue 4,

VI

Pjk = [piu ... pjkr ... pia] where nj = c njt 03-28)
k- I

The (njk X nj& matrix A,jk, referred to as the Kh Jordan block associated with
AI, satisfies:

Section B.4 Computation of Generalized Eigenvectors 289

In the case of a real eigenvalue X, = uj, the Jordan block AJjk is an upper
triangular matrix consisting of 5 on the diagonal and a super diagonal of
unities of the form

'Jjk =

In the case of a complex-conjugate pair of eigenvalues X, = ai f ioj, the (2 5
x 2njb Jordan block AJjk is associated with both eigenvalues of the pair and is
in "real number" form given by:

AJjk =

In order to satisfy Eq(B.29) with AJjk in the real number form given by
Eq.(B.31), the (n X 2nj& eigenvector matrix Pjk is associated with both
eigenvalues in the complex-conjugate pair a/ f ioi. The first two columns of
Pjk are given by the real and imaginary parts of the eigenvector corresponding
to the eigenvalue uj + ioj. Similarly, the next two columns are the real and
imaginary parts of the first generalized eigenvector corresponding to 9 +io,.

The eigenvector chains Pjk in the (n X nj) matrix Pi corresponding to a

290 Appendix B Special Topics

real eigenvalue Aj = 5 with a multiplicity nj are calculated by Algorithm
CHAR. The eigenvector chains Pjk in the (n X 2n,) matrix P, corresponding
to both eigenvalues of the complex conjugate pair a, f jo, with multiplicity n,
are calculated by Algorithm CHAC.

Algorithm:

1. Define (n x n) matrix A, distinct eigenvalues Egv and the scalar eps.
2. Set number of columns in A * n
3. Set number of rows in Egv * m
4. Set =$ P
5. SetO-j
6. Setj+l * j
7. Extract$ row of Egv * Aj
8. Partition Aj =$ [q oj 3
9. If U, = 0, go to 12; else, go to 10
10. Set A, q, mi, eps (CHAC) =$ P,
11. Go to 13
12. Set A, 5, eps (CHAR) =$ pj
13. Set [P I P,] * P
14. If j < m, go to 6; else, stop.

Algorithm Implementation

The listing of Algorithm MODM implemented using the L-A-S language
is given in Appendix C. Algorithms CHAR and CHAC are implemented using
the L-A-S subroutines CHAR and CHAC, respectively. These two algorithms
are presented next.

Algorithm: CHAR

Syntax: A , a, , eps (CHAR) =$ pi

Purpose:

The calculation of the eigenvector chains corresponding to a real eigenvalue a,
with multiplicity nj, nj 2 1.

Inputloutput Arguments:

0 A = (n x n) matrix.
0 uj = scalar corresponding to a real eigenvalue of A with

Section B.4 Computation of Generalized Eigenvectors 291

multiplicity nj, nj 2 1 .
eps = sufficiently small positive scalar; suggested value: eps=105.

0 Pj = (n x nj) matrix containing all eigenvector chains
corresponding to U,.

Description:

Let U, be a real eigenvalue of A with multiplicity 5. Then 9, the nuZZity
of B, = A - 51, i.e. the dimension of the null space of the matrix Bj , satisfies:

In the matrix Pi there are vi proper and (nj - 5) generalized eigenvectors
corresponding to 5. According to Eqs.(B.27) and (B.28), these Vectors are
arranged in P, as 3 eigenvector chains Pj, of lengths 5. Without IOSS of
generality it may be assumed that:

n,, S nJ2 S ... S n
j”l

The vectors pjb, r=[l , v j] , in the chains qk satisfy:

(B.33)

Bjpjk, = 0 and Bjpjb = P ~ , (~ . ~ , for r=[2,vjl 03.34)

(Bjypjb = 0 for r=[l,vj] (B.35)
or

From Eq.(B.34) it follows that the vectors pjb for r = [l , y - l] are in the range
space of B,, while the vectors pjkn , which are last in the chains are outside the
range space of Bj, i.e.:

I t

rank[Bj I pjkr] = rank[Bj] for k = [1, njr- 1] and
(B.36) rank[B, I Pjknlk] = &I: Bjl + 1

From Eq.(B.35) it follows that all of the vectors pjb are in null space of (Bj),.

In Algorithm CHAR first the matrix Bj is built and its nullity vi and range
space R are calculated. Then the vector pjln,, i.e. the last vector in the
shortest eigenvector chain, is determined. This is done by determining the
smallest integer k such that the null space N, of the matrix (B,), contains
vectors m,, i = [l , q] , which are outside R. If q > 1, i.e. if there is more than
one vector satisfying this condition, then there are q chains with length k = nj,.
These vectors are then used as the last vector in their respective chains, and the
other vectors in those chains are calculated using Eq.(B.34) by a simple
premultiplication of mi with B,.

These eigenvector chains are of the form:

292 Appendix B Special Topics

If q < v,, more chains, longer than n,,, are needed. Again, the last vectors in
these chains are obtained by detecting the next smallest integer k such that the
null space of the matrix (B$ contains vectors outside the range space of the
matrix obtained by concatenating R and the matrix M consisting of the q
vectors m,, i=[l,q], used in Eq.p.37) for building the q eigenvector chains
of length n..

Calculation of the range and null spaces is done using Algorithm NRS.
Calculation of the vectors which are outside the range space of a given matrix
is done using Algorithm INOU.

Algorithm:

1. Define (n x n) matrix A, real eigenvalue U, and the scalar eps.
2. Set number of columns in A * n
3. Set I,,,n * I
4. Set On,o * P,
5 . Set A - u,I *B,
6. Set Bj, eps (IVES) * N , R, x
7. Set number of columns in N * v,

9. Set k+l * k

11. Set B,, eps (MS) N,, Y, x
12. Set R, N,, eps (INOU) * Y, M
13. Set number of columns in M 4 q
14. Set M =$ M,
15. If q > 0, go to 16; else, go to 9
16. Set M, 4 [m I M,]
17. Set On,o r) P,, Set 0 4 i
18. Set i+l * i
19. Set [m I P,] =$ P,
20. Set B p * m
21. If i k, go to 18; else, go to 22
22. Set [P, I P,] * P,
23. If number of columns in M, > 0, go to 16; else, go to 24
24. Set [R I M] * R
25. Set r+q 4 r
26. If r < v,, go to 9; else, stop

8. set I *Bk, 0 4 k, 0 =) T'

10. Set B, B, * Bk

Section B.4 Computation of Generalized Eigenvectors 293

Algorithm Implementation:

The listing of Algorithm CHAR, implemented using the L-A-S language is
given in Appendix C. Algorithms NRS and INOU are performed using the L-
A-S operator NRS and subroutine 1NOU.SUB. The matrix partitioning in Step
16 is done by the L-A-S operator CTC. Matrix concatenation in Steps 19 and
22 is uses the operator CTI.

Algorithm: CHAC

Syntax: A, q, oj, ePs (CHAC) =) p,

Purpose:

Calculation of the eigenvector chains corresponding to a pair of complex-
conjugate eigenvalues uj & jo,, with multiplicity nj, nj 5: 1 .

Input/Output Arguments:

0 A = (n x n) matrix.
0 U, and wj = scalars representing real and imaginary parts of a

complex-conjugate pair of eigenvalues, 5 It jo,, of A with
multiplicity n,, n, 2 1.
eps = sufficiently small positive scalar; suggested value: eps=lO”.
P, = (n X 2n,) matrix containing all of the eigenvector chains
corresponding to the pair of eigenvalues U, i- io,.

Description:

Let a matrix A have a complex-conjugate pair of eigenvalues X, =,U, +
jo, and A,+l = - jo, with multiplicity ni. Then 9, given by the nullity of
either Bj = A - 41 or Bj+, = A - Xj+lI , satisfies:

1 1 9 ‘ n , 03.38)

Proper complex-conjugate eigenvectors p, = U, + jv, and = U, - jv,
associated with eigenvalues A, and A,+,, respectively, satisfy:

It may be verified by inspection that real vectors uj and v, defining the
complex-conjugate eigenvectors p, and can be calculated from:

294 . Appendix B Special Topics

[B;, 1 [;] = O
03.40)

where Bjr = A - qI and Bji = @,I. By definition, the complexconjugate
eigenvectors p, and satisfy:

Again, it may be verified that the vectors u, and v, satisfy:

Note that in Eq(B.41) the (2 x 2) diagonal block contains in the main
diagonal the complex-conjugate pair of eigenvalues X, and while in
Fq(B.42) the (2 x 2) block consists of the real numbers a/ and m,, i.e. the real
and imaginary parts of both 4 and X,+,. Similarly, in Eq.(B.41) p, and are
complex vectors, while in Eq.(B.42) only the real vectors U, and v, are used.

The algorithm CHAC determines all eigenvector chains associated with
both X, and X,+l in a similar manner as is done in CHAR. The only differences
are:

(i) Instead of the (n X n) matrix Bj, given by Eq.(B.32), the following (2n
X 2n) matrix B, is built:

= [-;i] (B.43)

where B,? = A - ujI and Bji = wjI.

(ii) The nullity of B, is 2vj, and its null space consists of 2n-dimensional
vectors m, which can be represented by:

03.44)

where the n-dimensional vectors ui and v, are defined by Eqs.(B.41) and
(B.42).

(iii) In the eigenvector chains, instead of complex-conjugate eigenvectors p,

I
and p,+,, only the real number vectors U, and v, are used.

Section B.4 Computation of Generalized Eigenvectors 295

Calculation of range and null spaces is done using Algorithm NRS.
Calculation of vectors which are outside the range space of a given matrix is
done using Algorithm INOU.

Algorithm:

1. Define (n X n) matrix A, real and imaginary parts a, + j w j of a
complex-conjugate pair of eigenvalues of A and the scalar eps.

2. Set number of columns in A * n.
3. Set n+n * 5
4. Set I,,, * I

l 5. Set I,,,% =) I2
6. Set * Pi
7. Set A - 41 * Bjr , Set wjI * Bji

8' Set [-:, Bjr]
9. Set Bj, eps (NRS) =) N, R, x
10. Set number of columns in N =) y
11. Set I, =) B,, 0 * k, 0 * r
12. Set k+l * k
13. Set B, Bj =) B,
14. Set B,, eps (NRS) =) N,, Y, x
15. Set R, N,, eps (INOU) =) Y, M
16. Set number of columns in M q
17. Set the first q/2 columns from M * M,
18. If q > 0, go to 19; else, go to 12
19. Set M, * [m I M, 3

B/L * Bj

20.

21.
22.
23.
24.
25.
26.
27.
28.
25.
26.

Set m =) [
Set * Pi, Set 0 * i
Set i + l * i
Set [m, I m, I Pi 3 * Pi
Set Bj m * m
I f i < k , go to 22; else, go to 26
Set [Pi I Pi] * Pj
If number of columns in M, > 0, go to 19; else, go to 28
Se t [R M] * R
Set r+q =) r
If r < vi, go to 12; else, stop

I n

296 Appendix B Special Topics

Algorithm Implementation:

The listing of Algorithm CHAC, implemented using the L-A-S language is
given in Appendix C. The algorithms NRS and INOU are performed using the
L-A-S operator NRS and subroutine INOU. Matrix partitioning in Steps 19 and
20 is done by the L-A-S operators CTC and CTR. Matrix concatenation in
Steps 23, 26 and 28 is done using the operator CTI.

In Example 1 of Section 2.4 the real-number Jordan form, A,, and the
corresponding modal matrix, Q, was calculated for a (5 X 5) matrix A having both
repeated roots and complex-conjugate roots. These two matrices can be obtained
using the subroutine MODM as follows:

B.5 Modal Controllability/Observability Tests

This section differs from the tests presented in Chapter 1 in that the method
provides a "degree of controllability and observability" that goes beyond the "yes"
or "no" tests studied there.

Introduction

It is well known that there are numerous procedures for checking the
controllability and observability of state space representations of linear MIMO
dynamic systems. Among the most popular are:

(1) Calculation of the ranks of controllability and observability matrices,
(2) Similarity transformation into the Jordan form state space representation,
(3) Kalman canonical decomposition,
(4) Transformation into the Hessenberg form, and the
(5) Popov-Belevitch-Hautus (PBH) test.

These procedures, being of different natures, have their own properties, advantages
and disadvantages. Some are computationally ill-conditioned, some require
extensive computation. And some procedures are not well suited in the case of
multiple eigenvalues since they then require additional extensive computation. On
the other hand, some procedures do not give information about the "degree" of

Section B.5 Modal Controllability/Observability Tests 297

controllability and/or observability, which is important in practical applications for
numerical reasons.

In this section a simplified controllability/observability test is suggested. It
is based on the PBH test, mentioned above, but it does not require calculation of
the rank of n"' order matrices, n being the system order. Instead, it reduces to the
calculation of the eigenvalues of a single matrix having an order less than the
system order n. The calculation of this matrix is computationally straightforward.
In addition to the information about controllability and observability, the present
test also gives information about the degree of controllability and observability.
The purpose of this section is to suggest a simplification of the PBH test.

A Simplified Observability/Controllability Test

Consider a sequence of equivalent n"' order state space representations
{A,B,C,D}, corresponding to a given linear MIMO dynamic system with m inputs
and p outputs defined by a not necessarily minimal state space representation R, =
{A,, B,, C,, D,) where:

(A , B , C } = {T"A,T, T"B,, COT} 03.45)

In Eq.03.45) T is an arbitrary, random (n X n) non-singular matrix.
Without loss of generality, it may be assumed that there are no redundant

inputs and outputs, i.e. that the rank of B is m and that the rank of C is p . The
eigenvalues of A, which are, of course, equal to those of A,, will be denoted by
the set:

A(A,) = h(A) = h = { A ,) , i=[l ,n] 03.46)

Let Nb and N, be orthonormal (n X n-m) and (n X n-p) matrices satisfying:

NIB = 0 , N:Nb = I , , k = n - m and

CN, = 0 , N,N, = I , , r = n - p T
03.47)

The easiest way of calculating the orthonormal null space matrices Nb and N, in
E4.03.47) consists of performing the SVD of BT and C, respectively, i.e.:

298 Appendix B Special Topics

It should be pointed out that all matrices in Eqs.03.47) and 03.48) depend on a
similarity transformation T, i.e.:

B = B(T) , C = C(T) , N, = N,(T) , N, = N,(T) , etc. (B.49)

For simplicity of notation, however, the explicit dependence on T will be dropped.
Before stating the main result we need the following definition:

Definition: Let P = P o be a (k x k) matrix-valued function of the (n X n)
matrix T defined for almost every matrix T. A set of fixed eigenvalues p,, j = [l,
k'] , k' S k , of P(T) is a set of eigenvalues of P(T) that is invariant with respect
to arbitrary variations of the matrix T.

We can now prove the following results.

Theorem 1: The pair {A,,, B,,} is controllable if the following (k X k), k = n-m
matrix:

P = N ~ A N , 03.50)

depending on the similarity transformation T, has no fixed eigenvalues with respect
to arbitrary variations of matrix T.

Theorem 2 (dual to Theorem 1): The pair {A,,, C,,) is observable if the following
matrix which has dimensions (r X r), r=n-p:

R = N,TAN, 03.51)

has no fixed eigenvalues with respect to arbitrary variations of matrix T.

Proof of Theorem 1:

The PBH controllability test requires that the following [n X @+m)] matrices Qd,
i=[l,n], are of full rank, where

Q , ~ = [A - ai l 1 B 3 03.52)

Premultiplying a. with the (k x n), k=n-m, orthonormal null space matrix NbT,
defined in Eq.(B.47), yields:

N ~ Q , ~ = [N ~ A - A,N: I o] (B.53)

From Sylvester's inequality, and for a controllable eigenvalue h, it follows that:

rank [N:QCi] = k 03.54)

Section B.5 Modal Controllability/Observability Tests 299

leading to:

rank[W] = k where W = N:A - h,Nr 03.55)

Now, postmultipying the (n X k) matrix W in Eq.(B.55) with Nb and taking into
account Eqs.(B.47) and (B.50), one obtains:

WN, = P - I,X, (B.56)

Using the Sylvester inequality again, since k < n, it follows that in the general
case:

rank[P - Ikhi] i k (B.57)

Of course, the equality in Eq.p.57) guarantees that no eigenvalue of the (k X k)
matrix P is equal to X,, while in the case of strict inequality at least one eigenvalue
of P is equal to X,.

Considering Eq.(B.56), it may be concluded that in Eq.(B.57), in the case of
a controllable eigenvalue Xi, the inequality will hold only when some column of Nb
is in the null space of W. However, since the similarity transformation matrix T
influences matrices W and Nb in different ways, for an arbitrary matrix T we have:

rank[P-Ikh,] = k i=[l ,n] (B.58)

almost always, which proves Theorem 1, since from Eq.(B.58) it follows that no
eigenvalue of P = P(T) is equal to Xi.

Equation (B.57) also indicates that, for a special selection of the matrix T, it
might happen that some of the eigenvalues of P are equal to some A,, even when
this X, is a controllable mode of the pair (A,B}. However, as was pointed out
earlier, in the case of an arbitrary T, it may be concluded that the condition:

rank [P(T) - Ikhi] c k (B.59)

will hold only for fixed eigenvalues of P(T), which are exactly the uncontrollable
eigenvalues in the pair {A,B). This proves Theorem 1 as well as the following
corollary. The proof of Theorem 2 is the dual of this proof.

Corollary: All fixed eigenvalues of matrices P or R are equal to some eigenvalues
X, of A, and they represent uncontrollable or unobservable eigenvalues of the pairs
{A,,B,} or {Ao,Co}, respectively.

Degree of Controllability/Observnbility:

In the case that an eigenvalue X, is "almost" uncontrollable, it is natural to
expect that some eigenvalue pi of P Q will be "almost" fixed, i.e. for various

300 Appendix B Special Topics

matrices T the eigenvalue p, will be located in the s-plane within a small circle
around b. Therefore, as the degree r, of controllability of A,, one may define the
radius of the smallest circle in the s-plane, centered at the eigenvalue h,
encompassing all locations where, for various arbitrary matrices T, the
corresponding almost-fixed eigenvaluep, falls. Thus, the degree r, of controllability
of X, can be written as:

In other words, the "maximum" operation is taken for that p, that is closest to h,,
i.e. only those p, which correspond to the mode A,.

Since the concepts of controllability and observability were introduced in
Chapter 1, an example is included with the end-of-chapter exercises there to
illustrate the application of this method.

Algorithm Implementation

The L-A-S listing of Algorithm COTS, which performs the calculations for
this method, can be found in Appendix C.

B.6 References

Brogan, W.L. (1991), Modern Control Theory, 3"' Edition, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Chen, C-T. (1984), Linear System Theory and Design, Holt, Rinehart and Winston,
Inc., New York.

Kailath, T. (1980), Linear System, Prentice-Hall Inc., Englewood Cliffs, NJ.

Ackermann, J. (1985), Sampled-Data Control Systems, Springer-Verlag, ,Berlin.

Bingulac, S. and W. Luse (1989), "Calculation of generalized eigenvectors,"
Journal of Computers and Elecrrical Engineering, 15, l , 29-32.

Bingulac, S. and W. Luse (1990), "Computational simplification in controllability
and observability tests," Proceedings of the 28"' Allerton Confcrence, University of
Illinois, October 3-5, 1990, pp. 527-528.

Appendix C Introduction to L-A-S

In this appendix a detailed introduction to the L-A-S language is given.
followed by the L-A-S code listings for the algorithms discussed in the text . This
is a good place to begin for a serious study of this text . To help locate a particular
algorithm once you are familiar with its application. a list of the algorithms
generally in the order of their presentation is provided after the following Table of
Contents .

Table of Contents for Appendix C

C.l Introduction 305
L-A-S Language 306
Organization of L-A-S 308
Multiple Operator Statements 309
Post-Fix Notation 311
Output Operator Options 313
Getting Started 314
Program Creation 315
Data Types 316
Simple Example 316

C.2 A List of L-A-S Operators 321

C.3 L-A-S Subroutines 326
Omitting Input. Output and Operator Fields 327
Using Integers in Input Fields 328
Interactive Data Definition 328
Default Values for L-A-S Operators 329
Number of Output Arguments 330
Defining Matrices in the PMF 331
Building "SUB" and "SBR" Subroutines 334
Hints for SBR Subroutine Execution 337
Function-KEY Mode 337
Creation and Execution Modes of Operation 339
Recovery from Execution Errors 340
Recovery from Errors in Subroutines 340
Changing Elements in Defined Arrays 342
Plotting Capabilities 343
Interface with Other CAD Packages 344
Recovering from a "Crash" 348

301

302 Appendix C Introduction to L-A-S

c.4

c.5

C.6

c.7

A List of L-A-S Interpreter Commands351

On-Line Help File352
Authors’ Remarks356

L A - S Code for Specific Algorithms357
Chapter 1 Algorithms357
Chapter 2 Algorithms359
Chapter 3 Algorithms363
Section 4.1 Algorithms365
Section 4.2 Algorithms ,366
Section 4.3 Algorithms371
Section 4.4 Algorithms375
Chapter 5 Algorithms380
Appendix B Algorithms384

References387

List of Algorithms

CHAPTER 1
par,zo,dz(Lin,sbr)=A,B,diff
par,z(gz,sub) =g
A,B(qc,sub)=Qc
A,C(qo,sub)=Qo
A,eps(nrs,sub)=N,R,r
A,B,C,D,xo,u,T(cdsr,sub) =y
A(Reso,sub)=p,Rr,R
A,B,C,D(Lalg,sub)=p,Rr,R
A,B,C,D(sstf,sub)=p,W

CHAPTER 2
A,B,C,D,T,Eps,Isrb(CTDT,sbr)=Al,Bl,Cl,Dl
Ac,Bc,Cc,Dc,T,Eps(SRcd,sbr)=Ad,Bds,Bdr,Cd,Dds,Ddr
Ad,Bd,Cd,Dd,T,Eps(SRdc,sbr)=Ac,Bcs,Bcr,Cc,Dcs,Dcr
Ac,Bc,Cc,Dc,T,Eps(BLd,sbr)=Ad,Bd,Cd,Dd
Ad,Bd,Cd,Dd,T,Eps(BLdc,sbr)=Ac,Bc,Cc,Dc
T,Ac,Nrm,N(Eat,sbr)=Ad
T,Ac,Eps(Eatj,sub)=Ad
T,Ac,B,Nrm,N(SIcd,sbr)=Ad,Bd
T,Ac,B,Nrm,N(RIcd,sbr)=Ad,Bdo,Bdl
T,Ac,Nrm,N(EATF,sbr)=Ad,E,F
T,Ad,Egm,N,eps(Lnm,sbr)=Ac
T,Ad,Eps(Lnmj,sub)=Ac

Section C . l Introduction 303

r,A@om,sub)=R
p,A@olr,sub)=r
n(fact,sub)=f
N(fln,sub)=f
A~,B~,T,~c~c(J~c~c,su~)=A~,B~o,B~~,P
A,Bo,P,C,D,Eps(rSr4,sub)=Be,De
A,Be,P,C,De,Eps(r4rS,sub)=Bon,Dn
A,Eps(sqm,sub)=X

CHAPTER 3
A,B,C,T(str,sub)=At,Bt,Ct
Ind(SMat,sub) =Sa,Si,Sli,Sld
Q,mp,cut,Eps(Ind,sub)=Ind
A(C#,sub)=Adeg
vli,m(cind,sub)=Ind
A,B,Eps(cfpp,sbr)=Tc,Ind
A,B,Eps(cfns,sbr)=Tc,Ind

CHAPTER 4
Section 4.1

A,B,C,D,no,Eps(SSRo,sub) = Ao,Bo,Co,Do,Deg
A,B,C,D,nc,Eps(SSRc,sub)=Ac,Bc,Cc,Dc,Deg
A,B,C,D,M(SSH,sub)=H,hM
Ao,Bo,Co,Do,no(RoDN,sub) =D,N
Ac,Bc,Cc,Dc,nc(RcND,sub)=N,D

Section 4.2
d,W,Eps,nos(TFRo,sbr)=Ao,Bo,Co,Do,no,Cond
d,W,Eps,ncs(TfRc,sbr)=Ac,Bc,Cc,Dc,nc,Cond
d,W(TRon,sbr)=Ao,Bo,Co
d,W(TRcn,sbr)=Ac,Bc,Cc
d,W,Eps,nos(TFDN,sbr)=D,N,no,Cond
d,W,Eps,ncs(TFND,sbr)=N,D,nc,Cond
d,W,u,T(cdtr,sbr)=y
d,W,M(TFH,sbr)=H,hM
.A,B,C(getd,sub)=n,m,p
p,m(dpm,sub)=P
m,L(ImL,sub)=ImL
den,num(ccf,sub)=A,b,c,d
d,GD(exD,sub)=G,D
d,GD(exD,sbr)=G,D
d,G,D(fgd,sbr)=GD

304 Appendix C Introduction to L-A-S

Section 4.3
H,Eps,nos(HRo,sbr)=Ao,Bo,Co,Do,no,Cond
H,Eps,ncs(HRc,sbr) =Ac,Bc,Cc,Dc,nc,Cond
H,Eps(HTF,sbr)=d,W
H,Eps(HTFp,sbr)=d,W
H,Eps(HTFm,sbr)=d,W
H,Eps,nos(HDN,sbr)=D,N,no,Cond
H,Eps,ncs(HND,sbr)=N,D,nc,Cond
u,H(uhy,sub)=y
H,f(Hf,sub)=Hf

Section 4.4
D,N,Eps(DNRo,sub)=Ao,Bo,Co,Do,no
N,D,Eps(NDRc,sub)=Ac,Bc,Cc,Dc,nc
D,N,M(DNH,sub)=H,hM
N,D,M(NDH,sub)=H,hM
D,N,Eps(DNTf,sbr)=d,W
N,D,Eps(NDTf,sbr)=d,W
no,n,f(Tscl,sub)=S
D,N,Eps,ncs(DNRc,sbr)=Ac,Bc,Cc,Dc,nc,Cond
N,D,Eps,nos(NDRo,sbr)=Ao,Bo,Co,Do,no,Cond
Dl,Nl,Eps,ncs@NND,sbr)=Nr,Dr,nc,Cond
Nr,Dr,Eps,nos(NDDN,sbr)=Dl,Nl,no,Cond

CHAPTER 5
u,y,Eps,nos(uyRo,sbr)=Ao,Bo,Co,Do,no,xo,Cond
u,y,Eps,nos(uyDN,sbr)=D,N,no,Cond
u,y,Eps,nos(uyTF,sbr)=dtt,Wt,no,C#
N(pmt,sub)=Nt
G,Eps(Elzc,sub)=Gr
u,y,M(uyh,sub)=H,hM
Do,Eps(ComD,sbr)=comd,F

APPENDIX B
A,B,C,Eps(Min,sub)=Ao,Bo,Co,Tt
A,B,C,Eps(Min,sbr)=Am,Bm,Cm
A,B,C,Eps(Kald,sbr)=Ad,Bd,Cd,T,dim
R,Q,Eps(InOu,sub)=Qr,Qou
A,Egv,Eps(ModM,sbr)=P
A,sj,oj,Eps(ChaC,sbr)=Pj
A,sig,Eps(ChaR,sbr)=Pj
A,B,C,im,Eps(COts,sbr)=Resc,Reso,xxc,xxo

Section C. 1 Introduction 305

c.1 Introduction

The Linear Algebra and Systems (L-A-S) language is a high level interactive
conversational language useful for the analysis and design of linear control systems.
L-A-S is intended to be a handy, easy-to-use tool for verifying an analysis technique
or a control design. Some of its unique features are:

1. As the user types and executes L-A-S commands, they are stored in the
L-A-S interpreter memory, allowing them to be reexecuted within the same
session using the same or different input.

2. Within the same session, the stored sequence of commands can be:
a. -saved to disk for future execution,
b. “reexecuted sequentially from the first command to the last,
c. -reexecuted starting from any command in the sequence,
d. The user can enter the TRACE mode where commands are executed

e. During the reexecution, it is possible to stop the sequential execution
one at a time.

at any point in the sequence.

3. When the execution of an L-A-S program is stopped, it is possible to:
a. -display and/or change any variable previously defined,
b. -type and execute any additional command using previously defined

c. --define new variables,
d. -modify any existing command,
e. -delete any existing command,
f. -include new commands,
g. “reexecute existing commands individually,
h. -resume normal sequential execution of the modified sequence of

i. -save the modified sequence to disk,
j. “declare the sequence as an L-A-S subroutine, which allows the

sequence to be invoked in a later session simply by specifying the
name of the subroutine as well as the names of inputloutput variables
to be used/defined by the subroutine, and

variables,

commands,

k. -obtain on-line help on any aspect of L-A-S usage.

These features make the L-A-S software/language a unique computational
environment for quick and user-friendly development and testing of a wide variety
of algorithms in control, systems and signals areas. Once the algorithm has been
tested and developed using L-A-S, it could later be easily implemented and repro-
grammed using any programming language or CAD package. Also noteworthy is

306 Appendix C Introduction to L-A-S

the availability of interface programs to exchange data between L-A-S and other
engineering design/analysis packages. This is discussed later in this appendix.

All of the more than 200 existing L-A-S commands and subroutines are
based on reliable public domain software packages, such as Eispack and Linpack,
or on numerically proven algorithms published in technical journals. These
commands and subroutines include:

standard matrix manipulation
array definition and plotting (including 3-dimensional plotting)
classical SISO system analysis and design procedures (Bode,
Nyquist, Root-Locus)
solution of differential and difference equations
calculation of system responses in frequency domain
Fast Fourier transforms
digital filter design
optimal control
solution of Riccati and Lyapunov matrix equations
controllability and observability tests
state and output feedback pole-placement in MIMO systems
singular value decomposition
similarity transformation
eigenvalue and eigenvector calculation
full or reduced order observer design
LQR, LQG, and LQG/LTR design
minimal realization
system identification
system linearization
transformation from continuous-time system representation to an
equivalent discrete-time representation and vice versa
polynomial matrix manipulation
operations with linear spaces and subspaces

L-A-S lends itself to simple modification of existing subroutines or
developement and inclusion of user written subroutines. The on-line help facility
contains quick information about the syntax and semantics of all L-A-S commands
and subroutines. This appendix contains more in-depth descriptions of the L-A-S
commands as well as helpful examples of their use.

LA-S Language: The L-A-S language is similar to reverse Polish notation in
that inputs to a function are entered first, then the operator or function followed by
an equals sign and, then, the output variables. As each statement is entered, the
operation defined by that statement is performed prior to allowing the user to input
the next statement.

Section C. l Introduction 307

Consider the following simple example program consisting of one comment
line and 7 L-A-S statements:

- ExampCl
/ 1 ~ / 2 l 3 1 I (dma,t)=B
, l/ I , 112 I I -3 (dma) =A

A,B(+)=C
C (-1 , t) =Ci , det
Ci,C(*)=D
Ci,B(-) ,A(+,t)=Res
C,Ci,D,Res(out)=

The first line, Statement 1, is a comment. It usually contains a program name,
which, in turn, corresponds to the file name with the extension ".DPF" containing
this program. The next two statements, 2 and 3, define matrices A and B given by:

i o 1 0 ; I O 0 0 ;

; 2 0 - 3 ; 1 2 3 0 ;
A = I O 0 l ! ; B = I O 1 O I

The above matrices A and B could also be defined by the following more obvious,
but more involved statements:

Q11,0/0,0,1/2,0,-3(dma)=A
olo,o/o,l,o/2,3,0(dma)=B

It is our feeling that the versions which avoid entering of both leading and trailing
zeros are more convenient, particularly for more experienced users. We believe that
the readers will soon become proficient in L-A-S and that they will prefer to use a
more concise version of the DMA (define matrix) operator. Note that in the
suggested version of the DMA operator, instead of entering zeros explicitly, it
suffice to enter a comma "," as an element delimiter and the slash "P' as a row
delimiter.

In Statement 4 the matrices A and B are added to form matrix C. Statement
5 calculates the inverse of matrix C and its determinant. The results are assigned
to Ci and det, respectively. Multiplying Ci with C, Statement 6 places the result,
the identity matrix, in D. Statement 7 subtracts matrix B from Ci and then adds
matrix A to the difference. The result is placed in matrix Res. Finally, Statement
8 types matrices C, Ci, D and Res to the screen.

The results obtained on the screen are as follows:

C
.ooo 1.000 .ooo
.ooo 1.000 1.000

4.000 3.000 -3.000

308 Appendix C Introduction to L-A-S

Ci
-1.500 .750 .250
1.000 .000 .000

-1.000 1.000 .000

D
1.000 .000 .000
.000 1.000 .000
.000 .000 1.000

Res
-1.500 1.750 .250
1.000 -1.000 1.000

-1.000 -2.000 -3.000

Organization of LA-S: L-A-S consists of two different types of functions.
The first, called interpreter commands (IC) are usually initiated by typing the three,
or four, letter command, or its abbreviated version consisting of one, or two,
characters. L-A-S then performs some task which allows the user to view, change
or otherwise manipulate the current L-A-S program and data. The second type of
statement is called an operaor sraremenf (OS). Operator statements have the
following structure:

<label>:<inp-field>(<op-field>)=<out-field>

The terminal symbols ":", "(", ")" and "=" are used as field delimiters.

The label, (<label>) which is optional, is used in conjunction with program
control operators for iterative and recursive calculations.

The input-field, (<inp-f ield>), contains variable names to be used by the
operator.

The operator-field, (<op-field>), contains the mnemonic name of the
function to be performed. An operator field is always enclosed in parentheses.

The output-field, (<out-f ield>), contains the variable names to which the
outputs of the operator are assigned.

Statements 2 through 6 and 8 in the previous example program are examples
of single operator sfatements (SOS), i.e. each statement contains only one operator.
Statement 7 shows the use of multiple operator statements (MOS) since it contains
more than one operator.

Note that the operator fields in Statements 3, 5 and 7, in addition to the
operator name, contain the operator flag "t", separated by comma. If used, the flag

Section C. l Introduction 309

"t" instructs the L-A-S interpreter to display on screen the results of this operator.
In addition to the flag "t", it is also possible to use either:

"El , IILII or IIJJEII (or llell , "1" or "1,e")

The functions of these operator flags are, respectively:

0 -to display results on screen in "E" scientific format with 5

0 -to print results on the specified print file
0 -to print results on the specified print file in "E" format

"significant digits

Other options are described in the on-line Help file.

Multiple Operator Statements: To emphasize the usefulness of the multiple
operator statement, (MOS), and to illustrate the use of some other L-A-S operators,
consider the task of building the (n x n) matrix A,, Eq.(3.13) defined by:

AC =

0 0 1 ... 0 I
I

. I

- 1

- 1
0 0 0 ... 1 ;

-a, -a, ... -%-l I

given an (n+ 1)-dimensional row a = I U, a, . , . U,,-, a, containing the coefficients
U, of the characteristic polynomial a@), u(s) = det(s1-Ac), of Ac.

Thus, given the row a, the matrix Ac may be built by the following two
L-A-S multiple operator statements, see the L-A-S subroutine CCF.SUB:

1 a (cdi) (dec) =n
2 n(dec) ,n(dim) (shr) ,a,n(ctc) ,-l(s*) (rti,t)=Ac

Instead of these two MOS, the matrix Ac may also be built by the following
sequence of single operator stutements (SOS):

7
8

a (cdi) =T1
T1 (dec) =n
n (dec) =T1
Tl,n(dim)=T2
T2 (shr) =T3
a,n(ctc)=T4

TI,-l(S*)=TS
T3,TS(rti,t)=Ac

Extract column dimension of a =$ T1
Decrement T1 =$ n
Decrement n =$ T1
Define Identity matrix IT,,n =) T2
Shift T2 by one column to right =) T3
Cut (partition) by column a =) T4; T4
has n columns
Multiply T4 by the scalar -1 =) T5
Concatenate T3 and T5 (row tie) by
rows =) Ac and display result on
screen

310 Appendix C Introduction to L-A-S

Each MOS defines a number of temporary variables Ti, i=[l,k-l], k being
equal to the number of operators in a MOS. After completion of a MOS, these
variables are deleted and they are not available for further use. Up to ten operators
may be combined in a MOS. Only variables appearing in the operator fields may
be used in input fields of subsequent statements.

To better understand the implementation and use of MOS, consider once
more the MOS 2 discussed above. In accordance with the algorithm representation
given in the Preface, each operator may be represented by a block which performs
a specific calculation. In other words, the MOS 2 from before may be interpreted
by the sequence of calculations represented in Fig. C. 1. The variables Ti, i=[l,5],
appearing in Fig. C. 1, are referred to as generalized variables <gen-var>. The
syntax of a generalized variable may be represented by the following recursive
definition:
<gen-var> := <inp-field> (<op-field>)
<inp-field> := <blank>l<inp-arg>l<gen-var>l<inp-arg>

<inp-field>l<gen-var> , <inp-field>

..

..
Figure C. 1. Calculation Sequence for MOS AC

where: <blank> indicates a blank space,
drip-arg> indicates an input argument, and

I 'l represents a possible option.

In other words, an input field "through" an operator, i.e.

(cop-f ield>)

Section C.l Introduction 311

defines a generalized variable <gen-var>, consisting of a "list" of both

<inp-arg> and <gen-var>

* ope,<operator-name>

Also, recall that some of operators used in defining a generalized variable may have
more than one output argument, as is the case in our example with the CTC
operator. By the very definition of the MOS and the concept of a generalized
variable, it should be realized that a generalized variable always corresponds to the
first output argument of the operator used.

Post-Fix Notation: To get full benefit from the L-A-S software, users are
urged to master the reverse Polish (post-fix) notation and the structure and
operation of the MOS.

To assist readers in this task, let us review briefly the basic characteristics
of the conventional "in-fix" notation.

If it is desired to add (or multiply) two numbers (or matrices), say A and
B, and to place the result in C, the conventional in-fix notation is:

C = A + E

where the opertor "+", addition, is placed in between the input arguments A and
B. The result of the opertion, variable C, is on the left, separated from the
structure "A + B" by the delimiter "= ' l , the equal sign.

This in-fix notation works fine for "binary" operators, i.e. for operators
requiring two input arguments. The operator can easily be placed between these
two input arguments. In the case of "unary" operators, operators requiring only
one input argument, say matrix transposition or inversion, it is customary to use
superscripts as "T and "-l", i.e.

AT and B-'

leading, for instance, to:
D = A" + B'

The real problem occurs in scientific calculations where one is faced with "ternary"
and, more generally,"n-nary" operators (algorithms) requiring three or more input
arguments. As an example of a ternary operator consider building of the con-

312 Appendix C Introduction to L-A-S

trollability matrix Q,, Definition 1.4, Section 1.3.4, which, in general, depends on
three input arguments {A,B,k}, i.e.:

Q, = [B I AB I I Ak"B] (C.2)

where the integer k satisfies 1 5 k 5 n.
A good example of an "n-nary" operator, for n=4, is the algorithm L W ,

natural log of a square matrix A, Eq.(2.63), Section 2.3.1, which, as is explained
there, depends on the following four input arguments: (A, T, N, X,,,} and is given
by:

N

h (A) -1: C (I - A"')'
T i - 1 i

where r is related to A and X,,, by Eq.(2.64).
The in-fix notation "followers" attempted to resolve these notational

problems by resorting to the concept of the "subroutine" or "macro" widely used
by various computer languages. Thus, the extensions of the in-fix notation to n-ary
operators is:

Q, = Qc(A,B,kj and In A = LNM(A,T,N,XJ

in the cases of Eq~(c .2) and (C.3), respectively.

either:
Consider now the unlikely situation for which it is required to calculate

-the product of QC and In A, or even
"just In A where A contains the first n columns of QC in Eq(C.2).

Then, the in-fix approach, provided that all input arguments are already defined,
would be, for example:

QC = Qc(AtB,k)
In A = LNM(A,T,N,X,)
Res1 = QC * In A

in the first case, and

QC = Qc(A,B,k)
QC1 = first n columns from QC
Res2 = LNM(Qcl,T,N,X,)

in the second case. However, the post-fix, or reverse Polish, notation offers the
following unified notation:

A,B,k(Qc) ,A,T,N,h,(LNM) (*)=Res1
or A,B,k(qc) ,n(ctc) ,T,N,X,(LNM)=Res2

Section C.l Introduction 313

in the above two considered cases, provided, of course, that:

ternary operator A,B,k(Qc)=Tl or A,B,k(Qc) =) QC
binary operator Tl,n(ctc)=T2 or X,n(ctc) =. Xn and
n-nary, for n=4, operator n,N,T,A,,,,,(LNM) =Res or A,N,T,X(LNM) =) Ac

are defined and available. Similarly, a version of the in-fix expression for D, given
by Eq.(C.l), is:

D = A" + inv(A)

while the post-fix notation becomes:
A(t),B(-l)(+)=D

where symbols (t), (-1) and (+) denote:

-unary operator of matrix transposition: (t)
-unary operator of matrix inversion (-1)
-binary operator of matrix addition (+)

It is worth mentioning at this point that the way the algorithms are described in this
book (see the Glossary) "mimics" the post-fix notation discussed here. This is the
same notation adopted by Hewlett-Packard for their calculators.

Output Operator Options: Some of the useful options of the operator
(out) = will be briefly reviewed here. The versions of the operator (out) = given
below:

Res (out) =
Res(out,t,O)=
Res(out,t,l)=
Res(out,t,2)=
Res (out, e) =

display the previously mentioned matrix Res on the screen in the following forms:

Res
-1.500 1.750 .250
1.000 -1.000 1.000

-1,000 -2.000 -3.000

Res
-2. 2. 0.
1. -1. 1.
-1. -2. -3.

314 Appendix C Introduction to L-A-S

Res
-1.5 1.8 .3
1.0 -1.0 1.0
-1.0 -2.0 -3.0

Res
-1.50 1.75 .25
1.00 -1.00 1.00

-1.00 -2.00 -3.00

Res
-.15000E+01 .17500E+01 .25000E+00
.10000E+01 -.10000E+01 .10000E+01

-.10000E+01 -.20000E+01 -.30000E+01

On the other hand, the versions:

A(out,L)=
A(out,L,O)=
A(out,L,l)=
A(out,L,2)=
A(out,L,e)=

print the matrix Res on the specified print file in the same forms as given above.

The versions:
Res(out,t,3)= and Res(out) =

as well as
Res(out,L,3)= and Res(out,L)=

are equivalent. More details on these and other options are available in the Help
file.

Getting Started: L-A-S software may be accessed in any subdirectory provided
that in this subdirectory the file DEFDSK has been copied from the master
subdirectory, e.g. C:\LAS\. To begin an L-A-S session, simply type LAS, then,
after two screens, the L-A-S interpreter issues a prompt: "*", informing the user
that it is ready to accept L-A-S commands. Both interpreter commands and
operator statements may be typed either by upper or lower case letters, However,
the L-A-S interpreter makes the distinction between upper and lower cases in
variable names and statement labels.

During an L-A-S session, DOS commands, such as changing directories,

Section C.l Introduction 315

etc., may be sent to the command processor by first typing an exclaimation mark
"!" and then the system command. This allows file manipulation without exiting
L-A-S.

On-line help is available on every aspect of L-A-S by typing:

HELP (for help subjects)
HELP,ALL (for general help on the L-A-S interpreter)
HELP,OPE (for a brief description of all operators)
HELP,IC (for a brief description of all interpreter commands)
HELP,SUB (for a brief description of available subroutines)
HELP,EXA (for example programs)
HELP,LIM (for a description of the limitations of L-A-S)

To wipe out all existing variables and program statements and reset the
program controls to their default values during an L-A-S session, simply type BEG
(B) (for BEGIN).

To end the current session of L-A-S type either END or QUIT (Q).

Program Creation: An L-A-S program may be either read in from disk or
typed in interactively on the keyboard by typing a sequence of operator statements.
All operator statements which are typed are memorized and will remain in the
interpreter memory until they are manually removed or the session is ended.
Therefore, the user may type in a sequence of statements to solve a problem with
particular input data, recieve the output, change or modify the sequence of
statements if desired, and reexecute the same sequence of operator statements with
the same input data or different input data. Note that statements which evoke error
messages are not saved in the current program.

Another aspect of program creation is the echo feature in L-A-S. During the
current L-A-S session, all user input is written to a file named ECHO.DAT. This
file is erased at the beginning of each new L-A-S session. The content of the
ECHO.DAT file can be extremely useful by allowing the user to review the entire
L-A-S session after the session has ended. Also, the content of this file may be
used in conjunction with the interpreter command FILE to repeat the previously
executed L-A-S session exactly.

Also note that all printer output from L-A-S goes to a specified "print file"
rather than directly to the printer. The default print file name is LASR but can be
changed. The user can access the print file after the current L-A-S session to
modify or view the contents using any ASCII text editor. This feature also enables
the user to write some output to the print file, rename the default print file, and
then view the previously specified print file from within the current L-A-S session.
Be forewarned that the current default print file may not be viewed while it is the
default. This is inherently obvious since a file cannot be opened if it is already
opened.

316 Appendix C Introduction to L-A-S

Data Types: Scalars, vectors, matrices, polynamials, polynomial matrices and
character variables may be defined in L-A-S. All variable names however are
required to be four characters long or less.

Simple Example: A simple example is included next to illustrate the use of L-
A-S. Each OS and IC is reviewed. The following L-A-S program, named Sim-Ex
(Simple Example), illustrates some basic L-A-S features.

1 S im-Ex

3 Matrix-definition-Inversion
2 0,1,0/0,0,1/-4,-6,-4(dma)=Ao

4 Eigenvalues-&-Display
5 a:,l/,,l/-4,-6,-4(dma,t)=A
6 Ao,A(-,t)=difA

8 A (egv, t) =eg

-

-
-

7 A (-1) =Ai

9 eg(out,t,l)=
10 - Enter-nli-t-nty
11 and- j , a
12 Tsto) =
13 A (t) ,A(*,e)=AtA
14 AtA(out,L,2)=
15 A, eg, {Data} (wbf) =

Statements 1, 3, 4, 10 and 11 are comments containing various
information and suggestions.
Statements 2 and 5 define equal (3 x 3) matrices Ao and A.
Statement 5 has the label "a".
Statement 6 calculates Ao - A * difA; which is a zero matrix.
Statement 7 calculates the inverse of A; A' =) Ai.
Statement 8 calculates and displays eigenvalues of A; A(Egv) 3 eg.
Statement 9 displays eg with only one decimal digit.
Statement 12 is a "dummy," but a very useful, "STOP" statement.
Statement 13 calculates ATA =) AtA, and displays result in the E
format.
Statement 14 writes the array AtA on the print file LASR with two
decimal digits.
Statement 15 stores arrays A and eg on the "Disk Binary File:"
Data.DBF. These arrays could be used as input data in any
subsequent L-A-S session.

After initiating an L-A-S session and typing the above statements one at a
time, the following should be obtained on the screen:

* - Sim-Ex

Section C.l Introduction 317

* 0,1,0/0,0,1/-4,-6,-4(d~a)=Ao

* - Matrix-definition-Inversion
* - Eigenvalues-h-Display
* a:,l/,,l/-4,-6,-4(dmart)=A

A
.ooo 1.000 .ooo
.ooo ,000 1.000

-4.000 -6.000 -4.000

* Ao,A(-,t)=difA

<A0 >- <A > = < d i f A >
.ooo .ooo .ooo
.ooo .ooo .ooo
.ooo .ooo .ooo

-3
-2.000 .ooo
-1.000 1.000
-1.000 -1.000

* eg(out,t,l)=
eg

-2.0 .o
-1.0 1.0
-1.0 -1.0

* - Enter-nli-h-nty

* - and-j ,a

* (sto)=

* A(t) ,A(*,e)=AtA

<.T1 > * <A > = < A t A >
.160003+02 .240003+02 .160003+02
.240003+02 .370003+02 .240003+02
.160003+02 .240003+02 .170003+02

* AtA(out,L,Z)=

318 Appendix C Introduction to L-A-S

* A, eg, {Data} (wbf) =

At this point it is suggested that the reader enter the following interpreter
commands and monitor their effects on the program execution, although it may
Seem boring and time consuming. After that you will grasp the basic features
which will enable you to effectively use the software in solving more complicated
problems, even without the necessity of the rest of this appendix!

* P12110
* n
* S

* y * ,a

* nl
* j,a
* l
* nt
* S

* j,a
* nl
* j,a
* t
* l
* c
* tra

* c
* S
* ntr

* b
* S
* n

* e,10,12
* e,3,4

* jra

* w,prgl

* rrprg1

(or: pro,2,10; or: program,2,10)
(or: names)
(or: status)
(or: prlisting)
(or:m jump,a; or: jump,5)
(or: nlist)

(or: list)
(or: ntype)

(or: type)

(or: con; or: continue)
(or: trace)

<three times>

(or: ntrace)
(or: wpf,prW)
(or : begin)

(or : rpf , prgl)

* P * inc,2,_New_version (or: include,2,-xxx)
* cha,l,Ex\Example (or: change,l,Ex\New-Vers.)
* Pr * w,prg2 (or: wpf,pgr2)
* P
" 4 (or: quit; or: end)

These interpreter commands perform the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

(1) "display on screen listing of Statements 2 to 10 of current L-A-S program,
(2) "display names and dimensions of currently defined arrays (matrices), i.e.:

Section C.l Introduction 319

A0 A difA Ai eg AtA
<'3, 3 > < 3 , 3 > < 3 , 3 > < 3 , 3 > < 3 , 2 > < 3 , 3 >

(3) "display information about the L-A-S interpreter "status," i.e.:

Instr,PrgC,Char,Mem,List,TyperTrace,F-keylTestl#Datal
15 15 246 0 0 0 0 0 0 51

#Matr
6

This information includes:

Instr = 15; Program in L-A-S interpreter working memory has 15 statements
PrgC = 15; Program counter is at Statement 15, i.e. at the end
Char = 246; Program has 246 characters
Mem = 0; Interpreter is in the "MEMORIZE" mode, i.e.

List = 0; Interpreter is in the "LIST" mode
Type = 0; Interpreter is in the "TYPE" mode
Trace = 0; Interpreter is in the "NO TRACE" mode
F-key = 0; Interpreter is in the "NO Function-KEY" mode
Test = 0; Interpreter is in the "NO TEST" mode
#Data = 51 ; Total number of elements in defined arrays is = 51
#Matr = 6; Total number of defined arrays is = 6

any newly typed operator statement will be added to the program

The above interpreter "modes" are the "default" modes. More details about the
modes will be given later. To continue with the above listing of ICs, number:

-writes all program statements on the print file LASR,
"jumps back to the statement with the label "a", and reexecute sequentially
all statements up to the first encountered (sto)= statement (At that point
interpreter is ready to accept any operator statement or interpreter
command.),
"sets interpreter status to the "NO LIST" mode, i.e. during subsequent
program reexecution the statements wil l not be displayed on screen,
-"jumps" to the statement with the label "a" and reexecutes down to the
'(sto)= statement, but no statement will be displayed,
-sets interpreter status back to the default "LIST" mode,
"sets interpreter status to the "NO TYPE mode, i.e. during reexecution
the operator field flags "t", "e" or "L" will be ignored,
Interpreter "status" has been changed: PrgC = 12, Mem = 1, Type = 1,
i.e. it is in "NO MEMORIZE" and "NO TYPE" modes. (Any typed
statement will only be executed, but it will not be added to the program.)
-same as (3 , but now during the reexecution, only the statements will be
displayed (All operdtor field flags are suppressed.),
-sets interpreter to the "NO LIST" mode,

Appendix C Introduction to L-A-S

-same as (7), but now neither of the operator flags are in effect, nor the
will any statements be displayed during reexection (Note that in this case
only the responses to (out)= operators are shown on the screen.),
"sets the interpreter back to the default TYPE mode,
-sets the interpreter back to the default LIST mode,
-reexecutes that part of the program after the (sto)= statement until
eiither the last statement, or the next (sto)= statement,
-sets the interpreter status to the "TRACE" mode,
-jumps back to the statement with the label "a", but now since the status
is "TRACE", only that statement will be reexecuted. (After that the inter-
preter "halts" in the same manner as if it encountered the (sto) = statement.)
At this point the user may type any operator statement or interpreter
command. I t is suggested, as a response to prompt "*'l, to type, for
instance:

* eg(out)=

* (rbf)=x,y, (Data)
* x,y(out)=
* S
* n

* AO(-l,t)=X,y

and to observe changes in the interpreter status as well as number of arrays
defined,
-the three "c" (or: continue) interpreter commands permit execution of the
three statements located below the statement labeled "a",
The program counter is now at 5+3 = 8, since Statement 5 has label "a".
"sets the interpreter back to the default "NO TRACE" mode (As a result,
all statements up to the first (sto)= statement will be reexecuted se-
quentially.),
The current L-A-S program is stored in the program file under the name
Prgl.

The file name is Prgl.DPF. "DPF" (Disk Program File) is the standard file
extension. The programs stored on DPF can be retrieved and reexecuted with the
same or different input data. Also, if desired, as will be seen below, some of the
statements may be changed, deleted, or new ones may be included.

(23) "deletes all existing arrays and statements, and all interpreter flags are reset
to their default values (This is equivalent to ending the L - A S session and
initiating another one.),

(24) -the message:

The L-A-S symbol table is empty
Insrt,Prg.C,Char,Mem,List,Type,Trace,F-key,Test,#.Data,
0 0 0 0 0 0 0 0 0 0

. Matr
0

Section C.2 A List of L-A-S Operators 321

indicates that system table is empty; neither program nor arrays have yet been
defined,

-the message:

The L-A-S symbol t a b l e is empty

indicates that no arrays have yet been defined,

-reads the program previously stored on the DPF and prepares for
reexecution and/or modifications,
"erases that part of the program between Statements 10 to 12 (Statement
numbers are automatically resequenced.),
"erases that part of the program between Statements 3 to 4,
"displays the modified program on the screen,
"adds a new comment after Statement 2 (This new statement has the
statement number 3.),
-changes the string of characters "Ex" in statement 1 to "Example",
-prints the listing of the modified program on print file LASR,
"stores the current program on DPF under the name Prg2,
-displays the current program on screen, and
"quits (ends) the current L-A-S session.

To get more insight into the L-A-S interpreter functioning, it is suggested that the
reader use any text editor to examine the contents of:

print file: LASR
and "ECHO" file: ECHO.DAT

More details about the used operator statement and interpreter commands may be
found in the Help file.

c.2 A List of LA-S Operators

MNEMONIC NAME DESCRIPTION

* Matrix (array) multiplication .
+ Matrix (array) addition
- Matrix (amy) subtraction
-1 Matrix (array) inversion (and determinant calculation)
ABS Absolute value of an (n X m) array or integer
ALT Alternate polynomial matrix forms (PMF-c & PMF-r)
ATG ArcTanGent of an (n X m) array or integer
BEL Activates computer bell

322 Appendix C Introduction to L-A-S

Calculation of the frequency (Bode) diagram
Complex function multiplication
Complex function division
Alternate PMF-c =$ PMF-r
Cascade connection of two subsystems
Define column dimension of matrix
Response of a linear continuous system in state space
Continuous roots of a discrete characteristic polynomial
Polynomial roots. (Char. poly. * Eigenvalues)
Closed loop SlSO system
Copy matrix into the polynomial matrix form (PMF)
Copy integer into a scalar variable
COS(x) of an array or integer
Controllability and observability test
Copy polynomial matrix into a genetal matrix
Matrix (array) cut by columns (partition)
Matrix (array) column concatenation (columns tie)
Matrix (array) cut by row (partition)
Cube root of an array or integer
D(s) in PMF-r (monic) =) PCI/POI
Define character string (variable)
Define column vector with integer entries
Define diagonal matrix
Simulation of nonlinear discrete systems
Decrement (n X m) array elements by one
Define file with ASCII characters
Direct fast Fourier transform
Definition of "inverted" identity matrix
Definition of an identity matrix
Time response plotting
Time response plot-only points are displayed
Plot with log (logarithmic) scale
Plot with log scale-only points are displayed
Define matrix with real number entries
Define pseudo-random matrix
Define scalars (input from terminal keyboard)
Define selector (permutation) matrix
Define vector (joins scalars into a row vector)
Definition of a zero matrix
Matrices; exp(A7), E and F; discretization
Diag matrix of f(egi); f(x) =x I exp(x) ln(x) I sq(x)
Eigenvalues =) characteristic polynomial
Eigenvalues of a square matrix
Eliminate matrices from L-A-S working memory

BOD
C*
C/
C2R
CCON
CD1
CE3
CHD
CHE
CLS
CMP
COIN
cos
COT
CPM
CTC
CTI
CTR
CUR
D2NV
DCH
DCV
DDM
DEI-DE9
DEC
DFI
DFT
DIIM
DIM
DIS
DISD
DISL
DLD
DMA
DPM
DSC
DSM
DVC
DZM
EATF
EFJF
EGC
EGV
ELM

Section C.2

ELZ
EMD
EXM
EXP
F*
F/
FCON
GS

GTS
IFJ
IFT
INC
LNP
WPM
INT
INV
J F R

JMP
KRPR
LAP
LIS
LNM
LOG
LYP
MAX
MCP
MIN
MTF
MTV
NBE
NIK
NINP

NLI
NOP
NRC
NRR
M S
NTE
NTR
NTY
NYQ

A List of L-A-S Operators 323

Eliminate last zeros in a row
Extract main diagonal from a matrix
Extract matrix (or scalar) from a matrix
The exponential function element-by-element of an array
Function multiplication
Function division
Feedback connection of two subsystems
Evaluation of G($); G = polynomial matrix; S = a+jb, a
complex number
Generate time scale
If jump (conditional jump)
Inverse fast Fourier transform
Increment (n X m) array elements by one
Matrix/array input from terminal keyboard
Matrix/array input with specified dimensions
Integer parts of (n x m) array elements
Pseudo matrix-inversion using singular value decomposition
Modal matrix and Jordan form of a square matrix without
generalized eigenvectors
Unconditional jump
Kronecker product of two matrices
Solution of the linear matrix Lyapunov equation
Enter list mode
Ln(A) of an (n X n) array (square matrix)
Ln(x), element-by-element, of an (n x m) array
Solution of the matrix e q . AX + XB = C
Maximum element of an array
Matrix copy
Determination of the minimal realization (Hessenberg)
Calculation of the matrix transfer function
Matrix to vector transformation
Deactivates computer bell
Frequency (Nyquist) response plotting (x-y plot)
Define column dimension of a polynomial matrix in PMF,
i.e. # of inputs
No list-exit list node
No operation
Matrix norm and norms of each column
Matrix norm and norms of each row
Null- ,range-space and rank
Exit test mode
Exit trace mode
No type-exit type mode
Calculation of the frequency (Nyquist) diagram

324 Appendix C Introduction to L 4 - S

Ordering of vector elements
Display the results on the terminal screen
Print the results to the print file
Polynomial multiplication
Polynomial addition
Inversion of polynomial matrix
T h r e e dimensional (3-D) plot
Print character variables
Parallel connection of two subsystems
Print file (write a file to the print file)
Printer plot to print file
Printer plot on terminal
Polynomial matrix addition
Alternate PMF-c * polynomial matrix form (PMF)
Alternate PMF-r * polynomial matrix form (PMF)
Polynomial matrix input from terminal keyboard
Polynomial matrix multiplication
Polynomial normalization (reduction to monic form)
Pseudo-observabilitykontrollability indices
Polynomial reduction using C-H Theorem
Polynomial of a square matrix A; c(A) =) R
Polynomial reduction to the coprime form
Polar to rectangular transformation
Controllability matrix of the pair {A,B}
Observability matrix of the pair {A,C}
Alternate PMF-r PMF-c
Read binary file; read data from a binary data file
Response of a continuous system in state space
Response of a continuous system given by a transfer
function matrix
Read data file; reading from an ASCII data file
Define row dimension of matrix
Response of a discrete system in state space
Response of a discrete system given by a transfer function
matrix
Solution of the algebraic matrix Riccati equation using
eigenvector Hamiltonian approach
Rank calculation and separation of linearly independent and
dependent columns
Rank calculation and separation of linearly independent and
dependent rows
Root-locus calculation
Replace matrix part
Rectangular to polar transformation

ORD
OUT
OuT,L
P*
P+
P-l
P3D
PCH
PCON
PFI
PLL
PLT
PMA
PMFC
PMFR
PM1
P"
PNR
POI
POLR
POM
PRD
PRT
QC
Q0
R2C
RBF
RCS
RCT

RDF
RDI
RDS
RDT

RIC

RKC

RKR

RLC
RMP
RPT

Section C.2

RTI
S*
SI
SIX
SHD
SHL
SHR
SHU
SIN
SLE
SQM
SQR
SSTF
STEP
ST0
STR
svc
SVD
T
TCH
TES
TFI
TFSS
TIME
TOEP
TR
TRA
TVC

A List of L-A-S Operators

TXT,L,fcrr
TXT,T,fext
TYP
TZS
VTM
WBF
WDF
XLAB
XYP
YLAB
YXSC

Matrix (array) row concatenation (tie by rows)
Matrix (array) multiplication by a scalar
Matrix (array) division by a scalar
(sinx)/x of an array or integer
Matrix (array) shift down one row
Matrix (array) shift left one column
Matrix (array) shift right one column
Matrix (array) shift up one row
sin(x) of an array or integer
Solution of linear equations
Square root of a square matrix
Square root of an array or integer
Calculation of the matrix transfer function.
Define an array with all entries equal to one
Stop program execution
State space transfornation
Singular-value decomposition of complex matrix
Singular-value decomposition
Matrix (array) transposition
Type character variables
Enter test mode-not to be used by L-A-S users
Type file with ASCII characters
Transfer function matrix * state space (Hessenberg)
Get time in seconds since beginning of L-A-S session
Building a Toeplitz matrix
Trace of a matrix (array)
Enter trace mode
Transforms (partitions) row vector into scalars
Writes arbitrary text to the print file
Displays arbitrary text on the terminal screen
Type-enter type mode
Transmission zeros (generalized eigenvalue problem)
Vector to matrix transformation
Write binary file; write data to a binary data file
Write data file; write to an ASCII data file
Label x-axis of the plot
x-y Plotting (Nyquist and root-locus)
Label y-axis of the plot
Set scales for y- and x-axes of a plot

325

Detailed syntactical description of each operator statement may be obtained by
typing HELP,xyz; where xyz stands for the mnemonic name of an operator
statement.

326 Appendix C Introduction to L-A-S

c.3 L-A-S Subroutines

In addition to the L-A-S operators listed above, the L-A-S software contains
large number of "macros," referred to as L-A-S subroutines. In the software there
are two type of subroutine, namely:

0 -subroutines of the type "SUB" and
"subroutines of the type "SBR"

Both subroutine types have a syntax similar to the syntax of L-A-S operators. They
consist of a sequence of L-A-S statements, but can be executed by referring to the
subroutine name only, i.e.

<label>:<inp-field>(<sub-n>,SUB)=<out-field, or
<label>:<inp-field>((sbr-n>,SBR)=<out-field>

for "SUB" and "SBR" subroutine, respectively, where < sub-n> and <sbr-n>
are subroutine names assigned during the subroutine definition.

Note that the only difference with respect to an L-A-S operator statement is
that the "operator field," in addition to the name, contains also a specifier:

, SUB for a IISUB" subroutine and
, SBR for a 11SBR8t subroutine,

separated by a comma ",".
All current L-A-S subroutines reside in L-A-S master subdirectories:

C:\LAS\SUB and C:\LAS\SBR

respectively.
Once in an L-A-S session, a subroutine may be checked by:

* r I <sub-n>. SUB or
* r, (sbr-n>.SBR and
* P or program,nlIn2

By checking listings of available subroutines, it is relatively easy to figure out how
it is possible to define other subroutine solving a specific analysis/design problem.

The information about names and input/output arguments of currently
available subroutines may be obtained by the IC:

* h, sub

It is worth mentioning that subroutines of the "SUB" type can not call another
subroutine. Also operators (STO)= and (DMA)= are not permitted. On the
other hand, subroutines of the type "SBR" may contain calls to other defined
subroutines of either type. A subroutine of type "SBR" can even call itself, thus
is capable performing recursive calculations very effectively. In return, execution
of subroutines of the type "SUB" is slightly shorter than that of "SBR" subroutines.

Section C.3 L-A-S Subroutines 327

Omitting Input, Output and Operator Fields: The number of elements
in the input and output fields is determined by the operator statement syntax, see
the Help file for more details. If the input or output fields contain an insufficient
number of array names, the L-A-S Interpreter issues an appropriate error message.
However, if the entire field is omitted, then the L-A-S interpreter prompts the user
to enter the desired array names. This is convenient for performing calculations
with different input data and/or to define different data using the single statement.
As an example, consider that an (n x n) matrix A and three (n X m) matrices B1,
B2 and B3 are already defined. Then, for instance, the operator statement:

A, B1 (QC) =QC1

calculates the controllability matrix Q, of the pair {A,Bl). However, if the
following "incomplete" statement is typed:

(QC)=

then, at execution time, the user has an opportunity to specify the arrays to be used
by the operator, as well as the names of the arrays containing the results. In the
above case, if:

At B3 is typed for the input field, and
Q3 is typed for output field

then, of course, the operator QC calculates the controllability matrix Q3 of the pair
{A,B3}. This idea has been extended to the operator field as well. Thus, the
following "completely incomplete" statement:

o =
may be considered as a "general" operator statement. by which any operator using
any input arrays and defining any output array may be executed. It may be said
that in this case L-A-S enters into a "question and answer" mode, which
experienced users tend to avoid. Note that whenever in the current L-A-S program
an "incompletely" specified operator statement is to be executed, the user has to
specify the missing field (input, operator or output).

Using Integers in Input Fields: Operators, as well as subroutines of the
type "SUB" requiring scalars as input arguments, may, if the scalar is equal to an
integer, be executed by specifying the integer directly in the input field. For
example, if n=2 and m=3, then the statement:

n,m(Dim)= I

defines the identity matrix
1 0

1 = [0 1 O 1 0

328 Appendix C Introduction to L-A-S

In the cases Of 2,3(Dim)=I1 , or n,3(Dim)=I2 , etc., the Same results are
obtained. Similarly, the "SUB" subroutine:

* n,m,p(RbCB,sub)=A,B,C,D

defines an arbitrary, random nu order MIMO state space representation
R={A,B,C,D} with m inputs and p outputs. Thus, if the following statement is
typed: * 5,3,2(AbCd,SUb)=Al,Bl,Cl,Dl

then R1 ={Al,Bl,Cl,Dl} corresponds to a S" order MIMO system with 3 inputs
and 2 outputs. Note that this is not applicable to subroutines of the type "SBR."

Interactive Data Definition: So far, as operators for defining data, only the
operators DMA and RBF have been mentioned. In order to allow more flexibility
in the L-A-S software, there are several interactive data definition operators. At
execution time these operators prompt user to enter desired data, which is very
useful for checking algorithms with different input data. An example illustrating
the two most commonly used input operators is given below:

* (dsc) =k
* k, 3 (inpm) =A

The operator DSC (Define Scalar) types the name "k" on the screen and prompts
user to specify the scalar k, while the INF" (Input Matrix) operator, in the above
statement types the name "A" on the screen and prompts user to type elements of
the (k x 3) matrix A. Assuming that k = 3, then, if the following matrix A is to
be defined:

1.0 0.0 2.5
A = 1.2~10'~ 0.0 0.0

0.0 -5.5 0.0

the user has to type:

1, ,2.5 <return>
1.2e-5 <return>
, - 5 . 5 <return>

or :
1,0,2.5 <return> ,
0.000012,0,0 <return>
0,-5.5,O <return>

As was mentioned earlier, see Example C. 1, Section C. 1, the first version which
avoids entering of both leading and trailing zeros is considered more convenient.
For better readability arbitrary number of blank characters may be added, if
desired.

Section C.3 L-A-S Subroutines 329

Default Values for L-A-S Operators: Some L-A-S operators may be
executed using a lesser number of input arguments than the maximum number
defined in the Help file. In this case for unspecified input arguments the default
values are used. The information about the default values is contained in the Help
file. To clarify this feature consider some examples:

The statements:

* A,B(QC)=QC
* A,B,k(Qc)=QCl

calculate:

QC = I B I A B I ...
Qcl= I B I A B I ... I

I An-m B I

I Ak-1 B I

respectively. In other words, the default value of the third argument in the Qc
operator is k = n-m+ 1.

The statements:

* A(sstf) = d
* A,B,C(Sstf)=d,WSp
* A,B,C,D(SStf)=d,W

calculate row d, and matrices Wsp and W in PMF representing d(z) = det(zI-A),
Wsp(z) = C adj(z1-A) B and W(z) = C adj(z1-A) B + d(z) D.

In other words, the default value for the fourth argument in operator SSTF
is a zero matrix. Also, if only one input argument is specified, then SSTF
calculates only the row d.

The statement:

* T,Ac,Nrm,N(Eatf)=AdfE,F

calculates matrices Ad, E and F, see Chapter 2 , using the specified values for Nnn
and N, while the statement

* T,Ac(Eatf) = Adl,El,Fl
uses for the third and fourth arguments the default values given by: N m = 0.5 and
N = 16. Let us mention that the statement:

* T,Ac(Eatf)=Ad

defines only the matrix Ad.
The statement:

* TfAd,EgItI,N,EpS(LNI)=AC

calculates Ac = Ln(Ad)/T, seechapter 2, using for Egm, Nand Eps the specified
values. The statement:

* T,Ad (Lnm) =Acl

calculates Acl using for Egm and N the default values given by: Egm=O.25 and
N=36, while Eps is either equal to 1 0 l 6 or to a value set previously by the IC Eps.

330 Appendix C Introduction to L-A-S

The statement:
* XO,N,T,ApBpU(CSR)=X,tV

calculates a continuous system response to both initial condition x0 and input u(t),
i.e. a solution x(t) of the linear differential equation:

k(r) = Ax@) + B u(r) , x(0) = x0

for 0 S t 5 T, in N points, with the N dimensional column tv equal to:

tv = [0 dr 2dr ... (N-l)& I T , dr=- T
(N - 1)

On the other hand:
* XO,N,T,A,B(CSR)=XS

defines xs(t) as the system response to a step input and x0, while
* XO,N,T,A(CSR)=Xi

calculates xi@) as the response to initial conditions only, i.e. assumes that both B
and U are zero. Specific details about default values are given in Help file.

Number of Output Arguments: If an operator statement has more than one
output argument, then it not always necessary to specify all outputs arguments.
The operator defines only the specified output variables.

Consider, for example:

* A(Jfr)=M,Aj
* A(Jfr)=M

In the first version both the modal matrix M and the corresponding diagonal Jordan
form Aj of the diaganaliznhle square matrix A are defined, while the second
version defines only the modal matrix M.

Similarly, given matrices A and B, the following statements:

* A,k(ctc)=Al,AZ
* B,k(ctr)=Bl,B2

partition (cut by columns/rows) the matrices A and B into
I B1

A =) I A 1 1 A 2 I and B =) I - - l

I B2 I
I 1

where A1 and B1 have k columns and rows, respectively, while the statements:

* A, k (eta) =A1
* B,k(Ctr)=Bl

Section C.3 L-A-S Subroutines 331

define only A1 and B1. Note that if k = 0, then A 1 has zero columns and B1 has
zero rows. Also, if only one input argument is specified, both operators prompt
the user to specify the value of k.

&fining Matrices in the P m : Since this text deals extensively with
polynomial matrices, possible ways of defining and manipulating matrices in the
PMF are important.

Consider two polynomial matrices W and V given by:

S 2 + 3 s

S' 2+3s S+&'
1 +S s+4s2

Obviously W is (2 x 3), while V is (3 x 2). Some polynomial elements W&) in
W(s) have been selected to be equal to some elements in V@). The non-standard,
but nevertheless convenient way of defining matrices W and V in PMF, which
allows their manipulation in L-A-S is as follows:

Define a gencruf (6 x 3) matrix X:

I O 1 0 ;
1 0 0 1 1

I 1 0 1 ;
x = ; 2 3 0 ;

I - 1 1 0 :
1 0 1 4 1

which, of course, can be done by:

* , l/,, Ill,, 1/2,3/-1,1/, 1 , 4 (dma, t)=X

Then, using the CMP operator (Copy Matrix into PMF), i.e.

* X,3(cmp)=W
* X, 2 (cmp) =V

defines W and V to be in PMF. To realize what the operator CMP actually does,
note that the following OUT statement:

* X,W,V(out,t,2)=

displays on the screen:

332 Appendix C Introduction to L-A-S

..
A

.oo 1.00 . 00

.oo .oo 1.00
1.00 -00 1 .oo
2 . 0 0 3.00 .oo
-1.00 1.00 .oo

.oo 1.00 4 . 0 0

W
.oo 1.00 .oo
.oo .oo 1.00

1.00 .oo 1.00
2 . 0 0 3.00 .oo
-1.00 1.00 .oo

.oo 1.00 4.00
Polynomial matrix <W > has 3 columns

V
.oo 1.00 .oo
.oo .oo 1.00

1.00 .oo 1.00
2 . 0 0 3.00 .oo
-1.00 1.00 .oo

.oo 1.00 4.00
Polynomial matrix <V > has 2 columns

In other words, the operator CMP "copies" X into W and V but, at the same time,
declares them as matrices in PMF, i.e. matrices whose rows contain the coefficients
of the polynomials WO($) and vij(s) in (2 X 3) and (3 X 2) polynomial matrices
W(s) and V@), respectively. This allows matrices in PMF to be used as input
arguments in the "polynomial matrix" manipulation operators and subroutines, such
as:
PMA, P", P-l , ALT, TFSS, CCON, FCON, PCON, RCT, RDT,

PMT.SUB , DNRo.SUB, NDRo.SBR, etc.
For instance, the sequence:

* w,v (pmm) =WV
* W (pmt, sub) =wt
* WV(p-l)=WVad,det
* Wt , V (pma) =WtV
* WV,Wt,W(Tad,det,WtV(out,t,l)=

calculates polynomials matrices, all in the PMF, corresponding to:

wv(s) = W(s)*V(s)
Wt(s) = W1(S)

WtV(s) = W'"(s) + V (s)

WVad(s) = adj{ W (s) }
det (S) = det{ W (s) }

and displays on the screen:

Section C.3 L-A-S Subroutines 333

wv
-1.0 1.0 1.0 1.0 1.0

.o 1.0 6.0 5.0 4.0
-1.0 2.0 -1.0 5.0 .o
-2.0 -1.0 6.0 11.0 16.0

Polynomial matrix <WV has 2 columns

Wt
.o 1.0 .o

1.0 .o 1.0
-1.0 1.0 .o

.o .o 1.0
2.0 3.0 .o

.o 1.0 4.0
Polynomial matrix <Wt > has 2 columns

W a d
-2.0 -1.0 6.0 11.0 16.0

. O -1.0 -6.0 -5.0 -4.0
1.0 -2.0 1.0 -5.0 .o

-1.0 1.0 1.0 1.0 1.0
Polynomial matrix <Wad> has 2 columns

det
2.0 . O - 5 . 0 -14.0 -7.0 -1.0 12.0 7.0 16.0

WtV
.o 2.0 .o

1.0 .o 2.0
.o 1.0 1.0

2.0 3.0 1.0
1.0 4.0 .o

.o 2.0 8.0
Polynomial matrix <WtV > has 2 columns

The L-A-S operator CPM (copy PMF into a matrix) may be considered as an
"inverse" to the operator CMP, in the sense that the statement:

* W (cpm) =XX as well as * V (cpm) =XXX

would produce (6 X 3) "general" matrices XX and XXX exactly equal to the
matrix X mentioned above.

The so-called "standard way" of defining polynomial matrices, i.e. matrices
in PMF, consists of using the PM1 (polynomial matrix input) operator. To define
W and V by the PM1 operator, the following should be done. In an L-A-S session
type:

* (pmi,m)=W,V

The PM1 operator prompts the user to enter the dimensions and maximum orders

334 Appendix C Introduction to L-A-S

of the polynomials, i.e. to enter values for:

p, m , n (for both W(s) and V(s))

If for W the values 2,3,2 are typed, and for V the values 3,2,2, see the example
below, then the PM1 operator expects (for both W and V in PMF):

pm = 6 rows and n + l = 3 columns.

If it is desired to define W and V as before, then it is necessary to type exactly the
same numbers as were used in defining the (6 x 3) matrix X above. The complete
man-machine conversation is, after typing the OS: (pmi I m) =W I V

Enter dimensions <plm> and max order <n> of polynomials
for [p*m x (n+l)] PMF <W > : 2,3,2
Enter dimensions <p,m> and max order <n> of polynomials
for [p*m x (n+l)] PMF <V > : 3,2,2
PMF Matrix <W > has 6> rows and < 3> columns
PMF Matrix <V > has < 6> rows and < 3> columns

W
1 1

1 1 1

1 1 1 1

2,3
-1,l
I 1 , 4

V

Building "SUB" and "SBR" Subroutines: In order to encourage users
to build their own subroutines, consider the following two examples:

(a) Subroutine SMat.SUB
@) Subroutine Exd.SBR

mentioned in Section 3.3.4. and 4.2. l . , respectively.

The listing of these subroutines is given below:

1 no(SMat ,sub)=nx,Sa,Si , s l i , s ld
2 (nli)=
3 no(poi)=n,nx,va,vi,vli,vld
4 va (dsm) I vi (dsm) (mcp) =Sa I Si
5 vli(dsm) ,vld(dsm) (mcp)=Sli,Sld
6 (lis) =

Section C.3 L-A-S Subroutines 335

1
2
3
4
5
6
7
8
9
10
11
12

f,GD(exD,sbr)=G,D
nli
ntY
1,2 (dzm) (tvc)=G, D
GD (ninp, t) =m
f (cdi) (dec,t)=nl
GD,nl(ctc,t)=G,D
f,nl(ctc) ,m(dpm,sub)=flp
D,m(cmp) ,flp(Pmm) ,-l(s*) ,G,m(cmP) (Pma,t)=G
D(t) ,m(vtm,t)=D
tYP
lis

1 p,m(dpm,sub)=P
2 (nli) =

4 P(t) ,m(cmp)=P
5 (lis) =

3 ' p(t) ,m,m(dim) (mtv) (*,t)=P

Consulting the Help file, it may be concluded that in SMAT.SUB:

0 -that for the operator POI:
Given set of POI, or PCI, no = { no, } POI generates:

n = the sum of { no, }
nx = the max of { no, }
va, vi, vli, vld = the selector vectors defined in Section
3.3.4, Eq~.(3.75)-(3.78)

m "while for the operator DSM:
Using the previously obtained selector vectors, DSM generates the
selector matrices Sa, Si, Sli and Sld, Eq. (3.79)

0 "similarly, for the subroutine EXD.SBR:
Given the (n+ 1) dimensional row d containing the coefficients di of
d(z), and the [pm x (n+ l)] matrix in PMF corresponding to a non-
strictly proper polynomial matrix W(z) EXD calculates:

-the strictly proper part Wsp in PMF and the corresponding
(p x m) matrix D.

In doing this, another "SUB" subroutine, namely DPM.SUB (diagonal polynomial
matrix) is executed within the EXD.SBR. This is, in fact, the only reason why it
was necessary to define the subroutine EXD as a "SBR" type. The listing of the
DPM.SUB is given above. By incorporating the code of DPM.SUB into subroutine
EXD, it would be possible to define EXD as a subroutine of the "SUB" type, and
in this way to speed up considerably its execution. The listing of the modified
subroutine EXD, now of the "SUB" type, follows:

336 Appendix C Introduction to L-A-S

1 f,GD(exD,sub)=G,D
2 (nli) =
3 GD(ninp,t)=m
4 f (cdi) (dec,t)=nl
5 GD,nl(ctc,t)=G,D

7 flp(t) ,m(cmp)=flp

9 D(t) ,m(vtm,t)=D

In the above subroutines the statements:
(NLI)= , NLI and NTY

are included at the beginning to transfer the L-A-S interpreter into NO LIST and
NO TYPE modes. Similarly, the statements:

(LIS)= , TYP and LIS
are added at the end to return the interpreter to the default LIST and TYPE modes.
The purpose of Statement 4 in EXD.SBR will be explained later.

To assess the faster execution of subroutines of the "SUB" type, a simple,
self-explanatory program BUILDSB is given below.

6 f (t) ,nl(ctr) ,m,m(dim) (mtv) (*,t)=flp

8 D,m(cmp) ,flP(Pmm) ,-l(S*) ,Grm(cmP) (Pma,t)=G

10 (lis) =

1

3 - and-checking-execution-time
- BuildSB

2 Building-SUB-t-SBR-subroutines

4 5,3,2(abcd,sub)=A,B,C,D
5 A,B,C,D(sstf)=d,W

7 (time)=tl
8 d,W(EXD,SBR)=Wspl,Dl
9 (time) =t2
10 d,W(exdrsub)=Wsp2,D2
11 (time) =t3
12 t3, t2 (-) , t2 , tl (-) (mcp, t) =tsub, tsbr

-

6 A,B,C(sstf)=d,Wsp

13 Wsp,Wsp1(-) ,WSp,Wsp2(-) (out)=

15 tsub, tsbr (out, 1,l) =
, 14 D,Dl(-) ,D,D2(-) (out)=

The program BUILDSB:
"defines an arbitrary state space representation R={A,B,C,D) with

"calculates arrays d and W, where C(z1-A)"B + D = W(z)/d(z),
"calculates arrays d and Wsp where C(z1-A)"B = Wsp(z)/d(z),
"assigns current time in seconds to the scalar c l ,
"calls EXD.SBR, i.e. generates Wspl and Dl,
"assigns current time to scalar t2,
"calls EXD.SUB, i.e. generates Wsp2 and D2,
"assigns current time to the scalar t3, and
"defines scalars tsub = r3-r2 and tsbr = &cl and displays their

n=5, m=3 and p=2,

values on the screen, etc.

Section C.3 L-A-S Subroutines 337

In the above case tsub = 8 seconds, while tsbr = 26 seconds.
The purpose of giving this simple example is to show that names of "SUB"

and "SBR" subroutine may be equal. Also, a subroutine name may be equal to the
name of an existing operator statement. Another purpose is to illustrate the use of
the operator TIME.

Hints for SBR Subroutine Execution: During the execution of an SBR
subroutine, the interpreter commands INCLUDE, ELIMINAlE or CHANGE should
not be used, i.e. the total number of characters of the subroutine should not be
altered during its execution. This is a consequence of the way the L-A-S Interpreter
executes an SBR subroutine. In particular, when a call to an SBR subroutine is
encountered in a calling program, the calling statement is replaced by all statements
of the subroutine, and the execution of the subroutine begins. At that moment the
total number of statements (as well as the number of characters) in the current
program is increased. At completion of the subroutine execution, all subroutine
statements are removed, the initial calling statement is replaced and execution is
resumed. Although this process is usually transparent to the user, it may be
observed when the SBR subroutine is executed in TRACE mode.

Function-KEY Mode: It is well known that the DOS operating system allows
the user to type "in advance" several characters before they are actually processed,
Similarly, in an L-A-S session it is possible to type in advance answers to
anticipated L-A-S prompts 'I * 'I . In fact, this is possible only in the default NO
Function-KEY mode. To explain the reasons why the Function-KEY mode has
been implemented consider a simple recursive scheme intended to sum positive
integers i for 1 5 i 5 Zmux, i.e.

1. Set 0 * Summ, 0 * i, Define Imax
2. Set i+l - i, Set summ+i * summ
3. If i < Imax, go to 2; Else, go to 4
4. Display Summ

The correct, and two incorrect L-A-S implementations of the above recursive
scheme for Imax = 15, are as follows:

1
2 0 (coin) , 0 (coin) ,l5 (coin) (mcp) =Summ, i , Imax
3 i:i(inc)=i
4 Summ, i (+, t) =summ
5 i,Imax(ifj)=i,k,k

- SummC-Correct-version

6 k:Summ(out,t,O)=

338 Appendix C Introduction to L-A-S

1 SummI
2 Incorrect-version
3 0 (coin) , 0 (coin) ,l5 (coin) (mcp) =summ, i, Imax
4 i:i(inc)=i
5 Summ, i (+, t) =Summ
6 i,Imax(ifj)=i,i,i
7 k:Summ(out,t,O)=

-
-

- SummIS
- Incorrect-version;-with_(STO)=-statement
O(coin) ,o(coin) ,15(coin) (mcp)=summ,i,Imax

i: i (inc) =i
Summ,i(+,t)=Summ
(sto) =
i,Imax(ifj)=i,i,i

k:Summ(out,t,O)=

Obviously, the version SummC is correct, since for i < Imar, the operator IFJ
transfers control to the statement with the label "i", i.e. Statement 4, while for
i>Imar, execution goes to the statement with the label "k". However, if, by
accident, in Statement 6, the output field reads: i,i,i instead of: i,k,k then we
have an "infinite" loop; see version SummI above. The only possibility to "exit"
is to end the L-A-S session by "force," i.e. to type either:

<Ctrl>-<Break> or
<Ctrl>-<Alt>-

A "conservative" (good) programming practice is to include a ST0
statement in all loops which may lead to infinite loops; see the version SummIS
above. Note that, as was explained earlier, whenever in sequential execution, the
statement ST0 is encountered, the execution "HALTS," and then by typing, for
instance, jump, k (or j , k), it is possible to exit the loop. After that, of course, it
is necessary to correct the output field in the IFJ statement. Once we are sure that
loop works correctly, it is possible to eliminate the (STO)= statement.

Another way to avoid ending a L-A-S session by "force," once in an infinite
loop, is to use the Function-KEY mode. This can be done by the interpreter
command:

FKE (or fk)

Then, during any sequential execution, by simply pressing the function key <F1 >
the L-A-S interpreter will enter into the TRACE mode, causing the sequential
execution to "halt" immediately. Then, again, by typing any IC or OS the user
may either exit a loop or verify what is happening in the program. However,
unfortunately, when the interpreter is in the Function-KEY mode, it is not possible
to type "in advance" characters as responses to anticipated future interpreter
prompts, but it is necessary to wait until the prompt is actually issued. This is due
to the implementation of this mode and its interaction with other parts of the L-A-S

Section C.3 L-A-S Subroutines 339

interpreter. Once in FKE mode, it is possible by pressing other function keys, F2
to F7, to entedexit other L-A-S modes, such as LIST, TYPE, etc. More details are
available in the HELP file under "Help,Fke."

Creation and Execution Modes of Operation: The above example
program SUMMC, involving recursive calculation, i.e. the L-A-S statement IFJ
(conditional jump) will be used to introduce the important concepts of the Creation
and Execution modes of operation. The mode of operation of the L-A-S software
corresponding to the interpreter being in the MEM mode, i.e. when all correctly
typed and executed statements are stored in the interpreter working memory is
referred to as the Creation mode of operation. The mode of operation in which the
program residing in interpreter memory is reexecuted is referred to as the Execution
mode.

Consider now that the interpreter is in the Creation mode and that the user
types (one at a time) the statements of the above program SUMMC. If Statement
6 is typed as

the L-A-S interpreter will issue a warning:

* i , I r n a x (i f j) = i , k , k

SELAB - Label = k does not exist

indicating that it expects that in the sequel, a statement with the label "k" will be
entered. Also, note that although, for i < fmux, the above IFJ statement is
supposed to transfer control to the statement with label " i " , the interpreter, being
currently in the Creation mode, will simply issue the prompt "*", expecting the
next statetement to be typed. After typing all the statements of program SUMMC,
including, of course, the statement with label "k", and once the user enters the IC:

* jump,l or
* j , i or even j , 4

since Statement 4 has the label " i " , the interpreter will automatically enter into the
Execution mode, i.e. sequential execution of existing statements. Then, when the
IFJ statement is encountered, the control will he rrunsferred either to:

-the statement with label " i " for i < Imux or to
-the statement with label "k" for i 1 fmux.

This distinction between the Creation and Execution modes has been introduced
solely to allow typing of IFJ and JMP operator statements, which in their output
fields may refer to statement labels not currently existing in a program being typed.
Note that as far as other "calculation oriented operator statements'' are concerned,
there is no distinction between the Creation mode and the Execution mode.

340 Appendix C Introduction to L-A-S

Recovery from Execution Errors: Assume that during a sequential
reexecution of an L-A-S program an error occurs. This error might be due to an
incompatibility of dimensions of arguments in the input field, or an insufficient
number of arguments in the input/output fields. In this case an appropriate error
message is issued and sequential execution halts immediately. The program counter
corresponds to the number of the statement where the error occurred. To find out
what caused the error, it is suggested to enter some interpreter commands such as:

Status , Pro, n,, n, , or Names

to display the part of the program containing the statement where the error
occurred, and to check the dimensions of the arrays used. Also OUT operator
statements might help. Note that at that moment any operator statement may be
typed, including a statement which will change some of the previously defined
arrays or define new ones. Since the interpreter is in NO-MEM mode, operator
statements will only perform required operations, but will not be stored in the
interpreter memory. Of course, by using the IC:

ELI , CHA or INC

it is possible to eliminate and/or change an existing statement, or to include new
ones. Once the user is sure that the cause of error is eliminated, by using the IC:

* j,-% or j , <st-#-er>
where <&-#-er> stands for the number of the statement which caused the error,
sequential execution will be resumed starting from that statement. However, if the
user is not completely sure that all causes of error have been removed, it is
advisable first to enter in the TRACE mode and then to type j , -1. Then, of
course, only one statement will be executed, and the user should enter:

* con (01: c)

after each executed statement. Once the user is convinced that the program works
correctly, it is possible by using the IC NTRA to exit from TRACE mode and
resume normal default sequential execution of all remaining statements.

Recovery from Errors in Subroutines: Note that the first four statements
in all SBR type subroutines are as follows:

The first statement defining the subroutine name and type, as well
as input/output arguments, has the general form:

A1, ..., An(XYZ,SBR)=Bl,..,Bm

Section C.3 L-A-S Subroutines 341

0 The next two statements are the interpreter commands: NLI and
NTY, mentioned under Building "SUB" and "SBR" subroutines,
(see exD.sbr).

0 The fourth statement is a MOS of the form:

l,m(dzm) (tvc)=Bl,, ,Bm

whose purpose is to define all output arguments "temporarily." It may be
concluded that this MOS sets zeros in all output arguments, Bi's, i=[l,m]. It
should be mentioned that in the case that during the subroutine execution there are
no syntax or execution errors, this statement does not have an active role, since
some other statements in the subroutine "body" again define all these output
arguments. On the other hand, if an execution or syntax error occurs, then, in the
case of a SBR subroutine, (which also happens in the case of a "main" program),
the sequential executions "halts" immediately. Then, the user may follow a
procedure explained under the subtitle Recovery from Execution Errors. How-
ever, if it is preferred to exit from the subroutine, the user may type the IC:

* j,q or * j,<st-#-first-q>

where est-f-f irst-q> is the statement number of thefirst statement having the
label "q". Then, since the last-but-one statement in the subroutine body usually has
the label "q" (for quit), i.e.:

* q:typ

the control will be transfered to the subroutine end. In order to exit from the
subroutine "normally," all output arguments should be defined, which would not
be the case if the above mentioned MOS, temporarily defining all output
arguments, is not included in the begining of the subroutine body.

Since the label "q" is reserved for that purpose, a "qood programming
practice" is not to use the label "q" in main programs. If, in spite of that, the user
"insists" on using the label "q" in a main program calling a SBR subroutine, then,
when an error occurs within a SBR subroutine, instead of the above mentioned IC
j , q r the user has to determine the <st-#-f irst-q>, which could be done by
the IC:

* f,q: or * find,q:

In the case of an error within SUB type subroutine:

0 an appropriate error message is issued,
0 sequential execution halts, and
0 control is transferred to the program calling this subroutine,
0 the program counter indicates the statement containing the call to the

SUB subroutine where the error occurred.

342 Appendix C Introduction to L-A-S

If it is desired to "override" the (NLI)= operator statement which is, as has been
mentioned previously, usually used as the second statement in the subroutine body,
the IC:

* 1,sub or list, sub

may be typed before the SUB subroutine execution. If in the FKE mode, instead
of the IC 1 , sub , the function key F3 may be pressed.

Changing Elements in Defined Arrays: ~eca l l that the L-A-S software
is well suited for reexecuting a sequence of operator statements residing in the
Interpreter working memory with the same, or different, input data. Therefore, it
is our feeling that at this point it is worthwhile to illustrate the possibilities of
changing elements in arrays already defined. There are, of course, a number of
ways that this can be accomplished, but here only two ways will be mentioned.

Assume that in a current L-A-S session matrix A with dimension (6 X 7)
and matrix B with dimension (2 x 4) have been defined and used, and that the user
has decided to modify some of their elements.

1. If single elements in A and B are to be replaced "interactively," say it is desired
to substitute:

-2.5 * ass ; 101.2 * a26 and 1.2*1@ 3 bz,3

then, the incompletely specified INP operator statement may be used, i.e.

* (inp,e)=

In this case the user-machine conversation is as follows:

Type matrix names you want to change via keyboard
or type either < N . > I <NAM.> or <ALL.> : A,B
Enter indices (1,J) and value A(1,J) of matrix element

I,J, A(1,J) : 4,5,-2.5 <return>
I,J, A(1,J) : 2,6,101.2 <return>
I,J, A(1,J) : <return>

I,J, B(1,J) : 2,3,1.2e5 <return>
I,J, B(1,J) : <return>

Enter indices (I I J) and value B (I, J) of matrix element

* A,B(out)=

The last statement, i.e. A,B(out)= , was used to verify if the desired substitutions
were made.

2. The second way is "less" interactive, but it allows a complete block (submatrix)

Section C.3 L -&S Subroutines 343

in a defined matrix to be substituted into another matrix. Assume now that in the
above mentioned (6 x 7) matrix A it is desired to replace the sub-array elements:

with an already defined (2 x 4) matrix B. This can be done by typing the
following operator statement:

* A,B,2,3(rmp)=A

which places the whole matrix B into A starting at location (2,3), keeping other
elements unchanged.

Using the operator RMP (Replace Matrix Part), the task of the previously
mentioned incompletely specified operator statement (INP,e)= may be "non-
interactively" performed by the sequence:

* AI-2.5(dma),4,5(rmp)=A
* A1101.2(dma),2,6(rmp)=A
* 1.2eS(dma),2,3(rmp)=B

If desired, the first two statements may be combined into the following single
MOS:

* A,-2.5(dma),4,5(rmp),l01.2(dma),2,6(~p)=A

Plotting Capabilities: To illustrate plotting capabilities of L-A-S software
consider the L-A-S program given below:

1 Exerc
2 - Plotting -
3 -.l,l/-l,-.l(dma,t)=A
4 2,l (dim) =x0
5 Use-N=201-&-T=40

7 xo,N,T,A(rcs)=x

9 Time [sec] (xlab) =

6 n:Tdsc)=N,T

8 Time-Response (ylab) =

10 -1,1, , T (dma) =sc
11 sc (yxsc) =
12 x,T(dis)=
13 -1 , 1, -2,2 (dma) =sc2
14 sc2 (yxsc) =
15 Phase-plane-x2 [t] (ylab) =
16 xl[t]-(xlab)=

344 Appendix C Introduction to L-A-S

17 x(nik)=
18 N,T(out)=
19 A,xo(out,t,l)=
20 N,T(out,l,O)=

Its name is EXERC and it can .be found in the directory C:\LAS\DPF\. The
program defines a (2 x 2) matrix A and initial condition vector x(0) given by:

I -0.1 1.0 1 1 1
I I x (0) = I I

-1.0 -0.1 I 1 0 1
A = 1 I .

By Statement 6 , with the label "n", the quantities N and T should be defined
interactively. Suggested values are N=201 and T=40. The differential equation:

" dx(f) - Ax(t) , ~(0) = %
dt

for 0 I t S T, given by the N data points is solved by Statement 6, operator RCS.
Note that operator RCS is executed within the algorithm CDSR, i.e. L-A-S
subroutine CDSR.SUB.

The two elements xi(t), i=[1,2], of the state vector x(t) are displayed versus
time by Statement 12, operator DIS, while Statement 17, operator NIK (Nyqist
diagram), i.e. X-Y Plotting, displays xz(t) versus x,(t) in the "Phase-Plane" plot of
Fig.C.3. Operators YLAB, XLAB and YXSC, executed before the "plotting"
operators DIS and NIK, allow the user to label the y- and x-axes, as well as to set
axis scales. For more details see the Help tile. The plots obtained are shown in
Figs.C.2 and C.3. For an illustration of three dimensional plotting capabilities the
reader is referred to the L-A-S program PLTALL.DPF in the subdirectory
C:\LAS\PLT\.

Interface with Other CAD Packages: This section pertains to using data
generated by other programs or packages. In the master subdirecory C:\LAS\ there
is the independent main program

1NDAT.EXE

which may be used for reading data files containing arbitrary ASCII data and
preparing them for inclusion in the L-A-S package. The use of INDAT will be

Section C.3 L -A-S Subroutines 345

L-A-S
Time-Response

1 .o

0.5

0.0

-0.5

-1 .o
0 10 20 30 40
Time[sec]

Figure C.2. LA-S Time-Response Plots

L-A-S
Phase-plane-x2[t]

1

.5

0

-.5

-1
-2 -1 0 1 2

xl[t l -
Figure C.3. L-A-S Phase-Plane Plot

illustrated by an example. Consider that we have a file INP.DAT of the form
given below:

A
-1.000 1.000 , 000 ,000

,000 - 2 . 0 0 0 1.000 .000
.000 -1.000 - 2 . 0 0 0 1.000
.Q00 .Q00 ,000 - 2 . 0 0 0

346 Appendix C Introduction to L-A-S

B
1.000 -000 .ooo
.001 .ooo .ooo
.ooo 1.000 .ooo
.ooo .ooo 1.000

C
.00000E+00 .10000E-04 .00000E+00 .10000E+01
.10000E+01 .00000E+00 .10000E+07 .00000E+00

D
.ooo 1.000 -000
.ooo -000 .ooo

and we want to use this data in the L-A-S software. To this end, the following is
suggested. Using any text editor, delete all blank lines and eliminate all non
numeric characters. After this intervention, the file INP.DAT should have the
following form:

-1.000 1.000 .ooo .ooo Modified file 1NP.DAT
.ooo -2.000 1.000 ,000
.ooo -1.000 -2.000 1.000
.ooo .ooo ,000 -2.000

1.000 .ooo .ooo
.001 .ooo .ooo
,000 1.000 ,000
.ooo .ooo 1.000
.00000E+00 .10000E-04 .00000E+00 .10000E+01
.10000E+01 .00000E+00 .10000E+07 .00000E+00

.ooo 1.000 .ooo

.ooo .ooo ,000

Then, run the program INDAT, i.e. type: INDAT
The program INDAT prompts user for:

file name containing data to be read, in our case the answer should

file name were the modified data will be written, in our case answer

0 the L-A-S variable name to which data to be read will be assigned,

be: INP.DAT

might be: Temp

a possible name is: Abcd

The complete user - machine conversation is given below:

Please enter File name containing ASCII characters
corresponding to the array to be transferred into
the L-A-S package. To exit, Enter: STOP/stop or S

Inp. Dat

Section C.3 L-A-S Subroutines 347

File <Inp.Dat > has <nr> = 12 non-blank rows

Please enter the file name where the modified array
to be read by the L-A-S package will be written. You
may use any string of up to 8 characters. Suggested
names are: tl, t2 , tmpl, . . .
Temp

Please enter any string of up to 4 characters to be
used as the L-A-S variable name. Suggested names
are: tl, t2, tmpl, A, . . . If you have used a
string of up to four characters for the file name
above, you may use the same string for the L-A-S
variable name

Abed

The array <Abed> has 12 rows and
4 columns

File <Temp > created

Please enter file name containing ASCII characters
corresponding to the array to be transferred into the
L-A-S package. To exit, enter: STOP/stop or S

S

Stop - Program terminated.

The file TEMP, created by the program INDAT, is given below:

(Inp , m) =Abcd

-1.000,1.000,.000,.000,
.ooo,-2.000,1.000,.000,
.ooo,-1.000,-2.000,1.000,
.ooo,.ooo,.ooo,-2.000,
1.000,.000,.000, . 001 , :ooo , . 000 ,
.000,1.000,.000,
.000,.000,1.000,

12 I 4

.00000E+00,.10000E-04,.00000E+00,.10000E+01,

.10000E+01,.00000E+00,.10000E+07,.00000E+00,

.000,1.000,.000,

.ooo,.ooo,.ooo,
Abcd (Out) =

After having the tile TEMP created, enter L-A-S and as an answer to the L-A-S

348 Appendix C Introduction to L-A-S

prompt "*", type:
* file, Temp

According to the function of the interpreter command FILE, on the screen the
following will appear:

Temp

*
Read statement = (Inp,m)=Abcd

*
Read statemc
-.10000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.10000E-02
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.0000OE+00
.00000E+00

!nt = Abcd(O1
.10000E+01

-.20000E+01
-.10000E+01
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.10000E-04
.00000E+00
.10000E+01
.00000E+00

lt) =
.00000E+00
.10000E+01

-.20000E+01
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.10000E+07
.00000E+00
.00000E+00

.00000E+00

.00000E+00

.10000E+01
..20000E+01
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.10000E+01
.00000E+00
.00000E+00
.00000E+00

*

Since in this way within the L-A-S, a (12 x 4) array Abcd has been created, it is
now easy to extract matrices A,B,C and D from the obtained Abcd. This can be
done, for instance, by the following sequence of L-A-S operators:

* Abcd,8(ctr)=AB,CD
* AB, 4 (Ctr) =A, B
* B, 3 (&c) =B
* CD,2 (ctr)=C,D
* D, 3 (ctc) =D

After that, of course, arrays A,B,C and D of appropriate dimensions are available
and can subsequently be used as input arguments in any L-A-S operator or
subroutine.

Recovering from a Trash:" I t will occasionally happen that an inadvertent
command will cause an L-A-S program to "crash" and send the user back to DOS.
Fortunately, the L-A-S interpreter stores all data from the terminal keyboard to the
file ECHO.DAT. In the case of a fatal execution error, for example a floating
point overflow, the current L-A-S session "crashes" and the user is back at the DOS

Section C.3 L-A-S Subroutines 349

prompt. In order to recover the lost session, without retyping all the statements
again, the following should be done:

0 Rename the file ECHO.DAT to an arbitrary name, e.g. ECHO.DDD
0 Edit this file and delete (or comment out) the last L-A-S statement

which caused the "crash." Also, all other statements which caused
the execution and/or syntax error should be deleted (or commented
out).

0 Save that modified file.
0 Enter the L-A-S interpreter, and following the first interpreter

prompt: " * 'I , enter the following Interpreter command:

* file, ECHO.DDD

In the case that in the edited tile ECHO.DDD there are no L-A-S
statements which cause an execution and/or syntax error, all
statements from that file will be sequentially executed. After the
execution of the last statement, the L-A-S Interpreter will issue the
standard prompt " * ' I , and will be ready to accept any statement
from the terminal keyboard. All executed statements will again be
stored on the newly created ECHO.DAT file.

In order to gain experience in using the ECHO feature, three examples of
ECHO files are presented. The first one is the non-edited version obtained after
the program due to the last statement:

* ff,f(*,t)=ff

has returned to DOS. Note that in this example the following statements:

1,2,4,3(dam,t)=verr

vIv(*fe)=vv
ss

are incorrect. Therefore, these three statements, together with the last one should
be either deleted, or commented out, as has been done in the second version, which
was renamed to ECHO.DDD. The third version of the ECHO.DAT file was
created during the reading of the edited and renamed ECHO file.

L - A - S ECHO.DAT file - Version l

- created 7/31/1992 at 11:20 ECHO-DAT file created

- Echo-Example by L-A-S Interpreter
1,3,2(dma)=v when overflow occurred
lf2,4,3(dam,t)=verr Operator DAM does not exist

Syntax error above A -
ss I.C. SS does not exist

350 Appendix C Introduction to L-A-S

- I.C. Syntax Error above A !
S
v(0ut,t,2)=

v,v(t)(*,t)=vv
lelOO(dma,t)=f
f,f(*,t)=ff
ff,f(*,t)=ff
ff,f(*,t)=ff

v,v(*,e)=vv
Syntax error above A -

- L - A - S ECHO.DAT file

-
Echo-Example

created 7/31/1992 at 11:20
-
1,3,2(dma)=v - Comm_1,2,4,3(dam,t)=verr
Syntax error above A

I.C. Syntax Error above A !

- - corn-ss

v(0ut,t,2)=

-
S

- Corn-v,v(*,e)=vv
- Syntax error above A

v,v(t)(*,t)=vv

f,f(*,t)=ff
ff,f(*,t)=ff - Comm-ff,f(*,t)=ff

lelOO(dma,t)=f

- L - A - S ECHO.DAT file

- created 7/31/1992 at 11:30
file,echo.ddd

- L - A - S ECHO.DAT file

- created 7/31/1992 at 11:20
-
1,3,2(dma)=v - Corn_1,2,4,3(darn,t)=verr
- Syntax error above A

Echo-Example

comm-ss
- -

I.C. Syntax Error above A !
S
V(OUt,t,2)E

v,v(t)(*,t)=vv

f,f(*,t)=ff
ff,f(*,t)=ff - COmm_ff,f(*,t)=ff

Comm-v,v(*,e)=vv
- -

Syntax error above A

lelOO(dma,t)=f

- NOW L-A-S interpreter is back - in Ferminal Keyboard {ode
- Soiie-additi&al-stat~ments-are-typed

v is (l x 3) row, multipli-
cation v*v is not permitted

-here f = I O r m

-here ff = IOm

"overflow" and consequently
This statement has created

this L-A-S session is ended
"in a crash."

Version 2

File ECHO.DAT modified and
renamed ECHO.DDD

execution errors are com-
Lines creating syntax or

mented out by adding a
leading "-Corn-".

New ECHO.DAT file created
during the L-A-S session
in which the I.C FILE was
used and the file ECHO.DDD
was read.

Version 3

Note that this ECHO file was
created 10 minutes after the
first version.

Section C.4 A List of L-A-S Interpreter Commands 351

ff (out)=

v(out,t,O)=
P

-
q
Now,-to-quit-"q"-should-be-typed

C.4 A List of L-A-S Interpreter Commands

MNEMONIC NAME DESCRIPTION
! < Sys. Corn. >

BEG (B)
BEL
CHA
CLE
CON (C)
COP (CO)
DSP
ELI (E)
ELM
END
EPS
FIL
FIN (F)
FKE (FK)
GRA
HELP (H)
INC
INF
JUM (J)
LIS (L)
LOA (LO)
MEM (M)
MOV WO)
NAM (W
NBE
NFK OVF)
NLI (NL)
NME
NTE
NTR
NTY (NT)
OPE (0)

PFI (PF)

Execution of any DOS operating system command
Begin; the current L-A-S program and variables are deleted
Activates the computer bell
Change any string of characters in an operator statement
Clear the terminal screen
Continue
Copy part of the L-A-S program
Display status of the L-A-S interpreter
Eliminate operator statements
Eliminate matrices
End; ends the L-A-S session
Definition of the default "machine zero"
All inputs to the L-A-S interpreter are from a specified file
Find string of characters in L-A-S program
Enter Function-KEY mode
CGA high resolution graphics mode
Syntactical description of L-A-S statements
Include an operator statement or interpreter command
Include a program file into the current L-A-S program
Jump; jump to any statement in the current L-A-S program
List operator statements - enter List mode
Loads arrays into the L-A-S Interpreter memory
Memorize entered operator statements - enter Memorize mode
Move part of the L-A-S program
Names; display of names and dimensions of all arrays
Deactivates the computer bell
Exit Function-KEY mode (default)
No listing of operator statements - exit List mode
No memorizing of operator statements - exit Mem. mode
No test; exit test mode
No tracing of L-A-S program execution - exit Trace mode
No typing of operator statement results - exit Type mode
Display of compatibility conditions for dimension of input
arrays
Print file specification

352 Appendix C Introduction to L-A-S

Print L-A-S program listing
Display L-A-S program on terminal screen
Quit; ends L-A-S session
Read external file; read L-A-S program created by any text
editor
Read program file; L-A-S program from the DPF (Disk
Program File) is read and added to the current L-A-S
program
Restore all variables
All variables are stored (saved) on a file.
Status; displays status of L-A-S program
Store all variables
Total change; global substitute of an old name by a new one
in an L-A-S program
Test; display of additional intermediate information during
execution, (used only in L-A-S software implementation)
Time in [sec] for plots to stay on the screen
Trace; trace L-A-S program execution - enter Trace mode
Type; cancels NTY - enter Type mode
Write program file; the current L-A-S program is saved
Label the X-axis of the plot
Label the Y-axis of the plot

PRL (PR)
PRO (P)
QUI (Q)
REF

RPF (R)

RSV
SAV
STA (S)
STV
TCH

TES

TIM
TRA
TYP (TI
WPF (W)
XLAB
YLAB

Detailed syntactical description of each interpreter command may be obtained by
typing HELP,xyz ; where xyz stands for the mnemonic name o f an interpreter
command.

c.5 On-Line Help File

This section reviews "help" descriptions of some L-A-S operators. This type
of information is available in the on-line Help file. Initially, three examples which
indicate the type of help that is available are presented. Following these examples,
a selection of actual Help file responses is given. Although not exhaustive, the few
examples of this section should convey that the L-A-S Help file provides adequate
information to make good use of the corresponding operators.

Section C.5 On-Line Help File 353

Example 1:

PURPOSE Matrix inversion with optional determinant calculation.

USAGE A (-1 [fl)= AI [, D], Thefl (flag) option is used to
specify the output format: t corresponds to X W . ~ and e, to an exponential
form for a wider range of values.

DESCRIPTION: AI is the inverse of the (n X n) matrix A. D is the
determinant of the matrix A.

See also: I N , P-l

EXAMPLE
Given the matrix (previously defined in L-A-S):

A =

- 2 1 0 0

0 - 1 1 0

0 -1 -1 1

0 0 0 - 3

The L-A-S statement: A (-1, t) = AI, D will yield

"0.5 -0.25 -0.25 -0.083

0 -0.5 -0.5 -0.167

0 0.5 -0.5 -0.167

0 0 0 -0.333-

A I =

with the determinant D = 12.000

Example 2:

PURPOSE: Complex function multiplication

USAGE X, Y (C* [,fl 3) = Z

DESCRIPTION: The matrix X of dimension (n X 2) has the complex
form x, = real(xb + j imu,g(xJ, where k = 1, -., n and j = (- l) l R . The
matrices Y and Z have the same form. The operation represents a term by
term complex multiplication.

See also: *, C/, F*, P*, PMM, S*

354 Appendix C Introduction to L-A-S

EXAMPLE: Given the arrays (previously defined in L-A-S):

The L-A-S statement X, Y (C*) = Z will yield:

5 0
3 4

z =
2 0

0 2

"4 0-

Example 3:

PURPOSE To calculate the eigenvalues of a square matrix.

USAGE A (EGV [,fll) = EG

DESCRIPTION: Given the (n X n) matrix A, the two columns of the
(n X 2) matrix EG contain the real and imaginary parts of the eigenvalues
of the matrix A.

See also: EGC, CHE, CHD

EXAMPLE: Given the matrix (previousl:

I 0 1 0

A = 0 0 1

-2 -4 -3

The L-A-S statement A (EGV) = EG

-1 1

EG = -1 -1

"l 0

y defined in L-A-S):

will yield:

Section C.5 On-Line Help File 355

The following is a list of several examples taken directly from the L-A-S
Help file:

* T,Ad[,Egm,N,Eps](Lnm[,fl])=Ac Natural log of (n x n) matrix Ad

T(l x 1) scalar or integer
Ad(n x n) given matrix
Egm(1 x 1) scaling factor < 1, default value = 0.25, leads to:

N(l x 1) truncation coefficient, default values N=36.
Eps(1 x 1) << 1, sufficiently small positive scalar

Ln(Ad)/T ==> AC

I W [I-Ad"(l/r)] I < Egm; r = 2"j ; j & r scaling coefficients

Preset default value: Eps = lo"(-16)
Default value of Eps could be changed by the I.C. EPS

Algorithm, see Chapter 2:
Given T,Ad,Egm ==> j,r; then
Ac = -r/T* sum { [I - Ad"(l/r)]"i * (l/i 1 ; i=[l,N]

See also: EATF

* c,A(POLR[,fl)=r Polynomial reduction using the C-H-Theorem
c(1 x N); A(n x n); r(1 x n); N > n
r(8) and c(s) satisfy: r(A) = c(A)

Algorithm, see Chapter 2:

2. k-l ==> k
1. c ==> r, N ==> k; det(1s-A) ==> f(s)

3. r(k-n+j)-r(k)*f(j) ==> r(k-n+j), for j=[o,n-l]
4. For k > n go to 2; Else, Stop.

See also: POM

A(n x n); B(n x m)
* A,B[,k](QC[,fl))=Qc Controllability matrix

k(1 x 1) specifies # of blocks in QC; default value: k = n-m+l

Qc(n x h) = Controllability matrix = IBIA*Bi..~A"(k-l)*B~, h=m*k

See also: QO, RKC, RKR, NRS

If k = 0, Operator uses k = n-m+l

* xo,N,Tt,A[,B,u](RCS[,fl])=x[,T] ; Continuous system response
xo(n x 1) = intial condition vector

Tt(1 x 1) = total time, scalar or integer
A (n x n) = system matrix
B (n x m) = input matrix
U (N x m) = input vector
x (N x n) = state vector - solution
The operator calculates the solution of the following diff. eq.

dx(t)/dt = A * x(t) + B * u(t) ; x(o)=xo
for: t = [O,Tt] in N points.

T(N x 1) = values of independent variable t - obtained
from values N and Tt ; initial value = 0.

If U omitted, calculates step response; assumes: U = step
If both B and U omitted, calculates response to xo; assumes: B = 0

N(l x 1) = # of points, scalar or integer

See also: CE1, CE2, CE3, CE4, CES

356 Appendix C Introduction to L-A-S

* v(DSM[,fl])=S ; Define Selector Matrix S - Oper. stmt.
V(1 x n) ; S (n X m) ; where m = # of non-zero elements in selector
vector v.
v = {vi}; S = {sij}

0 0 0 Non-zero elements
1 0 0 in the row v are

0 0 0
0 0 2

Example: for v = [0 1 3 0 2] ; S = o 3 o typically unity.

A(n x m) given matrlx
* A[,Eps](NRS[,fl!)=N[,R,rJ - Null- , Range-apace and Rank
Eps = sufficiently small postive scalar. Preset default value:

Eps 10*(-16)

N(m x v) Null space of A, satisfies: A * N = 0, v = m - r = Nullity
Of A
R(n x r) Range apace of A, aatisfies: r = rank[A] = rank[AIR]
r(l x 1) Rank of A, satisfies: m = v + r

Default value of Eps could be changed by the I.C. EPS

See also: RKC, RKR, QC, Q0

* Q[,eps](RKC[,fl])=[Qli][,Qld][,sv] RanK of Q and separation of
linear independent Columna. Q[n x m], Qli[n x r] contains L.I.

Qld[n x (m-r)] contains L.D. columns. ;
columns,

sv[l x m] ; selector vector; elementa are equal either to one or zero
The i-th element of av equal to one signifies that the
i-th column of Q is linearly independent on previous

eps = auff. amall positive scalar. Preset default value: epa- 10A(-16)
j columns of Q ; j = [l,i-l]. and that column qi is in Qli

The default value could be changed using the I.C. EPS

See also: RKR

A(n X m) = {aij) ; an = aqrt{ sum of aij-2 } ; Avi = sqrt{ aum of
* A(NRR[,fll)=an[,Av] NoRm P Row norms; Frobenious norm

aijAZ }
an[l X 11 = norm of A ; Av[l x n] = norms of rows of A

See alao: NRc

It is our hope that with this brief introduction the reader will be able to strike out
on his or her own, making ample use of the on-line help and the lists in the next
section.

Authors' Remarks:

Although L-A-S might seem "complicated" to a new user, it does, in fact,
follow the book's motto:

"Everything should be made us simple as possible, but not simpler. "

Section C.6 L-A-S Code for Specific Algorithms 357

L-A-S has more features than most existing CAD packages, some not found
in any other CAD software. Some paticularly useful features are the "modes:"

as well as the flexible multiple-operator statements (MOS) and subroutines.

To get full benefit from the software, it is necessary to invest time to get
acquainted with all L-A-S features. On the other hand, the features required to use
the software as a simple matrix "calculator," which is what the majority of other
existing CAD packages basically offer, see examples ExampCl, Section C. 1, and
ExerC, Section C.3, may be learned in virtually no time.

MEM , TRACE , LIST , TYPE , Function-KEY

C.6 L-A-S Code for Specific Algorithms

CHAPTER 1

LIN.SBR

2 nli
1 par,zo,dz(Lin,sbr)=A,B,diff

3 nty
4 -{A,B} linearized model of

6 -in the vicinity-of-zo
5 -dx(t)7dt=g(xru,py;-z=I~~ul

8 _Message-LIN-displayed
7 1,3Tdzm~(tvc)=A,B,diff

10 (stO)=
11 zo (rdi) =h
12 h,l(dzm)=zerv
13 zerv(inc)=onv
14 onv(t),-l(s*),h,h(dim)

15 par,zo(gz,sub)=go
16 go,go(rdi)(mcp)=H,n
17 0 (coin) =i
18 i:i(inc)=i
19 dz,i,l(exm)=dzi
20 ~ o ~ ~ o ~ i ~ l ~ l ~ l (e x m) ~ d z i

21 par,zi(gz,sub)=gi
(+)ritl(rmprt)=zi

22 H,gi(cti,t)=H

24 j:(nop)=
25 dz(t) (ddm)=D
26 H,T(*,t)=H
27 H,D(-l)(*,t)=H
28 H,n(ctc)=A,B
29 go,H,dz(*)(+,t)=gla
30 par,zo,dz(+)(gz,sub)=gl
31 gl,gla(-,e)=diff
32 q:typ
33 lis

(rti,t)=T

23 irh(ifj)zirjrj

GZ.SUB

2 (nli)=
1 par, z (gz , sub) =g
3 -Generates-nonlinear

4 -z=ixiul-Xefining

5 -for-2-Deg-of-Freedom

6 ICallea-by-LIN.SBR
7 par(tvc,t)=a,b,c,d,e
8 z(t) (tvc,t)=

9 z4,2(s*)(sin)=s2~4
10 z2,2(s*)(sin)=s2~2
11 z4(cos)=cz4
12 z4(sin)=sz4
13 b,c,cz4(*),cz4(*)(+),dr

14 a,zl(*),z3(*),~2z2(*),
sz4(*),sz4(*)(+,t)=den

15 gl,den(s/,t)=gl
25(+),26(-,t)=gl

16 ZlrZl(*),S2Z4(*),e(*),
-l(s**t)fg3

17 g3rz6ra(s/)(+rt)=g3
18 glrzl,g3,z3(rti,t)=g
19 (lis)=

QC.SUB

- function g(z,p)
dx(t)/dt=g(xrurP) -
Robot Arm

~1,22,23,24,25~26

1 A,B(qc,eub)=Qc
2 (nli)=
3 -Implemented-also-as

4 -Qc~-Controllability
QC operator

matrix of {A,B}
5 -QC is Tn x h); h=(n-m+l)m
6 A(cai)TB(-ddx) (mcp)=n,m
7 n,m(-)(inc)=im
8 B(mcp)=X

-
-

358 Appendix C Introduction to L-A-S

10 0 (coin)=i
11 i:i(inc)=i
12 Qc,X(cti,t)=Qc
13 A,X(*)=X
14 i,im(ifj)=i,j,j
15 j:(lis)=

QO.SUl3

9 n,O(dzm)=Qc

1 A,C(qo,sub)=Qo
2 (nli)=
3 -Implemented-also-as

4 -Qo=-Observability

5 -Qo-is-(h-x-n);pp(n-P+l)P
6 A(cdi),C(rdi)(mcp)=n,k
7 n,k(-)(inc)=im
8 C(mcp)=X
9 O,n(dzm)=Qo

- QC-operator
- matrix-of-{A,C:)

. . .
10 n,n(-)=i
11 i:i(inc)=i
12 Qo,X(rti
13 X,A(*)=X
14 i,im(ifj
15 j:(lis)=

NRs.suB
1
2
3

4
5
6
7
8

10
9

11

A,eps(nrs,SUb)=N,Rrr
(nli) - Implemented-also-as - NRS-operator

-N,-R-=-Null-and-Range-space
- of-A;-r=rank(A)
w,w,eps(f/)=x
A(svd)=w,U,V

x,x(t)(*,t)=r
U, r (ctc) =R
V,r(ctc)=x,N
(lis)=

CDSR.SuB

2 (nli)=
1 A,B,C,D,xo,u,T(cdsr,Sub)=y

3 -General-SS-(C-T)-or

4 Response-to-u-&-xo

6 -For-D-T case use-T=

7 T(ifjy=d,d,c
8 d: (nop)=
9 D-T system response

(D-T) ==> -
5 Z(t)=ut

-neg. integer-

IO Zi,~,E,ut,xoTrds)=yo

12 (jmp)=f
13 c:(nop)=
14 -C-T-system-response
15 ut (rdi) =N

11 yO,utrD(t)(*)(+)=Y

REs0.suB
2 (nli)=
1 A(Reso,sub)=p,Rr,R

3 Implemented-by-SSTF-and-ALT
4 "operators. Use:

5 R(alt)=Rc,Rr
6 II=Identity-matrix

8 n, n (dim) =I
7 A(cdi)=n

9 n,O(dzm)=Rr
10 n,n(dim)=Ri
11 n,n(*),O(dzm)=R
12 l(coin)=p
13 0 (coin)=i
14 i:i(inc)=i
15 Ri,A(*)=E
16 E!tr),i!s/),-l(s*)=pi

18 Ri,Rr(cti,t)=Rr
17 pI,p(Ctl,t)=p

19 Ri(mtv)(t),R(cti,t)=R
20 E,I,pi(s*)(+)=Ri
21 i,n(ifj)-i,j,j
22 j:(nop)=
23 R, n (cmp) =R
24 (11s)=

A,I,I(SSTF~=P,R -

LALG.SUB
1 A,B,C,D(Lalg,sub)=p,Rr,R
2 (nli)=
3 -Implemented-by-SSTF-and

4 ~Use~A,B,C,D(sstf)=p,R
5 R(alt)=Rc,Rr

ALT operators

"

6 A(cdi)=n

8 D,I(mcp)=Rr,Ri
7 n,n(dim)=I

9 D(mtv) (t)=R
10 1 (coin) =p
11 0 (coin) =i

13 Ri,A(*)=E
12 i:i(inc)=i

14 E(tr),i(s/),-l(s*
15 C,Ri,B(*) (*),Drpi
16 pi,p(cti,t)=p
17 Ri.Rr(cti,t)=Rr

)=pi
(S *)

18 Ri(mtv) (t) ,R(cti,t)=R

20 i,n(ifj)=i,j,j
19 E,I,pi(s*)(+)=Ri

21 j: (nop)=
22 R,B(cdi)(cmp)=R
23 (lis)=

(+) =Ri

Section C.6 L-A-S Code for Specific Algorithms 359

ssTF.suB
1 ArB,C,D(BStfrSub)=PrW
2 (nli)=
3 -Implemented-by-the

4 -Calculates Transfer
function ma'trix

6 W is in the PMF
7 l(%di3 ,BycdiT ,C(rdi)

8 n, 1 (dm) =zv
(mcp)=n,mtP

9 p,m(*!,l(dzm)=zpm

- SSTF operator

S -w(s)/P(s~=c(Is-A)(~-~)B+D
-

10 n,n(dm)=I
11 0 (coin) =z
12 z (mcp) = j
13 n,O(dzm)=WC
14 0, n (dm) =BWC
15 k: j(inc)=j
16 C,j,l,l,n(exm)=ci
17 O,n(dzm)=Wc
18 z (mcp) =i
19 i:i(inc)=i
20 A,-l(S*),ci,i,l(rmp)=Aci
21 Aci(mtv)=Aciv
22 I,zv(t),i,l(nnp)=Iei
23 Iei(mtv)=Ieiv
24 Aciv,Ieiv(rti)(t),n(cmp)

25 Wcpl(p-l)=Adj,det
26 -det(out)=
27 Wc,det,n(ctc)(rti,t)=Wc
28 i,n(ifj)=i,j,j
29 j:(nop)=
30 WC,Wc(cti,t)=WC
31 j,p(ifj)=k,l,l
32 l:(nop)=
33 z (mcp) =l
34 L:l(inc)=l
35 B,l,l,n,l(exm)(t,t)=blt
36 blt,WC(*,t)=btWC
37 btWC,p(vtm)(t)=blWC
38 BWC,blWC(rti,t)=BWC
39 l,m(ifj)=L,K,K
40 K:(nop)=
41 D (mtv) =Dv
42 A(mtf)=P
43 BWC,zpm(cti),Dv(t),P(*)

44 W,m(cmp)=W

=Wcpl

(+,t)=w

45 (lis)=

CHAPTER 2

CTDT.SBR

5 i. 4 (&m) (?%c) =xl, Bi, ClyDl
for (SI) (RI) and (BL Tr.

6 Isrb(ifj)=c,q,d
7 d:(nop)=

9 Isrb,P(ifj)=s,r,b
8 -C-T==>D-T

10 s:(nop)=

12 A,B,C,D,T,eps(SRcd,SBR)=

13 nli
14 nty

16 r:(nop)=

18 A,B,C,D,T,epS(SRcd,SBR)

20 nty
19 nli

21 (jmp)=s
22 b:(nop)=
23 -(Bl.Tr.)
24 A,B,C,D,T,eps(BLcd,SBR)

25 nli
26 nty

28 c:(nop)=

30 Isrb,-Z(ifj)=B,R,S
31 S:(nop)=

33 A,B,C,D,T,eps(SRdc,SBR)

34 nli
35 nty
36 (jmP)=q
37 R: (nop)=
38 -(RI)

11 -(SI)

Al,Bl,x,Cl,Dl,y

15 (jmp)=s

17 -(RI)

=Al,x,B1,ClryrD1

=AlrB1,C1,D1

27 (jmp)=s

29 -D-T==>C-T

32 -(SI)

=AlrBlrxrC1,Dlry

39 A,B,C,D,T,eps(SRdC,SBR)

40 nli
41 nty

43 B:(nop)=
44 -(Bl.Tr.)
45 A,B,C,D,T,eps(BLdc,SBR)

46 nli
47 nty
48 q:typ
49 lis

SRCDSBR

=Al,x,Bl,Cl,y,Dl

42 (jmP)=q

=AlrB1,C1,D1

1 Ac,Bc,Cc,Dc,T,eps(SRcd,sbr)
=Ad,Bds,Bdr,Cd,Dds,Ddr

1 A,B,C,D,T,eps,Isrb 2 nli
(CTDTrsbr)=A1,B1,C1,D1 3 nty

2 nli 4 -(CT)==>(DT) Transformation
3 nty into-(SI)-afid-(RI)
4 -General-(CT)-<==>-(DT) 5 -{Ad,Bds,Cd,Dds}=(SI)

-

Appendix C Introduction to L-A-S 360

6

7

8

10
9

11
12

13

- (DT)-model -
(DT) model
{Ad,Bdr,Cd,Ddr}=(RI)

T,6(d%1) (tvc)=
Ad,Bds,Bdr,Cd,Dds,Ddr
T,Ac(eatf,t)=Ad,E,F
FrEIF(-)(-l)(*,t)=P
E,Bc(*),T(s*)=Bds
Bds,F,Bc(*),T(s*)(-,t)=Bdo
Ad,Bdo,P,Cc,Dc,eps

Cc,Dc(mcpl=Cd.Dds
(R5R4,sub)=Bdr,Ddr

14 q:typ
15 lis

. _ .

SRDC.SBR
1

2
3
4

5

6

7

8

10
9

11

12

13
14
15 q:typ
16 lis

. _ .

Ad,Bd,Cd,Dd,T,eps(SRdc,sbr)

nli
=Ac,Bcs,Bcr,Cc,Dcs,Dcr

ntY
-
into-(SI)-aEd-(RI)
(DT)==>(CT) Transformation

(DT)-model
{Ac,Bcs,Cc,Dcs}=(SI)

(DT)-model

- - - - {Ac,Bcr,Cc,Dcr}=(RI) -
1,6(dzm)(tvc)=
Ac,Bcs,Bcr,Cc,Dcs,Dcr
T,Ad(lnm,t)=Ac
T,Ac(eatf,t)=x,E,F

Ad,Bd,P,Cd,Dd,eps
(R4RSrsub)=Bdo,Dcr

E(-l),Bd(*),T(s/,t)=Bcs
=Bcr

Cd,Dd(mcpl=Cc,Dcs

F,E,F(-)(-l)(*,t)=P

E,F(-)(-l)rBdo(*),T(s/,t)

BLCD.SBR
1 A c , B c , C c , D c , T , e p s (B L c d , s b r)

2 nli

4 -(CT)==>(DT) Bilinear
3 nty

- Transform irto 4 matrix-
5 State space moaeis
6 T,4(dzm)(tvcy=Ad,BdrCdrDd
7 Ac,Bc,T,l(Bcdc,sub)-

8 Ad,Bo,P,Cc,Dc,eps

9 Cc (mcp) =Cd

=Ad,Bd,Cd,Dd

Ad,Bo,Bl,P

(RSRQ,sub)=Bd,Dd

10 q:typ
11 lis

BLDC.SBR
1 Ad,Bd,Cd,Dd,T,eps

2 nli
3 nty
4 -(DT)==>(CT) Bilinear

Transformatron:
5 4 term State space models
6 i,~(dzm~(tvc)~Ac,Bc~Cc,Dc
7 Ad,Bd,T,Z(Bcdc,sub)=

8 Ac,Bo,P,Cd,Dd,eps

9 Cd (mcp) =Cc

(BLdc,sbr)=Ac,Bc,Cc,Dc

-

Ac,Bo,Bl,P

(R5R4,sub)=BcrDc

10 q:typ
11 lis

EAT.SBR

2 nli
1 T,Ac,Nrm,N(Eat,sbr)=Ad

3 nty
4 -Implemented-also-by-EATF

operator
5 Ad=exp(Ac*T)
6 Nrm satisfies

7 i5fcoml=Ad
-I I AFT I I /Nrm-c-r;-r=2A (j)

8 Ad(nrrj,T(*),Nrm(s/)(log),Z

9 jr2(log)(*)(exp,t)=r
(los)(s/)(int)(inc,t)=j

11 j,Tl(out)=
10 T,r(s/,t)=Tl

12 N(fact,sub)=f
13 O(coin),l(coin),N(inc)

14 f,vc(gts)(t),Tl(log)(s*)

15 C,Ac(polr)=Cr
16 Cr,Ac(pom)=Ad
17 j (ifj)=Sr c
18 C:(nop)=
19 0 (coin) =i

21 Ad,Ad(*)=Ad
20 e:i(inc)=i

22 i,j(ifj)=e,q,q
23 q:(nop)=

25 11s

=(cti)=vc

(exp)(f*)=C

24 tYP

EATJ.SUB

2 Inli\=
1 T,Ac,eps(Eatj,sub)=Ad

3 ~Implemented-by-EATF

4 rAd=exp(Ac*T)-only-for
operator

Section C.6 L-A-S Code for Specific Algorithms 361

5 -Diagonalizable Ac 11 jr2(1og)(*)(exprt)=r
6 Ac(jfr,t)=Mc,Acj 12 T,r(s/,t)=Tl
7 Ac(egv),T(s*)=egcT 13 j,Tl(out)=
8 egcTr2,eps(efjf)=ExJf 14 N(fact,sub)=f
9 MC,ExJf,MC(-l)(*)(*rt)=Ad 15 O(coin),l(coin),N(inc)
10 (lis)=

SICD.SBR 17 C.Tlls/l=C

16 f,vc(gts)(t),Tl(log)(s*)
(cti)=vc

(exp)(f*)=C

1
2
3
4

5

6
7
8
9

10
11
12
13
14

15

16
17
18
19

T,Ac,B,Nrm,N(SIcd,sbr)=Ad,Bd
nli
nty
- Step Invariant - Disci?etization - exp(Ac,T)==>Ad;
{Ad,Bd} DTgair

T,2(dzm)Ttvc)=AdrBd
Ac (cdi) =n
n,n(dim)=I
Ac(nrr),T(*),Nrm(s/)(lOg),2
(log)(s/)(int)(inc,t)=j

T,r(s/,t)=Tl
j,Tl(out)=
N(fact,sub)=f
O(coin),l(coin),N(inc)

jr2(log)(*)(ex~rt)=r

(cti)=vc
frvc(gts)(t)rTl(log)

C,Tl(s/)=C
(s*)(exp)(f*)=C

C(shl),Ac(polr)=Cr
Cr,AC(pom)=E
j(ifj)=FrFrC

20 c:(nopj-
21 0 (coin) =F
22 e: i(inc)=i
23 ACrE(*)rTl(S*),2(S/)rI

24 Tlr2(s*)=T1
25 i,j(ifj)=e,F,F
26 F:(nop)=
27 Ac,E(*),Tl(s*),I(+)=Ad
28 E,B(*),Tl(s*)=Bd

(+)rE(*)=E

29 q:typ
30 lis

IUCD.SBR
1 T,Ac,B,Nrm,N(RIcd,sbr)=

2 nli
3 nty
4 -Ramp Invariant

5 exp(Ac*T)==>Ad;

Ad,Bdo,Bdl

- Discretization -
{Ad,Bdo,Bdl}-DT-

6 -&iple in five matrix model
7 1,3(dz?iil(~vcl=jid,Bdo,~dl

l 8 C(shi)'('shl) ,Tl(s/) ,Ac

19 Crf,Ac(pom)=F
20 j(ifj)=F,F,C
21 C:(nop)=
22 O(coin)=i
23 e:i(inc)=i
24 Ac,F(*),Tl(s*),I(+)=AFI
25 AFIr2(s/)=AFI
26 AFIrAFI(*),F,2(s/)(+)=F
27 Tlr2(s*)=T1
28 i,j(ifj)=e,F,F
29 F:(nop)=
30 Ac,F(*),Tl(s*),I(+)=E
31 Ac,E(*),Tl(s*),I(+)=Ad
32 E,B(*),Tl(s*)=Bd
33 F,B(*),Tl(s*)=Bdl

(polr)=Crf

34 Bd,Bdl(-)=Bdo
35 q:typ
36 lis

EATF.SBR

2 nli
1 T,Ac,Nrm,N(EATF,sbr)=Ad,E,F

3 ntv - ."

4 -~mplemented-also-by-EATF

5 -Discretization-Ad=exp(Ac*T)
6 -E-and-F-satisfy:
7 -Ac*F*T=E-&-Ac*E*T=Ad
8 1,3(dzm)(tvc)=Ad,E,F

- operator

9 Ac (cdi) =n
10 n,n(dim)=I
11 Ac(nrr) rT(1) rNv(s/) (lOg),2

(log)(s/)(xnt)(lnc,t)=)
12 jr2(log)(*)(exp,t)=r
13 T,r(s/,t)=Tl
14 j,Tl(out)=
15 N(fact,sub)=f
16 O(coin),l(coin),N(inc)

17 f,vc(gts)(t),Tl(log)(s*)

18 C,Tl(s/)=C
19 C(shl)(shl),Tl(s/),Ac

20 Crf,Ac(pom)=F
(polr)=Crf

21 j(ifj)=FrFrC
22 C:(nop)=
23 O(coin)=i
24 e:i(inc)=i
25 Ac,F(*),Tl(s*),I(+)=AFI

(cti)=vc

(exp)(f*)=C

362 Appendix C Introduction to L-A-S

26 AFI,2(s/)=AFI
27 AFI,AFI(*),F,2(s/)(+)=F
28 T1,2(s*)=T1
29 i,j(ifj)=e,F,F
30 F:(nop)=
31 Ac,F(*),Tl(s*),I(+)=E
32 Ac,E(*),Tl(s*),I(+)=Ad

34 1LS
33 q:typ

LNM.SBR
1 T,Ad,Egm,N,eps(Lnm,sbr)=Ac
2 nli

nty - Implemented-also-by-LNM
- Ac=Ln(Ad)/T - Egm-satisfies:
- operator

eg[I-AdA(l/r) 1-<_Egm
E(coin)=Ac
Ad (cdi) =n

10 T,Ad(mcp)=Tr,Aj
11 j:I,Aj(-)=L
12 L(egv)(rpt),l,l,l,l

13 emax,Egm(ifj)=z,z,p
14 p:Tr,2(s/)=Tr

16 (mp)=j
15 Aj,eps(sqm,t)=Aj

9 n,n(dim)=I

(exm) =emax

18 T,Tr(s/)=r
17 z:(nop)=

20 N(fln,sub)=f
19 r(out)=

21 f ,L(polr)=vr
22 vr,L(pom)=Ac
23 Ac,Tr(s/),-l(s*,t)=Ac
24 q:typ
25 lis

LNh2T.SUB
1
2
3
4
5
6
7
8
9

10

T,Ad,eps(Lnmj,sub)=Ac
(nli)=

- Implemented-by LNM-operator - Ac=Ln(Ad)/T-oKly-for -
Ad(jfr,t)=M
Ad(egv,t)=egd
egd,3,eps(efjf,t)=LnJf
M,LnJf,M(-l)(*)(*),T
(s/,t)=Ac

Diagonalizable-Ad

(lis)=

POM.SUB
1 r,A(pom,sub)=R
2 (nli)=

4 -R=r(A)-pol~no%ial<of
3 -Implemented by POM operator

5 r(mcp)=p
6 p(cdi)=k
7 A(cdi)m
8 n,n(dim)=I
9 n,n(dzm)=R
10 i:k(dec)=k
11 p,k(ctC)=PprPk
12 R,A(*),IrPk!S*)(+)=R
13 k(ifj)=j,J,l

15 (lis)=

P0LR.SUB

14 j:(nop)=

1 p,A(polr,sub)=r
(nli)=

-(n-l)-order pol.-r(x)-and-
- operator

-r(A)=P(A) - Algorithm-uses-C-H-Theorem
A(sstf)=f

- Implemented-by-POLR

- N-ordsr-polTg(x)-satisfy

10 A(cdi)=n
9 p(mcp)=r

11 f,n(ctc,t)=f,fn
12 r (cdi) =N
13 i:N(dec)=N
14 r,N(ctc,t)=r,rN
15 N,n(-)=m
16 l,m(dzm),f,rN(s*)(cti,t)=X
17 r,x(-,t)=y
18 m(~fj)=j,],i
19 j:(nop)=
20 (lis)=

FACT.SUB
1 n(fact,sub)=f
2 (nli)=
3 -Generates-f=
4 -fi=l/il
5 l (coin) =one
6 n (coin) =N
7 one,one,N(cti
8 v(gts) (t)=v
9 v(mcp)=fa
10 1, n (step) =st

12 I:i(inc\=i
11 O(coin)=i

{fi},i=[o,n]

,) =v

13 v;N,i(-) (ctc,t)=vl,x
14 st,i(ctc,t)=onev,x
15 fa,onev,vl(cti)(f*,t)=fa
16 i.,n(ifj)=I,j,j
17 j:(nop)=
18 st,fa(f/,t)=ss
19 one,ss(cti,e)=f
20 (lis)=

FLN.SUB
1 N(fln,sub)=f

Section C.6 L-A-S Code for Specific Algorithms 363

BCDC.SUB
1 A4,B4,Tricdc(Bcdc,sub)=

2 (nli)=
3 -Bilinear Transformation:
4 -For-icdc=1;-4-term-(CT)

A5,B50,B5lrP

- {A4,B4}-==>-5-term-(DT)
{A5,B5o,B51,P}

5 " For-icdc=2;-4ferm-(DT) - {A4,B4}-==>-5-term-(CT)
{A5,B50rB51,P}

6 Ax(cdi) =n
7 n,n(dim)=I
8 2(coin),T(s/,t)=a
9 icdc,l(ifj)=c,c,d
10 c:(nop)=
11 I,a(s*)=Ia
12 IarA4(-)(-l)=IAin
13 IAin,Ia,A4(+)(*),IAinrB4

14 BSo,I(mcp)=B51,P
15 (jmp)=f
16 d:(nop)=
17 A4,1(+)(-1)=AIin
18 AIinra(s*),A4,I(-)(*),AIin,

19 B5l,a(s*),-l(s*),I,a

(*)(mcp,t)=AS,BSO

B4(*),-l(s*)(mcprt)=A5,B51

(s !) , - l (s*) (mcp , t)=BSo ,~
20 f:(lrs)=

1

RsR4.suB
1 A,Bo,P,C,D,eps'(r5r4,sub)

2 (nli)=
=Be, De

3 -5 matrix model-==>-4

4 A(cdi),Bo(cdi),C(rdi)(mcp)

5 n,n(dim)=I
=n,m,k

6 A,I,C(mtf,t)=f,V
7 V(alt)=Vm,x
8 Vm,eps(nrs)=N,R,r
9 I (mcp) =InN

rn=trix-m=del -

10 r,n(ifj)=s,n,n
11 s:(nop)=
12 IrNrN(t)rN(*)(-l)rN(t)

(*)(*)(-)=InN
13 n:(nop)=
14 InN,I,A,P(*)(+),Bo(*)(*)=Be

15' C,P,Bo(*)(*),D(+)=De
16 (lie)=

R4R5.SUB
1 A,Be,P,C,De,epe(r4rSrsub)

2 (nli)=
3 -4 matrix model-==>-S

4 A(cdi)TBe(cdi),C(rdi)(mcp)
=nrmrk

5 n,n(dim)=I
6 A,I,C(mtf,t)=f,V
7 V(alt)=Vm,x
8 Vm,eps(nrs)=N,R,r
9 I(mcp)=InN

=Bon , Dn

mctrix mgdel -

10 rrn(ifj)=srnrn
11 s:(nop)=
12 I,N,N(t),N(*)(-l),N(t)

13 n:(nop)=
14 InN,I,A,P(*)(+)(-l)(*),Be

15 De,C,P,Bon(*)(*)(-)=Dn
16 (lis)=

(*)(*)(-)=InN

(*)=Bon

SQM.SUB
1 A,eps(sqm,sub)=X
2 (rill)=
3 -Implemented by SQM operator
4 -X-satisfiei-XzX=A-
5 A(cdi)=n
6 n,n(dim)=I

8 20 (coin) =im
7 I (mcp)=X

9 0 (coin) =i
10 i:i(inc)=i
11 i,im(ifj)=c,j,j
12 c:(nop)=
13 XrA,X(-1)(*)(+),2(s/,t)=Xn
14 X,Xn(-)(nrr)=del
15 Xn (mcp) =X
16 del,eps(ifj)=j,j,i
17 j:(lis)=

CHAPTER 3

sTR.sUB
2 (nli)=
1 A , B , C , T (s t r , s u b) = A t , B t , C t

3 -Similarity-Transformation
4 -Implemented-by-operator-STR
5 T(-l),A,T(*)(*)=At
6 T(-l) ,B(*)=Bt

8 (lis)=
7 C,T(*)=Ct

364 Appendix C Introduction to L-A-S

SMAT.SUB
1 Ind(SMat,sub)=

2 Inli\=
nx,Sa,Si,Sli,Sld

3 “PC; or POI-==>-Selector

4 hd(poi)=n,nx,va,vi,vli,vld
Matr’ice5

. .
5 va(dsm),vi(dsm)(mcp)=Sa,si
6 vli(dsm),vld(dem)(mcp)

7 (lis)=
=Sli, Sld

IND.SUB
1 Q,m,cut,epe(Ind,eub)=Ind
2 (nli)=

4
3

5
6
7
8

10
9

11
12
13
14
15

16

- vlit-aux.-eel.-vector
vlit,cut(Etc)=x,vli
vli eel. vector -

vli(cdi);m(s/,tj=k

(*,t)=Ind
l,k(step),vli,k(vtm)(t)

(lis)=

3 Adeg=Min(eing.-Val.) /

4 -Adeg = Adkesibllitv
Max(sing. Val.) 0f-A-

-deg;=ez= l/Cond.# *

5 X(rdi),A(Edi) (mcp)=n,m
6 n,m(ifj)=s,f,f
7 srA(t)(svd)=w
8 (jmp)=F

10 F:w(cdi)mc
9 f:A(svd)=w

11 w,l,nc,l,l(exm),w,l(ctc)

12 Adeg (out, e) =
13 (lis)=

(e/,e)=Adeg

cIND.sUB
2 (nli)=
1 vli,m(cind,sub)=Ind

3 ~Sel;gector-vli-==>-Ind
4 -Ind-=-PCI or-POI
5 Zm-=-#-of-inputs/outputs

6 vli(cdi),m(e/,t)=n
7 l,n(etep),vli,n(vtm)(t)

8 (lis)=
(*,t)=Ind

CFPP.SBR

2 nli
1 A,B,eps(CFpp,sbr)=Tc,Ind

4 -Tc-= Sim. Tr. itito
3 nty

FeedFack E FoFm
5 -1nd = UnrGe C1
6 i,2(&ii)(tvc)=Tc,Ind
7 A(cdi),B(cdi)(mcp)=n,m

10 -By substituting CIND.SUB
9 Qc,eps(rkc)=Qcl,x,vli

witli its code,- -
11 -CFPP-maybe-converted

12 ~li,mTcind,eub)=Ind
13 Ind(poi)=nn,nx,va,vi,vli,vld
14 A,B,nx(inc)(qc)=Qc
15 vli(dsm),vld(dsm)(mcp)=

Sli8Sld
16 Qc,Sli(*)=qcl
17 Qcl(-1) =Qcri
18 Qcri,n,m(-)(ctr)=x,Pco

20 A,Pc(Qo)=Tt
19 va(dsm)(t),Qcri(*,t)=Pc

21 Tt,eps(rkr,t)=Tc,x,ro

23 lie

8 A,B(qc)=Qc

7 n t o - s ~ ~ -

22 q:typ

CFNS.SBR

2 nli
1 A,B,eps(CFne,sbr)=Tc,Ind

3 nty
4 -Tc-=-Sim.-Tr.-into-Feedback

5 -Iiid-=-Unique-CI
6 -Using Null space approach
7 ir2(dziii) (tv;)=Tc,ynd

C Form

8 A(cdi) ,B(cdi) (mcp)=n,m

10 Qc,eps(rkc)=Qcl,y,vli
11 vli,m(cind,eub)=Ind
12 Ind(poi)=nn,nx,va,vi,vli,vld
13 O,n(dzm),l,n(step),va(dsm)

9 A,B(qc)=Qc

(t),O(coin)(mcp)
=rows,onv,Sat,i

14 i:i(inc)=i

16 Qcl,onv,ai(-)(dsm)(*,t)=Mi
15 Sat,l(ctr)=si,Sat

17 Qcl,si(t)(*,t)=qi
18 Mi(t),ePS(nrs)(t),gi(*,t)

19 Mi(t),eps(nra)(t,t)=ti
20 ti,ti,qi(*)(s/,t)=ti
21 rows,ti(rti,t)=rows

=ali

Section C.6 L-A-S Code for Specific Algorithms 365

22 irm(ifj)=i,jrj 10 n:n,-(out)=
23 j:(nop)= 11 PC1 nc not-compatible
24 A,rows(qo)=Qo -witii-A-
25 Qo,eps(rkr)=Tc 12 Tjmp)=o
26 q:typ 13 e:(nop)=
27 lis 14 c:A,B,C(t)=Ac,Cc,Bc

15 AC,CC,nx(inc)(qo)=Qo
16 vli(dsm)(t),Qo(*,t)=T
17 T (svd) =w
18 w,n(dec)(ctc)=x,wn
19 wn,w,l(ctc)(s/)=Deg
20 Deg (out , e) =

1 A,B,C,D,no,eps(SSRo,sub)
21 Deg,eps(ifj)=x,x,w
22 x:Deg(out,e)=

=Ao,Bo,Co,Do,Deg 23 -(out)=
2 (nli)= 24 -PCI-not-admissible
3 -Genl-SS-==>-POF-based-on-no 25 (jmp)=O
4 D (mcp) =Do 26 w:(nop)=
5 no(poi,t) 27 Ac,BC,Cc,T(-l)(Str,t)

=nn,nx,va,vi,vli,vld
6 eps,eps,eps,epS(mcp)

=Ao,Bo,Co,Deg
28 C:Ac,Bc,Cc(t)=Ac,Cc,Bc
29 O:(nop)=

7 no (mcp) =- 30 (lis)=
8 A(cdi)=n

SECTION 4.1

SSRO.SUB

=Ac , BC , Cc

10 n:n,-(out)=
11 POI no not-compatible

with-A-

9 n,nn(ifj)=n,e,n

12 (jmP)=o
-

13 e:(nop)=
14 o:A,B,C(mcp)=Ao,Bo,Co
15 Ao,Co,nx(inc)(qo)=Qo
16 vli(dsm)(t),Qo(*,t)=T
17 T (svd) =w
18 w,n(dec)(ctc)=x,wn
19 wn,w,l(ctc) (s/)=Deg
20 Deg(out,e)=
21 Deg,eps(ifj)=x,x,w
22 x:Deg(out,e)=
23 -tout)=
24 -POI-not-admissible
25 (jmp)=O
26 w:(nop)=
27 Ao,Bo,Co,T(-l)(str,t)

28 O:(nop)=
29 (lis)=

=Ao , Bo , CO

SSRC.SUB
1 A,B,C,D,nc,eps(SSRc,eub)

2 (nli)=
3 -Genl-SS-==>-PCF-based-on-nc
4 D (mcp) =DC
5 nc(poi,t)

=nn,nx,va,vi,vli,vld
6 eps,epsreps,eps(mcp)

=Ac,Bc,Cc,Deg
7 nc(mcp)=-
8 A(cdi)=n
9 n,nn(ifj)=n,e,n

-Ac,Bc,Cc,Dc,Deg

SSH.SUB
1 A,B,C,D,M(SSH,sub)=H,hM
2 (nli)=
3 General-SS-==>-Uarkov
4 Iparameters-H-in-PMF
5 B(cdil=m
6 D,C,A,B,M(dec) (qc) (*) (cti)=H
7 H,m,M(dec)(*)(ctc)=x,hM
8 hM(nrr,e)=hM
9 H,m(pmfr)=H
10 (lis)=

RODN.SUB
1 A o , B o , C o , D O , n o (R O D N , s u b)

=Dl, N1
2 Inlib=
3

4

5
6
7
8

10
9

11
12
13
14
15
16
17
18

-
tDlrN1)

' POF-==>-Left-coprime-MFD

AiS(cdi),Bo(cdi),Co(rdi)(mcp)
=nrmrp
Ao,Bo;Co,Do(mtf)=do,Wo
Wo(alt)=Wc,Wr
no(poi)=nn,nx,va,vi,vli,vld
va(dsm),vi(dsm),vli(dsm),
vld(dsm)(mcp)=Sa,Si,Sli,Sld

Sld(t),Ar,Sli(t)(*)(-,t)=Dr
Sa(t),Ao(*,t)=Ar

Dr,p(pmfr)=Dl
Dl(p-l)=Dli,det
det(elz)(pnr,t)=x,dnn
det(elz)=det

Dli,dnn(e/)=Dli
det(pnr)=x,dnn

Dli(alt)=Dic,x
Dic,p,nx(inc),l(Toep),n
(inc),p(*)(ctr,t)=Dmt

366 Appendix C Introduction to L-A-S

19 Dmt,Wc(sle,t)=Ncc
20 Ncc,p(pmfc)=Nl
21 (lie)=

RCND.SUB
1

2
3

4
5
6

8
7

10
9

11

13
12

14
15
16
17
18

19
20
21

=Nr , Dr
Ac,Bc,Cc,Dc,nc(RcND,sub)

tnli)= . -
- PCF==>-Right_coprime-MFD 28 del (if j)=&K, k

. - .

{Nr,Dr) 29 K:(nop)=
30 k,nx(inc)(ifj)=k,w,w

- -

Ac,Bc,Cc,Dc(mtf,t)=dc,Wc
Bc(cdi),Cc(rdi)(mcp)=m,p

20 k:k(inc)=k
21 k,m(*)=km
22 Drr(t),m,k,l(Toep),Nrr(t),

m,k,l(Toep),-l(s*)(cti)=DNrt
23 DNrt,eps(nrs)=w,x,n
24 n,km(-,t)=n
25 k(dec),n,nol(cti)=inno
26 n,nol(-),n(mcp)=del,nol
27 inno(out,t,O)=

Wcjalt)=Wcl;Wr
nc(poi)=n,nx,va,vi,vli,vld
va(dsm),vi(dsm),vli(dsm),
vld(dsm)(mcp)=Sa,Si,Sli,Sld
Ac,Sa(*,t)=Acl
Sld,Sli,Acl(*)(-,t)=Drc
Drc,m(pmfc,t)=Dr
Dr(p-l)=Dri,det
det(elz)(pnr,t)=x,dnn
det(elz)=det
det(pnr)=x,dnn
Dri,dnn(s/)=Dri
Dri(alt)=x,Dri

(t),n(inc),m(*)(ctc,t)=Dmt
Dri(t),m,nx(inc),l(Toep)

Dmt(t),Wr(t)(sle)(t,t)=Nr
Nr,m(pmfr,t)=Nr

- . -

(lie)=

SECTION 4.2

TFR0.SBR
1

2
3
4

5

6

7
8
9

11
10

12
13

d,W,eps,nos(TFRo,sbr)
=Ao,BorCorDo,no,Cond
nli
ntv

=Ao,~Bo,Cd,Do;no,Cond
nos,l(coin),O(coin)(mcp)
=no, k,giv
giv(mcp)=nx
W(alt)=x,Nrr
Nrr(rdi),x(cdi)(mcp)=p,m
d,m(dpm,sub)=Dr
Dr(alt)=x,Drt

no(cdi),l(ifj)=N,N,G
O(coin),O(coin)(mcp)=Ind,nol

14 G:l(dma)=giv
15 no(poi)=nn,nx,va,vi,vli,vld
16 nx (inc) =k
17 Drr(t),m,k,l(Toep),Nrr(t),

m,k,l(Toep).-l(s*)(cti)=DNrt

..

18 (jmP)=x
19 N:(nop)=

31 w:(nop)=
32 n,p(cti)=np
33 Ind,l(ifj)=a,d,x
34 a: (nop)=
35 DNtt,p,k,m(*),eps(Ind,sub)

=no
36 1 (coin)=Ind

38 d:(nop)=
37 (jmp)=C

39 np,no(out,t,O)=
4 0 l,p(inpm)=no
41 C:(nop)=
42 no(poi)=nn,nx,va,vi,vli,vld
43 nn,n(ifj)=d,o,d
44 o:(nop)=
45 Ind(inc)=Ind
46 k,nx(inc)(ifj)=k,x,x
47 x:(nop)=
48
49

50
51
52
53

54

55
56
57
58
59
60

l,k;p(*) (dzm)=zv

=vli,vld
k,m(*)=km
l,km(step),vli(cti)=vli
l,km(dzm),vld(cti)=vld
vli(dsm),vld(dsm)(mcp)
=Sli,Sld

H1 (svd) =w
=H1 , H2
w,w(cdi)(dec)(ctc)=x,wn
wn,w,l(ctc)(s/)=Cond
no(out,t,O)=
Cond(out,e)=
qiv(ifj)=t,t,J

zv,vli(p+),zv,eld(p+)(mcp)

DNrt,Sli(*),DNrt,Sld(*)(mcp)

61 t:(nop)=-
62 -For-different-POI;

63 -5therwTse Enter;-c(dch)=chZ
Enter j,d(dch)=chl

64 chl (tch) =-
65 ch2 (tch) =
66 (sto)=
67 J:(nop)=
68 Hl,HZ(sle)(t),-l(s*,t)=NDl
69 NDl,km(ctc,t)=Nlr,Dlr
70 no(poi)=n,nx,va,vi,vli,vld
71 va(dsm),vi(dsm),vli(dsm),

72 n,n(dim),p(ctr)=Co,A2
73 SirA2(*),Sa,D1r(*)(-,t)=AO
74 Nlr.m(rZc)=Nc

vld(dsm)(mcp)=Sa,Si ,Sl i ,Sld

Section C.6 L-A-S Code for Specific Algorithms 367

75 Ao,Sa,nx(inc)(Qc),Nc(*,t)=Bo
76 d,p(dpm,sub)=Dr
77 Nrr,m,d(cdi)(dec)(*)(ctc)

78 q:typ
l9 lis

=x , Do

TFRC.SBR
1 d,W,eps,ncs(TFRc,sbr)

2 nli
3 nty
4 -TF-{d,W}-==>-PCF-Rc - based-on-nc
5 l,d(dzm) (tvc)

=Ac,Bc,Cc,DcrncrCond
6 ncs,l(coin),O(coin)(mcp)

7 giv(mcp)=nx
=nc, k, giv

8 W(alt)=Nc,x
9 Nc(cdi),x(rdi)(mcp)=m,p

=Ac,BcrCc,DcrncrCond

10 d,p(dpm,sub)=Dl

12 giv,giv(mcp)=Ind,nol
13 nc(cdi),l(ifj)=k,k,G
14 G:l(dma)=giv
15 nc(poi)=nn,nx,va,vi,vli ,vld
16 nx (inc) =k
17 Dc,prkrl(Toep)rNcrprkrl

11 Dl(alt)=Dc

(Toep),-l(s*)(cti)=DNl
18 (jmP)=x

20 k,p(*)=kp
19 k: k(mc)=k

21 Dc,Prkrl(ToeP)rNcrPrkrl
(Toep),-l(s*)(cti)=DNl

22 DNl,eps(nrs)=w,x,n
23 n,kp(-,t)=n
24 k(dec),n,nol(cti)=inno
25 n,nol(-),n(mcp)=del,nol
26 inno(out,t,O)=
27 del(ifj)=K,K,k
28 K:(nop)=
29 k,nx(inc) (ifj)=k,w,w
30 w:(nop)=
31 n,m(cti)=nm
32 Indrl(ifj)=a,drx
33 a:(nop)=
34 DNl,m,k,p(*),eps(Ind,sub)=nc
35 1 (coin) =Ind
36 (jmp)=C
37 d:(nop)=
38 nm,nc(out,t,O)=

40 C:(nop)=
39 1, m (inpm) =nc

41 nc(poi)=nn,nx,va,vi,vli,vld
42 nn,n(ifj)=d,o,d
43 o:(nop)=
44 Ind (inc) =Ind
45 k,nx(inc)(ifj)=k,x,x
46 x:(nop)=
47 k,p(*)=kp

48 l,k,m(*)(dzm)=zv
49 zv,vli(p+),zv,vld(p+)(mcp)

50 l,kp(step),vlf(cti)=vli
51 l.kp(dzm),vld(cti)=vld

=vli,vld

52 vl~(dsm)~,vld(dsm)~(mcp)

53 DNl,Sli(*),DNl,Sld(*)(~Cp)

54 H1 (svd)=w
55 w,w(cdi)(dec)(ctc)=x,wn
56 wn,w,l(ctc)(s/)=Cond
57 nc(out,t,O)=
58 Cond (out , e) =
59 giv(ifj)=t,t,J
60 t:(nop)=
61 For different-PCI-

62 Otherw'Zse Enter;-c(dch)=ch2
63 -chl(tch)=-
64 ch2 (tch)=
65 (sto)=
66 J:(nop)=
67 Hl,H2(sle),-l(s*,t)=NDr
68 NDr,kp(ctr)=Ncc,Dcc
69 nc(poi)=n,nx,va,vi,vli,vld
70 va(dsm),vi(dsm),vli(dsm),

71 n,n(dim),m(ctc)=Bc,AZ
72 AZ,Si(t)(*),Dcc,Sa(t)(*)

73 Ncc,p(cZr)=Nr
74 Nr,Ac,Sa(t),nx(inc)(Qo)

(*,t)'CC
75 d,m(dpm,sub)=Dl
76 Nc,p,d(cdi)(dec)(*)(ctr)

=Sli,Sld

=H1 , H2

- -Ent& j , d(dch) =chl

vld(dsrn)(mcp)=Sa,Si,Sli,Sld

(-,t)=Ac

77 q:typ
=x,Dc

78 lis

TRON.SBR
1 d,W(Tron,sbr)=Ao,Bo,Co
2 nli
3 nty
4 Strictly-proper-MIMO

Transfer function-W(z)/d(z)-==>

7 1,3(dzm)(tvc)=Ao,Bo,Co
8 d(cdi)(dec),W(ninp),W(rdi)

9 Prm(s/)=P

- 5

-6 - Obzervable-uncontr.-Ro

(mcp)=n,m,pm

10 l,p(steP),m(dec),p(dzm)

11 m,p(*),O(dzm)=st
12 0 (coin) =i
13 i:i(inc)=i
14 St,s(dsm)(cti,t)=St
15 B (shr) =S

16 i,m(ifj)=irjrj
17 j:(nop)=

(rti)(mtv,t)=s

368 Appendix C Introduction to L-A-S

18 St,W(*,t)=SW
19 SW,m(cZr)(t,t)=Bo
20 d,d(ccf,sub)=ac,bc,x,y
21 n,m(*),n,p(*)(mcp)=nm,np
22 nm,nm(dzm),np,np(dzm)(mcp)

=Ac , Ao
23 nm,m(dzm),p,np(dzm)(mcp)

=BC , CO
24 1 (coin) =io
25 0 (coin) =i
26 a: i(inc)=i
27 Ao,ac(t),io,io(rmp,t)=Ao
28 Co,bc(t),i,io(rmp,t)=Co
29 io,n(+)=io
30 i,p(ifj)=a,b,b
31 b:(nop)=

33 lis
32 W t Y P

TRCN.SBR

2 nli
1 d,W(TRcn,sbr)-Ac,Bc,Cc

3 nty
4 Strictly-proper-MIMO

Transfer-function-W(z)/d(z)-==>

7 c3(dzm) (tvc)=&,Bc,C~
8 d(cdi) (dec) ,W(ninp) ,W

(rdi)(mcp)=nrm,pm

10 d,d(ccf,sub)=ac,bc,x,y

. 12 n,m(*),n,p(*)(mcp)=nm,nP
11 W,p(cZr,t)=Cc

13 nm,nm(dzm),np,np(dzm)(mcp)
=Ac , A0

14 nm,m(dzm),p,np(dzm)(mcp)
=BC , CO

15 1 (coin) =ic
16 0 (coin) =i
17 I:i(inc)=i
18 Ac,ac,ic,ic(rmp,t)=Ac

20 ic,n(+)=ic
21 i,m(ifj)=I,J,J
22 J:(nop)=
23 q:typ
24 lis

- 5

-6 Controllable Unobs. RC

9 pmrm(s/)=P

19 BC,bC,iC,i(rItlp,t)=BC

TFDN.SBR
1 d,W,eps,nos(TFDN,sbr)

2 nli
3 nty
4 TF {d,~} S=> Left coprime

5 ~,4(azm)(tvci=Dl,N~,no,Cond
HFD-{D~,NT) bzsed on no

6 nos,l(coin),O(coin)(mcp)
=no, k, giv

7 W(alt)=x,Nrr

=Dl,Nl,no,Cond

8 giv(mcp)=nx
9 Nrr(rdi),x(cdi)(mcp)rp,m
10 d,m(dpm,sub)=Dr
11 Dr(alt)=x,Drr
12 giv,giv(mcp)=Ind,nol
13 no(cdi),l(ifj)=k,k,G
14 G:l(dma)=giv
15 no(poi)=nn,nx,va,vi,vli,vld
16 nx (inc) =k
17 Drr(t),m,k,l(Toep),Nrr(t),

18 (jmp)=x
m,k,l(Toep),-l(s*)(cti)=DNrt

19 k: k(inc) =k
20 k,m(*)=km
21 Drr(t),m,k,l(Toep),Nrr(t),

m,k,l(Toep),-l(=*)(cti)=DNrt
22 DNrt,eps(nrs)=w,x,n
23 n,km(-,t)=n
24 k(dec),n,nol(cti)=inno
25 n,nol(-),n(mcp)=del,nol
26 inno(out,t,O)=
27 del(ifj)=X,K,k
28 X:(nop)=
29 k,nx(inc)(ifj)=k,w,w
30 w:(nop)=
31 n,p(cti)=np
32 Ind,l(ifj)=a,d,x
33 a:(nop)=
34 DNrt,p,k,m(*),epS(Ind,sub)

35 1 (coin) SInd
36 (jmP)=c
37 d:(nop)=
38 np,no(out,t,O)=
39 1, p (inpm) =no
40 C:(nop)=
41 no(poi)=nn,nx,va,vi,vli,vld
42 nn,n(ifj)=d,o,d
43 o:(nop)=
44 Ind (inc)=Ind
45 k,nx(inc)(ifj)=k,x,x
46 x:(nop)=
47 k,m(*)=km
48 l,k,p(*)(dzm)=zv
49 zv,vli(p+),zv,vld(p+)(mcp)

50 l,km(step) ,vli(cti)=vli
51 l,km(dzm),vld(cti)=vld
52 vli(dsm),vld(dsm)(mcP)

=no

=vli , vld

=Sli.Sld
53 DNrt,Sli(*),DNrt,Sld(*) (mcp)

=H1 , H2
54 H1 (svd)rw
55 w,w(cdi)(dec)(ctc)=x,wn
56 wn,w,l(ctc)(s/)=Cond
57 no(out,t,O)=
58 Cond (out , e) =
59 giV(ifj)PtlttJ
60 t:(nop)=
61 For different POI- - -Enter j , d (dchF=chl
62 -OtherwTse-Entet;-c(dch)=ch2

Section C.6 L-A-S Code for Specific Algorithms 369

63
64
65
66
67
68
69
70
71

72
73
74
7 5-

chl(tch)= 41 nc(poi)=nn,nx,va,vi,vli,vld
ch2 (tch) = 42 nn,n(ifj)=d,o,d

Hl,HZ(sle)(t),-l(s*,t)=NDl 45 k,nx(inc)(ifj)=k,x,x
NDl,km(ctc,t)=Nlr,Dlr 46 x:(nop)=
vli,km(ctc)=x,vlii 47 k,P(*)=kP
vld,km(ctc)=x,vldd
Dlr,vlii(dsm)(t)(*),vldd

48 l,k,m(*)(dzm)=zv
49 zv,vli(p+),zv,vld(p+)(mcp)

(dsm)(t)(+,t)=Dlr =vli,vld
Dlr,p(pmfr)=Dl 50 l,kp(step),vli(cti)=vli
Nlr,m(pmfr)=Nl 51 l,kp(dzm),vld(cti)=vld

lis

J: (nop) =
(StO) = 43 o:(nop)=

44 Ind(inc)=Ind

q: tYP 52 vli(dsm),Vld(dsm)(mcp)

53 DNl,Sli(*),DNl,Sld(*)(mcp)
=Sli,Sld

TFND.SBR
1 d,W,eps,ncs(TFND,sbr)

2 nli
3 nty
4 TF {d,w)-==> Right coprime

5 ~,4(&m)(tvc~=Nr,D~,n~,Cond
“FE {Nr,Dr} Eased on nC

6 ncs,l(coin),O(coin)(mcp)

7 giv (mcp) m x
8 W(alt)=Nc,x
9 Nc(cdi),x(rdi)(mcp)=m,p

=Nr,Dr,nc,Cond

=nc, k, giv

10 d,p(dpm,sub)=Dl
11 Dl(alt)=Dc
12 giv,giv(mcp)=Ind,nol
13 nc(cdi),l(ifj)=k,k,G
14 G:l(dma)-giv
15 nc(poi)=nn,Nc,va,vi,vli,vld
16 nx (inc) =k
17 Dc,p,k,l(Toep),Nc,p,k,l

18 (jmP)=x

20 k,P(*)=kP
21 Dc,p,k,l(Toep),Nc,p,k,l

22 DNl,eps(nrs)lw,x,n
23 n,kp(-,t)=n
24 k(dec),n,nol(cti)=inno
25 n,nol(-),n(mcp)=del,nol

(Toep),-l(s*)(cti)=DNl

19 kr k(inc) =k

(Toep),-l(a*)(cti)=DNl

54 H1 (svd) =w
55 w,w(cdi)(dec)(ctc)=x,wn
56 wn,w,l(ctc)(s/)=cond
57 nc(out,t,O)=
58 Cond (out, e) =

60 tr(nop)=
61 For-different-PCI-

-Enter j,d(dch)=chl
62 &herwTse-Enter;_c(dch)=chZ
63 -chl(tch)=
64 ch2 (tch) =
65 (sto)=
66 J:(nop)=
67 Hl,HZ(ele),-l(s*,t)=NDr
68 NDr,kp(ctr,t)=Ncc,Dcc
69 vli,kp(ctc)=x,vlii

71 vlii(dsm),Dcc(*),vldd(dsm)

72 Dcc,m(pmfc)=Dr
(+,t)=Dcc

73 Ncc,p(pmfc)=Nr
74 q:typ
75 lis

=H1, H2

59 giv(ifj)=t,t,J

70 vld,kp(ctC)=x,vldd

CDTR.SBR

2 nli
1 d,W,u,T(cdtr,sbr)=y

3 nty
4 -(CD)-or-(DT)-TF-response

26 inno(out,t,O)=
27 del(ifj)=K,K,k 5 For-D-T tesponse;-T=O
28 Rr(nop)= 6 B(coTn)=?
29 k,nx(inc)(ifj)=k,w,w 7 d,W(EXD,sub)=Wsp,D
30 w:(nop)= 8 T(ifj)=d,d,c
31 n,m(cti)=nm 9 d:(nop)=
32 Ind,l(ifj)=a,d,x 10 D-T-response
33 ar(nop)= 11 a,Wsp,u(t)(rdt)(t)=y
34 DNl,m,k,p(*),eps(Ind,sub)=nc 12 y,D,u(*)(+,t)=y
35 llcoin)=Ind 13 (jmp)=s

==> y -

36 (jmp)=C
37 d:(nop)=
38 nm,nc(out,t,O)=
39 l,m(inpm)=nc
40 C:(nop)=

14 c:(nop)=
15 -C-T response
16 N= 3 of points in U
17 IshzuTd satisfy-N-5

-T-*- I pC1e-max I -

.. ” -

370 Appendix C Introduction to L-A-S

18 d,Wsp,u(t),T(rct)=y

20 g: (nop)=

22 lis

19 Y(t)rD,u(*)(+)=Y

21 typ

TFH.SBR

2 nli
1 d,W,L(TFH,sbr)=H,hL

3 nty
4 TF {d,W}-==> Markov

3aFarneters H-
5 1,2(dzm)(tvE)=H,hL
6 W(alt)=m,Wr
7 d(cdi)(dec),m(cdi),Wr(rdi)

8 m,n(inc)(ImL,sub)=InL
(mcp)=n,m,p

9 Wr,InL(*,t)=Wr
10 d,n(ctc),-l(s*),l(coin)

(cti,t)=dn
11 dn,m(dpm,sub)=D

13 D,n,m(*)(ctr)=x,D
12 D(alt),m,L,l(Toep)=D

14 p,L,m(*)(dzm),Wr,l,l

15 1 (coin) =id
16 0 (coin) =i
17 i:i(inc)=i
18 D,l,id,L,m(*),m(exm)=Di
19 H,Di(*,t)=Hni
20 H,Hni,l,id(rmp,t)=H
21 id,m(+)=id
22 i,L(ifj)=i,j,j
23 j:(nop)=
24 H,L(dec),m(*)(ctc)=x,hL
25 hL(nrr)=hL
26 H,m(pmfr,t)=H
27 q:typ
28 lis

(mP,t)=H

GETD.SUB

2 (nli)=
1 A,B,C(getd,sub)=n,m,p

4 :Dimensions
3 {A,B,C)-==>-{n,m,P}

5 A(cdi),B(cdi),C(rdi)(mcp)

6 (lis)=
=n,m,p

DPM.SUB
1 p,m(dpm,sub)=P
2 (nli)=
3 -P(z)=diag{p(z))
4 -P is in-PMF
5 p(~),iii,m(dim)(mtv)(*,t)=P
6 P(t),m(cmp)=P
7 (lis)=

IML.SUB
1 m,L(ImL,sub)=ImL
2 (nli)=
3 -ImL="Inverted"-diag{-Im-}

4 iii(coin),L(coin)(mcp)=M,d
5 M,d(*),M(dim),M,d,-2

6 (lis)=
(Toep),M,d(*)(ctr,t)=ImL

L-t imes

CCF.SUB
1 den,num(ccf,sub)=A,b,c,d
2 (nli)=
3 -SISO Transfer-Function

4 ==> State-space-model

5 Zen(cdi) (dec)=n
6 num(cdi) =nn
7 l(dec)=d
8 den,n(ctc)=dl
9 num(mcp)=nl

num(=)/den(z) -
-{Atg,c,d}

10 n,nn(ifj)=d,a,a
11 d:num,n(ctc,t)=nl,d
12 nl,dl,d(s*),-l(s*)(p+,t)=nl
13 a:n(dec),n(dim)(shr),dl,-l

(s*)(rti,t)=A

15 l,n(dzm),nl(rmp)=c
14 n,l(dzm),O(inc),n,l(rmp)=b

16 (lie)=

EXDSUB
1 d,GD(exD,sub)=G,D
2 (nli)=
3 -GD(z)/d(z)-==>

4 -Extracts strictly-proper
Sart-of-GT z)

5 -and-matrix-D
6 GD (rdi) =pm
7 pm,l(ifj)=a,a,c
8 a:GD,l(cmp)=GD
9 c:(nop)=
10 GD(ninp,t)=m
11 d(cdi) (dec,t)=nl
12 GD(rdi),nl(inc)(dzm),m

(cmp),GD(pma),nl(ctc,t)=G,D
13 d(t),nl(ctr),m,m(dim)(mtv)

(*,t)=dlp
14 dlp(t),m(cmp)=dlp
15 D,m(cmp),dlp(pmm),-l(s*),G,

-[G(z)/d(z)+Dl

16 D(t),m(vtm,t)=D
m(cmp)(pma,t)=G

17 (lis)=

EXD.SBR
1 d,GD(exD,sbr)=G,D
2 nli
3 nty

Section C.6 L-A-S Code for Specific Algorithms 371

4 GD(z)/d(z)-==>

5 Extracts-strictly-proper
jlart-of-G(z)

6 -and-matrix-D
7 1,2(dzm)(tvc)=G,D
8 GD (rdi) =pm
9 pm,l(ifj)=a,a,c
10 a:GD,l(cmp)=GD
11 c:(nop)=
12 GD (ninp, t) =m
13 d(cdi)(dec,t)=nl
14 GD(rdi),nl(inc)(dzm),m

15 d,nl(ctc),m(dpm,sub)=dlp
16 D,m(cmp),dlp(pmm),-l

17 D(t),m(vtm,t)=D
18 q:typ
19 lis

3(z)/d(z)+DI

(cmp),GD(pma),nl(ctc,t)=G,D

(s*),G,m(cmp)(pma,t)=G

FGD.SBR

2 nli
1 d,G,D(fgd,sbr)=GD

3 nty
4 -G(z)/d(z)+D-==>-GD(z)/d(z)
5 -Strictly-propergart

6 0 (coin) =GD
7 G(ninp,t)=m
8 d,m(dpm,sub)=dp
9 G,D(mtv)(t),m(cmP),dP

- G(z)-and-D

10 q:typ
11 lis

(pmm)(Pma,t)=GD

GED0.SUB
1 Ao,Bo,CO,D,N,epS

2 (nli)=
3 _Generate-Do=D(s)^(-l)*N(s)-

(GeDo,sub)=DO

4 --Co*(Is-Ao)^(-l)*BO
- for s=either

5 s = O r S=/= system pole
6 ?io(rai)TCo(rai),N(ait)(mcp)

'nrPrNC
7 D(alt)=x,Dr
8 Ao (egv) =eg
9 egrn,lrlrl(exm)(abs)=em
10 ern,eps(ifj)=s,s,g
11 s:eg(rpt),l,l,l,l(exm)

12 s,s,s(-)(cti)=sc
(inc,t)=s

13 D,sc(gs)=Ds
14 N,sc(gs)=Ns
15 Ao,n,n(dim),s(s*)(-)(-l)=Aoi
16 Co,Aoi,Bo(*)(*),Ds(-l),Ns

17 (jmp)=f
18 g:(nop)=

(*)(+,t)=Do

19 Co,Ao(-l),Bo(*)(*),Dr,p(ctc)

20 f:(nop)=
(-l),Nc,p(ctr)(*)(+,t)=DO

21 (lis)=

GEDC.SUB
1 Ac,BC,Cc,N,D,eps

2 (nli)=
(GeDc,sub)=Dc

3 -Generate' DclN(~)*D(s)~(-l)-
4 --CC*(IS:AC)̂ (-I)*BC

5 -s=O-or_s=/=-system-pole
6 Ac(c3i) ,Bc(cdi) ,D(alt)

7 N(alt)=x,Nr
8 Ac (egv) =eg
9 eg,n,lrl,l(exm)(abs)=em

- for s=either

(mcp)=n,m,Dc

10 em,eps(ifj)=s,s,g
11 s:eg(rpt),l,l,l,l(exm)

12 s,s,s(-)(Cti)=SC
(inc,t)=s

13 D,sc(gs)=Ds
14 N,sc(gs)=Ns
15 Ac,n,n(dim),s(s*)(-)(-1)=Aci
16 Cc,Aci,Bc(*)(*),Ns,Ds(-l)

17 (jmP)-f
(*)(+,t)=Dc

18 g:(nop)=
19 Cc,Ac(-l).Bc(*)(*),Nr,m

(ctc),Dc,m(ctr)(-l)(*)
(+,t)=Dc

20 f:(nop)=
21 (lis)=

SECTION 4.3

HR0.SBR
1 Hp,eps,nos(HRo,sbr)

2 nli
3 nty
4 -Markov-parameters-==>

5 IHp-b-Tn-PMF-
6 1,6(dzm) (tvc)

=Ao,Bo,Co,Do,no,Cond
7 nos,l(coin),O(coin)(mcp)

=no, k, giv
8 giv (mcp) =nx
9 Hp(alt)=Hc,p

=Ao,Bo,CO,DO,nO,Cond

POF Ro based on-no

10 Hc(cdi),p(rdi)(mcp)=m,p
11 giv,giv(mcp)=Ind,nol
12 no(cdi),l(ifj)=k,k,G
13 G:l(dma)=giv
14 no(poi)=nn,nx,va,vi,vli,vld
15 nn(mcp)=n
16 nx(inc)=k

372 Appendix C Introduction to L-A-S

17 k,p(*)=kp
18 Hc,kp,2(s*)(ctr),p,k,-2

(Toep),kp(ctr,t)=x,H

20 k:k(mc)=k

22 Hc,kp12(s*)(ctr),p,k,-2

23 H,eps(nrs)=w,x,n
24 k(dec),n,nol(cti)=inno
25 n,nol(-),n(mcp)=del,nol
26 inno(out,t,O)=
27 del(ifj)=K,K,k
28 K:(nop)=
29 k,nx(inc)(ifj)=k,w,w
30 w:(nop)=
31 n,p(cti)=np
32 Ind,l(ifj)=a,d,x
33 a:(nop)=
34 H(t),p,O,eps(Ind,sub)=no
35 1 (coin) =Ind
36 (jmp)=C
37 d:(nop)=

39 1, p (inpm) =no
38 np,no(out,t,O)=

40 C:(nop)=
41 no(poi)=nn,nx,va,vi,vli,vld
42 nn,n(ifj)=d,o,d
43 o:(nop)=
44 Ind(inc)=Ind
45 k,nx(inc)(ifj)=k,x,x
46 x:(nop)=
47 H,nx,p(*)(ctr)=Hl
48 vli,nx,p(*)(ctc)(dsm)=S
49 S(t),Hl(*)=Hl

51 w,w(cdi)(dec)(ctc)=x,wn
50 H1 (t) (svd) =w

52 wn,w,l(ctc)(s/)=Cond
53 no(out,t,O)=
54 Cond(out,e)=
55 giv(ifj)=t,t,J
56 t:inool=

19 (jmP)=x

21 k,P(*)=kP

(Toep),kp(ctr,t)=x,H

- ' F&-dif ferent-POI
Enter j,d(dch)=chr

&herwhe_Enter;_c(dch)=ch2
-chl(tch\=

57

58
59
60 ch2(tchj=
61 (sto)=
62 J: (nop)=
63 H,p(ctr)=x,H2
64 Ha,nx,p(*)(ctr)=HZ
65 Hl(t),s(t),HZ(*)(t)(sle)

66 Hl,m(ctc),p,n(dim),Hc,p(ctr)

67 q:typ
68 lis

(t,t)=Ao

(mcp,t)=ao,co,~o

2 nli
3 nty
4 Markov parameters-==>

-PCF Rcbased on-nc
5 zHp-h-in_PMF-
6 1,6(dzm)(tvc)=

7 ncs,l(coin),O(coin)(mcp)
Ac,Bc,Cc,Dc,nc,Cond

=nc,k,giv
8 giv (mcp) =nx
9 Hp(alt)=Hc,p
10 Hc(cdi),p(rdi)(mcp)=m,p
11 giv,giv(mcp)=Ind,nol
12 nc(cdi),l(ifj)=k,k,G
13 G:l(dma)=giv
14 nc(poi)=nn,nx,va,vi,vli,vld
15 nn(mcp)=n
16 nx (inc) =k
17 k,p(*)=kp
18 Hc,kpr2(s*)(ctr),p,k,-2

(Toep),kp(ctr,t)=x,H

20 k:k(inc)=k

22 Hc,kpr2(s*)(ctr),p,k,-2

23 H,eps(nrs)=w,x,n
24 k(dec),n,nol(cti)=inno
25 n,nol(-),n(mcp)=del,nol
26 inno(out,t,O)=
27 del(ifj)=K,K,k
28 K:(nop)=
29 k,nx(inc)(ifj)=k,w,w
30 w:(nop)=
31 n,m(cti)=nm
32 Ind,l(ifj)=a,d,x
33 a:(nop)=
34 H(t),m,O,eps(Ind,sub)=nc
35 1 (coin) =Ind
36 (jmP)=c
37 d:(nop)=
38 nm,nc(out,t,O)=
39 l,m(inpm)=nc
40 C:(nop)=
41 nc(poi)=nn,nx,va,vi,vli,vld
42 nn,n(ifj)=d,o,d
43 o:(nop)=
44 Ind(inc)=Ind
45 k,nx(inc)(ifj)=k,x,x
46 x:(nop)=
47 H,nx,m(*)(ctc)=Hl
48 vli,nx,m(*)(ctc)(dsm)=S
49 Hl,S(*)=Hl
50 H1 (svd) =w
51 w,w(cdi)(dec)(ctc)=x,wn
52 wn,w,l(ctc)(e/)*Cond
53 nc(out,t,O)=
54 Condiout.el=

19 (jmP)=x

21 k,P(*)=kP

(Toep),kp(ctr,t)=x,H

HRC.SBR 55 giv(ifj)=t;t,J
56 t:(nop)=
57 For different PCI- 1 Hp,eps,ncs(HRc,sbr)

=Ac,Bc,Cc,Dc,nc,Cond - -Entr-j,d(dchr=chl

Section C.6 L-A-S Code for Specific Algorithms 373

58 Otherwise-Entar;-c(dch)==chZ
59 -chl(tch)=
60 ch2 (tch)=
61 (sto)=
62 J: (nop)=
63 H,m(ctc)=x,HZ
64 H2,nxrm(*)(ctc)=H2
65 H1,H2,S(*)(s1ert)=Ac
66 n,m(dim),Hl,p(ctr),Hcrp

(ctr)(mcp)=Bc,Cc,Dc
67 q:typ
68 lis

HTF.SBR

2 nli
1 H,eps(HTF,sbr)=d,W

3 nty
4 -Markovgarameters-->

5 -Hp is in PMF
6 -Ca?l"xher-HTFp.SBR

7 1.2~dzmlltvc\=d.W
or HTFm.SBR

-W(z)/d(z)

-
8 Hirdi) ,Hininp) (mcp,t)=pm,m
9 Prm(s/rt)=p
10 p,m(ifj)=prprm
11 p:(nop)=
12 H,eps(HTFp,sbr)=d,W
13 nli
14 nty

16 m:(nop)=
17 H,epa(HTFm,sbr)=d,W
18 nli
19 nty
20 q:(nop)=
21 tYP
22 lis

15 (jmP)=s

HTFP.SBR
1 Hp,eps(HTFp,sbr)=d,W
2 nli
3 nty
4 -Markov-parameters-==>

5 Hp is in PMF
6 -Carlea b? HTF.SBR
7 Tr2(dzm~(t~c)=d,W
8 Hp(alt)=Hc,p
9 Hc(cdi),p(rdi)(mcp)=m,p

-W(z)/d(z)

10 1 (coin) =k
11 k:k(inc)=k

13 Hc,kp,2(a*)(ctr),prk,2
(Toep),kp(ctrrt)=T1,T2

14 T2,eps(nrs)=wrx,n
15 k(dec),n(cti)=in
16 in(out,t,O)=
17 k(dec),n(ifj)=k,K,K
18 K:(nop)=

12 krP(*)=kP

19 T2,prn(*)(ctr)=H1,H2
20 H1,H2(t)=HlrH2
21 Hl,eps(nrs)=Ns
22 Hl,HZ(sle)=Ac
23 l,n(step),p(dec),n(dzm)

24 O(coin)=i
25 i:i(inc)=i
26 s,-l(s*)(inc,t)=sin
27 s,s(shr)(mcp)=so,s
28 sin(dsm)(t),Ns(*,t)=Nsi
29 NSi,eps(nrs)=x,y,r
30 i,r,n,p(dec)(*)(cti)=irn
31 irn(out,t,O)=
32 r,n,p(dec)(*)(ifj)=s,e,e
33 e:(nop)=
34 Ac,l,i,n,p(*),l(exrn,t)=Aci
35 sin(dsm)(t),Aci(*,t)=Acii
36 N s i (- l) , A C i i (*) , - l (s * r t) = t i
37 Ns,ti(*),Aci(+,t)=d
38 so(dsm)(t),d(*),-l(s*)(t),l

39 (jmp)=j
40 s:(nop)=

42 j:(nop)=
43 d,p(dpm,sub)=D
44 D(alt)=x,Dr
45 Dr,Tl(*),m(pmfr,t)=W
46 q:typ
47 lis

(rti)(mtv,t)=s

(coin)(cti,t)=d

41 irP(ifj)=irjrj

HTFM.SBR

2 nli
1 Hp,eps(HTFm,sbr)=d,W

3 nty
4 Hp(alt)=m,Hr
5 -Markov-parameters==>

10 1 (coin) =k
11 k:k(inc)=k
12 k,m(*)=km
13 Hr(t),km,2(s*)(ctt),m,kr2

14 T2,eps(nrs)=w,x,n
15 k(dec),n(cti)=in
16 in(out,t,O)=
17 k(dec),n(ifj)=k,K,K
18 K:(nop)=
19 T2,mrn(*)(ctc)=H1,H2
20 Hl,epe(nrs)=Ns
21 Hl,HZ(sle)=Ac
22 l,n(atep),m(dec),n(dzm)

23 0 (coin) =i
24 i:i(inc)=i
25 S,-l(s*)(inc,t)=sin

9 micdi) ,Hk(rdi) (mcp)=m,p

(Toep)(t),km(ctcrt)=T1,T2

(rti)(mtv,t)=s

374 Appendix C Introduction to L-A-S

26 e,s(shr)(mcp)=so,s
27 ein(dsm)(t),Ns(*,t)=Nsi
28 Nsireps(nrs)=xry,r
29 i,r,n,m(dec)(*)(cti)=irn
30 irn(out,t,O)=
31 r,n,m(dec)(*)(ifj)=s,e,e
32 e: (nop)=

34 sin(dsm)(t),Aci(*,t)=Acii
33 Ac,l,i,n,m(*),l(exm,t)=Aci

35 N s i (- l) , A c i i (*) , - l (s * , t) = t i
36 Ns,ti(*),Aci(+,t)=d
37 so(dsm)(t),d(*),-l(s*)

38 (3nP)l.j
39 s:(nop)=
40 i,m(ifj)=i,j,j
41 j:(nop)=

43 Tl,D(alt)(*),p(pmfc,t)=W
42 d,m(dpm,sub)=D

45 lis

(t),l(com)(cti,t)=d

44 q:typ

HDN.SBR
1 Hp,eps,nos(HDN,sbr)

2 nli
3 nty
4 -Markovgarameters-==>

5 ~with~column-aegrees-no
6 Hp-, D and N-are-in-PMF
7 T,4(d%ni(tvz)=D,N,no,Cond
8 nos,l(coin),O(coin)(mcp)

9 giv(mcp)=nx
10 Hp(alt)=Hc,p
11 Hc(cdi),p(rdi)(mcp)=m,p
12 giv,giv(mcp)=Ind,nol
13 no(cdi),l(ifj)=k,k,G
14 G:l(dma)=giv
15 no(poi)=nn,nx,va,vi,vli,vld
16 nn(mcp)=n
17 nx (inc) =k

19 Hc,kp,2(s*)(ctr),plk,2
(Toep),kp(ctr,t)=Tl,T2

=D,N,no,Cond

Left coprime {D(z),N(z))

=no,k,giv

18 ktP(*)=kP

20 (jmP)=x

22 ktP(*)=kP
21 k:k(inc)=k

23 Hc,kp,2(s*)(ctr),ptk,2

24 T2,eps(nrs)=wtx,n
(Toep),kp(ctr,t)=Tl,T2

25 k(dec),n,nol(cti)=inno
26 n,nol(-),n(mcp)=del,nol
27 inno(out,t,O)=
28 del (if j)=K,K, k
29 K:(nop)=
30 k,nx(inc)(ifj)=k,w,w
31 W: (nop)=
32 n,p(cti)=np
33 Ind,l(ifj)=a,d,x

34 a:(nop)=

36 1 (coin)=Ind
35 T2(t),p,O,eps(Ind,sub)=no

37 (jmp)=C
38 d:(nop)=

40 1 , p (inpm) =no
39 np,no(out,t,O)=

41 C:(nop)=
42 no(poi)=nn,nx,va,vi,vli,vld
43 nn,n(ifj)=d,o,d
44 0 : (nop) =
45 Ind (inc) =Ind
46 k,nx(inc)(ifj)=k,x,x
47 x:(nop)=
48 1, kp(dzm) =zv
49 zv,vli(p+),zv,vld(p+)

50 vli(dsm),vld(dsm)(mcp)
(mcp)=vli,vld

51 Sli(t),T2(*),Sld(t),T2
=Sli,Sld

52 Hl(t) (svd)=w
(*)(mcp,t)=Hl,HZ

53 w,w(cdi)(dec)(ctc)=x,wn

55 no(out,t,O)=
54 wn,w,l(ctc)(a/)=Cond

56 Condfout.el=
51 giv(ifj)&;t,J
58 t:lnoD\=
59 -For-different-POI- - Enter j,d(dch)=chl
60 -Otherwhe-Enter;-c(dch)=ch2
61 chl (tch) =
62 ch2 (tch) =
63 (sto)=
64 J:(nop)=
65 Hl(t),H2(t)(sle)(t),-l

66 Ar,Sli(t)(*),Sld(t)(+,t)=Dr
67 Dr,p(pmfr)=D
68 Dr,Tl(*),m(pmfr,t)=N
69 q:typ
70 lis

. A .

(s*,t)=Ar

HND.SBR
1 Hp,eps,ncs(HND,sbr)

2 nli
3 nty
4 -Markov parameters-==>

5 -with-row-degrees nc
Right-coprime-{N(z),D(z))

6 -Hp-,-N-,-and D-aFe-in PMF
7 1,4(dzm)(tvc)=NN,D,nc,C~nd
8 ncs,l(coin),O(coin)(mcp)

9 giv (mcp) =nx
10 Hp(alt)=m,Hr
11 m(cdi),Hr(rdi)(mcp)=m,p
12 giv,giv(mcp)=Ind,nol
13 nc(cdi),l(ifj)=k,k,G
14 G:l(dma)=giv

=N,D,nc,Cond

-

=nc,k,giv

Section C.6 L-A-S Code for Specific Algorithms 375

15 nc(poi)=nn,nx,va,vi,vli,vld
16 nn(mcp)=n
17 nx (inc) =k
18 k,m(*)=km
19 Hr(t),km,2(s*)(ctr),m,k,2

(Toep)(t),km(ctc,t)=Tl,TZ
20 (jmP)=x
21 k:k(inc)=k
22 k,m(*)=km
23 Hr(t),km,2(s*)(ctr),m,k,2

24 TZ,eps(nrs)=w,x,n
25 k(dec),n,nol(cti)=inno
26 n,nol(-),n(mcp)=del,nol
27 inno(out,t,O)=
28 del(ifj)=K,K,k
29 K:(nop)=
30 k,nx(inc)(ifj)=k,w,w
31 w:(nop)=
32 n,m(cti)=nm
33 Ind,l(ifj)=a,d,x
34 a:(nop)=
35 T2,m,O,eps(Ind,sub)=nc
36 l(coin)=Ind
37 (jmp)=C
38 d:(nop)=
39 nm,nc(out,t,O)=
40 l,m(inpm)=nc
41 C:(nop)=
42 nc(poi)mn,nx,va,vi,vli,vld
43 nn,n(ifj)=d,o,d
44 o:(nop)=
45 Ind (inc) =Ind
46 k,nx(inc)(ifj)=k,x,x
47 x:(nop)=
48 l,km(dzm)=zv
49 zv,vli(p+),zv,vld(p+)(mcp)

=vli,vld
50 vli(dsm),vld(dsm)(mcp)

=Sli,Sld
51 T2,Sli(*),TZISld(*)(mcp,t)

=H1, H2
52 H1 (svd) =w
53 w,w(cdi)(dec)(ctc)=x,wn
54 wn,w,l(ctc)(s/)=Cond
55 nc(out,t,O)=
56 Cond (out, e) =
57 giv(ifj)=t,t,J
58 t:(nop)=
59 -For different-PCI- - Enter j , d (dch) =chl
60 -Othenuhe_Enter;-c(dch)=ch2
61 chl (tch)=
62 ch2 (tch)=
63 (sto)=
64 J:(nop)=
65 Hl,H2(sle),-l(s*,t)=Ac
66 Sli,Ac(*),Sld(+,t)=Dc
67 Dc,m(pmfc)=D
68 Tl,Dc(*),p(pmfc,t)=N
69 q:typ
70 lis

(Toep)(t),km(ctc,t)=Tl,T2

UFIY.SUB
1 u,H(uhy,sub)=y

=m,N,M
9 H(alt)=Hc,p
10 p(rdi)=p

12 l:M(mcp)=N
13 g:(nop)=
14 u, N (ctc) =uc
15 uc,l(r2c)=uc
16 Hc,p,N,P(toep)=Hc
17 Hc,uc(*),p(C2r)=y
18 y,N(ctc)=y

11 M,N(ifj)=l,g,g

19 (lis)=

HF.SUB
1 H,f(Hf,sub)=Hf
2 (nli)=
3 -Time-scaling-"up"-of-H
4 -with f < 1
5 O(coi>)ylTcoin),H(cdi)

(cti,t)=v
6 v(gts)(t),-l(s*)=v
7 v,f(log)(s*)(exp)(dsm,t)=SS
8 H,SS(*)=Hf
9 Hf,H(ninp)(cmp)=Hf
10 (lis)=

SECTION 4.4

DNRO.SUB
1 D,N,eps(DNRo,sub)

2 (nli)=
3 -Left-coprime-(D(z),N(z)}

==B POF Ro based on no
4 po-ls_e-~a~_to-c;jlu~n

5 D(alt)=x,Dr
6 N(alt),N(rdi),N(ninp)(mcp)

7 mp,m(s/,t)=p
=Nc,mp,m

8 Dr,eps(DZnv,t)=no

10 va(dsm),vi(dsm),vli(dsm),
9 no(poi)=n,nx,va,vi,vli,vld

11 n,n(dim),p(ctr)=Co,AZ
12 Si,A2(*),Sa,Dr,Sli(*)(*)

13 Ao,Sa,nx(inc)(Qc),Nc(*,t)=Bo
14 Ao (egv) =eg
15 eg,n,l,l,l(exm)(abs)=em

=Ao,Bo,Co,Do,nO

-
- degrees-of-D(z)

vld(dsm)(mcp)=Sa,Si,Sli,Sld

(-,t)=AO

376 Appendix C Introduction to L-A-S

16 em,eps(ifj)=s,s,g
17 s:eg(rpt),l,l,l,l(exm)

18 s,s,s(-)(cti)=sc
(inc,t)=s

19 D.sc(gs)=Ds
20 N,sc(gs)=Ns
21 Ao,n,n(dim),s(s*)(-)(-l)=Aoi
22 Co,Aoi,Bo(*)(*),Ds(-l),

23 (jmp)=f
24 g:(nop)=
25 Co,Ao(-l),Bo(*)(*),Dr,p

Ns(*)(+,t)=Do

(ctc)(-l),Nc,p(ctr)(*)
(+,t)=Do

26 f: (nop)=
27 (lis)=

NDRCSUB
1

2
3

4

5
6

l
8

10
9

11
12

13

14
15
16

A’
18
19
20
21
22

23
24
25

26
27

N,D,epe(NDRc,sub)
=Ac,Bc,Cc,Dc,nc
(nli)=
-
E*> PCF Rc-based on-nc
Right-coprime-{N(z),D(z)}

- - nc-ls-e-wal to rZw - degrees of,r(7.r
N(alt)=xTNr
D(alt),N(rdi),N(ninp)

mplm(s/lt)=l
(mcp)=Drc,mp,m

Drc(t),eps(D2nv,t)=nc
nc(poi)=n,nx,va,vi,vli,vld

vld(dsm)(mcp)=Sa,Si,Sli,Sld
va(dsm),vi(dsm),vli(dsm),

n,n(dim),m(ctc)=Bc,A2

Sa(t)(*)(*)(-,t)=Ac
A2,Si(t)(*),Sli(t),Drc,

Nr,Ac,Sa(t),nx(inc)(Qo)
(*,t)PCC
Ac(egv)=eg
eg,n,l,l,l(exm)(abs)=em

s:eg(rpt),l,l,l,l(exm)
em,eps(ifj)=s,s,g

(inc,t)=s

D,sc(gs)=Ds
s,B,s(-)(Cti)=sC

Ac,n,n(dim),s(s*)(-)(-1)=Aci
Cc,Aci,Bc(*)(*),Ns,DS(-l)
(*)(+&)=DC

N,SC(gS)nNS

(jmP)=f
4: (noP)=

Cc,Ac(-l),Bc(*)(*),Nr,m

(+,t)=Dc
(ctc),Drc,m(ctr)(-l)(*)

f: (nop)=
(lis)=

DNH.SUB
1
2
3

4
5

6

8
7

10
9

11
12
13
14
15

D,M,L(DNH,sub)=H,nrm
(nli)= - Left-coprime-{D(z),N(z)}
=e>

- First L Markov parameters - Appli<a%le-onl~-for - DT-stable-systems
6(aTty,N(ali)(mEp)=Dc,Nc
D, N and H are in-PMF

Dc(cdi),Nc(cdi),Dc(rdi)
(mcp)=p,m,kp
Dc,p,L,-l(Toep,t)=Dm
p,L(dec)(*),m(dzm),Nc
(rti)=Nm
Dm,Nm(sle)=H
H,L(dec),P(*)(ctr)=x,y
H,P(pmfc)=H

(lis)=
y(nrr)=nrm

NDH.SUB

2 (nli)=
1 N,D,L(NDH,sub)=H,nrm

3 -Right-coprime-{N(z),D(z))

4 -First L Markovgarameters
5 ~Appli<a%le-only-for

DT-stable system6
6 :N,-D-,-anz-H-are-in-PMF
7 D(alt)=x,Dr
8 N(alt)=x,Nr
9 Dr(rdi),Nr(rdi),Dr(cdi)

10 Dr(t),m,L,-l(Toep)(t)=Dm
11 p,L(dec),m(*)(dzm),Nr

12 Dm(t),Nm(t)(sle)(t)=H
13 H,L(dec),m(*)(ctc)=x,y
14 H,m(pmfr)=H
15 y (nrr) =nrm
16 (lis)=

rt,

(mcp)=m,p,km

(cti)=Nm

DNTF.SBR

2 nli
l D,N,eps(DNTf,sbr)=d,W

3 nty
4 -Left-coprime-{D(z),N(z)}

=I,

5

6

8
7

10
9

11
12
13
14

-
Transfer function

-w(z)/d(zi
T12(dzm)(tvc)=d,W

Dlad,N(pmm,t)=W
D(p-l,t)=Dlad,d

W,eps(elzc,sub)=W
d(elz)=d
d(pnr)=x,dn
d,dn(s/),W,dn(s/)(mcp)rd,W

11s
W t Y P

Section C.6 L-A-S Code for Specific Algorithms 377

NDTFSBR

2 nli
1 N,D,eps(NDTf,sbr)=d,W

3 nty
4 -Right-coprime-{N(z),D(z))

==>
5

6
7
8
9
10
11
12
13
14

- - Transfer-function

D(p-l,t)=Drad,d
1,2(dzm)(tvc)=d,W

N,Drad(pmm,t)=W
W,eps(elzc,sub)=W
d(elz)=d
d(pnr)=x,dn
d,dn(s/),w,dn(s/)(mcp)=d,W

q: tYP
lis

-W(z)/d(z)

DNTS.SBR

2 nli
1 Dl,Nl,f(DNte,ebr)=Dlf,Nlf

3 ntv

7 Di(ninpj=p
8 Dl(alt)=x,Dr
9 le-5 (dma) =epe
10 Dr, eps (d2nv) =no
11 no,Dl(cdi),f(tecl,sub)=So
12 So,Dl(alt)(*),p(pmfc)=Dlf
13 So,Nl(alt)(*),p(pmfc)=Nlf
14 q:typ
15 lie

NDTS.SBR

2 nli
1 Nr,Dr,f(NDts,ebr)=Nrf,Drf

3 nty
4 Time scaling-of-Right

5 -{Nr(z),Dr(z)}-"down" f-C-l
6 r,2(dzrn) (tvc)=Nrf,Drf-
7 Dr (ninp) =m
8 Nr(alt)=x,Nrr

10 le-5 (dma)=eps
9 Dr(alt)=x,Drr

11 x(t),eps(d2nv)mc
12 nc,Dr(cdi),f(tscl,eub)=Sc
13 Nrr,Sc(*),m(pmfr)=Nrf
14 Drr,Sc(*),m(pmfr)=Drf
15 q:typ
16 lis

-copr Tme

TsCL.SuB

2 (nli)=
1 no,n,f (tscl,sub)=S

3 -S-=-"Time-scaling"-diag

matrix
4 - f < l
5 lC=lied-by-DNTS. SBR-&

6 O,n(dzm)=e
7 no (cdi) =p
8 no(ord),p,p(diim)(*)=noo
9 0 (coin) =i

NDTS. SBR -

10 I:i(inc)=i
11 noo,l,i(exm,t)=noi
12 noi,-l(coin),n(cti)=x
13 x(gts)(t),f(log)(s*)

(exp,t)=vec
14 s,vec(rti,t)-S

16 J:(nop)=
17 e(mtv)(ddm,t)=S
18 (lis)=

DNRC.SBR

15 i,p(ifj)nI,J,J

1 D,N,eps,nce(DNRc,ebr)

2 nli
3 nty
4 -Left-coprime-{D(z),N(z))

=Ac,Bc,Cc,Dc,nc,Cond

S==>
5 PCF RC based on-nc

-
6 T, 6 (a~m? (~ V C

7 nce,l(coin),O(coin)(mcp)

8 giv(mcp)=nx

10 Dc(cdi),Nc(cdi)(mcp,t)=p,m
9 D(alt),N(alt)(mcp)=Dc,Nc

11 giv,giv(mcp)=Ind,nol
12 nc(cdi),l(ifj)=k,k,G
13 G:l(dma)=giv
14 nc(poi)=nn,nx,va,vi,vlirvld
15 nx (inc) =k
16 k,p(*)=kp

Ac,Bc,Cc,.Dc,nc,Cond

=nc, k, giv

17 DcrPrk,l(ToeP)rNc,P,krl

18 (jmP)=x

20 k,P(*)=kP
19 k:k(inc)=k

21 Dc,p,k,l(ToeP),Nc,P,krl

22 DN,epe(nre)=w,x,n
23 n,kp(-,t)=n
24 k(dec),n,nol(cti)=inno
25 n,nol(-),n(mcp)=del,nol
26 inno(out,t,O)=
27 del(ifj)=K,K,k
28 K:(nop)=
29 k,nx(inc)(ifj)=k,w,w
30 w:(nop)=
31 n,m(cti)=nm
32 Ind,l(ifj)=a,d,x
33 a:(nop)=
34 DN,m,k,p(*),eps(Ind,sub)=nc
35 l(coin)=Ind

(Toep),-l(e*)(cti)=DN

(Toep),-l(s*)(cti)=DN

378 Appendix C Introduction to L-A-S

36 (jmP)=c
37 d:(nop)=
38 nm,nc(out,t,O)=
39 l,m(inpm)=nc
40 C:(nop)=
41 nc(poi)=nn,nx,va,vi,vli,vld
42 nn,n(ifj)=d,o,d
43 o:(nop)=
44 Ind (inc) =Ind
45 k,nx(Fnc)(ifj)=k,x,x
46 x:(nop)=

48 l,krm(,*) (dzm)=zv
49 zv,vl~(p+),zv,vld(p+)

50 l.kp(step),vli(cti)=vli
51 l,kp(dzm) ,vld(cti)=vld
52 vli(dsm),vld(dsm)(mcp)

53 DN.Sli(*),DN,Sld(*)(mcp)

54 H1 (svd) =w
55 w,w(cdi)(dec)(ctc)=x,wn
56 wn,w,l(ctc)(e/)=Cond

.58 Cond(out,e)=
57 nc(out,t,O)= .
59 giv(ifj)=t,t,J
60 t:(nop)=
61 -For-different-PCI-

Enter j,d(dch)=chl
62 6therwIse Enter;-c(dch)=ch2
63 -chl(tch)=-
64 ch2 (tch) =
65 (sto)=

47 k,P(*)=kP

(mcp)=vli,vld

=Sli,Sld

=H1 , H2

66 J:(nop)=
67 HlIH2(sle),-1(S*,t)~NDr
68 NDr,kp(ctr)=Ncc,Dcc
69 nc(poi)=n,nx,va,vi,vli,vld
70 va(dsm),vi(dsm),vli(dsm),

71 n,n(dim),m(ctc)=Bc,A2
72 A2,Si(t)(*),DcclSa(t)(*)

73 Ncc,p(cZr)=Nr
(-,t)=AC

74 Nr,Ac,Sa(t),nx(inc)(Qo)
(*,t)=Cc

75 vli(dsm),Dcc(*),vld(dsm)
(+,t)=Dcc

76 Dcc,m(pmfc)=Dl
77 Ncc,p(pmfc)=Nl
78 Ac,Bc,Cc,Nl,Dl,epa

(GeDc,sub)=Dc

vld(dsm)(mcp)=Sa,Si,Sli,Sld

79 q:typ
80 lis

NDR0.SBR
1 N,D,eps,nos(NDRo,sbr)

2 nli
3 nty
4 -Right-coprime-(N(z),D(z))

=Ao,Bo,Co,Do,no,Cond

==>
5 -POF Ro based on-no
6 l, 6 (&mi (tvc 1:

7 nos,l(coin),O(coin)(mcp)
Ao , Bo , CO ,.Do , no, Cond
=no,k,giv

8 giv(mcp)=nx

10 D(alt)=x,Drr
9 N(alt)=x,Nrr

11 Nrr(rdi),Drr(rdi)(mcp)=p,m
12 giv,giv(mcp)=Ind,nol
13 no(cdi),l(ifj)=k,k,G
14 G:l(dma)=giv
15 no(poi)=nn,nx,va,vi,vli,vld
16 nx(inc)=k
17 k,m(*)=km
18 Drr(t),m,k,l(Toep),Nrr(t),

19 (jmp)=x
20 k:k(inc)=k
21 k,m(*)=km
22 Drr(t),m,k,l(Toep),Nrr(t),

23 DN,eps(nrs)=w,x,n
24 n,km(-,t)=n
25 k(dec),n,nol(cti)=inno
26 n,nol(-),n(mcp)=del,nol
27 inno(out,t,O)=
28 del(ifj)=K,K,k
29 K: (nop)=
30 k,nx(inc)(ifj)=k,w,w
31 w:(nop)=
32 n,p(cti)=np
33 Ind,l(ifj)=a,d,x
34 a:(nop)=
35 DN,p,k,m(*),epe(Ind,sub)=no
36 l(coin)=Ind
37 (jmp)=C
38 d:(nop)=
39 np,no(out,t,O)=
40 l,p(inpm)=no
41 C: (nop)=
42 no(poi)=nn,nx,va ,v i ,v l i ,v ld ,
43 nn,n(ifj)=d,o,d
44 o:(nop)=
45 Ind(inc)=Ind
46 k,nx(inC)(ifj)=krXrX
47 x:(nop)=
48 k,m(*)=km
49 l,k,p(*)(dzm)=zv
50 zv,vli(p+),zv,vld(p+)(mcp)

51 l,km(step),vli(cti)=vli
52 l,km(dzm) ,vld(cti)=vld
53 vli(dsm),vld(dsm)(mcp)

54 DN,Sli(*),DN,Sld(*)(mcP)

55 H1 (svd)=w
56 w,w(cdi)(dec)(ctc)=x,wn
57 wn,w,l(ctc)(s/)=Cond
58 no(oUt,t,O)=

m,k,l(Toep),-l(s*)(cti)=DN

m,k,l(Toep),-l(s*)(cti)=DN

=vli,vld

=Sli,Sld

=HlrH2

Section C.6 L-A-S Code for Specific Algorithms 379

59 Cond (out, e) =
60 giv(ifj)=t,t,J
61 t:(nop)=
62 -For different POI-

63 _~therw~se_Enter;-c(dch)=ch2
Enter j , d (dch Tach1

64 chl (tch) =
65 ch2(tch)=
66 (sto)=
67 J:(nop)=
68 Hl,H2(sle)(t),-l(s*,t)=ND
69 ND,km(ctc,t)=Nlr,Dlr
70 no(poi)=n,nx,va,vi,vli,vld
71 va(dsm),vi(dsm),vli(dsm),

72 n,n(dim),p(ctr)=Co,A2
73 SiIA2(*),Sa,Dlr(*)(-,t)=A0
74 Nlr,m(rZc)=Nc
75 Ao,Sa,nx(inc)(Qc),Nc(*,t)=Bo
76 Dlr,vli(dsm)(t)(*),vld(dsm)

77 Dlr,p(pmfr)=Dl
78 Nlr,m(pmfr)=Nl
79 Ao,Bo,Co,Dl,Nl,eps

80 q:typ
(GeDo,sub)=Do

81 lis

vld(dam)(mcp)=Sa,Si,Sli,Sld

(t)(+,t)=Dlr

DNND.SBR
1 Dl,Nl,eps,ncs(DNND,sbr)

2 nli
3 nty
4 -Left MFD {Dl(z),Nl(z))-==>
5 -Righx-coprime

6 -with-row_degrees-nc
-tNr(z)rDr(z)>

7 1,4(dzm)(tvc)=Nr,Dr,nc,Cond
8 ncs,l(coin),O(coin)(mcp)

9 giv(mcp)=nx

=Nr , Dr , nc , Cond

=nc, k, giv

10 Dl(alt),Nl(alt)(mcp)=Dc,Nc
11 Dc(cdi),Nc(cdi)(mcp,t)=p,m
12 giv,giv(mcp)=Ind,nol
13 nc(cdi),l(ifj)=k,k,G
14 G:l(dma)=giv
15 nc(poi)=nn,nx,va,vi,vli,vld
16 nx (inc) =k
17 k,p(*)=kp
18 Dc,P,k,l(ToeP),Nc,p,k,l

19 (jmP)=x
(Toep),-l(s*)(cti)=DNl

20 k:k(lnc)=k
21 k,p(*)=kp
22 Dc,P,k,l(Toep),Nc,p,k,l

(Toep),-l(s*)(cti)=DNl
23 DNl,eps(nrs)=w,x,n
24 n,kp(-,t)=n
25 k(dec),n,nol(cti)=inno
26 n,nol(-),n(mcp)=del,nol
27 inno(out,t,O)=

28 del(ifj)=K,K,k
29 K:(nop)=
30 k,nx(inc)(ifj)=k,w,w
31 w:(nop)=
32 n,m(cti)=nm
33 Ind,l(ifj)=a,d,x
34 a:(nop)=
35 DNl,m,k,p(*),eps(Ind,sub)=nc
36 1 (coin)=Ind
37 (jmp)=c
38 d:(nop)=
39 nm,nc(out,t,O)=
40 l,m(inpm)-nc
41 C:(nop)=
42 nc(poi)=nn,nx,va,vi,vli,vld
43 nn,n(ifj)=d,o,d
44 o:(nop)=
45 Ind(inc)=Ind
46 k,nx(inc)(ifj)=k,x,x
47 x:(nop)=
48 k,p(*)=kp
49 l,k,m(*)(dzm)=zv
50 zv,vli(p+),zv,vld(p+)(mcp)

51 l,kp(step),vli(cti)=vli
52 l,kp(dzm),vld(cti)=vld
53 vli(dsm),vld(dsm)(mcp)

54 DNl,Sli(*),DNl,Sld(*)(mcp)

55 H1 (svd) =W
56 w,w(cdi)(dec)(ctc)=x,wn
57 wn,w,l(ctc)(s/)=Cond
58 nc(out,t,O)=
59 Cond(out,e)=
60 giv(ifj)=t,t,J
61 t:(nop)=
62 _For-different-PCI-

63 -Etherwhe_Enter;_c(dch)=ch2
Enter j,d(dch)=chl

64 chl (tch) =
65 ch2 (tch) =
66 (sto)=
67 J:(nop)=
68 Hl,H2(ale),-l(s*,t)=NDr
69 NDr,kp(ctr,t)=Ncc,Dcc
70 vli,kp(ctc)=x,vlii
71 vld,kp(ctc)=x,vldd
72 vlii(dsm),Dcc(*),vldd

(dsm)(+,t)=Dcc
73 Dcc,m(pmfc)=Dr
74 Ncc,p(pmfc)=Nr

76 lis

=vli,vld

=Sli,Sld

=H1, H2

75 q:typ

NDDN.SBR
1 Nr,Dr,eps,nos(NDDN,sbr)

2 nli
3 nty
4 -Right_MFD-{Nr(z),Dr(z))-==>

=Dl,Nl,no,Cond

380 Appendix C Introduction to L-A-S

5 Left coprime {Dl(z),Nl(z)}
6 -with-column aegrees no

8 nos,l(coin),O(coin)(mcp)
7 i,4(d~m)(tvc~=Dl,Nl,Fio,Cond

=no, k, giv
9 Nr(alt)=x,Nrr

11 Dr(alt)=x,Drr
10 giv(mcp)=nx

12 Nrr(rdi),Drr(rdi)(mcp)rp,m
13 giv,g+v(mcp)=Ind,nol
14 no(cdl),l(ifj)=k,k,G
15 G:l(dma)=giv
16 no(poi)=nn,nx,va,vi,vli,vld
17 nx (inc)=k
18 k,m(*)=km
19 Drr(t),m,k,l(Toep),Nrr(t),

m,k,l(Toep),-l(s*)(cti)=DNrt
20 (jmp)=:x
21 k:k(lnc)=k
22 k,m(*)=km
23 Drr(t),m,k,l(Toep),Nrr(t),

m,k,l(Toep),-l(s*)(cti)=DNrt
24 DNrt,eps(nrs)=w,x,n

26 k(dec),n,nol(cti)=inno
25 n,km(-,t)=n

27 n,nol(-),n(mcp)=del,nol
28 inno(out,t,O)=
29 del(ifj)=K,K,k
30 K:(nop)=
31 k,nx(inc)(ifj)=k,w,w
32 w:(nop)=
33 n,p(cti)=np
34 Ind,l(ifj)=a,d,x

36 DNrt,p,k,m(*),eps
35 ar(nop)n

(Ind,sub)=no
37 1 (coin)=Ind

39 d:(nop)=
40 np,no(outlt,O)=
41 1 , p (inpm) =no
42 C: (nop)=
43 no(poi)=nn,nxrvarvirvlirvld
44 nn,n(ifj)=d,o,d
45 0 : (nop)=
46 Ind(inc)=Ind
47 k,nx(inc) (ifj)=k,x,x

49 k,m(*)=km
48 x:(nop)=

50 l,k,p(*)(dzm)=zv
51 Zv,vli(p+)rzVrvld(p+)(mcp)

38 (jmp)=C

52
53
54

55

56
57
58
59

=vli,vld
l,km(step),vli(cti)=vli
l,km(dzm),vld(cti)=vld

=Sli,Sld
vli(dem),vld(dsm)(mcp)

=H1 , H2
w,w(cdi)(dec)(ctc)=x,wn
H1 (svd) =w

wn,w,l(ctc)(s/)=Cond
no(out,t,O)=

DNrt,Sli(*),DNrt,Sld(*)(mcp)

60 Cond(out,e)=
61 giv(ifj)=t,t,J
62 t:(nop)=
63 -For-different-POI-

64 -0therwhe_Enter;-c(dch)=ch2

66 ch2 (tch)=
65 chl (tch) =

67 (sto)=
68 J:(nop)=
69 HlrH2(sle)(t),-l(s*,t)=ND1
70 NDl,km(ctc,t)=Nlr,Dlr
71 vli,km(ctc)=x,vlii
72 vld,km(ctc)=x,vldd
73 Dlr,vlii(dsm)(t)(*),vldd

74 Dlr,p(pmfr)=Dl
75 Nlr.mlDmfrI=Nl

- Enter j,d(dch)=chl

(dsm)(t)(+,t)=Dlr

76 q:typ
77 lis

. .- .

CHAPTER 5

UYR0.SBR
1 uryteps,nos(uyRo,sbr)

2 nli
3 nty
4 -Input/Output-Data-==>

5 - DeFeriiiinistIc h4O-system
6 -ir7(dzm) (tvc)=

=Ao,Bo,Co,Do,no,xo,Cond

POF R0 based on no

Tdentification-

A o ~ B o , C O , D O , ~ ~ , X O , C ~ ~ ~
7 Ury(t)=Ury
8 nos,O(coln),O(coin)(mcp)

9 giv (mcp) =nx

11 O(coln),O(coin),u(rdi),u
10 giv(mcp)=Ind

=no,i,giv

(cdi!,y(cdi)(mcp)=
nol,l,N,m,p

12 u,y(mcp)=U,Y
13 no(cdi),l(ifj)=i,i,G
14 G:l(dma)==giv
15 no(poi)=nn,nx,va,vi,vli,vld

17 N,i(dec)(-)=Ni
16 nx(inc),nn(mcp)=i,n

18 u,l,i,-2(toep),yrl,i,-2

20 Y,i(dec)(ctr)=x,Y
19 U,i(dec)(ctr)=x,U

21 (jmp)=x
22 i:i(inc)=i
23 u(shu),y(shu)(mcp)=u,y
24 U,u(cti),Y,y(cti)(mcp)=U,Y
25 U,Y(cti),N,i(-)(ctr),eps

26 r,i(inc),m(*)(-,t)=n

(toep)(mcp)=U,Y

(nrs)=xx,yy,r

Se

27
28
29
30
31

33
32

34
35

37
36

38
39

40
41
42
43

45
44

46
47
48
49

51
50

52

53

54

55

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70

71
72
73
74
75
76
77
78

79

ction C.6 L-A-S Code forSpe

n,nol(-),n(mcp,t)=del,nol
i,n,nol(cti)=inno

del(ifj)=c,c,i
inno(out,t,O)=

i,nx(ifj)=i,w,w

n,p(cti)=np
N,i(-)=Ni
Ind,l(ifj)=a,d,x

U,Y(cti),Ni(ctr)=Z
Z,p,i(inc),m(*),eps

l(coin)=Ind
(Ind,sub)=no

(jmP)=c

c: (nop) =

W : (nop) =

a: (nop) =

d: (nop) =
no,np(out,t,O)=
l,p(inpm)=no

no(poi)=nn,nx,va,vi,vli,vld
n,nn(ifj)=d,o,d

Ind(mc)=Ind
i,nx(ifj)=i,x,x

va(dsm),vi(dsm),vli(dsm),
vld(dsm)(mcp)=Sa,Si,Sli,Sld
U,Ni(ctr),Y,Ni(ctr)(mcp)
=uc,yc
Uc,nx(inc),m(*)(ctc),Yc,nx
(inc),p(*)(ctc)(mcp)=Uc,Yc

XYl,Y2
Yc,Sli(*),Yc,Sld(*)(mcp)

Uc,Yl(cti)=Z
2 (svd) =w
w,w(cdi)(dec)(ctc)=x,wn
wn,w,l(ctc)(s/)=Cond
no(out,t,O)=
Cond(out,e)=
giv(ifj)=t,t,J

C: (nop)=

0 : (nap!=

x: (nop) =

t: (nop)=
-
Enter j, d(dchi=chl
For different POI

- - OtherwTee_Enter;-c(dch)=ch2
chi (tch) =
ch2 (tch)=
(StO) =

Z,Y2(sle)(t),nx(inc),m(*)

n,n(dim),p(ctr)=Co,AZ
(ctc,t)=Bt,At

Sa,At(*),Si,A2(*)(+,t)=Ao
Ao,Sa,nx(inc)(qc)=Qc

Qc,Btt(*,t)=Bo
Bt,m(rPc)=Btt

Bt,m(ctc)=Btl
Bt,m(pmfr)=Np

J: (nop) =

Sld(<) ,At,Sfi(t) (*) (-),p
(pmf r) =Dp
Ao,Bo,Co,Dp,Np,epe
(GeDo,sub)=Do

cific Algorithms 381

80 Yl(t),l(ctc),Uc(t),l(ctc)
(mcp)=Yll,Ul

81 Do,A~,Co,nx(Qo),Bo(*)
(rti),p,nx,2(Toep)=SS

82 Yll,Sli(t),SS(*),Ul,nx,m

83 q:(nop)=
84 typ
85 lis

(*)(ctr)(*)(-,t)=xo

UYDN.SBR
1 u,y,eps,nos(uyDN,sbr)

2 nli
3 nty
4 -Input/Output-pair-==>

5 _Det&minist'Zc MIMO-system

6 T,4(dzm)(tvc)=Dp,Np,no,Cond

8 nos,O(coin),O(coin)(mcp)

10 giv(mcp)=Ind
9 giv(mcp)=nx

11 O(com),O(coin),u(rdi),u

=Dp,Np,no,Cond

- Left Coprime {D(z),N(z))
Identification-

7 u,Y(t)=u,Y

=no,i,giv

(cdi) rY(Cdi) W P)

12 u,y(mcp)=U,Y
=nol,i,N,m,p

13 no(cdi),l(ifj)=i,i,G
14 G:l(dma)=giv
15 no(poi)=nn,nx,va,vi,vli,vld
16 nx(inc),nn(mcp)=i,n
17 N,i(dec) (-)=Ni
18 u,l,i,-2(toep),y,l,i,-2

20 Y,i(dec)(ctr)=x,Y
19 U,i(dec)(ctr)=x,U

21 (jmp)=x
22 i: (nop)=
23 here nofcdi\=l

(toep)(mcp)=U,Y

24 ~for-~=l~go-~o-N

26 ~ , l (~ f j i = ~ , N ~ I -
25 for no = or > 1-go-to-G

27 N:no,l(ifj)=I,G,G
28 I:i(inc)=i
29 u(shu)!y(shu)(mcp)=u,y
30 U,u(ctl),Y,y(cti)(mcp)=U,Y
31 U,Y(cti),N,i(-)(ctr),eps

(nrs!=xx,yy,r
32 r,i(mc),m(*)(-,t)=n
33 i,n,nol(cti)=inno
34 n,nol(-),n(mcp,t)=del,nol
35 inno(out,t,O)=
36 del(ifj)=c,c,i
37 c:(nop)=
38 i,nx(ifj)=I,w,w

40 n,p(cti)=np
39 w:(nop)=

42 Ind,l(ifj)=a,d,x
41 N,i(-)=Ni

382 Appendix C Introduction to L-A-S

43 a: (nop)=
44 U,Y(cti),Ni(ctr)=Z
45 Z,p,i(inc),m(*),e~s

(Ind,sub)=no
46 1 (coin) =Ind
47 (jmp)=C
48 d:(nop)=
49 no,np(out,t,O)=
50 l, p (inpm) =no
51 C:(nop)=
52 no(poi)mn,nx,va,vi,vli,vld
53 n,nn(ifj)=d,o,d
54 o:(nop)=
55 Ind (inc) =Ind
56 i,nx(ifj)=i,x,x
57 x:(nop)=
58 va(dsm),vi(dsm),vli(dsm),

vld(dem)(mcp)=Sa,Si,Sli,Sld
59 U,Ni(ctr),Y,Ni(ctr)(mcp)

EUC, Yc
60 uc,nx(inc),m(*)(ctc),Yc,

nx(inc),p(*)(ctc)(mcp)=Uc,Yc
61 Yc,Sli(*),Yc,Sld(*)(mcp)

SYl,Y2
62 Uc,Yl(cti)=Z
63 Z(svd)=w
64 w,w(cdi)(dec)(ctc)=x,wn
65 wn,w,l(ctc)(s/)=Cond
66 no(out,t,O)=
67 Cond (out, e) =
68 giv(ifj)=t,t,J
69 t:(nop)=
70 -For-different-POI

71 -5therwjtse Enter;-c(dch)=chZ

73 ch2 (tch) =
72 chl (tch) =-

74 tsto\=

Enter j,d(dch)=chl

10 Y (mcp)=YY
11 U(rdi),Y(rdi)(mcp)=m,p
12 0,lO (d m) =Wt
13 Wt (mcp) =dt
14 0 (coin) =i
15 i:i(inc)=i
16 YY,l(ctr)syl,YY
17 epsl(mcp)=noai
18 dim,l(ifj)=o,o,g
19 g:nos,l(ctc)=nosi,nos
20 o:(nop)=
21 U,yl,epsl,nosF(uydn,sbr)

22 nli
23 nty
24 dt,l,lO(dzm),dl,l,l(rmp)

25 Wt,m,lO(dzm),W1,1,1(rmp)

26 C#,C#i(cti),no,noi(cti)

27 i,p(ifj)=i,j,j
28 j:(nop)=
29 Wt,p(cmp),epsl(elzc,sub)=Wtt
30 Wtt,p(cmp)(pmt,sub)=Wt
31 dt,l(cmp),epel(elzc,sub)=dtt
32 q:typ
33 lis

=dl,Wl,noi,C#i

(rti,t)=dt

(rti,t)=Wt

(mcp)=C#,no

PMT.SuB

2 (nli)=
1 N (pmt, sub) =Nt

3 -Polynomial matrix

4 k(a1t) (t) ,N(rdi) ,N(ninp)
Tr anspos it Ton

(s!)(pmfr,t)=Nt
5 (hs)=

75 J: {nopi=
76 z,YZ(sle)(t),nx(inc),

m(*)(ctc,t)=Bt,At
CTCP.SUB

77 Bt,m(pmfr,t)=Np
78 Sld(t),At,Sli(t)(*)(-),p

79 q:(nop)= -
81 lis

1 G,ml(CTCp,sub)=Gl,GZ
2 (nli)=
3 -Cut by-columns-Polynomial

4 _G(s)==>(Gl(s)(G2)8)(
5 -G1 has m1 columns
6 m1 (Zo ins=&l

(pmfr,t)=Dp matrTx

80 tYP

WTF.SBR
1 U,Y,epsl,nos(uyTF,sbr)

2 nli
3 nty
4 -Input/outputgair-==>

5 ZDeterminTstic-MIMO
Transfer Function

6 -using one output at a time
7 1 , 4 (dziii) (ti&) =dttTWtTnE, C#
8 l,O(dzm),l,O(dzm)(mcp)=C#,no
9 nos (cdi) =dim

=dtt,Wt,no,C#

- Identification

8 pm,m(s/)=p
7 G(rdi) ,G(ninp) (mcp)=pm,m

10 Gl,ml(cmp),G2,m,m~(-)
9 G,ml,p(*)(ctr)=G1,02

11 (lis)=
(cmp)(mcp,t)=Gl,GZ

cTRP.suB
1 G,pl(CTRp,sub)=Gl,G2
2 (nli)=
3 Cut by rows-Polynomial

iiatrlx -
4 !Gl(S)!

Section C.6 L-A-S Code for Specific Algorithms 383

10

11
12
13
14
15
16
17
18

20
19

21

22

(mcp)=p,n,ppl
PrPP1(-),O,n(dzm),G(mcp)
=pP,Gl,X
Gl,O(coin)(mcp)=G2,i

i:i(inc)=i
x,ppl(ctr)=x,X
x (cpm) =x
Gl,x(rti)=Gl
X,pZ(ctr)=x,X
x (cpm) =x
G2,x(rti)=G2
i,m(ifj)=i,j,j

j: (nop)=

=G1, G2
(lie)=

Gl,m(cmp),G2,m(cmp)(mc~,t)

RTPM.SUB
1 A,B(RTpm,sub)=C
2
3
4
5
6
7

8

9

10
11
12

13

Row-tie-Polynomial-matrices
(nli) =

-jA(s)!
- 1 ----
-

I ==>C(S)
-IB(S) I
A(rdi),A(cdi),A(ninp)(mcp)
=pml,nl,ml

=pm2,n2,m2
pml,ml(s/),pm2,m2(s/),nl
(mcp)=pl,p2,nl2
ml,m2(ifj)=e,a,e

B(rdi),B(cdi),B(ninp)(mcp)

e: Inou\=
' A-& B should-have-same-#
ofIc5l'umns

mlrm2(cti)=-
- -

14 -(outj=
15 0 (coin) =C
16 (jmp)=s
17 a:n2,nl2(ifj)=s,s,g
18 g:n2(mcp)=n12

20 A(cpm),B(cpm),O(coin),l
19 s:pml,pm2(+),nl2(dzm)=C

(coin)(mcp)=Ax,Bx,i,l
21 i:i(inc)=i
22 Ax,pl(ctr,t)=x,Ax
23 C,x,l,l(rmp,t)=C
24 l,pl,p2(+)(+)=1
25 i,ml(ifj)=i,j,j
26 j:O(coin),pl(inc)(mcp)=i,l
27 I:i(inc)=i
28 Bx,p2(ctr,t)=x,Bx
29 C,x,l,l(rmp,t)=C
30 l,pl,p2(+)(+)=1
31 i,m2(ifj)=I,J,J
32 J:C,ml(cmp,t)=C
33 g: (lis)=

cTPM.sUB
1 A,B(CTpm,sub)=C
2 (nli)=
3 -Column-tie-Polynomial

4 ::A(s)~B(s)!==>c(s!
5 A(rdi),A(cdi),A(nznp)(mcp)

6 B(rdi),B(cdi),B(ninp)(mcp)

7 pml,ml(s/),pm2,m2(s/),nl

8 pl,pZ(ifj)=e,a,e
9 e:(nop)=

matrices

=pml,nl,ml

=pm2,n2,m2

(mcp)=pl,p2,nl2

10 -A-&-B-should-have-same-# - of-rows
11 pl,pZ(cti)=-
12 -(out)=
13 0 (coin) =C

15 a:n2,n12(ifj)=sls,g
16 g:n2(mcp)=nl2
17 s:pml,pm2(+),n12(dzm)=C
18 c,A(cpm),l,l(rmp),B(cpm),

pml(inc),l(rmp,t)=C
19 C,ml,m2(+) (cmp,t)=C

14 (jmp)=s

20 q:(lis)=

ELZC.SUB
1 G,eps(Elzc,sub)=Gr
2 (nli)=
3 G(mcp)=Gi
4 0 (coin) =Gr
5 -Elimination-of-last-zero

6 -from-G(z)-in PMF
7 Gi (cdi) (inc) ,Zi (rdi)

8 i:i(dec)=i
9 Gi,l,i,pm,l(exm)(t)=x
10 x,x(t)(*)(ssr),eps(ifj)

11 c:i,l(ifj)=f,f,i
12 f:Gi,i(ctc,t)=Gr
13 Gr,Gi(ninp)(cmp)=Gr
14 q:(lis)=

columns -

(mcp)=i,pm

=c,c,f

UYH.SUB
1 u,y,L(uyh,sub)=H,nnn
2 inli\=
3

4
5

6
7
8

10
9

- ' Input/Output-data-==>
Markov - - parameters H(z) in PMF
ApplicableIonlyIto-
DT-stable-systems - -

m,m(mcp)=H,nrm
u(rdi)=m

u(t),l,L,2(Toep)=U
U(rdi),U(cdi)(cti)=-
-(out)=

Appendix C Introduction to L-A-S

8 C(svd)=w,u,v
9 A,B,Crv(Str)=A1,BlrC1
10 v (mcp) =Tt
11 n,O(inc),p(inc)(mcp)=np,i,j
12 np.p(-)=nP
13 i: (nop) =
14 Al,i,j,p,np(exm,t)=Aij
15 Aij(svd)=w,u,v
16 I,v, j, j (mp,t)=T
17 Tt,T(*)=Tt
18 Al,B1,C1,T(str)=AlrBlrCl
19 i(inc),j(inc),np(dec)(mcp)

20 j,n(ifj)=irirG
21 G:(nop)--
22 A,B,C,Tt(str)=At,Bt,Ct
23 n(mcp)=deg
24 1 (dec) mi
2 5 I:i(inc)=i
26 n,i(-)=ni

28 At,l,nil,ni,i(exm)=z
27 ni(inc)=nil

29 z(nrr,t)=z
30 z,eps(ifj)=a,a,g
31 a:i(mcp,t)=deg
32 ni (mcp) =deg
33 g:(nop)=
34 i,n,p(-)(ifj)=f,K,K

36 At,l,l,deg,deg(exm)=Ao
35 K:(nop)=

37 B(cdi)=m
38 Ct,l,l,p,deg(exm)=Co
39 Bt,l,l,deg,m(exm)=Bo
40 (lis)=

litjrnp

MIN.SBR
1 A,B,C,epa(min,sbr)=Am,Bm,Cm
2 nli
3 nty
4 -Minimal Realization using
5 -Hessenb&g-transfor~ation
6 -Callsfwice-MIN.SUB
7 A,B,C,eps(min,sub)

=Ao,BorCorTl

(min,sub)=Amd,Bmd,Cmd,T2
8 Ao(t),Co(t),BO(t),epS

9 Amd,Cmd,Bmd(t,t)=Am,Bm,Cm
10 tYP
11 lis

11 U(rdi) ,U(cdi) (i f j)=e ,e ,O
i2 o:(nop)=
13 U,y(t)(sle)(t)=H
14 H,m,L(dec)(*)(ctC)=x,U
15 U (nrr) =nrm
16 e:(nop)=
17 H,m(pnfr)=H
18 (lis)=

C0MD.SBR
1 Do,eps(ComD,sbr)=comd,F
2 nli
3 nty
4 -Column-Do(z)-==>

Comm.-Den d(z)-comd
5 T,Z(dzm)(tik)=comd,F
6 Do (rdi) =p

8 D,l(ctr)=di,D

10 i:i(inc)=i
9 di(elz) =comd

11 D,l(ctr)=di,D

13 comd,di,eps(prd,t)
12 di(elz)=di

=cdr , dir , corn
14 cdr,dir,com(p*)(p*,t)=comd

16 j:(nop)=
17 comd(cdi)=dim
18 O,comd(cdi)(bzm)=fpol

20 0 (coin) =i
19 Do (mcp) =D

21 Ixi(inc)=i
22 D,l(ctr)=di,D
23 di(elz)=di
24 comd,di,epe(prd,t)=fi,x,y
25 fpol,p(inc) ,dim(dzm)

26 i,p(ifj)=I,J,J
27 J: (nop)=
28 fpol,p,p(*)(ctr,t)=F
29 F,p(cmp),eps(elzc,sub)=F

31 lis
30 q:typ

7 Do,l(coin)(mcp)=D,i

15 irP(ifj)=irjrj

fI,l,l(rmp) (rti,t)=fpol

APPENDIX B

MIN.SUB
1 A, B, C, eps (Min, sub)

2 (nli)=
=Ao,Bo,Co,Tt

3 -Elimination-of

4 --sing Hessenberg - TransFormation
6 X(rdi),~(rdi)~mc~)=n,p
S Called twice by MIN.SBR

7 n,n(dim)=I

unobservable-modes

KALDSBR
1 A,B,C,eps(Kald,sbr)

2 nli
=AdrBdrCd,T,dim

ntv _ " ~
-
IA,B,C) is nC nO
Kalman-decomposition

zrBarEd)
'simziaritv transform

Section C.6 L-A-S Code for Specific Algorithms 385

8
9
10
11
12
13
14
15

16
17
18
19

20
21
22
23
24
25
26

lT5(dzm)(tvc)=Ad,Bd,Cd,T,dim
dimensions

B(cdi),C(rdi)(mcP)~,P
A,B(qc)=Qc
A,C(qO)=QO
Qc,eps(nrs)=x,Tc,X
Qo(t),eps(nrs)=x,Rqot,X
Rqot(t),eps(nrs)=Tob
Tc,Tob,eps(INOU,sub)

Tob,Tc,eps(INOU,sub)=COb,CO
=Cob, CbOb

COb,CO,CbOb(cti,t)=Tl
Tl(t),eps(nrs)=CbO
cob(cdi),CO(cdi),CbOb
(cdi),CbO(cdi)(cti)=dim
Tl,CbO(cti)=T
dim(tvc)=cbo,co,bcbo,bco
ebolinc.t\=i . .~ . . - - - - r - , ~

A,B,C,T(str)=Ad,Bd,Cd
Ad,i,i,co,co(exm)=Ad
Bd,i,l,co,m(exm,t)=Bd
Cd,l,i,p,co(exm,t)=Cd

27 q:typ
28 lis

IN0u.suB
2 fnli\=
1 R,Q,eps(InOu,sub)=Qr,Qou

3 ‘_Q_is-decomposed-into-Qr

4 -Q7 is in range of R
5 I~oii iZ oiit-of-~an~e-of-R
6 QtcdTl-E

& Qou

7 b;R(cti),eps(nrs)=Nqr
8 Nqr,k(ctr)=Nq
9 Nq(t),eps(nrs)=Nqn
10 Q,Nq(*)=Qr
11 Q,Nqn(*)=Qou
12 (lis)=

M0DM.SBR

2 nli
1 A,Egv,eps(ModM,sbr)=P

3 nty
4 -Calculates-Modal-matrix-of
5 -non-diagonalizable A
6 -Satisfies A*P=P*Aj-
7 -Aj-=-BlocE-diagonal-Jordan

Form
8 eps (mcp) =P
9 A(rdi)=n
10 Egv (rdi) =m
11 O(dma)=z
12 n,O(dzm)=Zm
13 Zm (mcp) =P

15 j: j (mc)=j
16 Egv,j,l,l,2(exm)=egj
17 j(out)=
18 egj,l(ctc)=sj,oj

-

14 (VCP) =j

19 oj(ifj)=C,R,C
20 c:oj (abs)=oj
21 A,sj,oj,eps(ChaC,sbr)=Pj
22 nli
23 nty

25 R:(nop)=
26 A,sj,eps(ChaR,sbr)=Pj
27 nll
28 nty
29 y:(nop)=
30 P,Pj(cti,t)=P
31 P(out)=
32 j,m(ifj)=j,f,f
33 f:(nop)=
34 q:typ
35 lis

CHAC.SBR

24 (jmP)=Y

1 A,sj,oj,eps(ChaC,sbr)=Pj
2 nli
3 nty
4 calculates-eigenvectors

5 -associated-with-complex

6 fz?ifl-?*o j .Satisfies - A*Pj=Pj*Aj
7 -Aj=Jordan-block-associated - with-wj
8 eps (mcp) =P j
9 A(rdi)=n
10 n,n(+)=n2
11 O(dma)=z
12 n,n(dim)=I
13 n2,n2(dim)=I2
14 n,O(dzm)=Zm
15 Zm(mcp)=Pj
16 A,I,sj(s*)(-)=Bjr
17 I,oj(s*)=Bji
18 Bjr,Bji(cti),Bji,-l(s*),

19 Bj,eps(nrs)=N,R,r
20 N(cdi)=vj
21 12,~,z(mcp)=Bk,k,r
22 k:k(inc)=k
23 Bk,Bj(*)=Bk
24 Bk,eps(nrs)=Nk
25 R,Nk,eps(InOu,sub)=Y,M
26 M(cdi)=q
27 M,q12(s/)(ctc)=Mt
28 q(rf))=k,k,a
29 a:(nop)=
30 Mt,l(ctc)=m,Mt
31 z,Zm(mcp)=i,Pi
32 i:i(inc)=i
33 m,n(ctr)=mr,mi
34 mr,mi,Pi(cti,t)=Pi
35 Bj,m(*)=m
36 i,k(ifj)=i,z,z
37 z:(nop)=

-In-pj

Bjr(cti) (rti)=Bj

Appendix C Introduction to L-A-S

38 Pj,Pi(cti,t)=Pj
39 Mt(cdi)(ifj)=x.x,a
40 x:(nop)=
41 R,M(cti,t)=R
42 r,q(+,t)=r

44 q:(nop)=
43 r,vj(ifj,t)=k,q,q

45 tYP
46 lis

CIIAR.SBR
1 A,sig,eps(ChaR,sbr)=Pj
2 nli
3 nty
4 Calculates-Eigenvectors

5 zasiociated with-real

6 Satisfies-A*Pj=Pj*Aj
7 ZAj = Jordan block

8 Zps (mcp) =P j
9 A(rdi)=n
10 0 (dma)=z
11 n, n (dim) =I
12 n,O(dzm)=Zm
13 Zm(mcp)=Pj
14 A,I,sig(s*)(-)=Bj

16 N(cdi)=vj
15 Bj,eps(ntS)=N,R,x

17 I,z,z(mcp)=Bk,k,r
18 k:k(inc)=k
19 Bk,Bj(*)=Bk
20 Bk,eps(nrs)=Nk
21 R,Nk,eps(InOu,sub)=Y,M
22 M(cdi)=q
23 M(mcp)=Mt
24 q(ifj)=k,k,a
25 a: (nop)=
26 Mt,l(ctc)=m,Mt
27 z,Zm(mcp)=i,Pi
28 i:i(inc)=r
29 m,Pi(cti,t)=Pi
30 Bj,m(*)=m
31 i,k(ifj)=i,z,z
32 z:(nop)=
33 Pj,Pi(cti,t)=Pj
34 Mt(cdi)(ifj)=x,x,a

36 R,M(cti,t)=R
35 x:(nop)=

37 r,q(+,t)=r
38 r,vj(ifj,t)=krqtq
39 q:(nop)=
40 tYP
41 lis

I n Pj

- eigenvalueIsig

asFoFiated :with-real-sig

COTS.SBR
1 A,B,C,im,eps(COtS,sbr)

2 nli
=ReBCrResO,XXC,XXO

3 nty
4 -Degrees-of-Controllability

5 -Re%c-&-Reso-contain-n-

6 -and-im* (n-mi / G * (n-p)

8 -Arrays-xxc/xxo-are-to-be
7 -auxiliary-mstrices-Acc/Aoo

10 -outside-subroutine
9 with-xx<z/o>(NIK)=

11 l,C(dzm)(tvc)=Xesc,Xeso,

12 A,B,C(getd,sub)=n,mrp
13 n,m(-),n,p(-)(+),O(dzm)=Res
14 A,B,C(mcp)=Ao,BO,CO
15 0 (coin) =i
16 b:(nop)=
17 i(inc)=i
18 B(t),eps(nrs,t)=Nr
19 C,eps(nrs,t)=Nc

21 Nr(t),A,Nr(*)(*,t)=Acc
20 Nc(t),A,Nc(*)(*,t)=Aoo

22 Acc(egv,t)=egc
23 Aoo(egv,t)=ego
24 egc,ego(rti)=egco
25 n,n,l,l(dpm)=T
26 Ao,Bo,Co,T(str)=A,B,C
27 ReB,egco(cti,t)=Res
28 i,im(ifj)=b,f,f
29 f:(nop)=
30 A(egv) =egg
31 egg(out)=
32 Res,n,m(-)(ctr)=Resc,Reso
33 Reso02(r2c,t)=Xeso
34 egg,Reso(rti)=Reso
35 Reso(polp,sub)=xxo

37 egg,Resc(rti)=Resc
36 Rescr2(r2crt)=ResC

38 Resc(polp,sub)=xxc

40 11s

- or Observability
- eigenvalues of A
- eigenvalues of

- used for plotting
-
if desiredl -

xxc , xxo

39 q:typ

Section C.7 References

c.7

387

References

The reference list for this appendix includes several articles which present
the research which contributed toward the development of the L-A-S software.
Interested readers are directed to the proceedings of the IFAC CAD Symposia,
particularly those of 1982, 1985, 1988 and 1991, representing the 2"d, 3rd, 4" and
5"' IFAC Symposia held in Lafayette, Indiana; Lyngby, Denmark; Beijing, People's
Republic of China; and Swansea, United Kingdom, respectively. Also included as
useful references are M. Jamshidi's texts on computer-aided design (CAD) and a
manual for L-A-S which has been in use for some time.

Bingulac, S. (1983), "Recent modification in the L-A-S language and its use in
CAD of control systems," Proceedings of the 21" Allerton Conference, University
of Illinois, pp. 393-401.

Bingulac, S. (1988), "CAD package L-A-S: a research and educational tool in
systems and control," Proceedings of the 2 b Southeastern Symposium on System
neory, Charlotte, NC, pp. 44-49.

Bingulac, S., and D.L. Cooper (1990), L-A-S User's Manual, Virginia Polytechnic
Institute and State University, Department of Electrical Engineering Report, 235
pages.

Bingulac, S., and M. Farias (1979), "L-A-S (linear algebra and systems) language
and its use in control system education and research," Journal of Computing,
Springer Verlag, 23, pp. 1-23.

Bingulac, S., and N. Gluhajic (1982), "Computer-aided design of control systems
on mini-computers using the L-A-S language," Proceedings of the 2"' IFAC
Symposium on CAD in Control, Lafayette, IN, pp. 277-284.

Bingulac, S., P.J. West, and W.R. Perkins (1985), "Recent advances in the L-A-S
software used in CAD of control systems," Proceedings of the 3"'IFACSymposium
on C' in Control, Lyngby, Denmark, pp. 134-139.

Jamshidi, M., and C.J. Hegert (1985), Computer-Aided Control System
Engineering, Elsevier Science Publishing Co. (North Holland), Amsterdam.

Jamshidi, M., M. Tarokh, and B. Shafai (1992), Computer-Aided Analysis and
Design of Linear Control Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ.

388 Appendix C Introduction to L-A-S

West, P.J., S. Bingulac, and W.R. Perkins (1985), "L-A-S: a computer-aided
control system design language," Computer-Aided Control System Engineering (M.
Jarnshidi and C.J. Hegert, editors), Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, pp. 243-261.

Index

A

Adjoint matrix, 25
Admissibility degree, 128
Algorithms, 357

BCDC, 54, 64
BLCD, 360
BLDC, 360
C#, 364
CCF, 370
CDSR, 148, 358
CDTR, 165, 369
CFNS, 364
CFPP, 364
CHAC, 293, 385
CHAR, 290,386
CIND, 364
COMD, 384
COTS, 300, 386
CTCP, 382
CIZ)T, 80, 247, 359
CTPM, 383
CTRP, 382
DNH, 198, 376
DNND, 202, 379
DNRC, 202, 377

DMZO, 194, 375
D m , 200,376
DNTS, 377
DPM, 370
EAT, 12, 360
EATF, 53, 361
EATJ, 13, 360
ELZC, 383
EXD, 370
FACT, 50, 362
FGD, 371
E N , 362
GEDC, 371
GEDO, 371
G E m , 370
GZ, 5, 357
HDN, 185, 374
Hh?D, 188, 374
HRC, 181, 372
HRO, 179, 371
HTF. 190, 373
HTFM, 191, 373
HTFP, 190,373
HF, 375
IML, 370
INOU, 274, 385

389

390 Index

zm, 364
K A L D , 160,384
LALG, 30,358
LlN, 3, 357
LNM, 60,362
LNMJ, 61, 362
MIN, 160, 282, 384
MODM, 287, 385
NDDN, 202, 379
NDH, 199, 376
NDRC, 195, 376
NDRO, 202, 378
NDTF, 201, 377
NDTS, 377
NRS, 272, 358
PMT, 382
POLR, 76, 362
POM, 50, 362
QC, 18, 357
QO, 21, 358
R4R5, 57, 363
R5R4, 54, 363
RCND, 153, 366
RESO, 27, 358
RICD, 51, 361
RODN, 151, 365
RTPM, 383
SICD, 49, 361
SMAT, 364
SQM, 62, 363
SRCD, 359
SRDC, 360
SSH, 147, 365
SSRC, 145, 365
SSRO, 144, 365
SSTF, 33, 359
STR. 363
TFDN, 169, 368
TFH, 164,370
TFND, 172, 369
TFRC, 175, 367
TFRO, 173, 366
TRCN, 368
TRON, 367

TSCL, 377
UYDN, 240,381
UYRO, 238,380
UYTF, 243, 382
UYH, 242, 383

Auto-regressive moving-average
(ARMA) model, 39

B

Basis vectors, 262
Bilinear transformation, 53
Block diagonal matrix, 288

C

Canonical forms, 87-131
controllability, 99
feedback, 88-90
Jordan, 93-96
Luenberger, 1 13
MIMO system, 109-131
observability, 99
observer, 91-93

277
Cayley-Hamilton theorem, 25, 75,

Characteristic polynomial, 24
Condition number, 128
Continualization (See also Algorithm

cIz)T), 59-64,247
bilinear, 63
ramp-invariant (RI), 62
step-invariant (SI), 59

Controllability (See also
Observability and Kalman
decomposition), 17

index, 114
indices (See also Pseudo-

controllability indices
(PCI)), 114

individual, 116
matrix, 18
test, 18, 297

Conversions (See Transformations)

Index

Crate diagram, 112

391

J

D

Diagonal matrix (See Jordan form)
Discrete-time systems, 10, 14
Discretization (See aho Algorithm

c ") , 46-59, 247
bilinear, 53
ramp invariant 0 , 5 0
step-invariant (SI), 47

Duality, 22, 37

E

Eigensystems, 266
eigenvector chains (See

eigenvalues, 266
eigenvectors, 266
generalized eigenvectors, 287
similarity transformation, 267

generalized eigenvectors)

Equivalent state models, 97
Exponential matrix, 8

F

Frobenius norm, 66

Jordan form (See also Generalized
eigenvectors and Modal
matrix), 65,93,289

real-number form, 66,289

K

Kalman decomposition, 283

L

L-A-S language (See also
Algorithms), 301, 314

algorithms, 357
interpreter commands, 351
operators, 321
subroutines, 326

Least-squares solution, 263
Levemer's algorithm, 25
Linear combination, 262
Linear equations, 261, 279

overdetermined, 263
underdetermined, 265

Linearization, 2-7
Linearly independent vectors, 262
Linearly interpolated model, 14
Log of a matrix, 59

G
M

Generalized eigenvectors, 287

H

Hankel matrix, 178
Hessenberg transformation, 281
Ho-Kalman algorithm (ERA), 177

I

Identification, 71
Identification identity, 150, 233-235

Markov parameters, 145
Matrices, 261

partitioned, 276
pseudo-inverse, 264
trace, 26

Matrix fraction description (MFD),
38, 131

equi-observable, 135
Matrix norm, 66
Minimum norm solution, 56, 265
Models (See also State space models

392

System representation and
Transformations)

conversions, 143-221
from Markov parameters, 177-

193
from matrix fraction

descriptions, 193-205
from state space, 143-156
from transfer functions, 156-

177
Modal matrix, 266

Index

N

Nonlinear model, 2
Null space, 268
Nullity, 269

0

Observability (See also
Controllability and Kalman
decomposition), 19

index, 115
indices (See also Pseudo-

observability indices (POI)),
115

matrix, 20
test, 20, 297

P

Persistent excitation, 237
Polynomial

characteristic, 24
coprime

left, 131
right, 132

monic, 39, 133
reduction, 75

Polynomial matrix, 29
column-reduced, 133
regular, 135

row-reduced, 133
Polynomial matrix form (PMF), 28,

Post-fix notation, 3 11
Pseudo-wntrollability indices (POI),

116
admissible, 117

34

Pseudo-inverse (See also Matrix), 56

R

Ramp-invariant (RI) model, 14, 50,

Range space, 269
Rank of a matrix, 269
Representation (See Model)
Resolvent matrix, 25, 27
Response (See System response)
Robot arm, 5

62

S

s-domain transfer function, 24
Sampleddata system, 11
Scaling, 48, 59, 65-68

Selector matrices, 120
Selector vectors, 119
Singular value decomposition (SW),

271, 282
Square-root of a matrix, 62
State space models

time scaling, 146, 214-221

continuous-time systems, 7
discrete-time systems, 10, 15
equivalent, 97
general solution, 10
response, 23

Step-invariant (SI) model, 47, 59
System representation

Markov model
matrix fraction description
state space

System response (See also Algorithm
CDSR), 23, 147

Index 393

continuous-time, 147
discrete-time, 148

T

Transfer function matrix
calculation, 29-38
continuous-time system, 23
discrete-time system, 25
proper, 24
strictly proper, 24

Transformation (See also
Discretization and
Continualization)

bilinear PT), 53, 63
of state (See similarity)
ramp invariant (RI), 50, 62
similarity (See also Algorithm

STR), 98, 267
step invariant (SI), 47, 59

Transition matrix, 8

Trapezoidal rule, 45
Tustin’s approximation, 53

U

Uncontrollable (See Controllability)
Underdetermined equations, 265
Upper triangular matrix, 289

V

Vector expansion (See Linear
combination)

Vectors, 261

Z

zdomain transfer function, 25
Zero-order hold (ZOH) equivalent

model (See also
Discretization), 10

